More stories

  • in

    Hummingbird plumage color diversity exceeds the known gamut of all other birds

    The avian plumage color gamut is much more diverse than previously estimated2. We demonstrate that hummingbird barbule structural colors contribute substantially to the total color diversity of living birds, occurring in areas of the avian color space that were sparsely occupied in Stoddard and Prum2, which most notably included saturated blues, greens, and true purples (blue + red). Such regions of the avian color space were suggested to be unoccupied because these colors are challenging to create, rather than because they might function poorly for communication2. Our results support this hypothesis because hummingbird coloration densely occupies these regions of the avian color gamut (Fig. 2d), using plumage patches that generally play particularly important roles in hummingbird communication, such as throat and crown plumage patches (Supplementary Fig. 5)16,17. The greater color diversity uncovered by our study suggests that barbule structural coloration is the most versatile class of all plumage coloration mechanisms and poses the least constraints on the evolvability of plumage color diversity. Barbule structural colors evolve through changes in the size, shape, spacing, and refractive index of barbule melanosome nanostructures, but little is known about how changes in these parameters themselves evolve18.The UV/V + green region of avian color space remains mostly unoccupied (Fig. 2c, d). It is challenging to create colors with separate reflectance peaks within the wavelength sensitivities of non-adjacent color cones because the peaks must be highly saturated to avoid stimulating neighboring cones2. However, this idea does not explain why there are far more true purple (blue + red) than UV/V + green plumage colors. Notably, birds particularly fail to fill the more UV/V regions (those closer to the UV/V vertex) of UV/V + green color space, which might indicate that it is difficult to create spectra with uv/v wavelength peaks higher than those in the m wavelengths.The differences between our methods and those of Stoddard and Prum2 likely contribute in part to the larger gamut size when comparing species data but not overall data. While the number of species included in our study was comparable to that of Stoddard and Prum2 (114 vs 111 species, respectively), we measured almost twice as many plumage patches as they did (+1600 vs. 965 patches). To prevent erroneous distortion to iridescent colors we did not average the three measurements per patch. Both studies measured six standard patches for all species and additional patches if necessary to capture other plumage color variation. The larger number of plumage patches we measured reflects how color diverse hummingbird plumages are. Our methods preserved the natural variation in hue due to iridescence and avoided the distorted flattening caused by averaging highly saturated peaks with slightly different peak hues. Although our methods are biased toward increasing variation, they are necessary to accurately capture the phenomenon of iridescent hummingbird coloration.There are multiple reasons why the hummingbird color gamut is so diverse. The size of the hummingbird color gamut, like the achieved color gamut of any clade, constitutes a combination of the history of selection on color function, the clade’s evolved capacities for color production, the age of the clade, and the number of species. Hummingbirds excel at all these criteria. The 336 species of extant hummingbirds have radiated rapidly over the last 22 million years19. Hummingbird plumage color diversity has evolved through a long history of persistent sexual and social selection on plumage coloration. Hummingbirds have polygynous breeding systems characterized by female only parental care, female mate choice, and often elaborate male courtship displays. Intersexual selection in hummingbirds has contributed to elaborate radiation in brilliant plumage coloration as well as vocalizations and non-vocal feather sounds14,16,20. Hummingbird plumage color evolution rates have even been shown to positively correlate with hummingbird speciation rates14. Furthermore, in some species, brilliant monomorphic plumage ornaments apparently function in aggressive, intra- and interspecific defense of floral resources21 and appear to be associated with socioecological features related to resource competition19. Our finding that crown and throat patches, which flash brilliantly when the head of the bird is oriented toward the observer, are more diverse in coloration than other plumage regions highlights the role of plumage coloration in direct inter-individual communication and social interactions.The mechanistic properties of hummingbird barbule structural color further explain the exceptional diversity of hummingbird plumage coloration. Hummingbird barbule structural coloration is among the most complex plumage coloration mechanisms, comprised of stacks of hollow, air-filled melanosomes, surrounded by a thin superficial, solid keratin cortex as well as sometimes superficial, miniature melanin platelets which lie just beneath this cortex9,10,11,12,13. Complex nanostructures allow for independent tuning of multiple components, and, hence, greater achievable color diversity12,18,22. Barbule structural color permits the production of any peak-reflected wavelength by varying the thickness of melanosome arrays, which can produce a diversity of single-peak spectra-hues, such as the unusual diversity of greens, blues, and blue + greens seen in hummingbirds (Fig. 2b). Hummingbird melanosomes are among the most unusual in birds in being both disc-shaped and air-filled9,10,11,12,13,23. The air in the center of hummingbird melanosomes approaches the maximum possible biological difference in refractive index (air = 1.0, melanin = ~1.7), which results in the efficient production of brilliant colors with the fewest layers of melanosomes, such that resulting spectra are narrow and near saturation13,24. Such spectra can thereby create colors that extend further in color space (Fig. 2a–c).Barbule structural color also allows for the production of plumage spectra with multiple saturated peaks, creating saturated color combinations that are not as commonly produced via other plumage coloration mechanisms. However, researchers have yet to identify exactly how hummingbird multipeak spectra are produced12,13, emphasizing the need for further analyses of the optics of hummingbird feathers. Many hummingbird melanosome arrays are non-ideal– i.e., the products of the thicknesses and refractive indices of the melanin and air cavity layers are not equal25. Non-ideal thin films can create more highly saturated, pure tone colors of the primary peak while also introducing additional, harmonic spectral peaks at shorter wavelengths25, which allows for complex reflectance spectra with multiple bright peaks within the avian visible spectrum. Also, melanosome arrays with a large average layer thickness ( >~300 nm) can create colors with fundamental interference peaks in the infrared and multiple, harmonic peaks in the avian visible range (300–700 nm). The presence of minute, superficial melanin platelets below the cortex in hummingbird barbules is also correlated with secondary, lower wavelength reflectance peaks, but the precise optical mechanism remains to be established12. These different nanostructural elements all contribute to distinctive multipeak reflectance spectra that can stimulate non-adjacent color cone combinations, which Stoddard and Prum2 identified as particularly difficult to accomplish: UV/V-purple (uv/v + s + l wavelengths; Schistes geoffroyi cheek, Fig. 4g); true purple (s + l wavelengths; Atthis ellioti gorget, Fig. 4h); UV/V-green (uv/v + m; Schistes geoffroyi crown, Fig. 4a); and UV/V-red (uv/v + l; Heliangelus viola, Fig. 4b). With multipeak spectra the potential for creating new and different colors is greatly expanded, allowing for a more versatile evolution of novel colors.Unexpectedly, the hummingbird plumage color gamut is larger in volume when modeled with the VS-type (34.2%) than with the UVS-type (29.6%) visual system. This apparently unique result contrasts notably with both Stoddard and Prum’s2 and our revised estimate of the color gamut of all birds combined– VS gamut = 40.5%; UVS gamut = 47.3%. Multiple previous analyses have shown that the UVS cone-type visual system does a more efficient job of discriminating the colors of natural objects because of the broader separation between the peak spectral sensitivities of the uv and s (blue) cone types2,26,27. Because the UVS-type visual system produces an even greater increase in color volume for a diverse plant color data set over the VS-type visual system, Stoddard and Prum2 rejected the hypothesis that the UVS-type visual system had specifically evolved to expand the diversity of avian color stimuli.However, our observations that the hummingbird plumage gamut is substantially greater in volume with the VS-visual system than with the more efficient UVS-visual system strongly suggests another hypothesis: Hummingbird plumage may have specifically evolved to be more diverse within the hummingbird VS-type color visual system via selection for highly saturated plumage colors. Given diversity in hue, the way to achieve greater color gamut volume, i.e., greater plumage color diversity, is through highly chromatic color vectors that extend toward the limits of the color space. The two visual systems map variation in wavelength to different maximum potential chroma—i.e., wavelengths with color vectors that extend toward the edges, faces, and vertices of the tetrahedron6. Color vectors that extend towards the vertices, i.e., plumage that best corresponds to a singular cone type’s peak sensitivity, have the highest maximum potential chroma because vertices are the regions furthest away from the tetrahedron’s center. Thus, hummingbird plumages may have specifically evolved to have maximum chroma within their own VS-visual system via peaks that correspond most closely to the peak sensitivities of the VS- rather than the UVS-visual system. For example, when comparing the UVS and VS plumage color gamuts for hummingbirds, it is notable that hummingbird coloration extends much further into the UV/V regions of color space for the VS-visual system (Supplementary Fig. 2). While in the VS system these color points map toward the v vertex, in the UVS-visual system they map towards the uv-s edge and the uv-s-l face. Such color vectors that contribute to expanded color volume of the VS gamut could have evolved by sexual or social selection for highly saturated plumage colors that are near in hue to the specific sensitivity peaks of hummingbird receptor cone types. Such selection could note preferences within some hummingbird species for hues with maximally possible chroma, not merely for maximal chroma of a given hue.Hummingbirds have tetrachromatic color vision with substantial sensitivity in the near ultraviolet28,29. Recently, Stoddard et al.30 used a series of elegant experiments with hummingbird feeders and LED lights to demonstrate for the first time that hummingbirds can distinguish non-spectral colors distributed throughout the tetrachromatic color space. However, the presence of this remarkably proficient four-color vision in hummingbirds poses an interesting evolutionary conundrum. Recent phylogenetic analyses have established that hummingbirds and swifts are phylogenetically embedded within the nocturnal caprimulgiforms31,32. The most parsimonious hypothesis is that the immediate ancestors of swifts and hummingbirds were extensively nocturnal for approximately 8 million years before they re-evolved diurnal ecology and behavior31. Given that an evolutionary history of nocturnality can lead to the degradation or loss of opsin genes33,34, it should be a high priority to establish what effect that ancestral nocturnality may have had on the molecular physiology and anatomy of the hummingbird color visual system.Our attempt to document the color diversity of an avian family has revealed that current estimates of the total avian color gamut are likely inaccurately low. Similar studies sampling from other color-diverse families, such as sunbirds (Nectariniidae), parrots (Psittacidae), tanagers (Thraupidae), birds of paradise (Paradiseidae), manakins (Pipridae), and starlings (Sturnidae), most of which have already been studied for their plumage coloration35,36,37,38,39, would help us obtain a better estimate of the true avian color gamut. More

  • in

    Exceptional soft-tissue preservation of Jurassic Vampyronassa rhodanica provides new insights on the evolution and palaeoecology of vampyroteuthids

    In their original description of V. rhodanica, Fischer & Riou16 determined that the previously undescribed genus was a Jurassic relative of V. infernalis. This assignment was based on the configuration of the arm crown and armature, fin type, presence of luminous organs, lateral eyes, and the absence of an ink sac. Assuming this assignment is correct, then V. rhodanica is a member of the suborder Vampyromorphina, which includes the family Vampyroteuthidae22,29.Reappraisal of the anatomy shows that V. rhodanica and V. infernalis both have 8 arms and uniserial suckers flanked by cirri. They both possess V. infernalis-like sucker attachments34,36, which are broader at the base and taper up to a radially symmetrical sucker.Both species have distinctly modified arms though the morphology differs in each. V. infernalis, has retractable filaments in the position of arm pair II27,33,34, though there is no evidence of these appendages in V. rhodanica. Instead, the species has elongate dorsal arms (arm pair I) with a unique configuration of suckers and cirri on the distal section.The suckers and cirri of V. rhodanica are more numerous than those of V. infernalis27,37. They are also more closely positioned. Proportionally, the suckers of both species have a consistent ratio to mantle length37, though the diameter of the cirri and infundibulum are greater in V. rhodanica. The V. infernalis-like attachment1,3,34 is present in both species, though in V. rhodanica, the distal part of the neck protrudes into the acetabular cavity. Of note, the sucker stalks on the dorsal arms of V. rhodanica are more elongate than those on the other arms (Figs. 2b,c, and 3a,b). This variation in suckers and their attachments suggests a specialized function between the dorsal and sessile appendages. On the longer dorsal arms, the larger sucker diameter, and more elongate stalks (Figs. 2b and 4) indicate the potential for increased mobility over their extant relatives, and possibly facilitated additional manipulation and prey capture capability.Figure 4Hypothesised reconstruction of V. rhodanica based on the data from this study (A. Lethiers, CR2P). The scale is based on measurements from the holotype (MNHN.B.74247) and the arm crown is completed using dimensions from MNHN.B.74244.Full size imageIn addition to the arm crown specialization, V. rhodanica has a more streamlined shape than V. infernalis, which is caused by a proportionally narrower head. Their muscular body is narrower and more elongate than the gelatinous V. infernalis16,27,37 suggesting a higher energy locomotory style. This is consistent with increased predation relative to the modern form. Observations in this study support many assertions of Fischer & Riou16 about the characters in V. rhodanica, though the presence of luminous organs cannot be confirmed. Rather than luminous organs much larger than those present in the deep-sea, extant V. infernalis, it is possible that these structures represent displaced cartilage prior to fossilization (Supplementary Fig. 6).Two other genera from the La Voulte-sur-Rhône locality, Gramadella and Proteroctopus are, like V. rhodanica, considered to be Incertae sedis Vampyromorpha22. All three share morphological similarities that include an elongated mantle fused with the head, and a longer dorsal arm pair with armature on the distal ends1,16,22,38. Neither the second nor fourth arm pair have been modified. Each has one pair of fins. In Gramadella, the fins are lateral and skirt-like16,38. In V. rhodanica and Proteroctopus these fins are located posteriorly1,16.V. rhodanica shows the greatest length variation between the dorsal and sessile arms (Fig. 4), though proportionally, Gramadella, and Proteroctopus have longer dorsal arms1,31. Fischer & Riou31 and Kruta et al.1 described biserial suckers in their descriptions of Gramadella, and Proteroctopus, respectively. In Proteroctopus, these suckers have a proportionally smaller diameter than the uniserial row in V. rhodanica, and do not exhibit the same tapered pattern.None of these specimens shows evidence of an ink sac, though it is present in contemporaneous genera from the same assemblage (Mastigophora, Rhomboteuthis and Romaniteuthis)8,16. That this character occurs only in some taxa from the same assemblage suggests variation in ecology, possibly associated with the steep, bathymetric relief in the La Voulte-sur-Rhône paleoenvironment11. The mosaic of characters found within the coleoid taxa at La Voulte-sur-Rhône suggests that Mesozoic vampyromorphs co-occurred in different ecological niches during the mid-Jurassic.Today, extant V. infernalis is uniquely adapted to a low-energy, deep-sea mode of life27,28,29,39, though the timing of character acquisition and progression of this ecology is unclear24. It is hypothesised that the vampyromorph Necroteuthis Kretzoi 1942 was already exploiting this niche by the Oligocene29, and that the initial shift to offshore environments was possibly driven by onshore competition24,29. The data obtained here suggests that V. rhodanica, the purportedly oldest-known genus of the Vampyromorphina group, was an active predator following a pelagic mode of life.Indeed, several anatomical details, mainly found in the brachial crown, seem to support this hypothesis. Though we cannot directly compare functionality of the arm crown elements with other Jurassic taxa, we can infer function based on observation in modern forms. In Octopoda, the sister group to Vampyromorpha, suckers are attached to the arm by a cylindrical layer of muscle, encircling oblique musculature40,41, that connects the arm musculature and the lateral margin of the acetabulum34,40,41,42. This facilitates a variety of functions including locomotion, manipulation, and prey retention43. The sucker attaches by flattening the infundibulum against the surface and then the encircling epithelium creates a watertight seal36,40,41,42,43,44,45. Contraction of the radial acetabular muscles provides the pressure differential required to create the suction force43,44,46.The stalked sucker attachments2,34 of decabrachians (Fig. 3d, and Supplementary Fig. 4) are muscular35 and connect the musculature of the arm with the base of the sucker, forming part of the acetabulum33,34. Tension on the sucker stretches this muscular attachment, which pulls locally on the acetabular base. This facilitates a greater pressure differential inside the sucker, allowing the teeth on the sucker ring to maintain the hold47.Extant V. infernalis lack decabrachian-like stalks2,18 and the neck of the attachment joins to the base of the acetabulum (Fig. 3c, and Supplementary Fig. 4), rather than being inserted into it18. The infundibulum is not distinct, and the suckers do not provide strong suction27. Instead, suckers function by secreting mucus to coat detritus—marine snow captured by retractable filaments—which is then moved to the mouth by cirri7,27.A mosaic of these characters is present in V. rhodanica (Fig. 3a,b), therefore, suggesting their potential for increased attachment and hold on prey over extant V. infernalis. These include a larger infundibular diameter, a neck attachment integrated with the acetabular muscles, and the elongated stalks of the dorsal suckers.Additionally, the paired, filamentous cirri observed in extant cirrates48 are present in V. rhodanica (Fig. 4, and Supplementary Fig. 2). In extant forms they are understood to have a sensory function and are used in the detection and capture of prey48. In V. infernalis, they serve to transport the food proximally along the arms to the mouth27. The greater diameters of cirri, and placement along the entire arm in V. rhodanica (Fig. 4), suggests an increased sensory function in these fossil forms.The shape of the arms also contributes to the suction potential49 in coleoids. Functional analysis in Octopoda highlights a positive correlation between distal tapering of the arms and their flexibility. A tapered, flexible arm facilitates more precise adhesion than a cylindrical-shaped one and requires a greater force for sucker detachment49. Suckers detach sequentially, rather than the more simultaneous release observed in models of arms with less taper variation. The tapered diameter of the suckers, like those seen on the sessile arms of V. rhodanica, potentially facilitated this kind of sequential detachment49 allowing them more adherence force and flexibility. Though V. rhodanica has just two suckers on the distal tips of their dorsal arms, the most distal is marginally smaller in diameter than the proximal one. On the dorsal arms, this tapering is observed in conjunction with a well-developed axial nerve cord (Fig. 2b). In extant forms, the nerve cord facilitates complex motor functions42. The combination of these characters in V. rhodanica suggests their arms had increased potential to be actively used in prey capture50 over extant V. infernalis.Though arm crown characters offer insight on the ecology of V. rhodanica, in fossil coleoid phylogenies only a few characters are based on the suckers1, 3. Two studies that have attempted to create a phylogeny using morphological characters that include both fossil and extant taxa return V. rhodanica and V. infernalis as sister taxa1,3. These matrices are, by necessity, heavily influenced by the gladius51 and more than 50% of the characters are based on this feature1,3. Indeed, the authors1 note that the lack of gladius data for some fossil forms, including V. rhodanica, creates an inherent bias in the phylogenetic matrix. Fischer & Riou16 suggested that V. rhodanica and V. infernalis are related on the basis of the observable morphological characters in the family Vampyroteuthidae, though without morphological information on the gladius, a recent systematic synthesis of fossil Octobrachia22 positioned V. rhodanica as Vampyromorpha Incertae sedis.X-ray CT analysis in this study did not allow a reconstruction of the gladius. Nevertheless, it does provide new data on soft tissues, and permits comparisons between extant and fossil taxa. Specifically, we can add distinct states to 4 of the 132 characters in the existing phylogenetic matrix from Sutton et al.3 that was modified and used in Kruta et al.1. These four characters (#89–#92) represent the suckers, and sucker attachments. Detailed examination revealed that the sessile and dorsal arms have the Vampyroteuthis-like attachment. In the dorsal arms, this is more elongated, though it cannot be considered pedunculate like those seen in modern decabrachians. Indeed, the attachment type (plug and base34) is the same, only the length varies. As previously discussed, this variation may have functional implications.When updated with these new data, the matrix from this study returns the same topology seen in Kruta et al.1 that supports the positioning of V. rhodanica and V. infernalis as sister taxa. Further, it strengthens their relationship as they both share a sucker attachment that is not clearly attached to the arm muscles, a state that was previously considered autapomorphic in V. infernalis. However, it is important to note that no additional characters were added for the gladius, which is the cornerstone of coleoid systematics52. Indeed, just 29 of the 132 matrix characters can so far be coded for V. rhodanica, with only 9 of these relating to the 74 states of the gladius.Assuming the phylogenetic work so far is correct, then both species belong to the family Vampyromorphina, and are joined by the Oligocene fossil Necroteuthis hungarica29. While the lack of gladius characters precludes a full phylogenetic understanding of this group, preservation and observation of the soft tissues allow us to infer information regarding palaeobiology.The data obtained in this study demonstrates that the characters observed in V. infernalis, including the sucker attachments and lack of ink sac, were present in Jurassic Vampyromorpha. Comparative anatomy of V. rhodanica and extant V. infernalis revealed that the fossil taxon displayed more morphological variation and were more diversified than previously understood. The assemblage of characters observed in V. rhodanica are consistent with a pelagic predatory lifestyle and corroborate the likelihood of a distinctly different ecological niche. These findings support the hypothesis that a shift towards a deep-sea environment occurred prior to the Oligocene5,29. More

  • in

    Bateman gradients from first principles

    Model 1: Evolution of multiple mating and mate monopolisation under ancestral monogamyIn all models, I assume a large population with a 1:1 sex ratio. I begin with what is possibly the simplest model set-up for deriving Bateman functions in a scenario that is completely symmetrical aside from gamete number. Assume a monogamous, externally fertilising population where parents pair up and release their gametes into a nest. That is, every individual in the initial population participates in exactly one fertilisation event (the equivalent of a mating). Now consider a mutant individual that can attract multiple mates of the opposite type to release gametes into its nest, with no competition from other individuals of its own type. This simple set-up avoids asymmetries arising from internal fertilisation, and the complication of direct gamete competition for the multiply mating mutant individual (which is examined in Models 2–3), placing focus directly on the core of the problem: the asymmetry arising in fertilisation from imbalanced gamete numbers. All gametes are released in one burst by all individuals, but the focal individual may achieve ‘multiple matings’ simply by monopolising multiple mates at its nest. The reproductive success of the focal individual is then equivalent to the number of fertilisations that take place in that nest. Our aim is to understand how the reproductive success of an individual deviating from the monogamous population strategy and instead mating with (hat{m}) individuals of the opposite type is altered. A strong positive relationship between (hat{m}) and reproductive success then indicates a steep Bateman gradient. If Bateman’s assertion is correct, the resulting gradient should be steeper for the type that produces the larger number of gametes. Note that there is a game-theoretical25 flavour to this setting, where the focus is on the fitness of a rare mutant in a population with a fixed resident strategy.The two types are labelled with x and y, which could correspond to the two sexes, depending on what gamete numbers are assigned to them. The number of gametes produced by a single individual is labelled nx and ny, and the total number of gametes in a nest (or more generally, a fertilisation arena which could be internal or external) is labelled with Nx and Ny. To compute the number of fertilisations in a nest with a total of Nx and Ny gametes, I use a fertilisation function first derived by Togashi et al.24 purely from biophysical principles, treating the two gamete types symmetrically, with no pre-existing assumptions about differences between females and males or their gametes (for a broader context and comparison to other functions, see Table 1 and function F7 in19). Any sex-specific differences arise only retrospectively after different gamete numbers are assigned to x and y of which either one could be male or female. The fertilisation function is (fleft({N}_{x},{N}_{y}right)={N}_{x}{N}_{y}frac{{e}^{a{N}_{x}}-{e}^{a{N}_{y}}}{{{N}_{x}e}^{a{N}_{x}}-{N}_{y}{e}^{a{N}_{y}}}), where a is a parameter controlling fertilisation efficiency (for the special case Nx = Ny the function is defined as (fleft({N}_{x},{N}_{y}right)=frac{a{N}_{x}^{2}}{1+a{N}_{x}})19,24, which is also the limit of f when Ny → Nx).In a monogamous resident pair, we have simply Nx = nx and Ny = ny. But if a mutant individual of type x is able to attract (hat{m}) fertilisation partners of type y, then for that individual ({N}_{y}=hat{m}{n}_{y}), and the corresponding Bateman function is$${b}_{x}left(hat{m}right)=fleft({N}_{x},{N}_{y}right)=fleft({n}_{x},hat{m}{n}_{y}right)$$
    (1)
    where the fertilisation function f is as described above. Because of symmetry, the corresponding function for y is found simply by swapping x and y. This function can reproduce the characteristic Bateman gradient asymmetry as gamete numbers diverge (progressing from isogamy to anisogamy in Fig. 1), showing how Bateman’s assertion follows from biophysical effects that arise from unequal numbers of fusing particles: the fertilisation function f is derived solely from such biophysical effects, not from any sex-specific assumptions. Equation (1) makes no reference to sexes, and they only become specified when values are assigned to nx and ny. For example, if nx = 10 and ny = 10,000, the female Bateman function is ({b}_{x}left(hat{m}right)) and the male Bateman function ({b}_{y}left(hat{m}right)), where for the latter all xs in Eq. (1) are replaced with ys and vice versa. The labels x and y are truly just labels. While there are inevitably assumptions built into the equations, crucially we can be certain there are no sex-specific assumptions. Yet the typical shapes reminiscent of Bateman gradients arise from the model when different values are specified for nx and ny (Fig. 1).Fig. 1: The Bateman function of Eq. (1).This figure shows how the basic Bateman gradient asymmetry arises from simple biophysics and mathematics of fertilisation. The population is monogamous aside from a mutant individual, whose number of fertilisation partners (‘matings’) varies on the horizontal axes within panels. a–d show the effect of variation in sex-specific gamete numbers under efficient fertilisation, while e–h show the effect of variation in sex-specific gamete numbers under inefficient fertilisation. Parameter values used are shown in the figure. Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines. Under isogamy, females and males are undefined, and the two colours overlap. The typical sex-specific shapes of Bateman gradients arise from a single equation (which itself is not sex-specific) when a difference in gamete numbers is assigned to nx and ny, confirming Bateman’s intuition that the primary cause of the difference in selection is that females produce fewer gametes than males. The entire range of gamete number ratios presented in the figure is observed in nature, from equal gamete size in many unicellular organisms39 to vertebrates, where sperm count per ejaculate can commonly exceed 109 (see ref. 40 and Supplementary Information therein).Full size imageGamete limitation changes the results quantitatively so that under conditions of poor fertilisation efficiency a larger imbalance in gamete numbers is needed for Bateman gradients to diverge to a similar extent. However, even under inefficient fertilisation, the Bateman gradients do not reverse.Model 2: An external fertiliser model with population-level polygamy and gamete competitionModel 1 presented the simplest possible scenario, where all individuals except a rare mutant mate only once, and gamete competition (sperm competition26, but without assigning either gamete type to be sperm) was thus excluded for the focal mutant individual. Now I generalise from this to a situation that remains entirely symmetrical, but where the resident number of matings can take on any value, and then derive the Bateman function for a rare mutant that deviates from this population-level value. This set-up allows for gamete competition for the focal mutant individual, a crucial addition because of the empirical and theoretical importance of sperm competition26, as well as earlier theory suggesting that polyandry decreases the sex difference in Bateman gradients2.The biological set-up is such that there is a large population and a large number of patches (fertilisation arenas) where multiple individuals of both sexes can release their gametes for fertilisation. After all individuals have released their gametes, those in each patch mix freely and fertilisations take place randomly. Set up in this way, the model is again identical from the perspective of both sexes, and gamete number can be isolated as the sole possible causal factor in any subsequent differences that may arise, extending from the initially monogamous and gamete competition-free scenario of Model 1. All individuals of both sexes are assumed to initially have the same strategy: to divide their nx or ny gametes equally between m patches, and distribute themselves in such a way that gametes from m individuals of each type release gametes into each patch (the number of individuals of each sex per patch need not necessarily be strictly equal to m, but this is the simplest assumption to account for the fact that gamete competition tends to increase with multiple ‘matings’). Now, if a rare x mutant divides its gametes evenly into (hat{m}) randomly selected patches, its gamete number per patch and consequently competitiveness in each patch is altered. Therefore, gametes of a mutant of type x will gain, on average, a fraction ({c}_{x}=left({n}_{x}/hat{m}right)/{N}_{x}) of the fertilisations in that patch, where ({N}_{x}={n}_{x}/hat{m}+(m-1){n}_{x}/m). To compute the number of realised fertilisations in a patch, I use the same fertilisation function as in Model 1, where the mutant number of gametes in a patch is Nx as above and the number of gametes of the opposite type is ({N}_{y}=mfrac{{n}_{y}}{m}={n}_{y}). All the components are now in place to write down the Bateman function corresponding to this scenario, for a mutant of type x:$${b}_{x}left(hat{m},mright)=hat{m}{c}_{x}fleft({N}_{x},{N}_{y}right)$$
    (2)
    where cx, Nx and Ny are as defined above, and the fertilisation function f is as in Model 1. For completeness, define bx(0, m) = 0, which is necessarily true, but useful to define separately because division by 0 renders Eq. (2) formally undefined when (hat{m}=0).As in Model 1, Eq. (2) makes no reference to sexes, and they only become specified when values are assigned to nx and ny (Fig. 2).Fig. 2: The Bateman function of Eq. (2) for an externally fertilising population with potential for population-wide polygamy and gamete competition.Results are shown for two values of resident matings (m = 1 and m = 2). a–h show the effect of variation in sex-specific gamete numbers and in fertilisation efficiency with m = 1, while i–p show the same with m = 2. Parameter values used are shown in the figure. The value m = 2 is used here because it is comparable to the mean number of matings in Bateman’s1 work (see Fig. 3 for corresponding results with internal fertilisation, but note that the aim of the models is not to quantitatively reproduce Bateman’s results). Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines. Under isogamy, females and males are undefined, and the two colours overlap. Further variation in m is examined in Fig. 4.Full size imageModel 3: An internal fertiliser modelModels 1–2 were set up with the central aim of full symmetry and exclusion of any sex-specific assumptions. Internal fertilisation breaks this symmetry by introducing a sex-specific assumption other than gamete number. Bateman gradients are, however, most commonly applied to situations with internal fertilisation where females are gamete recipients and males are gamete donors27. I therefore construct a model accounting for internal fertilisation. Where Eqs. (1) and (2) allowed no sex differences aside from gamete number, here I additionally consider the fact that females receive gametes while males donate them.As in model 2, there is a very large population, and I assume that in the resident population, all females and males mate exactly m times. It is then considered how a rare mutant individual’s (of either sex) fitness depends on its number of matings (hat{m}).I use the same fertilisation function as in Models 1-2. Consider first the female perspective (labelled with x). A female produces nx gametes and retains them internally. Each female mates with m males, who also mate with m females, dividing their gametes evenly over these matings. Therefore a mutant female receives (hat{m}frac{{n}_{y}}{m}) male gametes, and her reproductive success is$${b}_{x}left(hat{m},mright)=fleft({n}_{x},hat{m}frac{{n}_{y}}{m}right)$$
    (3)
    A mutant male, on the other hand, mates with (hat{m}) females, each of which mates with m−1 additional males. Therefore, the mutant male’s mating partners will receive a total of ({{N}_{y}=n}_{y}/hat{m}+(m-1){n}_{y}/{m}) male gametes. Thus, the mutant male gains a fraction ({c}_{y}=left({n}_{y}/hat{m}right)/{N}_{y}) of the fertilisations with each female, while the total reproductive success per female is f(nx,Ny). The mutant male’s reproductive success is therefore$${b}_{y}left(hat{m},mright)=hat{m}{c}_{y}fleft({n}_{x},{N}_{y}right)$$
    (4)
    To avoid division by 0, we can again define by (0, m) = 0, analogous to Model 2. In contrast to Models 1–2, there are now separate equations for each sex because of the additional sex-specific assumption of internal fertilisation, but no further sex-specific assumptions are used in their derivation. Visually the Bateman functions (Fig. 3) are nevertheless very similar to Model 2, and again reproduce the sex-specific shapes first proposed by Bateman1 when fertilisation is efficient. However, an interesting exception arises when relatively weak asymmetry in gamete numbers is combined with inefficient fertilisation and gamete limitation. When these conditions are combined with internal fertilisation, Bateman gradients can theoretically be reversed.Fig. 3: The Bateman functions of Eqs. (3) and (4) for internal fertilisation.Where Figs. 1 and 2 show that the sex-specific shapes of Bateman functions are ultimately caused by differences in gamete number, Fig. 3 shows that internal fertilisation does not invalidate this outcome when fertilisation is efficient. As in Fig. 2, results are shown for two values of resident matings (1 and 2), and the value m = 2 is used because it is comparable to the mean number of matings in Bateman’s1 work. a–h show the effect of variation in sex-specific gamete numbers and in fertilisation efficiency with m = 1, while i–p show the same with m = 2. Parameter values used are shown in the figure. Inefficient fertilisation combined with relatively low asymmetry in gamete numbers and the added asymmetry of internal fertilisation can in principle reverse the Bateman gradients (second and fourth row). Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines.Full size image More

  • in

    The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia

    Soil sample collectionSoil samples were collected from three different crude oil reservoirs et al. Faisaliyyah, Al Sina’iyah, and Ghubairah located in Riyadh, Saudi Arabia. Briefly, 400 g of soil samples were collected at 0–10 cm depth, under aseptic conditions. Samples were sieved by 2.5 mm pore size sieves, homogenized, and stored at 4ºC until use.Sources of different hydrocarbonsDifferent samples of crude oil, kerosene, diesel, and used oil were collected in sterile flasks from the tankers of Saudi Aramco Company (Dammam, Saudi Arabia). Additionally, another flask was prepared by mixing 1% of each oil in MSM liquid media to make up the mixed oil. The oil samples were sterilized by Millex® Syringe Filters (Merck Millipore co., Burlington, MA, United States) and stored at 4 °C for further usage.Isolation and identification of fungal speciesThe fungal species in the soil contaminated by crude oil were identified using the dilution method. Briefly, 10% of each soil sample was dissolved in distilled water and vortexed thoroughly. Then, 0.2 ml of each sample was cultured on a sterile PDA plate incubated at 28 °C for three days until the growth of different fungal colonies. Carefully, each colony was isolated, re-cultured on new PDA McCartney bottles of PDA slant, and incubated at 28 °C for three days. The fungi were identified microscopically using standard taxonomic keys based on typical mycelia growth and morphological characteristics provided in the mycological keys54. Besides, the taxonomy of the isolated yeast strains was confirmed by the API 20 C AUX kit (Biomerieux Corp., Marcy-l’Étoile, France) (data not shown). The morphology of pure cultures was tested and identified under a light microscope as described before55.The incidence of each strain was calculated as follows:$$ Incidence ;(% ) = frac{{{text{Number }};{text{of }};{text{samples }};{text{showed }};{text{microbial }};{text{growth}}}}{{{text{Total }};{text{samples}}}} times 100 $$Hydrocarbon tolerance testThe growth rate of isolated strains was tested in a liquid medium of MSM mixed with 1% of either crude oil, used oil, diesel, kerosene, or mixed oil. Furthermore, a control sample of MSM liquid medium without any of the oils tested and all culture media were autoclaved at 121 °C for 30 min. After cooling, 1 ml of each isolate was inoculated with one of the above mixtures and incubated at 25 °C on an orbital shaker. The growth rate was measured every three days for a month for each treatment versus the control. All experiments were performed in triplicates.Scanning electron microscopy (SEM)The morphology of different strains of the isolated fungi was tested by SEM, as previously described56, with some modifications. Briefly, 1 ml of each growing strain, in the liquid media, was centrifuged at the maximum speed (14,000 rpm) for 1 min, followed by fixation with 2.5% glutaraldehyde, and overnight incubation at 5 °C. Later, the sample was pelleted, washed with distilled water, then dehydrated with different ascending concentrations of ethanol (30, 50, 70, 90, 100 (v/v)) for 15 min at room temperature. Finally, samples were examined in the Prince Naif Research Centre (King Saud University, Riyadh, Saudi Arabia) by the JEOL JEM-2100 microscope (JEOL, Peabody, MA, United States), according to the manufacturer instructions.Crude oil degradation assayA modified version of the DCPIP assay57 was employed to assess the oil-degrading ability of the fungal isolates. For each strain, 100 ml of the autoclaved MSM was mixed with 1% (V/V) of one of the hydrocarbons (crude oil, used oil, diesel, kerosene, or mixed oil), 0.1% (v/v) of Tween 80, and 0.6 mg/mL of the redox indicator (DCPIP). Then, 1–2 ml of different fungi growing in liquid media (24–48 h) add to the Crude Oil Degradation media, prepared previously, and incubated for two weeks in a shaking incubator at 25 °C. All flasks were covered and protected from light, aeration, or temperature exchanges to reduce the effects of oil weathering (evaporation, photooxidation). The surfactant Tween 80 was used for bio-stimulation and acceleration of the biosurfactant production by increasing metabolism58. A non-inoculated Crude Oil Degradation media was used as the negative control. Afterward, the colorimetric analysis for the change in DCPIP color was estimated, spectrophotometrically, at 420 nm. All experiments were performed in triplicates.Preparation of cell-free supernatant (CFS)To prepare the Cell-Free Supernatant (CFS), all isolates were grown in MSM broth medium with 1% of either crude oil, used oil, diesel, kerosene, or mixed oil for 30 days in a shaking incubator at 25 °C. After incubation, the cells were removed by centrifugation at 10,000 rpm for 30 min at 4 °C. The supernatant (CFS) was collected and filter-sterilized with a 0.45 μm pore size sterile membrane. CFS was screened for the production of different biosurfactants. All the experiments were carried out in triplicates, and the average values were calculated.Drop-Collapse assayThe Drop-Collapse assay was performed as previously described9, with some modifications. 100 µl of crude oil was applied on glass slides, then 10 µl of each CFS was added to the center of the slide surface and incubated for a minute at room temperature. The slides were imaged by a light microscope using the 10X objective lenses. The spreading on the soil surface was scored by either « + » to indicate the level of positive spreading, biosurfactant production, or «—» for negative spreading. Biosurfactant production was considered positive at the drop diameter ≥ 0.5 mm, compared to the negative control (treated with distilled water).Oil spreading assayAn amount of 20 ml of water was added to the Petri plate (size of 100 mm) and mixed with 20 µl of crude oil or mixed oil, which created a thin layer on the water surface. Then, 10 µl of CFS was delivered onto the surface of the oil, and the clear zone surrounding the CFS drop was observed. The results were compared to the negative control (without CFS) and positive control of 1% SDS41. We have measured the clear zones diameter from images and calculate the actual values in regards to the diameter of the Petri dish (10 cm). The assay was performed in triplicates.Emulsification activity assayThe emulsification activity of each isolate was assessed by mixing equal volumes of MSM broth medium of each isolate with different oils in separate tubes. The samples were homogenized by vortex at high speed for two minutes at room temperature (25 °C) and allowed to settle for 24 h. The tests were performed in duplicate. Then, the emulsification index was calculated as follows59:$$ Emulsification; activity; left( % right) = frac{{{text{Height }};{text{of }};{text{emulsion }};{text{layer}}}}{{{text{Total }};{text{height}}}} times 100 $$Recovery of biosurfactantsThe recovery of biosurfactants from CFS was tested through different assays:Acid precipitation assay3 ml of each CFS was adjusted by 6 N HCl to pH 2 and incubated for 24 h at 4 °C. Later, equal volumes of chloroform/methanol mixture (2:1 v/v) were added to each tube, vortexed, and incubated overnight at room temperature. Afterward, the samples were centrifuged for 30 min at 10,000 rpm (4 °C), the precipitate (Light brown colored paste) was air-dried in a fume hood, and weighed53.Solvent extraction assayThe CFS containing biosurfactant was treated with a mixture of extraction solvents (equal volumes of methanol, chloroform, and acetone). Then, the new mixture was incubated in a shaking incubator at 200 rpm, 30 °C for 5 h. The precipitate was separated into two layers, in which the lower layer (White) was isolated, dried, weighed, and stored60.Ammonium sulfate precipitation assayThe CFS containing biosurfactant was precipitated with 40% (w/v) ammonium sulfate and incubated overnight at 4 °C. The samples were centrifuged at 10,000 rpm for 30 min (4 °C). The precipitate was collected and extracted with an amount of acetone equal to the volume of the supernatant. After centrifugation, the precipitate (Creamy-white) was isolated, air-dried in a fume hood, and weighed53.Zinc sulfate precipitation methodSimilarly, 40% (w/v) zinc sulfate was mixed with the CFS containing biosurfactant. Then, the mixture was incubated at 4 °C, overnight. The precipitate (Light Brown) was collected by centrifugation at 10,000 rpm for 30 min (4 °C), air-dried in a fume hood, and weighed53.Statistical analysisAll experiments were performed in triplicate, and the results were expressed as the mean values ± standard deviation (SD). One-way ANOVA and Dunnett’s tests were used to estimate the significance levels at P  More

  • in

    Assessment of solar radiation resource from the NASA-POWER reanalysis products for tropical climates in Ghana towards clean energy application

    Geography and climatology of study areaThe area of study, Ghana, is on the coastal edge of tropical West African, bounded in latitude 4.5° N and 11.5° N and longitude 3.5° W and 1.5° E, and characterized by a tropical monsoon climate system23,24. Figure 1 shows map of the study area indicating the selected twenty two (22) sunshine measurement stations distributed across the four main climatological zones and Table 1 summarizes the geographical positions of selected stations.Figure 1Adapted from Asilevi27.Map of the study area showing all twenty two (22) synoptic stations distributed in four main climatological zones countrywide.Full size imageTable 1 Geographical position and elevation for study sites.Full size tableAtmospheric clarity over the area is closely connected to cloud amount distribution and rainfall activities, largely determined by the oscillatory migration of the Inter-Tropical Discontinuity (ITD), accounting for the West African Monsoon (WAM)25,26.Owing to the highly variable spatiotemporal distribution of cloud amount vis-à-vis rainfall activities, resulting in contrasting climatic conditions in different parts of the region, the country is partitioned by the Ghana Meteorological Agency (GMet) into four main agro-ecological zones namely, the Savannah, Transition, Forest and Coastal zones as shown in Fig. 123. As a result, the region experiences an estimated Global solar radiation (GSR) intensity peaks in April–May and then in October–November, with the highest monthly average of 22 MJm−2 day−1 over the savannah climatic zone and the lowest monthly average of 13 MJm−2 day−1 over the forest climatic zone27.Research datasetsGround-based measurement dataDaily sunshine duration measurement datasets (n) spanning 1983–2018 where derived for estimating Global solar radiation (GSR). The measurements were taken by the Campbell-Stokes sunshine recorder, mounted at the 22 stations shown in Fig. 1, under unshaded conditions to ensure optimum sunlight exposure. The device concentrates sunlight onto a thin strip of sunshine card, which causes a burnt line representing the total period in hours during which sunshine intensity exceeds 120.0 Wm−2 according to World Meteorological Organization (WMO) recommendations27. The as-received daily records were quality control checked by ensuring 0 ≤ n ≤ N, where N is the astronomical day length representing the possible maximum duration of sunshine in hours determined by Eq. 1 from the latitude (ϕ) of the site of interest and the solar declination (δ) computed by Eq. 227:$$ {text{N}} = frac{2}{15}cos^{ – 1} left[ { – tan phi tan {updelta }} right] $$
    (1)
    $$ {updelta } = 23.45sin left[ {360^{{text{o}}} times frac{{284 + {text{J}}}}{365}} right] $$
    (2)
    where J represents the number for the Julian day of the year (first January is 1 and second January is 2).NASA-POWER Global solar radiation (GSR) reanalysis dataThe satellite-based Global solar radiation (GSR) dataset for specific longitudes and latitudes of all 22 stations, assessed in the study, were retrieved from the National Aeronautics and Space Administration-Prediction of Worldwide Energy Resources (NASA-POWER) reanalysis repository based on the Modern Era Retrospective-Analysis for Research and Applications (MERRA-2) assimilation model products, developed from Surface Radiation Budget, and spanning equal study period (1983–2018). The datasets are accessible on a daily and monthly temporal resolution scales at 0.5° × 0.5° spatial coverage via a user friendly web-based mapping portal: https://power.larc.nasa.gov/data-access-viewer/17. The advantage of the NASA-POWER reanalysis GSR, is the wide spatial coverage, and thus can be used to develop a high spatial resolution of solar radiation across the study area.The POWER Project analyzes, synthesizes and makes available surface radiation related parameters on a global scale, primarily from the World Climate Research Programme (WCRP), Global Energy and Water cycle Experiment (GEWEX), Surface Radiation Budget (SRB) project (Version 2.9), the Clouds and the Earth’s Radiant Energy System (CERES), FLASHFlux (Fast Longwave and Shortwave Radiative Fluxes from CERES and MODIS), and the Global Modeling and Assimilation Office (GMAO)17. Table 2 shows the source satellites and the corresponding temporal coverage used in the development of NASA-POWER GSR products.Table 2 Satellites providing the NASA-POWER GSR datasets20.Full size tableThe monthly average NASA-POWER all-sky shortwave surface radiation reanalysis products are statistically validated, showing reasonable biases of − 6.6–13%, against a global network of surface radiation measurement metadata in an integrated database from the Baseline Surface Radiation Network (BSRN) of the World Radiation Monitoring Center (WRMC)20,22. The datasets are widely used in renewable energy application16,22, agricultural modelling of crop yields28, crop simulation exercises29, and plant disease modelling30.Furthermore, in order to assess the suitability of the NASA-POWER surface solar radiation products for the study area, a synthetic sunshine duration based Global solar radiation (GSR) is developed from the Angstrom-Prescott sunshine duration model by Eq. 3 for comparisons27.$$ {text{GSR}} = left[ {{text{a}} + {text{b}}frac{{text{n}}}{{text{N}}}} right]{text{H}}_{{text{o}}} $$
    (3)
    were Ho (kWhm−2 day−1) is the daily extraterrestrial solar radiation on an horizontal surface, n is the daily sunshine duration measurements obtained from the Ghana Meteorological Agency (GMet), and N is the maximum possible daily sunshine duration or the day length in hours determined by Eq. 1. Generalized regression constants a = 0.25 and b = 0.5 for the study area were determined by Asilevi27 from experimental radiometric data based on correlation regression analysis between atmospheric clarity index (GSR/Ho) and atmospheric cloudlessness index (n/N), for estimating solar radiation over the study area, and compared with other satellite data retrieved from the National Renewable Energy Laboratory (NREL) and the German Aerospace Centre (DLR)27. Ho was calculated from astronomical parameters by Eq. 4:$$ {text{H}}_{0} = frac{{24{ } cdot { }60}}{pi } cdot {text{G}}_{{{text{sc}}}} cdot {text{d}}_{{text{r}}} left[ {omega_{{text{s}}} sin varphi sin delta + cos varphi cos delta sin omega_{{text{s}}} } right] $$
    (4)
    where Gsc is the Solar constant in MJm−2 min−1, dr is the relative Earth–Sun distance in meters (m), (omega_{s}) is the sunset hour angle (angular distance between the meridian of the observer and the meridian whose plane contains the sun), (delta) is the angle of declination in degrees (°) and (varphi) is the local latitude. A detailed presentation of the calculation was published in a previous work27.Statistical assessment analysisFor the purpose of assessing the NASA-POWER derived monthly mean GSR (GSRn) datasets in comparison with the estimated Global Solar Radiation (GSRe) datasets used in this paper, the following deviation and correlation methods in Eqs. 5–11, each showing a complimentary result were used: Standard deviation (({upsigma })), residual error (RE), Root mean square error (RMSE), Mean bias error (MBE), Mean percentage error (MPE), Pearson’s correlation coefficient (r), and Willmott index of agreement (d) for n observations31,32,33,34,35. GSRe, GSRn, and RE represent the estimated GSR, NASA-POWER GSR, and the residual error between GSRe and GSRn respectively. A positive RE indicates that sunshine-based estimated GSR is larger than the NASA-POWER reanalysis dataset, while a negative RE indicates that sunshine-based estimated GSR is smaller than the NASA-POWER reanalysis dataset. The arithmetic mean of any dataset is µ.The standard deviation (({upsigma })) was used to check the upper and lower limits of distribution around the mean deviations between GSRe and GSRn in order to ascertain violations between both datasets33. The RMSE is a standard statistical metric to quantify error margins in meteorology and climate research studies, and by definition is always positive, representing zero in the ideal case, plus a smaller value signifying a good marginal deviation31. The MBE is a good indicator for under-or overestimation in observations, with MBE values closest to zero being desirable. The MPE further indicates the percentage deviation between the GSRe and GSRn individual datasets35.$$ {upsigma } = sqrt {frac{1}{{{text{n}} – 1}}mathop sum limits_{{{text{i}} = 1}}^{{text{n}}} left( {{text{GSR}} – {upmu }} right)^{2} } $$
    (5)
    $$ {text{RE}} = {text{GSR}}_{{text{e}}} – {text{GSR}}_{{text{n}}} $$
    (6)
    $$ {text{RMSE}} = sqrt {frac{1}{{text{n}}}mathop sum limits_{{{text{i}} = 1}}^{{text{n}}} left( {{text{RE}}} right)^{2} } $$
    (7)
    $$ {text{MBE}} = frac{1}{{text{n}}}mathop sum limits_{{{text{i}} = 1}}^{{text{n}}} left( {{text{RE}}} right) $$
    (8)
    $$ {text{MPE}} = frac{1}{{text{n}}}mathop sum limits_{{{text{i}} = 1}}^{{text{n}}} left( {frac{{{text{RE}}}}{{{text{GSR}}_{{text{e}}} }} times 100{text{% }}} right) $$
    (9)
    $$ {text{r}} = frac{{mathop sum nolimits_{{{text{i}} = 1}}^{{text{n}}} left( {{text{GSR}}_{{text{e}}} – {upsigma }_{{text{e}}} } right)left( {{text{GSR}}_{{text{n}}} – {upsigma }_{{text{n}}} } right)}}{{left( {{text{n}} – 1} right){upsigma }_{{text{e}}} {upsigma }_{{text{n}}} }} $$
    (10)
    $$ {text{d}} = 1 – left[ {frac{{mathop sum nolimits_{{{text{i}} = 1}}^{{text{n}}} left( {{text{GSR}}_{{text{e}}} – {text{GSR}}_{{text{n}}} } right)^{2} }}{{mathop sum nolimits_{{{text{i}} = 1}}^{{text{n}}} left( {left| {{text{GSR}}_{{text{e}}} – {text{GSR}}_{{{text{nave}}}} left| + right|{text{GSR}}_{{text{n}}} – {text{GSR}}_{{{text{nave}}}} } right|} right)^{2} }}} right] $$
    (11)
    Further, as with other statistical studies in meteorology36, the Pearson’s correlation coefficient (r) was used to quantify the strength of correlation between GSRe and GSRn. Finally, the Willmott index of agreement (d) commonly used in meteorological literature computed from Eq. 7 is used to assess the degree of GSRe/GSRn agreement34. More

  • in

    Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea

    Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).Unwin, D. M. The pterosaurs from deep time (Pi Press, 2005).Witton, M. P. Pterosaurs: Natural History (Anatomy (Princeton University Press, 2013).Book 

    Google Scholar 
    Williams, C. J. et al. Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications. iScience 24, 102338 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nat. Commun. 11, 5293 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryang, W. H. Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geo. Soc. Korea 49, 31–45 (2013).CAS 

    Google Scholar 
    Kim, B. G. & Park, B. G. Geological report of the Dongbok sheet (1:50,000) (Geological Survey of Korea, Seoul, 1966).Lee, H., Sim, M. S. & Choi, T. Stratigraphic evolution of the northern part of the Cretaceous Neungju basin South Korea. Geosci. J. 23, 849–865 (2019).CAS 
    Article 

    Google Scholar 
    Paik, I. S., Huh, M., So, Y. H., Lee, J. E. & Kim, H. J. Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci. 30, 93–107 (2007).Article 

    Google Scholar 
    Cohen, K. M., Finney, S. M., Gibbard, P. L. & Fan, J.-X. The ICS international Chronostratigraphic chart. Episodes 36, 199–204 (2013).Article 

    Google Scholar 
    Calvo, J. O. & Lockley, M. G. The first pterosaur tracks from Gondwana. Cretac. Res. 22, 585–590 (2001).Article 

    Google Scholar 
    Kukihara, R. & Lockley, M. G. Fossil footprints from the dakota group (Cretaceous) john martin reservoir, bent county, Colorado: New insights into the paleoecology of the Dinosaur freeway. Cretac. Res. 33, 165–182 (2012).Article 

    Google Scholar 
    Lockley, M. & Schumacher, B. A new pterosaur swim tracks locality from the Cretaceous Dakota Group of eastern Colorado: implications for pterosaur swim track behavior. Fossil Footprints of Western North America. Bull. NM Mus. Nat. Hist. Sci, 365–371 (2014).Smith, R. E., Martill, D. M., Unwin, D. M. & Steel, L. Edentulous pterosaurs from the Cambridge Greensand (Cretaceous) of eastern England with a review of Ornithostoma Seeley, 1871. Proc. Geol. Assoc. (2020).Ibrahim, N., Unwin, D. M., Martill, D. M., Baidder, L. & Zouhri, S. A new pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco. PLoS ONE 5, e10875 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martill, D. M. & Ibrahim, N. An unusual modification of the jaws in cf. Alanqa, a mid-Cretaceous azhdarchid pterosaur from the Kem Kem beds of Morocco. Cretac. Res. 53, 59–67 (2015).Article 

    Google Scholar 
    Jacobs, M. L., Martill, D. M., Ibrahim, N. & Longrich, N. A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa. Cretac. Res. 95, 77–88 (2019).Article 

    Google Scholar 
    Jacobs, M. L. et al. New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity. Cretac. Res. 110, 104413 (2020).Article 

    Google Scholar 
    McPhee, J. et al. A new ? Chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of southern Morocco. Cretac. Res. 110, 104410 (2020).Article 

    Google Scholar 
    Martill, D. M. et al. A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco. Cretac. Res. 112, 104424 (2020).Article 

    Google Scholar 
    Martill, D. M., Unwin, D. M., Ibrahim, N. & Longrich, N. A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco. Cretac. Res. 84, 1–12 (2018).Article 

    Google Scholar 
    Smith, R. E. et al. Small, immature pterosaurs from the Cretaceous of Africa: implications for taphonomic bias and palaeocommunity structure in flying reptiles. Cretac. Res. 130, 105061 (2022).Article 

    Google Scholar 
    Smith, R. E., Martill, D. M., Kao, A., Zouhri, S. & Longrich, N. A long-billed, possible probe-feeding pterosaur (Pterodactyloidea: ?Azhdarchoidea) from the mid-Cretaceous of Morocco North Africa. Cretac. Res. 118, 104643 (2021).Article 

    Google Scholar 
    Kellner, A. W. A. et al. First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity. Sci. Rep. 9, 17875 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgin, R. A. & Frey, E. A new azhdarchoid pterosaur from the Cenomanian (Late Cretaceous) of Lebanon. Swiss J. Geosci. 104, 21–33 (2011).Article 

    Google Scholar 
    Averianov, A. O., Kurochkin, E. N., Pervushov, E. M. & Ivanov, A. V. Two bone fragments of ornithocheiroid pterosaurs from the Cenomanian of Volgograd Region, southern Russia. Acta Palaeontol. Pol. 50 (2005).Averianov, A. & Kurochkin, E. A new pterosaurian record from the Cenomanian of the Volga region. Paleontol. J. 44, 695–697 (2010).Article 

    Google Scholar 
    Nessov, L. Flying reptiles from the Jurassic and cretaceous of the USSR and significance of their remains for the reconstruction of paleogeographical conditions. Vestn. Leningr. Gos. Univ. Ser. 7, 28 (1990).
    Google Scholar 
    Bakhurina, N. N. & Unwin, D. M. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. (1995).Averianov, A. O. New records of azhdarchids (Pterosauria, Azhdarchidae) from the Late Cretaceous of Russia, Kazakhstan, and Central Asia. Paleontol. J. 41, 189–197 (2007).Article 

    Google Scholar 
    Averianov, A. Mid-Cretaceous ornithocheirids (Pterosauria, Ornithocheiridae) from Russia and Uzbekistan. Paleontol. J. 41, 79–86 (2007).Article 

    Google Scholar 
    Huh, M., Paik, I. S., Chung, C. H., Hwang, K. G. & Kim, B. S. Theropod tracks from Seoyuri in Hwasun, Jeollanamdo, Korea: occurrence and paleontological significance. J. Geo. Soc. Korea 39, 461–478 (2003).CAS 

    Google Scholar 
    Huh, M. et al. Well-preserved theropod tracks from the Upper Cretaceous of Hwasun County, southwestern South Korea, and their paleobiological implications. Cretac. Res. 27, 123–138 (2006).Article 

    Google Scholar 
    Lockley, M. G., Huh, M. & Kim, B. S. Ornithopodichnus and pes-only sauropod Trackways from the Hwasun tracksite Cretaceous of Korea. Ichnos 19, 93–100 (2012).Article 

    Google Scholar 
    Hwang, K. G., Huh, M. & Paik, I. S. A unique trackway of small theropod from Seoyu-ri, Hwasun-gun Jeollanam province. J. Geo. Soc. Korea 42, 69–78 (2006).CAS 

    Google Scholar 
    Kim, B. S. & Huh, M. Analysis of the acceleration phase of a theropod dinosaur based on a Cretaceous trackway from Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 1–8 (2010).Article 

    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Sci. Rev. 193, 109–145 (2019).Article 

    Google Scholar 
    Rodríguez-de La Rosa, R. A. Pterosaur tracks from the latest Campanian Cerro del Pueblo formation of southeastern Coahuila. Mexico. Geol. Soc. Spec. Publ. 271, 275–282 (2003).Article 

    Google Scholar 
    Lockley, M. G. & Meyer, C. Crocodylomorph trackways from the Jurassic to early cretaceous of North America and Europe: Implications for Ichnotaxonomy. Ichnos 11, 167–178 (2004).Article 

    Google Scholar 
    Ambroggi, R. & De Lapparent, A. Les empreintes de pas fossiles du Maestrichtien d’Agadir. Notes du Service Géologique du Maroc 10, 43–57 (1954).
    Google Scholar 
    Stokes, W. L. Pterodactyl tracks from the Morrison Formation. J. Paleontol. 31, 952–954 (1957).
    Google Scholar 
    Delair, J. Note on Purbeck fossil footprints, with descriptions of two hitherto unknown forms from Dorset. Proceedings of the Dorset Natural History and Archaeological Society. 92–100 (1963).Hwang, K.-G., Huh, M. I. N., Lockley, M. G., Unwin, D. M. & Wright, J. L. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geol. Mag. 139, 421–435 (2002).Article 

    Google Scholar 
    Mazin, J.-M. & Pouech, J. The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58, 39–53 (2020).Article 

    Google Scholar 
    Masrour, M., de Ducla, M., Billon-Bruyat, J.-P. & Mazin, J.-M. Rediscovery of the Tagragra tracksite (Maastrichtian, Agadir, Morocco): Agadirichnus elegans Ambroggi and Lapparent 1954 is Pterosaurian Ichnotaxon. Ichnos 25, 285–294 (2018).Article 

    Google Scholar 
    Wright, J. L., Unwin, D. M., Lockley, M. G. & Rainforth, E. C. Pterosaur tracks from the Purbeck limestone formation of Dorset England. Proc. Geol. Assoc. 108, 39–48 (1997).Article 

    Google Scholar 
    Lockley, M. G. et al. The fossil trackway Pteraichnusis pterosaurian, not crocodilian: Implications for the global distribution of pterosaur tracks. Ichnos 4, 7–20 (1995).Article 

    Google Scholar 
    Billon-Bruyat, J.-P. & Mazin, J.-M. The systematic problem of tetrapod ichnotaxa: the case study of Pteraichnus Stokes, 1957 (Pterosauria, Pterodactyloidae). Geol. Soc. Spec. Publ. 217, 315–324 (2003).Article 

    Google Scholar 
    Pascual Arribas, C. & Sanz Pérez, E. Huellas de Pterosaurios en el grupo Oncala (Soria, España). Pteraichnus palaciei-saenzi, nov. icnosp. Estudios Geol. 56, 73–100 (2000).
    Google Scholar 
    Calvo, M. M., Vidarte, C. F., Fuentes, F. M. & Fuentes, M. M. Huellas de Pterosaurios en la Sierra de Oncala (Soria, España). Nuevas icnoespecies: pteraichnus vetustior, Pteraichnus parvus. Pteraichnus manueli. Celtiberia 54, 471–490 (2004).
    Google Scholar 
    Fuentes Vidarte, C., Meijide Calvo, M., Meijide Fuentes, F. & Meijide Fuentes, M. Pteraichnus longipodus nov. icnosp. en la Sierra de Oncala (Soria, España). Studia Geologica Salmanticensia, 103–114 (2004).Peng, B.-X., Du, Y.-S., Li, D.-Q. & Bai, Z.-C. The first discovery of the early Cretaceous Pterosaur track and its significance in Yanguoxia, Yongjing County, Gansu Province. Earth Sci.-J. China Univ. Geosci. 29, 21–24 (2004).
    Google Scholar 
    Lee, Y.-N., Lee, H.-J., Lü, J. & Kobayashi, Y. New pterosaur tracks from the Hasandong formation (Lower Cretaceous) of Hadong County South Korea. Cretac. Res. 29, 345–353 (2008).Article 

    Google Scholar 
    Lee, Y.-N., Azuma, Y., Lee, H.-J., Shibata, M. & Lü, J. The first pterosaur trackways from Japan. Cretac. Res. 31, 263–273 (2010).Article 

    Google Scholar 
    Chen, R. et al. Pterosaur tracks from the early late cretaceous of Dongyang City, Zhejiang Province China. Geol. Bull. China. 32, 693–698 (2013).CAS 

    Google Scholar 
    Li, Y., Wang, X. & Jiang, S. A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker. PeerJ 9, e11361 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ha, S. et al. Diminutive pterosaur tracks and trackways (Pteraichnus gracilis ichnosp. Nov.) from the lower Cretaceous Jinju formation, Gyeongsang basin. Korea. Cretac. Res. 131, 105080 (2021).Article 

    Google Scholar 
    Sánchez-Hernández, B., Przewieslik, A. G. & Benton, M. J. A reassessment of the Pteraichnus ichnospecies from the early Cretaceous of Soria Province Spain. J. Vertebr. Paleontol. 29, 487–497 (2009).Article 

    Google Scholar 
    Zhou, X. et al. A new darwinopteran pterosaur reveals arborealism and an opposed thumb. Curr. Biol. 31, 2429-2436.e2427 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lü, J. et al. Dragons of the Skies (recent advances on the study of pterosaurs from China) (Zhejiang Science and Technology Press, 2013).
    Google Scholar 
    Beccari, V. et al. Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLoS ONE 16, e0254789 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Acta Geologica Sinica-English Edition 84, 241–246 (2010).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: A reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (2010).Article 

    Google Scholar 
    Wang, X. & Lü, J. Discovery of a pterodactylid pterosaur from the Yixian Formation of western Liaoning China. Chin. Sci. Bull. 46, A3–A8 (2001).Article 

    Google Scholar 
    Frey, E. et al. A new specimen of nyctosaurid pterosaur, cf. Muzquizopteryx sp. from the Late Cretaceous of northeast Mexico. Revista mexicana de ciencias geológicas 29, 131–139 (2012).
    Google Scholar 
    Wu, W.-H., Zhou, C.-F. & Andres, B. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications. PLoS ONE 12, e0185486 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. et al. The toothless pterosaurs from China. Acta Geol. Sin. 90, 2513–2525 (2016).
    Google Scholar 
    Zhang, X., Jiang, S., Cheng, X. & Wang, X. New Material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China. An. Acad. Bras. Cienc. 91 (2019).Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: A review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, H. et al. New anatomical information on Dsungaripterus weii Young, 1964 with focus on the palatal region. PeerJ 8, e8741 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D. et al. A manus dominated pterosaur track assemblage from Gansu, China: Implications for behavior. Sci. Bull. 60, 264–272 (2015).Article 

    Google Scholar 
    Masrour, M., Pascual-Arribas, C., de Ducla, M., Hernández-Medrano, N. & Pérez-Lorente, F. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only). J. African Earth Sci. 134, 766–775 (2017).Article 

    Google Scholar 
    Bramwell, C. D. & Whitfield, G. R. Biomechanics of Pteranodon. Phil. Trans. R. Soc. Lond. B. 267, 503–581 (1974).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: a reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (1997).Article 

    Google Scholar 
    Mazin, J.-M., Billon-Bruyat, J.-P., Hantzpergue, P. & Lafaurie, G. Ichnological evidence for quadrupedal locomotion in pterodactyloid pterosaurs: Trackways from the Late Jurassic of Crayssac (southwestern France). Geol. Soc. Spec. Publ. 217, 283–296 (2003).Article 

    Google Scholar 
    Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    Lockley, M. G. & Wright, J. L. Pterosaur swim tracks and other ichnological evidnce of behaviour and ecology. Geol. Soc. Spec. Publ. 217, 297–313 (2003).Article 

    Google Scholar 
    Lockley, M., Mitchell, L. & Odier, G. P. Small Theropod track assemblages from middle Jurassic Eolianites of eastern Utah: Paleoecological insights from dune Ichnofacies in a transgressive sequence. Ichnos 14, 131–142 (2007).Article 

    Google Scholar 
    Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y. & Tomsich, C. S. A pterosaur manus track from Denali National park, Alaska Range, Alaska United States. Palaios 24, 466–472 (2009).Article 

    Google Scholar 
    Bell, P. R., Fanti, F. & Sissons, R. A possible pterosaur manus track from the late Cretaceous of Alberta. Lethaia 46, 274–279 (2013).Article 

    Google Scholar 
    Stinnesbeck, W. et al. Theropod, avian, pterosaur, and arthropod tracks from the uppermost Cretaceous Las Encinas Formation, Coahuila, northeastern Mexico, and their significance for the end-Cretaceous mass extinction. Geol. Soc. Am. Bull. 129, 331–348 (2017).Article 

    Google Scholar 
    Xing, L. et al. Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 303–313 (2017).Article 

    Google Scholar 
    Lockley, M. G., Gierlinski, G. D., Adach, L., Schumacher, B. & Cart, K. Newly discovered tetrapod ichnotaxa from the Upper Blackhawk Formation Utah. Bull. N. M. M. Nat. Hist. Sci. 79, 469–480 (2018).
    Google Scholar 
    Lockley, M. G. & Gillette, D. Pterosaur and bird tracks from a new Late Cretaceous locality in Utah. Verteb. Paleontol. Utah 99, 355–359 (1999).
    Google Scholar 
    Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a Ctenochasmatid embryo from the Early Cretaceous of Argentina. Geol. Soc. Spec. Publ. 455, 83–94 (2018).Article 

    Google Scholar 
    Mickelson, D. L., Lockley, M. G., Bishop, J. & Kirkland, J. A New Pterosaur Tracksite from the Jurassic Summerville Formation, near Ferron Utah. Ichnos 11, 125–142 (2004).Article 

    Google Scholar  More

  • in

    Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China

    Birenboim, A. The influence of urban environments on our subjective momentary experiences. Environ. Plan. B-Urban Anal. CIty Sci. 45, 915–932. https://doi.org/10.1177/2399808317690149 (2018).Article 

    Google Scholar 
    Flores, A., Pickett, S. T. A., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: The case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308. https://doi.org/10.1016/S0169-2046(97)00084-4 (1998).Article 

    Google Scholar 
    Weijs-Perrée, M., Dane, G., Berg, P. V. D. & Dorst, M. V. A multi-level path analysis of the relationships between the momentary experience characteristics, satisfaction with urban public spaces, and momentary- and long-term subjective wellbeing. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph16193621 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paulin, M. J. et al. Application of the natural capital model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam. Ecosyst. Serv. 43, 101114. https://doi.org/10.1016/j.ecoser.2020.101114 (2020).Article 

    Google Scholar 
    Derkzen, M. L., van Teeffelen, A. J. A., Verburg, P. H. & Diamond, S. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 52, 1020–1032. https://doi.org/10.1111/1365-2664.12469 (2015).Article 

    Google Scholar 
    Leiva, M. A., Santibanez, D. A., Ibarra, S., Matus, P. & Seguel, R. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environ. Pollut. 181, 1–6. https://doi.org/10.1016/j.envpol.2013.05.057 (2013).CAS 
    Article 

    Google Scholar 
    Venkataramanan, V. et al. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 720, 137606. https://doi.org/10.1016/j.scitotenv.2020.137606 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, G. Z., Han, Q. & De Vries, B. The multi-objective spatial optimization of urban land use based on low-carbon city planning. Ecol. Indic. 125, 107540. https://doi.org/10.1016/j.ecolind.2021.107540 (2021).CAS 
    Article 

    Google Scholar 
    Cameron, R. W. F. et al. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 11, 129–137. https://doi.org/10.1016/j.ufug.2012.01.002 (2012).Article 

    Google Scholar 
    De la Sota, C., Ruffato-Ferreira, V. J., Ruiz-Garcia, L. & Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 40, 145–151. https://doi.org/10.1016/j.ufug.2018.09.004 (2019).Article 

    Google Scholar 
    Pongsakorn, S., Jiang, X. R. & Sullivan, W. C. Green infrastructure, green stormwater infrastructure, and human health a review. Curr. Landscape. Ecol. Rep. 2, 96–110. https://doi.org/10.1007/s40823-017-0028-y (2017).Article 

    Google Scholar 
    Liu, O. Y. & Russo, A. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services (Sust. Cities Soc., 2021). https://doi.org/10.1016/j.scs.2021.102772.Book 

    Google Scholar 
    McMahon, E. T. Green infrastructure. Plan. Commission. J. (2000).Mell, I. C. Green Infrastructure Concepts, Perceptions and Its Use in Spatial Planning. Doctor of Philosophy Thesis (Planning and Landscape Newcastle University, 2010).
    Google Scholar 
    Wang, J. X. & Banzhaf, E. Towards a better understanding of green infrastructure: A critical review. Ecol. Indic. 85, 758–772. https://doi.org/10.1016/j.ecolind.2017.09.018 (2018).Article 

    Google Scholar 
    Young, R., Zanders, J., Lieberknecht, K. & Fassman-Beck, E. A comprehensive typology for mainstreaming urban green infrastructure. J. Hydrol. 519, 2571–2583. https://doi.org/10.1016/j.jhydrol.2014.05.048 (2014).Article 

    Google Scholar 
    Wang, J. X., Xu, C., Pauleit, S., Kindler, A. & Banzhaf, E. Spatial patterns of urban green infrastructure for equity: A novel exploration. J. Clean Prod. 238, 117858. https://doi.org/10.1016/j.jclepro.2019.117858 (2019).Article 

    Google Scholar 
    Cook, E. A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58, 269–280 (2002).Article 

    Google Scholar 
    Vogt, P. & Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 50, 352–361. https://doi.org/10.1080/22797254.2017.1330650 (2017).Article 

    Google Scholar 
    Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J. & Wade, T. G. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22, 171–177. https://doi.org/10.1007/s10980-006-9013-2 (2007).Article 

    Google Scholar 
    Kuttner, M., Hainz-Renetzeder, C., Hermann, A. & Wrbka, T. Borders without barriers—Structural functionality and green infrastructure in the Austrian-Hungarian transboundary region of Lake Neusiedl. Ecol. Indic. 31, 59–72. https://doi.org/10.1016/j.ecolind.2012.04.014 (2013).Article 

    Google Scholar 
    Ma, Q. W., Li, Y. H. & Xu, L. H. Identification of green infrastructure networks based on ecosystem services in a rapidly urbanizing area. J. Clean Prod. 300, 126945. https://doi.org/10.1016/j.jclepro.2021.126945 (2021).Article 

    Google Scholar 
    Furberg, D., Ban, Y. & Mörtberg, U. Monitoring urban green infrastructure changes and impact on habitat connectivity using high-resolution satellite data. Remote Sens. 12, 3072. https://doi.org/10.3390/rs12183072 (2020).Article 

    Google Scholar 
    Barbati, A., Corona, P., Salvati, L. & Gasparella, L. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure?. Urban For. Urban Green. 12, 36–43. https://doi.org/10.1016/j.ufug.2012.11 (2013).Article 

    Google Scholar 
    Fluhrer, T., Chapa, F. & Hack, J. A methodology for assessing the implementation potential for retrofitted and multifunctional urban green infrastructure in public areas of the global south. Sustainability https://doi.org/10.3390/su13010384 (2021).Article 

    Google Scholar 
    Carroll, C., McRae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87. https://doi.org/10.1111/j.1523-1739.2011.01753.x (2012).Article 
    PubMed 

    Google Scholar 
    Saura, S. & Torne, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 24, 135–139 (2009).Article 

    Google Scholar 
    Jaworek-Jakubska, J., Filipiak, M., Michalski, A. & Napierała-Filipiak, A. Spatio-temporal changes of urban forests and planning evolution in a highly dynamical urban area: The case study of Wrocław, Poland. Forests 11, 17. https://doi.org/10.3390/f11010017 (2019).Article 

    Google Scholar 
    Ren, Z. B., He, X. Y., Zheng, H. F. & Wei, H. X. Spatio-temporal patterns of urban forest basal area under China’s rapid urban expansion and greening: Implications for urban green infrastructure management. Forests 9, 272. https://doi.org/10.3390/f9050272 (2018).Article 

    Google Scholar 
    Elliott, R. M. et al. Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio 49, 569–583. https://doi.org/10.1007/s13280-019-01223-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García, A. M., Santé, I., Loureiro, X. & Miranda, D. Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain). Ecosyst. Serv. 43, 101115. https://doi.org/10.1016/j.ecoser.2020.101115 (2020).Article 

    Google Scholar 
    Tiwari, A. & Kumar, P. Integrated dispersion-deposition modelling for air pollutant reduction via green infrastructure at an urban scale. Sci. Total Environ. 723, 138078. https://doi.org/10.1016/j.scitotenv.2020.138078 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. Q. et al. Unexpected air quality impacts from implementation of green infrastructure in urban environments: A Kansas City case study. Sci. Total Environ. 744, 140960. https://doi.org/10.1016/j.scitotenv.2020.140960 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alizadehtazi, B., Gurian, P. L. & Montalto, F. A. Observed variability in soil moisture in engineered urban green infrastructure systems and linkages to ecosystem services. J. Hydrol. 590, 125381. https://doi.org/10.1016/j.jhydrol.2020.125381 (2020).Article 

    Google Scholar 
    Dennis, M., Cook, P. A., James, P., Wheater, C. P. & Lindley, S. J. Relationships between health outcomes in older populations and urban green infrastructure size, quality and proximity. BMC Public Health https://doi.org/10.1186/s12889-020-08762-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Oijstaeijen, W., Van Passel, S. & Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 267, 110603. https://doi.org/10.1016/j.jenvman.2020.110603 (2020).Article 

    Google Scholar 
    Majekodunmi, M., Emmanuel, R. & Jafry, T. A spatial exploration of deprivation and green infrastructure ecosystem services within Glasgow city. Urban For. Urban Green. 52, 126698. https://doi.org/10.1016/j.ufug.2020.126698 (2020).Article 

    Google Scholar 
    Liberalesso, T., Oliveira Cruz, C., Matos Silva, C. & Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Pol. 96, 104693. https://doi.org/10.1016/j.landusepol.2020.104693 (2020).Article 

    Google Scholar 
    Lin, H. Y., Qian, J., Yan, L. J. & Huang, S. R. Analysis of spatial-temporal pattern and scenario simulation of green infrastructure in Wuyi County based on morphological spatial pattern analysis and CA-Markov model. Acta Agricult. Zhejiangensis. https://doi.org/10.3969/j.issn.1004-1524.2019.07.21 (2019).Article 

    Google Scholar 
    Mitsova, D., Shuster, W. & Wang, X. H. A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc. Urban Plan. 99, 141–153. https://doi.org/10.1016/j.landurbplan.2010.10.001 (2011).Article 

    Google Scholar 
    Dennis, M. et al. Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems. Land 7, 17. https://doi.org/10.3390/land7010017 (2018).Article 

    Google Scholar 
    Hu, Y. J. et al. Urban expansion and farmland loss in Beijing during 1980–2015. Sustainability 10, 3927. https://doi.org/10.3390/su10113927 (2018).Article 

    Google Scholar 
    Li, W. J., Wang, Y., Xie, S. Y., Sun, R. H. & Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 117 (2020).Song, W., Pijanowski, B. C. & Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 54, 60–70. https://doi.org/10.1016/j.ecolind.2015.02.015 (2015).Article 

    Google Scholar 
    Li, Z. Z., Cheng, X. Q. & Han, H. R. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests https://doi.org/10.3390/f11050584 (2020).Article 

    Google Scholar 
    Liu, D. Y. et al. Interoperable scenario simulation of land-use policy for Beijing-Tianjin-Hebei region, China. Land Use Pol. 75, 155–165. https://doi.org/10.1016/j.landusepol.2018.03.040 (2018).Article 

    Google Scholar 
    Mo, W. B., Wang, Y., Zhang, Y. X. & Zhuang, D. F. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 574, 1000–1011. https://doi.org/10.1016/j.scitotenv.2016.09.048 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Melgani, F. & Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790. https://doi.org/10.1109/Tgrs.2004.831865 (2004).Article 

    Google Scholar 
    Zhang, C., Wang, T. J., Atkinson, P. M., Pan, X. & Li, H. P. A novel multi-parameter support vector machine for image classification. Int. J. Remote Sens. 36, 1890–1906. https://doi.org/10.1080/01431161.2015.1029096 (2015).CAS 
    Article 

    Google Scholar 
    Peterson, L. K., Bergen, K. M., Brown, D. G., Vashchuk, L. & Blam, Y. Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. For. Ecol. Manag. 257, 911–922. https://doi.org/10.1016/j.foreco.2008.10.037 (2009).Article 

    Google Scholar 
    Sang, L. L., Zhang, C., Yang, J. Y., Zhu, D. H. & Yun, W. J. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 54, 938–943. https://doi.org/10.1016/j.mcm.2010.11.019 (2011).Article 

    Google Scholar 
    Liu, D. Y., Zheng, X. Q. & Wang, H. B. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 417, 108924. https://doi.org/10.1016/j.ecolmodel.2019.108924 (2020).Article 

    Google Scholar 
    Kazak, J. K. The use of a decision support system for sustainable urbanization and thermal comfort in adaptation to climate change actions-The case of the Wroclaw larger urban zone (Poland). Sustainability https://doi.org/10.3390/su10041083 (2013).Article 

    Google Scholar 
    Sonnenberg, F. A. & Beck, J. R. Markov-models in medical decision-making—A practical guide. Med. Decis. Mak. 13, 322–338. https://doi.org/10.1177/0272989×9301300409 (1993).CAS 
    Article 

    Google Scholar 
    Nadoushan, M. A., Soffianian, A. & Alebrahim, A. Modeling land use/cover changes by the combination of Markov chain and cellular automata Markov CA-Markov models. Int. J. Environ. Health Res. https://doi.org/10.4103/WKMP-0092.159922 (2015).Article 

    Google Scholar 
    Mansour, S., Al-Belushi, M. & Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Pol. 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414 (2020).Article 

    Google Scholar 
    Karimi, H., Jafarnezhad, J., Khaledi, J. & Ahmadi, P. Monitoring and prediction of land use/land cover changes using CA-Markov model: A case study of Ravansar County in Iran. Arab. J. Geosci. https://doi.org/10.1007/s12517-018-3940-5 (2018).Article 

    Google Scholar 
    Mondal, M. S., Sharma, N. C. P. K. G. & Kappas, M. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egypt. J. Remote Sens. Space Sci. https://doi.org/10.1016/j.ejrs.2016.08.001 (2016).Article 

    Google Scholar 
    Liu, Q. et al. Multi-scenario simulation of land use change and its eco-environmental effect in Hainan Island based on CA-Markov model. Ecol. Environ. Sci. 30, 1522–1531. https://doi.org/10.16258/j.cnki.1674-5906.2021.07.021 (2021).Article 

    Google Scholar 
    Pontius, R. G. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm. Eng. Remote Sens. 68, 1041–1049 (2002).
    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 30, 456–459 (2009).Article 

    Google Scholar 
    Chang, Q., Liu, X. W., Wu, J. S. & He, P. MSPA-based urban green infrastructure planning and management approach for urban sustainability: Case study of Longgang in China. J. Urban Plan. Dev. https://doi.org/10.1061/(asce)up.1943-5444.0000247 (2015).Article 

    Google Scholar 
    Li, K. M. et al. Spatiotemporal evolution characteristics of urban green infrastructure in central Liaoning urban agglomeration during the past 20 years based on landscape ecology and morphology. Acta Ecol. Sin. https://doi.org/10.5846/stxb202007221918 (2021).Article 

    Google Scholar 
    Ning, J. et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 28, 547–562. https://doi.org/10.1007/s11442-018-1490-0 (2018).Article 

    Google Scholar 
    Sawyer, S. C., Epps, C. W. & Brashares, J. S. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48, 668–678. https://doi.org/10.1111/j.1365-2664.2011.01970.x (2011).Article 

    Google Scholar 
    Yin, G. Y., Liu, L. M. & Jiang, X. L. The sustainable arable land use pattern under the tradeoff of agricultural production, economic development, and ecological protection—An analysis of Dongting Lake basin, China. Environ. Sci. Pollut. Res. 24, 25329–25345. https://doi.org/10.1007/s11356-017-0132-x (2017).Article 

    Google Scholar  More

  • in

    Social microbiota and social gland gene expression of worker honey bees by age and climate

    Evans, J. D. & Spivak, M. Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010).PubMed 
    Article 

    Google Scholar 
    Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).PubMed 
    Article 

    Google Scholar 
    Simone, M., Evans, J. D. & Spivak, M. Resin collection and social immunity in honey bees. Evolution 63, 3016–3022 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dalenberg, H., Maes, P., Mott, B., Anderson, K. E. & Spivak, M. Propolis envelope promotes beneficial bacteria in the honey bee (Apis mellifera) mouthpart microbiome. Insects 11, 1–12 (2020).Article 

    Google Scholar 
    Poulsen, M., Bot, A. N. M., Nielsen, M. G. & Boomsma, J. J. Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav. Ecol. Sociobiol. 52, 151–157 (2002).Article 

    Google Scholar 
    Rosengaus, R. B., Traniello, J. F. A., Lefebvre, M. L. & Maxmen, A. B. Fungistatic activity of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insect. Soc. 51, 259–264 (2004).Article 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maes, P. W., Floyd, A. S., Mott, B. M. & Anderson, K. E. Overwintering honey bee colonies: effect of worker age and climate on the hindgut microbiota. Insects 12, 1–16 (2021).Article 

    Google Scholar 
    Brown, B. P. & Wernegreen, J. J. Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol. 16, 140 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).PubMed 
    Article 

    Google Scholar 
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, 1–22 (2017).Article 
    CAS 

    Google Scholar 
    Anderson, K. E. & Ricigliano, V. A. Honey bee gut dysbiosis: a novel context of disease ecology. Curr. Opin. Insect Sci. 22, 125–132 (2017).PubMed 
    Article 

    Google Scholar 
    Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. bioRxiv https://doi.org/10.1101/2020.01.21.914325 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corby-Harris, V. et al. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov.. Appl. Environ. Microbiol. 80, 7460–7472 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floyd, A. S. et al. Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): towards a microbiome understanding of disease susceptibility. Insects 11, 1–16 (2020).MathSciNet 
    Article 

    Google Scholar 
    Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sabree, Z. L., Hansen, A. K. & Moran, N. A. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS ONE 7, e41250 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rokop, Z. P., Horton, M. A. & Newton, I. L. G. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81, 7261–7270 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox-foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, K. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 114, 4775–4780 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, K. E. et al. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. https://doi.org/10.1111/mec.12966 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 30, 235–244 (2015).Article 

    Google Scholar 
    Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE 9, e95056 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Münch, D., Kreibich, C. D. & Amdam, G. V. Aging and its modulation in a long-lived worker caste of the honey bee. J. Exp. Biol. 216, 1638–1649 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amdam, G. V. Social context, stress, and plasticity of aging. Aging Cell 10, 18–27 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. S., Kelbert, L. & Hulbert, A. J. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp. Gerontol. 42, 601–609 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, G. E. Hormonal and genetic control of honeybee division of labour. Behav. Physiol. Bees 14–27 (1991).Anderson, K. E. et al. The queen gut refines with age: longevity phenotypes in a social insect model. bioRxiv https://doi.org/10.1101/297507 (2018).Article 

    Google Scholar 
    Amdam, G. V., Norberg, K., Hagen, A. & Omholt, S. W. Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. 100, 1799–1802 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, B., Shipley, E. & Arnold, K. E. Social immunity in honeybees—density dependence, diet, and body mass trade-offs. Ecol. Evol. 8, 4852–4859 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette, R. L., Mohamed, A. & Johnson, B. R. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci. Rep. 5, (2015).Ohashi, K., Natori, S. & Kubo, T. Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L.. Eur. J. Biochem. 249, 797–802 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article 

    Google Scholar 
    Vojvodic, S. et al. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecol. Evol. 5, 4795–4807 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohashi, K. et al. Functional flexibility of the honey bee hypopharyngeal gland in a dequeened colony. Zool. Sci. 17, 1089–1094 (2000).CAS 
    Article 

    Google Scholar 
    Harwood, G., Salmela, H., Freitak, D. & Amdam, G. Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. J. Exp. Biol. 224 (2021).Santos, K. S. et al. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect. Biochem. Mol. Biol. 35, 85–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).Article 
    CAS 

    Google Scholar 
    Mattila, H. R. & Otis, G. W. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 32, 496–505 (2007).Article 

    Google Scholar 
    Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie 30, 299–310 (1999).Article 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bees overwintering in a southern climate: Longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Fukuda, H. S. K. Seasonal change of the honey bee worker longevity in Sapporo, North Japan with notes on some factors affecting life span. Ecol. Soc. Jpn. 16, 206–212 (1966).
    Google Scholar 
    Mattila, H. R., Harris, J. L. & Otis, G. W. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insect. Soc. 48, 88–93 (2001).Article 

    Google Scholar 
    Feliciano-Cardona, S. et al. Honey bees in the tropics show winter bee-like longevity in response to seasonal dearth and brood reduction. Front. Ecol. Evol. 8, 1–8 (2020).Article 

    Google Scholar 
    Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect. Sci. 10, 185–193 (2015).PubMed 
    Article 

    Google Scholar 
    Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1 (2012).CAS 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, J. D. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invertebr. Pathol. 93, 135–139 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bourgeois, A. L., Rinderer, T. E., Beaman, L. D. & Danka, R. G. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J. Invertebr. Pathol. 103, 53–58 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1986).Gloor, G. B. & Reid, G. Compositional analysis: a valid approach to analyze microbiome high throughput sequencing data. Can. J. Microbiol. 703, 0821 (2016).
    Google Scholar 
    Comas, M. CoDaPack 2.0: a stand-alone, multi-platform compositional software. Options 1–10 (2011).Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    Yek, S. H., Nash, D. R., Jensen, A. B. & Boomsma, J. J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. Biol. Sci. 279, 4215–4222 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 15, 645–656 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steinmann, N., Corona, M., Neumann, P. & Dainat, B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Seehuus, S.-C.C., Norberg, K., Gimsa, U., Krekling, T. & Amdam, G. V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. R., Yang, Y. C., Shi, L. S. & Peng, C. C. Antioxidant properties of royal jelly associated with larval age and time of harvest. J. Agric. Food Chem. 56, 11447–11452 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li-E, M., Jia, L., Yan, J., Xiao-Wen, L. & Xin, L. Isolation, purification and characterization of superoxide dismutase from royal jelly of the Italian worker bee, Apis mellifera. Acta Entomol. Sin. 47, 171–177 (2004).
    Google Scholar 
    Bottacini, F. et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. 7, 1–14 (2012).Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157 (2014).Casteels, P. et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381–386 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Casteels, P., Ampe, C., Jacobs, F. & Tempst, P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268, 7044–7054 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barke, J. et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8, 109 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lyapunov, Y. E., Kuzyaev, R. Z., Khismatullin, R. G. & Bezgodova, O. A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 373–379 (2008).Paiva, C. N. & Bozza, M. T. Are reactive oxygen species always detrimental to pathogens?. Antioxid. Redox Signal. 20, 1000–1034 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) Infected with Serratia marcescens strain sicaria. PLoS ONE 11, 1–26 (2016).Article 
    CAS 

    Google Scholar 
    Bae, Y. S., Choi, M. K. & Lee, W. J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 31, 278–287 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 80(310), 847–850 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Crailsheim, K., Hrassnigg, N., Gmeinbauer, R., Szolderits, M. J. & Schneider, L. H. W. Pollen utilization in non-breeding honeybees in Winter. J. Insect. Phys. 39, 369–373 (1993).Article 

    Google Scholar 
    Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. 15, 687–701 (2006).Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect. Sci. 10, 1–7 (2015).PubMed 
    Article 

    Google Scholar 
    Corona, M., Hughes, K. A., Weaver, D. B. & Robinson, G. E. Gene expression patterns associated with queen honey bee longevity. Mech. Age. Dev. 126, 1230–1238 (2005).CAS 
    Article 

    Google Scholar 
    Santos, D. E., Souza, A. D. O., Tibério, G. J., Alberici, L. C. & Hartfelder, K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. 20200173, (2020). More