More stories

  • in

    Country Compendium of the Global Register of Introduced and Invasive Species

    GRIIS and the Country CompendiumThe Global Register of Introduced and Invasive Species (GRIIS) arose following recognition of the need for a product of this nature in discussions on implementation of the Convention on Biological Diversity (CBD). In 2011, a joint work programme to strengthen information services on invasive alien species as a contribution towards Aichi Biodiversity Target 9 was developed19. The Global Invasive Alien Species Information Partnership (GIASI Partnership) was then established to assist Parties to the CBD, and others, to implement Article 8(h) and Target 9 of the Aichi Biodiversity Targets. The Conference of Parties (COP-11) welcomed the development of the GIASI Partnership and requested the Executive Secretary to facilitate its implementation (paragraph 22 of decision XI/28). In 2013, the development of GRIIS was identified as a key priority to be led by the IUCN ISSG and Partners built on a prototype initiated almost a decade earlier (Item 4, Report of the Global Invasive Alien Species Information Partnership, Steering Committee, 1st meeting Montreal, 15 October 2013)20.GRIIS is a database of discrete checklists of alien species that are present in specified geographic units (including not only countries, but also as yet unpublished checklists of islands, offshore territories, and protected areas) (Fig. 1). The GRIIS Country Compendium is a collation and key product that derives and is updatable from the working GRIIS Research Database that underpins this and other GRIIS products (Fig. 1). Individual checklists are published to GBIF through an installation of the Integrated Publishing Toolkit21 (IPT) and hosted by the GBIF Secretariat. Exceptions include the Belgium (hosted by the Research Institute for Nature and Forest) and U.S.A checklists (hosted by the United States Geological Survey). Data are published as Darwin Core (dwc namespace) Archive files and the terms and structure follow that standard exchange format22.The GRIIS Country Compendium is an aggregation of 196 GRIIS country checklists of which 82% have been verified by Country Editors (see13), along with revised and additional fields that enable global level analysis and country and taxon comparisons (Tables 2, 3). Checklists for the 196 countries were combined into a single file (Table 3). A field was added to indicate which country the checklist belonged to, and the ISO 3116-1 Alpha-2 and Alpha-3 country codes are included to facilitate dataset integration (see ‘Usage notes’) (Table 2). A field was also added to indicate the verification status of each checklist (Table 2). The ID field was renamed (originally ‘taxonID’ and now ‘recordID’), as the data now represent a country-level occurrence dataset containing multiple records per species, rather than checklist-type data that contains one record per species. In total, the data now include 18 fields as described in Table 2, encompassing taxonomic, location, habitat, occurrence, introduced and invasive alien status (see also Table 1). This publication represents a versioned, citable snapshot of the Compendium (Fig. 1) that is ready for analysis and integration with other data sources (e.g. workflow23 and ‘Example applications of the Compendium’ outlined further below).Table 2 Fields and field terms in the GRIIS Country Compendium.Full size tableTable 3 Countries in the GRIIS Country Compendium and their review status.Full size tablePopulation of data fields in GRIISThe methods by which GRIIS is populated were described in 201813 and are summarised in brief here. A systematic decision-making process is used for each geographic unit by species record to designate non-native origin and evidence of impact (see Fig. 2 in Pagad et al.13). Comprehensive searches are undertaken for each country. Records are included from the earliest documented to the most recent accessed record prior to the date of the latest published checklist version. Information sources include peer-reviewed scientific publications, national checklists and databases, reports containing results of surveys of alien and invasive alien species, general reports (including unpublished government reports), and datasets held by researchers and practitioners13. A log of the changes to each checklist is available on the GBIF IPT24, with the changes to the Belgium checklist available at the INBO IPT25. The most up to date version of each checklist is thus available via GBIF.org, as is a list of all GRIIS checklists at GBIF.org24.Fig. 2Summary of data in the GRIIS Country Compendium. Number of invasive alien species by major taxonomic group (a) and habitat (b). Number of records per major taxonomic groups (c) and habitat (d). The number of species and records associated with invasion impact (i.e. isInvasive) are shown in black. Note different y-axis scales in each case.Full size imageIntroduced species of all taxonomic groups are considered for inclusion in GRIIS. Habitats include terrestrial, freshwater, brackish, marine and also host (i.e. for species that are not free-living) (Table 2, Pagad et al.13). The habitat information in GRIIS (Table 2) is sourced from taxon and region-specific databases such as WoRMS (World Register of Marine Species), FishBase, Pacific Island Ecosystems at Risk, and the USDA Plants Database. Typically, GRIIS records are at the species level, but in some cases, other ranks are more appropriate including infraspecies (including forms, varieties and subspecies). A separate field is provided for hybrids (Table 2). Where species are present and both native to parts of a country and alien in other parts of the country, their introduction status (dwc:establishmentMeans) is included as Native|Alien (Tables 1, 2)26. If there is limited knowledge about the Origin of the species, its introduction status (dwc:establishmentMeans) is included as Cryptogenic|Uncertain (Tables 1, 2).Two types of evidence are considered to assign a species by country record as invasive (Table 1, see also Pagad et al.13): (i) when any authoritative source (e.g. from the primary literature or unpublished reports from country/species experts), describe an environmental impact, and/or (ii) when any source determines the species to be widespread, spreading rapidly or present in high abundance (based on the assumption that cover, abundance, high rates of population growth or spread are positively correlated with impact)27,28. Each record is assigned either invasive or null in the isInvasive field to reflect the presence of evidence of impact, or absence of evidence of impact (note, not ‘evidence of absence of impact’), for that species by country record (Table 2). In the future this information may be supplemented with impact scores29,30,31. Finally, a draft checklist is sent to Country Editors for validation and revision (see Technical Validation).Taxonomic harmonization and normalizationThe use of different synonyms across countries to refer to the same taxonomic concept is frequent32. The species in each Country Checklist were thus harmonised against the GBIF Backbone Taxonomy33. The names in each checklist were matched using a custom script that integrates with the GBIF API34, and the accepted name, taxon rank, status and higher taxonomy (Table 2) were obtained at this stage. Spelling and other errors in assigning species authorship were corrected where appropriate.To validate the taxonomic harmonisation, every name variant present in the GRIIS Country Compendium was checked against the GBIF Backbone Taxonomy using the API33. A unique list of names (i.e. acceptedName Usage) was thus produced and the source name retained as ‘scientificName’ (that can differ across countries) (Table 2). Over 95% of names across all kingdoms matched exactly at 98% or greater confidence (Table 4). All names that were below 98% confidence or had a match type other than ‘Exact’ were checked and modified if appropriate to do so. Of the non-matches (n = 253, those with a match type of ‘None’), most were formulaic hybrid names of plants and animals (~62%), which are not officially supported by GBIF35. The remaining non-matches were names of mostly plants (17%), but also animals (8%), viruses (8%) and chromists (3%).Table 4 Taxonomic matching results (percentages) by Kingdom using the GBIF Backbone Taxonomy33.Full size tableData summaryThere are currently ~23 700 species represented by 101 000 taxon-country combination records, across 196 countries in the GRIIS Country Compendium. All raw numbers are provided to the nearest order of magnitude to reflect the taxonomic uncertainty and dynamic nature of GRIIS (see ‘Known data gaps and uncertainties’). The vast majority of records are at the species level (97.6%), with the remaining present as subspecies (1.7%), varieties (0.6%), genera (0.1%) and forms ( More

  • in

    First identification of bovine hepacivirus in wild boars

    Trinchet, J. C. et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology 62, 737–750 (2015).Article 

    Google Scholar 
    Stanaway, J. D. et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088 (2016).Article 

    Google Scholar 
    World Health Organization (WHO). Web Annex B. WHO estimates of the prevalence and incidence of hepatitis C virus infection by WHO region, 2015. In Global Hepatitis Report 2017. https://apps.who.int/iris/bitstream/handle/10665/277005/WHO-CDS-HIV-18.46-eng.pdf?ua=1. Accessed 01 Feb 2021.Smith, D. B. et al. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J. Gen. Virol. 97(11), 2894–2907 (2016).CAS 
    Article 

    Google Scholar 
    Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci USA 108, 11608–11613 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Quan, P. L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci USA 110, 8194–8199 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burbelo, P. D. et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86, 6171–6178 (2012).CAS 
    Article 

    Google Scholar 
    Drexler, J. F. et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 9, e1003438 (2013).CAS 
    Article 

    Google Scholar 
    Shi, Y. New virus, new challenge. Innovation (NY) 1(1), 100005 (2020).
    Google Scholar 
    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Identification of a novel hepacivirus in domestic cattle from Germany. J Virol 89, 7007–7015 (2015).CAS 
    Article 

    Google Scholar 
    Corman, V. M. et al. Highly divergent hepaciviruses from African cattle. J Virol. 89, 5876–5882 (2015).CAS 
    Article 

    Google Scholar 
    Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98, 2–3 (2017).CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis. 67, 2731–2740 (2020).CAS 
    Article 

    Google Scholar 
    Li, L. L. et al. Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 164(9), 2401–2410 (2019).CAS 
    Article 

    Google Scholar 
    Zhang, X. L. et al. A highly divergent hepacivirus identified in domestic ducks further reveals the genetic diversity of hepaciviruses. Viruses 14(2), 371 (2022).Article 

    Google Scholar 
    Lu, G., Ou, J., Zhao, J. & Li, S. Presence of a novel subtype of bovine hepacivirus in China and expanded classification of bovine hepacivirus strains worldwide into 7 subtypes. Viruses 11, 843 (2019).CAS 
    Article 

    Google Scholar 
    da Silva, M. S. et al. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV). J Gen Virol. 99, 890–896 (2018).Article 

    Google Scholar 
    Shao, J. W. et al. A novel subtype of bovine hepacivirus identified in ticks reveals the genetic diversity and evolution of bovine hepacivirus. Viruses 13(11), 2206 (2021).CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound. Emerg. Dis. 66, 195–206 (2019).CAS 
    Article 

    Google Scholar 
    Varela-Castro, L., Alvarez, V., Sevilla, I. A. & Barral, M. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 15, e0231559 (2020).CAS 
    Article 

    Google Scholar 
    Palombieri, A. et al. Surveillance study of Hepatitis E Virus (HEV) in domestic and wild ruminants in Northwestern Italy. Animals 10(12), 2351 (2020).Article 

    Google Scholar 
    Bukh, J. Hepatitis C homolog in dogs with respiratory illness. Proc Natl Acad Sci U S A. 108, 12563–12564 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Identification and genetic characterization of equine hepaciviruses in Italy. Vet. Microbiol. 207, 239–247 (2017).CAS 
    Article 

    Google Scholar 
    Hartlage, A. S., Cullen, J. M. & Kapoor, A. The strange, expanding world of animal hepaciviruses. Annu Rev Virol. 3, 53–75 (2016).CAS 
    Article 

    Google Scholar 
    Canal, C. W. et al. A novel genetic group of bovine hepacivirus in archival serum samples from Brazilian cattle. Biomed Res Int. 2017, 4732520 (2017).Article 

    Google Scholar 
    Deng, Y., Guan, S. H., Wang, S., Hao, G. & Rasmussen, T. B. The detection and phylogenetic analysis of Bovine Hepacivirus in China. Biomed Res Int. 2018, 6216853 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yeşilbağ, K. et al. Presence of bovine hepacivirus in Turkish cattle. Vet. Microbiol. 225, 1–5 (2018).Article 

    Google Scholar 
    Anggakusuma, et al. Hepacivirus NS3/4A proteases interfere with MAVS signaling in both their cognate animal hosts and humans: Implications for zoonotic transmission. J Virol. 90(23), 10670–10681 (2016).CAS 
    Article 

    Google Scholar 
    El-Attar, L. M. R., Mitchell, J. A., BrooksBrownlie, H., Priestnall, S. L. & Brownlie, J. Detection of non-primate hepaciviruses in UK dogs. Virology 484, 93–102 (2015).CAS 
    Article 

    Google Scholar 
    Thézé, J., Lowes, S., Parker, J. & Pybus, O. G. Evolutionary and phylogenetic analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol. 7(11), 2996–3008 (2015).Article 

    Google Scholar 
    Charrel, R. N., de Chesse, R., Decaudin, A., De Micco, P. & de Lamballerie, X. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method. J. Hosp. Infect. 49(2), 129–134 (2001).CAS 
    Article 

    Google Scholar 
    Pavio, N., Doceul, V., Bagdassarian, E. & Johne, R. Recent knowledge on hepatitis E virus in Suidae reservoirs and transmission routes to human. Vet Res. 48(1), 78 (2017).Article 

    Google Scholar 
    Scherer, C. et al. Moving infections: Individual movement decisions drive disease persistence in spatially structured landscapes. Oikos 129, 651–667 (2020).Article 

    Google Scholar 
    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in human and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Late quaternary biotic homogenization of North American mammalian faunas

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).ADS 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 52, 52–58 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Petrozzi, F. et al. Surveys of mammal communities in a system of five forest reserves suggest an ongoing biotic homogenization process for the Niger Delta (Nigeria). Trop. Zool. 28, 95–113 (2015).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B: Biol. Sci. 279, 4772–4777 (2012).
    Google Scholar 
    Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).Article 

    Google Scholar 
    Spear, D. & Chown, S. L. Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J. Biogeogr. 35, 1962–1975 (2008).Article 

    Google Scholar 
    Tóth, A. B., Lyons, S. K. & Behrensmeyer, A. K. A century of change in Kenya’s mammal communities: increased richness and decreased uniqueness in six protected areas. PLoS ONE 9, e93092 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9, 1293–1298 (2006).Article 
    PubMed 

    Google Scholar 
    Muthukrishnan, R. & Larkin, D. J. Invasive species and biotic homogenization in temperate aquatic plant communities. Glob. Ecol. Biogeogr. 29, 656–667 (2020).Article 

    Google Scholar 
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 1–9 (2016).Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Naturalist 162, 442–460 (2003).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).Article 

    Google Scholar 
    Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat‐modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).Article 
    PubMed 

    Google Scholar 
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).Article 
    PubMed 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    Lavery, T. H., Posala, C. K., Tasker, E. M. & Fisher, D. O. Ecological generalism and resilience of tropical island mammals to logging: a 23 year test. Glob. Change Biol. 26, 3285–3293 (2020).ADS 
    Article 

    Google Scholar 
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 358, 1729–1740 (2003).CAS 
    Article 

    Google Scholar 
    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).Article 

    Google Scholar 
    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mihoub, J.-B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    Beller, E. et al. Toward principles of historical ecology. Am. J. Bot. 104, 645–648 (2017).Article 
    PubMed 

    Google Scholar 
    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118 e2023483118 (2021).Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365 https://doi.org/10.1126/science.aat5447 (2019).Bennett, M. R. et al. Evidence of humans in North America during the last glacial maximum. Science 373, 1528–1531 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).ADS 
    Article 

    Google Scholar 
    Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
    Google Scholar 
    Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37 215–250 (2006).Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl Acad. Sci. USA 118, e1922859118 (2021).Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B: Biol. Sci. 277, 661 (2010).Article 

    Google Scholar 
    Lyons, S. K., Wagner, P. J. & Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philos. Trans. R. Soc. B: Biol. Sci. 365, 3681–3693 (2010).Article 

    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, https://doi.org/10.1098/rsbl.2016.0342 (2016).Pineda‐Munoz, S. et al. Body mass‐related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography 44, 56–66 (2021).Article 

    Google Scholar 
    Lyons, S. K. A quantitative model for assessing community dynamics of Pleistocene mammals. Am. Naturalist 165, E168–E185 (2005).Article 

    Google Scholar 
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B: Biol. Sci. 282, 20151367 (2015).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).Article 
    PubMed 

    Google Scholar 
    Olden, J. D., Lockwood, J. L. & Parr, C. L. In Conservation biogeography (eds. Ladle, R. & Whittaker, R. J.) Ch. 9, 224–243 (John Wiley & Songs, 2011).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Alroy, J. A new twist on a very old binary similarity coefficient. Ecology 96, 575–586 (2015).Article 
    PubMed 

    Google Scholar 
    Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).Article 
    PubMed 

    Google Scholar 
    Behrensmeyer, A. K., Western, D. & Boaz, D. E. D. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5, 12–21 (1979).Article 

    Google Scholar 
    Behrensmeyer, A. K. & Dechant Boaz, D. E. In Fossils in the Making (ed. Behrensmeyer, A.K.) 72–92 (University of Chicago Press, 1980).Andrews, P. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK (University of Chicago Press, 1990).Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33, 220–231 (2010).
    Google Scholar 
    Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H., Badgley, C. & Fox, D. L. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122 (2009).Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. J. S. d. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. 3, 160048 (2016).Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: Oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).Article 

    Google Scholar 
    Kortz, A. R. & Magurran, A. E. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Castro, S. A. et al. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 15, e0238767 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Peoples, B. K., Davis, A. J., Midway, S. R., Olden, J. D. & Stoczynski, L. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020).Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H. & Xiao, M. Global patterns of the beta diversity energy relationship in terrestrial vertebrates. Acta Oecol 39, 67–71 (2012).ADS 
    Article 

    Google Scholar 
    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D. & Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 722–727 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Fraser, D., Hassall, C., Gorelick, R. & Rybczynski, N. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9, e106499 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Darroch, S. A. F., Webb, A. E., Longrich, N. & Belmaker, J. Palaeocene–Eocene evolution of beta diversity among ungulate mammals in North America. Glob. Ecol. Biogeogr. 23, 757–768 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).ADS 
    Article 

    Google Scholar 
    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. & Adkins, J. F. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19, 213–226 (2000).ADS 
    Article 

    Google Scholar 
    Lyons, S. K. A quantitative assessment of the range shifts of Pleistocene mammals. J. Mammal. 84, 385–402 (2003).Article 

    Google Scholar 
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology (Cambridge university press, 1992).Doughty, C. E. et al. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences USA (2015).Araujo, B. B., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).Article 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. Lond. B: Biol. Sci., rspb 2008, 1921 (2009).
    Google Scholar 
    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kelt, D. A. & Van Vuren, D. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340 (1999).Article 

    Google Scholar 
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Rodrigo, A. Do Forest Fires Make Biotic Communities Homogeneous or Heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Front. Forests Glob. Change 3, https://doi.org/10.3389/ffgc.2020.00067 (2020).Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. science 292, 281–284 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, T. D. Ancient farming in eastern North America. Proc. Natl Acad. Sci. USA 106, 6427–6428 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Smith, B. D. The origins of agriculture in the Americas. Evolut. Anthropol.: Issues, N., Rev. 3, 174–184 (1994).Article 

    Google Scholar 
    Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).Article 

    Google Scholar 
    Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).Article 
    PubMed 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    Toivanen, T. et al. The many Anthropocenes: a transdisciplinary challenge for the Anthropocene research. Anthropocene Rev. 4, 183–198 (2017).Article 

    Google Scholar 
    Biotic homogenization (Github, 2022).Brown, J. H. & Nicoletto, P. F. Spatial scaling of species composition: body masses of North American Land Mammals. Am. Naturalist 138, 1478–1512 (1991).Article 

    Google Scholar 
    Lyons, S. K. & Smith, F. A. In Animal body size: linking pattern and process across space, time, and taxonomic group (eds. Smith & S. Kathleen Lyons) (University of Chicago Press, 2013).Graham, R. W. & E. L. Lundelius, J. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0., 2010).Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) 57, 399–418 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2005).raster: Geographic data analysis and modeling version 3.4-10 (2021).mapdata: Extra Map Database. R package version 2.3.0. (2018).maps: Draw Geographical Maps version 3.4.0 (2021).Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).Grimm, E. C., Maher, L. J. Jr & Nelson, D. M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quatern. Res 72, 301–308 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Baselga, A. & Orme, D. Package ‘betapart’. (2012).Package vegan version 2.5-7 (2012).Vavrek, M. J. fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electron. 14, 1T (2011).
    Google Scholar 
    Marschner, I. C. glm2: Fitting generalized linear models with convergence problems. R. J. 3, 12–15 (2011).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).Article 
    PubMed 

    Google Scholar 
    Nekola, J. C. & McGill, B. J. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320 (2014).Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).Article 
    PubMed 

    Google Scholar 
    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).Article 
    PubMed 

    Google Scholar 
    Calenge, C. A collection of tools for the estimation of animals home range. (2017).Ulrich, W. et al. Species richness correlates of raw and standardized co‐occurrence metrics. Glob. Ecol. Biogeogr. 27, 395–399 (2018).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Newell, N. D. Adequacy of the fossil record. J. Paleontol. 33, 488–499 (1959).
    Google Scholar 
    Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85–91 (1979).
    Google Scholar 
    Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).Article 

    Google Scholar 
    Benton, M. J., Dunhill, A. M., Lolyd, G. T. & Marx, F. G. In Comparing the geological and fossil records: implications for biodiversity studies Vol. 358 (eds. McGowan, A. J. & A. B. Smith, A. B.) 63–94 (Geological Society of London, 2011).Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 1265–1277 (2008).Patterson, B. D. et al. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, (Arlington, Virginia, USA, 2007).Wilson, D. E. & Reeder, D. M. Mammal species of the world:ataxonomic and geographic reference. 3rd edition. (Johns Hopkins University Press,Baltimore, Maryland, 2,142 pp 2005).Fraser, D. & Lyons, S. K. Biotic interchange has structured Western Hemisphere mammal communities. Glob. Ecol. Biogeogr. 26, 1408–1422 (2017).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. J. Maptools: Tools for Reading and Handling Spatial Objects R package (2021).Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. (Springer, 2008).Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article 

    Google Scholar  More

  • in

    Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–1257594.PubMed 
    Article 
    CAS 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol. 2016;19:47–58.Article 

    Google Scholar 
    Alacid E, Reñé A, Garcés E. New Insights into the Parasitoid Parvilucifera sinerae Life Cycle: The Development and Kinetics of Infection of a Bloom-forming Dinoflagellate Host. Protist. 2015;166:677–99.PubMed 
    Article 

    Google Scholar 
    Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol. 2007;9:1233–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Siano R, Alves-De-Souza C, Foulon E, Bendif M, Simon E, Guillou NL. et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    Coats DW. Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol. 1999;46:402–9.Article 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5:1–12.Article 
    CAS 

    Google Scholar 
    McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sibbald SJ, Archibald JM. Genomic Insights into Plastid Evolution. Genome Biol Evol. 2020;12:978–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Not F, Probert I, Ribeiro CG, Crenn K, Guillou L, Jeanthon C, et al. Photosymbiosis in Marine Pelagic Environments. In: M. S. Cretoiu (ed). The Marine Microbiome. 2016. New York, NY: Springer International Publishing, pp 305–32.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:1–11.Article 
    CAS 

    Google Scholar 
    Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate Host Chloroplasts and Mitochondria Remain Functional During Amoebophrya Infection. Front Microbiol. 2020;11:1–11.Article 

    Google Scholar 
    Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its Changes during the Course of Infection. Protist. 2012;163:720–45.PubMed 
    Article 

    Google Scholar 
    Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, et al. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol. 2019;29:968–978.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, et al. Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci USA 2021;118.Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J, et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun. 2021;12:1049.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60:91–110.Article 

    Google Scholar 
    Hennies J, Lleti JMS, Schieber NL, Templin RM, Steyer AM, Schwab Y. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci Rep. 2020;10:1–10.Article 
    CAS 

    Google Scholar 
    Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging and Image-Guided Therapy. 2014. Springer New York, New York, NY, pp 277–89.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci. 2017;8:1–18.
    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Front Microbiol. 2018;9:1–19.Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.CAS 
    Article 

    Google Scholar 
    Cachon J. Contribution à l’étude des péridiniens parasites. Cytologie, cycles évolutifs Ann Sci Nat Zool. 1964;6:1–158.
    Google Scholar 
    Van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57:405–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tyler KM, Matthews KR, Gull K. Anisomorphic cell division by African trypanosomes. Protist. 2001;152:367–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep. 2016;6:1–13.Article 
    CAS 

    Google Scholar 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130:637–47.CAS 
    PubMed 

    Google Scholar 
    Ovciarikova J, Lemgruber L, Stilger KL, Sullivan WJ, Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    Nishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008;121:1559–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 2021;1:34.Article 

    Google Scholar 
    Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in. Dictyostelium J Cell Sci. 2001;114:3035–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochim Biophys Acta – Bioenerg. 2014;1837:857–79.CAS 
    Article 

    Google Scholar 
    Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA. 2000;97:680–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vines JH, King JS. The endocytic pathways of Dictyostelium discoideum. Int J Dev Biol. 2019;63:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol. 2021;23:6569–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sigee DC, Kearns LP. Levels of dinoflagellate chromosome-bound metals in conditions of low external ion availability: An X-ray microanalytical study. Tissue Cell. 1981;13:441–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol. 2008;74:1198–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caffaro CE, Boothroyd JC. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells. Eukaryot Cell. 2011;10:1095–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, et al. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep. 2015;13:2273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, et al. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem. 2016;291:3725–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019; 10:e00589-19.Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell. 2017;171:148–162.e19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, et al. Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci USA. 2009;106:12998–3003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335:207–11.CAS 
    Article 

    Google Scholar 
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.e12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep. 2020;30:3778–3792.e9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292:11009–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 2016;32:56–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30:170–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Gómez SA, Wideman JG, Roger AJ, Slamovits CH, Agashe D. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017;34:943–56.PubMed 

    Google Scholar 
    Evers F, Cabrera-Orefice A, Elurbe DM, Kea-te Lindert M, Boltryk SD, Voss TS, et al. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun. 2021;12:1–17.Article 
    CAS 

    Google Scholar 
    Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7:19–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004;129:511–524. https://doi.org/10.1017/S0031182004005888.Lee JW. Protonic capacitor: elucidating the biological significance of mitochondrial cristae formation. Sci Rep. 2020;10:1–14.Article 
    CAS 

    Google Scholar 
    Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:1–24.Article 
    CAS 

    Google Scholar 
    Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol. 2020;30:R575–R588.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta – Mol Cell Biol Lipids. 2016. Elsevier B.V., 1861: 900-12.Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12:120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32:1115–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida T, Hatama S, Ishikawa Y, Kadota K. Intranuclear coccidiosis in a calf. J Vet Med Sci. 2009;71:1109–13.PubMed 
    Article 

    Google Scholar 
    Pecka Z. Life cycle and ultrastructure of Eimeria stigmosa, the intranuclear coccidian of the goose (Anser anser domesticus). Folia Parasitol (Praha). 1992;39:105–14.CAS 

    Google Scholar 
    Voleman L, Doležal P. Mitochondrial dynamics in parasitic protists. PLoS Pathog. 2019;15:e1008008.Bílý T, Sheikh S, Mallet A, Bastin P, Pérez‐Morga D, Lukeš J, et al. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 2021;68:e12846.Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008;105:2463–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A dynamically structured matrix population model for insect life histories observed under variable environmental conditions

    Renewal processes represent development under variable conditionsThe consequence of a drastic environmental change can be demonstrated by introducing a shift in development time during the process. For demonstration, we consider a scenario where a group of individuals enter into a favourable environment reducing development time from (40pm 5) time units to (20pm 5).We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with an average development time of approximately (30pm 5) steps (solid dark lines) when conditions shift at ({tau }=20) (each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift are shown as dashed gray lines. The snapshots of the population structure, represented by the development indicator q, taken at each time step, show that half of the development is complete at the time of the switch and the switch accelerates the accumulation of q (Fig. S1).Figure 1Response to change in development time. The number of developing individuals is simulated by using the cumulative development process and compared to (a) the age-dependent development process, (b) an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target trajectories before and after the shift in development time (marked with red crosses).Full size imageIn age-dependent development, a sharp transition, instead of a gradual one, is observed at the (20^{th}) step (Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range of these models.We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development time and a shift in rate at (t=20). The LCT extension to the framework helps to incorporate time dependence and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates change in the rate parameter (gamma ) (Eq. 8), e.g doubling of (gamma ) changes development time from (40pm 5) to (20pm 2.5). However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a significant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). However, the distribution tends towards the longer development trajectory compared to the one achieved with cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions within a single generation if all individuals are introduced at the same time. As a potential workaround, it has been proposed to generate a plausible population history, through variable entry times, until the required (or observed) developmental variation builds up31,32. Variation in development rates then acts upon the population and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing development rates within a single stage; however, it has not yet been employed at this scale.Cumulative development is in agreement with the widely known degree-day (DD) framework, where development time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response to environmental conditions varies considerably, the DD framework implies that the combination of two different rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental evaluation of this will be the topic of future research.It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and is known to impact population dynamics and species interactions34,66,67. Future development of our framework will consider improving upon this limitation.Environmental variation transformed into development timesSeveral non-linear relationships have been proposed to represent the temperature dependence of insect development68. A common feature is the presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there exists an optimum between the thresholds where the process is most efficient. A typical relationship between temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.Figure 2Development under environmental variation. In (a), development rate (Eq. 9) is shown with (alpha =1.5times 10^{-5}), (T_L=0^oC), and (T_H=50^oC). In (b), mean development time is shown together with the probability densities of three temperature regimes ((rho _L), (rho _M), and (rho _H)). In (c), the number of individuals completing development at each step are shown with respect to the three temperature regimes. Solid lines indicate the median, shaded areas indicate the (90%) range of 1000 simulations, and thick lines indicate simulations with the expected values of each regime.Full size imageTo investigate how temperature variation is transformed into cumulative development time, we assumed three variation regimes at relatively low, medium, and high temperatures ((rho _L), (rho _M), and (rho _H), respectively). Densities of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time distributions emerge as shown in Fig. 2c.We found that the output of (rho _H) is skewed towards longer durations compared to what we would otherwise obtain if we simulated the process under constant conditions with the mean of (rho _H). The impact of variation in the middle range, (rho _M), is similar to that of (rho _H), but less pronounced. Conversely, the output of (rho _L) is skewed towards shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters of relatively short durations—especially as the process approaches its optimum duration—triggers completion earlier than in the case of no variation.Overall, our model predictions are in agreement with the rate summation effect, which states that the different outcomes obtained under constant and varying temperatures is due to the non-linear relationship between temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of development time in the linear range of the rate curve have been widely discussed69. Several groups have reported evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean constant temperatures70. However, observations of this phenomenon might result in different responses for different species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature range may facilitate comparison. For instance, Carrington et al. (2013) assumed (26^oC) as optimum based on the high dengue incidence in Thailand, and showed that large variations around (26^oC) increases development time for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around (26^oC) compared to (23^oC) for the fly, Megaselia scalaris, and found that varying temperatures at around (23^oC) accelerates the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal temperature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a decrease in development time is expected in response to varying temperatures according to our results.We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity to demonstrate the impact of (rho ) in isolation. The deterministic setup removes the upper limit in the number of distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each (rho ). Since the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 100(^{th}) decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.Environmental dependency extracted from life tables under constant conditionsHaving discussed the importance of environmental variability in development, in this section, we employ a well-established experimental method to unravel the relationship between temperature and development time in a common mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipiens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefasciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics and sub-tropics73,74.To infer the dependencies, we used a generic temperature-driven insect development model, described in Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and (30,^{circ })C) under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present a comparison of observed and simulated maximum production and the stage-emergence times for pupae and adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we present the comparison of time trajectories separately for each temperature.Figure 3Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times is given in (a). Observations are represented with dots and simulations with box plots. The environmental dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample (Theta _q), is shown in (b,c). Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the generic model faithfully replicates the observed development times of larvae and pupae. On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or (27,^{circ })C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation (Eq. 11). Optimum survival seen at (27,^{circ })C suggests that the relationship might be non-symmetrical or multimodal. In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental error or the intrinsic stochasticity of the biological processes.We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, and found that the data inform the model as expected within the temperature range of the experiments ((15{-}30,^{circ })C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which is much shorter than the larva development time (between 10 and 20 days above (20,^{circ })C). The model predicts that the minimum temperature at which development occurs (from the larva stage) is (10.5,^{circ })C, which is close to (10.9,^{circ })C, reported in Grech et al.75.The observed variability in pupa and adult production suggests that survival is a highly stochastic process regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, represents the mean of such processes but does not capture their variability. The simulated variability is a result of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the model structure and the functional forms of temperature dependence, and the data inform certain parameters better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences as development time increases.We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can be used to derive biologically meaningful inferences and to help improve the understanding of the temperature dependence of Cx. quinquefasciatus.Greater information content of semi-field experimentsThe number of experiments required to test a range of conditions, including different combinations of multiple drivers, may quickly exhaust available resources. Moreover, variable conditions may have a previously unaccounted impact on development and mortality. In this section, we demonstrate that observations performed under variable conditions are valuable sources of information for our modelling framework, which is capable of representing the dynamics under such conditions.Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the temperate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures during development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults observed in different experimental batches are given in Fig. S4. We employed the extended model with both temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the observed and simulated adult emergence times are less than a week apart (Table 1).Table 1 Comparison of observed and simulated adult emergence time and the total number of adults produced. Simulation output is given in terms of the median and (90%) range.Full size tableOn the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn (especially in May, September, and October). Despite this variability, the difference between the predicted and observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly yielded only one pupa and no adults.We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as the source of eggs.In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their impacts on life processes. As a potential improvement, we recommend that the experiments are performed in overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different times during development. We note that the early decline in larva abundance seen in Autumn could be a result of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation for diapause, the state where adult females endure several months without feeding. This implies that development takes longer than it would at long photoperiods when subjected to similar temperature regimes.Using the extended model and the semi-field data, we identified the environmental dependencies shown in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a significant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. As expected, the temperature dependency of egg development was not well informed by the data in the current configuration of the model and the functional forms of environmental dependence.Figure 4Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life table experiments. Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season (Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva development time from 15 to 12 hours of daylight (Fig. 4c).Risk assessment with annual development profilesWe extrapolated the development dynamics of Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We simulated the subsequent development dynamics and obtained the annual development profile as shown in Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in May (adults emerging late in May start developing in the experiments set up late in March). The profile is consistent with the regular Cx. pipiens high season in the region.Figure 5Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are plotted together with the model predictions. The time points marked with circles indicate the experiments used to calibrate the model. Estimated time of first adult emergence is given in the inset.Full size imageAs seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high season. However, there is a greater variation in the maximum number of adults than the times of emergence (extending to almost (40%) of the possible outcomes in early August). A greater variability (almost (80%) in August) is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults (where available) to facilitate comparison. According to the model, variation in adult production is associated with the variation in both development times and mortality during immature stages. We recall that the uncertainty in the informed environmental dependencies is high around relatively less frequently encountered values—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, we found that frequent exposure to temperatures outside the well-informed range have a significant impact on the variation in adult production (Fig. S9).We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. According to our model, early adult emergence is a result of shorter development times and higher success rates, which indicates that the temperature conditions allow for an early first generation of adults. An early first generation greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillover to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout Europe (more than the total of the previous seven years together)88,89.In summary, our results showed that the semi-field experiments, when used in combination with our dynamic pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory data. We used life history observations from 7 experiments performed under semi-field conditions and employed a generic model structure, largely uninformed on the specific environmental dependencies of the species. The cumulative development framework we introduced applies broadly to poikilotherms subjected to highly variable environmental conditions. Although the generic model structure helps to develop exploratory models and identify potential environmental dependencies, accuracy can be improved by customising the models for the known dependencies of particular species. With a straightforward extension of the development model to cover the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations of eggs or adult mosquitoes, and develop an environment-driven population dynamics model. More

  • in

    Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

    Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).Article 

    Google Scholar 
    Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).Article 

    Google Scholar 
    Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).Article 

    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
    Google Scholar 
    Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
    Google Scholar 
    Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
    Google Scholar 
    Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).Article 

    Google Scholar 
    Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).Article 

    Google Scholar 
    Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).Article 

    Google Scholar 
    Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).Article 

    Google Scholar 
    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).Article 

    Google Scholar 
    Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
    Google Scholar 
    Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).Article 

    Google Scholar 
    Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).Article 

    Google Scholar 
    Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).Article 

    Google Scholar 
    Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).Article 

    Google Scholar 
    Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).Article 

    Google Scholar 
    Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).Article 

    Google Scholar 
    Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).Article 

    Google Scholar 
    Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
    Google Scholar 
    Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).Article 

    Google Scholar 
    Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).Article 

    Google Scholar 
    Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).Article 

    Google Scholar 
    Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).Article 

    Google Scholar 
    Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).Article 

    Google Scholar 
    Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).Article 

    Google Scholar 
    Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
    Google Scholar 
    Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).Article 

    Google Scholar 
    Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).Article 

    Google Scholar 
    Batschelet, E. Circular statistics in biology (Academic Press, 1981).MATH 

    Google Scholar 
    Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).Article 

    Google Scholar 
    Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
    Google Scholar 
    Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
    Google Scholar 
    Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).Book 

    Google Scholar 
    Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
    Google Scholar 
    Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).Article 

    Google Scholar 
    Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).Article 

    Google Scholar 
    Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
    Google Scholar 
    Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).Article 

    Google Scholar 
    Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).Article 

    Google Scholar 
    DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
    Google Scholar 
    Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
    Google Scholar 
    Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).PubMed 
    Article 

    Google Scholar 
    Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).Article 

    Google Scholar  More

  • in

    Cumulative effects of widespread landscape change alter predator–prey dynamics

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article 

    Google Scholar 
    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS 
    Article 

    Google Scholar 
    Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article 

    Google Scholar 
    Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article 

    Google Scholar 
    Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article 

    Google Scholar 
    Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article 

    Google Scholar 
    Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article 

    Google Scholar 
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article 

    Google Scholar 
    Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article 

    Google Scholar 
    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
    Google Scholar 
    Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article 

    Google Scholar 
    Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article 

    Google Scholar 
    James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article 

    Google Scholar 
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article 

    Google Scholar 
    Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article 

    Google Scholar 
    Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article 

    Google Scholar 
    Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article 

    Google Scholar 
    Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article 

    Google Scholar 
    Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article 

    Google Scholar 
    Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article 

    Google Scholar 
    Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
    Google Scholar 
    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article 

    Google Scholar 
    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article 

    Google Scholar 
    Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article 

    Google Scholar 
    Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article 

    Google Scholar 
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article 

    Google Scholar 
    Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article 

    Google Scholar 
    Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article 

    Google Scholar 
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article 

    Google Scholar 
    Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article 

    Google Scholar 
    Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article 
    PubMed 

    Google Scholar 
    Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article 

    Google Scholar 
    Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article 

    Google Scholar 
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article 

    Google Scholar  More

  • in

    The effects of protected areas on the ecological niches of birds and mammals

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2021).Article 

    Google Scholar 
    Ortego, J., Calabuig, G., Cordero, P. J. & Aparicio, J. M. Egg production and individual genetic diversity in lesser kestrels. Mol. Ecol. 16, 2383–2392 (2007).CAS 
    Article 

    Google Scholar 
    Peacor, S. D., Schiesari, L. & Werner, E. E. Mechanisms of nonlethal predator effect on cohort size variation: Ecological and evolutionary implications. Ecology 88, 1536–1547 (2007).Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).Article 

    Google Scholar 
    Carlson, B. S., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Individual environmental niches in mobile organisms. Nat. Commun. 12, 4572. https://doi.org/10.1038/s41467-021-24826-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchinson, G. E. Population studies: Animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103 (2022).CAS 
    Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).Article 

    Google Scholar 
    Hällfors, M. H. et al. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 24, 1619–1632 (2021).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638. https://doi.org/10.1098/rspb.2010.1713 (2011).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995. https://doi.org/10.1111/2041-210X.13424 (2020).Article 

    Google Scholar 
    Mammola, S. Assessing similarity of n-dimensional hypervolumes: Which metric to use? J. Biogeogr. 46, 2012 (2019).Article 

    Google Scholar 
    Carvalho, J. C. & Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00243 (2020).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133. https://doi.org/10.1111/jbi.13987 (2021).Article 

    Google Scholar 
    Wang, X. et al. Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. Divers. Distrib. 27, 1393–1406. https://doi.org/10.1111/ddi.13286 (2021).Article 

    Google Scholar 
    Jaturapruek, R., Fontaneto, D., Mammola, S. & Maiphae, S. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. Hydrobiologia. https://doi.org/10.1007/s10750-021-04681-z (2021).Article 

    Google Scholar 
    Hu, Z. M. et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 30, 3840–3855. https://doi.org/10.1111/mec.15996 (2021).Article 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957. https://doi.org/10.1038/s41467-020-16792-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).Article 

    Google Scholar 
    Santangeli, A., Högmander, J. & Laaksonen, T. Returning white-tailed eagles breed as successfully in landscapes under intensive forestry regimes as in protected areas. Anim. Conserv. 16, 500–508. https://doi.org/10.1111/acv.12017 (2013).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS 
    Article 

    Google Scholar 
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).Article 

    Google Scholar 
    Dietz, H. & Edwards, P. J. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87, 1359–1367 (2006).Article 

    Google Scholar 
    Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).Article 

    Google Scholar 
    Zhang, Z., Mammola, S., McLay, C. L., Capinha, C. & Yokota, M. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Sci. Total Environ. 728, 138815. https://doi.org/10.1016/j.scitotenv.2020.138815 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).CAS 
    Article 

    Google Scholar 
    Sarasola, J. H., Grande, J. M. & Negro, J. J. Birds of Prey: Biology and Conservation in the XXI Century 63–94 (Springer, 2018).Book 

    Google Scholar 
    Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413. https://doi.org/10.1111/oik.02276 (2016).Article 

    Google Scholar 
    Thornton, D., Branch, L. & Sunquist, M. Passive sampling effects and landscape location alter associations between species traits and response to fragmentation. Ecol. Appl. 21, 817–829. https://doi.org/10.1890/10-0549.1 (2011).Article 
    PubMed 

    Google Scholar 
    Hatfield, J. H., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34. https://doi.org/10.1002/eap.1646 (2018).Article 
    PubMed 

    Google Scholar 
    Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. Ambio 38, 309–315 (2009).Article 

    Google Scholar 
    Niemi, J. & Ahlstedt, J. Finnish Agriculture and Rural Industries 2011 (MTT Economic Research, Agrifood Research Finland, 2011).
    Google Scholar 
    Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Cons. 253, 108892. https://doi.org/10.1016/j.biocon.2020.108892 (2021).Article 

    Google Scholar 
    Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: Poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003. https://doi.org/10.1111/gcb.12573 (2014).ADS 
    Article 

    Google Scholar 
    Lehikoinen, A. & Virkkala, R. North by north-west: Climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129. https://doi.org/10.1111/gcb.13150 (2016).ADS 
    Article 

    Google Scholar 
    Santangeli, A., Rajasärkkä, A. & Lehikoinen, A. Effects of high latitude protected areas on bird communities under rapid climate change. Glob. Change Biol. 23, 2241–2249. https://doi.org/10.1111/gcb.13518 (2017).ADS 
    Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—Evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313. https://doi.org/10.1111/gcb.14461 (2019).ADS 
    Article 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316. https://doi.org/10.1111/ddi.12529 (2017).Article 

    Google Scholar 
    Lindén, H., Helle, E., Helle, P. & Wikman, M. Wildlife triangle scheme in Finland: Methods and aims for monitoring wildlife populations. Finnish Game Res. 49, 4–11 (1996).
    Google Scholar 
    Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105. https://doi.org/10.1086/685444 (2016).Article 
    PubMed 

    Google Scholar 
    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: A systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591. https://doi.org/10.1016/j.gecco.2019.e00591 (2019).Article 

    Google Scholar 
    Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. & Liukko, U.-M. Suomen lajien uhanalaisuus–Punainen kirja 2019 (2019).Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. https://doi.org/10.1890/13-1917.1 (2014).Article 

    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617. https://doi.org/10.1111/ddi.13219 (2021).Article 

    Google Scholar 
    Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar 
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609. https://doi.org/10.1111/geb.12146 (2014).Article 

    Google Scholar 
    Cardoso, P. M., Rigal, F. & Carvalho, J. BAT-Biodiversity Assessment Tools (2014).Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    Sokal, R. R., Rohlf, F. J. & Rohlf, J. F. Biometry (Macmillan, 1995).MATH 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. https://doi.org/10.21105/joss.03139 (2021).Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 1–552 (Springer, 2009).Book 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More