More stories

  • in

    Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems

    Kaya, C., Murillo-Amador, B. & Ashraf, M. Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum. Antioxidants (Basel, Switzerland) 9, 1–29 (2020).
    Google Scholar 
    Darwesh, O. M., Shalaby, M. G., Abo-Zeid, A. M. & Mahmoud, Y. A. G. Nano-bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egypt. J. Chem. 64, 2499–2507 (2021).
    Google Scholar 
    Bimurzayev, N., Sari, H., Kurunc, A., Doganay, K. H. & Asmamaw, M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci. Rep. 11, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    Li, W. et al. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 10, 1–9 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Hussien, H. A., Salem, H. & Mekki, B. E. D. Ascorbate-glutathione-α-tocopherol triad enhances antioxidant systems in cotton plants grown under drought Stress. Int. J. ChemTech Res. 8, 1463–1472 (2015).CAS 

    Google Scholar 
    Hussein, H. A. A., Mekki, B. B., El-Sadek, M. E. A. & El Lateef, E. E. Effect of L-ornithine application on improving drought tolerance in sugar beet plants. Heliyon 5, e02631 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, H., Huang, Z., Li, M. & Hou, Z. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci. Rep. 10, 2 (2020).Article 
    CAS 

    Google Scholar 
    Khataar, M., Mohammadi, M. H., Shabani, F., Mohhamadi, M. H. & Shabani, F. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Hernández, J. A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 20, 2408 (2019).PubMed Central 
    Article 

    Google Scholar 
    Dubey, S., Bhargava, A., Fuentes, F., Shukla, S. & Srivastava, S. Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 48, 954–966 (2020).CAS 
    Article 

    Google Scholar 
    Devarshi, P., Grant, R., Ikonte, C. & Hazels Mitmesser, S. Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients 11, 2 (2019).Article 
    CAS 

    Google Scholar 
    Takahashi, H. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakhoum, G. S. et al. Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43 (2018).Article 
    CAS 

    Google Scholar 
    Adams, E. et al. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G. & El-Awadi, M. E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 44, 1–10 (2020).Article 

    Google Scholar 
    Wani, S. H. et al. Engineering salinity tolerance in plants: Progress and prospects. Planta 251, 1–29 (2020).Article 
    CAS 

    Google Scholar 
    Genisel, M., Erdal, S. & Kizilkaya, M. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul. 75, 187–197 (2015).CAS 
    Article 

    Google Scholar 
    Salem, H., Abo-Setta, Y., Aiad, M., Hussein, H.-A. & El-Awady, R. Effect of potassium humate on some metabolic products of wheat plants grown under saline conditions. J. Soil Sci. Agric. Eng. 8, 565–569 (2017).
    Google Scholar 
    El-Awadi, M. E., Ibrahim, S. K., Sadak, M. S., Abd Elhamid, E. M. & Gamal El-Din, K. M. Impact of cysteine or proline on growth, some biochemical attributes and yield of faba bean. Int. J. PharmTech Res. 9, 100–106 (2016).CAS 

    Google Scholar 
    Nasibi, F., Kalantari, K. M., Zanganeh, R., Mohammadinejad, G. & Oloumi, H. Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian J. Plant Physiol. 21, 279–286 (2016).Article 

    Google Scholar 
    Romero, I. et al. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit. Vectors 7, 1–11 (2014).Article 
    CAS 

    Google Scholar 
    Guo, H. et al. l-cysteine desulfhydrase-related H2S production is involved in OsSE5-promoted ammonium tolerance in roots of Oryza sativa. Plant Cell Environ. 40, 1777–1790 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colak, N., Tarkowski, P. & Ayaz, F. A. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Bot. Serbica 44, 191–201 (2020).Article 

    Google Scholar 
    Teixeira, W. F. et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 2 (2017).Article 

    Google Scholar 
    Perveen, S. et al. Cysteine-induced alterations in physicochemical parameters of oat (Avena sativa L var Scott and F-411) under drought stress. Biol. Futur. 70, 16–24 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrez, D. A., Abdelhamid, A. E. & Darwesh, O. M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 20, 100302 (2019).Article 

    Google Scholar 
    Acharya, B. R. et al. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci. Rep. 12, 1274 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hayat, S. et al. Role of proline under changing environments: A review. Plant Signal. Behav. 7, 2 (2012).
    Google Scholar 
    Thomas, J., Mandal, A. K. A., Kumar, R. R. & Chordia, A. Role of biologically active amino acid formulations on quality and crop productivity of tea (Camellia sp.). Int. J. Agric. Res. 4, 228–236 (2009).CAS 
    Article 

    Google Scholar 
    Mekki, B. E. D. B. & Hussein, H. A. A. Influence of L-ascorbate on yield components, biochemical constituents and fatty acids composition in seeds of some groundnut (Arachis hypogaea L.) cultivars grown in sandy soil. Biosci. Res. 14, 75–83 (2017).
    Google Scholar 
    Cuin, T. A. & Shabala, S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225, 753–761 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussein, H.-A.A. et al. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 11, 1219 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azarakhsh, M. R., Asrar, Z. & Mansouri, H. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. J. Soil Sci. Plant Nutr. 15, 651–662 (2015).
    Google Scholar 
    Mekki, B. E. D., Hussien, H. A. & Salem, H. Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants. Int. J. ChemTech Res. 8, 1573–1581 (2015).
    Google Scholar 
    Zhao, Y. S. et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10, 2004 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elsayed, A. A., Ibrahim, A. A. & Dakroury, M. Z. Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Sci. Exch. J. An Int Q. J. Sci. Agric. Environ. 37, 467–479 (2016).
    Google Scholar 
    Darwesh, O. M. & Elshahawy, I. E. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur. J. Plant Pathol. 160, 917–934 (2021).CAS 
    Article 

    Google Scholar 
    Metzner, H., Rau, H. & Senger, H. Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta 65, 186–194 (1965).CAS 
    Article 

    Google Scholar 
    Cerning, B. J. A note on sugar determination by the anthrone method. Cereal Chem. 52, 857–860 (1975).
    Google Scholar 
    Pourmorad, F., Hosseinimehr, S. J. & Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5, 1142–1145 (2006).CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).CAS 
    Article 

    Google Scholar 
    Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T. & Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In Methods in Enzymology Vol. 630 481–502 (Academic Press, 2020).
    Google Scholar 
    Kong, F. X., Hu, W., Chao, S. Y., Sang, W. L. & Wang, L. S. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ. Exp. Bot. 42, 201–209 (1999).CAS 
    Article 

    Google Scholar 
    Asada, K. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241 (1992).CAS 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Snedecor, G. W. & Cochran, W. G. Statistical Methods (The Iowa State University Press, 1989).MATH 

    Google Scholar  More

  • in

    Increasing calcium scarcity along Afrotropical forest succession

    Losos, E. & Leigh, E. G. Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network (Univ. Chicago Press, 2004).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L. Beyond deforestation: restoring degraded lands. Science 1458, 1458–1460 (2008).
    Google Scholar 
    Global Forest Resources Assessment 2010 (FAO, 2010).Rozendaal, D. M. A. & Chazdon, R. L. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25, 506–516 (2015).PubMed 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F. & Al, E. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck, M. et al. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14, 89–96 (2012).
    Google Scholar 
    Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 

    Google Scholar 
    Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 9, 9–17 (2011).
    Google Scholar 
    Medvigy, D. et al. Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytol. 223, 1820–1833 (2019).Powers, J. S., Mar, E. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles during secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. & Martinelli, L. A. in Amazonia and Global Change (eds Keller, M. et al.) 299–309 (American Geophysical Union, 2013).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).CAS 
    PubMed 

    Google Scholar 
    Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).
    Google Scholar 
    Van Langenhove, L. et al. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant Soil 450, 93–110 (2020).PubMed 

    Google Scholar 
    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 

    Google Scholar 
    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol. Lett. 11, 35–43 (2008).PubMed 

    Google Scholar 
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. Lett. 14, 939–947 (2011).PubMed 

    Google Scholar 
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).CAS 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 
    Sanchez, P. A., Villachica, J. H. & Bandy, D. E. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 47, 1171 (1983).CAS 

    Google Scholar 
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 
    Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).CAS 
    PubMed 

    Google Scholar 
    Wassen, M. J., Venterink, H. O., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).CAS 
    PubMed 

    Google Scholar 
    Waring, B. G., Becknell, J. M. & Powers, J. S. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 178, 887–897 (2015).PubMed 

    Google Scholar 
    De longe, M., D’odorico, P. & Lawrence, D. Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob. Change Biol. 14, 154–160 (2008).
    Google Scholar 
    Bauters, M. et al. Fire-derived phosphorus fertilization of African Tropical Forests. Nat. Commun. 12, 5129 (2021).Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25, 376–381 (1975).CAS 

    Google Scholar 
    Gallarotti, N. et al. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. 15, 3357–3374 (2021).Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).CAS 

    Google Scholar 
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 
    Lawrence, D. et al. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc. Natl Acad. Sci. USA 104, 20696–20701 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).
    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (John Wiley and Sons, 1976).Turner, B. L. & Engelbrecht, B. M. J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315 (2011).Sullivan, B. W. et al. Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100, e02641 (2019).Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 13, 184–194 (2021).White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 

    Google Scholar 
    Huggett, B. A., Schaberg, P. G., Hawley, G. J. & Eagar, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 37, 1692–1700 (2007).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Elsevier/Academic Press 2002).Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Bauters, M. et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo Basin. Ecosystems 24, 1422–1435 (2021).Turner, B. L., Brenes-arguedas, T. & Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2021).Vitousek, P. M. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).PubMed 

    Google Scholar 
    Nykvist, N. in Soils of Tropical Forest Ecosystems (eds Schulte, A. & Ruhiyat, D.) 87–91 (Springer, 1998).Bunyavejchewin, S., Sinbumroong, A., Turner, B. L. & Davies, S. J. Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. J. Trop. Ecol. 35, 95–107 (2019).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 

    Google Scholar 
    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Makelele, I. A. et al. Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J. Veg. Sci. 32, e13071 (2021).Van Langenhove, L. et al. Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests. Biogeochemistry 149, 175–193 (2020).
    Google Scholar 
    Staelens, J. et al. Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut. 191, 149–169 (2008).CAS 

    Google Scholar 
    Hofhansl, F. et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, southwest Costa Rica. Biogeochemistry 106, 371–396 (2011).
    Google Scholar 
    Schrijver, A. De, Nachtergale, L. & Staelens, J. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut. 131, 93–105 (2004).Eriksson, E. & Khunakasem, V. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J. Hydrol. 7, 178–197 (1969).
    Google Scholar 
    Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439 (2002).
    Google Scholar 
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8, 1163–1167 (2017).
    Google Scholar 
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).Rowland, A. P. & Haygarth, P. M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 26, 410–415 (1997).CAS 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 

    Google Scholar 
    Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14, 319–329 (1982).CAS 

    Google Scholar 
    Kaiser, C. et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021). More

  • in

    Decadal trends in 137Cs concentrations in the bark and wood of trees contaminated by the Fukushima nuclear accident

    Monitoring sites and speciesThe monitoring survey was conducted at five sites in Fukushima Prefecture (sites 1–4 and A1) and at one site in Ibaraki Prefecture (site 5), Japan (Fig. 1). Sites 1, 2, and A1 are located in Kawauchi Village, site 3 in Otama Village, site 4 in Tadami Town, and site 5 in Ishioka City. Monitoring at sites 1–5 was started in 2011 or 2012, and site A1 was additionally monitored since 2017. The tree species, age, mean diameter at breast height, initial deposition density of 137Cs, and sampling year of each sample at each site are listed in Table 1. The dominant tree species in the contaminated area, namely, Japanese cedar (Cryptomeria japonica [L.f.] D.Don), Japanese cypress (Chamaecyparis obtusa [Siebold et Zucc.] Endl.), konara oak (Quercus serrata Murray), and Japanese red pine (Pinus densiflora Siebold et Zucc.) were selected for monitoring. Japanese chestnut (Castanea crenata Siebold et Zucc.) was supplementally added in 2017. The cedar, cypress, and pine are evergreen coniferous species, and the oak and chestnut are deciduous broad-leaved species. Sites 1 and 3 each have three plots, and each plot contains a different monitoring species. Site A1 has one plot containing two different monitoring species, and the remaining sites each have one plot with one monitoring species, giving ten plots in total.Figure 1Locations of the monitoring sites and initial deposition densities of 137Cs (decay-corrected to July 2, 2011) following the Fukushima nuclear accident in Fukushima and Ibaraki Prefectures. Open circles indicate the monitoring sites and the cross mark indicates the Fukushima Dai-ichi Nuclear Power Plant. Data on the deposition density were provided by MEXT19,20 and refined by Kato et al.21. The map was created using R (version 4.1.0)22 with ggplot2 (version 3.3.5)23 and sf (version 1.0–0)24 packages.Full size imageTable 1 Description of the sampled trees and monitoring sites.Full size tableSample collection and preparationBulk sampling of bark and wood disks was conducted by felling three trees per year at all sites during 2011–20168,25 and at sites 3–5 and A1 during 2017–2020. Partial sampling from six trees per year was conducted at sites 1 and 2 during 2017–2020 (from seven trees at site 2 in 2017) to sustain the monitoring trees. All the samples were obtained from the stems around breast height. During the partial sampling, bark pieces sized approximately 3 cm × 3 cm (axial length × tangential length) were collected from four directions of the tree stem using a chisel, and 12-mm-diameter wood cores were collected from two directions of the tree stem using an automatic increment borer (Smartborer, Seiwa Works, Tsukuba, Japan) equipped with a borer bit (10–101-1046, Haglöf Sweden, Långsele, Sweden). Such partial sampling increases the observational errors in the bark and wood 137Cs concentrations in individual trees26. To mitigate this error and maintain an accurate mean value of the 137Cs concentration, we increased the number of sampled trees from three to six. The sampling was conducted mainly in July–September of each year; the exceptions were site-5 samples in 2011 and 2012, which were collected irregularly during January–February of the following year. The collected bark pieces were separated into outer and inner barks, and the wood disks and cores were split into sapwood and heartwood. The outer and inner bark samples during 2012–2016 were obtained by partial sampling of barks sized approximately 10 cm × 10 cm from 2–3 directions on 2–3 trees per year.The bulk samples of bark, sapwood, and heartwood were air-dried and then chipped into flakes using a cutting mill with a 6-mm mesh sieve (UPC-140, HORAI, Higashiosaka, Japan). The pieces of the outer and inner bark were chipped into approximately 5 mm × 5 mm pieces using pruning shears, and the cores of the sapwood and heartwood were chipped into semicircles of thickness 1–2 mm. Each sample was packed into a container for radioactivity measurements and its mass was measured after oven-drying at 75 °C for at least 48 h. Multiplying this mass by the conversion factor (0.98 for bark and 0.99 for wood)8 yielded the dry mass at 105 °C.Radioactivity measurementsThe radioactivity of 137Cs in the samples was determined by γ-ray spectrometry with a high-purity Ge semiconductor detector (GEM20, GEM40, or GWL-120, ORTEC, Oak Ridge, TN). For measurements, the bulk and partial samples were placed into Marinelli containers (2.0 L or 0.7 L) and cylindrical containers (100 mL or 5 mL), respectively. The peak efficiencies of the Marinelli containers, the 100-mL container, and the 5-mL container were calibrated using standard sources of MX033MR, MX033U8PP (Japan Radioisotope Association, Tokyo, Japan), and EG-ML (Eckert & Ziegler Isotope Products, Valencia, CA), respectively. For the measurement of the 5-mL container, a well-type Ge detector (GWL-120) was used under the empirical assumption that the difference in γ-ray self-absorption between the standard source and the samples is negligible27. The measurement was continued until the counting error became less than 5% (higher counting errors were allowed for small or weakly radioactive samples). The activity concentration of 137Cs in the bark (whole) collected by partial sampling was calculated as the mass-weighted mean of the concentrations in the outer and inner barks; meanwhile, the concentration in the wood (whole) was calculated as the cross-sectional-area-weighted mean of sapwood and heartwood concentrations. The activity concentrations were decay-corrected to September 1, 2020, to exclude the decrease due to the radioactive decay.Trend analysesThe yearly representative values (true states) of 137Cs activity concentration in each stem part in each plot were estimated using a DLM, a state-space model in which the noise follows a normal distribution and the relationship between variables is linear. One basic DLM is the local linear trend model defined by the following equations:$$Y_{t} = mu _{t} + varepsilon _{t} ,quad quad quad varepsilon _{t} sim Normal left( {0,sigma _{varepsilon }^{2} } right)$$
    (1)
    $$mu_{t} = mu_{t – 1} + beta_{t – 1} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
    (2)
    $$beta_{t} = beta_{t – 1} + zeta_{t} ,quad quad quad zeta_{t} sim Normal left( {0,sigma_{zeta }^{2} } right)$$
    (3)
    where Yt, μt, and βt are the observation values, level (true state), and slope, respectively, and εt, ηt, and ζt denote their corresponding noises. The subscript t is the time index. The noises εt, ηt, and ζt follow normal distributions with a mean of 0 and variances of ({sigma }_{varepsilon }^{2}), ({sigma }_{eta }^{2}), and ({sigma }_{zeta }^{2}), respectively. To detect relatively long-term trends, we employed the smooth local linear trend model28 (also called the smooth trend model, integrated random walk model, or second-order trend model), which is obtained by considering that μt and βt are driven by the same noise. The trend changes are assumed to be smoother in this model than in the local linear trend model28,29. Combining Eqs. (2) and (3), μt in the smooth local linear trend model is finally obtained as$$mu_{t} = 2mu_{t – 1} – mu_{t – 2} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
    (4)
    The parameters μt, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}) of each stem part in each plot were determined by Bayesian estimation with a Markov chain Monte Carlo (MCMC) method. The Bayesian estimation was performed in R (version 4.1.0)22 with the rstan package (version 2.21.2)30. Uninformative prior distributions were used for μ1, μ2, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}). The log-transformed values of the 137Cs activity concentration (decay-corrected to September 1, 2020) were given as Yt (the observed values of multiple individuals in each year were passed via the segment function of Stan). MCMC sampling was conducted for four chains of 50,000 iterations (the first 25,000 were discarded as warmup), obtaining 100,000 MCMC samples for each parameter. The MCMC was judged to have converged when the maximum value of Rhat was less than 1.05 and the divergent transitions after warmup were fewer than 1,000 (i.e., less than 1% of the MCMC sample size). On the datasets of the outer and inner barks from site-3 oaks and all stem parts from site-A1 pines and chestnuts, the MCMC converged poorly owing to the small number of monitoring years. Thus, the temporal trends in these datasets were not analyzed (the observational data at site A1 are shown in Supplementary Fig. S1 and Table S1).To detect decadal trends rather than yearly variations, we determined the temporal trends in the true state (μ) by setting 2–4 delimiting years and examining whether μ varied significantly from one delimiting year to the next. As the delimiting years, we selected the initial and final years of monitoring and the years in which the median µ was highest (µ-max year) and lowest (µ-min year). When the µ-max year and/or the µ-min year coincided with the initial year and/or final year of monitoring, the number of delimiting years reduced from four to two or three. The trend in µ between two delimiting years was determined to be increasing and decreasing when the 95% credible interval of µ2nd delimiting year − µ1st delimiting year (obtained from the MCMC samples) was higher and lower than zero, respectively. A flat trend (no significant variation) was detected when the 95% credible interval included zero. If the 3rd and 4th delimiting years existed, the trends between the 2nd and 3rd delimiting years and between the 3rd and 4th delimiting years were determined in the same manner.The 137Cs CRs of outer bark/inner bark, heartwood/sapwood, and inner bark/sapwood were also subjected to the above trend analyses. On datasets with less than five years of monitoring, the MCMC did not converge so the trend analysis was not attempted. More

  • in

    Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems

    Thamdrup, B. New Pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 43, 407–428 (2012).
    Google Scholar 
    Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. USA 106, 4752–4757 (2009).CAS 

    Google Scholar 
    Behrendt, A., de Beer, D. & Stief, P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences 10, 7509–7523 (2013).
    Google Scholar 
    Fossing, H. et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium. Thioploca. Nature 374, 713–715 (1995).CAS 

    Google Scholar 
    McHatton, S. C., Barry, J. P., Jannasch, H. W. & Nelson, D. C. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62, 954–958 (1996).CAS 

    Google Scholar 
    Kamp, A., Høgslund, S., Risgaard-Petersen, N. & Stief, P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front. Microbiol. 6, 1492 (2015).
    Google Scholar 
    Eppley, R. W. & Rogers, J. N. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine plankton diatom. J. Phycol. 6, 344–351 (1970).CAS 

    Google Scholar 
    Lomas, M. & Glibert, P. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J. Phycol. 36, 903–913 (2000).CAS 

    Google Scholar 
    Jørgensen, B. B. & Gallardo, A. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999).
    Google Scholar 
    Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).CAS 

    Google Scholar 
    Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96 (2006).CAS 

    Google Scholar 
    Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G. & Stief, P. Diatoms respire nitrate to survive dark and anoxic conditions. Proc. Natl. Acad. Sci. USA 108, 5649–5654 (2011).CAS 

    Google Scholar 
    Stief, P. et al. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol. 14, 35 (2014).
    Google Scholar 
    Høgslund, S., Cedhagen, T., Bowser, S. S. & Risgaard-Petersen, N. Sinks and sources of intracellular nitrate in gromiids. Front. Microbiol. 8, 617 (2017).
    Google Scholar 
    Harold, F. M. The Vital Force: A Study of Bioenergetics (WH Freeman & Co., 1986).Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H. & Falkowski, P. G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004).
    Google Scholar 
    Villareal, T. A., Altabet, M. A. & Culverrymsza, K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709–712 (1993).CAS 

    Google Scholar 
    Kamp, A., Stief, P. & Schulz, H. N. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl. Environ. Microbiol. 72, 4755–4760 (2006).CAS 

    Google Scholar 
    Merz, E. et al. Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environ. Microbiol. 23, 1422–1435 (2021).CAS 

    Google Scholar 
    Leblanc, K. et al. A global diatom database–abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4, 149–165 (2012).
    Google Scholar 
    Benoiston, A. S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).
    Google Scholar 
    Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycl. 9, 359–372 (1995).CAS 

    Google Scholar 
    Sarthou, G., Timmermans, K. R., Blain, S. & Tréguer, P. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).CAS 

    Google Scholar 
    Dortch, Q., Clayton, J. R., Thoresen, S. S. & Ahmed, S. I. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol. 81, 237–250 (1984).CAS 

    Google Scholar 
    Kamp, A., Stief, P., Knappe, J. & de Beer, D. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. PLoS ONE 8, e82605 (2013).
    Google Scholar 
    Kamp, A., Stief, P., Bristow, L. A., Thamdrup, B. & Glud, R. N. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates. Front. Microbiol. 7, 1669 (2016).
    Google Scholar 
    Needoba, J. A. & Harrison, P. J. Influence of low light and a light:dark cycle on NO3− uptake, intracellular NO3−, and nitrogen isotope fractionation by marine phytoplankton. J. Phycol. 40, 505–516 (2004).CAS 

    Google Scholar 
    Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).CAS 

    Google Scholar 
    Lomas, M. W., Rumbley, C. J. & Glibert, P. M. Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance. J. Plankton Res. 22, 2351–2366 (2000).CAS 

    Google Scholar 
    Van Tol, H. M. & Armbrust, E. V. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS ONE 16, e0241960 (2021).
    Google Scholar 
    Piña-Ochoa, E. et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl. Acad. Sci. USA 107, 1148–1153 (2010).
    Google Scholar 
    García-Robledo, E., Corzo, A., Papaspyrou, S., Jimenez-Arias, J. L. & Villahermosa, D. Freeze-lysable inorganic nutrients in intertidal sediments: dependence on microphytobenthos abundance. Mar. Ecol. Prog. Ser. 403, 155–163 (2010).
    Google Scholar 
    Marchant, H. K., Lavik, G., Holtappels, M. & Kuypers, M. M. M. The fate of nitrate in intertidal permeable sediments. PLoS ONE 9, e104517 (2014).
    Google Scholar 
    Villareal, T. A. & Lipschultz, F. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea. J. Phycol. 31, 689–696 (1995).CAS 

    Google Scholar 
    Smith, G. J., Zimmerman, R. C. & Alberte, R. S. Molecular and physiological responses of diatoms to variable levels of irradiance and nitrogen availability: Growth of Skeletonema costatum in simulated upwelling conditions. Limnol. Oceanogr. 37, 989–1007 (1992).CAS 

    Google Scholar 
    Montagnes, D. J. S. & Franklin, D. J. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnol. Oceanogr. 46, 2008–2018 (2001).CAS 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).
    Google Scholar 
    Behrenfeld, M. J. et al. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 91, e01457 (2021).
    Google Scholar 
    Bourke, M. F. et al. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nat. Geosci. 10, 30–35 (2017).CAS 

    Google Scholar 
    Härnström, K., Ellegaard, M., Andersen, T. J. & Godhe, A. Hundred years of genetic structure in a sediment revived diatom population. Proc. Natl. Acad. Sci. USA 108, 4252–4257 (2011).
    Google Scholar 
    Pelusi, A., Santelia, M. E., Benvenuto, G., Godhe, A. & Montresor, M. The diatom Chaetoceros socialis: spore formation and preservation. Europ. J. Phycol. 55, 1–10 (2020).CAS 

    Google Scholar 
    Petterson, K. & Sahlsten, E. Diel patterns of combined nitrogen uptake and intracellular storage of nitrate by phytoplankton in the open Skagerrak. J. Exp. Mar. Biol. Ecol. 138, 167–182 (1990).
    Google Scholar 
    Petterson, K. Seasonal uptake of carbon and nitrogen and intracellular storage of nitrate in planktonic organisms in the Skagerrak. J. Exp. Mar. Biol. Ecol. 151, 121–1137 (1991).
    Google Scholar 
    Bode, A., Botas, J. A. & Fernandez, E. Nitrate storage by phytoplankton in a coastal upwelling environment. Mar. Biol. 129, 399–406 (1997).CAS 

    Google Scholar 
    Stief, P., Kamp, A., Thamdrup, B. & Glud, R. N. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels. Front. Microbiol. 7, 98 (2016).
    Google Scholar 
    Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 5, 1660–1670 (2011).CAS 

    Google Scholar 
    Magalhaes, C. M., Wiebe, W. J., Joye, S. B. & Bordalo, A. A. Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River estuary (Portugal). Estuaries 28, 592–607 (2005).CAS 

    Google Scholar 
    Burgin, A. J. & Hamilton, S. K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89–96 (2007).
    Google Scholar 
    Kühl, M., Glud, R. N., Ploug, H. & Ramsing, N. B. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32, 799–812 (1996).
    Google Scholar 
    Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15, 1943–1955 (2013).CAS 

    Google Scholar 
    Fernandez-Mendez, M. et al. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS ONE 9, e107452 (2014).
    Google Scholar 
    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).CAS 

    Google Scholar 
    Abed, R. M. M. & Garcia-Pichel, F. Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. Environ. Microbiol. 3, 53–62 (2001).CAS 

    Google Scholar 
    Al-Najjar, M. A. A., de Beer, D., Kühl, M. & Polerecky, L. Light utilization efficiency in photosynthetic microbial mats. Environ. Microbiol. 14, 982–992 (2012).CAS 

    Google Scholar 
    Heisterkamp, I. M., Kamp, A., Schramm, A. T., de Beer, D. & Stief, P. Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor. Mar. Ecol. Prog. Ser. 445, 181–192 (2012).
    Google Scholar 
    García-Robledo, E., Corzo, A. & Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 162, 30–36 (2014).
    Google Scholar 
    Grasshoff, K. In Methods of Seawater Analysis (eds Grasshoff, K., Ehrhardt, M., Kremling, K.) 143–150 (Verlag Chemie Weinheim, 1983).Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).CAS 

    Google Scholar 
    Meier, D. V. et al. Limitation of microbial processes at saturation-level salinities in a microbial mat covering a coastal salt flat. Appl. Environ. Microbiol. 87, e00698–21 (2021).CAS 

    Google Scholar 
    Sode, K., Horikoshi, K., Takeyama, H., Nakamura, N. & Matsunaga, T. Online monitoring or marine cyanobacterial cultivation based on phycocyanin fluorescence. J. Biotechnol. 21, 209–217 (1991).CAS 

    Google Scholar 
    Berns, D. S., Scott, E. & Oreilly, K. T. C-phycocyanin-minimum molecular weight. Science 145, 1054–1055 (1964).CAS 

    Google Scholar 
    Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
    Google Scholar 
    Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).
    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).CAS 

    Google Scholar 
    Round, F. E., Crawford, R. M. & Mann, D. G. The Diatoms: Biology and Morphology of the Genera. 747p (Cambridge University Press, 1990).Medlin, L. K. Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55, 79–103 (2016).CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Verlag, 2016).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Stief, P. Intracellular Nitrate Storage by Diatoms-Source data. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19790176.v1 (2022). More

  • in

    Heterogeneous adaptive behavioral responses may increase epidemic burden

    Constant contacts modelWe assume the affected population is composed of two risk-groups, a fraction p of the population is composed of risk-takers (RT) and the remaining fraction (1-p) are risk-evaders (RE). We differentiate the RT and RE subpopulations by assuming the RE population face a reduced likelihood of infection due to adopting precautionary behaviors. On the other hand, we assume RT do not follow public health recommendations, thus facing a higher risk of infection, relative to the RE population. Political or ideological reasons, economic stress, the lack of reasonable alternatives, epidemic politicization or the lack of trust in public health authorities are some of the documented factors that potentially lead the population to risk the dangers of COVID-19 infection44, 45.Previous mathematical models consider complex within-host disease dynamics46 or the impact of exogenous factors on the COVID-19 transmission dynamics47. In this study, we focus on incorporating individual heterogeneous adaptive behavioral responses, based on group-specific infection risk perceptions. Our model of disease progression assumes that individuals in each behavioral group may show the following health status: Susceptible (S), infectious Exposed (E), Infectious symptomatic (I), infectious Asymptomatic (A), and Recovered (R). We consider a pre-symptomatic infectious health status (E), following evidence suggesting that exposed individuals exhibit a period of viral shedding38, 48,49,50,51. RT susceptible individuals ((S_1)) can get infected by making contacts with either: symptomatic ones (I) with a baseline per-contact likelihood of disease transmission (beta), exposed individuals ((E_1) and (E_2)) with reduced per-contact likelihood of infection (rho beta) , or asymptomatic individuals ((A_1) and (A_2)) with reduced per-contact likelihood of infection (alpha beta). Similarly RE susceptible individuals ((S_2)) may get infected by making contacts with symptomatic, exposed or asymptomatic individuals at respective likelihoods, (epsilon beta), (rho epsilon beta), and (alpha epsilon beta), where (0 More

  • in

    Beyond nitrogen and phosphorus

    An experiment in secondary forests in the Democratic Republic of the Congo finds that calcium, an overlooked soil nutrient, is scarcer than phosphorus, and represents a potentially greater limitation on tropical forest growth.Ecology can reveal distributional patterns and dynamics in nature. One approach used is studying the elemental composition of plants, which has been linked to ecological processes such as growth, diversity or water use efficiency. More recently, elemental composition has been detected as a cofactor in governing the carbon sink capacity of plants, and therefore climate change mitigation1,2,3. This discovery has added an extra layer of urgency to the field, which now aims to better understand and predict global change. The study of nitrogen and/or phosphorus has until now received most of the attention of plant ecologists: nitrogen is the most abundant element in dry leaves after hydrogen and carbon, forms the main structure of proteins and is strongly linked to photosynthesis4. Phosphorus represents around one-tenth of nitrogen abundance in leaves and is key in energy storage and nucleic acids. However, although these represent only two of the many chemical elements that are in flux throughout ecosystems, whether others may have a dominant role in ecosystem dynamics is an open question. Writing in Nature Ecology & Evolution, Bauters et al.5 share some evidence to motivate broadening out from the dominant focus on nitrogen and phosphorus in terrestrial ecology, by revealing a crucial limiting role of calcium in the dynamics of tropical forest succession. More

  • in

    Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

    Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).Article 

    Google Scholar 
    Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).ADS 
    Article 

    Google Scholar 
    Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).
    Google Scholar 
    Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).CAS 

    Google Scholar 
    Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).Article 

    Google Scholar 
    Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).Article 
    CAS 

    Google Scholar 
    Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).
    Google Scholar 
    Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).Article 

    Google Scholar 
    Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).Article 

    Google Scholar 
    Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).CAS 
    PubMed 

    Google Scholar 
    Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).CAS 
    Article 

    Google Scholar 
    Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).Article 
    CAS 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).Article 

    Google Scholar 
    Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).
    Google Scholar 
    Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).
    Google Scholar 
    Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).
    Google Scholar 
    Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).
    Google Scholar 
    Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).
    Google Scholar 
    Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).CAS 
    Article 

    Google Scholar 
    Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).
    Google Scholar 
    Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).
    Google Scholar 
    Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).CAS 
    Article 

    Google Scholar 
    Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).CAS 
    Article 

    Google Scholar 
    Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).
    Google Scholar 
    Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).CAS 
    Article 

    Google Scholar 
    Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).ADS 
    Article 

    Google Scholar 
    Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).Chapter 

    Google Scholar 
    Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).CAS 
    Article 

    Google Scholar 
    Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).
    Google Scholar 
    Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).Book 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).Article 

    Google Scholar 
    Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).
    Google Scholar 
    Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).Article 
    CAS 

    Google Scholar 
    DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).CAS 
    Article 

    Google Scholar 
    Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).Article 

    Google Scholar 
    Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).Article 

    Google Scholar 
    Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).Article 
    CAS 

    Google Scholar 
    Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).PubMed 
    Article 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).
    Google Scholar 
    Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).
    Google Scholar 
    Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).
    Google Scholar 
    Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).CAS 
    Article 

    Google Scholar 
    Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).
    Google Scholar 
    Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).CAS 
    Article 

    Google Scholar 
    Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).
    Google Scholar 
    Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).
    Google Scholar 
    Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).Article 

    Google Scholar 
    Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).Article 
    CAS 

    Google Scholar 
    Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).CAS 

    Google Scholar 
    EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).
    Google Scholar  More

  • in

    Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture

    Gabor transformThe Gabor transform has rarely been used as a feature in a landscape classification OBIA approach but has been used in other OBIA processes such as fingerprint enhancement and human iris detection and for data dimensionality reduction24,29,30,31,32,33,34,35. Gabor filters are a bandpass filter applied to an image to identify texture. The different Gabor bandpass filters mathematically model the visual cortical cells of mammalian brains and thus is expected to improve segmentation and classification accuracy when compared to a human delineated and classified image26,27.Samiappan et al.36 compared Gabor filters to other texture features (grey-level co-occurrence matrix, segmentation-based fractal texture analysis, and wavelet texture analysis) within the GEOBIA process, of a wetland, using sub-meter resolution multispectral imagery. These Gabor filters performed comparably, in overall classification accuracy and Kappa coefficients, with other texture features. However, they were still outperformed by all other texture features. This study did not use any other data for analysis for determining the performance of Gabor filters when paired with data sources such as spectral, NDVI, or LiDAR36,37. Wang et al.38 paired a Gabor transformation with a fast Fourier transformation for edge detection on an urban landscape image that contained uniform textures with promising results. Su30 used the textural attributes derived from Gabor filters for classification but had similar results to Samiappan et al.36 where they found that Gabor features were one of the least useful/influential that contributed to the classification of a mostly agricultural landscape.Gabor filters are a Fourier influenced wavelet transformation, or bandpass filter, that identifies texture as intervals in a 2-D Gaussian modulated sinusoidal wave. This modulation differentiates the Gabor transform from the Fourier transform23,26. These Gabor transformed wavelets are parameterized by the angle at which they alter the image and the frequency of the wavelet. Rather than smoothing an image at the cost of losing detail through Fourier transforms or median filters, Gabor transformed images identify the repeated pattern of localized pixels and gives them similar values if they are a part of the same repeated sequence. Gabor features can closely emulate the visual cortex of mammalian brains that utilize texture to identify objects26,27. This is based on the evaluation of neurons associated with the cortical vertex that respond to different images or light profiles39. Marcelja27 identified that cortical cells responded to signals that are localized frequencies of light like what is represented by the Gabor transformations. Within the frequency domain, the Gabor transform can be defined by Eq. (1):$$Gleft(u, v;f, theta right)= {e}^{-frac{{pi }^{2}}{{f}^{2}} ({gamma }^{2}({u}^{{prime}}-f{)}^{2}+{n}^{2}{v}^{{{prime}}2})}$$
    (1)

    where (f) is the user-determined frequency (or wavelength); (theta) is the user-determined orientation at which the wavelet is applied to the image; (gamma) and (n) are the standard deviations of the Gaussian function in either direction23,38. These parameters define the shape of the band pass filter and determines its effect on one-dimensional signals. Daugman26, created a 2-D application of this filter in Eq. (2);$$gleft(u,vright)= {e}^{-{pi }^{2}/{f}^{2}[{gamma }^{2}{left({u}^{{prime}}-fright)}^{2}+{n}^{2}{{v}^{{prime}}}^{2}]}$$
    (2)

    where u’ = ucos − vsin θ θ and v’ = usin − vcos θ.In order to implement Gabor filters on multi-band spectral images, we used Matlab’s Gabor feature on the University of Iowa’s Neon high performance computer (HPC)40 which has up to 512 GB of RAM, which was necessary for processing these images. The first implementation of Gabor filters was performed on a 1610 × 687 single band pixel array (a small subset of the study area), a filter bank of 4 orientations and 8 wavelengths, on a 32 GB RAM computer, and took approximately 8 h to complete. Filter banks are a set of Gabor filters with different parameters that is applied to the spectral image and are required to identify different textures with different orientations and frequencies. By lowering the number of wavelengths from 8 to 4 on an 8128 × 8128 single band pixel array on the same machine 32 GB RAM, the processing was reduced to an hour. Using the HPC, this was further reduced to approximately 90 s using the same filter bank. Before implementing on the HPC, the original spectral image was divided into manageable subsets with overlap in order to prevent ‘edge-effect.’ These images were converted to greyscale by averaging values across all three bands33. When wavelengths become too long, they no longer attribute the textural information desired from the image and therefore add unnecessary computing time. The wavelengths that were used for the filter bank were selected as increasing powers of two starting from 2.82842712475 ((24/sqrt{2})) up to the pixel length of the hypotenuse of the input image. From this, we used only 2.82842712475, 7.0710678, 17.6776695, and 44.19417382. The directional orientation was selected as 45° intervals, from 0 to 180: 0, 45, 90, 135. These parameters were based on the reasoning outlined within Jain and Farrokhina25. More directional orientations could have been included but four were used for computational efficiency. The radial frequencies were selected so that they could capture the different texture in the landscape represented by consistent changes in pixels values within each landcover class. When frequencies are too wide or fine of a width they no longer represent the textures of the different landcover classes and thus are not included. This selection of filter bank parameters are similar or the same as other studies that look into the use of Gabor features for OBIA25,30,31.From the different combinations of parameters (four directions and four frequencies) in the Gabor Transform filter bank, sixteen magnitude response images were created from the converted greyscale three band average image. To limit high local variance within the output Gabor texture images, a Gaussian filter was applied. The magnitude response values were normalized across the 16 different bands so that a Principal Component Analysis (PCA) could be applied. The first principal component of the PCA, from these Gabor transformed images, was used for this study since it limits the computation time to process 16 separate Gabor features, in addition to the other data sources, while still retaining the most amount of information from the different Gabor response features. The Gabor band that was used for this study can be viewed in Fig. 2.Figure 2Gabor transformation. Gabor transformed image of study area derived from original image using the first principal component of all gabor outputs using the filter bank parameters. Software: ArcMap (10.x).Full size imageSegmentationFor this study, we used the watershed algorithm for the segmentation of GEOBIA, implemented by ENVI version 5.0 Feature Extraction tool, due to its ubiquitous use within GEOBIA, its ability to create a hierarchy of segmented objects, and support within the literature as a reliable algorithm37,41,39,43. The watershed algorithm can either use a gradient image or intensity image for segmentation. Based on the observed results, this study used the intensity method. The intensity method averages the value of pixels across bands. Scale, a user-defined parameter, is selected to identify the threshold that decides if a given intensity value within the gradient image can be a boundary. This allows the user to decide the size of the objects created. A secondary, user-defined, parameter defines how similar, adjacent, objects need to be before they are combined or merged. The user arbitrarily selects the parameter value based on how it reduces both under and over segmentation. The parameters selected for this study were visually chosen based on a compromise between over and under segmentation relative to the hand demarcated objects.The merging of two separate objects was based on the full lambda schedule where the user selects a merging threshold ({t}_{i, j}) which is defined by Eq. (3):$${t}_{i, j}= frac{frac{left|{O}_{i}right|cdot left|{O}_{j}right|}{left|{O}_{i}right|+ left|{O}_{j}right|}cdot {Vert {u}_{i}-{u}_{j}Vert }^{2}}{mathrm{length}(mathrm{vartheta }left({O}_{i},{O}_{j}right))}$$
    (3)

    where ({O}_{i}) is the object of the image, (left|{O}_{i}right|) is the area of (i), ({u}_{i}) is the average of object (i), ({u}_{j}) is the average of object (j), (Vert {u}_{i}-{u}_{j}Vert) is the Euclidean distance between the average values of the pixel values in regions (i) and (j), and (mathrm{length}left(mathrm{vartheta }left({O}_{i},{O}_{j}right)right)) is the length of the shared boundary of ({O}_{i}) and ({O}_{j}).To compare the segmentation of a riparian landscape, with and without Gabor features, we conducted segmentation on two separate sets of data. One dataset was a normalized stacked layer of NDVI and CHM (see Fig. 3) with the original multispectral image used as ancillary data; the other dataset differed only by the inclusion of the Gabor feature. For both instances, the bands were converted to an intensity image by averaging across bands rather than being converted into a gradient image for segmentation. The dataset that included the Gabor features had a scale parameter set at 30 with merge settings at 95 and 95.7 for the sub and super-objects, respectively. The dataset that did not include the Gabor features had a scale parameter of 10 with merge settings at 95.6 and 98.5 for the sub and super-objects, respectively. This resulted in the creation of 87,198 and 62,905 segments for the sub and super objects, respectively, that were created when the Gabor feature was included. 191,050 and 51,664 segments were created for the sub and super objects when the Gabor features, respectively, were not included within the segmentation process. As you will see in the next section, these segments also represent the number of training data that will be included within the supervised classification.Figure 3CHM and NDVI. LiDAR derived canopy height model (top) and normalized difference vegetation index derived from original spectral image. Software: ArcMap (10.x).Full size imageTo create a hierarchy of land cover classes, two sets of segmentation parameters needed to be selected for each dataset. One set of parameters would be used for the sub-objects within the hierarchy and the other set would be used to create super-objects. All parameters used the intensity and full lambda schedule algorithms for the watershed method. The only setting that changed between the sub and super-objects, for either dataset, was the merge parameter which helped maintain similar boundaries as much as possible. Despite this, boundaries could moderately change due to the Euclidean distance, between the pixel values of (i) and (j), changing from the merging of objects; causing ({t}_{i, j}) to cross the threshold which results in a new boundary being drawn. A representation of these results can be viewed and visually compared to the hand demarcated objects in Fig. 4.Figure 4Automated and manual segmented comparison. Juxtaposition of hand delineated, sub-objects, and super-objects for segments generated using the Gabor features. Software: ArcMap (10.x).Full size imageTraining dataThe training data, used for this study, is the transfer of class attributes from hand demarcated and classified segments to automatically segmented objects based on the majority overlap of the hand demarcated segments. Experts identified them using two different classification schemes referenced from the General Wetland Vegetation Classification System44. The 7-class scheme within this system identified objects of either being forest, marsh, agriculture, developed, open water, grass/forbs, or sand/mud. The 13-class scheme identified objects of either being agriculture, developed, grass/forbs, open water, road/levee, sand/mud, scrub-shrub, shallow marsh, submerged aquatic vegetation, upland forest, wet forest, wet meadow, and wet shrub. Not every class from the 7-class scheme will have a sub-class (i.e. developed, open water) but some do for example wet and upland forest are sub-objects of the forest class and wet meadow and shallow marsh are sub-objects of marsh. Figure 5 visually illustrates both classification schemes across the study area.Figure 5Hand delineated objects of both scales. Software: ArcMap (10.x).Full size imageENVI’s feature extraction tool calculates several landscape, spectral, and textural metrics. These attributes were used for each random forest classifier. The Gabor and Hierarchical features will be included selectively to be able to compare their contributions to the (out-of-bag) OOB classification errors. When Gabor features are included within the classification, they are computed the same way as the other image bands.Random forestThe random forest classifier was implemented in R using the random forest module45. The number of trees, that were randomly generated, was large enough (n = 250) to where the Strong law of large numbers would take effect as indicated by the decrease in the change of accuracy. The default number of variables randomly sampled as candidates at each split variable (mtry parameter) was the total number of variables divided by 3 for each dataset. R also generates two separate variable indices: mean decrease in accuracy and mean decrease Gini. Mean decrease in accuracy refers to the accuracy change in the random forest when a single variable is left out. This is a practical metric to determine the usefulness of a variable. The Gini index measures the purity change within a dataset when it is split based upon a given variable within a decision tree.The random forest classification accuracy will be based on the OOB error. The random forest algorithm trains numerous decision trees on random subsets of the training set leaving out a number of training samples when training each decision tree. The samples that are left out of each decision tree are then classified by the decision tree that they were not included within during the training step. The OOB error is the average error of each predicted bootstrapped sample across the ensemble of decision trees within the random forest algorithm.Figure 6 illustrates how the Gabor and hierarchal features were included within the classification of the super and sub-objects.Figure 6Classification procedure. Schematic flow chart illustrating how the Gabor and hierarchal features were included within the classification of the super and sub-objects. OOB classification error included in parenthesis.Full size imageHierarchical schemeTo attribute the hierarchical structure to the sub-objects, we first classified the larger segments that were created with and without the Gabor features using the broader 7-class scheme. These classified super objects were then converted to raster to calculate the majority overlap with the smaller sub-objects. This gave the sub-objects an attribute, the broader 7-class scheme, that could be used to contribute to the classification of the sub-objects with the finer 13-class scheme. This builds the hierarchical relationship between the two class schemes into the supervised classification of the sub-objects. Figure 6 illustrates how the hierarchal structure was included within two of the four sub-object’s list of features used within classification. This methodological approach aligns with O’Neill et al.21 landscape ecology principle that a super-object’s class could be a useful property in defining or predicting a sub-object. This is also different than the more common rule-based approach of iteratively classifying the landscape into smaller and smaller sub-classes22.Segmentation assessmentMost studies rely upon the accuracy assessment of their classifiers to provide support for their analysis results. However, this does not provide evidence whether a new data fusion technique improves the ability to delineate objects of interest within an image. To assess the performance of our segmented polygons, this study evaluated the segments created with and without the Gabor feature using a method highlighted in Xiao et al.37.Our segmentation results were evaluated using an empirical discrepancy measure, used frequently in image segmentation evaluation37,46,47. Discrepancy measures utilize ground truth images that represent the “correct” delineated/classified image to compare the semi-automated image results. In our study, the objects that were delineated and classified by experts from the U.S. Fish and Wildlife Service, were used as training data for our random forest classifier and as ground truth for the discrepancy measure. The discrepancy measure used the percentage of right segmented pixels (PR) in the whole image. To calculate PR, we converted the classified segmented and ground truth polygons to raster and measured the ratio of incorrect pixels to total amount of pixels which was converted to a percentage.Additionally, landscape metrics were calculated using FRAGSTATS48, an open source program commonly used for calculating landscape metrics. FRAGSTATS computed these metrics from thematic raster maps that represent the land cover types of interest. These thematic classes, used for analysis, were the classified objects at both the super and sub-object level. Since we are not attempting to compare the segmentation results for any specific class or area, we calculated metrics on a landscape level. Landscape metrics will represent the segmentation patterns for the entire study area.FRAGSTATS can calculate various metrics representing different aspects of the landscape. The metrics for analysis attempts to understand object geometry. The metrics calculated, for these analyses, were the average and standard deviation for the area (AREA), the fractal dimension index (FRAC), and the perimeter area ratio (PARA). The number of patches (NP) was also included in each result. To take a more landscape centric approach, the area weighted mean was chosen over a simple average. More