More stories

  • in

    Effects of seawater sulfur starvation and enrichment on Gracilaria gracilis growth and biochemical composition

    Gao, Y., Schofield, O. M. & Leustek, T. Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol. 123, 1087–1096 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, C.-W., Walker, M. E., Fedrizzi, B., Gardner, R. C. & Jiranek, V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res. 17, 058 (2017).
    Google Scholar 
    Kopriva, S., Calderwood, A., Weckopp, S. C. & Koprivova, A. Plant sulfur and big data. Plant Sci. 241, 1–10 (2015).CAS 
    PubMed 

    Google Scholar 
    Shibagaki, N. & Grossman, A. The state of sulfur metabolism in algae: From ecology to genomics. In Sulfur Metabolism in Phototrophic Organisms (eds Hell, C. D. R. et al.) 231–267 (Springer, 2008).
    Google Scholar 
    Fakhraee, M. & Katsev, S. Organic sulfur was integral to the Archean sulfur cycle. Nat. Commun. 10, 1–8 (2019).CAS 

    Google Scholar 
    Ho, T. Y. et al. The elemental composition of some marine phytoplankton 1. J. Phycol. 39, 1145–1159 (2003).CAS 

    Google Scholar 
    Jørgensen, B. B. Unravelling the sulphur cycle of marine sediments. Environ. Microbiol. 21, 3533–3538 (2019).PubMed 

    Google Scholar 
    El Mahrad, B. et al. Social-environmental analysis for the management of coastal lagoons in North Africa. Front. Environ. Sci. 8, 37 (2020).
    Google Scholar 
    Srarfi, F. Etude géochimique et état de pollution de la lagune de Bizerte. These de doctorat, Univ. Tunis el Manar 122 (2007).FAO. La Situation Mondiale Des Pêches et de L’aquaculture 2020 (Food & Agriculture Organisation, 2020).
    Google Scholar 
    Soto, D. & Wurmann, C. The Future of Ocean Governance and Capacity Development 379–384 (Brill Nijhoff, 2019).
    Google Scholar 
    Ran, W. et al. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 291, 121894 (2019).CAS 
    PubMed 

    Google Scholar 
    Aikawa, S. et al. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol. J. 10, 886–898 (2015).CAS 
    PubMed 

    Google Scholar 
    Klok, A., Lamers, P., Martens, D., Draaisma, R. & Wijffels, R. Edible oils from microalgae: Insights in TAG accumulation. Trends Biotechnol. 32, 521–528 (2014).CAS 
    PubMed 

    Google Scholar 
    Yuan, Y. et al. Enhancing carbohydrate productivity of Chlorella sp. AE10 in semi-continuous cultivation and unraveling the mechanism by flow cytometry. Appl. Biochem. 185, 419–433 (2018).CAS 

    Google Scholar 
    Rodríguez, M. C., Matulewicz, M. C., Noseda, M., Ducatti, D. & Leonardi, P. I. Agar from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonic coast of Argentina-Content, structure and physical properties. Biores. Technol. 100, 1435–1441 (2009).
    Google Scholar 
    Lee, W.-K. et al. Factors affecting yield and gelling properties of agar. J. Appl. Phycol. 29, 1527–1540 (2017).
    Google Scholar 
    Fethi, M. & Ghedifa, A. B. Optimum ranges of combined abiotic factor for Gracilaria gracilis aquaculture. J. Appl. Phycol. 31, 3025–3040 (2019).
    Google Scholar 
    Friedlander, M. Inorganic nutrition in pond cultivated Gracilaria conferta (Rhodophyta): Nitrogen, phosphate and sulfate. J. Appl. Phycol. 13, 279–286 (2001).CAS 

    Google Scholar 
    Lee, W.-K., Namasivayam, P. & Ho, C.-L. Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia. J. Appl. Phycol. 26, 1791–1799 (2014).CAS 

    Google Scholar 
    Carfagna, S. et al. Impact of sulfur starvation in autotrophic and heterotrophic cultures of the extremophilic microalga Galdieria phlegrea (Cyanidiophyceae). Plant Cell Physiol. 57, 1890–1898 (2016).CAS 
    PubMed 

    Google Scholar 
    Collén, P. N., Camitz, A., Hancock, R. D., Viola, R. & Pedersén, M. Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in gracilaria tenuistipitata (rhodophyta) 1. J. Phycol. 40, 305–314 (2004).
    Google Scholar 
    Collier, J. L. & Grossman, A. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J. 13, 1039–1047 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richaud, C., Zabulon, G., Joder, A. & Thomas, J.-C. Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J. Bacteriol. 183, 2989–2994 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd, A. G., Dodgson, K. S. & Rose, F. A. Infrared studies on sulphate esters I. Polysaccharide sulphates. Biochim. Biophys. Acta 46, 108–115 (1961).CAS 
    PubMed 

    Google Scholar 
    Kawachi, M. & Noël, M.-H. Sterilization and sterile technique. In Algal Culturing Techniques (ed. Anderson, R. A.) 65–81 (Academic Press, 2005).
    Google Scholar 
    Harrison, P. J. & Berges, J. A. Marine culture media. In Algal Culturing Techniques (ed. Anderson, R. A.) 21–34 (Academic Press, 2005).
    Google Scholar 
    Guiry, M. & Cunningham, E. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23, 357–367 (1984).
    Google Scholar 
    Kolmert, Å., Wikström, P. & Hallberg, K. B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41, 179–184 (2000).CAS 
    PubMed 

    Google Scholar 
    Destombe, C., Godin, J., Nocher, M., Richerd, S. & Valero, M. In Fourteenth International Seaweed Symposium (eds Brown, M. T. & Lahaye, M.) 131–137 (Springer, 1993).
    Google Scholar 
    Rueness, J. & Tananger, T. In Eleventh International Seaweed Symposium (eds Bird, C. J. & Ragan, M. A.) 303–307 (Springer, 1984).
    Google Scholar 
    Shea, R. & Chopin, T. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J. Appl. Phycol. 19, 27–32 (2007).CAS 

    Google Scholar 
    Dawes, C., Orduna-Rojas, J. & Robledo, D. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10, 419–425 (1998).
    Google Scholar 
    Yaphe, W. & Arsenault, G. Improved resorcinol reagent for the determination of fructose, and of 3, 6-anhydrogalactose in polysaccharides. Anal. Biochem. 13, 143–148 (1965).CAS 

    Google Scholar 
    Mensi, F., Ksouri, J., Seale, E., Romdhane, M. S. & Fleurence, J. A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J. Appl. Phycol. 24, 915–926 (2012).CAS 

    Google Scholar 
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).CAS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    Sörbo, B. Sulfate: Turbidimetric and nephelometric methods. Methods Enzymol. 143, 3–6 (1987).PubMed 

    Google Scholar 
    Redmond, S., Green, L., Yarish, C., Kim, J. & Neefus, C. New England Seaweed Culture Handbook (University of Connecticut Sea Garent, 2014).
    Google Scholar 
    Kakita, H. & Kamishima, H. Effects of environmental factors and metal ions on growth of the red alga Gracilaria chorda Holmes (Gracilariales, Rhodophyta). J. Appl. Phycol. 18, 469–474 (2006).CAS 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
    Google Scholar 
    Shpigun, L. K., Kolotyrkina, I. Y. & Zolotov, Y. A. Experience with flow-injection analysis in marine chemical research. Anal. Chim. Acta 261, 307–314 (1992).CAS 

    Google Scholar 
    Cosano, J., de Castro, M. & Valcarcel, M. Flow injection analysis of water. Part 1: Automatic preconcentration determination of sulphate, ammonia and iron (II)/iron (III). J. Autom. Chem. 15, 141–146 (1993).CAS 

    Google Scholar 
    Van Staden, J. & Taljaard, R. Determination of sulphate in natural waters and industrial effluents by sequential injection analysis. Anal. Chim. Acta 331, 271–280 (1996).
    Google Scholar 
    Petersen, S. P. & Ahring, B. K. Analysis of sulfate in sewage sludge using ion chromatographic techniques. J. Microbiol. Methods 12, 225–230 (1990).CAS 

    Google Scholar 
    Rand, M., Greenberg, A., Taras, K. & Franson, M. Standard Methods for the Examination of Water and Waste Water (American Public Health Association, 1975).
    Google Scholar 
    Wanner, G., Henkelmann, G., Schmidt, A. & Köst, H.-P. Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301 an ultrastructural, morphometrical, and biochemical comparison. Zeitschrift Naturforschung C 41, 741–750 (1986).CAS 

    Google Scholar 
    Molloy, F. & Bolton, J. The effect of season and depth on the growth of Gracilaria gracilis at Lüderitz, Namibia. Bot. Mar. 39, 407–414 (1996).
    Google Scholar 
    Mensi, F., Nasraoui, S., Bouguerra, S., Ben Ghedifa, A. & Chalghaf, M. Effect of lagoon and sea water depth on Gracilaria gracilis growth and biochemical composition in the northeast of Tunisia. Sci. Rep. 10, 1–12 (2020).
    Google Scholar 
    Mensi, F., Ksouri, J., Hammami, W. & Romdhane, M. État des connaissances et perspectives de recherches sur la culture de Gracilariales (Gracilaria et Gracilariopsis): Application a la lagune de Bizerte. Bull. Inst. Natn. Scien. Tech. Mer Salammbô 41, 101–119 (2014).
    Google Scholar 
    Sugimoto, K., Sato, N. & Tsuzuki, M. Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522 (2007).CAS 
    PubMed 

    Google Scholar 
    Cakmak, T. et al. Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 3, 343–346 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ostaszewska-Bugajska, M., Rychter, A. M. & Juszczuk, I. M. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. J. Plant Physiol. 186, 25–38 (2015).PubMed 

    Google Scholar 
    Zhang, L. et al. Sulfur deficiency-induced glucosinolate catabolism attributed to two β-glucosidases, BGLU28 and BGLU30, is required for plant growth maintenance under sulfur deficiency. Plant Cell Physiol. 61, 803–813 (2020).CAS 
    PubMed 

    Google Scholar 
    Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant biol. 62, 157–184 (2011).CAS 
    PubMed 

    Google Scholar 
    Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).
    Google Scholar 
    Collier, J. L. & Grossman, A. R. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174, 4718–4726. https://doi.org/10.1128/jb.174.14.4718-4726.1992 (1992).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaur, H. et al. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition. Biochimie 93, 175–186. https://doi.org/10.1016/j.biochi.2010.09.008 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Said, R. B. et al. Effects of depth and initial fragment weights of Gracilaria gracilis on the growth, agar yield, quality, and biochemical composition. J. Appl. Phycol. 30, 2499–2512 (2018).
    Google Scholar 
    Bird, K. T. Agar production and quality from Gracilaria sp. strain G—16: Effects of environmental factors. Bot. Mar. 31, 33–38 (1988).
    Google Scholar 
    Cote, G. & Hanisak, M. Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot. Mar. 29, 359–366 (1986).CAS 

    Google Scholar 
    Lahaye, M. & Yaphe, W. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polym. 8, 285–301 (1988).CAS 

    Google Scholar 
    Yaphe, W. Eleventh International Seaweed Symposium 171–174 (Springer, 1984).
    Google Scholar 
    Duckworth, M., Hong, K. & Yaphe, W. The agar polysaccharides of Gracilaria species. Carbohydr. Res. 18, 1–9 (1971).CAS 

    Google Scholar 
    Rotem, A., Roth-Bejerano, N. & Arad, S. Effect of controlled environmental conditions on starch and agar contents of Gracilaria sp. (Rhodophyceae) 1. J. Phycol. 22, 117–121 (1986).CAS 

    Google Scholar 
    Arad, S. M., Lerental, Y. B. & Dubinsky, O. Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour. Technol. 42, 141–148 (1992).CAS 

    Google Scholar  More

  • in

    The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921–4932 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vega Thurber, R. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rosenberg, E. & Zilber-Rosenberg, I. Microbes drive evolution of animals and plants: the hologenome concept. mBio 7, e01395 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ainsworth, T. D., Thurber, R. V. & Gates, R. D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25, 233–240 (2010).PubMed 
    Article 

    Google Scholar 
    Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104, 7617–7621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, J., Kuang, W. Q., Long, L. J. & Zhang, S. Production of quorum-sensing signals by bacteria in the coral mucus layer. Coral Reefs 36, 1235–1241 (2017).Article 

    Google Scholar 
    Alagely, A., Krediet, C. J., Ritchie, K. B. & Teplitski, M. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. 5, 1609–1620 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krediet, C. J., Ritchie, K. B., Alagely, A. & Teplitski, M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7, 980–990 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, F. L., Hoste, B., Thompson, C. C., Huys, G. & Swings, G. The coral bleaching Vibrio shiloi Kushmaro et al. 2001 is a later synonym of Vibrio mediterranei Pujalte and Garay 1986. Syst. Appl. Microbiol. 24, 516–519 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, K. H. et al. Antagonism between coral pathogen Vibrio coralliilyticus and other bacteria in the gastric cavity of scleractinian coral Galaxea fascicularis. Sci. China-Earth Sci. 63, 157–166 (2020).CAS 
    Article 

    Google Scholar 
    Zhou, Y. Q. et al. Identification of bacteria-derived urease in the coral gastric cavity. Sci. China-Earth Sci. 63, 1553–1563 (2020).CAS 
    Article 

    Google Scholar 
    Chen, B. et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci. Total Environ. 765, 142690 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tout, J. et al. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front. Microbiol. 6, 432 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl. Acad. Sci. USA 118, e2023298118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vezzulli, L. et al. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rosenberg, E. & Falkovitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol. 58, 143–159 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gibbin, E. et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 13, 989–1003 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banin, E., Vassilakos, D., Orr, E., Martinez, R. J. & Rosenberg, E. Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr. Microbiol. 46, 418–422 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meron, D. et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75, 5704–5707 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubio-Portillo, E. et al. Virulence as a side effect of interspecies interaction in Vibrio coral pathogens. mBio 11, e00201-20 (2020).Rubio-Portillo, E., Yarza, P., Penalver, C., Ramos-Espla, A. A. & Anton, J. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities. ISME J. 8, 1794–1807 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourne, D. G. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 69, 4236–4242 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gavish, A. R., Shapiro, O. H., Kramarsky-Winter, E. & Vardi, A. Microscale tracking of coral–vibrio interactions. ISME Commun. 1, 18 (2021).Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. USA 111, 13391–13396 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, D. D. et al. Identification and characterization of microsatellite markers for scleractinian coral Galaxea fascicularis and its symbiotic zooxanthellae. Conservation. Genet. Resour. 5, 741–743 (2013).Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Symbiosis of a P2-family phage and deep-sea Shewanella putrefaciens. Environ. Microbiol. 21, 4212–4232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, P. et al. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J. Antimicrob. Chemother. 74, 2559–2565 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeng, Z. et al. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J. 10, 2787–2800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X., Kim, Y. & Wood, T. K. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J. 3, 1164–1179 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood, T. K., Gonzalez Barrios, A. F., Herzberg, M. & Lee, J. Motility influences biofilm architecture in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 361–367 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, S., Guo, Y., Kim, J. S., Wang, X. & Wood, T. K. Phages mediate bacterial self-recognition. Cell Rep. 27, 737–749 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krediet, C. J., Carpinone, E. M., Ritchie, K. B. & Teplitski, M. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100. FEMS Microbiol. Ecol. 84, 290–301 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, Y., Lin, J. & Wang, X. Rapid detection of temperate bacteriophage using a simple motility assay. Environ. Microbiol. Rep. 13, 728–734 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, K. et al. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res. 49, e128 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ding, J. Y., Shiu, J. H., Chen, W. M., Chiang, Y. R. & Tang, S. L. Genomic insight into the host–endosymbiont relationship of Endozoicomonas montiporae CL-33(T) with its coral host. Front. Microbiol. 7, 251 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. S. et al. Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int. J. Syst. Evol. Microbiol. 60, 1158–1162 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber, L., Kjeldsen, K. U., Obst, M., Funch, P. & Schramm, A. Description of Endozoicomonas ascidiicola sp nov., isolated from Scandinavian ascidians. Syst. Appl. Microbiol. 39, 313–318 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, S. N. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mai-Prochnow, A. et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several Gram-negative bacteria. J. Bacteriol. 190, 5493–5501 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campillo-Brocal, J. C., Lucas-Elio, P. & Sanchez-Amat, A. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. MicrobiologyOpen 2, 684–694 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chacon-Verdu, M. D., Gomez, D., Solano, F., Lucas-Elio, P. & Sanchez-Amat, A. LodB is required for the recombinant synthesis of the quinoprotein l-lysine-epsilon-oxidase from Marinomonas mediterranea. Appl. Microbiol. Biotechnol. 98, 2981–2989 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez, D., Lucas-Elio, P., Solano, F. & Sanchez-Amat, A. Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase. Mol. Microbiol. 75, 462–473 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selva, L. et al. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. USA 106, 1234–1238 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Regev-Yochay, G., Trzcinski, K., Thompson, C. M., Malley, R. & Lipsitch, M. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J. Bacteriol. 188, 4996–5001 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frazao, N., Sousa, A., Lassig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl. Acad. Sci. USA 116, 17906–17915 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, M. et al. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology-SGM 158, 835–842 (2012).CAS 
    Article 

    Google Scholar 
    James, S. G., Holmstrom, C. & Kjelleberg, S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol. 62, 2783–2788 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lucas-Elio, P., Gomez, D., Solano, F. & Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 188, 2493–2501 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imlay, J. A. & Linn, S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169, 2967–2976 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Los, J. M., Los, M., Wegrzyn, G. & Wegrzyn, A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb. Pathog. 47, 289–298 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, P., He, X. Y., Liu, Q. T. & Hu, C. Q. Developing universal genetic tools for rapid and efficient deletion mutation in Vibrio species based on suicide T-vectors carrying a novel counterselectable marker, vmi480. PLoS ONE 10, e0144465 (2015).Wang, P. et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bertani, L. E. & Bertani, G. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6, 201–212 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D. & Monot, M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 7, 8292 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brynildsrud, O., Bohlin, J., Scheffer, L. & Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 17, 238 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagpal, S., Singh, R., Yadav, D. & Mande, S. S. MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks. Nucleic Acids Res. 48, W572–W579 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Simulation-based evaluation of two insect trapping grids for delimitation surveys

    Key delimitation trapping survey performance factorsTrap attractivenessThe performance of the current Medfly design was unexpectedly inferior to that of the leek moth even with a more vagile target insect, 2.8 times greater trap density in the core, and a grid size over three times larger. Despite all those factors, p(capture) for the leek moth grid with 1/λ = 20 m was 15 percentage points greater than that for Medfly at 30 days duration. Thus, trap attractiveness was the key determinant for delimiting survey performance, as it was for detection13.One straightforward way to improve p(capture) and the accuracy of boundary setting, while also cutting costs, would be to develop more attractive traps. Poorly attractive traps include food-based attractants48 and traps based solely on visual stimuli36. But developing better traps is difficult. Pheromone-based attractants generally perform best49, but these are unavailable for many insects. For instance, scientists have searched for decades for effective pheromones for Anastrepha suspensa (Loew) and A. ludens (Loew) without success50. Common issues include the complexity of components, costs of synthesis, and chemical stability.Trap densitiesAll else being equal, increasing the trap density will generally improve p(capture) for any survey grid, and intuitively this can help compensate for using less attractive traps. However, the impact of increasing density is limited when attractiveness is low13,47, and large surveys or grids with many traps can become prohibitively expensive51. The Medfly grid designers likely understood that the available trap and lure was not highly attractive, and used higher densities in inner bands to try to reach some desired (non-quantitative) survey performance level. By contrast, the designers of the leek moth grid used a (constant) density three times smaller, likely because the trap and lure were known to be relatively strong. Here, for both species, marginal ROI decreased as densities increased (Tables 2, 3). Hence, increasing densities has limited benefit, but may be useful when better lures are unavailable13.In that context, the use of variable densities in the Medfly grid is understandable. At its standard size, the survey grid would require 8,100 traps if the core trap density were constant (Table 1). The designers likely intuited that lower densities could be used in outer bands because captures there were less likely. However, doing so reduces the likelihood of detection in outer bands and could increase the possibility of undetected egress, especially with longer survey durations. As far as we know, natural egress has not been raised as a concern following the numerous Medfly quarantines that have used this survey grid over the years, in Southern California in particular52.Generally, however, we think the variable Medfly grid densities run counter to delimitation goals. Greater core and Band 2 densities have proportionally more impact on p(capture), but only a few detections in the core are necessary to confirm the presence of the population (Goal 1), and inner area detections probably contribute little to boundary setting (see below). Therefore, lower or intermediate densities (at most) may be optimal for the core when considering ROI. For the outer bands, increasing densities might improve boundary setting (Goal 2) and help mitigate potential egress, but the sizes of those bands already limit cost efficiency (Table 2), making greater densities less advisable. Our simulation results can help elucidate how to balance these interests to achieve delimitation goals while minimizing costs47.Grid size considerationsThe simulation results indicated that the standard survey sizes for these two pests were excessive. We have verified that empirically for Medfly using trapping detections data53. A 14.5-km grid has been widely used for many other insects in the CDFA (2013) guidelines10, such as Mexfly and OFF, and the same analysis indicated that those are also oversized for use in short-term delimitation surveys53. From the same analysis, the predicted survey radius for leek moth, with D = 500 m2 per day, would be 2,382 m, or a diameter of nearly 4.8 km, which matches the results here. Similarly, Dominiak and Fanson45 analyzed trapping data for Qfly and found that the recommended quarantine area distance of 15 km could be reduced to 3 to 4 km.Grids with radii larger than 4.8-km only seem necessary for highly vagile insects, those with D ≥ 50,000 m2 per day47. This should not be surprising. Small insect populations are unlikely to move very far31,54, especially if hosts are available20,39,55. The (proposed) short duration of a delimitation survey would also limit dispersal potential (see below). Many delimiting survey plans may be oversized, because they were developed before much dispersal research had been done37, thus uncertainty was high. Our dispersal distance analysis included species with a wide range of dispersal abilities, so it can be used generally to choose smaller survey grid radii53.Reducing grid sizes down to about 4.8-km diameters may have little impact on p(capture), since detections in bands outside that distance contributed little to overall performance. The cores of both the leek moth and Medfly grids accounted for 86 percent or more of overall p(capture). While core area detections will confirm the presence of the population, they are less useful for defining spatial extent. The furthest detections from the presumed source are usually used to delimit the incursion46,56 (although in our experience formal boundary setting exercises seem rare). Delimiting surveys may often yield few captures anyway, because adventive populations can be very small and subject to high mortality31. Because size reductions eliminate traps in proportionally larger outer areas, the impact on survey costs is substantial. Removing just the outermost bands of each grid would directly reduce costs by $11,200 for leek moth (400 traps) and by $7,488 for Medfly (288 traps; Table 1).Another reason for the large size of the standard Medfly grid may be that it was designed for monitoring and management in addition to delimitation57. Medfly quarantines end after at least three generations without a detection, so the surveys may last for months. The grid size was reportedly originally determined by multiplying the estimated dispersal distance by three (PPQ, personal communication), to account for uncertainty. This implies that the estimated distance was about 2,400 m per 30 days. Thus, the design may not have been built for the 30-d duration used here, but our recommended design is valid if a shorter delimitation activity without further monitoring is appropriate.Although it seemed too large for leek moth, an 8-km grid for delimitation could be appropriate for some other moths. For example, the delimiting survey plans for Spodoptera littoralis (Boisduval) and S. exempta Walker use this size9. S. littoralis is described as dispersing “many miles”, and S. exempta can travel hundreds of miles9, which clearly exceeds the described dispersal ability of leek moth. On the other hand, the survey plan for summer fruit tortrix moth (Adoxophyes orana Fischer von Röeslerstamm) also specifies an 8-km grid for delimitation but contains little information on dispersal, suggesting only that most movement is local8. Like leek moth, a 4.8-km grid for that species seems likely to be more appropriate.Limiting egress potential is probably the main consideration when setting survey size, but uncertainty about the source population location may also be a factor. Survey grids placed over the earliest insect detection may sometimes be off center from the location of the source population54. However, so far as we know for our agency, most adventive populations have been localized, based on post-discovery detections (PPQ, personal communication). Likewise, we have found53 and other researchers have found that dispersal distances for different species in outbreaks and mark-recapture studies are often less than 1 km58,59,60. That may often be the case for detection networks of traps (e.g., for high risk fruit flies), which increase the likelihood of capture before the population has had much time to grow and disperse. Here, we focused explicitly on localized populations, but allowed for uncertainty in the simulations by varying outbreak locations over one mile in the central part of the grid. If the outbreak population is very large and has extensively spread out (e.g., spotted lanternfly, Lycorma delicatula (White) in 201461), delimitation will not be localized, but “area-wide”2. The results here do not apply to area-wide outbreaks, and we are currently studying how to effectively delimit them.Optimizing delimitation surveysMany trapping survey designs in use were based not on “hard” science but on local experience62. Scientists have recognized the need for more cost-effective surveillance strategies63,64. Quantitatively assessing p(capture) in different designs for the same target pest allows us to determine grid sizes and densities that lower costs while maintaining performance. Results here demonstrated that the sizes and densities of these two survey grids could be optimized to save up to $20,244 per survey for the leek moth and $38,168 per survey for the Medfly. In practical terms, that means more than five leek moth surveys could be run for the cost of one standard design survey. Additionally, over seven Medfly delimitation surveys could be funded by the budget of one standard plan. The magnitudes of reduction seen here may be typical, since about 90 percent of the costs in trapping surveys are for transportation and maintenance related to traps65.Quantifying survey performance was not possible until very recently, so it has been little discussed in the literature5,66, and no standard thresholds exist. We think 0.5 may be a reasonable minimum threshold for the choice of p(capture), to try to ensure that population detection is “more likely than not”. Designs that aim to maximize p(capture) could be realistic with high attractiveness traps, but those designs seem very likely to have lower ROIs (e.g., Table 2). Even for the most serious insect pests, we think targeting near-perfect population detection during delimitation is likely not justified. Designs achieving p(capture) from 0.6 to 0.75 could be highly effective in terms of both costs and performance.Another potential area of improvement is grid shape. Circular grids perform as well as square grids but use fewer traps and less service area to achieve equivalent p(capture)47. Moreover, detections in the corners of a square grid are evidence that insects could have traveled beyond the square along the axes, resulting in uncertain boundary setting. Most published survey grids are square10,46, but many field managers tend to use approximately circular trapping grids in the field (PPQ, personal communication). The conversion to a circular grid with a radius of half the square side length reduces the area and number of traps by around 21 percent47. Our findings were consistent with that value.This new quantification ability also indicates that some delimiting survey designs in the U.S.A. may not be performing as well as expected47. For instance, the delimiting survey design for Mexfly uses approximately 31 traps per km2 in the core of a 14.5 km square grid11, but the traps are only weakly attractive (1/λ ≈ 5 m). In this scenario, p(capture) was only around 0.23 with a 30-d survey duration47. A much greater density ( > 80 traps per km2) could be used in the core to achieve p(capture) ≥ 0.5, but this may not be feasible depending on the survey budget.Technical and modeling considerationsExamining diffusion-based movement for these two insects in TrapGrid can give insight into why simulations indicated that smaller grids may be adequate47. The value of σ for Medfly after 30 days is only about 1,550 m. In a normal distribution, σ = 1,550 m gives a 95th percentile distance of 2,550 m, which is similar to the estimated distance above of 2,400 m. Over 90 days, σ = 2,700 m for Medfly, which gives a 95th percentile distance of 4,441 m, still much shorter than the grid radius of 7,250 m. A 95th percentile of 7,250 m requires σ ≈ 4,408 m, which equals t = 253 days. In addition, the maximum total distance (up to 39 days after detection) we observed in trapping detections data for Medfly in Florida was about 4,800 m53.The same calculations for leek moth give σ ≈ 490 m for 30 days, with a 95th percentile distance of only 806 m. That is half the length of the recommended shortened radius above of 2.4 km, and nearly five times shorter than the radius of the standard 8-km grid. A 95th percentile of 4,000 m requires σ = 2,432 m, which implies t = 740 days, which is about two years. Therefore, the leek moth grid is arguably even more oversized than the Medfly grid.The default capture probability calculation in the current version (Ver. 2019-12-11) of TrapGrid is not sensitive to population size32 and does not consider the effects of ambient factors (e.g., wind speed and direction, rainfall, temperature). Many other factors can also impact trapping survey outcomes, such as topography of the environment, availability of host plants, seasonality of pest, and population dynamics. These factors are not considered in the current version of TrapGrid. More

  • in

    Mangrove dispersal disrupted by projected changes in global seawater density

    Mangrove forests thrive along tropical and subtropical shorelines and their distribution extends to warm temperate regions1. They are globally recognized for the valuable ecosystem services they provide2 but are expected to be substantially influenced by climate change-related physical processes in the future3,4. Under warming winter temperatures, poleward expansion is predicted for mangroves5,6, with potential implications for ecosystem structure and functioning, as well as human livelihoods and well-being7,8. The global distribution, abundance and species richness of mangroves is governed by a broad range of biotic and environmental factors, including temperature and precipitation9 and diverse geomorphological and hydrological gradients10. Climate and aspects related to coastal geography (for example, floodplain area) determine the availability of suitable habitat for establishment11,12. However, the potential for mangroves to track changing environmental conditions and expand their distributions ultimately depends on dispersal11,13. The importance of dispersal in controlling mangrove distributions has been demonstrated by mangrove distributional responses to historical climate variability14, past mangrove (re)colonization of oceanic islands15 and from the long-term survival of mangrove seedlings planted beyond natural range limits16. As such, quantifying changes in the factors that influence dispersal is important for understanding climate-driven distributional responses of mangroves under future climate conditions.In mangroves, dispersal is accomplished by buoyant seeds and fruits (hereafter referred to as ‘propagules’). In combination with prevailing currents, the spatial scale of this process, ranging from local retention to transoceanic dispersal over thousands of kilometres13, is determined by propagule buoyancy17, that is, the density difference between that of propagules and the surrounding water. Hence, the course of dispersal trajectories for propagules from these species depends on the interaction between spatiotemporal changes in both propagule density and that of the surrounding water, rendering this process sensitive to climate-driven changes in coastal and open-ocean water properties. The biogeographic implications of such density differences were recognized more than a century ago by Henry Brougham Guppy, who discussed18 ‘the far-reaching influence on plant-distribution and on plant-development that the relation between the specific weight of seeds and fruits and the density of sea-water must possess’.Since the time of Guppy’s early observations, climate change from human activities has driven pronounced changes in ocean temperature and salinity, with further changes predicted throughout the twenty-first century19. Ocean density is a nonlinear function of temperature, salinity and pressure20; therefore, these changes may influence dispersal patterns of mangrove propagules by altering their buoyancy and floating orientation. As Guppy noted18, ‘[for] plants whose seeds or fruits are not much lighter than seawater […] the effect of increased density of the water is to extend the flotation period’ or ‘to increase the number that floated for a given period’. Guppy also reported that the seedlings of the widespread mangrove genera Rhizophora and Bruguiera present exceptional examples of propagules with densities somewhere between seawater and freshwater18. Previous studies of the impacts of climate change on mangroves have focused on factors such as sea level rise, altered precipitation regimes and increasing temperature and storm frequency4,21,22,23 but the potential impact of climate-driven changes in seawater properties on mangroves has not yet been examined. This is somewhat surprising, as the ocean is the primary dispersal medium of this ‘sea-faring’ coastal vegetation and dispersal is a key process that governs a species’ response to climate change by changing its geographical range. This knowledge gap contrasts with recent efforts to expose links between climate change and dispersal in other ecologically important marine taxa such as zooplankton and fish species24,25,26,27.In this study, we investigate predicted changes in sea surface temperature (SST), sea surface salinity (SSS) and sea surface density (SSD) for coastal waters bordering mangrove forests (hereafter referred to as ‘coastal mangrove waters’), over the next century. Using a biogeographic classification system for coastal and shelf areas28, we examine spatiotemporal changes in these surface ocean properties, with a particular focus on the world’s two major mangrove diversity hotspots: (1) the Atlantic East Pacific (AEP) region, including all of the Americas, West and Central Africa and (2) the Indo West Pacific (IWP) region, extending from East Africa eastwards to the islands of the central Pacific1. Finally, we synthesize available data on the density of mangrove propagules for different mangrove species and explore the potential impact of climate-driven changes in SSD on propagule dispersal.To assess changes in SST and SSS throughout the global range of mangrove forests, we used present (2000–2014) and future (2090–2100) surface ocean properties from the Bio-ORACLE database29,30. SSD estimates were derived from these variables using the UNESCO EOS-80 equation of state polynomial for seawater31. Changes in SST, SSS and SSD (Fig. 1) were calculated for four representative concentration pathways (RCPs) and derived for coastal waters closest to the 583,578 polygon centroids from the 2015 Global Mangrove Watch (GMW) database32. After removing duplicates, our dataset contained 10,108 unique mangrove occurrence locations, with corresponding present conditions and predicted future changes in mean SST, SSS and SSD. Under the low-warming scenario RCP 2.6, mean SST of coastal mangrove waters is predicted to change by +0.64 (±0.11) °C and mean SSS by −0.06 (±0.25) practical salinity units (PSU). Combined, this results in an average change in mean SSD of −0.25 (±0.20) kg m−3 in coastal mangrove waters by the late twenty-first century (Supplementary Table 1). These values roughly double under RCP 4.5 (Supplementary Table 2), while under RCP 6.0, a change of +1.69 (±0.14) °C in mean SST, −0.21 (±0.42) PSU in mean SSS and −0.71 (±0.32) kg m−3 in mean SSD is predicted (Supplementary Table 3). Under RCP 8.5, our study predicts a change in SST of +2.84 (±0.21) °C (range 2.11–4.01 °C), a change in SSS of −0.30 (±0.74) PSU (−2.01–1.26 PSU) and a corresponding change in SSD of −1.17 (±0.56) kg m−3 (−2.53–0.03 kg m−3) (Supplementary Table 4).Fig. 1: Global map showing the change in sea surface variables across mangrove bioregions under RCP 8.5.a–c, Change in SST (a), SSS (b) and SSD (c). Changes in SST and SSS are based on present-day (2000–2014) and future (2090–2100) marine fields from the Bio-ORACLE database29,30, from which SSD data were derived. The vertical line (19° E) separates the two major mangrove bioregions: the AEP and IWP.Full size imageSpatial variability in predicted surface ocean property changes was examined by considering the two major mangrove bioregions (AEP and IWP) (Fig. 2) and using the Marine Ecoregions of the World (MEOW) biogeographic classification28 (Fig. 3). Both the range and changes in mean SST were comparable for the AEP and IWP mangrove bioregions, for all respective RCP scenarios (Fig. 2a and Supplementary Tables 1–4). Under RCP 8.5, mean SST in both mangrove bioregions is predicted to warm ~2.8 °C by 2100, which is roughly 4.5 times the predicted increase in mean SST under RCP 2.6 (Supplementary Tables 1 and 4). Predictions for the RCP 8.5 scenario are generally consistent with reported global ocean temperature trends33 and show that the greatest warming occurs in coastal waters near the Galapagos Islands (change in mean SST of 3.92 ± 0.06 °C). Pronounced SST increases are also predicted for Hawaii (change in mean SST of 3.36 ± 0.05 °C), the Southeast Australian Shelf (3.30 ± 0.25 °C), Northern and Southern New Zealand (3.25 ± 0.07 °C and 3.34 ± 0.02 °C, respectively), Warm Temperate Northwest Pacific (3.27 ± 0.16 °C), the Red Sea and Gulf of Aden (3.24 ± 0.08 °C), Somali/Arabian Coast (3.23 ± 0.15 °C), South China Sea (3.07 ± 0.10 °C), the Tropical East Pacific (3.09 ± 0.15 °C) and the Warm Temperate Northwest Atlantic (3.14 ± 0.13 °C) (Fig. 3b and Supplementary Tables 4).Fig. 2: Change in surface ocean properties for coastal waters bordering mangrove forests and in the two major mangrove bioregions, the AEP and IWP, for different RCPs.a–c, Variation in SST (a), SSS (b) and SSD (c) under various RCP scenarios. Grey indicates global distribution (n = 10,108), orange denotes AEP (n = 3,190) and green represents IWP (n = 6,918). Data for SST and SSS consist of present-day (2000–2014) and future (2090–2100) marine fields from the Bio-ORACLE database29,30, from which SSD data were derived. The cat-eye plots50 show the distribution of the data. Median and mean values are indicated with black and white circles, respectively, and the vertical lines represent the interquartile range.Full size imageFig. 3: Global spatial variability in SST, SSS and SSD for coastal waters bordering mangrove forests under RCP 8.5.a, Global map showing the provinces (colour code and numbers) from the MEOW database28 used to investigate spatial patterns in mangrove coastal ocean water changes by 2100. b–d, Longitudinal gradient of the change in SST (b), SSS (c) and SSD (d) under RCP 8.5 in the AEP and the IWP mangrove bioregions; circles are coloured according to the MEOW province in which respective mangrove sites are located.Full size imagePredicted SSS changes exhibit an opposite trend in the AEP and IWP bioregions, with increased salinity in the AEP and reduced salinity in the IWP under global warming (RCP 2.6–RCP 8.5; Fig. 2b); this is reflected in contrasting SSD changes in both mangrove bioregions (Fig. 2c) and associated with predicted global changes in precipitation, with extensions of the rainy season over most of the monsoon domains, except for the American monsoon34. Under RCP 8.5, the spatially averaged change in mean SSS is +0.51 (±0.57) PSU in the AEP and −0.68 (±0.44) PSU in the IWP region. The maximum decrease in mean SSS (−2.01 PSU) is predicted for the Gulf of Guinea in the AEP bioregion (Fig. 3c and Supplementary Table 4). Within the IWP, the Western Indian Ocean region shows little or no changes in SSS, which contrasts with the pronounced freshening trends predicted in the eastern part of this ocean basin and the Tropical West Pacific (Figs. 1b and 3c). Increased freshening is predicted in the Bay of Bengal (SSS change: −1.17 ± 0.43 PSU), the Sunda Shelf (SSS change: −1.21 ± 0.29 PSU) and the Western Coral Triangle province (mean SSS change: −0.80 ± 0.17 PSU) (Fig. 3c and Supplementary Table 4). Within the AEP, salinity increases exceed +0.96 PSU in the Tropical Northwestern Atlantic, +0.80 in the Warm Temperate Northwest Atlantic and +0.68 in the West African Transition (Fig. 3c and Supplementary Table 4). The spatial heterogeneity in SSS across the global range of mangrove forests corresponds with observed changes in SSS35. Trends in SSD (Fig. 3d) strongly track changes in SSS (Fig. 3c) rather than SST. All RCP scenarios predict an overall decrease in SSD for both mangrove bioregions; however, the predicted decrease in SSD in the IWP region was a factor of 2 (RCP 6.0) and 2.5 (RCP 2.6, RCP 4.5 and RCP 8.5) stronger than in the AEP (Figs. 2 and 3d and Supplementary Tables 1–4).Propagule density values from our literature survey range from 1,080 kg m−3 for different mangrove species (Fig. 4 and Supplementary Table 5). The low densities reported for Heritiera littoralis propagules provide a strong contrast with the near-seawater propagule densities reported for Avicennia and members of the Rhizophoraceae (Bruguiera, Rhizophora and Ceriops). Floating characteristics of the latter may be particularly sensitive to changes in SSD. To illustrate the potential influence of changing ocean conditions on mangrove propagule dispersal, we considered threshold water density values (1,020 and 1,022 kg m−3) that are within the range where elongated propagules of important mangrove genera tend to change floating orientation (Fig. 4a). More specifically, we determined the ocean surface area with an SSD below or equal to these thresholds under different climate change scenarios (Fig. 5). Under RCP 8.5, the ocean surface covered by mangrove coastal waters (coastal waters bordering present mangrove forests) with a density ≤1,020 kg m−3 increases ~27% by 2100, notably more so in the IWP (~37%) than in the AEP (~6%) (Supplementary Table 6). A threshold of 1,022 kg m−3 results in increases of roughly +11% (global), +12% (IWP) and +8% (AEP) (Supplementary Table 7). Similar spatial patterns are observed for open-ocean waters within the global latitudinal range of mangroves (Fig. 5 and Supplementary Figs. 1 and 2).Fig. 4: Potential effect of future declines in SSD on mangrove propagule dispersal.a, Range of reported propagule density values for wide-ranging mangrove species and present and future range of SSD for coastal waters along the range of those mangrove species. Mangrove propagule data are extracted from the literature (Supplementary Table 5). H. lit, Heritiera littoralis; X. gra, Xylocarpus granatum; A. ger, Avicennia germinans; A. mar, Avicennia marina; B. gym, Bruguiera gymnorrhiza; C. tag, Ceriops tagal; R. man, Rhizophora mangle; R. muc, Rhizophora mucronata. Bottom part adapted from ref. 51. b, Conceptual figure of the potential effects of ocean warming and freshening on mangrove propagule dispersal. Ocean warming and freshening drive changes in SSD and may reduce the timeframe for opportunistic colonization. For a propagule with a specific density and floating profile under present surface ocean conditions, reduced SSD of coastal and open-ocean waters may reduce floatation time (shaded area) and hence, reduce the proportion of long-distance dispersers. For simplicity, the density of propagules is assumed to increase linearly over time, although the actual increase may be nonlinear.Full size imageFig. 5: Future changes in SSD.a–d, Spatial extent of coastal and open-ocean surface waters with a density ≤1,020 kg m−3 (a,b) and 1,022 kg m−3 (c,d), for present (2000–2014) (a,c) and future (2090–2100; RCP 8.5) (b,d) scenarios. Data are shown for surface ocean waters within the global latitudinal range of mangrove forests (between 32° N and 38° S). The two density thresholds considered are within the range of densities at which mangrove propagule buoyancy and floating orientation of several mangrove genera change, as reported in available literature. Black dots along the coast represent the global mangrove extent from the 2015 GMW dataset32. Magenta-coloured circles represent SSD values More

  • in

    Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension

    Siderius, C., Biemans, H., Kashaigili, J. & Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 266, 107548 (2022).
    Google Scholar 
    Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Ind. 131, 108130 (2021).
    Google Scholar 
    Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).
    Google Scholar 
    Fu, A. et al. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 11, 18485 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, D. et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 344, 131137 (2022).
    Google Scholar 
    Basu, H., Dandele, P. S. & Srivastava, S. K. Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Mar. Pet. Geol. 133, 105242 (2021).
    Google Scholar 
    Capella, W. et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sed. Geol. 355, 31–57 (2017).
    Google Scholar 
    Ilevbare, M. & Omodolor, H. E. Ancient deposition environment, mechanism of deposition and textural attributes of Ajali Formation, western flank of the Anambra Basin, Nigeria. Case Stud. Chem. Environ. Eng. 2, 100022 (2020).
    Google Scholar 
    Qiao, J. B., Zhu, Y. J., Jia, X. X. & Shao, M. A. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 205, 104786 (2021).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).CAS 

    Google Scholar 
    Rodríguez-Lado, L. & Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 287, 147–156 (2017).ADS 

    Google Scholar 
    Mozaffari, H., Moosavi, A. A. & Dematte, J. A. M. Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosys. Eng. 216, 198–217 (2022).
    Google Scholar 
    Sudarsan, B., Ji, W., Adamchuk, V. & Biswas, A. Characterizing soil particle sizes using wavelet analysis of microscope images. Comput. Electron. Agric. 148, 217–225 (2018).
    Google Scholar 
    Pollacco, J. A. P., Fernández-Gálvez, J. & Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 584, 124597 (2020).
    Google Scholar 
    Richer-de-Forges, A. C. et al. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA 213, 106155 (2022).CAS 

    Google Scholar 
    Du, W. et al. Insights into vertical differences of particle number size distributions in winter in Beijing, China. Sci. Total Environ. 802, 149695 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M. & Wilson, M. G. Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Appl. Math. Model. 94, 36–48 (2021).
    Google Scholar 
    Ke, Z. M. et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. J. Hydrol. 595, 125988 (2021).
    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 184, 45–51 (2018).
    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle-size distribution: Analysis and imitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 

    Google Scholar 
    Zhang, Y. et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351, 106956 (2020).
    Google Scholar 
    Ahmadi, A., Neyshabouri, M.-R., Rouhipour, H. & Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400, 305–311 (2011).ADS 

    Google Scholar 
    Gao, Z., Niu, F., Lin, Z. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).
    Google Scholar 
    Xu, G. et al. New method for the reconstruction of sedimentary systems including lithofacies, environments, and flow paths: A case study of the Xisha Trough Basin, South China Sea. Mar. Pet. Geol. 133, 105268 (2021).
    Google Scholar 
    Li, Z., Yu, X., Dong, S., Chen, Q. & Zhang, C. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Res. 43, 100573 (2020).
    Google Scholar 
    Chen, T. et al. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA 212, 106060 (2022).
    Google Scholar 
    George, C. F., Macdonald, D. I. M. & Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 160, 103592 (2019).
    Google Scholar 
    Tian, Y. et al. Petrology, lithofacies, and sedimentary environment of Upper Cretaceous Abu Roash “G” in the AESW Block, Abu Gharadig Basin, Western Desert, Egypt. J. Afr. Earth Sci. 145, 178–189 (2018).ADS 

    Google Scholar 
    Cheng, Z., Jalon-Rójas, I., Wang, X. H. & Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 242, 106861 (2020).
    Google Scholar 
    Wei, X., Li, X. G. & Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266, 133–145 (2016).ADS 

    Google Scholar 
    Wang, S. et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment Res. 37, 457–467 (2022).
    Google Scholar 
    Wided, S., Jalila, S. & Kamel, R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast, N-E of Tunisia. J. Afr. Earth Sc. 184, 104353 (2021).
    Google Scholar 
    Cai, X., Yang, Y. E., Ringler, C., Zhao, J. & You, L. Agricultural water productivity assessment for the Yellow River Basin. Agric. Water Manag. 98, 1297 (2011).
    Google Scholar 
    Fu, J., Zang, C. & Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe river basin in China. J. Clean. Prod. 270, 122271 (2020).
    Google Scholar 
    Zhang, K. et al. Confronting challenges of managing degraded lake ecosystems in the anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene 24, 30–39 (2018).
    Google Scholar 
    Huybrechts, N., Zhang, Y. F. & Verbanck, M. A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics: Application to silt transport in the Lower Yellow River. Int. J. Sedim. Res. 26(1), 36–49 (2011).
    Google Scholar 
    Cheng, D. Z. Strengthen the financial foundation of ecological protection and development of the Yellow River Basin. People Tribune 27, 76–78 (2021).
    Google Scholar 
    Yang, W. N., Zhou, L. & Sun, D. Q. Ecological vulnerability assessment of the Yellow River basin based on partition: Integration concept. Remote Sens. Nat. Resourc. 33(03), 211–218 (2021).
    Google Scholar 
    Sun, H. et al. Exposure of population to droughts in the Haihe river basin under global warming of 1.5 and 2.0 °C Scenarios. Q. Int. 453, 74–84 (2017).ADS 

    Google Scholar 
    Mandelbrott, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1983).
    Google Scholar 
    Samiei-Fard, R., Heidari, A., Konyushkova, M. & Mahmoodi, S. Application of particle size distribution throughout the soil profile as a criterion for recognition of newly developed geoforms in the Southeastern Caspian coast. CATANA 203, 105362 (2021).CAS 

    Google Scholar 
    Guo, J. Y. et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River. J. China Inst. Water Resour. Hydropower Res. 19(01), 15–24 (2021).
    Google Scholar 
    Ge, T. T., Xue, Y. J., Jiang, X. Y., Zou, L. & Wang, X. C. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452 (2020).ADS 

    Google Scholar 
    Hou, C. Y., Yi, Y. J., Song, J. & Zhou, Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River. J. Clean. Prod. 279, 123533 (2021).CAS 

    Google Scholar 
    Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G. & Cai, C. F. Sediment transport capacity in erodible beds with reconstituted soils of different textures. CATANA 183, 104197 (2019).
    Google Scholar 
    Li, J. L. et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. Int. J. Sedim. Res. 36(4), 489–500 (2021).
    Google Scholar 
    Wang, W. F., Liu, R. T., Guo, Z. X., Feng, Y. H. & Jiang, J. Y. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Desert. J. Desert Res. 41(01), 209–218 (2021).
    Google Scholar 
    Wang, K., Pei, Z. Y., Wang, W. M., Hao, S. R. & Pang, G. H. Influence of the flat cycle on the fractal characteristics of soil pore structure in Salix psammophila. Sci. Technol. Eng. 21(07), 2647–2654 (2021).
    Google Scholar 
    Gao, G. L. et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecol. Indic. 43, 236–243 (2014).CAS 

    Google Scholar 
    Liu, X., Zhang, G. C., Heathman, G. C., Wang, Y. Q. & Huang, C. H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154(1), 123–130 (2009).ADS 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 

    Google Scholar 
    Zhao, S. Q., Chi, D. Q., Jia, F. C., Deng, Y. P. & Sun, C. T. Fractal characteristics of saline soil particles in different regions. Jiangsu Agric. Sci. 49(06), 203–207 (2021).
    Google Scholar  More

  • in

    Effect of Rudbeckia laciniata invasion on soil seed banks of different types of meadow communities

    Mack, R. M. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 (2000).Article 

    Google Scholar 
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communitiesand ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x (2012).ADS 
    Article 

    Google Scholar 
    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (CAB International, 2001).Book 

    Google Scholar 
    DAISIE. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=23539# (2018).Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x (2009).Article 

    Google Scholar 
    Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84(1), 23–33. https://doi.org/10.5586/asbp.2015.008 (2015).Article 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total Environ. 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Species-specific effects of plant invasions on activity, biomass and composition of soil microbial communities. Biol. Fertil. Soils 52, 841–852. https://doi.org/10.1007/s00374-016-1122-8 (2016).CAS 
    Article 

    Google Scholar 
    Zubek, S. et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 52, 879–893. https://doi.org/10.1007/s00374-016-1127-3 (2016).Article 

    Google Scholar 
    Krinke, L. et al. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Sci. Res. 15, 239–248. https://doi.org/10.1079/SSR2005214 (2005).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683. https://doi.org/10.1007/s10530-009-9580-7 (2010).Article 

    Google Scholar 
    Kundel, D., van Kleunen, M. & Dawson, W. Invasion by Solidago species has limited impacts on soil seed bank communities. Basic Appl. Ecol. 15, 573–580. https://doi.org/10.1016/j.baae.2014.08.009 (2014).Article 

    Google Scholar 
    Dong, H., Liu, T., Liu, Z. & Song, Z. Fate of the soil seed bank of giant ragweed and its significance in preventing and controlling its invasion in grasslands. Ecol. Evol. https://doi.org/10.1002/ece3.6238 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66(1), 40–53. https://doi.org/10.1093/biosci/biv165 (2015).Article 

    Google Scholar 
    Gioria, M. & Osborne, B. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 501. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holmes, P. M. & Cowling, R. M. Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol. 133, 107–122. https://doi.org/10.1023/A:1009734026612 (1997).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Tokarska-Guzik, B. et al. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych (Generalna Dyrekcja Ochrony Środowiska, 2012).
    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).
    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Hager, H. A., Rupert, R., Quinn, L. D. & Newman, J. A. Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol. Invasions 17, 1833–1847. https://doi.org/10.1007/s10530-014-0839-2 (2015).Article 

    Google Scholar 
    Robertson, S. G. & Hickman, K. Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecol. 213(9), 1461–1475. https://doi.org/10.1007/s11258-012-0104-7 (2012).Article 

    Google Scholar 
    Fumanal, B., Gaudot, I. & Bretagnolle, F. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L.. Seed Sci. Res. 18(2), 101–114 (2008).Article 

    Google Scholar 
    Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions 22, 2431–2445. https://doi.org/10.1007/s10530-020-02267-9 (2020).Article 

    Google Scholar 
    Jalas, J. Problems concerning Rudbeckia laciniata (Asteraceae) in Europe Fragmenta Floristica et Geobotanica. Supplementum 2(1), 289–297 (1993).
    Google Scholar 
    Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland (Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 2005).
    Google Scholar 
    EPPO. Rudbeckia laciniata (Asteraceae). EPPO Reporting Service—Invsive Plants. European and Mediterranean Plant Protection Organization. https://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm (2009).Zelnik, I. The presence of invasive alien plant species in different habitats: Case study from Slovenia. Acta Biol. Sloven. 55(2), 25–38 (2012).
    Google Scholar 
    Vojniković, S. Tall cone flower (Rudbeckia laciniata L.)—new invasive species in the flora of Bosnia and Herzegovina. Herbologia 15(1), 39–47. https://doi.org/10.5644/Herb.15.1.05 (2015).Article 

    Google Scholar 
    Auld, B., Morita, H., Nishida, T., Ito, M. & Michael, P. Shared exotica: Plant invasions of Japan and south eastern Australia. Cunninghamia 8, 147–152 (2003).
    Google Scholar 
    Akasaka, M., Osawa, T. & Ikegami, M. The role of roads and urban area in occurrence of an ornamental invasive weed: A case of Rudbeckia laciniata L.. Urban Ecosyst. 18, 1021–1030 (2015).Article 

    Google Scholar 
    GBIF. Global Biodiversity Information Facility. Checklist dataset. https://www.gbif.org/species/3114229 (2021).Francírková, T. Contribution of the invasive ecology of Rudbeckia laciniata in the Czech Republic. In Plant Invasions: Species Ecology and Ecosystem Management (eds Brundu, G. et al.) 89–98 (Backhuys Publishers, 2001).
    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390. https://doi.org/10.1371/journal.pone.0123634 (2010).CAS 
    Article 

    Google Scholar 
    Kościńska-Pająk, M., Musiał, K. & Janiszewska, K. Embryological processes in ovules of Rudbeckia laciniata L. (Asteraceae) from Poland. Mod. Phytomorphol. 5, 19–23 (2014).
    Google Scholar 
    Urbatsch, L. E. & Cox, P. B. Rudbeckia laciniata in Flora of North America Editorial Committee. http://floranorthamerica.org/Rudbeckia_laciniata (2021).Jankowska-Błaszczuk, M. Zróżnicowanie banków nasion w naturalnych i antropogenicznie przekształconych zbiorowiskach leśnych. Monograph. Bot. 88, 25 (2000).
    Google Scholar 
    Osawa, T. & Akasaka, M. Management of the invasive perennial herb Rudbeckia laciniata L. (Compositae) using rhizome removal. Jpn. J. Conserv. Ecol. 14(1), 37–43. https://doi.org/10.18960/hozen.14.1_37 (2009).Article 

    Google Scholar 
    Gleason, H. A. & Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (The New York Botanical Garden, 1991).Book 

    Google Scholar 
    Gioria, M. & Osborne, B. The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities. J. Plant Ecol. 2(3), 153–167. https://doi.org/10.1093/jpe/rtp013 (2009).Article 

    Google Scholar 
    Kleyer, et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 96, 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).Article 

    Google Scholar 
    Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372. https://doi.org/10.1007/s10530-013-0574-0 (2014).Article 

    Google Scholar 
    Wróbel, M. Origin and spatial distribution of roadside vegetation within the forest and agricultural areas in Szczecin Lowland (West Poland). Pol. J. Ecol. 54(1), 137–143 (2001).
    Google Scholar 
    Dajdok, Z. & Pawlaczyk, P. Inwazyjne Gatunki Roślin Mokradłowych Polski (Wydawnictwo Klubu Przyrodnikow, 2009).
    Google Scholar 
    de Waal, L. C., Child, L. E., Wade, M. & Brock, J. H. Ecology and Management of Invasive Riverside Plants (Wiley, 1994).
    Google Scholar 
    Pyśek, P. & Prach, K. Plant invasions and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 20, 413–420 (1993).Article 

    Google Scholar 
    Kucharczyk, M. & Krawczyk, R. Kenophytes as river corridor plants in the vistula and the san river valleys. Teka Komisji Ochrony Kształtowania Środowiska Przyrodniczego 1, 110–115 (2004).
    Google Scholar 
    Walck, J. L. et al. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15(3), 189–196. https://doi.org/10.1079/SSR2005209 (2005).ADS 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080. https://doi.org/10.1007/s10530-016-1349-1 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11(1), 4–16. https://doi.org/10.1093/jpe/rtw105 (2018).Article 

    Google Scholar 
    Perglová, I. et al. Differences in germination and seedling establishment of alien and native Impatiens species. Preslia 81, 357–375 (2009).
    Google Scholar 
    Haines, D. F., Larson, D. L. & Larson, J. L. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains. Invas. Plant Sci. Manage. 6, 416–432. https://doi.org/10.1614/IPSM-D-12-00076.1 (2013).Article 

    Google Scholar 
    Gioria, M., Jarosík, V. & Pyšek, P. Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. Perspect. Plant Ecol. Evol. Syst. 16, 132–142. https://doi.org/10.1016/j.ppees.2014.03.003 (2014).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Assessing the impact of plant invasions on soli seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556. https://doi.org/10.1111/j.1654-1103.2009.01054.x (2009).Article 

    Google Scholar 
    Tokarska-Guzik, B., Bzdega, K., Knapik, D. & Jenczała, G. Changes in plant species richeness in some riparian plant communities as a result of their colonisation by taxa of Reynoutria (Fallopia). Biodivers. Res. Conserv. 1–2, 122–130 (2006).
    Google Scholar 
    Dölle, M. & Wolfgang, S. The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Appl. Veg. Sci. 12, 415–428 (2009).Article 

    Google Scholar 
    Thompson, K. & Grime, J. P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921. https://doi.org/10.2307/2259220 (1979).Article 

    Google Scholar 
    Czarnecka, J. Microspatial structure of the seed bank of xerothermic grassland—intracommunity differentiation. Acta Soc. Bot. Pol. 73(2), 155–164. https://doi.org/10.5586/asbp.2004.022 (2004).Article 

    Google Scholar 
    Kalamees, R., Püssa, K., Zobel, K. & Zobel, M. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl. Veg. Sci. 15, 208–218 (2012).Article 

    Google Scholar 
    Skowronek, S. et al. Regeneration potential of floodplain forests under the influence of nonnative tree species: Soil seed bank analysis in Northern Italy. Restor. Ecol. 22(1), 22–30. https://doi.org/10.1111/rec.12027 (2014).Article 

    Google Scholar  More

  • in

    Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig

    Misra, V. K. & Draper, D. E. On the role of magnesium ions in RNA stability. Biopolymers 48, 113–135 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apell, H.-J., Hitzler, T. & Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry 56, 1005–1016 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iseri, L. T. & French, J. H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 108, 188–193 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. USA 72, 3551–3555 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 95, 1–46 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).Article 

    Google Scholar 
    Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. Hypomagnesemia in type 2 diabetes: A vicious circle?. Diabetes 65, 3–13 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pham, P.-C.T., Pham, P.-M.T., Pham, S. V., Miller, J. M. & Pham, P.-T.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2, 366–373 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mather, H. M. et al. Hypomagnesaemia in diabetes. Clin. Chim. Acta 95, 235–242 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kurstjens, S. et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 11–19 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Viering, D. H. H. M., de Baaij, J. H. F., Walsh, S. B., Kleta, R. & Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 32, 1123–1135 (2017).PubMed 
    Article 

    Google Scholar 
    Peacock, J. M. et al. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 160, 464–470 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez-Morán, M., Simental-Mendía, L. E., Gamboa-Gómez, C. I. & Guerrero-Romero, F. Oral magnesium supplementation and metabolic syndrome: A randomized double-blind placebo-controlled clinical trial. Adv. Chronic Kidney Dis. 25, 261–266 (2018).PubMed 
    Article 

    Google Scholar 
    Grigoryan, R. et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients. J. Anal. At. Spectrom. 34, 1514–1521 (2019).CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jouzel, J. et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Albarède, F., Télouk, P. & Balter, V. Medical applications of isotope metallomics. Rev. Mineral. Geochem. 82, 851–885 (2017).Article 
    CAS 

    Google Scholar 
    Balter, V. et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112, 982–985 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Télouk, P. et al. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7, 299–308 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lobo, L. et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 165, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costas-Rodríguez, M. et al. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 11, 1093–1103 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lamboux, A. et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease. Metallomics 12, 1781–1790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sauzéat, L. et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience 6, 264–271 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krayenbuehl, P.-A., Walczyk, T., Schoenberg, R., von Blanckenburg, F. & Schulthess, G. Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105, 3812–3816 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anoshkina, Y. et al. Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 9, 517–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, J. L. L. et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 9989–9994 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, A. et al. Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis. Bone Rep. 10, 100200 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isaji, Y. et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments. ACS Earth Space Chem. 3, 1073–1079 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pokharel, R. et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environ. Sci. Technol. 52, 12216–12224 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolou-Bi, E. B., Poszwa, A., Leyval, C. & Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta 74, 2523–2537 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Y. et al. Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: A greenhouse study with wheat. Plant Soil 455, 93–105 (2020).CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112, 430–435 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214 (1979).CAS 
    Article 

    Google Scholar 
    Kim, J. K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. In Type 2 Diabetes: Methods and Protocols, Methods in Molecular Biology (ed. Stocker, C.) 221–238 (Humana Press, 2009).Chapter 

    Google Scholar 
    DeFronzo, R. A., Hendler, R. & Simonson, D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31, 795–801 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B., Podolskiy, D. I., Mariotti, M., Seravalli, J. & Gladyshev, V. N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19, e13119 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morel, J.-D. et al. The mouse metallomic landscape of aging and metabolism. Nat. Commun. 13, 607 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoryan, R., Costas-Rodríguez, M., Vandenbroucke, R. E. & Vanhaecke, F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation—Application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal. Chim. Acta 1130, 137–145 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goff, S. L., Albalat, E., Dosseto, A., Godin, J.-P. & Balter, V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 35, e9074 (2021).PubMed 

    Google Scholar 
    DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansen, T., Hansen, H. S., Richelsen, B. & Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).CAS 
    PubMed 

    Google Scholar 
    Coelho, P. G. et al. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: A pilot study. J. Oral Maxillofac. Surg. 76, 1677–1687 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elin, R. J. Assessment of magnesium status. Clin. Chem. 33, 1965–1970 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., van der Meulen, J., Dekker, R., Corbijn, H. & Mroz, Z. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals. Horm. Metab. Res. 38, 607–613 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., Maassen, J. A., Radder, J. K. & Frölich, M. In vivo insulin responsiveness for glucose uptake and production at eu- and hyperglycemic levels in normal and diabetic rats. Biochimica et Biophysica Acta (BBA) General Subjects 1115, 230–238 (1992).CAS 
    Article 

    Google Scholar 
    Koopmans, S. J. et al. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2–like diabetic pig model. Metabolism 55, 960–971 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria)

    Korup, O. Landslides in the Fluvial System. Treatise on Geomorphology Vol. 9 (Elsevier Ltd., 2013).
    Google Scholar 
    Kuo, C. W. & Brierley, G. The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surf. Process. Landf. 39, 2038–2055 (2014).ADS 
    Article 

    Google Scholar 
    Tunnicliffe, J. F., Leenman, A. & Reeve, M. The influence of large, chronic landslides on the fluvial system AGU Fall Meeting Abstracts, EP33A-3620 (2014).
    Fox, G. A., Purvis, R. A. & Penn, C. J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 181, 602–614 (2016).CAS 
    Article 

    Google Scholar 
    Biswas, S. P. Restoration of riverine health. Handb. Ecol. Ecosyst. Eng. https://doi.org/10.1002/9781119678595.ch14 (2021).Article 

    Google Scholar 
    Lutgen, A. et al. Nutrients and heavy metals in legacy sediments: Concentrations, comparisons with upland soils, and implications for water quality. J. Am. Water Resour. Assoc. 56, 669–691 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Emenike, P. C. et al. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 265, 114795 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox, G. A. & Wilson, G. V. The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Sci. Soc. Am. J. 74, 717–733 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Duró, G., Crosato, A., Kleinhans, M. G., Roelvink, D. & Uijttewaal, W. S. J. Bank erosion processes in regulated navigable rivers. J. Geophys. Res. Earth Surf. 125, 1–26 (2020).Article 

    Google Scholar 
    Keesstra, S. D. et al. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 69, 191–207 (2005).ADS 
    Article 

    Google Scholar 
    Pizzuto, J. & O’Neal, M. Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology 37, 19–22 (2009).ADS 
    Article 

    Google Scholar 
    Abam, T. K. S. Factors affecting distribution of instability of river banks in the Niger delta. Eng. Geol. 35, 123–133 (1993).Article 

    Google Scholar 
    Jordan, C. et al. Sand mining in the Mekong Delta revisited—current scales of local sediment deficits. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Hackney, C. R. et al. River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217–225 (2020).Article 

    Google Scholar 
    Yang, S. L., Milliman, J. D., Li, P. & Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Change 75, 14–20 (2011).ADS 
    Article 

    Google Scholar 
    Royall, D. Land-use impacts on the hydrogeomorphology of small watersheds. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-818234-5.00010-9 (2021).Article 

    Google Scholar 
    Johnson, P. & Royall, D. Evaluating the effects of urbanization age on the morphology of low-order urban streams in the U.S. southern Piedmont. Phys. Geogr. 40, 1–27 (2019).Article 

    Google Scholar 
    Zaimes, G., Tamparopoulos, A. E., Tufekcioglu, M. & Schultz, R. C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 287, 112352 (2021).Article 

    Google Scholar 
    Zaimes, G. N. & Schultz, R. C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. CATENA 125, 61–73 (2015).Article 

    Google Scholar 
    Simon, A., Curini, A., Darby, S. E. & Langendoen, E. J. Bank and near-bank processes in an incised channel. Geomorphology 35, 193–217 (2000).ADS 
    Article 

    Google Scholar 
    Rinaldi, M. & Casagli, N. Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The Sieve River (Italy). Geomorphology 26, 253–277 (1999).ADS 
    Article 

    Google Scholar 
    Wynn, T. & Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 42, 69–82 (2006).ADS 
    Article 

    Google Scholar 
    Hecker, G. A., Meehan, M. A. & Norland, J. E. Plant community influences on intermittent stream stability in the great plains. Rangel. Ecol. Manag. 72, 112–119 (2019).Article 

    Google Scholar 
    Konsoer, K. M. et al. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252, 80–97 (2016).ADS 
    Article 

    Google Scholar 
    Abernethy, B. & Rutherfurd, I. D. Does the weight of riparian trees destabilize riverbanks?. River Res. Appl. 16, 565–576 (2000).
    Google Scholar 
    Collison, A. J. C. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Process. 15, 63–79 (2001).Article 

    Google Scholar 
    Simon, A. & Collison, A. J. C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 27, 527–546 (2002).ADS 
    Article 

    Google Scholar 
    Krzeminska, D., Kerkhof, T., Skaalsveen, K. & Stolte, J. Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 172, 87–96 (2019).Article 

    Google Scholar 
    Yu, G. A. et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China. Geomorphology 351, 106958 (2020).Article 

    Google Scholar 
    Halder, A. & Mowla Chowdhury, R. Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. Int. J. River Basin Manag. 1–15 (2021).
    Bernier, J. F., Chassiot, L. & Lajeunesse, P. Assessing bank erosion hazards along large rivers in the Anthropocene: A geospatial framework from the St. Lawrence fluvial system. Geomat. Nat. Hazards Risk 12, 1584–1615 (2021).Article 

    Google Scholar 
    Lawler, D. M., Grove, J. R., Couperthwaite, J. S. & Leeks, G. J. L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 13, 977–992 (1999).ADS 
    Article 

    Google Scholar 
    Gholami, V., Sahour, H. & Hadian Amri, M. A. Soil erosion modeling using erosion pins and artificial neural networks. CATENA 196, 104902 (2021).Article 

    Google Scholar 
    Simon, A., Pollen-Bankhead, N. & Thomas, R. E. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophys. Monogr. Ser. 194, 453–474 (2011).ADS 

    Google Scholar 
    Klavon, K. et al. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Landf. 42, 191–213 (2017).ADS 
    Article 

    Google Scholar 
    Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).Article 

    Google Scholar 
    Fredlund, D. G., Morgenstern, N. R. & Widger, R. A. Shear strength of unsaturated soils. Can. Geotech. J. 15, 313–321 (1978).Article 

    Google Scholar 
    Myers, D. T., Rediske, R. R. & McNair, J. N. Measuring streambank erosion: A comparison of erosion pins, total station, and terrestrial laser scanner. Water (Switzerland) 11, 1846 (2019).
    Google Scholar 
    Casagli, N., Rinaldi, M., Gargini, A. & Curini, A. Pore water pressure and streambank stability: Results from a monitoring site on the Sieve River, Italy. Earth Surf. Process. Landf. 24, 1095–1114 (1999).ADS 
    Article 

    Google Scholar 
    Tufekcioglu, M. et al. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. J. Soil Water Conserv. 67, 545–555 (2012).Article 

    Google Scholar 
    Palmer, J. A., Schilling, K. E., Isenhart, T. M., Schultz, R. C. & Tomer, M. D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 209, 66–78 (2014).ADS 
    Article 

    Google Scholar 
    Pollen, N. & Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41, 1–11 (2005).Article 

    Google Scholar 
    Pollen-Bankhead, N. & Simon, A. Sensitivity of post-hurricane beach. Earth Surf. Process. Landf. 34, 471–480 (2009).ADS 
    Article 

    Google Scholar 
    Wasige, J. E. et al. A land use and land cover classification system for use with remote sensor data. Prof. Pap. 100, 753–764 (1976).
    Google Scholar 
    Al-Doski, J., Mansor, S. B., Ng, H., San, P. & Khuzaimah, Z. Land cover mapping using remote sensing data. Am. J. Geogr. Inf. Syst. 2020, 33–45 (2020).
    Google Scholar 
    Okeke, C. A. U., Ede, A. N. & Kogure, T. Monitoring of riverbank stability and seepage undercutting mechanisms on the Iju (Atuwara) River, Southwest Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 640, 012105 (2019).Article 

    Google Scholar 
    Abam, T. K. S. Aspects of alluvial river bank recession: Some examples from the Niger delta. Environ. Geol. 31, 211–220 (1997).Article 

    Google Scholar 
    Okeke, C. A. U., Azuh, D., Ogbuagu, F. U. & Kogure, T. Assessment of land use impact and seepage erosion contributions to seasonal variations in riverbank stability: The Iju River, SW Nigeria. Groundw. Sustain. Dev. 11, 100448 (2020).Article 

    Google Scholar 
    Voltz, T. et al. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys. J. Geophys. Res. Earth Surf. 118, 953–969 (2013).ADS 
    Article 

    Google Scholar 
    Thomas, J., Kumar, S. & Sudheer, K. P. Channel stability assessment in the lower reaches of the Krishna River (India) using multi-temporal satellite data during 1973–2015. Remote Sens. Appl. Soc. Environ. 17, 100274 (2020).
    Google Scholar 
    Ran, Y. et al. A higher river sinuosity increased riparian soil structural stability on the downstream of a dammed river. Sci. Total Environ. 802, 149886 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Midgley, T. L., Fox, G. A. & Heeren, D. M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 145–146, 107–114 (2012).ADS 
    Article 

    Google Scholar 
    Daly, E. R., Miller, R. B. & Fox, G. A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 81, 114–127 (2015).ADS 
    Article 

    Google Scholar 
    Saleem, A. et al. Spatial and temporal variations of erosion and accretion: A case of a large tropical river. Earth Syst. Environ. 4, 167–181 (2020).ADS 
    Article 

    Google Scholar 
    Biswas, R. N., Islam, M. N., Islam, M. N. & Shawon, S. S. Modeling on approximation of fluvial landform change impact on morphodynamics at Madhumati River Basin in Bangladesh. Model. Earth Syst. Environ. 7, 71–93 (2021).Article 

    Google Scholar 
    Li, J., Tooth, S., Zhang, K. & Zhao, Y. Visualisation of flooding along an unvegetated, ephemeral river using Google Earth Engine: Implications for assessment of channel-floodplain dynamics in a time of rapid environmental change. J. Environ. Manag. 278, 111559 (2021).Article 

    Google Scholar 
    Graziano, M. P., Deguire, A. K. & Surasinghe, T. D. Riparian buffers as a critical landscape feature : Insights for riverscape conservation and policy renovations. Diversity 14, 172 (2022).Article 

    Google Scholar 
    Rauch, H. P., von der Thannen, M., Raymond, P., Mira, E. & Evette, A. Ecological challenges* for the use of soil and water bioengineering techniques in river and coastal engineering projects. Ecol. Eng. 176, 106539 (2022).Article 

    Google Scholar 
    East, A. E. et al. Channel-planform evolution in four rivers of Olympic National Park, Washington, USA: The roles of physical drivers and trophic cascades. Earth Surf. Process. Landf. 42, 1011–1032 (2017).ADS 
    Article 

    Google Scholar 
    Kumar, P. et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 784, 147058 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laubel, A., Kronvang, B., Hald, A. B. & Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 17, 3443–3463 (2003).ADS 
    Article 

    Google Scholar 
    Veihe, A., Jensen, N. H., Schiøtz, I. G. & Nielsen, S. L. Magnitude and processes of bank erosion at a small stream in Denmark. Hydrol. Process. 25, 1597–1613 (2011).ADS 
    Article 

    Google Scholar 
    Kronvang, B., Andersen, H. E., Larsen, S. E. & Audet, J. Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sediments 13, 230–241 (2013).Article 

    Google Scholar 
    Rajakumari, S., Meenambikai, M., Divya, V., Sarunjith, K. J. & Ramesh, R. Morphological changes in alluvial and coastal plains of Kandaleru river, Andhra Pradesh using RS and GIS, Egypt. J. Remote Sens. Space Sci. 24, 1071–1081 (2021).
    Google Scholar 
    Zegeye, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W. & Tilahun, S. A. Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrol. Hydrobiol. 20, 301–311 (2020).Article 

    Google Scholar 
    Shields, F. D. J., Morin, N. & Cooper, C. M. Design of large woody debris structures for channel rehabilitation. In Seventh Federal Interagency Sedimentation Conference, Vol. 8 (2001).C A U, Okeke A N, Ede (2019) Mechanisms of riverbank failure and channel instability on the Nkisi River Southeast Nigeria. IOP Conference Series: Materials Science and Engineering 640(1), 012104. https://doi.org/10.1088/1757-899X/640/1/012104Article 

    Google Scholar  More