More stories

  • in

    Mangrove dispersal disrupted by projected changes in global seawater density

    Mangrove forests thrive along tropical and subtropical shorelines and their distribution extends to warm temperate regions1. They are globally recognized for the valuable ecosystem services they provide2 but are expected to be substantially influenced by climate change-related physical processes in the future3,4. Under warming winter temperatures, poleward expansion is predicted for mangroves5,6, with potential implications for ecosystem structure and functioning, as well as human livelihoods and well-being7,8. The global distribution, abundance and species richness of mangroves is governed by a broad range of biotic and environmental factors, including temperature and precipitation9 and diverse geomorphological and hydrological gradients10. Climate and aspects related to coastal geography (for example, floodplain area) determine the availability of suitable habitat for establishment11,12. However, the potential for mangroves to track changing environmental conditions and expand their distributions ultimately depends on dispersal11,13. The importance of dispersal in controlling mangrove distributions has been demonstrated by mangrove distributional responses to historical climate variability14, past mangrove (re)colonization of oceanic islands15 and from the long-term survival of mangrove seedlings planted beyond natural range limits16. As such, quantifying changes in the factors that influence dispersal is important for understanding climate-driven distributional responses of mangroves under future climate conditions.In mangroves, dispersal is accomplished by buoyant seeds and fruits (hereafter referred to as ‘propagules’). In combination with prevailing currents, the spatial scale of this process, ranging from local retention to transoceanic dispersal over thousands of kilometres13, is determined by propagule buoyancy17, that is, the density difference between that of propagules and the surrounding water. Hence, the course of dispersal trajectories for propagules from these species depends on the interaction between spatiotemporal changes in both propagule density and that of the surrounding water, rendering this process sensitive to climate-driven changes in coastal and open-ocean water properties. The biogeographic implications of such density differences were recognized more than a century ago by Henry Brougham Guppy, who discussed18 ‘the far-reaching influence on plant-distribution and on plant-development that the relation between the specific weight of seeds and fruits and the density of sea-water must possess’.Since the time of Guppy’s early observations, climate change from human activities has driven pronounced changes in ocean temperature and salinity, with further changes predicted throughout the twenty-first century19. Ocean density is a nonlinear function of temperature, salinity and pressure20; therefore, these changes may influence dispersal patterns of mangrove propagules by altering their buoyancy and floating orientation. As Guppy noted18, ‘[for] plants whose seeds or fruits are not much lighter than seawater […] the effect of increased density of the water is to extend the flotation period’ or ‘to increase the number that floated for a given period’. Guppy also reported that the seedlings of the widespread mangrove genera Rhizophora and Bruguiera present exceptional examples of propagules with densities somewhere between seawater and freshwater18. Previous studies of the impacts of climate change on mangroves have focused on factors such as sea level rise, altered precipitation regimes and increasing temperature and storm frequency4,21,22,23 but the potential impact of climate-driven changes in seawater properties on mangroves has not yet been examined. This is somewhat surprising, as the ocean is the primary dispersal medium of this ‘sea-faring’ coastal vegetation and dispersal is a key process that governs a species’ response to climate change by changing its geographical range. This knowledge gap contrasts with recent efforts to expose links between climate change and dispersal in other ecologically important marine taxa such as zooplankton and fish species24,25,26,27.In this study, we investigate predicted changes in sea surface temperature (SST), sea surface salinity (SSS) and sea surface density (SSD) for coastal waters bordering mangrove forests (hereafter referred to as ‘coastal mangrove waters’), over the next century. Using a biogeographic classification system for coastal and shelf areas28, we examine spatiotemporal changes in these surface ocean properties, with a particular focus on the world’s two major mangrove diversity hotspots: (1) the Atlantic East Pacific (AEP) region, including all of the Americas, West and Central Africa and (2) the Indo West Pacific (IWP) region, extending from East Africa eastwards to the islands of the central Pacific1. Finally, we synthesize available data on the density of mangrove propagules for different mangrove species and explore the potential impact of climate-driven changes in SSD on propagule dispersal.To assess changes in SST and SSS throughout the global range of mangrove forests, we used present (2000–2014) and future (2090–2100) surface ocean properties from the Bio-ORACLE database29,30. SSD estimates were derived from these variables using the UNESCO EOS-80 equation of state polynomial for seawater31. Changes in SST, SSS and SSD (Fig. 1) were calculated for four representative concentration pathways (RCPs) and derived for coastal waters closest to the 583,578 polygon centroids from the 2015 Global Mangrove Watch (GMW) database32. After removing duplicates, our dataset contained 10,108 unique mangrove occurrence locations, with corresponding present conditions and predicted future changes in mean SST, SSS and SSD. Under the low-warming scenario RCP 2.6, mean SST of coastal mangrove waters is predicted to change by +0.64 (±0.11) °C and mean SSS by −0.06 (±0.25) practical salinity units (PSU). Combined, this results in an average change in mean SSD of −0.25 (±0.20) kg m−3 in coastal mangrove waters by the late twenty-first century (Supplementary Table 1). These values roughly double under RCP 4.5 (Supplementary Table 2), while under RCP 6.0, a change of +1.69 (±0.14) °C in mean SST, −0.21 (±0.42) PSU in mean SSS and −0.71 (±0.32) kg m−3 in mean SSD is predicted (Supplementary Table 3). Under RCP 8.5, our study predicts a change in SST of +2.84 (±0.21) °C (range 2.11–4.01 °C), a change in SSS of −0.30 (±0.74) PSU (−2.01–1.26 PSU) and a corresponding change in SSD of −1.17 (±0.56) kg m−3 (−2.53–0.03 kg m−3) (Supplementary Table 4).Fig. 1: Global map showing the change in sea surface variables across mangrove bioregions under RCP 8.5.a–c, Change in SST (a), SSS (b) and SSD (c). Changes in SST and SSS are based on present-day (2000–2014) and future (2090–2100) marine fields from the Bio-ORACLE database29,30, from which SSD data were derived. The vertical line (19° E) separates the two major mangrove bioregions: the AEP and IWP.Full size imageSpatial variability in predicted surface ocean property changes was examined by considering the two major mangrove bioregions (AEP and IWP) (Fig. 2) and using the Marine Ecoregions of the World (MEOW) biogeographic classification28 (Fig. 3). Both the range and changes in mean SST were comparable for the AEP and IWP mangrove bioregions, for all respective RCP scenarios (Fig. 2a and Supplementary Tables 1–4). Under RCP 8.5, mean SST in both mangrove bioregions is predicted to warm ~2.8 °C by 2100, which is roughly 4.5 times the predicted increase in mean SST under RCP 2.6 (Supplementary Tables 1 and 4). Predictions for the RCP 8.5 scenario are generally consistent with reported global ocean temperature trends33 and show that the greatest warming occurs in coastal waters near the Galapagos Islands (change in mean SST of 3.92 ± 0.06 °C). Pronounced SST increases are also predicted for Hawaii (change in mean SST of 3.36 ± 0.05 °C), the Southeast Australian Shelf (3.30 ± 0.25 °C), Northern and Southern New Zealand (3.25 ± 0.07 °C and 3.34 ± 0.02 °C, respectively), Warm Temperate Northwest Pacific (3.27 ± 0.16 °C), the Red Sea and Gulf of Aden (3.24 ± 0.08 °C), Somali/Arabian Coast (3.23 ± 0.15 °C), South China Sea (3.07 ± 0.10 °C), the Tropical East Pacific (3.09 ± 0.15 °C) and the Warm Temperate Northwest Atlantic (3.14 ± 0.13 °C) (Fig. 3b and Supplementary Tables 4).Fig. 2: Change in surface ocean properties for coastal waters bordering mangrove forests and in the two major mangrove bioregions, the AEP and IWP, for different RCPs.a–c, Variation in SST (a), SSS (b) and SSD (c) under various RCP scenarios. Grey indicates global distribution (n = 10,108), orange denotes AEP (n = 3,190) and green represents IWP (n = 6,918). Data for SST and SSS consist of present-day (2000–2014) and future (2090–2100) marine fields from the Bio-ORACLE database29,30, from which SSD data were derived. The cat-eye plots50 show the distribution of the data. Median and mean values are indicated with black and white circles, respectively, and the vertical lines represent the interquartile range.Full size imageFig. 3: Global spatial variability in SST, SSS and SSD for coastal waters bordering mangrove forests under RCP 8.5.a, Global map showing the provinces (colour code and numbers) from the MEOW database28 used to investigate spatial patterns in mangrove coastal ocean water changes by 2100. b–d, Longitudinal gradient of the change in SST (b), SSS (c) and SSD (d) under RCP 8.5 in the AEP and the IWP mangrove bioregions; circles are coloured according to the MEOW province in which respective mangrove sites are located.Full size imagePredicted SSS changes exhibit an opposite trend in the AEP and IWP bioregions, with increased salinity in the AEP and reduced salinity in the IWP under global warming (RCP 2.6–RCP 8.5; Fig. 2b); this is reflected in contrasting SSD changes in both mangrove bioregions (Fig. 2c) and associated with predicted global changes in precipitation, with extensions of the rainy season over most of the monsoon domains, except for the American monsoon34. Under RCP 8.5, the spatially averaged change in mean SSS is +0.51 (±0.57) PSU in the AEP and −0.68 (±0.44) PSU in the IWP region. The maximum decrease in mean SSS (−2.01 PSU) is predicted for the Gulf of Guinea in the AEP bioregion (Fig. 3c and Supplementary Table 4). Within the IWP, the Western Indian Ocean region shows little or no changes in SSS, which contrasts with the pronounced freshening trends predicted in the eastern part of this ocean basin and the Tropical West Pacific (Figs. 1b and 3c). Increased freshening is predicted in the Bay of Bengal (SSS change: −1.17 ± 0.43 PSU), the Sunda Shelf (SSS change: −1.21 ± 0.29 PSU) and the Western Coral Triangle province (mean SSS change: −0.80 ± 0.17 PSU) (Fig. 3c and Supplementary Table 4). Within the AEP, salinity increases exceed +0.96 PSU in the Tropical Northwestern Atlantic, +0.80 in the Warm Temperate Northwest Atlantic and +0.68 in the West African Transition (Fig. 3c and Supplementary Table 4). The spatial heterogeneity in SSS across the global range of mangrove forests corresponds with observed changes in SSS35. Trends in SSD (Fig. 3d) strongly track changes in SSS (Fig. 3c) rather than SST. All RCP scenarios predict an overall decrease in SSD for both mangrove bioregions; however, the predicted decrease in SSD in the IWP region was a factor of 2 (RCP 6.0) and 2.5 (RCP 2.6, RCP 4.5 and RCP 8.5) stronger than in the AEP (Figs. 2 and 3d and Supplementary Tables 1–4).Propagule density values from our literature survey range from 1,080 kg m−3 for different mangrove species (Fig. 4 and Supplementary Table 5). The low densities reported for Heritiera littoralis propagules provide a strong contrast with the near-seawater propagule densities reported for Avicennia and members of the Rhizophoraceae (Bruguiera, Rhizophora and Ceriops). Floating characteristics of the latter may be particularly sensitive to changes in SSD. To illustrate the potential influence of changing ocean conditions on mangrove propagule dispersal, we considered threshold water density values (1,020 and 1,022 kg m−3) that are within the range where elongated propagules of important mangrove genera tend to change floating orientation (Fig. 4a). More specifically, we determined the ocean surface area with an SSD below or equal to these thresholds under different climate change scenarios (Fig. 5). Under RCP 8.5, the ocean surface covered by mangrove coastal waters (coastal waters bordering present mangrove forests) with a density ≤1,020 kg m−3 increases ~27% by 2100, notably more so in the IWP (~37%) than in the AEP (~6%) (Supplementary Table 6). A threshold of 1,022 kg m−3 results in increases of roughly +11% (global), +12% (IWP) and +8% (AEP) (Supplementary Table 7). Similar spatial patterns are observed for open-ocean waters within the global latitudinal range of mangroves (Fig. 5 and Supplementary Figs. 1 and 2).Fig. 4: Potential effect of future declines in SSD on mangrove propagule dispersal.a, Range of reported propagule density values for wide-ranging mangrove species and present and future range of SSD for coastal waters along the range of those mangrove species. Mangrove propagule data are extracted from the literature (Supplementary Table 5). H. lit, Heritiera littoralis; X. gra, Xylocarpus granatum; A. ger, Avicennia germinans; A. mar, Avicennia marina; B. gym, Bruguiera gymnorrhiza; C. tag, Ceriops tagal; R. man, Rhizophora mangle; R. muc, Rhizophora mucronata. Bottom part adapted from ref. 51. b, Conceptual figure of the potential effects of ocean warming and freshening on mangrove propagule dispersal. Ocean warming and freshening drive changes in SSD and may reduce the timeframe for opportunistic colonization. For a propagule with a specific density and floating profile under present surface ocean conditions, reduced SSD of coastal and open-ocean waters may reduce floatation time (shaded area) and hence, reduce the proportion of long-distance dispersers. For simplicity, the density of propagules is assumed to increase linearly over time, although the actual increase may be nonlinear.Full size imageFig. 5: Future changes in SSD.a–d, Spatial extent of coastal and open-ocean surface waters with a density ≤1,020 kg m−3 (a,b) and 1,022 kg m−3 (c,d), for present (2000–2014) (a,c) and future (2090–2100; RCP 8.5) (b,d) scenarios. Data are shown for surface ocean waters within the global latitudinal range of mangrove forests (between 32° N and 38° S). The two density thresholds considered are within the range of densities at which mangrove propagule buoyancy and floating orientation of several mangrove genera change, as reported in available literature. Black dots along the coast represent the global mangrove extent from the 2015 GMW dataset32. Magenta-coloured circles represent SSD values More

  • in

    Vision and vocal communication guide three-dimensional spatial coordination of zebra finches during wind-tunnel flights

    Dynamic in-flight flock organizationIt is commonly assumed that during flocking, flock members follow three basic interaction rules: Attraction, Repulsion and Alignment, to coordinate spatial positions between each other18. To study the spatial organization of our zebra finch flock during flight, the spatial positions of all birds in the flight section were tracked in every fifth frame (sample rate: 24 Hz (that is, frames per second)) of the synchronized footage recorded by two high-speed digital video cameras (Camera 1: centred upwind view, Fig. 1a,b; Camera 2: upturned vertical view, Fig. 1a,c) for the entire duration (51.7, 58.3, 69.2 and 127 s) of four (session 2, 5, 8 and 13) out of 13 flight sessions. Flight paths were reconstructed from the tracking data for each bird in the flock, with horizontal and vertical coordinates delivered by Camera 1 and coordinates in wind direction delivered by Camera 2. The data show that each bird mainly occupied a particular area in the flight section, and that this spatial preference was stable over different flight sessions. Bird Green, for example, was preferentially flying very low above the flight section’s floor, and bird Lilac preferred to fly at upwind positions in front of the flock (Fig. 1d, Extended Data Figs. 1 and 3 and Supplementary Information).Despite their preference in flight area, all birds constantly changed their spatial positions fast and rhythmically along the horizontal dimension of the flight section (Fig. 1e–g, Extended Data Figs. 2 and 4, Supplementary Video 1 and Supplementary Information). This behaviour is reminiscent of the flight behaviour of wild zebra finches: when being surprised in flight by a predator, zebra finches fly in a rapid zig-zag course low above the ground, heading for nearby vegetation16. Whether the sideways oscillating flight manoeuvres, which are performed by both wild birds in open space and domesticated birds in the wind tunnel’s flight section, are caused by the close proximity to the ground or are part of an escape reaction is yet unknown.From the tracking data, we further calculated the spatial distances in all three dimensions between all pairwise combinations of birds throughout the four flight sessions (sample rate: 24 Hz). When normalized to the maximum distance detected for each bird pairing, each dimension and each flight session, mean distances of bird pairings in all dimensions were narrowly distributed within a range of 27.7–38.0% of maximum distance (Fig. 1h and Supplementary Table 1). This may indicate that during flocking flight, zebra finches actively balance Attraction and Repulsion to maintain a stable 3D distance towards all other members of the flock. Owing to the spatial limitations in the wind tunnel’s flight section, we did not expect the zebra finches to perform large-scale flight manoeuvres with movements aligned between all flock members (Extended Data Fig. 5 and Supplementary Information), as can be observed, for example, in freely flying flocks of homing pigeons (Columba livia domestica)19 and white storks (Ciconia Ciconia)20.Visually guided horizontal repositioningWhen observing the dynamic spatial organization of our zebra finch flock, a question immediately arises: how do the birds prevent collisions during their frequent horizontal position changes? When considering the spatial limitation experienced by the flock of six birds during flight in the flight section and their highly dynamic flight style, collision rates seemed to be astonishingly low (median: 0.02 Hz; interquartile range (IQR): 0–0.03 Hz; n = 13 sessions) during flocking flight (in total 16 collisions in 13 min of analysed flight time). In birds, the visual system represents the main input channel for environmental information. To tackle the above question, we therefore first investigated the role of vision during flocking flight, and tested whether a bird’s viewing direction was correlated with the direction of horizontal position change. As gaze changes are governed by head movements in birds21, we used a bird’s head direction as an indicator for the orientation of its visual axis. We tracked (sample rate: 120 Hz) the position of a bird’s beak tip and neck in each frame of the footage during ten horizontal position changes (Fig. 2a and Supplementary Video 2) per bird, and found a strong interaction between a bird’s head angle relative to the wind direction and its direction of horizontal position change. During horizontal position changes, the birds always turned their heads in the direction of the position change (Fig. 2b). While the population’s median absolute angle of position change was 84.0° (IQR: 78.6–87.2°; n = 60) relative to 0° in wind direction, the population’s median absolute head turning angle was 36.0° (IQR: 26.4–42.5°; n = 60; see Supplementary Information for results on head movements during solo flight). The eyes of zebra finches are positioned laterally on their heads22 and each retina features a small region of highest ganglion cell density (fovea, that is, region of highest visual spatial resolution) at an area that receives visual input from horizontal positions at 60° relative to the midsagittal plane23. By turning their heads by about 36° during horizontal position changes, the zebra finches roughly align the foveal area in the retina of one eye with their direction of position change, and in the retina of the other eye with the wind direction (Fig. 2c,d). Thus, head turns in the direction of position change may indicate that the birds use visual cues while repositioning themselves within the flock. This hypothesis is supported by a study on zebra finch head movements performed during an obstacle avoidance task. In this study, instead of fixating on the obstacle, zebra finches turned their head in the direction of movement while navigating around the obstacle24.Fig. 2: Horizontal position changes are accompanied by head turns.a, Head and body orientation of bird Orange (ventral view) during one example of position changes to the right, tracked (sample rate: 120 Hz) in the footage of Camera 2. Circles: beak tip positions; plus signs: neck positions; upward pointing triangles: tail base positions. Cutouts of freeze frames of the footage taken with Camera 2 show the bird’s head and body posture for 11 time points during the position change. b, In all birds, the median angle of head turn during horizontal position change in flocking flight is positively correlated (linear mixed effects model (LMM), estimates ± s.e.m.: 2.05 ± 0.1, P  More

  • in

    Decision-making of citizen scientists when recording species observations

    Fink, D. et al. Crowdsourcing meets ecology: he misphere wide spatiotemporal species distribution models. AI Mag. 35, 19–30. https://doi.org/10.1609/aimag.v35i2.2533 (2014).Article 

    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).Article 

    Google Scholar 
    Schmeller, D. S. et al. Advantages of volunteer-based biodiversity monitoring in Europe. Conserv. Biol. 23, 307–316. https://doi.org/10.1111/j.1523-1739.2008.01125.x (2009).Article 
    PubMed 

    Google Scholar 
    Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000385 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Follett, R. & Strezov, V. An analysis of citizen science based research: Usage and publication patterns. PLoS ONE https://doi.org/10.1371/journal.pone.0143687 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123. https://doi.org/10.1016/j.oneear.2020.12.005 (2021).ADS 
    Article 

    Google Scholar 
    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297. https://doi.org/10.1890/110236 (2012).Article 

    Google Scholar 
    Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560. https://doi.org/10.1002/fee.1436 (2016).Article 

    Google Scholar 
    Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge?. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00239 (2019).Article 

    Google Scholar 
    Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120. https://doi.org/10.1016/j.biocon.2016.05.014 (2017).Article 

    Google Scholar 
    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531. https://doi.org/10.1111/bij.12532 (2015).Article 

    Google Scholar 
    August, T., Fox, R., Roy, D. B. & Pocock, M. J. O. Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias. Sci. Rep. https://doi.org/10.1038/s41598-020-67658-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. https://doi.org/10.1038/srep33051 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Cecco, G. J. et al. Observing the observers: How participants contribute data to iNaturalist and implications for biodiversity science. Bioscience 71, 1179–1188. https://doi.org/10.1093/biosci/biab093 (2021).Article 

    Google Scholar 
    Kamp, J., Oppel, S., Heldbjerg, H., Nyegaard, T. & Donald, P. F. Unstructured citizen science data fail to detect long-term population declines of common birds in Denmark. Divers. Distrib. 22, 1024–1035. https://doi.org/10.1111/ddi.12463 (2016).Article 

    Google Scholar 
    Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21. https://doi.org/10.1111/2041-210x.13090 (2019).Article 

    Google Scholar 
    Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720. https://doi.org/10.1007/s00484-012-0598-7 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66, 393–400. https://doi.org/10.1093/biosci/biw022 (2016).Article 

    Google Scholar 
    Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149. https://doi.org/10.1111/ddi.12477 (2016).Article 

    Google Scholar 
    Girardello, M. et al. Gaps in butterfly inventory data: A global analysis. Biol. Cons. 236, 289–295. https://doi.org/10.1016/j.biocon.2019.05.053 (2019).Article 

    Google Scholar 
    Husby, M., Hoset, K. S. & Butler, S. Non-random sampling along rural-urban gradients may reduce reliability of multi-species farmland bird indicators and their trends. Ibis https://doi.org/10.1111/ibi.12896 (2021).Article 

    Google Scholar 
    Petersen, T. K., Speed, J. D. M., Grøtan, V. & Austrheim, G. Species data for understanding biodiversity dynamics: The what, where and when of species occurrence data collection. Ecol. Solut. Evid. https://doi.org/10.1002/2688-8319.12048 (2021).Article 

    Google Scholar 
    Egerer, M., Lin, B. B. & Kendal, D. Towards better species identification processes between scientists and community participants. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.133738 (2019).Article 
    PubMed 

    Google Scholar 
    Jimenez, M. F., Pejchar, L. & Reed, S. E. Tradeoffs of using place-based community science for urban biodiversity monitoring. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.338 (2021).Article 

    Google Scholar 
    Branchini, S. et al. Using a citizen science program to monitor coral reef biodiversity through space and time. Biodivers. Conserv. 24, 319–336. https://doi.org/10.1007/s10531-014-0810-7 (2015).Article 

    Google Scholar 
    Snall, T., Kindvall, O., Nilsson, J. & Part, T. Evaluating citizen-based presence data for bird monitoring. Biol. Cons. 144, 804–810. https://doi.org/10.1016/j.biocon.2010.11.010 (2011).Article 

    Google Scholar 
    Gardiner, M. M. et al. Lessons from lady beetles: Accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10, 471–476. https://doi.org/10.1890/110185 (2012).Article 

    Google Scholar 
    Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. https://doi.org/10.1038/s41598-017-09084-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, F. et al. Can information from citizen science data be used to predict biodiversity in stormwater ponds?. Sci. Rep. https://doi.org/10.1038/s41598-020-66306-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Everett, G. & Geoghegan, H. Initiating and continuing participation in citizen science for natural history. BMC Ecol. https://doi.org/10.1186/s12898-016-0062-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter, A. et al. The social fabric of citizen science drivers for long-term engagement in the German butterfly monitoring scheme. J. Insect Conserv. 22, 731–743. https://doi.org/10.1007/s10841-018-0097-1 (2018).Article 

    Google Scholar 
    MacPhail, V. J., Gibson, S. D. & Colla, S. R. Community science participants gain environmental awareness and contribute high quality data but improvements are needed: Insights from Bumble Bee Watch. PeerJ https://doi.org/10.7717/peerj.9141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108587 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moczek, N., Nuss, M. & Kohler, J. K. Volunteering in the citizen science project “Insects of Saxony”—The larger the island of knowledge, the longer the bank of questions. Insects https://doi.org/10.3390/insects12030262 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Branchini, S. et al. Participating in a citizen science monitoring program: Implications for environmental education. PLoS ONE https://doi.org/10.1371/journal.pone.0131812 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelemen-Finan, J., Scheuch, M. & Winter, S. Contributions from citizen science to science education: An examination of a biodiversity citizen science project with schools in Central Europe. Int. J. Sci. Educ. 40, 2078–2098. https://doi.org/10.1080/09500693.2018.1520405 (2018).Article 

    Google Scholar 
    Deguines, N., Prince, K., Prevot, A. C. & Fontaine, B. Assessing the emergence of pro-biodiversity practices in citizen scientists of a backyard butterfly survey. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136842 (2020).Article 
    PubMed 

    Google Scholar 
    Peter, M., Diekötter, T., Höffler, T. & Kremer, K. Biodiversity citizen science: Outcomes for the participating citizens. People Nat. 3, 294–311. https://doi.org/10.1002/pan3.10193 (2021).Article 

    Google Scholar 
    Phillips, T. B., Bailey, R. L., Martin, V., Faulkner-Grant, H. & Bonter, D. N. The role of citizen science in management of invasive avian species: What people think, know, and do. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2020.111709 (2021).Article 
    PubMed 

    Google Scholar 
    Parrish, J. K. et al. Hoping for optimality or designing for inclusion: Persistence, learning, and the social network of citizen science. Proc. Natl. Acad. Sci. U.S.A. 116, 1894–1901. https://doi.org/10.1073/pnas.1807186115 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mac Domhnaill, C., Lyons, S. & Nolan, A. The citizens in citizen science: Demographic, socioeconomic, and health characteristics of biodiversity recorders in Ireland. Citiz. Sci.: Theory Pract. 5, 16. https://doi.org/10.5334/cstp.283 (2020).Article 

    Google Scholar 
    van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. 30, 550–561. https://doi.org/10.1111/cobi.12705 (2016).Article 
    PubMed 

    Google Scholar 
    Bloom, E. H. & Crowder, D. W. Promoting data collection in pollinator citizen science projects. Citiz. Sci.: Theory Pract. 5, 3. https://doi.org/10.5334/cstp.217 (2020).Article 

    Google Scholar 
    Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97. https://doi.org/10.1111/2041-210x.12838 (2018).Article 

    Google Scholar 
    Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179. https://doi.org/10.1093/biosci/biz010 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koen, B., Loosveldt, G., Vandenplas, C. & Stoop, I. Response rates in the european social survey: Increasing, decreasing, or a matter of fieldwork efforts?. Surv. Methods: Insights Field https://doi.org/10.13094/SMIF-2018-00003 (2018).Article 

    Google Scholar 
    Gideon, L. Handbook of Survey Methodology for the Social Sciences (Springer, 2012).Book 

    Google Scholar 
    Wolf, C., Joye, D., Smith, T. W. & Fu, Y. C. The SAGE Handbook of Survey Methodology (SAGE Publications Ltd, 2016).Book 

    Google Scholar 
    Richter, A. et al. Motivation and support services in citizen science insect monitoring: A cross-country study. Biol. Conserv. 263, 109325. https://doi.org/10.1016/j.biocon.2021.109325 (2021).Article 

    Google Scholar 
    Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2019.108927 (2020).Article 

    Google Scholar 
    Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060. https://doi.org/10.1111/2041-210x.12254 (2014).Article 

    Google Scholar 
    Liao, H.-I., Yeh, S.-L. & Shimojo, S. Novelty vs. familiarity principles in preference decisions: Task context of past experience matters. Front. Psychol. https://doi.org/10.3389/fpsyg.2011.00043 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J., Shimojo, E. & Shimojo, S. Roles of familiarity and novelty in visual preference judgments are segregated across object categories. Proc. Natl. Acad. Sci. U.S.A. 107, 14552–14555. https://doi.org/10.1073/pnas.1004374107 (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv.-Bulg. https://doi.org/10.3897/natureconservation.18.13429 (2017).Article 

    Google Scholar 
    Davis, A., Taylor, C. E. & Martin, J. M. Are pro-ecological values enough? Determining the drivers and extent of participation in citizen science programs. Hum. Dimens. Wildl. 24, 501–514. https://doi.org/10.1080/10871209.2019.1641857 (2019).Article 

    Google Scholar 
    Bell, S. et al. What counts? Volunteers and their organisations in the recording and monitoring of biodiversity. Biodivers. Conserv. 17, 3443–3454. https://doi.org/10.1007/s10531-008-9357-9 (2008).Article 

    Google Scholar 
    Toomey, A. H. & Domroese, M. C. Can citizen science lead to positive conservation attitudes and behaviors?. Hum. Ecol. Rev. 20, 50–62 (2013).Article 

    Google Scholar 
    Dennis, E. B., Morgan, B. J. T., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361. https://doi.org/10.1111/cobi.12956 (2017).Article 
    PubMed 

    Google Scholar 
    Callaghan, C. T., Poore, A. G. B., Major, R. E., Rowley, J. J. L. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2019.1487 (2019).Article 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384. https://doi.org/10.1038/s41559-020-1111-z (2020).Article 
    PubMed 

    Google Scholar 
    Bowler, D. E. et al. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Divers. Distrib. https://doi.org/10.1111/ddi.13274 (2021).Article 

    Google Scholar  More

  • in

    Simulation-based evaluation of two insect trapping grids for delimitation surveys

    Key delimitation trapping survey performance factorsTrap attractivenessThe performance of the current Medfly design was unexpectedly inferior to that of the leek moth even with a more vagile target insect, 2.8 times greater trap density in the core, and a grid size over three times larger. Despite all those factors, p(capture) for the leek moth grid with 1/λ = 20 m was 15 percentage points greater than that for Medfly at 30 days duration. Thus, trap attractiveness was the key determinant for delimiting survey performance, as it was for detection13.One straightforward way to improve p(capture) and the accuracy of boundary setting, while also cutting costs, would be to develop more attractive traps. Poorly attractive traps include food-based attractants48 and traps based solely on visual stimuli36. But developing better traps is difficult. Pheromone-based attractants generally perform best49, but these are unavailable for many insects. For instance, scientists have searched for decades for effective pheromones for Anastrepha suspensa (Loew) and A. ludens (Loew) without success50. Common issues include the complexity of components, costs of synthesis, and chemical stability.Trap densitiesAll else being equal, increasing the trap density will generally improve p(capture) for any survey grid, and intuitively this can help compensate for using less attractive traps. However, the impact of increasing density is limited when attractiveness is low13,47, and large surveys or grids with many traps can become prohibitively expensive51. The Medfly grid designers likely understood that the available trap and lure was not highly attractive, and used higher densities in inner bands to try to reach some desired (non-quantitative) survey performance level. By contrast, the designers of the leek moth grid used a (constant) density three times smaller, likely because the trap and lure were known to be relatively strong. Here, for both species, marginal ROI decreased as densities increased (Tables 2, 3). Hence, increasing densities has limited benefit, but may be useful when better lures are unavailable13.In that context, the use of variable densities in the Medfly grid is understandable. At its standard size, the survey grid would require 8,100 traps if the core trap density were constant (Table 1). The designers likely intuited that lower densities could be used in outer bands because captures there were less likely. However, doing so reduces the likelihood of detection in outer bands and could increase the possibility of undetected egress, especially with longer survey durations. As far as we know, natural egress has not been raised as a concern following the numerous Medfly quarantines that have used this survey grid over the years, in Southern California in particular52.Generally, however, we think the variable Medfly grid densities run counter to delimitation goals. Greater core and Band 2 densities have proportionally more impact on p(capture), but only a few detections in the core are necessary to confirm the presence of the population (Goal 1), and inner area detections probably contribute little to boundary setting (see below). Therefore, lower or intermediate densities (at most) may be optimal for the core when considering ROI. For the outer bands, increasing densities might improve boundary setting (Goal 2) and help mitigate potential egress, but the sizes of those bands already limit cost efficiency (Table 2), making greater densities less advisable. Our simulation results can help elucidate how to balance these interests to achieve delimitation goals while minimizing costs47.Grid size considerationsThe simulation results indicated that the standard survey sizes for these two pests were excessive. We have verified that empirically for Medfly using trapping detections data53. A 14.5-km grid has been widely used for many other insects in the CDFA (2013) guidelines10, such as Mexfly and OFF, and the same analysis indicated that those are also oversized for use in short-term delimitation surveys53. From the same analysis, the predicted survey radius for leek moth, with D = 500 m2 per day, would be 2,382 m, or a diameter of nearly 4.8 km, which matches the results here. Similarly, Dominiak and Fanson45 analyzed trapping data for Qfly and found that the recommended quarantine area distance of 15 km could be reduced to 3 to 4 km.Grids with radii larger than 4.8-km only seem necessary for highly vagile insects, those with D ≥ 50,000 m2 per day47. This should not be surprising. Small insect populations are unlikely to move very far31,54, especially if hosts are available20,39,55. The (proposed) short duration of a delimitation survey would also limit dispersal potential (see below). Many delimiting survey plans may be oversized, because they were developed before much dispersal research had been done37, thus uncertainty was high. Our dispersal distance analysis included species with a wide range of dispersal abilities, so it can be used generally to choose smaller survey grid radii53.Reducing grid sizes down to about 4.8-km diameters may have little impact on p(capture), since detections in bands outside that distance contributed little to overall performance. The cores of both the leek moth and Medfly grids accounted for 86 percent or more of overall p(capture). While core area detections will confirm the presence of the population, they are less useful for defining spatial extent. The furthest detections from the presumed source are usually used to delimit the incursion46,56 (although in our experience formal boundary setting exercises seem rare). Delimiting surveys may often yield few captures anyway, because adventive populations can be very small and subject to high mortality31. Because size reductions eliminate traps in proportionally larger outer areas, the impact on survey costs is substantial. Removing just the outermost bands of each grid would directly reduce costs by $11,200 for leek moth (400 traps) and by $7,488 for Medfly (288 traps; Table 1).Another reason for the large size of the standard Medfly grid may be that it was designed for monitoring and management in addition to delimitation57. Medfly quarantines end after at least three generations without a detection, so the surveys may last for months. The grid size was reportedly originally determined by multiplying the estimated dispersal distance by three (PPQ, personal communication), to account for uncertainty. This implies that the estimated distance was about 2,400 m per 30 days. Thus, the design may not have been built for the 30-d duration used here, but our recommended design is valid if a shorter delimitation activity without further monitoring is appropriate.Although it seemed too large for leek moth, an 8-km grid for delimitation could be appropriate for some other moths. For example, the delimiting survey plans for Spodoptera littoralis (Boisduval) and S. exempta Walker use this size9. S. littoralis is described as dispersing “many miles”, and S. exempta can travel hundreds of miles9, which clearly exceeds the described dispersal ability of leek moth. On the other hand, the survey plan for summer fruit tortrix moth (Adoxophyes orana Fischer von Röeslerstamm) also specifies an 8-km grid for delimitation but contains little information on dispersal, suggesting only that most movement is local8. Like leek moth, a 4.8-km grid for that species seems likely to be more appropriate.Limiting egress potential is probably the main consideration when setting survey size, but uncertainty about the source population location may also be a factor. Survey grids placed over the earliest insect detection may sometimes be off center from the location of the source population54. However, so far as we know for our agency, most adventive populations have been localized, based on post-discovery detections (PPQ, personal communication). Likewise, we have found53 and other researchers have found that dispersal distances for different species in outbreaks and mark-recapture studies are often less than 1 km58,59,60. That may often be the case for detection networks of traps (e.g., for high risk fruit flies), which increase the likelihood of capture before the population has had much time to grow and disperse. Here, we focused explicitly on localized populations, but allowed for uncertainty in the simulations by varying outbreak locations over one mile in the central part of the grid. If the outbreak population is very large and has extensively spread out (e.g., spotted lanternfly, Lycorma delicatula (White) in 201461), delimitation will not be localized, but “area-wide”2. The results here do not apply to area-wide outbreaks, and we are currently studying how to effectively delimit them.Optimizing delimitation surveysMany trapping survey designs in use were based not on “hard” science but on local experience62. Scientists have recognized the need for more cost-effective surveillance strategies63,64. Quantitatively assessing p(capture) in different designs for the same target pest allows us to determine grid sizes and densities that lower costs while maintaining performance. Results here demonstrated that the sizes and densities of these two survey grids could be optimized to save up to $20,244 per survey for the leek moth and $38,168 per survey for the Medfly. In practical terms, that means more than five leek moth surveys could be run for the cost of one standard design survey. Additionally, over seven Medfly delimitation surveys could be funded by the budget of one standard plan. The magnitudes of reduction seen here may be typical, since about 90 percent of the costs in trapping surveys are for transportation and maintenance related to traps65.Quantifying survey performance was not possible until very recently, so it has been little discussed in the literature5,66, and no standard thresholds exist. We think 0.5 may be a reasonable minimum threshold for the choice of p(capture), to try to ensure that population detection is “more likely than not”. Designs that aim to maximize p(capture) could be realistic with high attractiveness traps, but those designs seem very likely to have lower ROIs (e.g., Table 2). Even for the most serious insect pests, we think targeting near-perfect population detection during delimitation is likely not justified. Designs achieving p(capture) from 0.6 to 0.75 could be highly effective in terms of both costs and performance.Another potential area of improvement is grid shape. Circular grids perform as well as square grids but use fewer traps and less service area to achieve equivalent p(capture)47. Moreover, detections in the corners of a square grid are evidence that insects could have traveled beyond the square along the axes, resulting in uncertain boundary setting. Most published survey grids are square10,46, but many field managers tend to use approximately circular trapping grids in the field (PPQ, personal communication). The conversion to a circular grid with a radius of half the square side length reduces the area and number of traps by around 21 percent47. Our findings were consistent with that value.This new quantification ability also indicates that some delimiting survey designs in the U.S.A. may not be performing as well as expected47. For instance, the delimiting survey design for Mexfly uses approximately 31 traps per km2 in the core of a 14.5 km square grid11, but the traps are only weakly attractive (1/λ ≈ 5 m). In this scenario, p(capture) was only around 0.23 with a 30-d survey duration47. A much greater density ( > 80 traps per km2) could be used in the core to achieve p(capture) ≥ 0.5, but this may not be feasible depending on the survey budget.Technical and modeling considerationsExamining diffusion-based movement for these two insects in TrapGrid can give insight into why simulations indicated that smaller grids may be adequate47. The value of σ for Medfly after 30 days is only about 1,550 m. In a normal distribution, σ = 1,550 m gives a 95th percentile distance of 2,550 m, which is similar to the estimated distance above of 2,400 m. Over 90 days, σ = 2,700 m for Medfly, which gives a 95th percentile distance of 4,441 m, still much shorter than the grid radius of 7,250 m. A 95th percentile of 7,250 m requires σ ≈ 4,408 m, which equals t = 253 days. In addition, the maximum total distance (up to 39 days after detection) we observed in trapping detections data for Medfly in Florida was about 4,800 m53.The same calculations for leek moth give σ ≈ 490 m for 30 days, with a 95th percentile distance of only 806 m. That is half the length of the recommended shortened radius above of 2.4 km, and nearly five times shorter than the radius of the standard 8-km grid. A 95th percentile of 4,000 m requires σ = 2,432 m, which implies t = 740 days, which is about two years. Therefore, the leek moth grid is arguably even more oversized than the Medfly grid.The default capture probability calculation in the current version (Ver. 2019-12-11) of TrapGrid is not sensitive to population size32 and does not consider the effects of ambient factors (e.g., wind speed and direction, rainfall, temperature). Many other factors can also impact trapping survey outcomes, such as topography of the environment, availability of host plants, seasonality of pest, and population dynamics. These factors are not considered in the current version of TrapGrid. More

  • in

    Understanding social–ecological systems using social media data

    Ecosystem services are the contributions of nature to human well-being — for example, the provision of raw materials, carbon sequestration and recreation. Although relatively new, the study of these essential services has developed rapidly and is now included in many global policies and assessments. However, mapping and modelling these services is restricted by the availability of data that can account for the multidimensional traits of ecosystem services and model coupled social–ecological systems. Traditional datasets, including surveys, interviews, and focus groups, are often not viable on the scale necessary for many ecosystem service assessments. More

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides

    Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020;46:1–13.Article 

    Google Scholar 
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82–343ra82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akagawa S, Tsuji S, Onuma C, Akagawa Y, Yamaguchi T, Yamagishi M, et al. Effect of delivery mode and nutrition on gut microbiota in neonates. Ann Nutr Metab. 2019;74:132–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5.Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.Article 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Fukami T, Nakajima M. Community assembly: Alternative stable states or alternative transient states? Ecol Lett. 2011;14:973–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2018;15:197–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tannock GW, Lawley B, Munro K, Pathmanathan SG, Zhou SJ, Makrides M, et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol. 2013;79:3040–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv. 2019;5:eaaw7696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macrobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18:12–15.Article 

    Google Scholar 
    Macrobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.Article 
    CAS 

    Google Scholar 
    Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients. 2020;12:71.CAS 
    Article 

    Google Scholar 
    Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem. 2016;80:621–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol. 2009;75:1534–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gore C, Munro K, Lay C, Bibiloni R, Morris J, Woodcock A, et al. Bifidobacterium pseudocatenulatum is associated with atopic eczema: A nested case-control study investigating the fecal microbiota of infants. J Allergy Clin Immunol. 2008;121:135–40.PubMed 
    Article 

    Google Scholar 
    Lewis ZT, Mills DA. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr Inst Work Ser. 2017;88:149–59.Article 

    Google Scholar 
    Tannock GW, Lee PS, Wong KH, Lawley B. Why don’t all infants have bifidobacteria in their stool? Front Microbiol. 2016;7:6–10.Article 

    Google Scholar 
    Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:1–12.CAS 
    Article 

    Google Scholar 
    Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M, Tancredi DJ, et al. A comparison of two probiotic strains of bifidobacteria in preterm infants. J Pediatr. 2013;163:1585–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 2018;18:1–8.Article 
    CAS 

    Google Scholar 
    Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 1997;76:101–7.Article 

    Google Scholar 
    Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol. 2022;73:108–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25:716–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet. 2016;387:649–60.PubMed 
    Article 

    Google Scholar 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules. Microorganisms. 2020;8:481.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014;14:1–14.Article 
    CAS 

    Google Scholar 
    Higgins MA, Ryan KS. Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697. Anaerobe. 2021;68:102320.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Micro Biotechnol. 2013;6:67–79.Article 
    CAS 

    Google Scholar 
    Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, et al. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette RL, Fukami T. Historical contingency in species interactions: Towards niche-based predictions. Ecol Lett. 2014;17:115–24.PubMed 
    Article 

    Google Scholar 
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.PubMed 
    Article 
    CAS 

    Google Scholar 
    Pu Z, Jiang L. Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos. 2015;124:1327–36.Article 

    Google Scholar 
    Chase JM. Community assembly: when should history matter? Oecologia. 2003;136:489–98.PubMed 
    Article 

    Google Scholar 
    Schröder A, Persson L, De Roos AM. Direct experimental evidence for alternative stable states: A review. Oikos. 2005;110:3–19.Article 

    Google Scholar 
    Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286:34583–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep. 2018;8:13958.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, et al. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Avershina E, Storrø O, Øien T, Johnsen R, Wilson R, Egeland T, et al. Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol. 2013;79:497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7:20–4.Article 
    CAS 

    Google Scholar 
    James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M, Motherway MO, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep. 2019;9:1–20.Article 
    CAS 

    Google Scholar 
    Dedon LR, Özcan E, Rani A, Sela DA. Bifidobacterium infantis metabolizes 2′fucosyllactose-derived and free fucose through a common catabolic pathway resulting in 1,2-propanediol secretion. Front Nutr. 2020;7:1–16.Article 
    CAS 

    Google Scholar 
    Sprockett D, Martin M, Costello E, Burns A, Holmes S, Gurven M, et al. Microbiota assembly, structure, and dynamics among tsimane horticulturalists of the Bolivian Amazon. Nat Commun. 2019;11:1–14.Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6:1367–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020;88:209–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bunesova V, Lacroix C, Schwab C. Fucosyllactose and l-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol. 2016;16:248.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz-Moyano S, Totten SM, Garrido D, Smilowitz JT, Bruce German J, Lebrilla CB, et al. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol. 2013;79:6040–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during l-fucose and fucosyllactose degradation. Front Microbiol. 2017;8:1–14.Article 

    Google Scholar 
    Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165:842–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019;25:324–335.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.PubMed 
    Article 

    Google Scholar 
    Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75:965–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int. 2004;46:509–15.PubMed 
    Article 

    Google Scholar 
    Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem. 2007;71:2101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y. Arita M. DFAST and DAGA: Web-based integrated genome annotation tools and resources. Biosci Microbiota, Food Heal. 2016;35:173–84.CAS 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:206–14.Article 
    CAS 

    Google Scholar 
    Price MN, Arkin AP. PaperBLAST: Text-mining papers for information about homologs. bioRxiv. 2017;2:1–10.
    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.Article 
    CAS 

    Google Scholar 
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75:4175–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350:1–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohenford MA, Abraham A, Abraham J, Dain JA. Colorimetric assay for free and bound l-fucose. Anal Biochem. 1989;177:172–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut Bifidobacterium species. Curr Microbiol. 2017;74:987–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13.Article 
    CAS 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;2017:1–17.CAS 

    Google Scholar 
    Milani C, Lugli GA, Fontana F, Mancabelli L, Alessandri G, Longhi G, et al. METAnnotatorX2: A comprehensive tool for deep and shallow metagenomic data set analyses. mSystems. 2021;6:1–15.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019. More

  • in

    Effect of Rudbeckia laciniata invasion on soil seed banks of different types of meadow communities

    Mack, R. M. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 (2000).Article 

    Google Scholar 
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communitiesand ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x (2012).ADS 
    Article 

    Google Scholar 
    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (CAB International, 2001).Book 

    Google Scholar 
    DAISIE. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=23539# (2018).Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x (2009).Article 

    Google Scholar 
    Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84(1), 23–33. https://doi.org/10.5586/asbp.2015.008 (2015).Article 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total Environ. 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Species-specific effects of plant invasions on activity, biomass and composition of soil microbial communities. Biol. Fertil. Soils 52, 841–852. https://doi.org/10.1007/s00374-016-1122-8 (2016).CAS 
    Article 

    Google Scholar 
    Zubek, S. et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 52, 879–893. https://doi.org/10.1007/s00374-016-1127-3 (2016).Article 

    Google Scholar 
    Krinke, L. et al. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Sci. Res. 15, 239–248. https://doi.org/10.1079/SSR2005214 (2005).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683. https://doi.org/10.1007/s10530-009-9580-7 (2010).Article 

    Google Scholar 
    Kundel, D., van Kleunen, M. & Dawson, W. Invasion by Solidago species has limited impacts on soil seed bank communities. Basic Appl. Ecol. 15, 573–580. https://doi.org/10.1016/j.baae.2014.08.009 (2014).Article 

    Google Scholar 
    Dong, H., Liu, T., Liu, Z. & Song, Z. Fate of the soil seed bank of giant ragweed and its significance in preventing and controlling its invasion in grasslands. Ecol. Evol. https://doi.org/10.1002/ece3.6238 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66(1), 40–53. https://doi.org/10.1093/biosci/biv165 (2015).Article 

    Google Scholar 
    Gioria, M. & Osborne, B. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 501. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holmes, P. M. & Cowling, R. M. Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol. 133, 107–122. https://doi.org/10.1023/A:1009734026612 (1997).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Tokarska-Guzik, B. et al. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych (Generalna Dyrekcja Ochrony Środowiska, 2012).
    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).
    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Hager, H. A., Rupert, R., Quinn, L. D. & Newman, J. A. Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol. Invasions 17, 1833–1847. https://doi.org/10.1007/s10530-014-0839-2 (2015).Article 

    Google Scholar 
    Robertson, S. G. & Hickman, K. Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecol. 213(9), 1461–1475. https://doi.org/10.1007/s11258-012-0104-7 (2012).Article 

    Google Scholar 
    Fumanal, B., Gaudot, I. & Bretagnolle, F. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L.. Seed Sci. Res. 18(2), 101–114 (2008).Article 

    Google Scholar 
    Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions 22, 2431–2445. https://doi.org/10.1007/s10530-020-02267-9 (2020).Article 

    Google Scholar 
    Jalas, J. Problems concerning Rudbeckia laciniata (Asteraceae) in Europe Fragmenta Floristica et Geobotanica. Supplementum 2(1), 289–297 (1993).
    Google Scholar 
    Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland (Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 2005).
    Google Scholar 
    EPPO. Rudbeckia laciniata (Asteraceae). EPPO Reporting Service—Invsive Plants. European and Mediterranean Plant Protection Organization. https://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm (2009).Zelnik, I. The presence of invasive alien plant species in different habitats: Case study from Slovenia. Acta Biol. Sloven. 55(2), 25–38 (2012).
    Google Scholar 
    Vojniković, S. Tall cone flower (Rudbeckia laciniata L.)—new invasive species in the flora of Bosnia and Herzegovina. Herbologia 15(1), 39–47. https://doi.org/10.5644/Herb.15.1.05 (2015).Article 

    Google Scholar 
    Auld, B., Morita, H., Nishida, T., Ito, M. & Michael, P. Shared exotica: Plant invasions of Japan and south eastern Australia. Cunninghamia 8, 147–152 (2003).
    Google Scholar 
    Akasaka, M., Osawa, T. & Ikegami, M. The role of roads and urban area in occurrence of an ornamental invasive weed: A case of Rudbeckia laciniata L.. Urban Ecosyst. 18, 1021–1030 (2015).Article 

    Google Scholar 
    GBIF. Global Biodiversity Information Facility. Checklist dataset. https://www.gbif.org/species/3114229 (2021).Francírková, T. Contribution of the invasive ecology of Rudbeckia laciniata in the Czech Republic. In Plant Invasions: Species Ecology and Ecosystem Management (eds Brundu, G. et al.) 89–98 (Backhuys Publishers, 2001).
    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390. https://doi.org/10.1371/journal.pone.0123634 (2010).CAS 
    Article 

    Google Scholar 
    Kościńska-Pająk, M., Musiał, K. & Janiszewska, K. Embryological processes in ovules of Rudbeckia laciniata L. (Asteraceae) from Poland. Mod. Phytomorphol. 5, 19–23 (2014).
    Google Scholar 
    Urbatsch, L. E. & Cox, P. B. Rudbeckia laciniata in Flora of North America Editorial Committee. http://floranorthamerica.org/Rudbeckia_laciniata (2021).Jankowska-Błaszczuk, M. Zróżnicowanie banków nasion w naturalnych i antropogenicznie przekształconych zbiorowiskach leśnych. Monograph. Bot. 88, 25 (2000).
    Google Scholar 
    Osawa, T. & Akasaka, M. Management of the invasive perennial herb Rudbeckia laciniata L. (Compositae) using rhizome removal. Jpn. J. Conserv. Ecol. 14(1), 37–43. https://doi.org/10.18960/hozen.14.1_37 (2009).Article 

    Google Scholar 
    Gleason, H. A. & Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (The New York Botanical Garden, 1991).Book 

    Google Scholar 
    Gioria, M. & Osborne, B. The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities. J. Plant Ecol. 2(3), 153–167. https://doi.org/10.1093/jpe/rtp013 (2009).Article 

    Google Scholar 
    Kleyer, et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 96, 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).Article 

    Google Scholar 
    Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372. https://doi.org/10.1007/s10530-013-0574-0 (2014).Article 

    Google Scholar 
    Wróbel, M. Origin and spatial distribution of roadside vegetation within the forest and agricultural areas in Szczecin Lowland (West Poland). Pol. J. Ecol. 54(1), 137–143 (2001).
    Google Scholar 
    Dajdok, Z. & Pawlaczyk, P. Inwazyjne Gatunki Roślin Mokradłowych Polski (Wydawnictwo Klubu Przyrodnikow, 2009).
    Google Scholar 
    de Waal, L. C., Child, L. E., Wade, M. & Brock, J. H. Ecology and Management of Invasive Riverside Plants (Wiley, 1994).
    Google Scholar 
    Pyśek, P. & Prach, K. Plant invasions and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 20, 413–420 (1993).Article 

    Google Scholar 
    Kucharczyk, M. & Krawczyk, R. Kenophytes as river corridor plants in the vistula and the san river valleys. Teka Komisji Ochrony Kształtowania Środowiska Przyrodniczego 1, 110–115 (2004).
    Google Scholar 
    Walck, J. L. et al. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15(3), 189–196. https://doi.org/10.1079/SSR2005209 (2005).ADS 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080. https://doi.org/10.1007/s10530-016-1349-1 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11(1), 4–16. https://doi.org/10.1093/jpe/rtw105 (2018).Article 

    Google Scholar 
    Perglová, I. et al. Differences in germination and seedling establishment of alien and native Impatiens species. Preslia 81, 357–375 (2009).
    Google Scholar 
    Haines, D. F., Larson, D. L. & Larson, J. L. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains. Invas. Plant Sci. Manage. 6, 416–432. https://doi.org/10.1614/IPSM-D-12-00076.1 (2013).Article 

    Google Scholar 
    Gioria, M., Jarosík, V. & Pyšek, P. Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. Perspect. Plant Ecol. Evol. Syst. 16, 132–142. https://doi.org/10.1016/j.ppees.2014.03.003 (2014).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Assessing the impact of plant invasions on soli seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556. https://doi.org/10.1111/j.1654-1103.2009.01054.x (2009).Article 

    Google Scholar 
    Tokarska-Guzik, B., Bzdega, K., Knapik, D. & Jenczała, G. Changes in plant species richeness in some riparian plant communities as a result of their colonisation by taxa of Reynoutria (Fallopia). Biodivers. Res. Conserv. 1–2, 122–130 (2006).
    Google Scholar 
    Dölle, M. & Wolfgang, S. The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Appl. Veg. Sci. 12, 415–428 (2009).Article 

    Google Scholar 
    Thompson, K. & Grime, J. P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921. https://doi.org/10.2307/2259220 (1979).Article 

    Google Scholar 
    Czarnecka, J. Microspatial structure of the seed bank of xerothermic grassland—intracommunity differentiation. Acta Soc. Bot. Pol. 73(2), 155–164. https://doi.org/10.5586/asbp.2004.022 (2004).Article 

    Google Scholar 
    Kalamees, R., Püssa, K., Zobel, K. & Zobel, M. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl. Veg. Sci. 15, 208–218 (2012).Article 

    Google Scholar 
    Skowronek, S. et al. Regeneration potential of floodplain forests under the influence of nonnative tree species: Soil seed bank analysis in Northern Italy. Restor. Ecol. 22(1), 22–30. https://doi.org/10.1111/rec.12027 (2014).Article 

    Google Scholar  More