More stories

  • in

    Preparation of recombinant glycoprotein B (gB) of Chelonid herpesvirus 5 (ChHV5) for antibody production and its application for infection detection in sea turtles

    Sample collection from sea turtlesIn total, 45 serum samples from 33 juvenile green turtles (C. mydas), including 6 sea turtles with tumors, 5 juvenile hawksbill turtles (Eretmochelys imbricate), and 7 olive ridley turtles (Lepidochelys olivacea) (juvenile = 5; sub-adult = 2). All turtles were sourced from: eastern Taiwan (n = 24), southern Taiwan (n = 14), central Taiwan (n = 6), and northern Taiwan (n = 1). Among the 45 sea turtle samples, 6 green turtles developed FP (n = 1 with tumor score 1; n = 1 with tumor score 2; n = 4 with tumor score 3)32, while 39 did not have FP. FP tumor tissues were collected from 6 green turtles (from shoulder/flippers/inguinal regions) with FP during surgical procedures. Regarding the collection of normal skin tissues, one normal skin tissue (from shoulder) was collected from one necropsied dead green turtles (stranding and discovered from southern Taiwan) confirmed without FP. All tissue samples were fixed in 10% neutral buffered formalin prior to further analysis. In this study, all sea turtles were discovered and rescued through the official reporting system of the Marine Animal Rescue Network (established by the Ocean Conservation Administration) and admitted to the National Museum of Marine Biology and Aquarium (NMMBA), between 2017 and 2020.Detection of ChHV5 DNA by polymerase chain reaction (PCR)Total DNA was extracted from blood of 45 sea turtles by DNeasy blood & tissue kit (Cat. No. 69504, Qiagen, Valencia, CA, USA) following manufacturer’s instructions. Subsequently, the ChHV5 infection status all 45 sea turtles was determined by PCR using primers targeting on UL18 (capsid protein gene), UL22 (glycoprotein H gene), and UL27 (glycoprotein B gene) regions4. The sequence of primer sets are: UL18F: 5′-CACCACGAGGGGGAAAATGA, UL18R:5′-TCAAATCCCCCGTTCACTCG; UL22F: 5′-ACGGCGTTGGCTAGTGAATC, UL22R: 5′-GCAGTTCGGTACACACCTCT; UL27F: 5′-TAACAAGAAAGAACCGCGCG; UL27R: 5′-ATTTTCCCGGTCAGTGCCAA. PCR amplifications were performed in a total volume of 50 μl. The reaction included 1 μl of the template DNA, 1 μl of each primer (10 μM), 22 μl of distilled water (DDW), and 25 μl of the AmpliTaq Gold® 360 Master Mix (Cat. No. 4398876, Life Technologies, Valencia, CA, USA). The thermocycle for amplification was: Initial denaturing at 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s, and then a final extension at 72 °C for 7 min. Results were visualized by gel electrophoresis (2% agarose) with SYBR Safe DNA Gel Stain (Cat. No. S33102, Invitrogen, Carlsbad, CA, USA).Sequence optimization of the UL27 gene for expression of the ChHV5 glycoprotein protein using E. coli
    To express large quantities of ChHV5 gB, we adopted the prokaryotic Escherichia coli (E. coli) expression system. The construct (namely UL27/pUC57) containing sequences of the full length UL27 fused with FLAG tag sequence (GenBank accession no. AF035003.3) was synthesized by Allbio Science Co., Ltd, Taiwan. The sequence information of the glycoprotein (gB) datasets used and analyzed for protein expression during the current study was obtained and available from the GenBank repository [https://www.ncbi.nlm.nih.gov/nuccore/AF035003.3]. Considering the difference in tRNA-codon usages between prokaryotes and eukaryotes would possibly affect subsequent protein expression, the optimized UL27 gene sequence, without altering the translated amino acid sequences, to fit the E. coli expression system was synthesized. The codon optimized UL27 gene was further used as the template for amplification of different gene fragments by Polymerase Chain Reaction (PCR).Construction of plasmids expressing partial fragments of ChHV5 gB proteinTo determine the relative antigenicity and also to increase the expression yield, plasmids expressing various regions of gB protein were constructed. Briefly, the five regions covering different fragments of the UL27 gene were amplified from plasmid UL27/pUC57 by PCR using specific primer sets with built-in restriction enzyme sequences shown as underlined in Table 1. The thermal cycling conditions were: 98 °C (5 min) followed by 35 cycles of denaturation (98 °C, 30 s), annealing (58 °C, 1 min), and extension (72 °C, 2 min), and finished with a final extension (72 °C, 10 min). PCR amplicons with expected sizes were isolated from gel and trimmed with the restriction enzymes followed by ligation with vectors either pET24a or pET32b (Novagen, Germany) linearized with the same restriction enzymes. The resulting plasmids with expected insert sizes as confirmed by restriction enzymes were sent for automated DNA sequencing (Mission Biotech, Taipei, Taiwan).Table 1 Information on the constructs expressing the UL27 fragments. The bold characters indicate sequences recognized by restriction enzymes for the ease of further cloning procedure.Full size tableExpression of recombinant gB fragments in E. coli
    In the current study, the recombinant gB protein is a key reagent that served as antigen for seroprevalence of ChHV5 as well as for the generation of ChHV5 gB antibody (conducted by Yao-Hong Biotech Inc., Taiwan). The plasmids expressing individual gB fragment were transformed into E. coli host cells, strain BL21 (DE3), Rosetta. Expression of all the recombinant gB fragments was induced by 0.8 mM of isopropyl β-d-1-thiogalactopyranoside (IPTG) at 28 °C for 16 h. As all the gB fragments cloned into the pET series vectors were expressed as a fusion protein with a 6-histidine tag at C-terminus end, they could be further purified by Ni–NTA column chromatography using the chelating Sepharose Fast Flow (GE Healthcare) following the method described in one previous study33. The yield and purity of recombinant gB proteins were confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, 6 M urea and 0.4 M imidazole contained in the purified protein were depleted by step-wise dialysis against 1 × PBS buffer (0.02 M phosphate, 0.15 M NaCl) with gradually decreased concentrations of urea at 4 °C. The concentration of recombinant proteins were then estimated by National Institutes of Health ImageJ software (https://imagej.nih.gov/ij/, 1997–2018.) using the standard curve established by bovine serum albumin (BSA) with known concentrations42.Western blot analysisRecombinant gB fragments were separated by 12.5% or 15% SDS-PAGE and electrotransferred to PVDF membrane by using Mini Proten III apparatus (Cat. No. 165-3301, BioRad). The filters were blocked in PBS-T buffer (0.02 M phosphate, 0.15 M NaCl, 0.05% Tween-20) containing 5% skimmed milk and reacted with mouse anti-his tag antibody (1:5,000, Cat. No. GTX40628, GeneTex) at 4 °C for overnight. After six-time wash with PBS-T buffer, the PVDF filter was then incubated with the secondary antibody, 1:5000 diluted goat anti-mouse IgG conjugated with horseradish peroxidase (HRP), or 1:500 diluted Protein A/G-HRP (Cat. No. 32400, Thermo fisher scientific™, United States) for sea turtle antibody detection, at room temperature for 1 h followed by PBS-T wash to remove the unbound antibodies. Ultimately, the signal was detected by ECL reagents (Thermo Fisher Scientific, United States) and the image was acquired by ImageQuant LAS 4000 Mini (GE Healthcare).Immunohistochemical (IHC) analysisTo establish IHC protocol, normal skin tissue from PCR-negative sea turtles served as the negative control. In total, the FP on skin tissue from six individual sea turtles that were detected positive for ChHV5 DNA (positive tissue samples), and one normal tissue detected negative (the negative tissue) were included in the IHC analysis.IHC procedure was conducted as reported in our previous study34. In brief, sections of formalin-fixed and wax-embedded skin tissues of sea turtles were made using a rotary microtome (Leica RM2245, Leica Biosystems, Germany) and were further deparaffinized and rehydrated. Antigen retrieval was carried out by heat-induced epitope retrieval method: slides immersed into boiled sodium citrate buffer (0.01 M, pH 6.0), which was preheated up to 100 °C, for 20 min and cooled at room temperature for 20 min. Subsequently, the slides were incubated with peroxidase-blocking reagent (Cat. No. S200389, Dako, Denmark) for 30 min, and then treated with or without primary antibodies (the anti-gB serum prepared from this study). In each interval of the following procedures, sections were rinsed with a mixture of TBST buffer. Tissue sections were then reacted with secondary antibody (HRP anti-rabbit/mouse, DAKO, Denmark), followed by incubation of DAB and chromogen (dilution 1 μL in 100 μL) from a commercial ChemMate EnVision detection kit (Cat. No. K5007, Dako, Denmark). Ultimately, tissue sections were counterstained with Mayer’s hematoxylin reagents (Code S3309, Dako, Denmark) for 2 min followed by wash with DDW, and reacted with 37 mM ammonia water for 5 s and rinsed with DDW.Immunofluorescent assay (IFA)Human 293 T cells were transfected with plasmids expressing full-length ChHV5 gB protein fused with FLAG tag at its C-terminus. At 24 h post transfection, 293 T cells (CRL-3216, ATCC, USA) were fixed with 2% formaldehyde for 10 min, followed by permeabilization with 0.1% Triton X-100 for another 10 min. Subsequently, cells were incubated with anti-FLAG antibody (1:500) (F7425; Sigma-Aldrich), or antisera (F1, F2, F3, F2–3) at the dilution of 1:500 for 1 h at room temperature. After six times of washes with PBS containing1% bovine serum, goat anti-mouse IgG (1:2,000 fold diluted) (Cat. No. A28175, Alexa Fluor® 488, Invitrogen) was used as secondary antibody. After one-hour incubation, nuclei were stained with 4, 6-diamidino-2-phenylindole (DAPI, Cat. No. D9542, Sigma-Aldrich) for 10 min, followed by confocal microscopy (FV1000, Olympus, Tokyo, Japan) with Olympus FV10-ASW 1.3 viewer software.Statistical analysisTo evaluate the association between seropositivity and FP or viremia tested by PCR of UL27 gene, Fisher’s exact test was applied due to very limited number of sea turtles with FP. The statistical significance was determined by p  More

  • in

    Microbial community structure is stratified at the millimeter-scale across the soil–water interface

    McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems. 2003;6:301–12.CAS 
    Article 

    Google Scholar 
    Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol. 2010;44:15–23.CAS 
    Article 

    Google Scholar 
    Stegen JC, Lin XJ, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    Article 

    Google Scholar 
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–32.CAS 
    Article 

    Google Scholar 
    Behrendt L, Larkum AWD, Trampe E, Norman A, Sorensen SJ, Kuhl M. Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J. 2012;6:1222–37.CAS 
    Article 

    Google Scholar 
    Becker KW, Elling FJ, Schroder JM, Lipp JS, Goldhammer T, Zabel M, et al. Isoprenoid quinones resolve the stratification of redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea. Appl Environ Microbiol. 2018;84:e02736–17.CAS 
    Article 

    Google Scholar 
    Locey KJ, Muscarella ME, Larsen ML, Bray SR, Jones SE, Lennon JT. Dormancy dampens the microbial distance-decay relationship. Phil Trans R Soc B. 2020;375:20190243.CAS 
    Article 

    Google Scholar 
    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.CAS 
    Article 

    Google Scholar 
    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.Article 

    Google Scholar 
    Xue R, Zhao KK, Yu XL, Stirling E, Liu S, Ye SD, et al. Deciphering sample size effect on microbial biogeographic patterns and community assembly processes at centimeter scale. Soil Biol Biochem. 2021;156:108218.CAS 
    Article 

    Google Scholar 
    Morriss A, Meyer K, Bohannan B. Linking microbial communities to ecosystem functions: what we can learn from genotype-phenotype mapping in organisms. Phil Trans R Soc B. 2020;375:20190244.Article 

    Google Scholar 
    Armitage DW, Jones SE. How sample heterogeneity can obscure the signal of microbial interactions. ISME J. 2019;13:2639–46.Article 

    Google Scholar 
    Dini-Andreote F, Kowalchuk GA, Prosser JI, Raaijmakers JM. Towards meaningful scales in ecosystem microbiome research. Environ Microbiol. 2021;23:1–4.Article 

    Google Scholar 
    Meyerhof MS, Wilson JM, Dawson MN, Beman JM. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau. Environ Microbiol. 2016;18:4907–19.CAS 
    Article 

    Google Scholar 
    Zhou ZC, Meng H, Liu Y, Gu JD, Li M. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front Microbiol. 2017;8:02148.Article 

    Google Scholar 
    Gutierrez-Preciado A, Saghai A, Moreira D, Zivanovic Y, Deschamps P, Lopez-Garcia P. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat Ecol Evol. 2018;2:1700–8.Article 

    Google Scholar 
    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    Article 

    Google Scholar 
    Murase J, Frenzel P. A methane-driven microbial food web in a wetland rice soil. Environ Microbiol. 2007;9:3025–34.CAS 
    Article 

    Google Scholar 
    Reim A, Lüke C, Krause S, Pratscher J, Frenzel P. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J. 2012;6:2128–39.CAS 
    Article 

    Google Scholar 
    Peiffer S, Kappler A, Haderlein SB, Schmidt C, Byrne JM, Kleindienst S, et al. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nat Geosci. 2021;14:264–72.CAS 
    Article 

    Google Scholar  More

  • in

    The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921–4932 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vega Thurber, R. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rosenberg, E. & Zilber-Rosenberg, I. Microbes drive evolution of animals and plants: the hologenome concept. mBio 7, e01395 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ainsworth, T. D., Thurber, R. V. & Gates, R. D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25, 233–240 (2010).PubMed 
    Article 

    Google Scholar 
    Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104, 7617–7621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, J., Kuang, W. Q., Long, L. J. & Zhang, S. Production of quorum-sensing signals by bacteria in the coral mucus layer. Coral Reefs 36, 1235–1241 (2017).Article 

    Google Scholar 
    Alagely, A., Krediet, C. J., Ritchie, K. B. & Teplitski, M. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. 5, 1609–1620 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krediet, C. J., Ritchie, K. B., Alagely, A. & Teplitski, M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7, 980–990 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, F. L., Hoste, B., Thompson, C. C., Huys, G. & Swings, G. The coral bleaching Vibrio shiloi Kushmaro et al. 2001 is a later synonym of Vibrio mediterranei Pujalte and Garay 1986. Syst. Appl. Microbiol. 24, 516–519 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, K. H. et al. Antagonism between coral pathogen Vibrio coralliilyticus and other bacteria in the gastric cavity of scleractinian coral Galaxea fascicularis. Sci. China-Earth Sci. 63, 157–166 (2020).CAS 
    Article 

    Google Scholar 
    Zhou, Y. Q. et al. Identification of bacteria-derived urease in the coral gastric cavity. Sci. China-Earth Sci. 63, 1553–1563 (2020).CAS 
    Article 

    Google Scholar 
    Chen, B. et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci. Total Environ. 765, 142690 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tout, J. et al. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front. Microbiol. 6, 432 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl. Acad. Sci. USA 118, e2023298118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vezzulli, L. et al. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rosenberg, E. & Falkovitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol. 58, 143–159 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gibbin, E. et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 13, 989–1003 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banin, E., Vassilakos, D., Orr, E., Martinez, R. J. & Rosenberg, E. Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr. Microbiol. 46, 418–422 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meron, D. et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75, 5704–5707 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubio-Portillo, E. et al. Virulence as a side effect of interspecies interaction in Vibrio coral pathogens. mBio 11, e00201-20 (2020).Rubio-Portillo, E., Yarza, P., Penalver, C., Ramos-Espla, A. A. & Anton, J. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities. ISME J. 8, 1794–1807 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourne, D. G. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 69, 4236–4242 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gavish, A. R., Shapiro, O. H., Kramarsky-Winter, E. & Vardi, A. Microscale tracking of coral–vibrio interactions. ISME Commun. 1, 18 (2021).Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. USA 111, 13391–13396 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, D. D. et al. Identification and characterization of microsatellite markers for scleractinian coral Galaxea fascicularis and its symbiotic zooxanthellae. Conservation. Genet. Resour. 5, 741–743 (2013).Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Symbiosis of a P2-family phage and deep-sea Shewanella putrefaciens. Environ. Microbiol. 21, 4212–4232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, P. et al. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J. Antimicrob. Chemother. 74, 2559–2565 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeng, Z. et al. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J. 10, 2787–2800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X., Kim, Y. & Wood, T. K. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J. 3, 1164–1179 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood, T. K., Gonzalez Barrios, A. F., Herzberg, M. & Lee, J. Motility influences biofilm architecture in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 361–367 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, S., Guo, Y., Kim, J. S., Wang, X. & Wood, T. K. Phages mediate bacterial self-recognition. Cell Rep. 27, 737–749 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krediet, C. J., Carpinone, E. M., Ritchie, K. B. & Teplitski, M. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100. FEMS Microbiol. Ecol. 84, 290–301 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, Y., Lin, J. & Wang, X. Rapid detection of temperate bacteriophage using a simple motility assay. Environ. Microbiol. Rep. 13, 728–734 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, K. et al. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res. 49, e128 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ding, J. Y., Shiu, J. H., Chen, W. M., Chiang, Y. R. & Tang, S. L. Genomic insight into the host–endosymbiont relationship of Endozoicomonas montiporae CL-33(T) with its coral host. Front. Microbiol. 7, 251 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. S. et al. Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int. J. Syst. Evol. Microbiol. 60, 1158–1162 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber, L., Kjeldsen, K. U., Obst, M., Funch, P. & Schramm, A. Description of Endozoicomonas ascidiicola sp nov., isolated from Scandinavian ascidians. Syst. Appl. Microbiol. 39, 313–318 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, S. N. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mai-Prochnow, A. et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several Gram-negative bacteria. J. Bacteriol. 190, 5493–5501 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campillo-Brocal, J. C., Lucas-Elio, P. & Sanchez-Amat, A. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. MicrobiologyOpen 2, 684–694 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chacon-Verdu, M. D., Gomez, D., Solano, F., Lucas-Elio, P. & Sanchez-Amat, A. LodB is required for the recombinant synthesis of the quinoprotein l-lysine-epsilon-oxidase from Marinomonas mediterranea. Appl. Microbiol. Biotechnol. 98, 2981–2989 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez, D., Lucas-Elio, P., Solano, F. & Sanchez-Amat, A. Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase. Mol. Microbiol. 75, 462–473 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selva, L. et al. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. USA 106, 1234–1238 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Regev-Yochay, G., Trzcinski, K., Thompson, C. M., Malley, R. & Lipsitch, M. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J. Bacteriol. 188, 4996–5001 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frazao, N., Sousa, A., Lassig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl. Acad. Sci. USA 116, 17906–17915 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, M. et al. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology-SGM 158, 835–842 (2012).CAS 
    Article 

    Google Scholar 
    James, S. G., Holmstrom, C. & Kjelleberg, S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol. 62, 2783–2788 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lucas-Elio, P., Gomez, D., Solano, F. & Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 188, 2493–2501 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imlay, J. A. & Linn, S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169, 2967–2976 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Los, J. M., Los, M., Wegrzyn, G. & Wegrzyn, A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb. Pathog. 47, 289–298 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, P., He, X. Y., Liu, Q. T. & Hu, C. Q. Developing universal genetic tools for rapid and efficient deletion mutation in Vibrio species based on suicide T-vectors carrying a novel counterselectable marker, vmi480. PLoS ONE 10, e0144465 (2015).Wang, P. et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bertani, L. E. & Bertani, G. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6, 201–212 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D. & Monot, M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 7, 8292 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brynildsrud, O., Bohlin, J., Scheffer, L. & Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 17, 238 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagpal, S., Singh, R., Yadav, D. & Mande, S. S. MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks. Nucleic Acids Res. 48, W572–W579 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Genetic diversity of Prosopis juliflora in the state of Qatar and its valuable use against postharvest pathogen of mango fruits

    Prosopis juliflora leaves collection and processing for RibotypingProsopis juliflora species of the genus Prosopis, family of Fabaceae had its genetic variation in Doha evaluated. Seven samples of P. juliflora leaves were collected from six different locations in Doha, Qatar, during five field trips. Plant leaves were collected after proper permissions and all methods were carried out in accordance with relevant guidelines and regulations. Trees in all locations were naturally growing around urbanization areas in their normal arid habitat without artificial irrigation, samples were collected from fully mature trees. Table 1 shows the samples details. Figure 1 shows the location sites of where the samples were collected on the map of Qatar, Doha. Leaf samples were kept in sterile labeled bags until having reached the laboratory where few leaflets were washed with sterile distilled water and sterilized using 70% ethanol to be used for DNA extraction.Table 1 Location details of the collection sites of P. juliflora leaves.Full size tableFigure 1Location map of collection sites of P. juliflora leaf samples (ArcGIS software).Full size imageRibotyping analysisThe leaflets of each sample were transferred into a sterile mortar previously cooled at -20 ˚C and used for DNA extraction following the kit manufacturer instructions (DNeasy Plant Mini Kit-QIAGEN-USA).Extracted DNA of each sample were subject to PCR using ITS1 and ITS4 primers. PCR products obtained were purified using the Invitrogen Quick PCR Purification Kit (QIAGEN, Germany) as indicated by the manufacturer and sequenced using Sanger sequencer (3130/3130xl DNA Analyzers, Thermofisher Scientific, USA) as previously described22.Sanger sequencer raw data was read using BioEdit software. Basic Local Alignment Search Tool (BLAST) network services of the National Centre for Biotechnology Information (NCBI) database were used to compare the obtained sequences to the existing sequences. Sequences were submitted to NCBI for accession numbers. The various P. juliflora ribosomal sequences obtained were also uploaded on MEGA-X software and the phylogeny tree was generated using the neighbor-joining algorithm26.Minimum inhibitory concentrations of PJ-WS-LE extracts prepared using leaf samples collected from various locations against A. alternata and C. gloeosporioides
    Preparation of PJ-WS-LE extractFresh, young full leaves of P. juliflora were collected from various locations as indicated in Fig. 1. Samples were washed, dried and ground into powder to be used in the preparation of PJ-WS-LE extract as previously described22. Briefly, every 20 g of the leaf powder were incubated in 200 mL of 70% ethanol for 48 h. The supernatant has its solvent evaporated, the extract was then re-dissolved in sterile distilled water. Only water-soluble phytochemicals were tested by centrifuging the final preparation tubes and excluding the pellet. Stock solution of 100 g L−1 was stored at 4 °C to be used for later experiments. PJ-WS-LE extract concentration used in treatments was 8 g L−1 which is double the highest minimum inhibitory concentration of the extract against spoiling microorganisms as previously determined22.Determination of minimum inhibitory concentrationThe MIC test was conducted in a sterile 96-well plate, with each well containing 100 μl of potato dextrose broth (PDB) (HIMEDIA-India). Every four wells made one replication, nine different concentrations of the crude extracts were tested (1:1 dilutions) ranging from 42 to 0.16 g L−1. Wells were then inoculated with one of the two tested microorganisms’ spore suspensions (A. alternata and C. gloeosporioides). The last three rows are control rows: no spores and no extract control wells, negative control with spores but no extract wells, and positive control with spores and 10 µl of the fungicidal Clatrimazole (1%) wells.Fungal spore suspensions were adjusted to the range of 104 spores L−1 using a 10 day old fungal plate and sterile distilled water, the spore concentration was calculated using a heamatocytometer.Fungal growth in each well was monitored using Resazurin (HIMEDIA-India) dye. Upon cells division, Resazurin changes its color from blue to pink and fluorescent27. Results were taken within 48 h of incubation at 25 °C. MIC was recorded as the last extract concentration that shows no change in the color of Resazurin within the incubation period.Curative and preventive effects of PJ-WS-LE extract against A. alternata and C. gloeosporioides induced infection in mangoesPathogensThe two fungal strains used C. gloeosporioides and A. alternata were obtained from our laboratory collection, Department of Biological and Environmental Sciences, Qatar University, Qatar. Both fungal isolates were previously isolated from locally collected fruit samples. Isolates were molecularly identified by sequencing the Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) that was amplified by PCR. Identified fungal isolates were given the strains code of AaltQU17 for A. alternata and CgloQU17 for C. gloeosporioides22. Preserved cultures were sub-cultured on potato dextrose agar (PDA) plates and incubated at 25 °C for 10 days. Plates were then flooded with 10 mL of sterile distilled water each, to prepare the needed spores suspension solutions. The concentrations of spores suspensions were adjusted to 106 spores L−1 using a heamatocytometer18.FruitThe mango (Mangifera indica) type known as Neelam imported from India was used in the experiments. Fruit were bought from the whole sale market upon their arrival to the country. Only undamaged mature fruit were used in the experiment. Fruits chosen were ripen but not yet soft with firmness average of 20 ± 5.1 N, weight average of 177.61 ± 0.2 g and TSS average of 70 ± 5.3%. Fruit were first washed with sink water and sterilized twice with 70% ethanol to be then washed with sterile distilled water and left to air dry.Preventive and curative effects of PJ-WS-LE extractWounded mango fruit were used during the experiment, the wounds were made through three needle pricks (2 mm deep) in three different places for each plant using a sterile syringe. A completely randomized design was used and each treatment was made of a triplicate of 10 fruit each. The experiment was repeated twice.PJ-WS-LE extract of leaves collected from Qatar university field was first tested for its efficacy in preventing fungal contamination in wounded mango fruit (preventive effect). Therefore, the wounded zone of each fruit was sprayed with 8 g L−1 PJ-WS-LE extract and then left to air-dry. Once dry the fruit were sprayed again with the extract at the same concentration and left to dry. Control fruit were only treated with sterile distilled water without the plants extract. After two hours all wounds were inoculated with 20 μL of conidia aqueous solution (106 spores mL−1) of one of the tested fungi. The extract was then tested for its ability to cure fungal contamination in wounded fruit. Therefore, wounds were inoculated first with 20 μL of conidia aqueous solution (106 spores mL−1) and left to dry. Wounds were then sprayed twice with 8 g L−1 PJ-WS-LE extract.All mangoes were stored in sterilized plastic trays inside an incubator at 25 °C and 75% humidity. Fruit were observed every 24 h for 5 days for C. gloeosporioides inoculated fruit and for 10 days for A. alternata inoculated fruit. Three parameters were recorded at the end of the experiment: disease incidence (DI), disease severity (DS), and percent plant extract efficacy (%EE). To calculate disease severity, the diameter of the infected area of each fruit was measured in two perpendicular directions and mean diameter mycelial growth was calculated28,29.$$mathrm{DI}=frac{(mathrm{Number, of, rotten, fruit})times 100}{mathrm{Total, number, of, fruit}}$$$$mathrm{DS }=frac{(mathrm{Average, lesion, diameter, of, treated, plants})times 100}{mathrm{Average, Lesion, diameter, of, control, plants})}$$$$mathrm{%EE}=frac{(mathrm{Disease, incidence, in, Control, batch}-mathrm{Disease, incidence, in, treated, batch})times 100}{mathrm{Disease, incidence, in, Control, batch}}$$End of the trial samples firmnessAt the end of the trial, remaining mango fruit were tested for their flesh quality using a penetrometer (Agriculture Solutions, USA) to test the flesh firmness. Fruit were peeled, then the stainless steel probe of the instrument was inserted in three different points towards the equator of the fruit. Firmness in Newton was recorded and compared with standard fruit firmness to judge fruit quality18.Effectiveness of PJ-WS-LE extract as long-term coating material and the preservative value of its chitosan-embedded formCoating solutions preparationChitosan solution of 1% concentration was prepared by stirring chitosan powder (CAS 9012-76-4, Himedia, India) in 1% glacial acetic acid (IsoLab, Germany) overnight. The final chitosan solution pH was adjusted to 5.6 using 0.1 M NAOH (Sigma-Aldrich, Germany). To prepare PJ-WS-LE extract chitosan-embedded coating material, filter-sterilized PJ-WS-LE extract stock solution was added to 1% chitosan to achieve a final concentration of 8 g L−130.Samples preparationEighty-four mango samples chosen as described above, were divided into four groups of 18 samples each. Samples were divided into four treatment batches and treated as following:

    Batch A: non-treated fruit.

    Batch B: PJ-WS-LE extract at 8 g L–1 was used to spray the fruit.

    Batch C: 1% chitosan was used to spray the fruit.

    Batch D: 8 g L−1 PJ-WS-LE extract embedded in 1% chitosan was used to spray the fruit.

    Every experimental replicate was made up of three mango samples that were stored together in one sterile bag at 4 °C. The number of replications per treatment was six. The experiment was repeated twice31.Evaluation of sensory qualityA five-points scale was used for the evaluation of the sensory quality of the samples for overall quality, smell, and color change. The attributes were evaluated weekly using the fruit of one experimental replicate. Scores were given using the following scale: 5 points indicate “extremely liked”, 4 points indicate “liked”, 3 points indicate “acceptable” 2 points indicate “disliked” and 1 point indicates “extremely disliked”. The weekly average score per batch was also calculated32.Estimation of weight lossUpon treatment at day zero, all mango samples were weighed and their weights were recorded as initial weights. Weights of all remaining samples were measured at the end of every week. The variation between the start weight and weekly weights is calculated as weekly weight loss. The average percent of weekly weight loss of each batch was calculated32.Determination of samples firmnessThe samples of each experimental replicate evaluated on a weekly basis had their firmness measured as previously described. The weekly average samples firmness (N) of every treatment batch was also calculated33.pH measurementMango fruit of each experimental replicate were blended weekly into juice, after filtration, a digital pH meter (Jenway, UK) was used to measure pH. The weekly average fruit pH of every treatment batch was also calculated. The pH meter was calibrated using a buffer solution of pH 734.Total soluble solids (TSS) measurementTotal soluble solids of the prepared mango juice samples were measured in percent brix using a refractometer (ANTAHI, New Zealand). The weekly average fruit TSS (%) for each treatment batch was also calculated. The refractometers was calibrated using distilled water35.DPPH radical scavenging assayA 1/10 mango juice dilution was prepared using sterile distilled water. 100 μL of each dilution was mixed with 1 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (100 mg L−1) to be incubated in the dark at 37 °C for 45 min. After incubation, samples were centrifuged and the pellet was discarded. The intensity of the change in color of the supernatant was measured by spectrophotometry at 517 nm using methanol as a blank. 100 μL of methanol in 1 mL DPPH was used as the control for the experiment. Percent radical scavenging activity was calculated as per the below formula:$$ % {text{ radical scavenging activity}}, = ,left( {{text{absorbance of the control solution}} – {text{ absorbance of the juice sample}}} right)*{1}00/{text{absorbance of the control solution}}. $$The weekly average % radical scavenging activity for each treatment batch was finally calculated31.Statistical analysisThe experimental design used was Completely Randomized Design (CRD). One-way ANOVA followed by Tukey Post-Hoc test was used to evaluate the significance of the weekly percent change in weight among treatment batches at P ≤ 0.05. The significances of pH and TSS variation within different treatment batches were evaluated using One-way ANOVA test at P ≤ 0.05. Data was presented as average ± standard error of the Means (SEM). SPSS (Ver. 27, SPSS Inc. Chicago, USA) was used to perform the statistical analysis tests. More

  • in

    A sandponics comparative study investigating different sand media based integrated aqua vegeculture systems using desalinated water

    Study siteThe study was conducted at the Center for Applied Research on the Environment and Sustainability (CARES) at The American University in Cairo, New Cairo, Egypt (30°01′11.7″N 31°29′59.8″E) from 12/Nov/2019 until 31st/March/2020. The experiment was carried out in a greenhouse-controlled environment with temperatures ranging from 18 to 23 °C and relative humidity between 60 and 70% during the growing period.Experimental designThe proposed design starts by treating brackish water using RO membrane separation technology, powered by an on-grid 10 kW photovoltaic solar panel as shown in Fig. 1. The permeate (freshwater) from the RO facility is directed to the aquaculture units of capacity of 1 m3, where the fish effluents are used as irrigation water and as the sole source of fertilizers for the crops.Figure 1Schematic Integrated model design. T1 Deep water culture system without sand, T2 Sandponics system with sand from October, T3 Sandponics system with sand from Beni suef, T4 Sandponics system with sand from Fayoum.Full size imageThe study followed a completely randomized design with four variants, i.e., an aquaponic deep-water culture system (T1) and three sandponics systems (T2–T4). The three sandponics systems were established with different sand collected from different sand locations in Egypt during the period between September and October 2019.Initially, an exploratory field trip was set to six different locations in Egypt to collect sand samples for lab analysis aimed at sourcing the most suitable sand for the system under study with regards to both the physical and chemical parameters. These areas include Ismailia Governorate; 30°34′55.2″N 31°50′08.1″E, 6th October governorate; 29°54′49.8″N 31°05′51.5″E, Benu Suef governorate; 28°53′18.4″N 30°45′12.9″E, Al-Minya governorate; 28.725799, 30.630305, and two sites from Fayoum governorate; 29°05′07.4″N 30°49′39.9″E.From the six locations in Egypt, preliminary sand analysis was carried out, and sand samples were also collected for both physical and chemical lab analysis at the Soil and Water Lab at the Agricultural Research Center in Dokki, Egypt. Following a thorough technical, field, mechanical, and lab chemical evaluation of the six sand samples from six locations, three sand locations/types were selected for experimentation that seemed fit and suitable for the current study. The criteria parameters for the shortlisting of sand included water retention potential of the sand by the percolation process, testing the carbonates level in the soil, the turbidity of the sand, porosity percentage and drainage potential of the sand. The three locations included 6th October (T2), Benu Suef (T3), and Fayoum site 2 (T4). In the second week of November 2019, ten cubic meter tracks of sand from the three above locations were set to collect sand from these areas to the research facility at CARES where the experiment was carried out.The study was carried out with two systems/setups, i.e., an aquaponic Deep Water Culture (DWC) and SP systems. The DWC model comprises a 1 m3 fish tank, a settlement tank, a mechanical filter, a biological filter, three grow beds, and a drainage tank. This system being the most practiced aquaponics technique was considered as the control. Fish effluent water flowed from the fish tank to the settlement tank to filter big solid wastes through the mechanical filter to remove the smaller solid wastes and the biological filter for the nitrification process. Then filtered water continues to the grow beds, where overflow drains into the drainage tank and back to the fish tank in a closed system.On the other hand, the variable in the three IAVS systems is the sand source. This system comprises three independent set-ups: a 1 m3 fish tank, three grow beds, and a drainage tank. Fish effluents flowed from the fish tank directly to the sand grow beds where water was supplied through irrigation drip lines using diaghram emitters connected with valves to ensure uniformity of water application to each grow bed.All the fish tanks were installed with the same fish stock size of 30 Nile tilapia (Oreochromis niloticus) from an existing fish stock at the research center with an average initial weight of 244 g and the same amount of water, initially 850L per tank. The fish was sourced from an already existing aquaponics system at the research center to avoid any transportation stress effects and related shocks on the small fish, leading to a lot of mortality cases. The fish were fed 3–4 times daily with commercial pellets containing 30% proteins, 5% crude lipid, 6% crude fiber, 13% Ash, and 9% moisture content supplied by Skretting Egypt. The feeding pattern and frequency were according to the fish body biomass percentage of 2–3% depending on the growth stage and upon reaching satiation.DesalinationThe experiment was entirely run with desalinated water produced from a desalination facility at the center. The desalination technology used was Reverse Osmosis (RO); in batch mode; using a Sea Water Pump with Energy Recovery Unit (model Danfoss-APP1.0/APM1.2). The RO membrane used is Hydraunatic SWC5-4040, from Lenntech company with an average salt rejection of 99.7%. Three modules were connected in a series arrangement (3 Pressure Vessels each equipped with a single module). Synthesized brackish water was prepared by dissolving industrial grade sodium chloride (sea salt) from El-Arish Governorate, Egypt. The salt chemical properties are presented in Table 1. Feedwater salinity was 10 mg/L, with an equivalent osmotic pressure equal to 8.61 bars. The osmotic pressure was calculated using Van’t Hoff relation. Permeate Total Dissolved Solids (TDS) was 192 mg/L, and brine TDS was 13.1 g/L as shown in Table 2.Table 1 Chemical properties of the used salt.Full size tableTable 2 Chemical properties of water samples used.Full size tableThe average pure water flux is 9.5 LMH and was calculated by dividing the permeate volume by the product of membrane surface area and time. Each batch run produced around 4 m3 of permeate, which was enough to irrigate the designated plant beds. The estimated average permeate recovery for the RO process is 22% and salt rejection exceeded 98.7%. The differential pressure between membrane inlet and outlet was equal to 1 bar, where membrane inlet pressure was 16 bars, and the outlet was 15 bars. The RO process operated at an average transmembrane pressure equal to 16 bars and an average permeate and brine flow rates equivalent to 3.49 and 12.41 Lpm, respectively. All experiment runs were performed at 25 °C.Plant materials and cultivation practiceSwiss chard bright lights (Beta vulgaris subsp. cicia) seeds were imported from Seed kingdom seed company in the USA. Seeds were sown in ¼ inch holes in a seed starting mix containing perlite and vermiculite and irrigated with a hand mist sprayer daily to keep the growing media always moist. Sowing was done on the 12th of November 2019, and seedlings were transplanted when they were 40 days old. Seedlings were transplanted into raised grow beds made of fiberglass material measuring 1.8 × 1.2 × 0.6 m for each of the four systems. The beds were raised off the ground by 0.5 m to allow drainage water from the bed to be collected and circulated back to the fish tank. Each bed was constructed with a drainage pipe at the bottom covered with a mesh net to prevent water blockage by the sand. Also, a 5 cm layer of small gravel was uniformly laid at the bottom of the beds to facilitate drainage, followed by sand with a height of 50 cm.In the IAVS systems, plants were irrigated using manually punched diaphragm emitters, and the irrigation flow rate was controlled using small plastic valves at the start of every irrigation tube. Emitters were installed in drip tubing at a 30 cm distance as well the tubing lines were also placed 30 cm between each other. Seedlings were transplanted 5 cm away from the emitters at 30 cm between rows and 30 cm within the row. Since the water was pumped with submersible pumps to the grow beds, regulatory pressure valves were installed in between the pump and the main irrigation line, and then water flows through the emitters into the row furrows. Water would then saturate in the sand and eventually drain at the bottom into drainage tanks and pumped back to the fish tanks.To maintain the water quality, two full cycles of water recirculation were run every day. Every irrigation cycle recirculated 25% of the fish tank, and complete drainage was allowed for a maximum of two hours. Plants were harvested upon reaching maturity for three cuts, except with the T1, which could not grow back after the second cut. Plants took 52 days from transplanting to reach the first cut, 20 days from cut 1 to cut 2, and as well 23 days from cut 2 to reach cut 3. Measurable crop parameters included plant height at harvesting/cutting, leaf area, number of leaves per plant, chlorophyll content, fresh weight per plant, and nutrient composition. Since the focus of SP is on the crops, fish were only measured to monitor their relative growth in terms of weight gained at harvesting/cutting time.Measurement of crop parametersPlants were cut 5 cm above the soil surface, and agronomical trait measurements from a representative sample of 12 plants per replicate were taken as follows.Plant heights were taken using a foot ruler and averages determined. Leaf number was obtained as the number of leaves counted per plant and averages determined. Leaf area was calculated according to the equation reported by Yeshitila and Taye16.$${text{Leaf}} , {text{ Area }}left( {{text{cm}}^{{2}} } right) = , – {422}.{973} + { 22}.{752}0{text{L }}left( {{text{cm}}} right) , + { 8}.{text{31W }}left( {{text{cm}}} right)$$where L and W represent the leaf length and Leaf width respectively, − 422.973 is a constant relating to the shape of the leaf of Swiss chard developed by the author under citation.Chlorophyll content was measured using MC-100 chlorophyll meter from Apogee Instruments, Inc, and data was expressed as SPAD averages. Fresh weight was measured using a digital weighing balance and data expressed as g/plant.Sand testSand samples were obtained and sent for analysis at the Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt. The Electrical conductivity (EC) values were measured from the sand paste extract; pH values were taken from sand suspensions at ratio of 1:2.5 as described by Estefan17. The available nitrogen in the sand sample was extracted using potassium chloride (KCl) as an extractable solution with the ratio of (5gm sand to 50 ml KCl) and determined using the micro- kjeldahl method. Available potassium was determined using a flame photometer, and the other elements in the sand sample were determined by using inductively coupled plasma (ICP) Spectrometry (model Ultima 2 JY Plasma)18,19. The physical and chemical characteristics of the used sand are presented in Table 3.Table 3 (a): Chemical analysis of field sand samples, (b): Available macro, micronutrients, and heavy metals content of the sand samples.Full size tableWater analysisEvery 15 days, a measured amount of desalinated water was added to a standard mark of 850L in the fish tanks to compensate for the consumed amount of water in the system. Fish water quality parameters such as water temperature, pH, and dissolved oxygen (DO) was closely monitored using automated digital Nilebot technologies by Conative labs to fit the ideal required levels as reported by Somerville et al.20. In contrast, ammonia, nitrite, and nitrate were adjusted using an API test kit every week. These parameters’ recorded values were as follows: water temperature ranged between 25 and 28 °C, DO range between 6–7 mg/L, and pH between 6.5 and 7.0. Ammonia levels were kept below 1 mg/L. Elements in water samples were determined according to EPA methods18 using inductively coupled plasma (ICP) Spectrometry (model Ultima 2 JY Plasma) as presented in Table 4.Table 4 Water sample analysis for the different systems’ fish tanks and sump tanks.Full size tableNutritive composition analysisAccording to Official methods of analysis from the association of official analytical chemists (A.O.A.C) (1990), moisture content and Vitamin C were determined. Vitamin A was determined according to the procedures described by Aremu and Nweze21. Briefly, 100 g of the sample were homogenized, from which 1 g was obtained and soaked in 5 mL methanol for two hours at room temperature in the dark for complete extraction of a pro-vitamin A carotenoid, β-carotene. Separation of the β-carotene layer was achieved through the addition of hexane to the sample, and moisture was removed using sodium sulphonate. The absorbance of the layer was measured at 436 nm using hexane as a blank. β-carotene was calculated using the formula:$$beta {text{-carotene }}left( {{mu g}/{1}00{text{ g}}} right) , = {text{ Absorbance }}left( {text{436 nm}} right) , times {text{ V }} times {text{ D }} times { 1}00 , times { 1}00/{text{W }} times {text{ Y}}$$where: V = total volume of the extract; D = Dilution factor; W = Sample weight; Y = Percentage dry matter content of the sample.Vitamin A was then determined according to the concept of Retinol Equivalent (RE) of the β-carotene content of the vegetables using the standard conversion formula. Total hydrolyzable carbohydrates were determined as glucose using phenol–sulfuric acid reagent as described by Michel22.Vitamin C content was determined using dichlorophenol indophenol reagent. As such, 10 g of fresh leaf tissues, were crushed using a motor and pestle in the presence of 10 ml metaphosphoric acid 6% (Merck). This was followed by centrifugation at 4000×g for 5 min at 4 °C. Five mL of the supernatant were transferred into an Erlenmeyer flask, and 20 mL of 3% metaphosphoric acid were added. The extract was titrated by dichlorophenol indophenol (Sigma-Aldrich) until a rose color was observed. Vitamin C (mg/100 g FW) was then calculated and based on the standard curve of l-Ascorbic acid (Merck) concentrations.For the determination of protein and mineral content, 0.5 g of dried samples were digested using sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) as described by Cottenie23. From the extracted sample, the following minerals were determined:Nitrogen was determined according to the procedures described by Plummer24. Briefly, 5 mL of the digestive solution was distilled with 10 mL of sodium hydroxide (NaOH) for 10 min to obtain ammonia. Back titration was then used to determine the amount of nitrogen present in ammonia. Protein content was calculated by multiplying total nitrogen by 6.25 according to methods of AOAC25.Phosphorus content was determined calorimetrically (660 nm) according to the procedures described by Jackson26. Potassium, Calcium, and Sodium were determined against a standard using a flame-photometer (JEN way flame photometer) as described by Piper27. Magnesium (Mg), Copper (Cu), Manganese (Mn), Zinc (Zn), and Iron (Fe) content were determined using Atomic Absorption Spectrophotometer, Pyeunican SP1900, according to methods described by Liu28.The moisture percentage of leaf samples was determined by weighing the fresh weight for each sample (Fw), then dried for 72 h at 80 °C. The dry matter weight was record as Dw. The leaf water content was then calculated as the following:$${text{Moisture}};{text{ content }}left( % right) , = , left( {{text{Fw}} – {text{Dw}}} right) , /{text{ Fw}} * {1}00$$Statistical analysisStatistical comparisons among means of more than two groups were performed with analysis of variance (ANOVA) using SPSS V22, and the difference in means was analyzed by Tukey’s test at α = 0.05. Statistical differences were considered significant at P ≤ 0.05 in triplicates and data expressed as mean ± S.D.Plant materialAll plant materials and related procedures in this study were done in accordance with the guidelines of the Institutional Review Board of the American University in Cairo and the Ministry of Agriculture and Land Reclamation in Egypt.Ethics approvalThis study followed the guidelines and approval of Committee of Animal Welfare and Research Ethics, Faculty of Agriculture, Kafrelsheikh University, Egypt. More

  • in

    Elevated temperature and carbon dioxide levels alter growth rates and shell composition in the fluted giant clam, Tridacna squamosa

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Hill, R. W. et al. Acid secretion by the boring organ of the burrowing giant clam, Tridacna crocea. Biol. Lett. 14, 20180047 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 132–142 (2009).Article 

    Google Scholar 
    Killam, D., Thomas, R., Al-Najjar, T. & Clapham, M. Interspecific and intrashell stable isotope variation among the Red Sea giant clams. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2019GC008669 (2020).Article 

    Google Scholar 
    Duprey, N., Galipaud, J.-C., Cabioch, G. & Lazareth, C. E. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0ka BP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 404, 97–108 (2014).Article 

    Google Scholar 
    Batenburg, S. J. et al. Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 75–81 (2011).Article 

    Google Scholar 
    Ayling, B. F., Chappell, J., Gagan, M. K. & McCulloch, M. T. ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea. Earth Planet. Sci. Lett. 431, 236–246 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Yan, H., Shao, D., Wang, Y. & Sun, L. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy. Geochim. Cosmochim. Acta 112, 52–65 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Warter, V. & Müller, W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis—A novel methodological approach towards improved sclerochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 362–375 (2017).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Wei, G., Sun, M., Li, X. & Nie, B. Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 59–74 (2000).Article 

    Google Scholar 
    Brahmi, C. et al. Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. Conserv. Physiol. 9, 041 (2021).Article 
    CAS 

    Google Scholar 
    Watson, S.-A. & Neo, M. L. Conserving threatened species during rapid environmental change: Using biological responses to inform management strategies of giant clams. Conserv. Physiol. 9, 082 (2021).
    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Leggat, W., Buck, B. H., Grice, A. & Yellowlees, D. The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ. 26, 1951–1961 (2003).CAS 
    Article 

    Google Scholar 
    Zhou, Z., Liu, Z., Wang, L., Luo, J. & Li, H. Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature. Fish Shellfish Immunol. 84, 451–457 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubousquet, V. et al. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol. Open 5, 1400–1407 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blidberg, E., Elfwing, T., Plantman, P. & Tedengren, M. Water temperature influences on physiological behaviour in three species of giant clams (Tridacnidae). In Proc. 9th International Coral Reef Symposium 561–565 (2000).Junchompoo, C., Sinrapasan, N., Penpain, C. & Patsorn, P. Changing seawater temperature effects on giant clams bleaching, Mannai Island, Rayong Province, Thailand. In Proc. Design Symposium on Conservation of Ecosystem. https://doi.org/10.13140/2.1.1906.5600 (2012).Watson, S.-A., Southgate, P. C., Miller, G. M., Moorhead, J. A. & Knauer, J. Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa. Molluscan Res. 32, 177–180 (2012).
    Google Scholar 
    Watson, S.-A. Giant clams and rising CO2: Light may ameliorate effects of ocean acidification on a solar-powered animal. PLoS ONE 10, 1–18 (2015).CAS 

    Google Scholar 
    Kurihara, H. & Shikota, T. Impact of increased seawater pCO2 on the host and symbiotic algae of juvenile giant clam Tridacna crocea. Galaxea J. Coral Reef Stud. 20, 19–28 (2018).Article 

    Google Scholar 
    Alves Monteiro, H. J. et al. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. Glob. Change Biol. 26, 1271–1284 (2020).ADS 
    Article 

    Google Scholar 
    Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013—The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).
    Google Scholar 
    Poloczanska, E. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).
    Google Scholar 
    Ganachaud, A. S. et al. Observed and expected changes to the tropical Pacific Ocean. In Vulnerability Trop. Pac. Fish. Aquac. Clim. Change Secr. Pac. Community Noumea New Caledonia 101–187 (2011).Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).ADS 
    Article 

    Google Scholar 
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pierrot, D., Lewis, E. & Wallace, D. MS Excel program developed for CO2 system calculations. In ORNLCDIAC-105a Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. US Dep. Energy Oak Ridge Tenn. Vol. 10 (2006).Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Dickson, A. G. Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS 
    Article 

    Google Scholar 
    Wolf, R. E. & Adams, M. Multi-elemental Analysis of Aqueous Geochemical Samples by Quadrupole Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 38. http://pubs.er.usgs.gov/publication/ofr20151010, https://doi.org/10.3133/ofr20151010 (2015).Schrag, D. P. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14, 97–102 (1999).ADS 
    Article 

    Google Scholar 
    Howell, D. C. Permutation Tests for Factorial ANOVA Designs (2009).Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2020).Navarro, D. Learning Statistics with R: A Tutorial for Psychology Students and other beginners (Version 0.5) (University of Adelaide, 2015).
    Google Scholar 
    Zhao, L., Schöne, B. R. & Mertz-Kraus, R. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 386–394 (2017).Article 

    Google Scholar 
    Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 89, 248–277 (1913).ADS 
    CAS 

    Google Scholar 
    Bragg, W. L. The structure of aragonite. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 105, 16–39 (1924).ADS 
    CAS 

    Google Scholar 
    Killam, D., Al-Najjar, T. & Clapham, M. Giant clam growth in the Gulf of Aqaba is accelerated compared to fossil populations. Proc. R. Soc. B Biol. Sci. 288, 20210991 (2021).CAS 
    Article 

    Google Scholar 
    Waters, C. G. Biological Responses of Juvenile Tridacna maxima (Mollusca: Bivalvia) to Increased pCO2 and Ocean Acidification (The Evergreen State College, 2008).
    Google Scholar 
    Toonen, R. J., Nakayama, T., Ogawa, T., Rossiter, A. & Delbeek, J. C. Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: Species-specific effects of substrate and supplemental feeding under acidification. J. Mar. Biol. Assoc. U. K. 92, 731–740 (2012).CAS 
    Article 

    Google Scholar 
    Hart, A. M., Bell, J. D. & Foyle, T. P. Growth and survival of the giant clams, Tridacna derasa, T. maxima and T. crocea, at village farms in the Solomon Islands. Aquaculture 165, 203–220 (1998).Article 

    Google Scholar 
    Van Wynsberge, S. et al. Growth, survival and reproduction of the giant clam Tridacna maxima (Röding 1798, Bivalvia) in two contrasting lagoons in French Polynesia. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Lucas, J. S., Nash, W. J., Crawford, C. M. & Braley, R. D. Environmental influences on growth and survival during the ocean-nursery rearing of giant clams, Tridacna gigas (L.). Aquaculture 80, 45–61 (1989).Article 

    Google Scholar 
    Schwartzmann, C. et al. In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology. Limnol. Oceanogr. 56, 1940–1951 (2011).ADS 
    Article 

    Google Scholar 
    Syazili, A., Syafiuddin, N. A. & Jompa, J. Effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clams (Tridacna squamosa). IOP Conf. Ser. Earth Environ. Sci. 473, 012141 (2020).Article 

    Google Scholar 
    Li, J. et al. Assessment of the juvenile vulnerability of symbiont-bearing giant clams to ocean acidification. Sci. Total Environ. 812, 152265 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, S. et al. Cloning and expression of a pivotal calcium metabolism regulator: Calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138, 235–243 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Li, C., Lv, Z., Zhang, Z. & Qiu, L. A calcification-related calmodulin-like protein in the oyster Crassostrea gigas mediates the enhanced calcium deposition induced by CO2 exposure. Sci. Total Environ. 833, 155114 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rees, T., Fitt, W. & Yellowlees, D. The haemolymph and its temporal relationship with zooxanthellae metabolism in the giant clam symbiosis [Conference paper]. In ACIAR Proc.-Aust. Cent. Int. Agric. Res. Aust. (1993).Leggat, W., Rees, T. A. V. & Yellowlees, D. Meeting the photosynthetic demand for inorganic carbon in an alga-invertebrate association: Preferential use of CO2 by symbionts in the giant clam Tridacna gigas. Proc. Biol. Sci. 267, 523–529 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ip, Y. K. et al. Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and. Gene 659, 137–148 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armstrong, E. J., Roa, J. N., Stillman, J. H. & Tresguerres, M. Symbiont photosynthesis in giant clams is promoted by V-type H+-ATPase from host cells. J. Exp. Biol. https://doi.org/10.1242/jeb.177220 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Adams, A. L., Needham, E. W. & Knauer, J. The effect of shade on water quality parameters and survival and growth of juvenile fluted giant clams, Tridacna squamosa, cultured in a land-based growth trial. Aquac. Int. 21, 1311–1324 (2013).CAS 
    Article 

    Google Scholar 
    Rossbach, S., Saderne, V., Anton, A. & Duarte, C. M. Light-dependent calcification in Red Sea giant clam Tridacna maxima. Biogeosciences 16, 2635–2650 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Ip, Y. K. et al. The whitish inner mantle of the giant clam, Tridacna squamosa, expresses an apical plasma membrane Ca2+-ATPase (PMCA) which displays light-dependent gene and protein expressions. Front. Physiol. 8, 781 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berner, R. A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 39, 489–504 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    Alibert, C. et al. Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim. Cosmochim. Acta 67, 231–246 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    McCulloch, M. et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421, 727–730 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinclair, D. & Mcculloch, M. Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: Evidence for limited Ba supply to rivers? Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 155–174 (2004).Article 

    Google Scholar 
    Fleitmann, D. et al. East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophys. Res. Lett. 34, L04401 (2007).ADS 
    Article 

    Google Scholar 
    Prouty, N. G., Field, M. E., Stock, J. D., Jupiter, S. D. & McCulloch, M. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Mar. Pollut. Bull. 60, 1822–1835 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fallon, S. J., McCulloch, M. T., van Woesik, R. & Sinclair, D. J. Corals at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet. Sci. Lett. 172, 221–238 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Reuer, M. K., Boyle, E. A. & Cole, J. E. A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet. Sci. Lett. 210, 437–452 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Montaggioni, L. F., Le Cornec, F., Corrège, T. & Cabioch, G. Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237, 436–455 (2006).Article 

    Google Scholar 
    Ourbak, T. et al. A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals: Activity proxies in corals. Geochem. Geophys. Geosyst. 7, 1. https://doi.org/10.1029/2005GC001064 (2006).CAS 
    Article 

    Google Scholar 
    Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J. Geophys. Res. 113, C04008 (2008).ADS 

    Google Scholar 
    Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 2. A window into variability of the new ireland coastal undercurrent. J. Geophys. Res. 113, C06006 (2008).ADS 

    Google Scholar 
    Agbaje, O. B. A. et al. Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). R. Soc. Open Sci. 4, 170622 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, M. S. et al. Deciphering mollusc shell production: The roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol. Rev. https://doi.org/10.1111/brv.12640 (2020).Article 
    PubMed 

    Google Scholar 
    Wilkerson, F. P. & Trench, R. K. Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp.. Mar. Biol. 93, 237–246 (1986).CAS 
    Article 

    Google Scholar 
    Summons, R. E., Boag, T. S. & Osmond, C. B. The effect of ammonium on photosynthesis and the pathway of ammonium assimilation in Gymnodinium microadriaticum in vitro and in symbiosis with tridacnid clams and corals. Proc. R. Soc. Lond. B Biol. Sci. 227, 147–159 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Onate, J. & Naguit, M. A preliminary study on the effect of increased nitrate concentration on the growth of giant clams Hippopus hippopus. In Cult. Giant Clams Bivalvia Tridacnidae Aust. Cent. Int. Agric. Res. Canberra 57–61 (1989).Hastie, L. C., Watson, T. C., Isamu, T. & Heslinga, G. A. Effect of nutrient enrichment on Tridacna derasa seed: Dissolved inorganic nitrogen increases growth rate. Aquaculture 106, 41–49 (1992).CAS 
    Article 

    Google Scholar 
    Belda, C. A., Lucas, J. S. & Yellowlees, D. Nutrient limitation in the giant clam-zooxanthellae symbiosis: Effects of nutrient supplements on growth of the symbiotic partners. Mar. Biol. 117, 655–664 (1993).Article 

    Google Scholar 
    Belda-Baillie, C., Leggat, W. & Yellowlees, D. Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment. Mar. Ecol. Prog. Ser. 170, 131–141 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Calosi, P. et al. Multiple physiological responses to multiple environmental challenges: An individual approach. Integr. Comp. Biol. 53, 660–670 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tanner, R. L. & Dowd, W. W. Inter-individual physiological variation in responses to environmental variation and environmental change: Integrating across traits and time. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 238, 110577 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guscelli, E., Spicer, J. I. & Calosi, P. The importance of inter-individual variation in predicting species’ responses to global change drivers. Ecol. Evol. 9, 4327–4339 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Telesca, L. et al. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Glob. Change Biol. 25, 4179–4193 (2019).ADS 
    Article 

    Google Scholar 
    Yan, H., Shao, D., Wang, Y. & Sun, L. Sr/Ca differences within and among three Tridacnidae species from the South China Sea: Implication for paleoclimate reconstruction. Chem. Geol. 390, 22–31 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Warter, V., Mueller, W., Wesselingh, F. P., Todd, J. A. & Renema, W. Late Miocene seasonal to subdecadal climate variability in the Indo-West Pacific (East Kalimantan, Indonesia) preserved in giant clams. Palaios 30, 66–82 (2015).ADS 
    Article 

    Google Scholar 
    Gannon, M. E., Pérez-Huerta, A., Aharon, P. & Street, S. C. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas. Coral Reefs 36, 503–517 (2017).ADS 
    Article 

    Google Scholar 
    Zhao, L. et al. A review of transgenerational effects of ocean acidification on marine bivalves and their implications for sclerochronology. Estuar. Coast. Shelf Sci. 235, 106620 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Carbon fixation rates in groundwater similar to those in oligotrophic marine systems

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000).Article 

    Google Scholar 
    McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2014).Article 

    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).Article 

    Google Scholar 
    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).Article 

    Google Scholar 
    Stevanović, Z. Karst waters in potable water supply: a global scale overview. Environ. Earth Sci. 78, 662 (2019).Article 

    Google Scholar 
    Poulson, T. L. & White, W. B. The cave environment. Science 165, 971–981 (1969).Article 

    Google Scholar 
    Rusterholtz, K. J. & Mallory, L. M. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb. Ecol. 28, 79–99 (1994).Article 

    Google Scholar 
    Smith, H. J. et al. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol. Ecol. 94, fiy191 (2018).
    Google Scholar 
    Alexander, M. Introduction to Soil Microbiology (Wiley, 1977).Griebler, C. & Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649–677 (2009).Article 

    Google Scholar 
    Krumholz, L. R., McKinley, J. P., Ulrich, G. A. & Suflita, J. M. Confined subsurface microbial communities in Cretaceous rock. Nature 386, 64–66 (1997).Article 

    Google Scholar 
    Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).Article 

    Google Scholar 
    Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).Article 

    Google Scholar 
    Stevens, T. O. & McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–455 (1995).Article 

    Google Scholar 
    Tiago, I. & Veríssimo, A. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ. Microbiol. 15, 1687–1706 (2013).Article 

    Google Scholar 
    Mccollom, T. M. & Amend, J. P. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3, 135–144 (2005).Article 

    Google Scholar 
    Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017).Article 

    Google Scholar 
    Jewell, T. N. M., Karaoz, U., Brodie, E. L., Williams, K. H. & Beller, H. R. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 10, 2106–2117 (2016).Article 

    Google Scholar 
    Herrmann, M., Rusznyák, A. & Akob, D. M. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).Peterson, B. J. Aquatic primary productivity and the 14C–CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11, 359–385 (1980).Article 

    Google Scholar 
    Viviani, D. A., Karl, D. M. & Church, M. J. Variability in photosynthetic production of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre. Front. Mar. Sci. 2, 73 (2015).Article 

    Google Scholar 
    Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091–6116 (2017).Article 

    Google Scholar 
    Pedersen, K. & Ekendahl, S. Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb. Ecol. 23, 1–14 (1992).Article 

    Google Scholar 
    Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).Article 

    Google Scholar 
    Karl, D. M., Hebel, D. V., Björkman, K. & Letelier, R. M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286 (1998).Article 

    Google Scholar 
    Liang, Y. et al. Estimating primary production of picophytoplankton using the carbon-based ocean productivity model: a preliminary study. Front. Microbiol. 8, 1926 (2017).Article 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. 2 48, 1405–1447 (2001).Article 

    Google Scholar 
    Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F. & Knap, A. H. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 48, 1697–1718 (2001).Article 

    Google Scholar 
    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. 2 43, 129–156 (1996).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Data from: Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Dryad https://doi.org/10.5061/dryad.d702p (2015).Schwab, V. F. et al. 14C-free carbon Is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour. Res. 55, 2104–2121 (2019).Article 

    Google Scholar 
    Taubert, M. et al. Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME J 16, 1153–1162 (2022).Article 

    Google Scholar 
    Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).Article 

    Google Scholar 
    Lin, W. et al. Genomic insights into the uncultured genus “Candidatus Magnetobacterium” in the phylum Nitrospirae. ISME J. 8, 2463–2477 (2014).Article 

    Google Scholar 
    Kato, S. et al. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ. Microbiol. 20, 862–877 (2018).Article 

    Google Scholar 
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).Article 

    Google Scholar 
    Kojima, H., Watanabe, T. & Fukui, M. Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake. Int. J. Syst. Evol. Microbiol. 66, 266–270 (2016).Article 

    Google Scholar 
    Strous, M., Van Gerven, E., Kuenen, J. G. & Jetten, M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol. 63, 2446–2448 (1997).Article 

    Google Scholar 
    Ji, X., Wu, Z., Sung, S. & Lee, P.-H. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. Water Res. 166, 115039 (2019).Article 

    Google Scholar 
    Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5, e01966 (2014).Article 

    Google Scholar 
    Smith, R. L., Böhlke, J. K., Song, B. & Tobias, C. R. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ. Sci. Technol. 49, 12169–12177 (2015).Article 

    Google Scholar 
    Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).Article 

    Google Scholar 
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).Article 

    Google Scholar 
    Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (McGraw-Hill Education, 2001).Zhang, Y. et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc. Natl. Acad. Sci. USA 117, 4823–4830 (2020).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).Article 

    Google Scholar 
    Küsel, K. et al. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front. Earth Sci. 4, 32 (2016).Article 

    Google Scholar 
    Yan, L. et al. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 170, 115341 (2019).Article 

    Google Scholar 
    Pack, M. A. et al. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry: methane oxidation rates by AMS. Limnol. Oceanogr. Methods 9, 245–260 (2011).Article 

    Google Scholar 
    Nielsen, E. S. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).Article 

    Google Scholar 
    Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. B 259, 320–329 (2007).Article 

    Google Scholar 
    Merser, S. Acetabulum online interactive statistical calculators. Accessed Feb, 2021. https://acetabulum.dk/anova.htmlBermuda Oceanographic Timeseries, accessed 21 Oct 2020, http://batsftp.bios.edu/BATS/production/bats_primary_production.txtHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, ftp://ftp.soest.hawaii.edu/hot/primary_productionHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, https://hahana.soest.hawaii.edu/FTP/hot/microscopy/EPIslides.txtKumar, S. et al. Nitrogen loss from pristine carbonate-rock aquifers of the Hainich Critical Zone Exploratory (Germany) is primarily driven by chemolithoautotrophic anammox processes. Front. Microbiol. 8, 1951 (2017).Article 

    Google Scholar 
    Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).Article 

    Google Scholar 
    McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).Article 

    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).Article 

    Google Scholar 
    Thamdrup, B. et al. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51, 2145–2156 (2006).Article 

    Google Scholar 
    Taubert, M. et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ. Microbiol. 20, 369–384 (2018).Article 

    Google Scholar 
    Bushnell, B. BBMap (SourceForge, 2014); http://sourceforge.net/projects/bbmapBornemann, T. L. V. et al. Geological degassing enhances microbial metabolism in the continental subsurface. Preprint at bioRxiv https://doi.org/10.1101/2020.03.07.980714 (2020).Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 

    Google Scholar 
    Murat Eren, A. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 

    Google Scholar 
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).Article 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Pelikan, C. et al. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ. Microbiol. 18, 2994–3009 (2016).Article 

    Google Scholar 
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis Illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).Article 

    Google Scholar 
    Orellana, L. H., Rodriguez-R, L. M. & Konstantinidis, K. T. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 45, e14 (2017).
    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0501-8 (2020).Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).Article 

    Google Scholar 
    Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 9, 4956 (2018).Article 

    Google Scholar 
    Wegner, C.-E. et al. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl. Environ. Microbiol. 85, e02346-18 (2019).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Core Team, 2018).RStudio: Integrated Development Environment for R (RStudio Team, 2016).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer (2014). More