More stories

  • in

    Estimating plant–insect interactions under climate change with limited data

    Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Root, T. L., MacMynowski, D. P., Mastrandrea, M. D. & Schneider, S. H. Human-modified temperatures induce species changes: Joint attribution. Proc. Natl. Acad. Sci. USA 102, 7465–7469 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).ADS 
    Article 

    Google Scholar 
    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Walkovszky, A. Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. Int. J. Biometeorol. 41, 155–160 (1998).ADS 
    Article 

    Google Scholar 
    Crick, H. Q. P. & Sparks, T. H. Climate change related to egg-laying trends [8]. Nature 399, 423–424 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 

    Google Scholar 
    Brown, J. L., Li, S. H. & Bhagabati, N. Long-term trend toward earlier breeding in an American bird: A response to global warming?. Proc. Natl. Acad. Sci. USA. 96, 5565–5569 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Chang. Biol. 14, 1959–1972 (2008).ADS 
    Article 

    Google Scholar 
    Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kudo, G., Nishikawa, Y., Kasagi, T. & Kosuge, S. Does seed production of spring ephemerals decrease when spring comes early?. Ecol. Res. 19, 255–259 (2004).Article 

    Google Scholar 
    Doi, H., Gordo, O. & Katano, I. Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Clim. Res. 36, 181–190 (2008).Article 

    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).Article 

    Google Scholar 
    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 16, 3304–3313 (2010).ADS 
    Article 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).Article 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).PubMed 
    Article 

    Google Scholar 
    Brown, C. J. et al. Quantitative approaches in climate change ecology. Glob. Chang. Biol. 17, 3697–3713 (2011).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Parmesan, C., Duarte, C., Poloczanska, E., Richardson, A. J. & Singer, M. C. Overstretching attribution. Nat. Clim. Chang. 1, 2–4 (2011).ADS 
    Article 

    Google Scholar 
    Damos, P. & Savopoulou-Soultani, M. Temperature-driven models for insect development and vital thermal requirements. Psyche (London) 2012, (2012).Osawa, T. et al. Climate-mediated population dynamics enhance distribution range expansion in a rice pest insect. Basic Appl. Ecol. 30, 41–51 (2018).Article 

    Google Scholar 
    Kiritani, K. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 48, 5–12 (2006).Article 

    Google Scholar 
    Ozawa, A., Uchiyama, T. & Kasai, A. Estimating the day on which the numbers of adult tea spiny whiteflies (Aleurocanthus camelliae Kanmiya and Kasai) peaked and the number of generations produced in a year based on the effective cumulative temperature in tea fields. Annu. Rep. Kansai Plant Prot. Soc. 58, 57–64 (2016) (in Japanese).Article 

    Google Scholar 
    Ozawa, A., Saito, T. & Ikeda, F. Effect of host plant and temperature on reproduction of American Serpentine Leafminer, Liriomyza trifolii (Burgess). Japan. J. Appl. Entomol. Zool. 43, 41–48 (1999) (in Japanese).Article 

    Google Scholar 
    Baier, P., Pennerstorfer, J. & Schopf, A. PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For. Ecol. Manage. 249, 171–186 (2007).Article 

    Google Scholar 
    Karuppaiah, V. & Sujayanad, G. K. Impact of climate change on population dynamics of insect pests. (2012).Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 4, 1068–1072 (2014).ADS 
    Article 

    Google Scholar 
    Campbell, B. M. et al. Reducing risks to food security from climate change. Glob. Food Sec. 11, 34–43 (2016).Article 

    Google Scholar 
    Kiritani, K. The low development threshold temperature and the thermal constant in insects and mites in Japan (2nd edition). Bull. Nationai Instirute Agro-Environmental Sci. 31, 1–74 (2012) (in Japanese).
    Google Scholar 
    Nagasawa, A., Takahashi, A. & Higuchi, H. Host plant use for oviposition by Trigonotylus caelestialium (Hemiptera: Miridae) and Stenotus rubrovittatus (Hemiptera: Miridae). Appl. Entomol. Zool. 47, 331–339 (2012).Article 

    Google Scholar 
    Higuchi, H. Ecology and management of rice bugs causing pecky rice. Japan. J. Appl. Entomol. Zool. 54, 171–188 (2010) (in Japanese).Article 

    Google Scholar 
    Ohtomo, R. Occurrence and control of Stenotus rubrovittatus (Hemiptera: Miridae) in Touhoku area in Japan. Japan. J. Appl. Entomol. Zool. 57, 137–149 (2013) (in Japanese).Article 

    Google Scholar 
    Kiritani, K. The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Glob. Chang. Biol. 13, 1586–1595 (2007).ADS 
    Article 

    Google Scholar 
    Nagasawa, A. & Higuchi, H. Suitability of poaceous plants for nymphal growth of the pecky rice bugs Trigonotylus caelestialium and Stenotus rubrovittatus (Hemiptera: Miridae) in Niigata, Japan. Appl. Entomol. Zool. 47, 421–427 (2012).Article 

    Google Scholar 
    Gordo, O. & Sanz, J. J. Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecol. Entomol. 31, 261–268 (2006).Article 

    Google Scholar 
    Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography (Cop.) 20, 368–374 (1997).Article 

    Google Scholar 
    Stefanescu, C., Penuelas, J. & Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 9, 1494–1506 (2003).ADS 
    Article 

    Google Scholar 
    Dell, D., Sparks, T. H. & Dennis, R. L. H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167 (2005).Article 

    Google Scholar 
    Tabuchi, K. et al. Rice bugs in the Tohoku Region: Their occurrence and damage from 2003 to 2013. Bull. Natl. Agric. Res. Cent. Tohoku Reg. 117, 63–115 (2015) (in Japanese).
    Google Scholar 
    Jolly, W. M. & Running, S. W. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob. Chang. Biol. 10, 303–308 (2004).ADS 
    Article 

    Google Scholar 
    Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).Article 

    Google Scholar 
    Takeda, A. & Shimizu, K. Characteristics of the damaged grain caused by the sorghum plant bug, Stenotus rubrovittatus (Hemiptera: Miridae) at different infection periods. Annu. Rep. Kanto-Tosan Plant Prot. Soc. 2009, 85–87 (2009) (in Japanese).
    Google Scholar 
    Ishimoto, M. Seasonal Prevalence of Occurrence of the Rice Leaf Bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) on Paddy Rice Plants. Jpn. J. Appl. Entomol. Zool. 48, 79–85 (2004) (in Japanese).
    Katase, M., Shimizu, K., Siina, S., Hagiwara, K. & Iwai, H. Seasonal occurrence of rice bugs in the northern part of Chiba Prefecture. Annu. Rep. Kanto-Tosan Plant Prot. Soc. 2007, 99–104 (2007) (in Japanese).
    Google Scholar 
    Shintani, Y. Effect of seasonal variation in host–plant quality on the rice leaf bug, Trigonotylus caelestialium. Entomol. Exp. Appl. 133, 128–135 (2009).Article 

    Google Scholar 
    Takada, M. B., Yoshioka, A., Takagi, S., Iwabuchi, S. & Washitani, I. Multiple spatial scale factors affecting mirid bug abundance and damage level in organic rice paddies. Biol. Control 60, 169–174 (2012).Article 

    Google Scholar 
    Yoshioka, A., Takada, M. B. & Washitani, I. Landscape effects of a non-native grass facilitate source populations of a native generalist bug, Stenotus rubrovittatus, in a heterogeneous agricultural landscape. J. Insect Sci. 14, 1–14 (2014).Article 

    Google Scholar 
    Watanabe, T. & Higuchi, H. Recent occurrence and problem of rice bugs. Plant Prot. 60, 201–203 (2006) (in Japanese).
    Google Scholar 
    Seino, H. An estimation of distribution of meteorological elements using GIS and AMeDAS data. J. Agric. Meteorol. 48, 379–383 (1993) (in Japanese).Article 

    Google Scholar 
    Ishigooka, Y., Tsuneo, K., Nishimori, M., Hasegawa, T. & Ohno, H. Spatial characterization of recent hot summers in Japan with agro-climatic indices related to rice production. J. Agric. Meteorol. 67, 209–224 (2011).Article 

    Google Scholar 
    Yamasaki, K. et al. Intraspecific variations in life history traits of two pecky rice bug species from Japan: Mapping emergence dates and number of annual generations. Ecol. Evol. (2021).Sakagami, Y. & Korenaga, R. Triangle method—A simple method for the estimation of total effective temperature. Japan. J. Appl. Entomol. Zool. 25, 52–54 (1981) (in Japanese).Article 

    Google Scholar 
    Shigehisa, S. Seasonal changes in egg diapause induction and effects of photoperiod and temperature on egg diapause in the sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae). Japan. J. Appl. Entomol. Zool. 52, 229–232 (2008) (in Japanese).Article 

    Google Scholar 
    Ishimoto, M. Oviposition of sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae) on rice plants. Japan. J. Appl. Entomol. Zool. 55, 193–197 (2011) (in Japanese).Article 

    Google Scholar 
    Ogata, M. et al. Fecundity and longevity in adults of the sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae) under laboratory conditions. Japan. J. Entomol. 13, 129–132 (2010) (in Japanese).
    Google Scholar 
    Niiyama, T. & Iitomi, A. Optimal control timing of the rice leaf bug, Trigonotylus caelestialium (Heteroptera: Miridae). Annu. Rep. Soc. Plant Prot. North Japan. (in Japanese) (2003).Takeda, A., Shimizu, K., Shiina, S., Hagiwara, K. & Katase, M. Seasonal prevalence of Stenotus rubrovittatus (Hemiptera: Miridae) in a gramineous weed field and a rice field. Annu. Rep. Kanto-Tosan Plant Prot. Soc. 2008, 97–102 (2008) (in Japanese).
    Google Scholar 
    Niiyama, T. Studies on the ecology of Trigonotylus caelestialium and establishment of pesticide control techniques. Annu. Rep. Akita Prefect. Agric. Inst. 49, 147–180 (2009) (in Japanese).
    Google Scholar 
    Sato, M. Latest infestation period of Miridae causing pecky rice damage in Aomori Prefecture. Annu. Rep. Soc. Plant Prot. North Japan 2014, 129–134 (2014) (in Japanese).
    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Nonreproductive effects are more important than reproductive effects in a host feeding parasitoid

    Godfray, H. C. Parasitoids: Behavioural and Evolutionary Ecology (Princeton University Press, 1994).Book 

    Google Scholar 
    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jervis, M. A. & Kidd, N. A. C. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. 61, 395–434 (1986).Article 

    Google Scholar 
    Cebolla, R., Vanaclocha, P., Urbaneja, A. & Tena, A. Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. J. Pest Sci. 91, 327–339 (2018).Article 

    Google Scholar 
    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Münster-Swendsen, M. Population cycles of the spruce needle miner in Denmark driven by interactions with insect parasitoids. In Population Cycles: The Case for Trophic Interactions (ed. Berryman, A. A.) 29–43 (Oxford University Press, 2002).
    Google Scholar 
    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    Heimpel, G. E. & Collier, T. R. The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 71, 373–400 (1996).Article 

    Google Scholar 
    Heimpel, G. E., Rosenheim, J. A. & Adams, J. M. Behavioral ecology of host feeding in Aphytis melinus parasitoid. Nor. J. Agric. Sci. 6, 101–115 (1994).
    Google Scholar 
    Heimpel, G. E. & Rosenheim, J. A. Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. J. Anim. Ecol. 64, 153–167 (1995).Article 

    Google Scholar 
    Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).Article 

    Google Scholar 
    Burger, J. M. S., Hemerik, L., Leteren, J. C. & Vet, L. E. M. Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encasia formosa. Oikos 106, 117–130 (2004).Article 

    Google Scholar 
    Guillemaud, T. et al. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep. 5, 8371 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).Article 

    Google Scholar 
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).Article 

    Google Scholar 
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annu. Rev. Entomol. 63, 239–258 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).Article 

    Google Scholar 
    Han, P. et al. Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol. Gen. 38, 125 (2018).
    Google Scholar 
    Han, P. et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92, 1317–1327 (2019).Article 

    Google Scholar 
    Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–111 (2018).Article 

    Google Scholar 
    Zhang, G. F. et al. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: geographic and potential host range expansion. Pest Manag. Sci. 77, 5475–5488 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desneux, N. et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest Sci. 95, 17–39 (2022).Article 

    Google Scholar 
    Wang, M. H. et al. Polygyny of Tuta absoluta may affect sex pheromone-based control techniques. Entomol. Gen. 41, 357–367 (2021).Article 

    Google Scholar 
    Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H. & Cuthbertson, A. G. S. Pest density influences on tomato pigment contents: the South American tomato pinworm scenario. Entomol. Gen. 40, 195–205 (2020).Article 

    Google Scholar 
    Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gebiola, M., Bernardo, U., Ribes, A. & Gibson, G. A. P. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool. J. Linn. Soc. 173, 352–423 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naselli, M. et al. Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci. 73, 1352–1357 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R. et al. Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae. J. Pest Sci. 93, 207–218 (2020).Article 

    Google Scholar 
    Zhang, Y. B. et al. Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absoluta. Entomol. Gen. https://doi.org/10.1127/entomologia/2021/1246 (2021).Article 

    Google Scholar 
    Bodino, N., Ferracini, C. & Tavella, L. Is host selection influenced by natal and adult experience in the parasitoid Necremnus tutae (Hymenoptera: Eulophidae)?. Anim. Behav. 112, 221–228 (2016).Article 

    Google Scholar 
    Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid, Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).PubMed 
    Article 

    Google Scholar 
    Foltyn, S. & Gerling, D. The parasitoids of the aleyrodid Bemisia tabaci in Israel. Development, host preference and discrimination of the aphelinid Eretmocerus mundus. Entomol. Exp. Appl. 38, 255–260 (1985).Article 

    Google Scholar 
    Zhang, Y. B., Yang, N. W., Sun, L. Y. & Wan, F. H. Host instar suitability in two invasive whiteflies for the naturally occurring parasitoid Eretmocerus hayati in China. J. Pest Sci. 88(2), 1612–1618 (2015).
    Google Scholar 
    Lebreton, S., Darrouzet, E. & Chevrier, C. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding?. J. Insect Physiol. 55, 694–699 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23(7), 803–815 (2013).Article 

    Google Scholar 
    Chailleux, A., Desneux, N., Arnó, J. & Gabarra, R. Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J. Pest Sci. 87(3), 441–448 (2014).Article 

    Google Scholar 
    Asgari, S. & Rivers, D. B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 56, 313–335 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).Article 

    Google Scholar 
    Schlaepfer, M. A., Sherman, P. W., Blossey, B. & Runge, M. C. Introduced species as evolutionary traps. Ecol. Lett. 8, 241–246 (2005).Article 

    Google Scholar 
    van Driesche, R. G., Bellotti, A., Herrera, C. J. & Castello, J. A. Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids, Epidinocarsis diversicornis and Acerophagus coccois. Entomol. Exp. Appl. 44, 97–100 (1987).Article 

    Google Scholar 
    Barrett, B. & Brunner, J. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillaridae) as a host. Environ. Entomol. 19, 803–807 (1990).Article 

    Google Scholar 
    Huang, Y., Loomans, A. J. M., van Lenteren, J. C. & Xu, R. M. Hyperparasitism behavior of the autoparasitoid Encarsia tricolor on two secondary host species. BioControl 54, 411–424 (2009).Article 

    Google Scholar 
    Patel, K. J., Schuster, D. J. & Smerage, G. H. Density dependent parasitism and host-killing of Liriomyza trifolii (Diptera: Agromyzidae) by Diglyphus intermedius (Hymenoptera: Eulophidae). Fla. Entomol. 86, 8–14 (2003).Article 

    Google Scholar 
    Lauziere, I., Perez-Lachaud, G. & Bordeur, J. Influence of host density on the reproductive strategy of Cephalonomia stephanoderis, a parasitoid of the coffee berry borer. Entomol. Exp. Appl. 92, 21–28 (1999).Article 

    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: what keeps organisms small?. Quart. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Idriss, G. E. A., Mohamed, S. A., Khamis, F., Plessis, H. D. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28(6), 614–628 (2018).Article 

    Google Scholar 
    Blanckenhorn, W. U., Preziosi, R. F. & Fairbairn, D. J. Time and energy constraints and the evolution of sexual size dimorphism-to eat or to mate?. Evol. Ecol. 9, 369–381 (1995).Article 

    Google Scholar 
    Blomqvist, D., Johansson, O. C., Unger, U., Larsson, M. & Flodin, L. A. Male aerial display and reversed sexual size dimorphism in the dunlin. Anim. Behav. 54, 1291–1299 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmons, L. W., Tomkins, J. L. & Hunt, J. Sperm competition games played by dimorphic male beetles. Proc. R. Soc. Lond. B 266, 145–150 (1999).Article 

    Google Scholar 
    Madsen, T. & Shine, R. Costs of reproduction influence the evolution of sexual size dimorphism in snakes. Evolution 48, 1389–1397 (1994).PubMed 
    Article 

    Google Scholar 
    Blanckenhorn, W. U., Morf, C., Mühlhäuser, C. & Reusch, T. Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J. Evol. Biol. 9, 369–381 (1999).
    Google Scholar  More

  • in

    Short-term mercury exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird

    Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).Article 

    Google Scholar 
    Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c04158 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations Environment Programme (UNEP). 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland. https://www.unep.org/resources/publication/global-mercury-assessment-2018Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J. & Faccio, S. D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cristol, D. A. et al. The movement of aquatic mercury through terrestrial food webs. Science 320, 335 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. Encycl. Anthropocene 5, 181–194 (2018).Article 

    Google Scholar 
    Whitney, M. C. & Cristol, D. A. Impacts of sublethal mercury exposure on birds: a detailed review. Rev. Environ. Contam. Toxicol. 244, 113–163 (2017).
    Google Scholar 
    Seewagen, C. L. Threats of environmental mercury to birds: Knowledge gaps and priorities for future research. Bird Conserv. Int. 20, 112–123 (2010).Article 

    Google Scholar 
    Seewagen, C. L. The threat of global mercury pollution to bird migration: Potential mechanisms and current evidence. Ecotoxicology 29, 1254–1267 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Y., Branfireun, B. A., Hobson, K. A. & Guglielmo, C. G. Evidence of negative seasonal carry-over effects of breeding ground mercury exposure on survival of migratory songbirds. J. Avian Biol. 49, jav-01656 (2018).Article 

    Google Scholar 
    Newton, I. Can conditions experienced during migration limit the population levels of birds?. J. Ornithol. 147, 146–166 (2006).Article 

    Google Scholar 
    Klaassen, M., Hoye, B. J., Nolet, B. A. & Buttemer, W. A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. B 367, 1719–1732 (2020).Article 

    Google Scholar 
    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Chang. 8, 992–996 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seewagen, C. L., Ma, Y., Morbey, Y. E. & Guglielmo, C. G. Stopover departure behavior and flight orientation of spring-migrant Yellow-rumped Warblers (Setophaga coronata) experimentally exposed to methylmercury. J. Ornithol. 160, 617–624 (2019).Article 

    Google Scholar 
    Seewagen, C. L. Blood mercury levels and the stopover refueling performance of a long-distance migratory songbird. Can. J. Zool. 91, 41–45 (2013).CAS 
    Article 

    Google Scholar 
    Adams, E. M., Williams, K. A., Olsen, B. J. & Evers, D. C. Mercury exposure in migrating songbirds: Correlations with physical condition. Ecotoxicology 29, 1240–1253 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Y., Perez, C. R., Branfireun, B. A. & Guglielmo, C. G. Dietary exposure to methylmercury affects flight endurance in a migratory songbird. Environ. Pollut. 234, 894–901 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerson, A. R., Cristol, D. A. & Seewagen, C. L. Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird. Environ. Pollut. 246, 790–796 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenni, L. & Jenni-Eiermann, S. Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29, 521–552 (1998).Article 

    Google Scholar 
    McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).Article 

    Google Scholar 
    Guglielmo, C. G. Move that fatty acid: Fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 50, 336–345 (2010).PubMed 
    Article 

    Google Scholar 
    Guglielmo, C. G. Obese super athletes: Fat-fueled migration in birds and bats. J. Exp. Biol. 221(Suppl_1), 165753 (2018).Article 

    Google Scholar 
    Kawakami, T. et al. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 258, 32–42 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yadetie, F. et al. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat. Toxicol. 126, 314–325 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Park, K. & Seo, E. Association between toenail mercury and metabolic syndrome is modified by selenium. Nutrients 8, 424 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caito, S. W., Newell-Caito, J., Martell, M., Crawford, N. & Aschner, M. Methylmercury induces metabolic alterations in Caenorhabditis elegans: Role for C/EBP transcription factor. Toxicol. Sci. 174, 112–123 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edmonds, S. T., O’Driscoll, N. J., Hillier, N. K., Atwood, J. L. & Evers, D. C. Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environ. Pollut. 171, 148–154 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowse, L. M., Rodewald, A. D., Mažeika, S. & Sullivan, P. Pathways and consequences of contaminant flux to Acadian flycatchers (Empidonax virescens) in urbanizing landscapes of Ohio, USA. Sci. Total Environ. 485, 461–467 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Marsh, R. L. Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J. Comp. Physiol. 141, 417–423 (1981).CAS 
    Article 

    Google Scholar 
    Guglielmo, C. G., Haunerland, N. H., Hochachka, P. W. & Williams, T. D. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282(5), R1405–R1413 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maillet, D. & Weber, J. M. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: Evidence for natural doping. J. Exp. Biol. 210, 413–420 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weber, J. M. Metabolic fuels: Regulating fluxes to select mix. J. Exp. Biol. 214, 286–294 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. & Wahli, W. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid. Res. 45, 120–159 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477. https://doi.org/10.1038/nature07202 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ynalvez, R., Gutierrez, J. & Gonzalez-Cantu, H. Mini-review: Toxicity of mercury as a consequence of enzyme alteration. Biometals 29, 781–788 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerson, A. R. & Guglielmo, C. G. Energetics and metabolite profiles during early flight in American robins (Turdus Migratorius). J. Comp. Physiol. B. 183, 983–991 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Price, E. R., McFarlan, J. T. & Guglielmo, C. G. Preparing for migration? The effects of photoperiod and exercise on muscle oxidative enzymes, lipid transporters, and phospholipids in white-crowned sparrows. Physiol. Biochem. Zool. 83, 252–262 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, S. S., Dick, M. F., Guglielmo, C. G. & Timoshenko, A. V. Seasonal and flight-related variation of galectin expression in heart, liver and flight muscles of yellow-rumped warblers (Setophaga coronata). Glycoconj. J. 34, 603–611 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFarlan, J. T., Bonen, A. & Guglielmo, C. G. Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J. Exp. Biol. 212, 2934–2940 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y., King, M. O., Harmon, E., Eyster, K. & Swanson, D. L. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. J. Comp. Physiol. B. 185, 797–810 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dick, M. F. & Guglielmo, C. G. Dietary polyunsaturated fatty acids influence flight muscle oxidative capacity but not endurance flight performance in a migratory songbird. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 316(4), R362–R375 (2019).CAS 
    Article 

    Google Scholar 
    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bittencourt, L. O. et al. Oxidative biochemistry disbalance and changes on proteomic profile in salivary glands of rats induced by chronic exposure to methylmercury. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/5653291 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Q., Sun, N., Kou, H., Wang, H. & Zhao, H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. Ecotoxicol. Environ. Saf. 164, 500–509 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nøstbakken, O. J. et al. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat. Toxicol. 108, 70–77 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Zink, E. M. Comparison of the mercury induced proteomes of Escherichia coli MG1655 with and without the NR1 plasmid. MSc thesis, Washington State University, Pullman, WA (2009).Lundgren, B. O. & Kiessling, K. H. Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia 66, 468–471 (1985).ADS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee, S. & Chaturvedi, C. M. Migratory preparation associated alterations in pectoralis muscle biochemistry and proteome in Palearctic-Indian emberizid migratory finch, red-headed bunting, Emberiza bruniceps. Comp. Biochem. Physiol. D Genom. Proteom. 17, 9–25 (2016).CAS 

    Google Scholar 
    Dick, M. F. The long haul: migratory flight preparation and performance in songbirds. Ph.D. dissertation, University of Western Ontario, London, Canada (2017).Driedzic, W. R., Crowe, H. L., Hicklin, P. W. & Sephton, D. H. Adaptations in pectoralis muscle, heart mass, and energy metabolism during premigratory fattening in semipalmated sandpipers (Calidris pusilla). Can. J. Zool. 71, 1602–1608 (1993).Article 

    Google Scholar 
    De Moranville, K. J. et al. PPAR expression, muscle size and metabolic rates across the gray catbird’s annual cycle are greatest in preparation for fall migration. J. Exper. Biol. 222, 198028 (2019).Article 

    Google Scholar 
    Zajac, D. M., Cerasale, D. J., Landman, S. & Guglielmo, C. G. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen. Comp. Endocrinol. 174, 269–275 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tinant, G. et al. Methylmercury displays pro-adipogenic properties in rainbow trout preadipocytes. Chemosphere 263, 127917 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cambier, S. et al. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol. 41, 791–799 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferain, A. et al. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. Aquat. Toxicol. 199, 174–187 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Börchers, T., Højrup, P., Nielsen, S. U., Roepstorff, P., Spener, F., Knudsen, J. Revision of the amino acid sequence of human heart fatty acid-binding protein. In Cellular Fatty Acid-binding Proteins 127–133 (Springer, Boston, 1990).Dörmann, P. et al. Amino acid exchange and covalent modification by cysteine and glutathione explain isoforms of fatty acid-binding protein occurring in bovine liver. J. Biol. Chem. 268, 16286–16292 (1993).PubMed 
    Article 

    Google Scholar 
    Su, X. & Abumrad, N. A. Cellular fatty acid uptake: A pathway under construction. Trends Endocrinol. Metab. 20(2), 72–77 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oort, M. M. et al. Each of the four intracellular cysteines of CD36 is essential for insulin-or AMP-activated protein kinase-induced CD36 translocation. Arch. Physiol. Biochem. 120, 40–49 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vallee, B. L. & Ulmer, D. D. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41, 91–128 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aschner, M. & Syversen, T. Methylmercury: Recent advances in the understanding of its neurotoxicity. Ther. Drug Monit. 27, 278–283 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenow, K. P., Meyer, M. W., Hines, R. K. & Karasov, W. H. Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ. Toxicol. Chem. 26, 1047–1055 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Varian-Ramos, C. W., Whitney, M., Rice, G. W. & Cristol, D. A. Form of dietary methylmercury does not affect total mercury accumulation in the tissues of zebra finch. Bull. Environ. Contam. Toxicol. 99, 1–8 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzetti, D. A. et al. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 418, 41–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richter, C. A. et al. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). Gen. Comp. Endocrinol. 203, 215–224 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, D. M., Hanlon, P. R. & Kircher, E. A. Effects of inorganic HgCl2 on adipogenesis. Toxicol. Sci. 75(2), 368–377 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corder, K. R., DeMoranville, K. J., Russell, D. E., Huss, J. M. & Schaeffer, P. J. Annual life-stage regulation of lipid metabolism and storage and association with PPARs in a migrant species: the gray catbird (Dumetella carolinensis). J. Exp. Biol. 219, 3391–3398 (2016).PubMed 

    Google Scholar 
    DeMoranville, K. J., Carter, W. A., Pierce, B. J. & McWilliams, S. R. Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 319(6), R637–R652 (2020).CAS 
    Article 

    Google Scholar 
    Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278(36), 34268–34276 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bedoucha, M., Atzpodien, E. & Boelsterli, U. A. Diabetic KKAy mice exhibit increased hepatic PPARγ1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J. Hepatol. 35, 17–23 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Egeler, O., Williams, T. D. & Guglielmo, C. G. Modulation of lipogenic enzymes, fatty acid synthase and Δ 9-desaturase, in relation to migration in the western sandpiper (Calidris mauri). J. Comp. Physiol. B 170, 169–174 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klaper, R. et al. Use of a 15k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow (Pimephales promelas). J. Fish Biol. 72, 2207–2280 (2008).CAS 
    Article 

    Google Scholar 
    Calow, P. Physiological costs of combating chemical toxicants: Ecological implications. Comp. Biochem. Physiol. C 100, 3–6 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spalding, M. G. et al. Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J. Wildl. Dis. 36, 423–435 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. R., Cristol, D. & Swaddle, J. P. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings (Sturnus vulgaris). Ecotoxicology 23, 1464–1473 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Faaborg, J. et al. Conserving migratory land birds in the New World: Do we know enough?. Ecol. Appl. 20, 398–418 (2010).PubMed 
    Article 

    Google Scholar 
    Duijns, S. et al. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B https://doi.org/10.1098/rspb.2017.1374 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Effects of strip cropping with reducing row spacing and super absorbent polymer on yield and water productivity of oat (Avena sativa L.) under drip irrigation in Inner Mongolia, China

    Clemens, R. et al. Oats, more than just a whole grain: an introduction. Br. J. Nutr. 112, S1–S3 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stewart, D. & Mcdougal, G. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. Br. J. Nutr. 2, 50–57 (2014).Article 
    CAS 

    Google Scholar 
    Ren, C. Z. et al. “Twelfth Five-Year” Development Report of China’s Oat and Buckwheat Industry. Xi’an: Shaanxi Science and Technology Press, 2011–2015 (2016).Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Indian Natl. Sci. Acad. 107, 11155–11162 (2010).ADS 
    CAS 

    Google Scholar 
    Yu, L., Zhao, X., Gao, X. & Siddique, K. H. M. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agric. Water Manag. 228, 105906 (2020).Article 

    Google Scholar 
    Bai, W., Zhang, H., Liu, B., Wu, Y. & Song, J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 26, 253–260 (2010).Article 

    Google Scholar 
    Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Change 54, 269–293 (2002).ADS 
    Article 

    Google Scholar 
    Harris, F. et al. The water use of Indian diets and socio- demographic factors related to dietary blue water footprint. Sci. Total Environ. 587, 128–136 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Unesco. Water and jobs: Facts and figures. Perugia, Italy: UNESCO, World Water Assessment Program. Retrieved from http://unesdoc.unesco.org/images/0024/002440/244041e.pdf (2016).Landi, A. et al. Land suitability evaluation for surface, sprinkle and drip irrigation methods in Fakkeh Plain. Iran. J. Appl. Anim. Sci. 8, 3646–3653 (2008).ADS 

    Google Scholar 
    Kang, S. et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 179, 5–17 (2017).Article 

    Google Scholar 
    Yang, D. et al. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric. Water Manag. 232, 106001 (2020).Article 

    Google Scholar 
    Xu, S. T., Zhang, L., Neil, B. & McLaughlin, Mi. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Till. Res. 148, 31–39 (2015).Article 

    Google Scholar 
    Roper, M. M., Ward, P. R., Keulen, A. F. & Hill, J. R. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Till. Res. 126, 143–150 (2013).Article 

    Google Scholar 
    Zhao, H. et al. Ridge-furrow with full plasticfilm mulching improves water use efficiency and tuber yields of potato in a se miarid rainfed ecosystem. Field Crop Research. 161, 137–148 (2014).Article 

    Google Scholar 
    Li, J. et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 224, 105736 (2019).Article 

    Google Scholar 
    Chouhan, S. S., Awasthi, M. K. & Nema, R. K. Studies on water productivity and yields responses of wheat based on drip irrigation systems in clay loam soil. Indian J. Sci. Technol. 8, 650 (2015).Article 

    Google Scholar 
    Liao, L., Zhang, L. & Bengtsson, L. Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigat. Drainag. Syst. 22, 253–270 (2008).Article 

    Google Scholar 
    Jha, S. K. et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 217, 292–302 (2019).Article 

    Google Scholar 
    Yan, Z., Fengxin, W., Qi, Z., Kaijing, Y. & Youliang, Z. Effect of drip tape distance and irrigation amount on spring wheat yield and water use efficiency. Chin. Agric. Sci. Bull. 32, 194–199 (2016).
    Google Scholar 
    Chen, R. et al. Lateral spacing in drip-irrigated wheat: the effects on soil moisture, yield, and water use efficiency. Field Crop Res. 179, 52–62 (2015).Article 

    Google Scholar 
    Shock, C. C., Feibert, E.B.G., & Saunders, L. D. Water management for drip-irrigated spring wheat. Annual Rep. Med. Chem.. 2007 (2005).Bhardwaj, A. K., Shainberg, I., Goldstein, D., Warrington, D. N. & Levy, G. J. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Sci. Soc. Am. J. 71, 406–412 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Islam, M. R. et al. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco- physiological parameters. J. Agric. Food Sci. 91, 1998–2005 (2011).CAS 
    Article 

    Google Scholar 
    Nazarli, H., Zardashti, M. R., Darvishzadeh, R. & Najafi, S. The effect of water stress and polymer on water use efficiency, yield, and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae. 2, 53–58 (2010).Article 

    Google Scholar 
    Huettermann, A., Orikiriza, L. J. & Agaba, H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean: Soil, Air, Water 37, 517–526 (2009).CAS 

    Google Scholar 
    Jain, N. K., Meena, H. N. & Bhaduri, D. Improvement in productivity, water use efficiency, and soil nutrient dynamics of summer peanut (Arachis hypogaea L) through use of polythene mulch, hydrogel, and nutrient management. Commun. Soil Sci. Plant Anal. 48, 549–564 (2017).CAS 
    Article 

    Google Scholar 
    Shekari, F., Javanmard, A. & Abbasi, A. Effects of super absorbent polymer application on yield and yield components of rapeseed. Notulae Scientia Biologicae. 7, 361–366 (2015).Article 

    Google Scholar 
    Wang, L. et al. Drip irrigation mode and water-retaining agent on growth regulation and water-saving effect of small coffee. Chin. J. Drainag. Irrigat. Mech. Eng. 33, 796–801 (2015).
    Google Scholar 
    Liu, P. et al. Effects of soil treatments on soil moisture and soybean yield under the condition of underground drip irrigation. Water Saving Irrigat. 25–28 (2019).Li, R. et al. Effects of water-retaining agent on soil water, fertilizer and corn yield under drip irrigation. J. Drainag. Irrigat. Mech. Eng. 36, 1337–1344 (2018).
    Google Scholar 
    Ma, B. L., Biswas, D. K., Zhou, Q. P. & Ren, C. Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 92, 1213–1222 (2012).Article 

    Google Scholar 
    He, W. Effects of different irrigation methods on photosynthesis and soil biological characteristics of oat. Inner Mongolia: Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2013).Wu, N. et al. Effects of water-retaining agent dosage on the yield and quality of naked oats under two irrigation methods. J. Crops 35, 1552–1557 (2009).CAS 

    Google Scholar 
    Gee, G.W., Bauder, J.W.,. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Soil Science Society of America, South Segoe Road, Madison, WI 53711 USA. 383–409 (1986).Lu, R. Soil Agricultural Chemical Analysis Method (China Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Wang, D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crop Res. 213, 213–220 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric. Water Manag. 211, 142–151 (2019).Article 

    Google Scholar 
    Finn, D. et al. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biol. Biochem. 91, 160–168 (2015).CAS 
    Article 

    Google Scholar 
    Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136 (2016).Article 

    Google Scholar 
    Luo, C. L. et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bengough, A. G. Water dynamics of the root zone: Rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal. 11, 1–6 (2012).Article 

    Google Scholar 
    Zobel, R. W. Plant Roots: Rowth, Activity and Interaction with Soils. Crop Sci. 46, 2699 (2006).Article 

    Google Scholar 
    Scholl, P. et al. Root induced changes of effective 1D hydraulic properties in a soil column. Plant Soil 381, 193–213 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, S. M. & Weil, R. R. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68, 1403–1409 (2010).Article 

    Google Scholar 
    Farrell, C., Ang, X. Q. & Rayner, J. P. Water-retention additives increase plant available water in green roof substrates. Ecol. Eng. 52, 112–118 (2013).Article 

    Google Scholar 
    Agaba, H. et al. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean: Soil, Air, Water 38, 328–335 (2010).CAS 

    Google Scholar 
    Wu, L., Liu, M. Z. & Liang, R. Preparation and properties of a double-coated slow release NPK compound fertilizer with superabsorbent and water-retention. Biores. Technol. 99, 547–554 (2008).CAS 
    Article 

    Google Scholar 
    Afshar, R. K. et al. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind. Crops Prod. 58, 166–172 (2014).CAS 
    Article 

    Google Scholar 
    Wang, L. Effects of different sowing dates and fertilizer rates on the growth and yield of oats in Yinshan hilly area. Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2020).Liu, Y. G. et al. Influence of planting density on the yield of naked oats and its constituent factors. J. Wheat Crops 28, 140–143 (2008).
    Google Scholar 
    Jia, Z. F. Effects of sowing rate and row spacing on grain quality of naked oat. Seed. 32, 67–69 (2013).
    Google Scholar 
    Lascano, R. J. & Van Bavel, C. H. M. Stimulation and measurement of evaporation from bare soil. Soil Sci. Soc. Am. J. 50, 1127–1132 (1986).ADS 
    Article 

    Google Scholar 
    Lv, P. et al. Effects of descending distance under wide sowing conditions on wheat yield and dry matter accumulation and transport. J. Wheat Crops 40, 1–6 (2020).
    Google Scholar 
    Sun, H. Y. et al. Effects of different row spacing on evapotranspiration and yield of winter wheat in wheat fields. Chin. J. Agric. Eng. 1, 22–26 (2006).
    Google Scholar 
    Li, G. X. et al. Effects of sowing row spacing on yield and water use efficiency of dryland wheat in different years. Agric. Technol. Equipm. 1, 22–26 (2012).ADS 

    Google Scholar 
    Chen, S. Y. et al. Effects of planting row spacing on soil evaporation and water use in winter wheat fields. Chin. J. Ecol. Agric. 14, 86–89 (2006).
    Google Scholar 
    Yang, Y. H. et al. Effects of water-retaining agent on soil moisture and utilization of winter wheat at different growth stages. Chin. J. Agric. Eng. 26, 19–26 (2010).
    Google Scholar 
    Yang, Y. H. et al. Effects of different moisture conservation tillage measures on water consumption characteristics and annual water use of wheat and maize. North China Agric. J. 32, 103–110 (2017).
    Google Scholar 
    Du, S. N. et al. Effects of Water and PAM Application Modes on Soil Moisture and Maize Growth. Chin. J. Agric. Eng. 24, 30–35 (2008).
    Google Scholar 
    Tian, L. et al. Effects of combined application of water-retaining agent and microbial fertilizer on dry matter accumulation, distribution, transport and yield of dry oat. J. Ecol. 39, 2996–3003 (2020).
    Google Scholar  More

  • in

    Anisogamy explains why males benefit more from additional matings

    Lehtonen12 presents three simple models with the same broad structure: a single mutant individual with divergent mating behaviour arises in a population of ‘residents’ that all play the same strategy, and the success of that mutant is then followed (Figs. 1, 2). Specifically, Lehtonen investigates the fitness benefits of increased mating for mutant males in comparison to mutant females. Two important parameters can be varied: (i) the degree of anisogamy (defined here as the ratio of sperm number to egg number), which captures how divergent males and females are in the size (and thus number) of gametes they produce, and (ii) the efficiency of fertilisation, which determines how easily gametes can find and fuse with each other. If fertilisation is highly efficient, then gametes of the less numerous type will achieve nearly full fertilisation; on the other hand, inefficient fertilisation can result in gametes of both sexes going unfertilised.Fig. 2: Structure of the three models of Lehtonen12, showing differences in mating behaviour between resident males (green), resident females (blue) and mutant males and females (both yellow).For illustration, we suppose that females produce four eggs each and males produce eight sperm (the anisogamy ratio in nature is typically much higher). In Model 1, resident individuals spawn monogamously in a ‘nest’ (black outline), whereas mutant males and females can bring additional partners to their nest to spawn in a group. In Model 2, resident individuals divide their gametes equally among m spawning groups, each consisting of m individuals of each sex (shown here with m = 2). Mutant males and females instead divide their gametes among a larger or smaller number of groups, mmutant (shown here with mmutant = 4). In Model 3, there is a further sex asymmetry in addition to anisogamy: Fertilisation takes place inside the female’s body. Resident individuals mate with m partners (shown here with m = 2), whereas mutant males and females mate with a larger or smaller number of partners, mmutant (shown here with mmutant = 4).Full size imageIn the first two models, fertilisation is external and no assumptions are made about pre-existing differences between the sexes apart from the number of gametes they produce. In other words, males and females are identical except that males produce sperm in greater numbers than females produce eggs. In Model 1, resident individuals are assumed to mate monogamously, whereas a mutant can monopolise multiple partners of the opposite sex (Fig. 2). Importantly, both male and female mutants can bring additional partners back to their ‘nest’ to spawn in a group. When fertilisation is highly efficient, females can fertilise all of their eggs by bringing back a single male, and there is simply no benefit (in this model) of seeking further partners (Fig. 1A). In contrast, anisogamy means that males always produce at least some gametes in excess, and thus can benefit from seeking additional mates. When fertilisation is inefficient, however, both sexes benefit from increasing the concentration of opposite-sex gametes at their ‘nest’ (Fig. 1B). This latter benefit is sex-symmetric, whereas the former continues to apply only to males. As a consequence, the Bateman gradients are always steeper for males than for females (Fig. 1A, B), confirming Bateman’s argument.Model 2 similarly assumes external fertilisation, but in this case the resident males and females meet in groups consisting of m individuals of each sex (Fig. 2). Fertilisation occurs via group spawning. It is assumed that each resident individual divides its gametes evenly across M groups, whereas mutant individuals can instead spread their gametes over a larger or smaller number of groups (note that the author assumes that M = m, but this assumption could be relaxed without undermining the core argument). Spreading gametes out across a larger number of spawning groups does not increase the concentration of opposite-sex gametes they encounter (Fig. 2). However, a mutant that spreads its gametes more widely reduces the density of its own gametes across those groups in which it spawns. This in turn results in there being more opposite-sex gametes for each gamete of the mutant’s sex in those groups. For example, in Fig. 2, mutant males spawn in twice as many groups as resident males and thereby halve the density of their own sperm in each group. The resulting egg-to-sperm ratio of (frac{4}{6}=frac{2}{3}) is more favourable than the ratio of (frac{4}{8}=frac{1}{2}) that the resident males experience. Mutant females can similarly increase local sperm-to-egg ratios by spreading their eggs over more groups. However, in contrast to males, this only leads to fitness benefit if fertilisation is inefficient, and even then the benefit to females is very modest (scarcely perceptible in Fig. 1D). Gamete spreading reduces wasteful competition among the mutants’ own gametes for fertilisation. Such ‘local’ gamete competition, like gamete competition more generally, is stronger among sperm than among eggs because sperm are more numerous under anisogamy13,14. Consequently, as in Model 1, Bateman gradients are always steeper in males (Fig. 1C, D). Recall that the results of the above models emerge in the absence of any assumptions beyond the sex difference in the number of gametes produced.The third and final model allows for a further pre-existing difference between the sexes in addition to anisogamy: internal fertilisation, which is common and widespread in animals (Fig. 2)15. Each female is assumed to mate with m males, while each male divides his gametes evenly among m females. As in the previous two models, males benefit more than females from additional matings under most conditions. However, in the particular case where fertilisation is highly inefficient and the ratio of sperm to eggs is not too large, the pattern can theoretically reverse, such that female Bateman gradients exceed their male counterparts (Fig. 1F). The reason is that the effects of gamete concentration are asymmetric under internal fertilisation: Multiple mating by a female increases the local concentration of sperm its eggs experience, whereas a male’s multiple mating does not increase the concentration of eggs around its sperm (Fig. 2). Under conditions of severe sperm limitation—due to both weak anisogamy and highly inefficient fertilisation—this can lead to females benefitting more from additional matings than males (Fig. 1F). Although intriguing, it is unclear whether this finding has any empirical relevance, as sperm limitation is probably rarely severe in internal fertilisers. Under more realistic conditions of moderate to high fertilisation rates, sex differences in the degree of local gamete competition once again become decisive, and male Bateman gradients exceed their female counterparts (Fig. 1E). More

  • in

    Life table construction for crapemyrtle bark scale (Acanthococcus lagerstroemiae): the effect of different plant nutrient conditions on insect performance

    USDA, N. Census of Horticultural Specialties (USDA, 2014).
    Google Scholar 
    USDA, N. Census of Horticultural Specialties (USDA, 2019).
    Google Scholar 
    Soliman, A. S. & Shanan, N. T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 19, 35–45 (2017).Article 

    Google Scholar 
    Chappell, M. R., Braman, S. K., Williams-Woodward, J. & Knox, G. J. J. o. E. H. Optimizing plant health and pest management of Lagerstroemia spp. in commercial production and landscape situations in the southeastern United States: A review. 30, 161–172 (2012).Gu, M., Merchant, M., Robbins, J. & Hopkins, J. Crape Myrtle Bark Scale: A New Exotic Pest. Texas A&M AgriLife Ext. Service. EHT 49 (2014).Kondo, T., Gullan, P. J. & Williams, D. J. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Ciencia y Tecnología Agropecuaria 9, 55–61 (2008).Article 

    Google Scholar 
    Jiang, N. & Xu, H. Observertion on Eriococcus lagerostroemiae Kuwana. J. Anhui Agric. Coll. 25, 142–144 (1998).
    Google Scholar 
    He, D., Cheng, J., Zhao, H. & Chen, S. Biological characteristic and control efficacy of Eriococcus lagerstroemiae. Chin. Bull. Entomol. 45, 812–814 (2008).
    Google Scholar 
    Harcourt, D. The development and use of life tables in the study of natural insect populations. Annu. Rev. Entomol. 14, 175–196 (1969).Article 

    Google Scholar 
    Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 15–26 (1948).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article 

    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 24, 225–240 (1985).
    Google Scholar 
    Fathipour, Y. & Maleknia, B. in Ecofriendly Pest Management for Food Security (ed Omkar) 329–366 (Academic Press, 2016).Auad, A. et al. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphididae) fed with signal grass. Fla. Entomol. 569–577 (2009).Qu, Y. et al. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 26, 1002–1009 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Araujo, E. S., Benatto, A., Mogor, A. F., Penteado, S. C. & Zawadneak, M. A. Biological parameters and fertility life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae) on strawberry. Braz. J. Biol. 76, 937–941. https://doi.org/10.1590/1519-6984.04715 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krishnamoorthy, S. V. & Mahadevan, N. R. Life table studies of sugarcane scale, Melanaspis glomerata G. J. Entomol. Res. 27, 203–212 (2003).
    Google Scholar 
    Uematsu, H. Studies on life table for an armored scale insect, Aonidiella taxus Leonardi (Homoptera: Diaspididae). J. Fac. Agric. Kyushu Univ. (1979).Hill, M. G., Mauchline, N. A., Hall, A. J. & Stannard, K. A. Life table parameters of two armoured scale insect (Hemiptera: Diaspididae) species on resistant and susceptible kiwifruit (Actinidia spp.) germplasm. N. Z. J. Crop Hortic. Sci. 37, 335–343 (2009).Article 

    Google Scholar 
    Yong, C. X. W. Z. C. & Shaoyun, Z. J. Y. S. W. Age-specific life table of chinese white wax scale (Ericerus pela) natural population and analysis of death key factors. Scientia Silvae Sinica 9 (2008).Rosado, J. F. et al. Natural biological control of green scale (Hemiptera: Coccidae): a field life-table study. Biocontrol. Sci. Technol. 24, 190–202 (2014).Article 

    Google Scholar 
    Fand, B. B., Gautam, R. D., Chander, S. & Suroshe, S. S. Life table analysis of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) under laboratory conditions. J. Entomol. Res. 34, 175–179 (2010).
    Google Scholar 
    Vargas-Madríz, H. et al. Life and fertility table of Bactericera cockerelli (Hemiptera: Triozidae), under different fertilization treatments in the 7705 tomato hybrid. Rev. Chil. entomol. 39 (2014).Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    Saska, P. et al. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest. Sci. 94, 423–434 (2021).Article 

    Google Scholar 
    Ma, K., Tang, Q., Xia, J., Lv, N. & Gao, X. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 158, 40–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ullah, F. et al. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE 15, e0238707 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Güncan, A. & Gümüş, E. Influence of different hazelnut cultivars on some demographic characteristics of the filbert aphid (Hemiptera: Aphididae). J. Econ. Entomol. 110, 1856–1862 (2017).PubMed 
    Article 

    Google Scholar 
    Bailey, R., Chang, N.-T., Lai, P.-Y. & Hsu, T.-C. Life table of cycad scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae), reared on Cycas in Taiwan. J. Asia Pac. Entomol. 13, 183–187 (2010).Article 

    Google Scholar 
    Wang, Z., Chen, Y. & Diaz, R. Temperature-dependent development and host range of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae). Fla. Entomol. 102, 181–186 (2019).Article 

    Google Scholar 
    Zhang, Z.-J. et al. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 17, e3000162 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z., Chen, Y., Diaz, R. & Laine, R. A. Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. J. Insect Physiol. 112, 1–8 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Suh, S.-J. Notes on some parasitoids (Hymenoptera: Chalcidoidea) associated with Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae) in the Republic of Korea. Insecta mundi 0690, 1–5 (2019).
    Google Scholar 
    Meindl, G. A., Bain, D. J. & Ashman, T.-L. Edaphic factors and plant–insect interactions: Direct and indirect effects of serpentine soil on florivores and pollinators. Oecologia 173, 1355–1366 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wielgolaski, F. E. Phenological modifications in plants by various edaphic factors. Int. J. Biometeorol. 45, 196–202 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uchida, R. in Plant nutrient management in Hawaii’s soils (ed Raymond S. Uchida James A. Silva) 31–55 (University of Hawaii at Manoa, College of Agriculture & Tropical Resources, 2000).Flanders, S. E. Observations on host plant induced behavior of scale insects and their endoparasites. Can. Entomol. 102, 913–926 (1970).Article 

    Google Scholar 
    Yang, T.-C. & Chi, H. Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J. Econ. Entomol. 99, 691–698 (2006).PubMed 
    Article 

    Google Scholar 
    Tuan, S. J., Lee, C. C. & Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vafaie, E. et al. Seasonal population patterns of a new scale pest, Acanthococcus lagerstroemiae Kuwana (Hemiptera: Sternorrhynca: Eriococcidae), of Crapemyrtles in Texas, Louisiana, and Arkansas. J. Environ. Hortic. 38, 8–14 (2020).Article 

    Google Scholar 
    Vafaie, E. K. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Hemiptera: Eriococcidae) on Potted Crapemyrtles, 2017. Arthropod manag. tests 44, tsy109 (2019).Vafaie, E. K. & Knight, C. M. J. A. M. T. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Crapemyrtle Bark Scale) on Landscape Crapemyrtles, 2016. 42, tsx130 (2017).Vafaie, E. & Gu, M. Insecticidal control of crapemyrtle bark scale on potted crapemyrtles, Fall 2018. Arthropod. Manag. Tests 44, tsz061 (2019).Article 

    Google Scholar 
    Aktar, M. W., Sengupta, D. & Chowdhury, A. J. I. t. Impact of pesticides use in agriculture: their benefits and hazards. 2, 1 (2009).Grafton-Cardwell, E. & Vehrs, S. Monitoring for organophosphate-and carbamate-resistant armored scale (Homoptera: Diaspididae) in San Joaquin valley citrus. J. Econ. Entomol. 88, 495–504 (1995).CAS 
    Article 

    Google Scholar 
    Almarinez, B. J. M. et al. Biological control: A major component of the pest management program for the invasive coconut scale insect, Aspidiotus rigidus Reyne, in the Philippines. Insects 11, 745 (2020).PubMed Central 
    Article 

    Google Scholar 
    Grout, T. & Richards, G. Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell)(Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J. Appl. Entomol. 111, 20–27 (1991).Article 

    Google Scholar 
    Grafton-Cardwell, E., Millar, J., O’Connell, N. & Hanks, L. Sex pheromone of yellow scale, Aonidiella citrina (Homoptera: Diaspididae): Evaluation as an IPM tactic. J. Agric. Urban. Entomol. 17, 75–88 (2000).CAS 

    Google Scholar 
    Jactel, H., Menassieu, P., Lettere, M., Mori, K. & Einhorn, J. Field response of maritime pine scale, Matsucoccus feytaudi Duc. (Homoptera: Margarodidae), to synthetic sex pheromone stereoisomers. J. Chem. Ecol. 20, 2159–2170 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendel, Z. et al. Outdoor attractancy of males of Matsucoccus josephi (Homoptera: Matsucoccidae) and Elatophilus hebraicus (Hemiptera: Anthocoridae) to synthetic female sex pheromone of Matsucoccus josephi. J. Chem. Ecol. 21, 331–341 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zada, A. et al. Sex pheromone of the citrus mealybug Planococcus citri: Synthesis and optimization of trap parameters. J. Econ. Entomol. 97, 361–368 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Z. & Shi, Y. Studies on the Morphology and Biology of Eriococcus Lagerstroemiae Kuwana. J. Shandong Agri. Univ. 2 (1986).Savopoulou-Soultani, M., Papadopoulos, N. T., Milonas, P. & Moyal, P. Abiotic factors and insect abundance. PSYCHE 2012 (2012).Vandegehuchte, M. L., de la Pena, E. & Bonte, D. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5, e12937 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nebapure, S. M. & Sagar, D. Insect-plant interaction: A road map from knowledge to novel technology. Karnataka J. Agric. Sci. 28, 1–7 (2015).
    Google Scholar 
    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).CAS 
    Article 

    Google Scholar 
    Hogendorp, B. K., Cloyd, R. A. & Swiader, J. M. Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (Homoptera: Pseudococcidae), feeding on two colors of coleus Solenostemon scutellarioides L. Codd. Environ. Entomol. 35, 201–211 (2006).Article 

    Google Scholar 
    Lema, K. & Mahungu, N. in Tropical root crops: Production and uses in Africa: proceedings of the Second Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch held in Douala, Cameroon, 14-19 Aug. 1983. (IDRC, Ottawa, ON, CA).McClure, M. S. Dispersal of the scale Fiorinia externa (Homoptera: Diaspididae) and effects of edaphic factors on its establishment on hemlock. Environ. Entomol. 6, 539–544 (1977).Article 

    Google Scholar 
    Salama, H., Amin, A. & Hawash, M. Effect of nutrients supplied to citrus seedlings on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidosaphes beckii (Newman)(Coccoidea). Zeitschrift für Angewandte Entomologie 71, 395–405 (1972).Article 

    Google Scholar 
    Rasmann, S. & Pellissier, L. in Climate Change and Insect Pests Vol. 8 (ed P. Niemelä C. Björkman) 38–53 (Wallingford, UK: CAB Int., 2015).Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).CAS 
    Article 

    Google Scholar 
    Da Costa, P. B. et al. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil. 368, 267–280 (2013).Article 

    Google Scholar 
    Dong, H., Kong, X., Li, W., Tang, W. & Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 119, 106–113 (2010).Article 

    Google Scholar 
    Aulakh, M., Dev, G. & Arora, B. Effect of sulphur fertilization on the nitrogen–sulphur relationships in alfalfa (Medicago sativa L. Pers.). Plant Soil. 45, 75–80 (1976).CAS 
    Article 

    Google Scholar 
    Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sauge, M. H., Grechi, I. & Poëssel, J. L. Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: Vegetative growth allocation or chemical defence?. Entomol. Exp. Appl. 136, 123–133 (2010).CAS 
    Article 

    Google Scholar 
    Chen, Y., Serteyn, L., Wang, Z., He, K. & Francis, F. Reduction of plant suitability for corn leaf aphid (Hemiptera: Aphididae) under elevated carbon dioxide condition. Environ. Entomol. (2019).Miller, D. R. & Kosztarab, M. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24, 1–27 (1979).CAS 
    Article 

    Google Scholar 
    Hardy, N. B., Peterson, D. A. & Normark, B. B. Scale insect host ranges are broader in the tropics. Biol. Lett. 11, 20150924 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Q. et al. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS ONE 12, e0173380 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, X. et al. Density-dependent demography and mass-rearing of Carposina sasakii (Lepidoptera: Carposinidae) incorporating life table variability. J. Econ. Entomol. 112, 255–265 (2019).PubMed 
    Article 

    Google Scholar 
    Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis (2020).Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 
    Article 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).MATH 
    Book 

    Google Scholar  More

  • in

    A path forward for analysing the impacts of marine protected areas

    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Gillispie, C. C., Gratton-Guinness, I. & Fox, R. Pierre-Simon Laplace, 1749-1827: A Life in Exact Science (Princeton Univ. Press, 1999).Dinmore, T. A., Duplisea, D. E., Rackham, B. D., Maxwell, D. L. & Jennings, S. Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES J. Mar. Sci. 60, 371–380 (2003).Article 

    Google Scholar 
    Hiddink, J. G., Hutton, T., Jennings, S. & Kaiser, M. J. Predicting the effects of area closures and fishing effort restrictions on the production, biomass, and species richness of benthic invertebrate communities. ICES J. Mar. Sci. 63, 822–830 (2006).Article 

    Google Scholar 
    Greenstreet, S. P. R., Fraser, H. M. & Piet, G. J. Using MPAs to address regional-scale ecological objectives in the North Sea: modelling the effects of fishing effort displacement. ICES J. Mar. Sci. 66, 90–100 (2009).Article 

    Google Scholar 
    Suuronen, P. et al. A path to a sustainable trawl fishery in Southeast Asia. Rev. Fish. Sci. Aquac. 28, 499–517 (2020).Article 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).CAS 
    Article 

    Google Scholar 
    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).Article 

    Google Scholar 
    Smeaton, C., Hunt, C. A., Turrell, W. R. & Austin, W. E. N. Marine sedimentary carbon stocks of the United Kingdom’s exclusive economic zone. Front. Earth Sci. 9, 593324 (2021).Article 

    Google Scholar 
    Legge, O. et al. Carbon on the northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).Article 

    Google Scholar 
    Melnychuk, M. C. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. 4, 440–449 (2021).Article 

    Google Scholar  More

  • in

    New land tenure fences are still cropping up in the Greater Mara

    The following section assesses our main results in terms of the growth in fenced areas over time relative to 1) types of protection, 2) administrative boundaries, and 3) other fences.Fencing relative to land governanceAcross the Greater Mara, a general growth in fenced areas can be observed throughout the 00 s but in particular over the last decade (Fig. 1). Based on satellite images, 35,067 ha were fenced in 1985, corresponding to c. 5%. In the following 25 years there was only an insignificant increase in fenced plots. However, from 2010, the number of fences suddenly grew rapidly, and in the following period (2015–2020) the fenced area increased even more radically, in an exponential manner (Fig. 2). For example, in 2015 there was 63,112 ha of fenced land; in 2016 this number rose to c. 75,176 ha, corresponding to a c. 20% annual increase. From 2010 to 2020, the ha fenced area increased by 170%. This corresponds to a roughly four times increase in the area enclosed by fences during the study period (1985–2020).Figure 2Conservative estimate of the fenced area of the entire Greater Mara, Kenya (1985–2020) expressed in hectares.Full size imageIn almost all regions, the number of fences continued to increase in 2019–20 (Fig. 2). The result is a total of 130,277 ha of fenced land in 2020, corresponding to 19% of the Greater Mara.Hence, there appears to be a building momentum in the expansion of fences in the Greater Mara: those regions that had many fences in 2016 ( > 1,000 ha) continue to experience an increase in the area enclosed by fences, with fences spreading almost everywhere in 2020 in particular. Those regions with the fewest fences in 2016 ( More