More stories

  • in

    Anisogamy explains why males benefit more from additional matings

    Lehtonen12 presents three simple models with the same broad structure: a single mutant individual with divergent mating behaviour arises in a population of ‘residents’ that all play the same strategy, and the success of that mutant is then followed (Figs. 1, 2). Specifically, Lehtonen investigates the fitness benefits of increased mating for mutant males in comparison to mutant females. Two important parameters can be varied: (i) the degree of anisogamy (defined here as the ratio of sperm number to egg number), which captures how divergent males and females are in the size (and thus number) of gametes they produce, and (ii) the efficiency of fertilisation, which determines how easily gametes can find and fuse with each other. If fertilisation is highly efficient, then gametes of the less numerous type will achieve nearly full fertilisation; on the other hand, inefficient fertilisation can result in gametes of both sexes going unfertilised.Fig. 2: Structure of the three models of Lehtonen12, showing differences in mating behaviour between resident males (green), resident females (blue) and mutant males and females (both yellow).For illustration, we suppose that females produce four eggs each and males produce eight sperm (the anisogamy ratio in nature is typically much higher). In Model 1, resident individuals spawn monogamously in a ‘nest’ (black outline), whereas mutant males and females can bring additional partners to their nest to spawn in a group. In Model 2, resident individuals divide their gametes equally among m spawning groups, each consisting of m individuals of each sex (shown here with m = 2). Mutant males and females instead divide their gametes among a larger or smaller number of groups, mmutant (shown here with mmutant = 4). In Model 3, there is a further sex asymmetry in addition to anisogamy: Fertilisation takes place inside the female’s body. Resident individuals mate with m partners (shown here with m = 2), whereas mutant males and females mate with a larger or smaller number of partners, mmutant (shown here with mmutant = 4).Full size imageIn the first two models, fertilisation is external and no assumptions are made about pre-existing differences between the sexes apart from the number of gametes they produce. In other words, males and females are identical except that males produce sperm in greater numbers than females produce eggs. In Model 1, resident individuals are assumed to mate monogamously, whereas a mutant can monopolise multiple partners of the opposite sex (Fig. 2). Importantly, both male and female mutants can bring additional partners back to their ‘nest’ to spawn in a group. When fertilisation is highly efficient, females can fertilise all of their eggs by bringing back a single male, and there is simply no benefit (in this model) of seeking further partners (Fig. 1A). In contrast, anisogamy means that males always produce at least some gametes in excess, and thus can benefit from seeking additional mates. When fertilisation is inefficient, however, both sexes benefit from increasing the concentration of opposite-sex gametes at their ‘nest’ (Fig. 1B). This latter benefit is sex-symmetric, whereas the former continues to apply only to males. As a consequence, the Bateman gradients are always steeper for males than for females (Fig. 1A, B), confirming Bateman’s argument.Model 2 similarly assumes external fertilisation, but in this case the resident males and females meet in groups consisting of m individuals of each sex (Fig. 2). Fertilisation occurs via group spawning. It is assumed that each resident individual divides its gametes evenly across M groups, whereas mutant individuals can instead spread their gametes over a larger or smaller number of groups (note that the author assumes that M = m, but this assumption could be relaxed without undermining the core argument). Spreading gametes out across a larger number of spawning groups does not increase the concentration of opposite-sex gametes they encounter (Fig. 2). However, a mutant that spreads its gametes more widely reduces the density of its own gametes across those groups in which it spawns. This in turn results in there being more opposite-sex gametes for each gamete of the mutant’s sex in those groups. For example, in Fig. 2, mutant males spawn in twice as many groups as resident males and thereby halve the density of their own sperm in each group. The resulting egg-to-sperm ratio of (frac{4}{6}=frac{2}{3}) is more favourable than the ratio of (frac{4}{8}=frac{1}{2}) that the resident males experience. Mutant females can similarly increase local sperm-to-egg ratios by spreading their eggs over more groups. However, in contrast to males, this only leads to fitness benefit if fertilisation is inefficient, and even then the benefit to females is very modest (scarcely perceptible in Fig. 1D). Gamete spreading reduces wasteful competition among the mutants’ own gametes for fertilisation. Such ‘local’ gamete competition, like gamete competition more generally, is stronger among sperm than among eggs because sperm are more numerous under anisogamy13,14. Consequently, as in Model 1, Bateman gradients are always steeper in males (Fig. 1C, D). Recall that the results of the above models emerge in the absence of any assumptions beyond the sex difference in the number of gametes produced.The third and final model allows for a further pre-existing difference between the sexes in addition to anisogamy: internal fertilisation, which is common and widespread in animals (Fig. 2)15. Each female is assumed to mate with m males, while each male divides his gametes evenly among m females. As in the previous two models, males benefit more than females from additional matings under most conditions. However, in the particular case where fertilisation is highly inefficient and the ratio of sperm to eggs is not too large, the pattern can theoretically reverse, such that female Bateman gradients exceed their male counterparts (Fig. 1F). The reason is that the effects of gamete concentration are asymmetric under internal fertilisation: Multiple mating by a female increases the local concentration of sperm its eggs experience, whereas a male’s multiple mating does not increase the concentration of eggs around its sperm (Fig. 2). Under conditions of severe sperm limitation—due to both weak anisogamy and highly inefficient fertilisation—this can lead to females benefitting more from additional matings than males (Fig. 1F). Although intriguing, it is unclear whether this finding has any empirical relevance, as sperm limitation is probably rarely severe in internal fertilisers. Under more realistic conditions of moderate to high fertilisation rates, sex differences in the degree of local gamete competition once again become decisive, and male Bateman gradients exceed their female counterparts (Fig. 1E). More

  • in

    New land tenure fences are still cropping up in the Greater Mara

    The following section assesses our main results in terms of the growth in fenced areas over time relative to 1) types of protection, 2) administrative boundaries, and 3) other fences.Fencing relative to land governanceAcross the Greater Mara, a general growth in fenced areas can be observed throughout the 00 s but in particular over the last decade (Fig. 1). Based on satellite images, 35,067 ha were fenced in 1985, corresponding to c. 5%. In the following 25 years there was only an insignificant increase in fenced plots. However, from 2010, the number of fences suddenly grew rapidly, and in the following period (2015–2020) the fenced area increased even more radically, in an exponential manner (Fig. 2). For example, in 2015 there was 63,112 ha of fenced land; in 2016 this number rose to c. 75,176 ha, corresponding to a c. 20% annual increase. From 2010 to 2020, the ha fenced area increased by 170%. This corresponds to a roughly four times increase in the area enclosed by fences during the study period (1985–2020).Figure 2Conservative estimate of the fenced area of the entire Greater Mara, Kenya (1985–2020) expressed in hectares.Full size imageIn almost all regions, the number of fences continued to increase in 2019–20 (Fig. 2). The result is a total of 130,277 ha of fenced land in 2020, corresponding to 19% of the Greater Mara.Hence, there appears to be a building momentum in the expansion of fences in the Greater Mara: those regions that had many fences in 2016 ( > 1,000 ha) continue to experience an increase in the area enclosed by fences, with fences spreading almost everywhere in 2020 in particular. Those regions with the fewest fences in 2016 ( More

  • in

    A thorough annotation of the krill transcriptome offers new insights for the study of physiological processes

    To create and annotate a de novo transcriptome assembly for Antarctic krill a preliminary investigation focusing on the efficiency and quality of already existing strategies for de novo transcriptome assembly of non-model organisms was performed. In a second step, we focused on identifying and applying the best transcriptome assembly strategy to finally explore the gene expression levels across different developmental stages and krill responses to different environmental conditions. At first, separate transcriptome reconstructions using different assembly programs were carried out. A combination of two filtering steps was applied to these results to discard artifacts and improve the assembly quality. Reconstructed transcripts across all assemblers were joined, producing a set of non-redundant representative transcripts. We obtained these results by applying the EvidentialGene pipeline (version 4), which was specifically designed to combine different reconstructions and to eliminate redundant sequences. Finally, we applied another filter to identify redundant or mis-assembled sequences still appearing in the transcriptome.Transcriptome qualityWe checked the quality of our reconstructed transcriptome step by step, starting from the independent de novo assemblies, then evaluating the potential of merging all assemblies into a unique meta-assembly, and finally filtering the transcriptome for redundancy. All these results are summarized in Fig. 1, Tables 1 and 2. The result of our reconstruction strategy was evaluated using different measures: the N50 statistics highlighted an increase in transfrag lengths at each step. Recent benchmarks, such as18, have shown that, while reconstructing the transcriptome of a species, no single approach is uniformly superior: the quality of each result is influenced by a number of factors, both technical (k-mer size, strategy for duplicate resolution) and biological (genome size, presence of contaminants). In our study, we observed that, although a consistent number of sequences was removed through each step of the assembly, merging and filtering procedure, we didn’t encounter any decline in the quality described by the basic statistics of the reconstructed transcripts (Table 1).Figure 1Transcriptome quality assessment results. Results of the first assembly filtering in terms of total number of transcripts.Full size imageTable 1 Quality measures computed at each assembly step, from the independent de novo assembly algorithms (a), after the first filtering process (b) and finally comparing the quality of the EvidentialGene meta-assembly and the final krill transcriptome after the redundancy filter (c).Full size tableTable 2 BUSCO assessment results on independent de novo assemblies from RNA-seq stranded library.Full size tableWe then explored the completeness of the krill transcriptome according to conserved ortholog content using BUSCO (version 4.0.5) comparing our sequences to all the expected single-copy orthologs from the Arthropoda phylum. The results of the BUSCO analyses performed on each independent de novo assembly, on the EvidentialGene reconstruction and the final transcriptome are reported in Table 2. This analysis confirms that our strategy for controlling redundancy did not affect transcriptome completeness: indeed, the fraction of complete single-copy essential genes dropped by 1.8% only, while 123,376 redundant transfrags were discarded.We finally compared our quality assessment results with those from previously released krill transcriptomes (Table 3). Our latest assembly significantly improves all the metrics we have discussed above. While this evidence suggests that our assembly is reasonably close to providing a complete representation of the krill transcriptome, it is more difficult to gauge the amount of redundancy it contains. Specifically, it remains difficult to distinguish between splice variants of a gene and possible paralogous copies. We believe that only the availability of a genome draft will make it possible to reliably discriminate between these two signals.Table 3 Quality statistics of the previously released krill transcriptomes compared to the newly assembled KrillDB2. GenBank accession GFCS00000000.1 refers to the SuperbaSe krill transcriptome reference19.Full size tableFunctional classificationThe assembled fragments were aligned against known protein and nucleotide databases to understand whether they could be linked to specific functions or processes described in other species. The functional annotation analyses showed that 63,903 contigs (42% of the total krill transcriptome) matched at least one protein from the NCBI NR (non-redundant) collection for a total of 98,316 unique proteins, while 62,518 transfrags found homology with a UniProtKB/TREMBL protein sequences (41% of the total), matching a total of 96,005 unique proteins. Furthermore, 22,024 krill transcripts (15% of the total) had significant matches with sequences in the NCBI NT nucleotide database. To classify transcripts by putative function, we performed a GO assignment. Specifically, 2833 GO terms (corresponding to 13,064 genes) were assigned: 1224 of those (corresponding to 11,575 genes) represented molecular functions; 1193 terms (corresponding to 6990 genes) were linked to biological processes; 416 terms (corresponding to 4301 genes) represented cellular components.A case study on the discovery of opsin genesTo evaluate the gene discovery potential of the new assembly, we searched the transcriptome for novel members of the opsin family. Opsins are a group of light sensitive G protein-coupled receptors with seven transmembrane domains. Fourteen genes were annotated as putative opsins, and the conserved domains analysis revealed that all of them possess the distinctive 7 α-helix transmembrane domain structure. The eight previously cloned opsins20 were all represented in KrillDB2 (sequence identity  > 90%; Table S1 Supplementary Material). The other six genes we identified can therefore be considered new putative opsins. Among those, we found four putative rhabdomeric opsins: EsRh7 and EsRh8, with 70% and 59% of amino acid identity to EsRh1a and EsRh4, respectively; EsRh9 and EsRh10 showing high sequence identity (87% and 74%, respectively) to EsRh5. Furthermore, we identified two putative ancestral opsins: a non-visual arthropsin (EsArthropsin), and an onychopsin (EsOnychopsin) with 70% and 49% of sequence identity with crustacean and onychophoran orthologous, respectively. Phylogenetic analysis (Fig. 2) suggested that EsRh7-10 are middle-wavelength-sensitive (MWS) rhabdomeric opsins, and further confirmed EsArthropsin and EsOnychopsin annotation.Figure 2Phylogenetic relationships of Euphausia superba opsins shown as circular cladogram. Colored dots indicate krill opsins: red, previously cloned opsins; green, novel identified opsins. The spectral sensitivities of rhabdomeric opsin clades were inferred from the curated invertebrate-only opsin dataset proposed by DeLeo & Bracken‐Grissom, 2020. Represented opsin classes: LWS, long-wavelenght-sensitive; LSM, long/middle-wavelenght-sensitive; MWS, middle-wavelenght-sensitive; SWS/UV, short/UV-wavelenght-sensitive; ONY, onychopsins; MEL, melanopsins; PER, peropsin; ART, arthropsin. Rectangular phylogram is reported in Fig. S1 (Supplementary Material).Full size imageDifferential expressionThe availability of a new assembly of the krill transcriptome, reconstructed by collecting the largest amount of experimental data available thus far, suggested the possibility of performing a more detailed investigation of differential expression patterns. Therefore, we decided to reanalyze the dataset from Höring et al.21 to assess the possibility of identifying differentially expressed genes that were not detected in the original study due to the use of an older reference transcriptome15.Our design matrix for the model included all the independent factors (season, area and sex) and, in addition, the interaction between area and season, sex and area, sex and season.In total 1741 genes were differentially expressed (DEG) among experimental conditions. They correspond to around 2% of the total reconstructed genes. In the previous work by Höring21, the same samples were quantified against 58,581 contigs15 producing 1654 DEGs. Table 4 summarizes the list of performed contrasts, each one with the number of differentially expressed up and down regulated genes.Table 4 List of contrasts computed with total number of differentially expressed genes and numbers of up- and downregulated genes.Full size table1195 DEGs were identified in the comparison between summer and winter specimens: 1078 were up-regulated and 117 down-regulated. In addition, 396 of such DEGs had some form of functional annotation. In general, these results are in accordance with the discussion by Höring21, which found that seasonal differences are predominant compared to regional ones. A summary of the DEGs is listed in Table 5. Complete tables of differentially expressed genes are downloadable on KrillDB2 (Fig. 3c; https://krilldb2.bio.unipd.it/, Section “Differentially Expressed Genes (DEGs)”).Table 5 List of biologically relevant DEGs identified, starting from those already described by Höring et al.35.Full size tableFigure 3Blast search section. The new search box for sequence searches (a) with an example of a BLAST search (highlighted in yellow) and the corresponding results (b). By clicking on each target identifier, the user will be redirected to that specific transcript page, where new sections have been added, as shown in Fig. 6.Full size imageSummer versus winterWe selected a series of genes among seasonal DEGs according to what has been already described in the literature. Höring et al.21 previously identified and described 35 relevant DEGs involved in seasonal physiology and behavior: we recovered the same gene signature in our analysis by comparing summer to winter samples. The majority of these DEGs appear to be involved in the development of cuticles (chitin synthase, carbohydrate sulfotransferase 11), lipid metabolism (fatty acid synthase 2, enoyl-CoA ligase), reproduction (vitellogenin, hematopoietic prostaglandin D synthase), metabolism of different hormones (type 1 iodothyronine deiodinase) and in the circadian clock (cryptochrome). Our results also include DEGs that were involved in the moult cycle of krill in other studies16. Specifically, we identified a larger group of genes involved in the different stages of the cuticle developmental process (peritrophin-A domain, calcified cuticle protein, glycosyltransferase 8-domain containing protein 1, collagen alpha 1, glutamine-fructose 6 phosphate), including proteins such as cuticle protein-3,6,19.8, early cuticle protein, pupal cuticle protein, endocuticle structural glycoprotein, chitinase-3 and chitinase-4, the latter representing a group of chitinase which have been shown to be expressed predominantly in gut tissue during larval and/or adult stages in other arthropods and are proposed to be involved in the digestion of chitin-containing substrates22. Finally, in addition to trypsin and crustin 4 (immune-related gene, essential in early pre-moult stage when krill still have a soft cuticle to protect them from pathogen attack, as seen by Seear et al.16), we also identified crustin-1,2,3,5 and 7. All the reported genes were up-regulated in summer, the period in which growth takes place and krill moult regularly.Cuticle development genes were also identified as differentially expressed in the analysis of the interaction of multiple factors, between male samples coming from South Georgia and female specimens coming from the area of Bransfield Strait-South Orkney (considered as a unique area since they are placed at similar latitudes). Strikingly, we also identified a pro-resilin gene, whose role in many insects consists in providing efficient energy storage, being up-regulated in South Georgia male specimens.Interaction effectsA number of relevant DEGs were found among specific regional and seasonal factors interactions. For instance, by comparing krill samples coming from South Georgia in summer and individuals sampled in Bransfield Strait-South Orkney in winter, we found genes up-regulated in summer in South Georgia related to reproductive activities, such as doublesex and mab-3 related transcription factor. The latter is a transcription factor crucial for sex determination and sexual differentiation, which was already described in other arthropods23. Since no differentially expressed gene related to reproduction was found by Höring et al.21 in the same comparisons, this suggests that the new krill transcriptome improves the power to identify new expression patterns and characterize the krill samples.Finally, the comparison between male individuals from the Lazarev Sea and female specimens from the Bransfield Strait-South Orkney showed additional DEGs involved in reproduction, such as ovochymase 2, usually highly expressed in female adults or eggs, serine protease and a trypsin-like gene. In particular, trypsin-like genes are usually thought to be digestive serine proteases, but previous works suggested that they can play other roles24; many trypsins show female or male-specific expression patterns and have been found exclusively expressed in males, as in our analysis, suggesting that they play a role in the reproductive processes.The simultaneous presence of differentially expressed genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation that appear to be differentially expressed in the same comparisons is in accordance with what was already observed in krill25 and other krill species26. In particular, there is evidence of a strong relation between the krill moulting process and its growth and sexual maturation during the year, which supports and confirms the reliability of our results in terms of genes involved in such krill life cycle steps.Identification of microRNA PrecursorsAlthough microRNAs play a key role in the regulation of gene expression and in many important biological processes, such as development or cell differentiation, there is still no information about microRNAs in krill species.Here we performed an investigation to test whether the new transcriptome could also include sequences with a significant homology to known mature microRNAs.In total we identified 261 krill transcripts whose sequences are highly similar to 644 known microRNAs from other species. 306 sequences were linked to at least one GO term, matching 54 krill transcripts (Table S2, Supplementary Material). Among them, we identified 5 putative microRNAs involved with changes in cellular metabolism (age-dependent general metabolic decline—GO:0001321, GO:0001323), as well as changes in the state or activity of cells (age-dependent response to oxidative stress—GO:0001306, GO:0001322, GO:0001324), 35 microRNAs involved in interleukin activity and production. We found 26 putative microRNAs likely involved in ecdysteroidogenesis (specifically GO:0042768), a process resulting in the production of ecdysteroids, moulting and sex hormones found in many arthropods. In addition, we found a microRNA involved in fused antrum stage (GO:0048165) which appears to be related in other species to oogenesis. We also identified 27 microRNAs related to rhombomere morphogenesis, formation and development (GO:0021661, GO:0021663, GO:0021570). These functions have been linked to the development of portions of the central nervous system in vertebrates, which share the same structure of those found in arthropod brains. Lastly, 26 krill sequences showed high similarity with 2 mature microRNA related to the formation of tectum (GO:0043676), which represents in arthropods and, specifically, crustaceans, the part of the brain acting as visual center.KrillDB2 web InterfaceThe KrillDB website has been redesigned to include the new version of the transcriptome assembly. Figures 3, 4, 5 and 6 collect images taken from the new main sections of the database. The integrated full-text search engine allows the user to search for a transcript ID, gene ID, GO term, a microRNA ID or any other free-form query. Results of full-text searches are now organized into several separate tables, each representing a different data source or biological aspect (Fig. 5). Results of GO term searches are summarized in a table reporting the related genes with corresponding domain or microRNA match and associated description. Both gene and transcript-centric pages have been extended with two new sections: “Orthology” and “Expression” (Fig. 6). The Orthology section summarizes the list of orthologous sequences coming from the OMA analysis, each one with the species it belongs to and the identity score.Figure 4Differential Expression section. The new section collecting all differentially expressed genes tables (a) with an example of the corresponding result for a selected contrast (b).Full size imageFigure 5New search engine of KrillDB2. Example of the results of a full-text search on KrillDB2.Full size imageFigure 6Additional sections in gene and transcript pages. The new sections in the gene-centric page show a table listing the orthologous sequences with their belonging species and the identity score (a), a visualization of the gene structure as estimated by Lace software (d) and a boxplot coming from Expression Atlas analyses (c). Both Orthology and Expression sections are integrated also in the transcript-centric page. When a transcript is annotated as a putative microRNA, a “Predicted Hairpin” section displays a visualization of the hairpin predicted secondary structure and tables showing the alignment length, the HHMMiR score and the list of mature microRNAs matching (b).Full size imageThe “Expression” section shows a barplot representing abundances estimates obtained from Salmon. An additional section, called “Gene Structure” (Fig. 6), was added to the gene page on the basis of the results coming from the SuperTranscript analysis. Specifically, we modified the STViewer.py Python script (from Lace), optimizing and adapting it to our own data and database structure, in order to produce a visualization of each gene with its transcripts. Since Lace relies on the construction of a single directed splice graph and it is not able to compute it for complex clusters with more than 30 splicing variants, this section is available for a selection of genes only.The new KrillDB2 release includes completely updated transcript and gene identifiers. However, the user searching for a retired ID is automatically redirected to the page describing the newest definition of the appropriate transcript or gene.The KrillDB2 homepage now includes two additional sections: one is represented by the possibility to perform a BLAST search (Fig. 3). Any nucleotide or protein sequence (query) can be aligned against krill sequences stored in the database. Results are summarized in a table containing information about the krill transcripts (target) that matched with the user’s query, and the e-value corresponding to the alignment. The other new section, called “Differentially Expressed Genes”, allows the user to browse all the tables listing the genes that were found to be differentially expressed among the conditions we have described above (Fig. 4). A drop-down menu gives access to the different comparisons; DEG tables list for each gene its log fold-change, p- and FDR values as estimated by edgeR. Moreover, each gene is linked to a functional description (if available) inferred from sequence homology searches.Information about krill transcripts showing homology with an annotated microRNA is available in the “Predicted Hairpin” (Fig. 6). It contains a summary table with details about the hairpin length and the similarity score (as estimated by HHMMiR), followed by full listing of all the corresponding mature microRNAs (including links to their miRBase page). In addition, an image displaying the predicted secondary structure of the hairpin is included (computed by the “fornac” visualization software from the ViennaRNA suite). More

  • in

    Life table construction for crapemyrtle bark scale (Acanthococcus lagerstroemiae): the effect of different plant nutrient conditions on insect performance

    USDA, N. Census of Horticultural Specialties (USDA, 2014).
    Google Scholar 
    USDA, N. Census of Horticultural Specialties (USDA, 2019).
    Google Scholar 
    Soliman, A. S. & Shanan, N. T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 19, 35–45 (2017).Article 

    Google Scholar 
    Chappell, M. R., Braman, S. K., Williams-Woodward, J. & Knox, G. J. J. o. E. H. Optimizing plant health and pest management of Lagerstroemia spp. in commercial production and landscape situations in the southeastern United States: A review. 30, 161–172 (2012).Gu, M., Merchant, M., Robbins, J. & Hopkins, J. Crape Myrtle Bark Scale: A New Exotic Pest. Texas A&M AgriLife Ext. Service. EHT 49 (2014).Kondo, T., Gullan, P. J. & Williams, D. J. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Ciencia y Tecnología Agropecuaria 9, 55–61 (2008).Article 

    Google Scholar 
    Jiang, N. & Xu, H. Observertion on Eriococcus lagerostroemiae Kuwana. J. Anhui Agric. Coll. 25, 142–144 (1998).
    Google Scholar 
    He, D., Cheng, J., Zhao, H. & Chen, S. Biological characteristic and control efficacy of Eriococcus lagerstroemiae. Chin. Bull. Entomol. 45, 812–814 (2008).
    Google Scholar 
    Harcourt, D. The development and use of life tables in the study of natural insect populations. Annu. Rev. Entomol. 14, 175–196 (1969).Article 

    Google Scholar 
    Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 15–26 (1948).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article 

    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 24, 225–240 (1985).
    Google Scholar 
    Fathipour, Y. & Maleknia, B. in Ecofriendly Pest Management for Food Security (ed Omkar) 329–366 (Academic Press, 2016).Auad, A. et al. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphididae) fed with signal grass. Fla. Entomol. 569–577 (2009).Qu, Y. et al. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 26, 1002–1009 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Araujo, E. S., Benatto, A., Mogor, A. F., Penteado, S. C. & Zawadneak, M. A. Biological parameters and fertility life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae) on strawberry. Braz. J. Biol. 76, 937–941. https://doi.org/10.1590/1519-6984.04715 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krishnamoorthy, S. V. & Mahadevan, N. R. Life table studies of sugarcane scale, Melanaspis glomerata G. J. Entomol. Res. 27, 203–212 (2003).
    Google Scholar 
    Uematsu, H. Studies on life table for an armored scale insect, Aonidiella taxus Leonardi (Homoptera: Diaspididae). J. Fac. Agric. Kyushu Univ. (1979).Hill, M. G., Mauchline, N. A., Hall, A. J. & Stannard, K. A. Life table parameters of two armoured scale insect (Hemiptera: Diaspididae) species on resistant and susceptible kiwifruit (Actinidia spp.) germplasm. N. Z. J. Crop Hortic. Sci. 37, 335–343 (2009).Article 

    Google Scholar 
    Yong, C. X. W. Z. C. & Shaoyun, Z. J. Y. S. W. Age-specific life table of chinese white wax scale (Ericerus pela) natural population and analysis of death key factors. Scientia Silvae Sinica 9 (2008).Rosado, J. F. et al. Natural biological control of green scale (Hemiptera: Coccidae): a field life-table study. Biocontrol. Sci. Technol. 24, 190–202 (2014).Article 

    Google Scholar 
    Fand, B. B., Gautam, R. D., Chander, S. & Suroshe, S. S. Life table analysis of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) under laboratory conditions. J. Entomol. Res. 34, 175–179 (2010).
    Google Scholar 
    Vargas-Madríz, H. et al. Life and fertility table of Bactericera cockerelli (Hemiptera: Triozidae), under different fertilization treatments in the 7705 tomato hybrid. Rev. Chil. entomol. 39 (2014).Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    Saska, P. et al. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest. Sci. 94, 423–434 (2021).Article 

    Google Scholar 
    Ma, K., Tang, Q., Xia, J., Lv, N. & Gao, X. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 158, 40–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ullah, F. et al. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE 15, e0238707 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Güncan, A. & Gümüş, E. Influence of different hazelnut cultivars on some demographic characteristics of the filbert aphid (Hemiptera: Aphididae). J. Econ. Entomol. 110, 1856–1862 (2017).PubMed 
    Article 

    Google Scholar 
    Bailey, R., Chang, N.-T., Lai, P.-Y. & Hsu, T.-C. Life table of cycad scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae), reared on Cycas in Taiwan. J. Asia Pac. Entomol. 13, 183–187 (2010).Article 

    Google Scholar 
    Wang, Z., Chen, Y. & Diaz, R. Temperature-dependent development and host range of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae). Fla. Entomol. 102, 181–186 (2019).Article 

    Google Scholar 
    Zhang, Z.-J. et al. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 17, e3000162 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z., Chen, Y., Diaz, R. & Laine, R. A. Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. J. Insect Physiol. 112, 1–8 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Suh, S.-J. Notes on some parasitoids (Hymenoptera: Chalcidoidea) associated with Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae) in the Republic of Korea. Insecta mundi 0690, 1–5 (2019).
    Google Scholar 
    Meindl, G. A., Bain, D. J. & Ashman, T.-L. Edaphic factors and plant–insect interactions: Direct and indirect effects of serpentine soil on florivores and pollinators. Oecologia 173, 1355–1366 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wielgolaski, F. E. Phenological modifications in plants by various edaphic factors. Int. J. Biometeorol. 45, 196–202 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uchida, R. in Plant nutrient management in Hawaii’s soils (ed Raymond S. Uchida James A. Silva) 31–55 (University of Hawaii at Manoa, College of Agriculture & Tropical Resources, 2000).Flanders, S. E. Observations on host plant induced behavior of scale insects and their endoparasites. Can. Entomol. 102, 913–926 (1970).Article 

    Google Scholar 
    Yang, T.-C. & Chi, H. Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J. Econ. Entomol. 99, 691–698 (2006).PubMed 
    Article 

    Google Scholar 
    Tuan, S. J., Lee, C. C. & Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vafaie, E. et al. Seasonal population patterns of a new scale pest, Acanthococcus lagerstroemiae Kuwana (Hemiptera: Sternorrhynca: Eriococcidae), of Crapemyrtles in Texas, Louisiana, and Arkansas. J. Environ. Hortic. 38, 8–14 (2020).Article 

    Google Scholar 
    Vafaie, E. K. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Hemiptera: Eriococcidae) on Potted Crapemyrtles, 2017. Arthropod manag. tests 44, tsy109 (2019).Vafaie, E. K. & Knight, C. M. J. A. M. T. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Crapemyrtle Bark Scale) on Landscape Crapemyrtles, 2016. 42, tsx130 (2017).Vafaie, E. & Gu, M. Insecticidal control of crapemyrtle bark scale on potted crapemyrtles, Fall 2018. Arthropod. Manag. Tests 44, tsz061 (2019).Article 

    Google Scholar 
    Aktar, M. W., Sengupta, D. & Chowdhury, A. J. I. t. Impact of pesticides use in agriculture: their benefits and hazards. 2, 1 (2009).Grafton-Cardwell, E. & Vehrs, S. Monitoring for organophosphate-and carbamate-resistant armored scale (Homoptera: Diaspididae) in San Joaquin valley citrus. J. Econ. Entomol. 88, 495–504 (1995).CAS 
    Article 

    Google Scholar 
    Almarinez, B. J. M. et al. Biological control: A major component of the pest management program for the invasive coconut scale insect, Aspidiotus rigidus Reyne, in the Philippines. Insects 11, 745 (2020).PubMed Central 
    Article 

    Google Scholar 
    Grout, T. & Richards, G. Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell)(Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J. Appl. Entomol. 111, 20–27 (1991).Article 

    Google Scholar 
    Grafton-Cardwell, E., Millar, J., O’Connell, N. & Hanks, L. Sex pheromone of yellow scale, Aonidiella citrina (Homoptera: Diaspididae): Evaluation as an IPM tactic. J. Agric. Urban. Entomol. 17, 75–88 (2000).CAS 

    Google Scholar 
    Jactel, H., Menassieu, P., Lettere, M., Mori, K. & Einhorn, J. Field response of maritime pine scale, Matsucoccus feytaudi Duc. (Homoptera: Margarodidae), to synthetic sex pheromone stereoisomers. J. Chem. Ecol. 20, 2159–2170 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendel, Z. et al. Outdoor attractancy of males of Matsucoccus josephi (Homoptera: Matsucoccidae) and Elatophilus hebraicus (Hemiptera: Anthocoridae) to synthetic female sex pheromone of Matsucoccus josephi. J. Chem. Ecol. 21, 331–341 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zada, A. et al. Sex pheromone of the citrus mealybug Planococcus citri: Synthesis and optimization of trap parameters. J. Econ. Entomol. 97, 361–368 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Z. & Shi, Y. Studies on the Morphology and Biology of Eriococcus Lagerstroemiae Kuwana. J. Shandong Agri. Univ. 2 (1986).Savopoulou-Soultani, M., Papadopoulos, N. T., Milonas, P. & Moyal, P. Abiotic factors and insect abundance. PSYCHE 2012 (2012).Vandegehuchte, M. L., de la Pena, E. & Bonte, D. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5, e12937 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nebapure, S. M. & Sagar, D. Insect-plant interaction: A road map from knowledge to novel technology. Karnataka J. Agric. Sci. 28, 1–7 (2015).
    Google Scholar 
    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).CAS 
    Article 

    Google Scholar 
    Hogendorp, B. K., Cloyd, R. A. & Swiader, J. M. Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (Homoptera: Pseudococcidae), feeding on two colors of coleus Solenostemon scutellarioides L. Codd. Environ. Entomol. 35, 201–211 (2006).Article 

    Google Scholar 
    Lema, K. & Mahungu, N. in Tropical root crops: Production and uses in Africa: proceedings of the Second Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch held in Douala, Cameroon, 14-19 Aug. 1983. (IDRC, Ottawa, ON, CA).McClure, M. S. Dispersal of the scale Fiorinia externa (Homoptera: Diaspididae) and effects of edaphic factors on its establishment on hemlock. Environ. Entomol. 6, 539–544 (1977).Article 

    Google Scholar 
    Salama, H., Amin, A. & Hawash, M. Effect of nutrients supplied to citrus seedlings on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidosaphes beckii (Newman)(Coccoidea). Zeitschrift für Angewandte Entomologie 71, 395–405 (1972).Article 

    Google Scholar 
    Rasmann, S. & Pellissier, L. in Climate Change and Insect Pests Vol. 8 (ed P. Niemelä C. Björkman) 38–53 (Wallingford, UK: CAB Int., 2015).Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).CAS 
    Article 

    Google Scholar 
    Da Costa, P. B. et al. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil. 368, 267–280 (2013).Article 

    Google Scholar 
    Dong, H., Kong, X., Li, W., Tang, W. & Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 119, 106–113 (2010).Article 

    Google Scholar 
    Aulakh, M., Dev, G. & Arora, B. Effect of sulphur fertilization on the nitrogen–sulphur relationships in alfalfa (Medicago sativa L. Pers.). Plant Soil. 45, 75–80 (1976).CAS 
    Article 

    Google Scholar 
    Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sauge, M. H., Grechi, I. & Poëssel, J. L. Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: Vegetative growth allocation or chemical defence?. Entomol. Exp. Appl. 136, 123–133 (2010).CAS 
    Article 

    Google Scholar 
    Chen, Y., Serteyn, L., Wang, Z., He, K. & Francis, F. Reduction of plant suitability for corn leaf aphid (Hemiptera: Aphididae) under elevated carbon dioxide condition. Environ. Entomol. (2019).Miller, D. R. & Kosztarab, M. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24, 1–27 (1979).CAS 
    Article 

    Google Scholar 
    Hardy, N. B., Peterson, D. A. & Normark, B. B. Scale insect host ranges are broader in the tropics. Biol. Lett. 11, 20150924 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Q. et al. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS ONE 12, e0173380 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, X. et al. Density-dependent demography and mass-rearing of Carposina sasakii (Lepidoptera: Carposinidae) incorporating life table variability. J. Econ. Entomol. 112, 255–265 (2019).PubMed 
    Article 

    Google Scholar 
    Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis (2020).Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 
    Article 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).MATH 
    Book 

    Google Scholar  More

  • in

    The qualitative analysis of the nexus dynamics in the Pekalongan coastal area, Indonesia

    Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).ADS 
    Article 

    Google Scholar 
    Duy, P., Chapman, L., Tight, M., Thuong, L. & Linh, P. Urban resilience to floods in coastal cities: Challenges and opportunities for Ho Chi Minh city and other emerging cities in southeast Asia. J. Urban Plan. Dev. 144, 05017018 (2018).Article 

    Google Scholar 
    Magno, R. et al. Semi-automatic operational service for drought monitoring and forecasting in the Tuscany region. Geosciences 8, 49 (2018).ADS 
    Article 

    Google Scholar 
    Rico, A., Olcina, J., Baños, C., Garcia, X. & Sauri, D. Declining water consumption in the hotel industry of mass tourism resorts: Contrasting evidence for Benidorm, Spain. Curr. Issues Tour. 23, 770–783 (2020).Article 

    Google Scholar 
    Hasnat, G. T., Kabir, M. A. & Hossain, M. A. Major environmental issues and problems of South Asia, particularly Bangladesh. Handb. Environ. Mater. Manag., 1–40 (2018).Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS One 10, e0118571 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cao, A. et al. Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Curr. Opin. Environ. Sustain. 50, 87–97 (2021).Article 

    Google Scholar 
    Rahmasary, A. N. et al. Overcoming the challenges of water, waste and climate change in Asian cities. Environ. Manag. 63, 520–535 (2019).ADS 
    Article 

    Google Scholar 
    Smol, M., Adam, C. & Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 22, 682–697 (2020).Article 

    Google Scholar 
    Islam, M. F., Bhattacharya, B. & Popescu, I. Flood risk assessment due to cyclone-induced dike breaching in coastal areas of Bangladesh. Nat. Hazards Earth Syst. Sci. 19, 353–368 (2019).ADS 
    Article 

    Google Scholar 
    Salim, M. A. & Siswanto, A. B. Kajian Penanganan Dampak Banjir Kabupaten Pekalongan. Rang Tek. J. 4, 295–303 (2021).Article 

    Google Scholar 
    Endo, A. et al. Describing and visualizing a water–energy–food nexus system. Water 10, 1245 (2018).Article 

    Google Scholar 
    Gurdak, J. J., Geyer, G. E., Nanus, L., Taniguchi, M. & Corona, C. R. Scale dependence of controls on groundwater vulnerability in the water–energy–food nexus, California Coastal Basin aquifer system. J. Hydrol. Reg. Stud. 11, 126–138 (2017).Article 

    Google Scholar 
    Lu, J., Lin, Y., Wu, J. & Zhang, C. Continental-scale spatial distribution, sources, and health risks of heavy metals in seafood: Challenge for the water-food-energy nexus sustainability in coastal regions?. Environ. Sci. Pollut. Res. 28, 63815–63828 (2021).CAS 
    Article 

    Google Scholar 
    Miller-Robbie, L., Ramaswami, A. & Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 12, 075005 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Taniguchi, M., Endo, A., Gurdak, J. J. & Swarzenski, P. Water-energy-food nexus in the Asia-Pacific region. J. Hydrol. 11, 1–8 (2017).
    Google Scholar 
    Bahri, M. Analysis of the water, energy, food and land nexus using the system archetypes: A case study in the Jatiluhur reservoir, West Java, Indonesia. Sci. Total Environ. 716, 137025 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubis, R., Delinom, R., Martosuparno, S. & Bakti, H. Water-Food Nexus in Citarum Watershed, Indonesia Vol. 118, 012023 (IOP Publishing, 2018).
    Google Scholar 
    Pawitan, H., Delinom, R. & Taniguchi, M. The human–environment sustainability in Indonesia: The case of the Citarum basin Vol. 23 (UNESCO-IHP, 2015).Carmichael, L. et al. Urban planning as an enabler of urban health: Challenges and good practice in England following the 2012 planning and public health reforms. Land Use Policy 84, 154–162 (2019).Article 

    Google Scholar 
    World Health Organization. Addressing the Social Determinants of Health: The Urban Dimension and the Role of Local Government (World Health Organization, 2012).
    Google Scholar 
    Trencher, G. & Karvonen, A. Stretching, “smart”: Advancing health and well-being through the smart city agenda. Local Environ. 24, 610–627 (2019).Article 

    Google Scholar 
    Yang, L. et al. Can an island economy be more sustainable? A comparative study of Indonesia, Malaysia, and the Philippines. J. Clean. Prod. 242, 118572 (2020).Article 

    Google Scholar 
    Choirunisa, A. K. & Giyarsih, S. R. Kajian Kerentanan Fisik, Sosial, dan Ekonomi Pesisir Samas Kabupaten Bantul Terhadap Erosi Pantai. J. Bumi Indones. 5 (2016).Gumay, A. Validity and reliability maritime English seafarers proficiency test. INFERENCE J. Engl. Lang. Teach. 3, 64–69 (2021).Article 

    Google Scholar 
    Tarigan, M. S. Perubahan garis pantai di wilayah pesisir perairan Cisadane, Provinsi Banten. Makara J. Sci. (2010).Pruss-Ustun, A., Corvalán, C. F., World Health Organization. Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease (World Health Organization, 2006).
    Google Scholar 
    Baasanjargal, T., Soon-Joo, A. & Mi-Jeong, K. Comparative analysis of Indonesian Batik traditional patterns: Focused on patterns of Yogyakarta and Pekalongan in Java Island. 한복문화 22, 75–91 (2019).Rismawati, S. D., Sofiani, T. & Rahmawati, D. R. Legal culture of religious capitalism on Batik business (a case study in Pekalongan Indonesia). JL Pol. Glob. 33, 107 (2015).
    Google Scholar 
    Pekalongan, B. K. Kota Pekalongan dalam Angka 2021 (2021).Google Maps. Pekalongan, Central Java (2022).Sunarjo, W. A., Ilmiani, A. & Ardianingsih, A. Analisis SWOT Sebagai Pengembangan UMKM Berbasis Ekonomi Kreatif Destinasi Pariwisata Batik Kota Pekalongan. Pena J. Ilmu Pengetah. Dan Teknol. 33, 34–43 (2019).Article 

    Google Scholar 
    Perpustakaan Provinsi Jawa Tengah. Museum Batik Pekalongan (2017).Brzezina, N. et al. Development of organic farming in Europe at the crossroads: Looking for the way forward through system archetypes lenses. Sustainability 9, 821 (2017).Article 

    Google Scholar 
    Gillies, A. & Maliapen, M. Using healthcare system archetypes to help hospitals become learning organisations. J. Model. Manag. (2008).Braun, W. The System Archetypes. The Systems Modeling Workbook, 1–26 (2002).Sterman, J. System Dynamics: Systems thinking and modeling for a complex world (2002).Islam, M. & Raja, D. R. Waterlogging risk assessment: An undervalued disaster risk in coastal urban community of Chattogram, Bangladesh. Earth 2, 151–173 (2021).Article 

    Google Scholar 
    Brzezina, N., Kopainsky, B. & Mathijs, E. Can organic farming reduce vulnerabilities and enhance the resilience of the European food system? A critical assessment using system dynamics structural thinking tools. Sustainability 8, 971 (2016).Article 

    Google Scholar 
    Nguyen, N. C. & Bosch, O. J. A systems thinking approach to identify leverage points for sustainability: A case study in the Cat Ba Biosphere Reserve, Vietnam. Syst. Res. Behav. Sci. 30, 104–115 (2013).Article 

    Google Scholar 
    Maani, K. E. & Cavana, R. Y. Systems Thinking, System Dynamics: Managing Change and Complexity (Pearson Prentice Hall, 2007).
    Google Scholar 
    Braun, W. The System Archetypes-the Systems Modeling Workbook. Available Wwwu Uniklu Ac Atgossimitpapsdwbsysarch Pdf (2002).Senge, P. M. The Fifth Discipline: The Art and Practice of the Learning Organization (Currency, 2006).
    Google Scholar 
    Bahri, M. et al. Deliverable 3.3: Integrated model with ad-hoc systems model of urban water supply (2018).Pekalongan, B. P. P. D. K. Pekalongan dalam Angka (2021).Fajar, M., Mediani, A. & Finesa, Y. Analisis Peranan IPAL dalam Strategi Penanganan Limbah Industri Batik di Kota Pekalongan. in Prosiding Seminar Nasional Geografi UMS X 2019 (2019).Kartika, F. D. S. & Helmi, M. Meta-analysis of Community’s Adaptation Pattern with Tidal Flood in Pekalongan City, Central Java, Indonesia Vol. 125, 09001 (EDP Sciences, 2019).
    Google Scholar 
    Kartika, F. D. S., Helmi, M. & Amirudin, A. Analisis Perubahan Penggunaan Lahan di Wilayah Pesisir Kota Pekalongan Menggunakan Citra Lansat 8, vol. 1 (2019).Damayanti, M. & Latifah, L. Strategi Kota Pekalongan dalam pengembangan wisata kreatif berbasis industri batik. J. Pengemb. Kota 3, 100–111 (2017).Article 

    Google Scholar 
    Pekalongan, B. K. Kota Pekalongan dalam Angka 2002 (2002).Andreas, H., Abidin, H. Z., Sarsito, D. A. & Pradipta, D. Adaptation of ‘early climate change disaster’ to the Northern coast of Java Island Indonesia. Eng. J. 22, 207–219 (2018).Article 

    Google Scholar 
    Marfai, M. A. et al. The impact of tidal flooding on a coastal community in Semarang, Indonesia. Environmentalist 28, 237–248 (2008).Article 

    Google Scholar 
    Chaussard, E., Amelung, F., Abidin, H. & Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150–161 (2013).ADS 
    Article 

    Google Scholar 
    Andreas, H., Abidin, H. Z., Sarsito, D. A. & Pradipta, D. Remotes Sensing Capabilities on Land Subsidence and Coastal Water Hazard and Disaster Studies Vol. 500, 012036 (IOP Publishing, 2020).
    Google Scholar 
    Shofiana, R., Subardjo, P. & Pratikto, I. Analisis perubahan penggunaan lahan di wilayah pesisir Kota pekalongan menggunakan data landsat 7 etm+. J. Mar. Res. 2, 35–43 (2013).
    Google Scholar 
    Wijaya, A. Analisis Dinamika Pola Spasial Penggunaan Lahan Pada Wilayah Terdampak Kenaikan Muka Air Laut di Kota Pekalongan (2017).El-Fath, D. D. I., Atmodjo, W., Helmi, M., Widada, S. & Rochaddi, B. Analisis Spasial Area Genangan Banjir Rob Setelah Pembangunan Tanggul di Kabupaten Pekalongan, Jawa Tengah. Indones. J. Oceanogr. 4, 96–110 (2022).
    Google Scholar 
    Novita, M. G., Helmi, M., Widiaratih, R., Hariyadi, H. & Wirasatriya, A. Mengkaji Area Genangan Banjir Pasang Terhadap Penggunaan Lahan Pesisir Tahun 2020 Menggunakan Metode Geospasial di Kabupaten Pekalongan, Provinsi Ja. Indones. J. Oceanogr. 3, 14–26 (2021).Article 

    Google Scholar 
    Salim, M. A. Penanganan Banjir dan Rob di Wilayah Pekalongan. J. Tek. Sipil 11, 15–23 (2018).
    Google Scholar 
    Jumatiningrum, N. & Indrayati, A. Strategi Adaptasi Masyarakat Kelurahan Bandengan Kecamatan Pekalongan Utara dalam Menghadapi Banjir Pasang Air Laut (Rob). Edu Geogr. 9, 136–143 (2021).
    Google Scholar 
    BNPB. Data Kebencanaan Nasional (BNPB, 2021).
    Google Scholar 
    Giampietro, M., Aspinall, R. J., Ramos-Martin, J. & Bukkens, S. G. Resource Accounting for Sustainability Assessment: The Nexus Between Energy, Food, Water and Land Use (Routledge, 2014).Book 

    Google Scholar 
    Meadows, D. H., Randers, J. & Meadows, D. L. The Limits to Growth (1972) (Yale University Press, 2013).MATH 

    Google Scholar 
    Albrecht, T., Crootof, A. & Scott, C. Trends in the development of water–energy–food nexus methods (2017).Leck, H., Fitzpatrick, D. & Burchell, K. Energy, water and food: Towards a critical nexus approach. in Handbook on the Geographies of Energy (Edward Elgar Publishing, 2017).Scott, C. A., Kurian, M. & Wescoat, J. L. The water–energy–food nexus: Enhancing adaptive capacity to complex global challenges. in Governing the Nexus 15–38 (Springer, 2015).Wanty, E. E. Analisis Produksi Batik Cap Dari UKM Batik Kota Pekalongan (Studi Pada Sentra Batik Kota Pekalongan-Jawa Tengah, 2006).
    Google Scholar 
    Mankiw, N. G. Macroeconomics Vol. 41 (Worth Publishers, 2003).
    Google Scholar 
    Shen, J. & Kee, G. Development and Planning in Seven Major Coastal Cities in Southern and Eastern China (Springer, 2017).Book 

    Google Scholar 
    Xu, C., Haase, D., Su, M. & Yang, Z. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness. Appl. Energy 254, 113671 (2019).Article 

    Google Scholar 
    Marfai, M. A. & Cahyadi, A. Dampak bencana banjir pesisir dan adaptasi masyarakat terhadapnya di kabupaten Pekalongan (2017).Wartadesa.net. Tiga hari banjir rendam Pekalongan (2018).Google Maps. A dike in Pekalongan (n.d).Anindita, R. M., Susilowati, I. & Muhammad, F. Analisis Efektifitas Tanggul Laut di Pesisir Pekalongan Terhadap Penurunan Intensitas Banjir, vol. 2 80–88 (2020).Taniguchi, M. Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities (Springer Science & Business Media, 2011).Book 

    Google Scholar 
    Baños, C. J., Hernández, M., Rico, A. M. & Olcina, J. The hydrosocial cycle in coastal tourist destinations in Alicante, Spain: Increasing resilience to drought. Sustainability 11, 4494 (2019).Article 

    Google Scholar 
    Sauda, R. H. & Nugraha, A. L. Kajian pemetaan kerentanan banjir rob di kabupaten pekalongan. J. Geod. Undip 8, 466–474 (2019).
    Google Scholar 
    Wartadesa.net. Ratusan warga Sragi masih mengungsi (2022).Buchori, I. et al. Adaptation to coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia. Ocean Coast. Manag. 163, 445–455 (2018).Article 

    Google Scholar 
    Setiadi, R. & Nalau, J. Can urban regeneration improve health resilience in a changing climate? (2015).Isham, A., Mair, S. & Jackson, T. Wellbeing and productivity: A review of the literature (2020).Banson, K. E., Nguyen, N. C. & Bosch, O. J. Using system archetypes to identify drivers and barriers for sustainable agriculture in Africa: A case study in Ghana. Syst. Res. Behav. Sci. 33, 79–99 (2016).Article 

    Google Scholar 
    Lavrnić, S., Zapater-Pereyra, M. & Mancini, M. Water scarcity and wastewater reuse standards in Southern Europe: Focus on agriculture. Water. Air Soil Pollut. 228, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Tortajada, C. & Nam Ong, C. Reused water policies for potable use (2016).Murali, R. M., Riyas, M., Reshma, K. & Kumar, S. S. Climate change impact and vulnerability assessment of Mumbai city, India. Nat. Hazards 102, 575–589 (2020).Article 

    Google Scholar 
    Abdullah, A. Y. M. et al. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 11, 790 (2019).ADS 
    Article 

    Google Scholar 
    Ginanjar, A., Rezagama, A. & Handayani, D. S. Rencana Induk Sistem Penyediaan Air Minum Kota Pekalongan (2015).Reiblich, J., Hartge, E., Wedding, L., Killian, S. & Verutes, G. Bridging climate science, law, and policy to advance coastal adaptation planning. Mar. Policy 104, 125–134 (2019).Article 

    Google Scholar 
    Cook, B. I. et al. Revisiting the leading drivers of Pacific coastal drought variability in the contiguous United States. J. Clim. 31, 25–43 (2018).ADS 
    Article 

    Google Scholar 
    Jodar-Abellan, A., Valdes-Abellan, J., Pla, C. & Gomariz-Castillo, F. Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Sci. Total Environ. 657, 1578–1591 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thanvisitthpon, N., Shrestha, S. & Pal, I. Urban flooding and climate change: A case study of Bangkok, Thailand. Environ. Urban. Asia 9, 86–100 (2018).Article 

    Google Scholar 
    Laksmi, G. S. Dampak Alih Fungsi Lahan dan Curah Hujan terhadap Banjir di Kota Pekalongan, Jawa Tengah, 382–391 (2020).Dhiman, R., VishnuRadhan, R., Eldho, T. & Inamdar, A. Flood risk and adaptation in Indian coastal cities: Recent scenarios. Appl. Water Sci. 9, 1–16 (2019).ADS 
    Article 

    Google Scholar 
    Bahri, M. & Cremades, R. The Urban Drought Nexus Tool. Zenodo (2021). More

  • in

    Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities

    Sampling of coastal communitiesHere, we integrated data from five different projects that had surveyed coastal communities across five countries47,48,49,50. Between 2009 and 2015, we conducted socioeconomic surveys in 72 sites from Indonesia (n = 25), Madagascar (n = 6), Papua New Guinea (n = 10), the Philippines (n = 25), and Tanzania (Zanzibar) (n = 6). Site selection was for broadly similar purposes- to evaluate the effects of various coastal resource management initiatives (collaborative management, integrated conservation and development projects, recreational fishing projects) on people’s livelihoods in rural and peri-urban villages. Within each project, sites were purposively selected to be representative of the broad range of socioeconomic conditions (e.g., population size, levels of development, integration to markets) experienced within the region. We did not survey strictly urban locations (i.e., major cities). Because our sampling was not strictly random, care should be taken when attempting to make inferences beyond our specific study sites.We surveyed between 13 and 150 households per site, depending on the population of the communities and the available time to conduct interviews per site. All projects employed a comparable sampling design: households were either systematically (e.g., every third house), randomly sampled, or in the case of three villages, every household was surveyed (a census) (see Supplementary Data file). Respondents were generally the household head, but could have been other household members if the household head was not available during the study period (i.e. was away). In the Philippines, sampling protocol meant that each village had an even number of male and female respondents. Respondents gave verbal consent to be interviewed.The following standard methodology was employed to assess material style of life, a metric of material assets-based wealth48,51. Interviewers recorded the presence or absence of 16 material items in the household (e.g., electricity, type of walls, type of ceiling, type of floor). We used a Principal Component Analysis on these items and kept the first axis (which explained 34.2% of the variance) as a material wealth score. Thus, each community received a mean material style of life score, based on the degree to which surveyed households had these material items, which we then scaled from 0 to 1. We also conducted an exploratory analysis of how material style of life has changed in two sites in Papua New Guinea (Muluk and Ahus villages) over fifteen and sixteen-year time span across four and five-time periods (2001, 2009, 2012, 2016, and 2002, 2009, 2012, 2016, 2018), respectively, that have been surveyed since 2001/200252. These surveys were semi-panel data (i.e. the community was surveyed repeatedly, but we did not track individuals over each sampling interval) and sometimes occurred in different seasons. For illustrative purposes, we plotted how these villages changed over time along the first two principal components.SensitivityWe asked each respondent to list all livelihood activities that bring in food or income to the household and rank them in order of importance. Occupations were grouped into the following categories: farming, cash crop, fishing, mariculture, gleaning, fish trading, salaried employment, informal, tourism, and other. We considered fishing, mariculture, gleaning, fish trading together as the ‘fisheries’ sector, farming and cash crop as the ‘agriculture’ sector and all other categories into an ‘off-sector’.We then developed three distinct metrics of sensitivity based on the level of dependence on agriculture, fisheries, and both sectors together. Each metric incorporates the proportion of households engaged in a given sector (e.g., fisheries), whether these households also engage in occupations outside of this sector (agriculture and salaried/formal employment; referred to as ‘linkages’ between sectors), and the directionality of these linkages (e.g., whether respondents ranked fisheries as more important than other agriculture and salaried/formal employment) (Eqs. 1–3)$${{{{{{rm{S}}}}}}}_{{{{{{rm{A}}}}}}}=,frac{{{{{{rm{A}}}}}}}{{{{{{rm{A}}}}}}+{{{{{rm{NA}}}}}}},times ,frac{{{{{{rm{N}}}}}}}{{{{{{rm{A}}}}}}+{{{{{rm{NA}}}}}}},times ,frac{left(frac{{{{{{{rm{r}}}}}}}_{{{{{{rm{a}}}}}}}}{2}right),+,1}{{{{{{{rm{r}}}}}}}_{{{{{{rm{a}}}}}}}+,{{{{{{rm{r}}}}}}}_{{{{{{rm{na}}}}}}}+1}$$
    (1)
    $${{{{{{rm{S}}}}}}}_{{{{{{rm{F}}}}}}}=,frac{{{{{{rm{F}}}}}}}{{{{{{rm{F}}}}}}+{{{{{rm{NF}}}}}}},times ,frac{{{{{{rm{N}}}}}}}{{{{{{rm{F}}}}}}+{{{{{rm{NF}}}}}}},times ,frac{left(frac{{{{{{{rm{r}}}}}}}_{{{{{{rm{f}}}}}}}}{2}right),+,1}{{{{{{{rm{r}}}}}}}_{{{{{{rm{f}}}}}}}+,{{{{{{rm{r}}}}}}}_{{{{{{rm{nf}}}}}}}+1}$$
    (2)
    $${{{{{{rm{S}}}}}}}_{{{{{{rm{AF}}}}}}}=,frac{{{{{{rm{AF}}}}}}}{{{{{{rm{AF}}}}}}+{{{{{rm{NAF}}}}}}},times ,frac{{{{{{rm{N}}}}}}}{{{{{{rm{AF}}}}}}+{{{{{rm{NAF}}}}}}},times ,frac{left(frac{{{{{{{rm{r}}}}}}}_{{{{{{rm{af}}}}}}}}{2}right),+,1}{{{{{{{rm{r}}}}}}}_{{{{{{rm{af}}}}}}}+,{{{{{{rm{r}}}}}}}_{{{{{{rm{naf}}}}}}}+1}$$
    (3)
    where ({{{{{{rm{S}}}}}}}_{{{{{{rm{A}}}}}}}), ({{{{{{rm{S}}}}}}}_{{{{{{rm{F}}}}}}}) and ({{{{{{rm{S}}}}}}}_{{{{{{rm{AF}}}}}}}) are a community’s sensitivity in the context of agriculture, fisheries and both sectors, respectively. A, F and AF are the number of households relying on agriculture-related occupations within that community, fishery-related and agriculture- and fisheries-related occupations within the community, respectively. NA, NF and NAF are the number of households relying on non-agriculture-related, non-fisheries-related, and non-agriculture-or-fisheries-related occupations within the community, respectively. N is the number of households within the community. ({{{{{{rm{r}}}}}}}_{{{{{{rm{a}}}}}}}), ({{{{{{rm{r}}}}}}}_{{{{{{rm{f}}}}}}}) and ({{{{{{rm{r}}}}}}}_{{{{{{rm{af}}}}}}}) are the number of times agriculture-related, fisheries-related and agriculture-and-fisheries-related occupations were ranked higher than their counterpart, respectively. ({{{{{{rm{r}}}}}}}_{{{{{{rm{na}}}}}}}), ({{{{{{rm{r}}}}}}}_{{{{{{rm{nf}}}}}}}) and ({{{{{{rm{r}}}}}}}_{{{{{{rm{naf}}}}}}}) are the number of times non-agriculture, non-fisheries, and non-agriculture-and-fisheries-related occupations were ranked higher than their counterparts. As with the material style of life, we also conducted an exploratory analysis of how joint agriculture-fisheries sensitivity has changed over time in a subset of sites (Muluk and Ahus villages in Papua New Guinea) that have been sampled since 2001/200252. Although our survey methodology has the potential for bias (e.g. people might provide different rankings based on the season, or there might be gendered differences in how people rank the importance of different occupations53), our time-series analysis suggest that seasonal and potential respondent variation do not dramatically alter our community-scale sensitivity metric.ExposureTo evaluate the exposure of communities to the impact of future climates on their agriculture and fisheries sectors, we used projections of production potential from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Fast Track phase 3 experiment dataset of global simulations. Production potential of agriculture and fisheries for each of the 72 community sites and 4746 randomly selected sites from our study countries with coastal populations >25 people/km2 were projected to the mid-century (2046–2056) under two emission scenarios (SSP1-2.6, and SSP5-8.5) and compared with values from a reference historical period (1983–2013).For fisheries exposure (EF), we considered relative change in simulated total consumer biomass (all modelled vertebrates and invertebrates with a trophic level >1). For each site, the twenty nearest ocean grid cells were determined using the Haversine formula (Supplementary Fig. 5). We selected twenty grid cells after a sensitivity analysis to determine changes in model agreement based on different numbers of cells used (1, 3, 5, 10, 20, 50, 100; Supplementary Figs. 6–7), which we balanced off with the degree to which larger numbers of cells would reduce the inter-site variability (Supplementary Fig. 8). We also report 25th and 75th percentiles for the change in marine animal biomass across the model ensemble. Projections of the change in total consumer biomass for the 72 sites were extracted from simulations conducted by the Fisheries and marine ecosystem Model Intercomparison Project (FishMIP3,54). FishMIP simulations were conducted under historical, SSP1-2.6 (low emissions) and SSP5-8.5 (high emissions) scenarios forced by two Earth System Models from the most recent generation of the Coupled Model Intercomparison project (CMIP6);55 GFDL-ESM456 and IPSL-CM6A-LR57. The historical scenario spanned 1950–2014, and the SSP scenarios spanned 2015–2100. Nine FishMIP models provided simulations: APECOSM58,59, BOATS60,61, DBEM2,62, DBPM63, EcoOcean64,65, EcoTroph66,67, FEISTY68, Macroecological69, and ZooMSS11. Simulations using only IPSL-CM6A-LR were available for APECOSM and DBPM, while the remaining 7 FishMIP models used both Earth System Model forcings. This resulted in 16 potential model runs for our examination of model agreement, albeit with some of these runs being the same model forced with two different ESMs. Thus, the range of model agreement could range from 8 (half model runs indicating one direction of change, and half indicating the other) to 16 (all models agree in direction of change). Model outputs were saved with a standardised 1° spatial grid, at either a monthly or annual temporal resolution.For agriculture exposure (EA), we used crop model projections from the Global Gridded Crop model Intercomparison Project (GGCMI) Phase 314, which also represents the agriculture sector in ISIMIP. We used a window of 11×11 cells centred on the site and removed non-land cells (Supplementary Fig. 5). The crop models use climate inputs from 5 CMIP6 ESMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL), downscaled and bias-adjusted by ISIMIP and use the same simulation time periods. We considered relative yield change in three rain-fed and locally relevant crops: rice, maize, and cassava, using outputs from 4 global crop models (EPIC-IIASA, LPJmL, pDSSAT, and PEPIC), run at 0.5° resolution. These 4 models with 5 forcings generate 20 potential model runs for our examination of model agreement. Yield simulations for cassava were only available from the LPJmL crop model. All crop model simulations assumed no adaptation in growing season and fertilizer input remained at current levels. Details on model inputs, climate data, and simulation protocol are provided in ref. 14. At each site, and for each crop, we calculated the average change (%) between projected vs. historical yield within 11×11 cell window. We then averaged changes in rice, maize and cassava to obtain a single metric of agriculture exposure (EA).We also obtained a composite metric of exposure (EAF) by calculating each community’s average change in both agriculture and fisheries:$${{{{{{rm{E}}}}}}}_{{{{{{rm{AF}}}}}}}=,frac{{{{{{{rm{E}}}}}}}_{{{{{{rm{A}}}}}}}+,{{{{{{rm{E}}}}}}}_{{{{{{rm{F}}}}}}}}{2}$$
    (4)
    Potential ImpactWe calculated relative potential impact as the Euclidian distance from the origin (0) of sensitivity and exposure.Sensitivity testTo determine whether our sites displayed a particular exposure bias, we compared the distributions of our sites and 4746 sites that were randomly selected from 47,460 grid cells within 1 km of the coast of the 5 countries we studied which had population densities >25 people/km2, based on the SEDAC gridded populating density of the world dataset (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download).We used Cohen’s D to determine the size of the difference between our sites and the randomly selected sites.Validating ensemble modelsWe attempted a two-stage validation of the ensemble model projections. First, we reviewed the literature on downscaling of ensemble models to examine whether downscaling validation had been done for the ecoregions containing our study sites.While no fisheries ensemble model downscaling had been done specific to our study regions, most of the models of the ensemble have been independently evaluated against separate datasets aggregated at scales down to Large Marine Ecosystems (LMEs) or Exclusive Economic Zones (EEZs) (see11). For example, the DBEM was created with the objective of understanding the effects of climate change on exploited marine fish and invertebrate species2,70. This model roughly predicts species’ habitat suitability; and simulates spatial population dynamics of fish stocks to output biomass and maximum catch potential (MCP), a proxy of maximum sustainable yield2,62,71. Compared with spatially-explicit catch data from the Sea Around Us Project (SAUP; www.seaaroundus.org)70 there were strong similarities in the responses to warming extremes for several EEZs in our current paper (Indonesia and Philippines) and weaker for the EEZs of Madagascar, Papua New Guinea, and Tanzania. At the LME level, DBEM MCP simulations explained about 79% of the variation in the SAUP catch data across LMEs72. The four LMEs analyzed in this paper (Agulhas Current; Bay of Bengal; Indonesian Sea; and Sulu-Celebes Sea) fall within the 95% confidence interval of the linear regression relationship62. Another example, BOATS, is a dynamic biomass size-spectrum model parameterised to reproduce historical peak catch at the LME scale and observed catch to biomass ratios estimated from the RAM legacy stock assessment database (in 8 LMEs with sufficient data). It explained about 59% of the variability of SAUP peak catch observation at the LME level with the Agulhas Current, Bay of Bengal, and Indonesian Sea catches reproduced within +/-50% of observations61. The EcoOcean model validation found that all four LMEs included in this study fit very close to the 1:1 line for overserved and predicted catches in 200064,65. DBPM, FEISTY, and APECOSM have also been independently validated by comparing observed and predicted catches. While the models of this ensemble have used different climate forcings when evaluated independently, when taken together the ensemble multi-model mean reproduces global historical trends in relative biomass, that are consistent with the long term trends and year-on-year variation in relative biomass change (R2 of 0.96) and maximum yield estimated from stock assessment models (R2 of 0.44) with and without fishing respectively11.Crop yield estimates simulated by GGCMI crop models have been evaluated against FAOSTAT national yield statistics14,73,74. These studies show that the models, and especially the multi-model mean, capture large parts of the observed inter-annual yield variability across most main producer countries, even though some important management factors that affect observed yield variability (e.g., changes in planting dates, harvest dates, cultivar choices, etc.) are not considered in the models. While GCM-based crop model results are difficult to validate against observations, Jägermeyr et al14. show that the CMIP6-based crop model ensemble reproduces the variability of observed yield anomalies much better than CMIP5-based GGCMI simulations. In an earlier crop model ensemble of GGCMI, Müller et al.74 show that most crop models and the ensemble mean are capable of reproducing the weather-induced yield variability in countries with intensely managed agriculture. In countries where management introduces strong variability to observed data, which cannot be considered by models for lack of management data time series, the weather-induced signal is often low75, but crop models can reproduce large shares of the weather-induced variability, building trust in their capacity to project climate change impacts74.We then attempted to validate the models in our study regions. For the crop models, we examined production-weighted agricultural projections weighted by current yields/production area (Supplementary Fig. 1). We used an observational yield map (SPAM2005) and multiplied it with fractional yield time series simulated by the models to calculate changes in crop production over time, which integrates results in line with observational spatial patterns. The weighted estimates were not significantly different to the unweighted ones (t = 0.17, df = 5, p = 0.87). For the fisheries models, our study regions were data-poor and lacked adequate stock assessment data to extend the observed global agreement of the sensitivity of fish biomass to climate during our reference period (1983-2013). Instead, we provide the degree of model run agreement about the direction of change in the ensemble models to ensure transparency about the uncertainty in this downscaled application.AnalysesTo account for the fact that communities were from five different countries we used linear mixed-effects models (with country as a random effect) for all analyses. All averages reported (i.e. exposure, sensitivity, and model agreement) are estimates from these models. In both our comparison of fisheries and agriculture exposure and test of differences between production-weighted and unweighted agriculture exposure we wanted to maintain the paired nature of the data while also accounting for country. To accomplish this we used the differences between the exposure metrics as the response variable (e.g. fisheries exposure minus agriculture exposure), testing whether these differences are different from zero. We also used linear mixed-effects models to quantify relationships between the material style of life and potential impacts under different mitigation scenarios (SSP1-2.6 and 8.5), estimating standard errors from 1000 bootstrap replications. To further explore whether these relationships between the material style of life and potential impacts were driven by exposure or sensitivity, we conducted an additional analysis to quantify relationships between the material style of life and: 1) joint fisheries and agricultural sensitivity; 2) joint fisheries and agricultural exposure under different mitigation scenarios. We present both the conditional R2 (i.e., variance explained by both fixed and random effects) and the marginal R2 (i.e., variance explained by only the fixed effects) to help readers compare among the material style of life relationships.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities

    Testing H1 and H2 at community composition levelAs noted above, the simple fact that fungi grow more slowly than bacteria is the basis of the hypotheses that (H1) fungal communities should be more resistant than bacterial communities to drought stress, and (H2) that fungal communities should be less resilient than bacterial communities when the stress is relieved by rewetting18. In addition to growth rate, these two hypotheses may be related to differences in the form of growth between fungi and bacteria. For example, multicellular hyphal growth versus unicellular division or the greater thickness of fungal cell walls as compared to those of bacteria47,48. We tested H1 and H2 at the community composition level by blending the fungal and bacterial datasets generated from the same leaf, root, rhizosphere and soil samples collected from field-grown sorghum that had been either irrigated as a control, or subjected to preflowering drought followed by regular wetting beginning at flowering10,11.We followed the approach of Shade et al.17 to detect resistance and resilience, which had been developed for univariate variables, e.g., richness. For multivariate data, e.g., community composition, we modified it by calculating pairwise community dissimilarity for two groups: within-group (control-control pairs, drought-drought pairs, or rewetting-rewetting pairs), and between-group (control-drought pairs, or control-rewetting pairs). Ecological resistance to drought stress is detected by comparing compositional dissimilarity of between-group pairs (control-drought pairs) against within-group pairs (control-control pairs and drought-drought pairs) for each of the droughted weeks (weeks 3–8). Ecological resilience to rewetting is detected by assessing, from before to after rewetting, the change in the difference of compositional dissimilarity between within-group pairs and between-group pairs. Here, the point just before rewetting was week 8 and the points after rewetting were weeks 9–17. A t-test was used to assess the statistical significance of the differences in resistance or resilience between bacterial and fungal communities at each time point for each compartment.To account for the different resolutions of ITS and 16 S, we compared bacterial 16 S OTUs against both fungal ITS, species-level OTUs as well the fungal family level (Supplementary Fig. 1). The results of analyses using either fungal families or OTUs are consistent. Out of 36 comparisons (15 roots, 15 rhizospheres and 6 soils), different family and OTUs results were detected in four instances. In two of these, significances detected by OTUs were not detected by family (root, weeks 4 and 17) and, in the other two cases, significances detected by family were not detected by OTUs (rhizosphere, weeks 7 and 8). (Fig. 1). We report only results that are consistent at both the species and family levels (Fig. 1).In line with our first hypothesis, H1, we found that the resistance to drought stress for fungal mycobiomes was consistently stronger than that for bacterial microbiomes for weeks 5 in root, weeks 4–6 in rhizosphere, and weeks 4 and 6–8 in soil (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2). In support of our second hypothesis, H2, when the stress of pre-flowering drought was relieved by rewetting, we found that the resilience of the bacterial communities was consistently higher than that for the fungi in weeks 9–16 in root, and weeks 11–17 in rhizosphere (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2).Surprisingly, we found that resilience was stronger for fungal than bacterial communities in the first week (week 9) of rewetting in the rhizosphere (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2). This high resilience of fungi may be associated with the quick growth of sorghum roots when rewetted. The rhizosphere zone around these newly formed roots may be quickly colonized by soil fungi, a community that was weakly affected by drought. This result suggests that re-assembly of the rhizosphere microbial community is more complex than previously expected.The finding that fungal community composition in the soil is not shaped by drought prevented us from further detecting resilience (Fig. 1). Note fungal community in early leaves was excluded from analysis due to the high proportion of non-fungal reads in sequencing11.Testing H1 and H2 at all-correlation levelNext, we moved from the comparison of whole communities to correlation among individual bacterial and fungal taxa to test the hypotheses about resistance, H1, and resilience, H2. As noted above, previous research provided the foundation for the stress gradient hypothesis, which predicts an increase in positive associations in stress32,33,34,35,36,37. Further, ecological modeling predicts that negative associations promote stability40. Concerning specific associations, studies of Arabidopsis and associated microbes reported that positive associations are favored within kingdoms, i.e., within bacteria or within fungi, while negative associations predominate between kingdoms38,39. Given these foundations, concerning H1, we expected an increase in the proportion of positive correlation by drought stress that would be strongest for B-B, followed by F-F, and lastly by B-F; for H2 we expected rewetting to cause a decrease in the proportion of positive correlation, again most strongly for B-B, followed by F-F, and lastly by B-F.Overall, at the all-correlation level, we found no consistent support for the differences postulated for bacterial and fungal responses in H1. For example, strong increases in the proportion of positive correlations under drought could be found in all microbial pairings for some compartments (B-B in leaf and root, F-F in rhizosphere and soil, and B-F in root and rhizosphere) (Fig. 2a, Supplementary Figs. 2, 3). Neither did we find consistent support for the differences ascribed to bacteria and fungi in H2 as the strongest decreases in the proportion of positive correlations during rewetting occurred at F-F in rhizosphere and soil, and B-B in leaf and root (Fig. 2b, Supplementary Figs. 2, 3).Fig. 2: Correlations of microbes in drought stress and drought relief.Estimates of combined correlations (row a) show an increase in positive correlations under drought stress across the four compartments (root, black; rhizosphere, blue; soil, red; leaf, green). Data points underlying the lines in the figure are provided in the alternative version in Supplementary Fig. 2. This result is in line with the stress gradient hypothesis which posits that stressful environments favor positive associations because competition will be less intense than in benign environments32,33,36,37. Note that positive trends in combined correlations can arise in two ways. First, from an increase of positive correlations (row b) that exceeds the rise in negative correlations (row c), e.g., Leaf bacterial-bacterial (Bac-Bac) correlations or rhizosphere fungal-fungal (Fun-Fun) correlations in the drought period (Negative correlations in row C values are multiplied by −1 to facilitate comparison). Second, from a decrease in negative correlations that exceeds a decrease in positive correlations, e.g., root bacterial-bacterial correlations or root bacterial-fungal (Bac-Fun) correlations in drought. Combined (a), positive (b) and negative (c) estimates of correlation (Spearman’s rho, ρ) are given for four compartments (root, rhizosphere, soil and leaf), and three types of correlations (Bacterium-Bacterium, Fungus-Fungus, Bacterium-Fungus). T-tests (two sided) were carried out for linear mixed effect modelling that incorporates link type and compartments as random factors. Detailed distribution densities of correlations are presented in Supplementary Fig. 3. Source data are provided as a Source Data file.Full size imageWe found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations among microbial taxa (Fig. 2a, Supplementary Figs. 2, 3). The increases were due, largely, to B-B correlations in leaf and F-F correlations in the rhizosphere during drought, when the relative frequency of positive correlations was increased (Fig. 2b, Supplementary Figs. 2, 3) and the frequencies of negative correlations were decreased or weakly increased (Fig. 2c, Supplementary Figs. 2, 3). Less obvious increases in the relative frequency of positive correlations (such as B-B in root, F-F in soil, and B-F in root and rhizosphere) occurred where drought reduced both positive and negative correlations, but the losses of negative correlations exceeded those of positive correlations (Fig. 2, Supplementary Figs. 2, 3).In support of the expectation that correlations would be more negative between taxonomic groups than within taxonomic groups, we found that the relative frequency of positive correlations was generally lower for B-F than B-B and F-F correlations (Fig. 2, Supplementary Figs. 2, 3). Moreover, as ecological modeling has indicated that negative associations should promote stability of communities40, we hypothesize that B-F correlations would be more stable than B-B and F-F networks in response to drought stress. However, we found no support for this hypothesis, as B-F correlations (for example in root) did not always show the least response to drought stress (Fig. 2, Supplementary Figs. 2, 3).Testing H1 and H2 at species co-occurrence levelFor our final test of H1 (resistance) and H2 (resilience) we focused on co-occurrence networks based on significant, positive correlations. These networks have been reported to be destabilized for bacteria but not for fungi in mesocosms subject to drought stress19, and shown to be disrupted for bacteria in natural vegetation studied over gradients of increasing aridity41,42. Using these results as guides, for H1 we expected that drought stress should disrupt co-occurrence networks most strongly for B-B, followed by F-F, and lastly by B-F. For H2 we expected that relief of stress by rewetting should strengthen microbial co-occurrence networks most strongly for B-B, followed by F-F, and lastly by B-F.For this test we constructed microbial co-occurrence networks using significant positive pairwise correlations between microbial taxa, B-B, F-F and B-F, and compared the network complexity between fully irrigated control and drought, and between control and rewetting following drought. In general, we found no consistent support for the difference between bacteria and fungi inherent in H1. Rhizosphere was the one compartment where B-B vertices dropped and F-F vertices rose in response to drought, as expected, but this result was offset in root and soil, where vertices dropped in all networks, B-B, F-F and B-F (Figs. 3, 4; Supplementary Figs. 4, 5). Analysis by co-occurrence networks highlighted the differences between plant compartments. In root drought strongly disrupted networks of B-B, B-F and F-F, but in the other three compartments, network disruption was weaker, and networks were even enhanced by drought for F-F in rhizosphere and B-B in leaf (Figs. 3, 4).Fig. 3: Networks of significant positive cross-taxonomic group correlations (bacteria and fungi).a Fungal operational taxonomic units (OTUs) (blue) and bacterial OTUs (black) are graphed as nodes. Significant positive Spearman correlations are graphed as edges (ρ  > 0.6, false discovery rate adjusted P  More

  • in

    Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems

    Kaya, C., Murillo-Amador, B. & Ashraf, M. Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum. Antioxidants (Basel, Switzerland) 9, 1–29 (2020).
    Google Scholar 
    Darwesh, O. M., Shalaby, M. G., Abo-Zeid, A. M. & Mahmoud, Y. A. G. Nano-bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egypt. J. Chem. 64, 2499–2507 (2021).
    Google Scholar 
    Bimurzayev, N., Sari, H., Kurunc, A., Doganay, K. H. & Asmamaw, M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci. Rep. 11, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    Li, W. et al. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 10, 1–9 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Hussien, H. A., Salem, H. & Mekki, B. E. D. Ascorbate-glutathione-α-tocopherol triad enhances antioxidant systems in cotton plants grown under drought Stress. Int. J. ChemTech Res. 8, 1463–1472 (2015).CAS 

    Google Scholar 
    Hussein, H. A. A., Mekki, B. B., El-Sadek, M. E. A. & El Lateef, E. E. Effect of L-ornithine application on improving drought tolerance in sugar beet plants. Heliyon 5, e02631 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, H., Huang, Z., Li, M. & Hou, Z. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci. Rep. 10, 2 (2020).Article 
    CAS 

    Google Scholar 
    Khataar, M., Mohammadi, M. H., Shabani, F., Mohhamadi, M. H. & Shabani, F. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Hernández, J. A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 20, 2408 (2019).PubMed Central 
    Article 

    Google Scholar 
    Dubey, S., Bhargava, A., Fuentes, F., Shukla, S. & Srivastava, S. Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 48, 954–966 (2020).CAS 
    Article 

    Google Scholar 
    Devarshi, P., Grant, R., Ikonte, C. & Hazels Mitmesser, S. Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients 11, 2 (2019).Article 
    CAS 

    Google Scholar 
    Takahashi, H. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakhoum, G. S. et al. Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43 (2018).Article 
    CAS 

    Google Scholar 
    Adams, E. et al. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G. & El-Awadi, M. E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 44, 1–10 (2020).Article 

    Google Scholar 
    Wani, S. H. et al. Engineering salinity tolerance in plants: Progress and prospects. Planta 251, 1–29 (2020).Article 
    CAS 

    Google Scholar 
    Genisel, M., Erdal, S. & Kizilkaya, M. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul. 75, 187–197 (2015).CAS 
    Article 

    Google Scholar 
    Salem, H., Abo-Setta, Y., Aiad, M., Hussein, H.-A. & El-Awady, R. Effect of potassium humate on some metabolic products of wheat plants grown under saline conditions. J. Soil Sci. Agric. Eng. 8, 565–569 (2017).
    Google Scholar 
    El-Awadi, M. E., Ibrahim, S. K., Sadak, M. S., Abd Elhamid, E. M. & Gamal El-Din, K. M. Impact of cysteine or proline on growth, some biochemical attributes and yield of faba bean. Int. J. PharmTech Res. 9, 100–106 (2016).CAS 

    Google Scholar 
    Nasibi, F., Kalantari, K. M., Zanganeh, R., Mohammadinejad, G. & Oloumi, H. Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian J. Plant Physiol. 21, 279–286 (2016).Article 

    Google Scholar 
    Romero, I. et al. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit. Vectors 7, 1–11 (2014).Article 
    CAS 

    Google Scholar 
    Guo, H. et al. l-cysteine desulfhydrase-related H2S production is involved in OsSE5-promoted ammonium tolerance in roots of Oryza sativa. Plant Cell Environ. 40, 1777–1790 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colak, N., Tarkowski, P. & Ayaz, F. A. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Bot. Serbica 44, 191–201 (2020).Article 

    Google Scholar 
    Teixeira, W. F. et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 2 (2017).Article 

    Google Scholar 
    Perveen, S. et al. Cysteine-induced alterations in physicochemical parameters of oat (Avena sativa L var Scott and F-411) under drought stress. Biol. Futur. 70, 16–24 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrez, D. A., Abdelhamid, A. E. & Darwesh, O. M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 20, 100302 (2019).Article 

    Google Scholar 
    Acharya, B. R. et al. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci. Rep. 12, 1274 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hayat, S. et al. Role of proline under changing environments: A review. Plant Signal. Behav. 7, 2 (2012).
    Google Scholar 
    Thomas, J., Mandal, A. K. A., Kumar, R. R. & Chordia, A. Role of biologically active amino acid formulations on quality and crop productivity of tea (Camellia sp.). Int. J. Agric. Res. 4, 228–236 (2009).CAS 
    Article 

    Google Scholar 
    Mekki, B. E. D. B. & Hussein, H. A. A. Influence of L-ascorbate on yield components, biochemical constituents and fatty acids composition in seeds of some groundnut (Arachis hypogaea L.) cultivars grown in sandy soil. Biosci. Res. 14, 75–83 (2017).
    Google Scholar 
    Cuin, T. A. & Shabala, S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225, 753–761 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussein, H.-A.A. et al. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 11, 1219 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azarakhsh, M. R., Asrar, Z. & Mansouri, H. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. J. Soil Sci. Plant Nutr. 15, 651–662 (2015).
    Google Scholar 
    Mekki, B. E. D., Hussien, H. A. & Salem, H. Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants. Int. J. ChemTech Res. 8, 1573–1581 (2015).
    Google Scholar 
    Zhao, Y. S. et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10, 2004 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elsayed, A. A., Ibrahim, A. A. & Dakroury, M. Z. Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Sci. Exch. J. An Int Q. J. Sci. Agric. Environ. 37, 467–479 (2016).
    Google Scholar 
    Darwesh, O. M. & Elshahawy, I. E. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur. J. Plant Pathol. 160, 917–934 (2021).CAS 
    Article 

    Google Scholar 
    Metzner, H., Rau, H. & Senger, H. Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta 65, 186–194 (1965).CAS 
    Article 

    Google Scholar 
    Cerning, B. J. A note on sugar determination by the anthrone method. Cereal Chem. 52, 857–860 (1975).
    Google Scholar 
    Pourmorad, F., Hosseinimehr, S. J. & Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5, 1142–1145 (2006).CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).CAS 
    Article 

    Google Scholar 
    Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T. & Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In Methods in Enzymology Vol. 630 481–502 (Academic Press, 2020).
    Google Scholar 
    Kong, F. X., Hu, W., Chao, S. Y., Sang, W. L. & Wang, L. S. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ. Exp. Bot. 42, 201–209 (1999).CAS 
    Article 

    Google Scholar 
    Asada, K. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241 (1992).CAS 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Snedecor, G. W. & Cochran, W. G. Statistical Methods (The Iowa State University Press, 1989).MATH 

    Google Scholar  More