More stories

  • in

    Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea

    Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).Unwin, D. M. The pterosaurs from deep time (Pi Press, 2005).Witton, M. P. Pterosaurs: Natural History (Anatomy (Princeton University Press, 2013).Book 

    Google Scholar 
    Williams, C. J. et al. Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications. iScience 24, 102338 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nat. Commun. 11, 5293 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryang, W. H. Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geo. Soc. Korea 49, 31–45 (2013).CAS 

    Google Scholar 
    Kim, B. G. & Park, B. G. Geological report of the Dongbok sheet (1:50,000) (Geological Survey of Korea, Seoul, 1966).Lee, H., Sim, M. S. & Choi, T. Stratigraphic evolution of the northern part of the Cretaceous Neungju basin South Korea. Geosci. J. 23, 849–865 (2019).CAS 
    Article 

    Google Scholar 
    Paik, I. S., Huh, M., So, Y. H., Lee, J. E. & Kim, H. J. Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci. 30, 93–107 (2007).Article 

    Google Scholar 
    Cohen, K. M., Finney, S. M., Gibbard, P. L. & Fan, J.-X. The ICS international Chronostratigraphic chart. Episodes 36, 199–204 (2013).Article 

    Google Scholar 
    Calvo, J. O. & Lockley, M. G. The first pterosaur tracks from Gondwana. Cretac. Res. 22, 585–590 (2001).Article 

    Google Scholar 
    Kukihara, R. & Lockley, M. G. Fossil footprints from the dakota group (Cretaceous) john martin reservoir, bent county, Colorado: New insights into the paleoecology of the Dinosaur freeway. Cretac. Res. 33, 165–182 (2012).Article 

    Google Scholar 
    Lockley, M. & Schumacher, B. A new pterosaur swim tracks locality from the Cretaceous Dakota Group of eastern Colorado: implications for pterosaur swim track behavior. Fossil Footprints of Western North America. Bull. NM Mus. Nat. Hist. Sci, 365–371 (2014).Smith, R. E., Martill, D. M., Unwin, D. M. & Steel, L. Edentulous pterosaurs from the Cambridge Greensand (Cretaceous) of eastern England with a review of Ornithostoma Seeley, 1871. Proc. Geol. Assoc. (2020).Ibrahim, N., Unwin, D. M., Martill, D. M., Baidder, L. & Zouhri, S. A new pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco. PLoS ONE 5, e10875 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martill, D. M. & Ibrahim, N. An unusual modification of the jaws in cf. Alanqa, a mid-Cretaceous azhdarchid pterosaur from the Kem Kem beds of Morocco. Cretac. Res. 53, 59–67 (2015).Article 

    Google Scholar 
    Jacobs, M. L., Martill, D. M., Ibrahim, N. & Longrich, N. A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa. Cretac. Res. 95, 77–88 (2019).Article 

    Google Scholar 
    Jacobs, M. L. et al. New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity. Cretac. Res. 110, 104413 (2020).Article 

    Google Scholar 
    McPhee, J. et al. A new ? Chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of southern Morocco. Cretac. Res. 110, 104410 (2020).Article 

    Google Scholar 
    Martill, D. M. et al. A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco. Cretac. Res. 112, 104424 (2020).Article 

    Google Scholar 
    Martill, D. M., Unwin, D. M., Ibrahim, N. & Longrich, N. A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco. Cretac. Res. 84, 1–12 (2018).Article 

    Google Scholar 
    Smith, R. E. et al. Small, immature pterosaurs from the Cretaceous of Africa: implications for taphonomic bias and palaeocommunity structure in flying reptiles. Cretac. Res. 130, 105061 (2022).Article 

    Google Scholar 
    Smith, R. E., Martill, D. M., Kao, A., Zouhri, S. & Longrich, N. A long-billed, possible probe-feeding pterosaur (Pterodactyloidea: ?Azhdarchoidea) from the mid-Cretaceous of Morocco North Africa. Cretac. Res. 118, 104643 (2021).Article 

    Google Scholar 
    Kellner, A. W. A. et al. First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity. Sci. Rep. 9, 17875 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgin, R. A. & Frey, E. A new azhdarchoid pterosaur from the Cenomanian (Late Cretaceous) of Lebanon. Swiss J. Geosci. 104, 21–33 (2011).Article 

    Google Scholar 
    Averianov, A. O., Kurochkin, E. N., Pervushov, E. M. & Ivanov, A. V. Two bone fragments of ornithocheiroid pterosaurs from the Cenomanian of Volgograd Region, southern Russia. Acta Palaeontol. Pol. 50 (2005).Averianov, A. & Kurochkin, E. A new pterosaurian record from the Cenomanian of the Volga region. Paleontol. J. 44, 695–697 (2010).Article 

    Google Scholar 
    Nessov, L. Flying reptiles from the Jurassic and cretaceous of the USSR and significance of their remains for the reconstruction of paleogeographical conditions. Vestn. Leningr. Gos. Univ. Ser. 7, 28 (1990).
    Google Scholar 
    Bakhurina, N. N. & Unwin, D. M. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. (1995).Averianov, A. O. New records of azhdarchids (Pterosauria, Azhdarchidae) from the Late Cretaceous of Russia, Kazakhstan, and Central Asia. Paleontol. J. 41, 189–197 (2007).Article 

    Google Scholar 
    Averianov, A. Mid-Cretaceous ornithocheirids (Pterosauria, Ornithocheiridae) from Russia and Uzbekistan. Paleontol. J. 41, 79–86 (2007).Article 

    Google Scholar 
    Huh, M., Paik, I. S., Chung, C. H., Hwang, K. G. & Kim, B. S. Theropod tracks from Seoyuri in Hwasun, Jeollanamdo, Korea: occurrence and paleontological significance. J. Geo. Soc. Korea 39, 461–478 (2003).CAS 

    Google Scholar 
    Huh, M. et al. Well-preserved theropod tracks from the Upper Cretaceous of Hwasun County, southwestern South Korea, and their paleobiological implications. Cretac. Res. 27, 123–138 (2006).Article 

    Google Scholar 
    Lockley, M. G., Huh, M. & Kim, B. S. Ornithopodichnus and pes-only sauropod Trackways from the Hwasun tracksite Cretaceous of Korea. Ichnos 19, 93–100 (2012).Article 

    Google Scholar 
    Hwang, K. G., Huh, M. & Paik, I. S. A unique trackway of small theropod from Seoyu-ri, Hwasun-gun Jeollanam province. J. Geo. Soc. Korea 42, 69–78 (2006).CAS 

    Google Scholar 
    Kim, B. S. & Huh, M. Analysis of the acceleration phase of a theropod dinosaur based on a Cretaceous trackway from Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 1–8 (2010).Article 

    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Sci. Rev. 193, 109–145 (2019).Article 

    Google Scholar 
    Rodríguez-de La Rosa, R. A. Pterosaur tracks from the latest Campanian Cerro del Pueblo formation of southeastern Coahuila. Mexico. Geol. Soc. Spec. Publ. 271, 275–282 (2003).Article 

    Google Scholar 
    Lockley, M. G. & Meyer, C. Crocodylomorph trackways from the Jurassic to early cretaceous of North America and Europe: Implications for Ichnotaxonomy. Ichnos 11, 167–178 (2004).Article 

    Google Scholar 
    Ambroggi, R. & De Lapparent, A. Les empreintes de pas fossiles du Maestrichtien d’Agadir. Notes du Service Géologique du Maroc 10, 43–57 (1954).
    Google Scholar 
    Stokes, W. L. Pterodactyl tracks from the Morrison Formation. J. Paleontol. 31, 952–954 (1957).
    Google Scholar 
    Delair, J. Note on Purbeck fossil footprints, with descriptions of two hitherto unknown forms from Dorset. Proceedings of the Dorset Natural History and Archaeological Society. 92–100 (1963).Hwang, K.-G., Huh, M. I. N., Lockley, M. G., Unwin, D. M. & Wright, J. L. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geol. Mag. 139, 421–435 (2002).Article 

    Google Scholar 
    Mazin, J.-M. & Pouech, J. The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58, 39–53 (2020).Article 

    Google Scholar 
    Masrour, M., de Ducla, M., Billon-Bruyat, J.-P. & Mazin, J.-M. Rediscovery of the Tagragra tracksite (Maastrichtian, Agadir, Morocco): Agadirichnus elegans Ambroggi and Lapparent 1954 is Pterosaurian Ichnotaxon. Ichnos 25, 285–294 (2018).Article 

    Google Scholar 
    Wright, J. L., Unwin, D. M., Lockley, M. G. & Rainforth, E. C. Pterosaur tracks from the Purbeck limestone formation of Dorset England. Proc. Geol. Assoc. 108, 39–48 (1997).Article 

    Google Scholar 
    Lockley, M. G. et al. The fossil trackway Pteraichnusis pterosaurian, not crocodilian: Implications for the global distribution of pterosaur tracks. Ichnos 4, 7–20 (1995).Article 

    Google Scholar 
    Billon-Bruyat, J.-P. & Mazin, J.-M. The systematic problem of tetrapod ichnotaxa: the case study of Pteraichnus Stokes, 1957 (Pterosauria, Pterodactyloidae). Geol. Soc. Spec. Publ. 217, 315–324 (2003).Article 

    Google Scholar 
    Pascual Arribas, C. & Sanz Pérez, E. Huellas de Pterosaurios en el grupo Oncala (Soria, España). Pteraichnus palaciei-saenzi, nov. icnosp. Estudios Geol. 56, 73–100 (2000).
    Google Scholar 
    Calvo, M. M., Vidarte, C. F., Fuentes, F. M. & Fuentes, M. M. Huellas de Pterosaurios en la Sierra de Oncala (Soria, España). Nuevas icnoespecies: pteraichnus vetustior, Pteraichnus parvus. Pteraichnus manueli. Celtiberia 54, 471–490 (2004).
    Google Scholar 
    Fuentes Vidarte, C., Meijide Calvo, M., Meijide Fuentes, F. & Meijide Fuentes, M. Pteraichnus longipodus nov. icnosp. en la Sierra de Oncala (Soria, España). Studia Geologica Salmanticensia, 103–114 (2004).Peng, B.-X., Du, Y.-S., Li, D.-Q. & Bai, Z.-C. The first discovery of the early Cretaceous Pterosaur track and its significance in Yanguoxia, Yongjing County, Gansu Province. Earth Sci.-J. China Univ. Geosci. 29, 21–24 (2004).
    Google Scholar 
    Lee, Y.-N., Lee, H.-J., Lü, J. & Kobayashi, Y. New pterosaur tracks from the Hasandong formation (Lower Cretaceous) of Hadong County South Korea. Cretac. Res. 29, 345–353 (2008).Article 

    Google Scholar 
    Lee, Y.-N., Azuma, Y., Lee, H.-J., Shibata, M. & Lü, J. The first pterosaur trackways from Japan. Cretac. Res. 31, 263–273 (2010).Article 

    Google Scholar 
    Chen, R. et al. Pterosaur tracks from the early late cretaceous of Dongyang City, Zhejiang Province China. Geol. Bull. China. 32, 693–698 (2013).CAS 

    Google Scholar 
    Li, Y., Wang, X. & Jiang, S. A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker. PeerJ 9, e11361 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ha, S. et al. Diminutive pterosaur tracks and trackways (Pteraichnus gracilis ichnosp. Nov.) from the lower Cretaceous Jinju formation, Gyeongsang basin. Korea. Cretac. Res. 131, 105080 (2021).Article 

    Google Scholar 
    Sánchez-Hernández, B., Przewieslik, A. G. & Benton, M. J. A reassessment of the Pteraichnus ichnospecies from the early Cretaceous of Soria Province Spain. J. Vertebr. Paleontol. 29, 487–497 (2009).Article 

    Google Scholar 
    Zhou, X. et al. A new darwinopteran pterosaur reveals arborealism and an opposed thumb. Curr. Biol. 31, 2429-2436.e2427 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lü, J. et al. Dragons of the Skies (recent advances on the study of pterosaurs from China) (Zhejiang Science and Technology Press, 2013).
    Google Scholar 
    Beccari, V. et al. Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLoS ONE 16, e0254789 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Acta Geologica Sinica-English Edition 84, 241–246 (2010).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: A reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (2010).Article 

    Google Scholar 
    Wang, X. & Lü, J. Discovery of a pterodactylid pterosaur from the Yixian Formation of western Liaoning China. Chin. Sci. Bull. 46, A3–A8 (2001).Article 

    Google Scholar 
    Frey, E. et al. A new specimen of nyctosaurid pterosaur, cf. Muzquizopteryx sp. from the Late Cretaceous of northeast Mexico. Revista mexicana de ciencias geológicas 29, 131–139 (2012).
    Google Scholar 
    Wu, W.-H., Zhou, C.-F. & Andres, B. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications. PLoS ONE 12, e0185486 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. et al. The toothless pterosaurs from China. Acta Geol. Sin. 90, 2513–2525 (2016).
    Google Scholar 
    Zhang, X., Jiang, S., Cheng, X. & Wang, X. New Material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China. An. Acad. Bras. Cienc. 91 (2019).Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: A review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, H. et al. New anatomical information on Dsungaripterus weii Young, 1964 with focus on the palatal region. PeerJ 8, e8741 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D. et al. A manus dominated pterosaur track assemblage from Gansu, China: Implications for behavior. Sci. Bull. 60, 264–272 (2015).Article 

    Google Scholar 
    Masrour, M., Pascual-Arribas, C., de Ducla, M., Hernández-Medrano, N. & Pérez-Lorente, F. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only). J. African Earth Sci. 134, 766–775 (2017).Article 

    Google Scholar 
    Bramwell, C. D. & Whitfield, G. R. Biomechanics of Pteranodon. Phil. Trans. R. Soc. Lond. B. 267, 503–581 (1974).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: a reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (1997).Article 

    Google Scholar 
    Mazin, J.-M., Billon-Bruyat, J.-P., Hantzpergue, P. & Lafaurie, G. Ichnological evidence for quadrupedal locomotion in pterodactyloid pterosaurs: Trackways from the Late Jurassic of Crayssac (southwestern France). Geol. Soc. Spec. Publ. 217, 283–296 (2003).Article 

    Google Scholar 
    Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    Lockley, M. G. & Wright, J. L. Pterosaur swim tracks and other ichnological evidnce of behaviour and ecology. Geol. Soc. Spec. Publ. 217, 297–313 (2003).Article 

    Google Scholar 
    Lockley, M., Mitchell, L. & Odier, G. P. Small Theropod track assemblages from middle Jurassic Eolianites of eastern Utah: Paleoecological insights from dune Ichnofacies in a transgressive sequence. Ichnos 14, 131–142 (2007).Article 

    Google Scholar 
    Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y. & Tomsich, C. S. A pterosaur manus track from Denali National park, Alaska Range, Alaska United States. Palaios 24, 466–472 (2009).Article 

    Google Scholar 
    Bell, P. R., Fanti, F. & Sissons, R. A possible pterosaur manus track from the late Cretaceous of Alberta. Lethaia 46, 274–279 (2013).Article 

    Google Scholar 
    Stinnesbeck, W. et al. Theropod, avian, pterosaur, and arthropod tracks from the uppermost Cretaceous Las Encinas Formation, Coahuila, northeastern Mexico, and their significance for the end-Cretaceous mass extinction. Geol. Soc. Am. Bull. 129, 331–348 (2017).Article 

    Google Scholar 
    Xing, L. et al. Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 303–313 (2017).Article 

    Google Scholar 
    Lockley, M. G., Gierlinski, G. D., Adach, L., Schumacher, B. & Cart, K. Newly discovered tetrapod ichnotaxa from the Upper Blackhawk Formation Utah. Bull. N. M. M. Nat. Hist. Sci. 79, 469–480 (2018).
    Google Scholar 
    Lockley, M. G. & Gillette, D. Pterosaur and bird tracks from a new Late Cretaceous locality in Utah. Verteb. Paleontol. Utah 99, 355–359 (1999).
    Google Scholar 
    Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a Ctenochasmatid embryo from the Early Cretaceous of Argentina. Geol. Soc. Spec. Publ. 455, 83–94 (2018).Article 

    Google Scholar 
    Mickelson, D. L., Lockley, M. G., Bishop, J. & Kirkland, J. A New Pterosaur Tracksite from the Jurassic Summerville Formation, near Ferron Utah. Ichnos 11, 125–142 (2004).Article 

    Google Scholar  More

  • in

    Social microbiota and social gland gene expression of worker honey bees by age and climate

    Evans, J. D. & Spivak, M. Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010).PubMed 
    Article 

    Google Scholar 
    Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).PubMed 
    Article 

    Google Scholar 
    Simone, M., Evans, J. D. & Spivak, M. Resin collection and social immunity in honey bees. Evolution 63, 3016–3022 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dalenberg, H., Maes, P., Mott, B., Anderson, K. E. & Spivak, M. Propolis envelope promotes beneficial bacteria in the honey bee (Apis mellifera) mouthpart microbiome. Insects 11, 1–12 (2020).Article 

    Google Scholar 
    Poulsen, M., Bot, A. N. M., Nielsen, M. G. & Boomsma, J. J. Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav. Ecol. Sociobiol. 52, 151–157 (2002).Article 

    Google Scholar 
    Rosengaus, R. B., Traniello, J. F. A., Lefebvre, M. L. & Maxmen, A. B. Fungistatic activity of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insect. Soc. 51, 259–264 (2004).Article 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maes, P. W., Floyd, A. S., Mott, B. M. & Anderson, K. E. Overwintering honey bee colonies: effect of worker age and climate on the hindgut microbiota. Insects 12, 1–16 (2021).Article 

    Google Scholar 
    Brown, B. P. & Wernegreen, J. J. Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol. 16, 140 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).PubMed 
    Article 

    Google Scholar 
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, 1–22 (2017).Article 
    CAS 

    Google Scholar 
    Anderson, K. E. & Ricigliano, V. A. Honey bee gut dysbiosis: a novel context of disease ecology. Curr. Opin. Insect Sci. 22, 125–132 (2017).PubMed 
    Article 

    Google Scholar 
    Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. bioRxiv https://doi.org/10.1101/2020.01.21.914325 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corby-Harris, V. et al. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov.. Appl. Environ. Microbiol. 80, 7460–7472 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floyd, A. S. et al. Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): towards a microbiome understanding of disease susceptibility. Insects 11, 1–16 (2020).MathSciNet 
    Article 

    Google Scholar 
    Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sabree, Z. L., Hansen, A. K. & Moran, N. A. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS ONE 7, e41250 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rokop, Z. P., Horton, M. A. & Newton, I. L. G. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81, 7261–7270 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox-foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, K. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 114, 4775–4780 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, K. E. et al. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. https://doi.org/10.1111/mec.12966 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 30, 235–244 (2015).Article 

    Google Scholar 
    Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE 9, e95056 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Münch, D., Kreibich, C. D. & Amdam, G. V. Aging and its modulation in a long-lived worker caste of the honey bee. J. Exp. Biol. 216, 1638–1649 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amdam, G. V. Social context, stress, and plasticity of aging. Aging Cell 10, 18–27 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. S., Kelbert, L. & Hulbert, A. J. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp. Gerontol. 42, 601–609 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, G. E. Hormonal and genetic control of honeybee division of labour. Behav. Physiol. Bees 14–27 (1991).Anderson, K. E. et al. The queen gut refines with age: longevity phenotypes in a social insect model. bioRxiv https://doi.org/10.1101/297507 (2018).Article 

    Google Scholar 
    Amdam, G. V., Norberg, K., Hagen, A. & Omholt, S. W. Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. 100, 1799–1802 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, B., Shipley, E. & Arnold, K. E. Social immunity in honeybees—density dependence, diet, and body mass trade-offs. Ecol. Evol. 8, 4852–4859 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette, R. L., Mohamed, A. & Johnson, B. R. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci. Rep. 5, (2015).Ohashi, K., Natori, S. & Kubo, T. Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L.. Eur. J. Biochem. 249, 797–802 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article 

    Google Scholar 
    Vojvodic, S. et al. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecol. Evol. 5, 4795–4807 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohashi, K. et al. Functional flexibility of the honey bee hypopharyngeal gland in a dequeened colony. Zool. Sci. 17, 1089–1094 (2000).CAS 
    Article 

    Google Scholar 
    Harwood, G., Salmela, H., Freitak, D. & Amdam, G. Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. J. Exp. Biol. 224 (2021).Santos, K. S. et al. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect. Biochem. Mol. Biol. 35, 85–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).Article 
    CAS 

    Google Scholar 
    Mattila, H. R. & Otis, G. W. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 32, 496–505 (2007).Article 

    Google Scholar 
    Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie 30, 299–310 (1999).Article 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bees overwintering in a southern climate: Longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Fukuda, H. S. K. Seasonal change of the honey bee worker longevity in Sapporo, North Japan with notes on some factors affecting life span. Ecol. Soc. Jpn. 16, 206–212 (1966).
    Google Scholar 
    Mattila, H. R., Harris, J. L. & Otis, G. W. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insect. Soc. 48, 88–93 (2001).Article 

    Google Scholar 
    Feliciano-Cardona, S. et al. Honey bees in the tropics show winter bee-like longevity in response to seasonal dearth and brood reduction. Front. Ecol. Evol. 8, 1–8 (2020).Article 

    Google Scholar 
    Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect. Sci. 10, 185–193 (2015).PubMed 
    Article 

    Google Scholar 
    Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1 (2012).CAS 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, J. D. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invertebr. Pathol. 93, 135–139 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bourgeois, A. L., Rinderer, T. E., Beaman, L. D. & Danka, R. G. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J. Invertebr. Pathol. 103, 53–58 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1986).Gloor, G. B. & Reid, G. Compositional analysis: a valid approach to analyze microbiome high throughput sequencing data. Can. J. Microbiol. 703, 0821 (2016).
    Google Scholar 
    Comas, M. CoDaPack 2.0: a stand-alone, multi-platform compositional software. Options 1–10 (2011).Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    Yek, S. H., Nash, D. R., Jensen, A. B. & Boomsma, J. J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. Biol. Sci. 279, 4215–4222 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 15, 645–656 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steinmann, N., Corona, M., Neumann, P. & Dainat, B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Seehuus, S.-C.C., Norberg, K., Gimsa, U., Krekling, T. & Amdam, G. V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. R., Yang, Y. C., Shi, L. S. & Peng, C. C. Antioxidant properties of royal jelly associated with larval age and time of harvest. J. Agric. Food Chem. 56, 11447–11452 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li-E, M., Jia, L., Yan, J., Xiao-Wen, L. & Xin, L. Isolation, purification and characterization of superoxide dismutase from royal jelly of the Italian worker bee, Apis mellifera. Acta Entomol. Sin. 47, 171–177 (2004).
    Google Scholar 
    Bottacini, F. et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. 7, 1–14 (2012).Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157 (2014).Casteels, P. et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381–386 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Casteels, P., Ampe, C., Jacobs, F. & Tempst, P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268, 7044–7054 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barke, J. et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8, 109 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lyapunov, Y. E., Kuzyaev, R. Z., Khismatullin, R. G. & Bezgodova, O. A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 373–379 (2008).Paiva, C. N. & Bozza, M. T. Are reactive oxygen species always detrimental to pathogens?. Antioxid. Redox Signal. 20, 1000–1034 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) Infected with Serratia marcescens strain sicaria. PLoS ONE 11, 1–26 (2016).Article 
    CAS 

    Google Scholar 
    Bae, Y. S., Choi, M. K. & Lee, W. J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 31, 278–287 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 80(310), 847–850 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Crailsheim, K., Hrassnigg, N., Gmeinbauer, R., Szolderits, M. J. & Schneider, L. H. W. Pollen utilization in non-breeding honeybees in Winter. J. Insect. Phys. 39, 369–373 (1993).Article 

    Google Scholar 
    Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. 15, 687–701 (2006).Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect. Sci. 10, 1–7 (2015).PubMed 
    Article 

    Google Scholar 
    Corona, M., Hughes, K. A., Weaver, D. B. & Robinson, G. E. Gene expression patterns associated with queen honey bee longevity. Mech. Age. Dev. 126, 1230–1238 (2005).CAS 
    Article 

    Google Scholar 
    Santos, D. E., Souza, A. D. O., Tibério, G. J., Alberici, L. C. & Hartfelder, K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. 20200173, (2020). More

  • in

    Global hydro-environmental lake characteristics at high spatial resolution

    Shiklomanov, I. A. & Rodda, J. C. World water resources at the beginning of the twenty-first century. (Cambridge University Press, 2003).Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793, 3–39 (2017).Article 

    Google Scholar 
    Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2021).PubMed 
    Article 

    Google Scholar 
    Janssen, A. B. G. et al. Shifting states, shifting services: linking regime shifts to changes in ecosystem services of shallow lakes. Freshw. Biol. 66, 1–12 (2021).Article 

    Google Scholar 
    Knoll, L. B. et al. Consequences of lake and river ice loss on cultural ecosystem services. Limnol. Oceanogr. Lett. 4, 119–131 (2019).Article 

    Google Scholar 
    Sterner, R. W. et al. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 41, 101046 (2020).Article 

    Google Scholar 
    Reynaud, A. & Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecol. Econ. 137, 184–194 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Downing, J. A. Global limnology: up-scaling aquatic services and processes to planet Earth. SIL Proceedings, 1922–2010 30, 1149–1166 (2009).Article 

    Google Scholar 
    Tranvik, L. J., Cole, J. J. & Prairie, Y. T. The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 3, 41–48 (2018).Article 

    Google Scholar 
    Balsamo, G. et al. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A Dyn. Meteorol. Oceanogr. 64, 15829 (2012).Article 

    Google Scholar 
    DelSontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).CAS 
    Article 

    Google Scholar 
    Beaulieu, J. J. et al. Methane and carbon dioxide emissions from reservoirs: controls and upscaling. J. Geophys. Res. Biogeosciences 125, e2019JG005474 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Slater, J. A. et al. The SRTM data “finishing” process and products. Photogramm. Eng. Remote Sens. 72, 237–247 (2006).Article 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).ADS 
    Article 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).ADS 
    Article 

    Google Scholar 
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Downing, J. A., Polasky, S., Olmstead, S. M. & Newbold, S. C. Protecting local water quality has global benefits. Nat. Commun. 12, 1–6 (2021).Article 
    CAS 

    Google Scholar 
    Hill, R. A., Weber, M. H., Debbout, R. M., Leibowitz, S. G. & Olsen, A. R. The Lake-Catchment (LakeCat) Dataset: characterizing landscape features for lake basins within the conterminous USA. Freshw. Sci. 37, 208–221 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soranno, P. A. et al. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. Gigascience 6, 1–22 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toptunova, O., Choulga, M. & Kurzeneva, E. Status and progress in global lake database developments. Adv. Sci. Res. 16, 57–61 (2019).Article 

    Google Scholar 
    Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R. & Luff, B. T. The global lake area, climate, and population dataset. Sci. Data 7, 174 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kling, G. W., Kipphut, G. W., Miller, M. M. & O’Brien, W. J. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw. Biol. 43, 477–497 (2000).Article 

    Google Scholar 
    Fergus, C. E. et al. The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere 8, e01911 (2017).Article 

    Google Scholar 
    Lehner, B., Messager, ML., Korver, MC. & Linke, S. LakeATLAS Version 1.0, figshare, https://doi.org/10.6084/m9.figshare.19312001 (2022).Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. data 6, 283 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fergus, C. E. et al. National framework for ranking lakes by potential for anthropogenic hydro-alteration. Ecol. Indic. 122, 107241 (2021).Article 

    Google Scholar 
    Bracht-Flyr, B., Istanbulluoglu, E. & Fritz, S. A hydro-climatological lake classification model and its evaluation using global data. J. Hydrol. 486, 376–383 (2013).ADS 
    Article 

    Google Scholar 
    Soranno, P. A. et al. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. Bioscience 60, 440–454 (2010).Article 

    Google Scholar 
    McCullough, I. M., Skaff, N. K., Soranno, P. A. & Cheruvelil, K. S. No lake left behind: how well do U.S. protected areas meet lake conservation targets? Limnol. Oceanogr. Lett. 4, 183–192 (2019).Article 

    Google Scholar 
    Stanley, E. H. et al. Biases in lake water quality sampling and implications for macroscale research. Limnol. Oceanogr. 64, 1572–1585 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Hanson, P. C., Weathers, K. C. & Kratz, T. K. Networked lake science: how the Global Lake Ecological Observatory Network (GLEON) works to understand, predict, and communicate lake ecosystem response to global change. Inl. Waters 6, 543–554 (2016).Article 

    Google Scholar 
    Lottig, N. R. & Carpenter, S. R. Interpolating and forecasting lake characteristics using long-term monitoring data. Limnol. Oceanogr. 57, 1113–1125 (2012).ADS 
    Article 

    Google Scholar 
    Filazzola, A. et al. A database of chlorophyll and water chemistry in freshwater lakes. Sci. Data 2020 71 7, 1–10 (2020).
    Google Scholar 
    Lehner, B. & Messager, M. L. HydroLAKES – Technical Documentation Version 1.0. https://data.hydrosheds.org/file/technical-documentation/HydroLAKES_TechDoc_v10.pdf (2016).Natural Resources Canada. CanVec Hydrography: Waterbody Features. Version 12.0. https://ftp.maps.canada.ca/pub/nrcan_rncan/vector/canvec (2013).Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. AGU 89, 93–94 (2008).ADS 
    Article 

    Google Scholar 
    Farr, T. G. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos, Trans. AGU 81, 583–585 (2000).ADS 
    Article 

    Google Scholar 
    Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model Dev. 14, 1037–1079 (2021).ADS 
    Article 

    Google Scholar 
    Beck, H. E. et al. Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci. 21, 2881–2903 (2017).ADS 
    Article 

    Google Scholar 
    Alcamo, J. et al. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 48, 317–338 (2003).Article 

    Google Scholar 
    Döll, P., Kaspar, F. & Lehner, B. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105–134 (2003).ADS 
    Article 

    Google Scholar 
    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).ADS 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 13, 2753–2776 (2021).ADS 
    Article 

    Google Scholar 
    Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: Collection 3: epoch 2019: Globe, Zenodo, https://doi.org/10.5281/zenodo.3939050 (2020).ESRI. ArcGIS Desktop: Release 10.4.1 (Environmental Systems Research Institute, Redlands, CA, USA, 2016).Soranno, P. A., Cheruvelil, K. S., Wagner, T., Webster, K. E. & Bremigan, M. T. Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS One 10, e0135454 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Su, Z. H., Lin, C., Ma, R. H., Luo, J. H. & Liang, Q. O. Effect of land use change on lake water quality in different buffer zones. Appl. Ecol. Environ. Res. 13, 639–653 (2015).
    Google Scholar 
    Brakebill, J. W., Schwarz, G. E. & Wieczorek, M. E. An enhanced hydrologic stream network based on the NHDPlus medium resolution dataset. Scientific Investigations Report https://doi.org/10.3133/sir20195127 (2020).Carroll, M., Townshend, J., DiMiceli, C., Noojipady, P. & Sohlberg, R. Global raster water mask at 250 meter spatial resolution, Collection 5: MOD44W MODIS Water Mask. College Park, Maryland: University of Maryland (2009).Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. & Sohlberg, R. A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2, 291–308 (2009).ADS 
    Article 

    Google Scholar 
    European Environment Agency (EEA). European Catchments and Rivers Network System (ECRINS), https://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network (2012).Ouellet Dallaire, C., Lehner, B., Sayre, R. & Thieme, M. A multidisciplinary framework to derive global river reach classifications at high spatial resolution. Environ. Res. Lett. 14, 024003 (2019).ADS 
    Article 

    Google Scholar 
    Global Runoff Data Centre (GRDC). River discharge data. Federal Institute of Hydrology, 56068 Koblenz, Germany, https://www.bafg.de/GRDC (2014).Openshaw, S. The modifiable areal unit problem. In Quantitative Geography: A British View (eds. Wrigley, N. & Bennett, R.) 60–69 (Routledge and Kegan Paul, Andover, 1981).United States Census Bureau. 2010 Census. ftp://ftp2.census.gov/geo/tiger (2010).Center for International Earth Science Information Network (CIESIN) & NASA Socioeconomic Data and Applications Center (SEDAC). Gridded Population of the World, Version 4 (GPWv4): Population Count and Density. https://doi.org/10.7927/H4JW8BX5 (2016).Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, D. J. et al. The Diversity of Life in African Freshwaters: Under Water, Under Threat: an Analysis of the Status and Distribution of Freshwater Species Throughout Mainland Africa. (IUCN, 2011).Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).Article 

    Google Scholar 
    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).ADS 
    Article 

    Google Scholar 
    Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).Article 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).ADS 
    Article 

    Google Scholar 
    Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. J. Global soil water balance geospatial database. CGIAR Consortium for Spatial Information, https://cgiarcsi.community/data/global-high-resolution-soil-water-balance (2010).Hall, D. K., Riggs, G. A. & Salomonson, V. MODIS/Terra snow cover daily L3 global 500m grid, version 5, 2002–2015, https://doi.org/10.5067/MODIS/MOD10A1.006 (2016).Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).Article 

    Google Scholar 
    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles 13, 997–1027 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).ADS 
    Article 

    Google Scholar 
    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, (2008).Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).ADS 
    Article 

    Google Scholar 
    GLIMS & NSIDC. Global land ice measurements from space (GLIMS) glacier database, v1. National Snow and Ice Data Center (NSIDC), https://doi.org/10.7265/N5V98602 (2012).Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).ADS 
    Article 

    Google Scholar 
    UNEP-WCMC & IUCN. The World Database on Protected Areas, http://www.protectedplanet.net (2014).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58, 403–414 (2008).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS One 9, e105992 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).ADS 
    Article 

    Google Scholar 
    Williams, P. W. & Ford, D. C. Global distribution of carbonate rocks. Zeitschrift für Geomorphologie Suppl. 147, 1–2 (2006).
    Google Scholar 
    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 1–13 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Pesaresi, M. & Freire, S. GHS Settlement grid following the REGIO model 2014 in application to GHSL Landsat and CIESIN GPW v4-multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC), https://data.europa.eu/data/datasets/jrc-ghsl-ghs_smod_pop_globe_r2016a (2016).Doll, C. N. H. CIESIN thematic guide to night-time light remote sensing and its applications. CIESIN http://sedac.ciesin.columbia.edu/binaries/web/sedac/thematic-guides/ciesin_nl_tg.pdf (2008).Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 64006 (2018).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    University of Berkeley. Database of global administrative areas (GADM). University of Berkeley, Museum of Vertebrate Zoology and the International Rice Research Institute, http://www.gadm.org (2012).Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. data 5, 180004 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Physiological and transcriptome analyses reveal the response of Ammopiptanthus mongolicus to extreme seasonal temperatures in a cold plateau desert ecosystem

    DEGs under low-temperature stressThe results from the field experiments indicated that the daily mean values of A, Fvʹ/Fmʹ, ETR and Fv/Fm decreased in the LT group, the PSII function was impaired, and the photosynthetic capacity was weakened. Through the specific analysis of the “Photosynthesis” pathway (pathway ID ko00195) in the LT group, it was found that PSII, the cytochrome b6f. complex (Cyt b6f.), PSI and ATPase exhibited differential gene expressions. Figure 9 shows the structural pattern diagram for photosynthesis. The parts marked by white boxes indicate that the structure has DEGs. The gene expressions of CP43, CP47, D1 protein and Cytb559 of PSII changed. The inner peripheral antenna pigment proteins, CP43 and CP47, of PSII bind to chlorophyll. They accept the excitation energy transferred from the surrounding antenna complex and transfer this energy to the reaction centre complex. Changes in CP43 and CP47 affect the absorption and transmission of light energy. In the PSII reaction centre, light energy is converted into chemical energy. P680 absorbs light and is excited to become P680*, and then transfers electrons to pheophytin (Pheo). At the same time, the PSII oxygen-evolving complex obtains electrons from water molecules, the water molecules are split and releases oxygen and protons. As one of the two core proteins that compose the reaction centre complex, the D1 protein combines with various cofactors that are related to the original charge separation and electron transfer. The D1 protein plays an important role in the process of photosynthetic electron transfer. Studies have found that low temperatures can induce allosteric inactivation of the D1 protein, which results in changes in the structure of thylakoid membranes and hinders electron transfer8. As part of the reaction centre, Cytb559 can adjust the photoinhibition sensitivity of PSII through redox changes so that the PSII reaction centre is protected from damage9. The light energy absorption, energy conversion and electron transfer functions of PSII are impaired, which result in significant decreases in Fv/Fm to levels far below the normal value. The results of Xiangchun Song are similar to those presented in this paper: the PS II reaction centre of A. mongolicus seedlings is irreversibly inactivated or the thylakoid membrane is damaged under subzero low temperature stress, which may produce serious photoinhibition. However, Song believes that the peripheral antenna component of the optical system is more affected than the core complex at low temperatures, which was not observed in the corresponding results in this study10.Figure 9Photosynthesis of A. mongolicus under low-temperature stress. The areas outlined by white boxes indicate the differentially expressed genes in these structures.Full size imageThe gene expressions of Cyt b6, PrtD and Cyt f in Cyt b6f. changed. Cyt b6f. changes not only affect the electron transport function of photosynthesis but also affect ATP synthesis. Pheo transfers the received electrons to plastid quinone (PQ). PQ receives electrons and protons to form plastid hydroquinone (PQH2). Then, the electrons of PQH2 are transferred to plastid cyanin (PC) on PSI through Cyt b6f., and hydrogen protons are released into the cavity of the thylakoid to form a transmembrane proton gradient. The transmembrane proton gradient is the driving force for ATP synthesis.The function of PSI is to transfer electrons from PC to ferredoxin for the reduction of NADP+. Recent studies have found that PSI is more sensitive to light and more prone to selective photoinhibition than PS II under low temperature and weak light conditions11,12. The KEGG analysis results indicated that the LHCI complex, PsaF and PsaE subunits of PSI showed differential gene expressions. The main function of the LHCI light-harvesting pigment protein complex is to capture light energy. PsaF is a low-molecular-weight protein that is distributed in the membrane. Some studies have suggested that the N-terminal amino acid sequence of eukaryotic PsaF is involved in the binding of PSI and PC13. PsaE, PsaD and PsaC together form the docking site of ferredoxin on the PSI receptor side14,15. Ferredoxin and ferredoxin-NADP+ reductase in the photosynthetic electron transport chain are also affected, which results in hindrance of NADPH synthesis. The F-type H+/Na+ transport ATPase subunits also show differential gene expressions, which lead to impaired ATP synthesis. Low temperatures affect the ability to absorb light energy, transfer electrons, convert light energy into electric energy, and synthesize NADPH as well as ATP, which ultimately lead to declines in Fv’/Fm’ and ETR and impair the photosynthesis capacity of A. mongolicus.Compared with the light reaction, low temperatures have a greater impact on the dark reaction. Because the dark reaction process is composed of many complex enzymatic reactions, the enzyme activity is very susceptible to temperature. The KEGG results show that 13 related enzymes were differentially expressed in the “carbon sequestration of photosynthesis” (ko00710). The Rubisco enzyme is a key enzyme that determines the direction and efficiency of photosynthetic carbon metabolism in C3 plants and is sensitive to temperature16. The results also show that the expression levels of 10 differentially expressed genes of Rubisco enzymes all declined. In the Calvin cycle, the gene expressions of only transketolase and glyceraldehyde-3-phosphate dehydrogenase are not sensitive to temperature. In addition, the reduction phase of the dark reaction requires the use of NADPH and ATP that are produced by the light reaction. The inhibition of NADPH and ATP synthesis will inevitably affect the normal progression of the Calvin cycle.Chloroplast respiration is an O2-dependent electron transport pathway in chloroplasts. Chloroplast respiration includes the nonphotochemical reduction of PQ by NAD(P) H and the reoxidation of PQ by terminal oxidase, which can consume excess electrons to protect plants from damage due to photooxidation.Figure 10 shows the partial KEGG enrichment metabolic pathway in the LT group. There were three significant enrichment pathways related to carbohydrate metabolism: fructose and mannose metabolism (ko00051), butanoate metabolism (ko00650) and C5-branched dibasic acid metabolism (ko00660). The metabolism of fructose and mannose includes the ascorbic acid biosynthetic pathway. Ascorbic acid (ASA), also known as vitamin C, can be used as a cofactor of violaxanthin de-epoxidase to participate in the lutein cycle and consume excess light energy and protect plants from harm.Figure 10The regulatory mechanism of A. mongolicus under low-temperature stress. The white ovals represent the enriched metabolic pathways. The blue rectangles represent significantly enriched KEGG metabolic pathways. The pathways are followed by the physiological structures and substances or physiological processes in which the expressions of related genes change.Full size imageLow temperatures damage cell membranes first. Increasing the mass fraction of unsaturated fatty acids in the membrane is beneficial to improve the stability and fluidity of the membrane. Some studies have shown that the degree of unsaturation of fatty acids in adult leaves of A. mongolicus that grow naturally in the field is lower in summer and higher in autumn and winter17. The significantly enriched pathways related to unsaturated fatty acid metabolism were alpha-linolenic acid metabolism (ko00592), linoleic acid metabolism (ko00591) and arachidonic acid metabolism (ko00590). Various proteins, such as linoleate 13S-lipoxygenase and cytochrome P450 family 2 subfamily J (CYP2J), which are involved in the metabolism of linoleic acid, showed differences in their gene expressions. Linoleate 13S-lipoxygenase is a common lipoxygenase in plants that can catalyse the production of precursors of several important compounds, including jasmonic acid. CYP2J is a group of P450 haem thiolate proteins, which are mainly distributed on the endoplasmic reticulum and inner mitochondrial membrane and are involved in the synthesis of sterol hormones, including brassinosteroids. Because light systems are distributed on the thylakoid membrane, damage to this membrane will affect the progress of plant photosynthesis.Plant hormone signal transduction (ko04075) plays an important role in plant resistance to stress. Studies have shown that JAs have physiological functions, such as inducing stomatal closure, inhibiting photosynthesis, promoting respiration and promoting leaf senescence18,19. Treating plants with exogenous methyl jasmonate can induce the transcription of the heat shock protein family, increase the synthesis of antioxidants, reduce lipoxygenase activity and enhance the ability of plants to resist cold damage20.Figure 11 shows the regulatory mechanism of A. mongolicus in the HL group. The MapMan analysis results show that the DEGs of the LHCII complex and those for the assembly and maintenance of PSII are significantly changed. LHCII contains chlorophyll and carotenoids, which can capture and transmit light energy. Chlorophyll is an important photosynthetic pigment that captures light energy and drives electrons to the reaction centre. The chlorophyll molecule in the reaction centre is related to photochemical quenching. The entire chlorophyll biosynthesis process (e.g., L-glutamyl-tRNA → chlorophyll a → chlorophyll b) involves 15 enzymes. The analysis found that 4/5 of the enzymes’ expression genes were changed. Carotenoids include carotene and lutein, and their synthesis is affected by high temperatures. Lutein participates in the lutein cycle, which can dissipate excess light energy and prevent membrane lipids from being peroxidized and thus maintain the stability of the thylakoid membrane structure and protect A. mongolicus. from high temperature stress and strong light stress.Figure 11The regulatory mechanism of A. mongolicus. under high-temperature stress. The white ovals represent enriched metabolic pathways. The red rectangles represent significantly enriched KEGG metabolic pathways. The pathways are followed by the physiological structures and substances or physiological processes in which the expressions of related genes change.Full size imageThe D1 protein in the PSII reaction centre is rapidly degraded under strong light conditions. To maintain the normal physiological needs of plants, the degraded D1 protein will be replaced by the new D1 protein that is produced by the repair mechanism. The reversible inactivation of the PSII reaction centre can protect the photosynthetic system and avoid destruction. This may be the reason for the significant changes in the DEGs that are involved in the assembly and maintenance of PSII.Rubisco is the main site for high-temperature inhibition of the Calvin cycle16. The KEGG analysis found that there were 7 (4↑, 3↓) DEGs of Rubisco. SBPase catalyses the conversion of sedum heptulose-1,7-diphosphate (SBP) into sedum heptulose-7-phosphate (S7P) in the renewal phase. Under low-temperature stress, only transketolase and glyceraldehyde-3-phosphate dehydrogenase remained unchanged in the Calvin cycle. In addition, NDH-mediated cyclic electron transfer may decreased the photooxidation damage that is caused by high-temperature stress by shunting the excess electrons that were generated by the inhibition of CO2 assimilation to the chloroplast respiratory pathway21.In the HT group, the net photosynthetic rates of the leaves showed two peaks on the diurnal change curves, and there was an obvious phenomenon of midday photosynthesis depression. The daily average A values were greater than those of the CK group. These results show that A. mongolicus has a complete photosynthetic structure protection mechanism and can adapt to high-temperature environments. The pathway of significant enrichment related to carbohydrate metabolism in the HT group was the same as that in the LT group. The enrichment degrees of the fructose and mannose metabolic pathways were higher only in the HT group, and C5-branched dibasic acid metabolism and butanoate metabolism were higher in the LT group.Under high temperature and strong light conditions, the balance between production and removal of reactive oxygen species (ROS) in plant cells was broken, and large amounts of reactive oxygen species accumulated in the cells. Active oxygen can cause lipid peroxidation of the biomembrane, enlarge membrane pores, increase the permeability, and affect the spatial structures of enzymes on the membrane, which thus leads to chloroplast destruction. In severe cases, ROS will cause serious injury or even death to plants22. The gene expressions of FabH and acetyl-CoA carboxylase (ACCase) changed during the synthesis of unsaturated fatty acids in the HT group.There are two types of active oxygen scavenging mechanisms in plants. (1) The enzymatic detoxification system: superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). (2) Nonenzymatic antioxidants: ASA, carotenoids, glutathione, mannitol, and flavonoids23.Secondary metabolites result from long-term adaptation of plants to their environments. They can improve the ability of plants to protect themselves, compete for survival, and coordinate the relationship between plants and the environment. The significant enrichment pathways related to the biosynthesis of secondary metabolites in the HT group consisted of phenylpropane biosynthesis (ko00940), flavonoid biosynthesis (ko00941) and isoflavone biosynthesis (ko00943). The phenylpropanoid biosynthesis pathway is one of the three main secondary metabolic pathways in plants. It starts from phenylalanine and generates different phenylpropane metabolites through multistep reactions, such as flavonoids, isoflavones, anthocyanins and lignin24,25. Anthocyanins can protect plants from light damage by quenching free oxygen radicals and reducing the absorption of light energy. Hughes studied 10 species of evergreen broad-leaved trees and found that red leaves containing anthocyanins always maintained higher Fv/Fm levels than green leaves. Fv’/Fm’ is related to nonphotochemical quenching. This means that trees with red leaves rely more on the light-damage defence function of anthocyanins than on the light-damage defence mediated by lutein26.Riboflavin metabolism (ko00740) and biotin metabolism (ko00780) are two significantly enriched cofactors and vitamin metabolic pathways. Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). As a prosthetic group of flavinases, FAD participates in multiple biochemical processes, such as mitochondrial electron transport, photosynthesis, fatty acid oxidation and folate metabolism, in plants27. Riboflavin can induce antioxidant accumulations in plant cells and can also promote plant growth by affecting the ethylene signalling pathway28. Biotin (e.g., VH or VB7), as an essential cofactor for biotin-dependent carboxylase, plays an important role in the life activities of plants. Common biotin-dependent carboxylase enzymes are pyruvate carboxylase (PC) and ACCase. PC is present in the mitochondria and participates in the replenishment mechanism of the tricarboxylic acid cycle. ACCase plays a pivotal role in the feedback regulation of fatty acid synthesis and is the site of action for the feedback regulation of fatty acid synthesis29.The four pathways related to amino acid metabolism showed differences in the HT group. The enrichment degrees of each pathway were as follows: valine, leucine and isoleucine biosynthesis (ko00290)  > biosynthesis of amino acids (ko01230)  > lysine biosynthesis (ko00300)  > glycine, serine and threonine metabolism (ko00260). The branched chain amino acids, valine, leucine and isoleucine and their derivatives, are beneficial to plant growth and plant responses to stress30. As an essential amino acid, lysine metabolism affects many physiological reactions, such as the tricarboxylic acid cycle, abiotic and biotic stress responses, and starch metabolism31. The glycine, serine and threonine metabolic pathways combined with the GO enrichment results showed that the genes related to glycine catabolism and glycine dehydrogenation/decarboxylase activity changed greatly. It is known that when the activity of mitochondrial glycine decarboxylase increases, both photorespiration and photosynthesis will increase32.In terms of hormones, salicylic acid, cytokinin, and abscisic acid (ABA) can improve plant active oxygen scavenging ability. Salicylic acid can decrease the damage to seedlings due to high temperatures by improving the ability of plants to resist oxidative stress and increasing the contents of osmotic adjustment substances in cells33. Salicylic acid also has the function of delaying the degradation of D1 protein and speeding up the recovery of D1 protein when high temperatures are no longer present34. ABA can improve the heat tolerance of plants by regulating the expressions of heat stress-induced genes at the transcriptional level35.In conclusion, A. mongolicus has weak resistance to low temperatures and good adaptation to high temperatures. At the physiological level, under low-temperature stress, the proportion of Y (NO) increased, the function of PSII was damaged, and photosynthesis was inhibited. A. mongolica maintains normal physiological activities by regulating the circadian rhythm, increasing the synthesis of unsaturated fatty acids and changing the effects of plant hormones. Under high-temperature stress, A. mongolicus maintains normal photosynthesis by adjusting gsw as well as water utilization and by increasing the proportion of Y (NPQ). At the same time, A. mongolicus uses LHCII to consume excess energy, continuously assembles and maintains the normal function of PSII, and changes the types of antioxidants, such as by synthesizing anthocyanins, flavonoids, and isoflavones, to protect itself from injury. In addition, the porphyrin and chlorophyll metabolisms, carotenoid metabolism, plant hormones, amino acid metabolism, unsaturated fatty acid synthesis and other metabolic pathways that are related to the differentially expressed genes changed greatly. More

  • in

    Bateman gradients from first principles

    Model 1: Evolution of multiple mating and mate monopolisation under ancestral monogamyIn all models, I assume a large population with a 1:1 sex ratio. I begin with what is possibly the simplest model set-up for deriving Bateman functions in a scenario that is completely symmetrical aside from gamete number. Assume a monogamous, externally fertilising population where parents pair up and release their gametes into a nest. That is, every individual in the initial population participates in exactly one fertilisation event (the equivalent of a mating). Now consider a mutant individual that can attract multiple mates of the opposite type to release gametes into its nest, with no competition from other individuals of its own type. This simple set-up avoids asymmetries arising from internal fertilisation, and the complication of direct gamete competition for the multiply mating mutant individual (which is examined in Models 2–3), placing focus directly on the core of the problem: the asymmetry arising in fertilisation from imbalanced gamete numbers. All gametes are released in one burst by all individuals, but the focal individual may achieve ‘multiple matings’ simply by monopolising multiple mates at its nest. The reproductive success of the focal individual is then equivalent to the number of fertilisations that take place in that nest. Our aim is to understand how the reproductive success of an individual deviating from the monogamous population strategy and instead mating with (hat{m}) individuals of the opposite type is altered. A strong positive relationship between (hat{m}) and reproductive success then indicates a steep Bateman gradient. If Bateman’s assertion is correct, the resulting gradient should be steeper for the type that produces the larger number of gametes. Note that there is a game-theoretical25 flavour to this setting, where the focus is on the fitness of a rare mutant in a population with a fixed resident strategy.The two types are labelled with x and y, which could correspond to the two sexes, depending on what gamete numbers are assigned to them. The number of gametes produced by a single individual is labelled nx and ny, and the total number of gametes in a nest (or more generally, a fertilisation arena which could be internal or external) is labelled with Nx and Ny. To compute the number of fertilisations in a nest with a total of Nx and Ny gametes, I use a fertilisation function first derived by Togashi et al.24 purely from biophysical principles, treating the two gamete types symmetrically, with no pre-existing assumptions about differences between females and males or their gametes (for a broader context and comparison to other functions, see Table 1 and function F7 in19). Any sex-specific differences arise only retrospectively after different gamete numbers are assigned to x and y of which either one could be male or female. The fertilisation function is (fleft({N}_{x},{N}_{y}right)={N}_{x}{N}_{y}frac{{e}^{a{N}_{x}}-{e}^{a{N}_{y}}}{{{N}_{x}e}^{a{N}_{x}}-{N}_{y}{e}^{a{N}_{y}}}), where a is a parameter controlling fertilisation efficiency (for the special case Nx = Ny the function is defined as (fleft({N}_{x},{N}_{y}right)=frac{a{N}_{x}^{2}}{1+a{N}_{x}})19,24, which is also the limit of f when Ny → Nx).In a monogamous resident pair, we have simply Nx = nx and Ny = ny. But if a mutant individual of type x is able to attract (hat{m}) fertilisation partners of type y, then for that individual ({N}_{y}=hat{m}{n}_{y}), and the corresponding Bateman function is$${b}_{x}left(hat{m}right)=fleft({N}_{x},{N}_{y}right)=fleft({n}_{x},hat{m}{n}_{y}right)$$
    (1)
    where the fertilisation function f is as described above. Because of symmetry, the corresponding function for y is found simply by swapping x and y. This function can reproduce the characteristic Bateman gradient asymmetry as gamete numbers diverge (progressing from isogamy to anisogamy in Fig. 1), showing how Bateman’s assertion follows from biophysical effects that arise from unequal numbers of fusing particles: the fertilisation function f is derived solely from such biophysical effects, not from any sex-specific assumptions. Equation (1) makes no reference to sexes, and they only become specified when values are assigned to nx and ny. For example, if nx = 10 and ny = 10,000, the female Bateman function is ({b}_{x}left(hat{m}right)) and the male Bateman function ({b}_{y}left(hat{m}right)), where for the latter all xs in Eq. (1) are replaced with ys and vice versa. The labels x and y are truly just labels. While there are inevitably assumptions built into the equations, crucially we can be certain there are no sex-specific assumptions. Yet the typical shapes reminiscent of Bateman gradients arise from the model when different values are specified for nx and ny (Fig. 1).Fig. 1: The Bateman function of Eq. (1).This figure shows how the basic Bateman gradient asymmetry arises from simple biophysics and mathematics of fertilisation. The population is monogamous aside from a mutant individual, whose number of fertilisation partners (‘matings’) varies on the horizontal axes within panels. a–d show the effect of variation in sex-specific gamete numbers under efficient fertilisation, while e–h show the effect of variation in sex-specific gamete numbers under inefficient fertilisation. Parameter values used are shown in the figure. Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines. Under isogamy, females and males are undefined, and the two colours overlap. The typical sex-specific shapes of Bateman gradients arise from a single equation (which itself is not sex-specific) when a difference in gamete numbers is assigned to nx and ny, confirming Bateman’s intuition that the primary cause of the difference in selection is that females produce fewer gametes than males. The entire range of gamete number ratios presented in the figure is observed in nature, from equal gamete size in many unicellular organisms39 to vertebrates, where sperm count per ejaculate can commonly exceed 109 (see ref. 40 and Supplementary Information therein).Full size imageGamete limitation changes the results quantitatively so that under conditions of poor fertilisation efficiency a larger imbalance in gamete numbers is needed for Bateman gradients to diverge to a similar extent. However, even under inefficient fertilisation, the Bateman gradients do not reverse.Model 2: An external fertiliser model with population-level polygamy and gamete competitionModel 1 presented the simplest possible scenario, where all individuals except a rare mutant mate only once, and gamete competition (sperm competition26, but without assigning either gamete type to be sperm) was thus excluded for the focal mutant individual. Now I generalise from this to a situation that remains entirely symmetrical, but where the resident number of matings can take on any value, and then derive the Bateman function for a rare mutant that deviates from this population-level value. This set-up allows for gamete competition for the focal mutant individual, a crucial addition because of the empirical and theoretical importance of sperm competition26, as well as earlier theory suggesting that polyandry decreases the sex difference in Bateman gradients2.The biological set-up is such that there is a large population and a large number of patches (fertilisation arenas) where multiple individuals of both sexes can release their gametes for fertilisation. After all individuals have released their gametes, those in each patch mix freely and fertilisations take place randomly. Set up in this way, the model is again identical from the perspective of both sexes, and gamete number can be isolated as the sole possible causal factor in any subsequent differences that may arise, extending from the initially monogamous and gamete competition-free scenario of Model 1. All individuals of both sexes are assumed to initially have the same strategy: to divide their nx or ny gametes equally between m patches, and distribute themselves in such a way that gametes from m individuals of each type release gametes into each patch (the number of individuals of each sex per patch need not necessarily be strictly equal to m, but this is the simplest assumption to account for the fact that gamete competition tends to increase with multiple ‘matings’). Now, if a rare x mutant divides its gametes evenly into (hat{m}) randomly selected patches, its gamete number per patch and consequently competitiveness in each patch is altered. Therefore, gametes of a mutant of type x will gain, on average, a fraction ({c}_{x}=left({n}_{x}/hat{m}right)/{N}_{x}) of the fertilisations in that patch, where ({N}_{x}={n}_{x}/hat{m}+(m-1){n}_{x}/m). To compute the number of realised fertilisations in a patch, I use the same fertilisation function as in Model 1, where the mutant number of gametes in a patch is Nx as above and the number of gametes of the opposite type is ({N}_{y}=mfrac{{n}_{y}}{m}={n}_{y}). All the components are now in place to write down the Bateman function corresponding to this scenario, for a mutant of type x:$${b}_{x}left(hat{m},mright)=hat{m}{c}_{x}fleft({N}_{x},{N}_{y}right)$$
    (2)
    where cx, Nx and Ny are as defined above, and the fertilisation function f is as in Model 1. For completeness, define bx(0, m) = 0, which is necessarily true, but useful to define separately because division by 0 renders Eq. (2) formally undefined when (hat{m}=0).As in Model 1, Eq. (2) makes no reference to sexes, and they only become specified when values are assigned to nx and ny (Fig. 2).Fig. 2: The Bateman function of Eq. (2) for an externally fertilising population with potential for population-wide polygamy and gamete competition.Results are shown for two values of resident matings (m = 1 and m = 2). a–h show the effect of variation in sex-specific gamete numbers and in fertilisation efficiency with m = 1, while i–p show the same with m = 2. Parameter values used are shown in the figure. The value m = 2 is used here because it is comparable to the mean number of matings in Bateman’s1 work (see Fig. 3 for corresponding results with internal fertilisation, but note that the aim of the models is not to quantitatively reproduce Bateman’s results). Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines. Under isogamy, females and males are undefined, and the two colours overlap. Further variation in m is examined in Fig. 4.Full size imageModel 3: An internal fertiliser modelModels 1–2 were set up with the central aim of full symmetry and exclusion of any sex-specific assumptions. Internal fertilisation breaks this symmetry by introducing a sex-specific assumption other than gamete number. Bateman gradients are, however, most commonly applied to situations with internal fertilisation where females are gamete recipients and males are gamete donors27. I therefore construct a model accounting for internal fertilisation. Where Eqs. (1) and (2) allowed no sex differences aside from gamete number, here I additionally consider the fact that females receive gametes while males donate them.As in model 2, there is a very large population, and I assume that in the resident population, all females and males mate exactly m times. It is then considered how a rare mutant individual’s (of either sex) fitness depends on its number of matings (hat{m}).I use the same fertilisation function as in Models 1-2. Consider first the female perspective (labelled with x). A female produces nx gametes and retains them internally. Each female mates with m males, who also mate with m females, dividing their gametes evenly over these matings. Therefore a mutant female receives (hat{m}frac{{n}_{y}}{m}) male gametes, and her reproductive success is$${b}_{x}left(hat{m},mright)=fleft({n}_{x},hat{m}frac{{n}_{y}}{m}right)$$
    (3)
    A mutant male, on the other hand, mates with (hat{m}) females, each of which mates with m−1 additional males. Therefore, the mutant male’s mating partners will receive a total of ({{N}_{y}=n}_{y}/hat{m}+(m-1){n}_{y}/{m}) male gametes. Thus, the mutant male gains a fraction ({c}_{y}=left({n}_{y}/hat{m}right)/{N}_{y}) of the fertilisations with each female, while the total reproductive success per female is f(nx,Ny). The mutant male’s reproductive success is therefore$${b}_{y}left(hat{m},mright)=hat{m}{c}_{y}fleft({n}_{x},{N}_{y}right)$$
    (4)
    To avoid division by 0, we can again define by (0, m) = 0, analogous to Model 2. In contrast to Models 1–2, there are now separate equations for each sex because of the additional sex-specific assumption of internal fertilisation, but no further sex-specific assumptions are used in their derivation. Visually the Bateman functions (Fig. 3) are nevertheless very similar to Model 2, and again reproduce the sex-specific shapes first proposed by Bateman1 when fertilisation is efficient. However, an interesting exception arises when relatively weak asymmetry in gamete numbers is combined with inefficient fertilisation and gamete limitation. When these conditions are combined with internal fertilisation, Bateman gradients can theoretically be reversed.Fig. 3: The Bateman functions of Eqs. (3) and (4) for internal fertilisation.Where Figs. 1 and 2 show that the sex-specific shapes of Bateman functions are ultimately caused by differences in gamete number, Fig. 3 shows that internal fertilisation does not invalidate this outcome when fertilisation is efficient. As in Fig. 2, results are shown for two values of resident matings (1 and 2), and the value m = 2 is used because it is comparable to the mean number of matings in Bateman’s1 work. a–h show the effect of variation in sex-specific gamete numbers and in fertilisation efficiency with m = 1, while i–p show the same with m = 2. Parameter values used are shown in the figure. Inefficient fertilisation combined with relatively low asymmetry in gamete numbers and the added asymmetry of internal fertilisation can in principle reverse the Bateman gradients (second and fourth row). Females (gamete number nx) are indicated by blue crosses and connecting lines, while males (gamete number ny) are indicated by black dots and connecting lines.Full size image More

  • in

    Exceptional soft-tissue preservation of Jurassic Vampyronassa rhodanica provides new insights on the evolution and palaeoecology of vampyroteuthids

    In their original description of V. rhodanica, Fischer & Riou16 determined that the previously undescribed genus was a Jurassic relative of V. infernalis. This assignment was based on the configuration of the arm crown and armature, fin type, presence of luminous organs, lateral eyes, and the absence of an ink sac. Assuming this assignment is correct, then V. rhodanica is a member of the suborder Vampyromorphina, which includes the family Vampyroteuthidae22,29.Reappraisal of the anatomy shows that V. rhodanica and V. infernalis both have 8 arms and uniserial suckers flanked by cirri. They both possess V. infernalis-like sucker attachments34,36, which are broader at the base and taper up to a radially symmetrical sucker.Both species have distinctly modified arms though the morphology differs in each. V. infernalis, has retractable filaments in the position of arm pair II27,33,34, though there is no evidence of these appendages in V. rhodanica. Instead, the species has elongate dorsal arms (arm pair I) with a unique configuration of suckers and cirri on the distal section.The suckers and cirri of V. rhodanica are more numerous than those of V. infernalis27,37. They are also more closely positioned. Proportionally, the suckers of both species have a consistent ratio to mantle length37, though the diameter of the cirri and infundibulum are greater in V. rhodanica. The V. infernalis-like attachment1,3,34 is present in both species, though in V. rhodanica, the distal part of the neck protrudes into the acetabular cavity. Of note, the sucker stalks on the dorsal arms of V. rhodanica are more elongate than those on the other arms (Figs. 2b,c, and 3a,b). This variation in suckers and their attachments suggests a specialized function between the dorsal and sessile appendages. On the longer dorsal arms, the larger sucker diameter, and more elongate stalks (Figs. 2b and 4) indicate the potential for increased mobility over their extant relatives, and possibly facilitated additional manipulation and prey capture capability.Figure 4Hypothesised reconstruction of V. rhodanica based on the data from this study (A. Lethiers, CR2P). The scale is based on measurements from the holotype (MNHN.B.74247) and the arm crown is completed using dimensions from MNHN.B.74244.Full size imageIn addition to the arm crown specialization, V. rhodanica has a more streamlined shape than V. infernalis, which is caused by a proportionally narrower head. Their muscular body is narrower and more elongate than the gelatinous V. infernalis16,27,37 suggesting a higher energy locomotory style. This is consistent with increased predation relative to the modern form. Observations in this study support many assertions of Fischer & Riou16 about the characters in V. rhodanica, though the presence of luminous organs cannot be confirmed. Rather than luminous organs much larger than those present in the deep-sea, extant V. infernalis, it is possible that these structures represent displaced cartilage prior to fossilization (Supplementary Fig. 6).Two other genera from the La Voulte-sur-Rhône locality, Gramadella and Proteroctopus are, like V. rhodanica, considered to be Incertae sedis Vampyromorpha22. All three share morphological similarities that include an elongated mantle fused with the head, and a longer dorsal arm pair with armature on the distal ends1,16,22,38. Neither the second nor fourth arm pair have been modified. Each has one pair of fins. In Gramadella, the fins are lateral and skirt-like16,38. In V. rhodanica and Proteroctopus these fins are located posteriorly1,16.V. rhodanica shows the greatest length variation between the dorsal and sessile arms (Fig. 4), though proportionally, Gramadella, and Proteroctopus have longer dorsal arms1,31. Fischer & Riou31 and Kruta et al.1 described biserial suckers in their descriptions of Gramadella, and Proteroctopus, respectively. In Proteroctopus, these suckers have a proportionally smaller diameter than the uniserial row in V. rhodanica, and do not exhibit the same tapered pattern.None of these specimens shows evidence of an ink sac, though it is present in contemporaneous genera from the same assemblage (Mastigophora, Rhomboteuthis and Romaniteuthis)8,16. That this character occurs only in some taxa from the same assemblage suggests variation in ecology, possibly associated with the steep, bathymetric relief in the La Voulte-sur-Rhône paleoenvironment11. The mosaic of characters found within the coleoid taxa at La Voulte-sur-Rhône suggests that Mesozoic vampyromorphs co-occurred in different ecological niches during the mid-Jurassic.Today, extant V. infernalis is uniquely adapted to a low-energy, deep-sea mode of life27,28,29,39, though the timing of character acquisition and progression of this ecology is unclear24. It is hypothesised that the vampyromorph Necroteuthis Kretzoi 1942 was already exploiting this niche by the Oligocene29, and that the initial shift to offshore environments was possibly driven by onshore competition24,29. The data obtained here suggests that V. rhodanica, the purportedly oldest-known genus of the Vampyromorphina group, was an active predator following a pelagic mode of life.Indeed, several anatomical details, mainly found in the brachial crown, seem to support this hypothesis. Though we cannot directly compare functionality of the arm crown elements with other Jurassic taxa, we can infer function based on observation in modern forms. In Octopoda, the sister group to Vampyromorpha, suckers are attached to the arm by a cylindrical layer of muscle, encircling oblique musculature40,41, that connects the arm musculature and the lateral margin of the acetabulum34,40,41,42. This facilitates a variety of functions including locomotion, manipulation, and prey retention43. The sucker attaches by flattening the infundibulum against the surface and then the encircling epithelium creates a watertight seal36,40,41,42,43,44,45. Contraction of the radial acetabular muscles provides the pressure differential required to create the suction force43,44,46.The stalked sucker attachments2,34 of decabrachians (Fig. 3d, and Supplementary Fig. 4) are muscular35 and connect the musculature of the arm with the base of the sucker, forming part of the acetabulum33,34. Tension on the sucker stretches this muscular attachment, which pulls locally on the acetabular base. This facilitates a greater pressure differential inside the sucker, allowing the teeth on the sucker ring to maintain the hold47.Extant V. infernalis lack decabrachian-like stalks2,18 and the neck of the attachment joins to the base of the acetabulum (Fig. 3c, and Supplementary Fig. 4), rather than being inserted into it18. The infundibulum is not distinct, and the suckers do not provide strong suction27. Instead, suckers function by secreting mucus to coat detritus—marine snow captured by retractable filaments—which is then moved to the mouth by cirri7,27.A mosaic of these characters is present in V. rhodanica (Fig. 3a,b), therefore, suggesting their potential for increased attachment and hold on prey over extant V. infernalis. These include a larger infundibular diameter, a neck attachment integrated with the acetabular muscles, and the elongated stalks of the dorsal suckers.Additionally, the paired, filamentous cirri observed in extant cirrates48 are present in V. rhodanica (Fig. 4, and Supplementary Fig. 2). In extant forms they are understood to have a sensory function and are used in the detection and capture of prey48. In V. infernalis, they serve to transport the food proximally along the arms to the mouth27. The greater diameters of cirri, and placement along the entire arm in V. rhodanica (Fig. 4), suggests an increased sensory function in these fossil forms.The shape of the arms also contributes to the suction potential49 in coleoids. Functional analysis in Octopoda highlights a positive correlation between distal tapering of the arms and their flexibility. A tapered, flexible arm facilitates more precise adhesion than a cylindrical-shaped one and requires a greater force for sucker detachment49. Suckers detach sequentially, rather than the more simultaneous release observed in models of arms with less taper variation. The tapered diameter of the suckers, like those seen on the sessile arms of V. rhodanica, potentially facilitated this kind of sequential detachment49 allowing them more adherence force and flexibility. Though V. rhodanica has just two suckers on the distal tips of their dorsal arms, the most distal is marginally smaller in diameter than the proximal one. On the dorsal arms, this tapering is observed in conjunction with a well-developed axial nerve cord (Fig. 2b). In extant forms, the nerve cord facilitates complex motor functions42. The combination of these characters in V. rhodanica suggests their arms had increased potential to be actively used in prey capture50 over extant V. infernalis.Though arm crown characters offer insight on the ecology of V. rhodanica, in fossil coleoid phylogenies only a few characters are based on the suckers1, 3. Two studies that have attempted to create a phylogeny using morphological characters that include both fossil and extant taxa return V. rhodanica and V. infernalis as sister taxa1,3. These matrices are, by necessity, heavily influenced by the gladius51 and more than 50% of the characters are based on this feature1,3. Indeed, the authors1 note that the lack of gladius data for some fossil forms, including V. rhodanica, creates an inherent bias in the phylogenetic matrix. Fischer & Riou16 suggested that V. rhodanica and V. infernalis are related on the basis of the observable morphological characters in the family Vampyroteuthidae, though without morphological information on the gladius, a recent systematic synthesis of fossil Octobrachia22 positioned V. rhodanica as Vampyromorpha Incertae sedis.X-ray CT analysis in this study did not allow a reconstruction of the gladius. Nevertheless, it does provide new data on soft tissues, and permits comparisons between extant and fossil taxa. Specifically, we can add distinct states to 4 of the 132 characters in the existing phylogenetic matrix from Sutton et al.3 that was modified and used in Kruta et al.1. These four characters (#89–#92) represent the suckers, and sucker attachments. Detailed examination revealed that the sessile and dorsal arms have the Vampyroteuthis-like attachment. In the dorsal arms, this is more elongated, though it cannot be considered pedunculate like those seen in modern decabrachians. Indeed, the attachment type (plug and base34) is the same, only the length varies. As previously discussed, this variation may have functional implications.When updated with these new data, the matrix from this study returns the same topology seen in Kruta et al.1 that supports the positioning of V. rhodanica and V. infernalis as sister taxa. Further, it strengthens their relationship as they both share a sucker attachment that is not clearly attached to the arm muscles, a state that was previously considered autapomorphic in V. infernalis. However, it is important to note that no additional characters were added for the gladius, which is the cornerstone of coleoid systematics52. Indeed, just 29 of the 132 matrix characters can so far be coded for V. rhodanica, with only 9 of these relating to the 74 states of the gladius.Assuming the phylogenetic work so far is correct, then both species belong to the family Vampyromorphina, and are joined by the Oligocene fossil Necroteuthis hungarica29. While the lack of gladius characters precludes a full phylogenetic understanding of this group, preservation and observation of the soft tissues allow us to infer information regarding palaeobiology.The data obtained in this study demonstrates that the characters observed in V. infernalis, including the sucker attachments and lack of ink sac, were present in Jurassic Vampyromorpha. Comparative anatomy of V. rhodanica and extant V. infernalis revealed that the fossil taxon displayed more morphological variation and were more diversified than previously understood. The assemblage of characters observed in V. rhodanica are consistent with a pelagic predatory lifestyle and corroborate the likelihood of a distinctly different ecological niche. These findings support the hypothesis that a shift towards a deep-sea environment occurred prior to the Oligocene5,29. More

  • in

    Ecological networks of dissolved organic matter and microorganisms under global change

    Experimental designThe comparative field microcosm experiments were conducted on Laojun Mountain in China (26.6959 N; 99.7759 E) in September–October 2013, and on Balggesvarri Mountain in Norway (69.3809 N; 20.3483 E) in July 2013, designed to be broadly representative of subtropical and subarctic climatic zones, respectively, as first reported in Wang et al.29. In the Laojun Mountain region, mean annual temperatures ranged from 4.2 to 12.9 °C, with July mean temperatures of 17–25 °C. In the Balggesvarri Mountain region, mean annual temperatures ranged from −2.9 to 0.7 °C, with July mean temperatures of 8–16 °C. The experiments were characterised by an aquatic ecosystem with consistent initial DOM composition but different locally colonised microbial communities and newly produced endogenous DOM. While allowing us to minimise the complexity of natural ecosystems, the experiment provided a means for investigating DOM-microbe associations at large spatial scales by controlling the initial DOM supply. Briefly, we selected locations with five different elevations on each mountainside. The elevations were 3822, 3505, 2915, 2580 and 2286 m a.s.l. on Laojun Mountain in China, and 750, 550, 350, 170 and 20 m a.s.l. on Balggesvarri Mountain in Norway. At each elevation, we established 30 aquatic microcosms (1.5 L bottle) composed of 15 g of sterilised lake sediment and 1.2 L of sterilised artificial lake water at one of ten nutrient levels of 0, 0.45, 1.80, 4.05, 7.65, 11.25, 15.75, 21.60, 28.80 and 36.00 mg N L−1 of KNO3 in the overlying water. To compensate for nitrate additions shifting stoichiometric ratios, KH2PO4 was added to the bottles so that the N/P ratio of the initial overlying water was 14.93, which was similar to the annual average ratio in Taihu Lake during 2007 (that is, 14.49). Thus, we use “nutrient enrichment” to indicate a series of targeted nutrient levels of both nitrate and phosphate, the former of which was used to represent nutrient enrichment in the statistical analyses. Each nutrient level was replicated three times. The lake sediments were obtained from the centre of Taihu Lake, China, and were aseptically canned per bottle after autoclaving at 121 °C for 30 min. Nutrient levels for the experiments were selected based on conditions of the eutrophic Taihu Lake, and the highest nitrate concentration was based on the maximum total nitrogen in 2007 (20.79 mg L−1; Fig. S19). We chose the nutrient level of this year because a massive cyanobacteria bloom in Taihu Lake happened in May 2007 and initiated an odorous drinking water crisis in the nearby city of Wuxi.The microcosms were left in the field for one month allowing airborne bacteria to freely colonise the sediments and water. To keep the microbial dispersal events as natural as possible, we did not cover the experimental microcosms in case of rainfall. To avoid or minimize potential influence of extreme nature events, we (i) left the top 20% of each microcosm empty to prevent water from overflowing during heavy rains, and (ii) checked the experimental sites twice during each experimental period, and added sterilized water to obtain a final volume of approximately 1.2 L. The bottom of our microcosm was buried into the local soils by 10% of the bottle height, partly to reduce UV exposure to sediments. More considerations of the experimental design were detailed in the Supplementary Methods. To avoid the effects of daily temperature variation, we measured the water temperature and pH within 2 h before noon at all elevations in the day before the final sample collection. At the end of the experimental period, we aseptically sampled the water and sediments of the 300 bottles (that is, 2 mountains × 5 elevations × 10 nutrient levels × 3 replicates) for the following analyses of physiochemical variables, bacterial community and DOM composition.Physiochemical variables and bacterial communityWe measured environmental variables, namely, the total nitrogen (TN), total phosphorus (TP), dissolved nutrients (that is, NOx−, NO2−, NH4+ and PO43−), total organic carbon (TOC), dissolved organic carbon (DOC) and chlorophyll a (Chl a) in the sediments, and the NO3−, NO2−, NH4+, PO43− and pH in the overlying water (Table S2, Fig. S20), according to Wang et al.29.The sediment bacteria were examined using high-throughput sequencing of 16S rRNA genes. The sequences were processed in QIIME (v1.9)45 and OTUs were defined at 97% sequence similarity. The bacterial sequences were rarefied to 20,000 per sample. Further details on physicochemical and bacterial community analyses are available in Wang et al.29.ESI FT-ICR MS analysis of DOM samplesHighly accurate mass measurements of DOM within the sediment samples were conducted using a 15 Tesla solariX XR system, a ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS, Bruker Daltonics, Billerica, MA) coupled with an electrospray ionization (ESI) interface, as demonstrated previously46 with some modifications. It should be noted that FT-ICR MS does not identify molecules, but only molecular formulae in terms of elemental composition and there can be many molecular structures sharing the same elemental compositions. DOM was solid-phase extracted (SPE) with Agilent VacElut resins before FT-ICR MS measurement47 with minor modifications. Briefly, an aliquot of 0.7 g freeze-dried sediment was sonicated with 30 ml ultrapure water for 2 h, and centrifuged at 5000 × g for 20 min. The extracted water was filtered through the 0.45 μm Millipore filter and further acidified to pH 2 using 1 M HCl. Cartridges were drained, rinsed with ultrapure water and methanol (ULC-MS grade), and conditioned with pH 2 ultrapure water. Calculated volumes of extracts were slowly passed through cartridges based on DOC concentration. Cartridges were rinsed with pH 2 ultrapure water and dried with N2 gas. Samples were finally eluted with methanol into precombusted amber glass vials, dried with N2 gas and stored at −20 °C until DOM analysis. The extracts were continuously injected into the standard ESI source with a flow rate of 2 μl min−1 and an ESI capillary voltage of 3.5 kV in negative ion mode. One hundred single scans with a transient size of 4 mega word (MW) data points, an ion accumulation time of 0.3 s, and within the mass range of m/z 150–1200, were co-added to a spectrum with absorption mode for phase correction, thereby resulting in a resolving power of 750,000 (FWHM at m/z 400). All FT-ICR mass spectra were internally calibrated using organic matter homologous series separated by 14 Da (-CH2 groups). The mass measurement accuracy was typically within 1 ppm for singly charged ions across a broad m/z range (150–1200 m/z).Data Analysis software (BrukerDaltonik v4.2) was used to convert raw spectra to a list of m/z values using FT-MS peak picker with a signal-to-noise ratio (S/N) threshold set to 7 and absolute intensity threshold to the default value of 100. Putative chemical formulae were assigned using the software Formularity (v1.0)48 following the Compound Identification Algorithm49. In total, 19,538 molecular formulas were putatively assigned for all samples (n = 300) based on the following criteria: S/N  > 7, and mass measurement error  0.80, P ≤ 0.001; Fig. S9). Similar conclusions were also obtained with either OTUs or genera when relating the pairwise distances of molecular traits with SparCC correlation coefficient ρ values among DOM molecules in Fig. 4c. To reduce type I errors in the correlation calculations created by low-occurrence genera or molecules, the majority rule was applied; that is, we retained genera or molecules that were observed in more than half of the total samples (≥75 samples) in China or Norway. The filtered table, including 1340 and 1246 DOM molecules, and 75 and 49 bacterial genera in China and Norway, respectively, was then used for pairwise correlation calculation of DOM and bacteria using SparCC with default parameters35.Finally, bipartite network analysis at a molecular level was performed to quantify the specialization of DOM-bacteria networks (Box 1). The specialization considers interaction abundance and is standardised to account for heterogeneity in the interaction strength and species richness, which describes the levels of “vulnerability” of DOM molecules and “generality” of bacterial taxa27. The threshold correlation for inclusion in bipartite networks was |ρ| = 0.30 to exclude weak interactions and we retained the adjacent matrix with only the interactions between DOM and bacteria. We then constructed two types of interaction networks (i.e., negative and positive networks) based on negative and positive correlation coefficients (SparCC ρ ≤ −0.30 and ρ ≥ 0.30, respectively). According to resource-consumer relationships, negative networks likely indicate the degradation of larger molecules into smaller structures, while positive networks may suggest the production of new molecules via degradation or biosynthetic processes. The SparCC ρ values were multiplied by 10,000 and rounded to integers, and the absolute values were taken for negative networks to enable the calculations of specialization indices. A separate negative and positive sub-network was obtained for each microcosm by selecting the DOM molecules and bacterial taxa in each sample based on its bacterial and DOM compositions. For the network level analysis, we calculated H2′, a measure of specialization27, for each network:$${H}_{2}=-mathop{sum }limits_{i{{mbox{=}}}1}^{i}mathop{sum }limits_{j{{mbox{=}}}1}^{j}{{mbox{(}}}{{{mbox{p}}}}_{{ij}}{{{{{{rm{ln}}}}}}}{{{mbox{p}}}}_{{ij}}{{mbox{)}}}$$
    (2)
    $${H}_{2}{prime} =frac{{H}_{2{max }}{-}{H}_{2}}{{H}_{2{max }}{-}{H}_{2{min }}}$$
    (3)
    where ({{{mbox{p}}}}_{{ij}}{{mbox{=}}}{{{mbox{a}}}}_{{ij}}{{mbox{/}}}m), represents the proportion of interactions in a i × j matrix. ({{{mbox{a}}}}_{{ij}}) is the number of interactions between DOM molecule i and bacterial genus j, which is also referred as “link weight”. m is the total number of interactions between all DOM molecules and bacterial genera. H2′ is the standardised H2 against the minimum (H2min) and maximum (H2max) possible for the same distribution of interaction totals. For the molecular level analysis, we calculated the specialization index Kullback–Leibler distance (d′) for DOM molecules (di′) and bacterial genera (dj′), which describes the levels of “vulnerability” of DOM molecules and “generality” of bacterial genera, respectively:$${d}_{i}=mathop{sum }limits_{j=1}^{j}left(frac{{{{mbox{a}}}}_{{ij}}}{{{{mbox{A}}}}_{i}}{{{mbox{ln}}}}frac{{{{mbox{a}}}}_{{ij}}m}{{{{mbox{A}}}}_{i}{{{mbox{A}}}}_{j}}right)$$
    (4)
    $${d}_{i}{prime} =frac{{d}_{i}-{d}_{{min }}}{{d}_{{max }}-{d}_{{min }}}$$
    (5)
    where ({A}_{i}) = (mathop{sum }limits_{j{{mbox{=}}}1}^{j}{{{mbox{a}}}}_{{ij}}) and ({A}_{j}) = (mathop{sum }limits_{i{{mbox{=}}}1}^{i}{{{mbox{a}}}}_{{ij}}), are the total number of interactions of DOM molecule i and bacterial genus j, respectively. di′ is the standardised di against the minimum (dmin) and maximum (dmax) possible for the same distribution of interaction totals. The equations of dj′ are analogous to di′, replacing j by i. Weighted means of d′ for DOM were calculated for each network as the sum of the product of d′ for each individual molecule i (di′) and relative intensity Ii divided by the sum of all intensities d′  = Ʃ(di′ × Ii)/Ʃ(Ii). Weighted means of d′ for bacteria were calculated as the sum of the d′ of each individual bacterial genus j (dj′) and relative abundance of bacterial genus Ij divided by the sum of all abundance. All calculations were performed using the R package FD V1.0.12. The observed H2′ and d′ values ranged from 0 (complete generalization) to 1 (complete specialization)28 (Fig. S21). Specifically, elevated H2′ or d′ values indicate a high degree of specialization, while lower values suggest increased generalization, that is, higher vulnerability of DOM and/or higher generality of microbes. To directly compare the network indices across the elevations or nutrient enrichment levels, we used a null modelling approach. We standardised the three observed specialization indices (Sobserved; that is, H2′, d′ of DOM, and d′ of bacteria) by calculating their z-scores63 using the equation:$${z}_{S}=({S}_{{{{{{rm{observed}}}}}}}-overline{{{S}}_{{{{{{rm{null}}}}}}}})/({sigma }_{S_{{{{{rm{null}}}}}}})$$
    (6)
    where (overline{{{S}}_{{{{{{rm{null}}}}}}}}) and ({sigma }_{S_{{{{{rm{null}}}}}}}) were, respectively, the mean and standard deviation of the null distribution of S (Snull). One hundred randomised null networks were generated for each bipartite network to derive Snull using the swap.web algorithm, which keeps species richness and the number of interactions per species constant along with network connectance. This null model analysis indicates that interactions between DOM and bacteria were non-random as the observed network specialization indices were generally significantly lower than expected by chance (P  0.05), which tests whether the model structure differs from the observed data, high comparative fit index (CFI  > 0.95) and low standardised root mean squared residual (SRMR  More

  • in

    Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China

    Birenboim, A. The influence of urban environments on our subjective momentary experiences. Environ. Plan. B-Urban Anal. CIty Sci. 45, 915–932. https://doi.org/10.1177/2399808317690149 (2018).Article 

    Google Scholar 
    Flores, A., Pickett, S. T. A., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: The case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308. https://doi.org/10.1016/S0169-2046(97)00084-4 (1998).Article 

    Google Scholar 
    Weijs-Perrée, M., Dane, G., Berg, P. V. D. & Dorst, M. V. A multi-level path analysis of the relationships between the momentary experience characteristics, satisfaction with urban public spaces, and momentary- and long-term subjective wellbeing. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph16193621 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paulin, M. J. et al. Application of the natural capital model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam. Ecosyst. Serv. 43, 101114. https://doi.org/10.1016/j.ecoser.2020.101114 (2020).Article 

    Google Scholar 
    Derkzen, M. L., van Teeffelen, A. J. A., Verburg, P. H. & Diamond, S. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 52, 1020–1032. https://doi.org/10.1111/1365-2664.12469 (2015).Article 

    Google Scholar 
    Leiva, M. A., Santibanez, D. A., Ibarra, S., Matus, P. & Seguel, R. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environ. Pollut. 181, 1–6. https://doi.org/10.1016/j.envpol.2013.05.057 (2013).CAS 
    Article 

    Google Scholar 
    Venkataramanan, V. et al. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 720, 137606. https://doi.org/10.1016/j.scitotenv.2020.137606 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, G. Z., Han, Q. & De Vries, B. The multi-objective spatial optimization of urban land use based on low-carbon city planning. Ecol. Indic. 125, 107540. https://doi.org/10.1016/j.ecolind.2021.107540 (2021).CAS 
    Article 

    Google Scholar 
    Cameron, R. W. F. et al. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 11, 129–137. https://doi.org/10.1016/j.ufug.2012.01.002 (2012).Article 

    Google Scholar 
    De la Sota, C., Ruffato-Ferreira, V. J., Ruiz-Garcia, L. & Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 40, 145–151. https://doi.org/10.1016/j.ufug.2018.09.004 (2019).Article 

    Google Scholar 
    Pongsakorn, S., Jiang, X. R. & Sullivan, W. C. Green infrastructure, green stormwater infrastructure, and human health a review. Curr. Landscape. Ecol. Rep. 2, 96–110. https://doi.org/10.1007/s40823-017-0028-y (2017).Article 

    Google Scholar 
    Liu, O. Y. & Russo, A. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services (Sust. Cities Soc., 2021). https://doi.org/10.1016/j.scs.2021.102772.Book 

    Google Scholar 
    McMahon, E. T. Green infrastructure. Plan. Commission. J. (2000).Mell, I. C. Green Infrastructure Concepts, Perceptions and Its Use in Spatial Planning. Doctor of Philosophy Thesis (Planning and Landscape Newcastle University, 2010).
    Google Scholar 
    Wang, J. X. & Banzhaf, E. Towards a better understanding of green infrastructure: A critical review. Ecol. Indic. 85, 758–772. https://doi.org/10.1016/j.ecolind.2017.09.018 (2018).Article 

    Google Scholar 
    Young, R., Zanders, J., Lieberknecht, K. & Fassman-Beck, E. A comprehensive typology for mainstreaming urban green infrastructure. J. Hydrol. 519, 2571–2583. https://doi.org/10.1016/j.jhydrol.2014.05.048 (2014).Article 

    Google Scholar 
    Wang, J. X., Xu, C., Pauleit, S., Kindler, A. & Banzhaf, E. Spatial patterns of urban green infrastructure for equity: A novel exploration. J. Clean Prod. 238, 117858. https://doi.org/10.1016/j.jclepro.2019.117858 (2019).Article 

    Google Scholar 
    Cook, E. A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58, 269–280 (2002).Article 

    Google Scholar 
    Vogt, P. & Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 50, 352–361. https://doi.org/10.1080/22797254.2017.1330650 (2017).Article 

    Google Scholar 
    Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J. & Wade, T. G. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22, 171–177. https://doi.org/10.1007/s10980-006-9013-2 (2007).Article 

    Google Scholar 
    Kuttner, M., Hainz-Renetzeder, C., Hermann, A. & Wrbka, T. Borders without barriers—Structural functionality and green infrastructure in the Austrian-Hungarian transboundary region of Lake Neusiedl. Ecol. Indic. 31, 59–72. https://doi.org/10.1016/j.ecolind.2012.04.014 (2013).Article 

    Google Scholar 
    Ma, Q. W., Li, Y. H. & Xu, L. H. Identification of green infrastructure networks based on ecosystem services in a rapidly urbanizing area. J. Clean Prod. 300, 126945. https://doi.org/10.1016/j.jclepro.2021.126945 (2021).Article 

    Google Scholar 
    Furberg, D., Ban, Y. & Mörtberg, U. Monitoring urban green infrastructure changes and impact on habitat connectivity using high-resolution satellite data. Remote Sens. 12, 3072. https://doi.org/10.3390/rs12183072 (2020).Article 

    Google Scholar 
    Barbati, A., Corona, P., Salvati, L. & Gasparella, L. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure?. Urban For. Urban Green. 12, 36–43. https://doi.org/10.1016/j.ufug.2012.11 (2013).Article 

    Google Scholar 
    Fluhrer, T., Chapa, F. & Hack, J. A methodology for assessing the implementation potential for retrofitted and multifunctional urban green infrastructure in public areas of the global south. Sustainability https://doi.org/10.3390/su13010384 (2021).Article 

    Google Scholar 
    Carroll, C., McRae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87. https://doi.org/10.1111/j.1523-1739.2011.01753.x (2012).Article 
    PubMed 

    Google Scholar 
    Saura, S. & Torne, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 24, 135–139 (2009).Article 

    Google Scholar 
    Jaworek-Jakubska, J., Filipiak, M., Michalski, A. & Napierała-Filipiak, A. Spatio-temporal changes of urban forests and planning evolution in a highly dynamical urban area: The case study of Wrocław, Poland. Forests 11, 17. https://doi.org/10.3390/f11010017 (2019).Article 

    Google Scholar 
    Ren, Z. B., He, X. Y., Zheng, H. F. & Wei, H. X. Spatio-temporal patterns of urban forest basal area under China’s rapid urban expansion and greening: Implications for urban green infrastructure management. Forests 9, 272. https://doi.org/10.3390/f9050272 (2018).Article 

    Google Scholar 
    Elliott, R. M. et al. Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio 49, 569–583. https://doi.org/10.1007/s13280-019-01223-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García, A. M., Santé, I., Loureiro, X. & Miranda, D. Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain). Ecosyst. Serv. 43, 101115. https://doi.org/10.1016/j.ecoser.2020.101115 (2020).Article 

    Google Scholar 
    Tiwari, A. & Kumar, P. Integrated dispersion-deposition modelling for air pollutant reduction via green infrastructure at an urban scale. Sci. Total Environ. 723, 138078. https://doi.org/10.1016/j.scitotenv.2020.138078 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. Q. et al. Unexpected air quality impacts from implementation of green infrastructure in urban environments: A Kansas City case study. Sci. Total Environ. 744, 140960. https://doi.org/10.1016/j.scitotenv.2020.140960 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alizadehtazi, B., Gurian, P. L. & Montalto, F. A. Observed variability in soil moisture in engineered urban green infrastructure systems and linkages to ecosystem services. J. Hydrol. 590, 125381. https://doi.org/10.1016/j.jhydrol.2020.125381 (2020).Article 

    Google Scholar 
    Dennis, M., Cook, P. A., James, P., Wheater, C. P. & Lindley, S. J. Relationships between health outcomes in older populations and urban green infrastructure size, quality and proximity. BMC Public Health https://doi.org/10.1186/s12889-020-08762-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Oijstaeijen, W., Van Passel, S. & Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 267, 110603. https://doi.org/10.1016/j.jenvman.2020.110603 (2020).Article 

    Google Scholar 
    Majekodunmi, M., Emmanuel, R. & Jafry, T. A spatial exploration of deprivation and green infrastructure ecosystem services within Glasgow city. Urban For. Urban Green. 52, 126698. https://doi.org/10.1016/j.ufug.2020.126698 (2020).Article 

    Google Scholar 
    Liberalesso, T., Oliveira Cruz, C., Matos Silva, C. & Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Pol. 96, 104693. https://doi.org/10.1016/j.landusepol.2020.104693 (2020).Article 

    Google Scholar 
    Lin, H. Y., Qian, J., Yan, L. J. & Huang, S. R. Analysis of spatial-temporal pattern and scenario simulation of green infrastructure in Wuyi County based on morphological spatial pattern analysis and CA-Markov model. Acta Agricult. Zhejiangensis. https://doi.org/10.3969/j.issn.1004-1524.2019.07.21 (2019).Article 

    Google Scholar 
    Mitsova, D., Shuster, W. & Wang, X. H. A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc. Urban Plan. 99, 141–153. https://doi.org/10.1016/j.landurbplan.2010.10.001 (2011).Article 

    Google Scholar 
    Dennis, M. et al. Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems. Land 7, 17. https://doi.org/10.3390/land7010017 (2018).Article 

    Google Scholar 
    Hu, Y. J. et al. Urban expansion and farmland loss in Beijing during 1980–2015. Sustainability 10, 3927. https://doi.org/10.3390/su10113927 (2018).Article 

    Google Scholar 
    Li, W. J., Wang, Y., Xie, S. Y., Sun, R. H. & Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 117 (2020).Song, W., Pijanowski, B. C. & Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 54, 60–70. https://doi.org/10.1016/j.ecolind.2015.02.015 (2015).Article 

    Google Scholar 
    Li, Z. Z., Cheng, X. Q. & Han, H. R. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests https://doi.org/10.3390/f11050584 (2020).Article 

    Google Scholar 
    Liu, D. Y. et al. Interoperable scenario simulation of land-use policy for Beijing-Tianjin-Hebei region, China. Land Use Pol. 75, 155–165. https://doi.org/10.1016/j.landusepol.2018.03.040 (2018).Article 

    Google Scholar 
    Mo, W. B., Wang, Y., Zhang, Y. X. & Zhuang, D. F. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 574, 1000–1011. https://doi.org/10.1016/j.scitotenv.2016.09.048 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Melgani, F. & Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790. https://doi.org/10.1109/Tgrs.2004.831865 (2004).Article 

    Google Scholar 
    Zhang, C., Wang, T. J., Atkinson, P. M., Pan, X. & Li, H. P. A novel multi-parameter support vector machine for image classification. Int. J. Remote Sens. 36, 1890–1906. https://doi.org/10.1080/01431161.2015.1029096 (2015).CAS 
    Article 

    Google Scholar 
    Peterson, L. K., Bergen, K. M., Brown, D. G., Vashchuk, L. & Blam, Y. Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. For. Ecol. Manag. 257, 911–922. https://doi.org/10.1016/j.foreco.2008.10.037 (2009).Article 

    Google Scholar 
    Sang, L. L., Zhang, C., Yang, J. Y., Zhu, D. H. & Yun, W. J. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 54, 938–943. https://doi.org/10.1016/j.mcm.2010.11.019 (2011).Article 

    Google Scholar 
    Liu, D. Y., Zheng, X. Q. & Wang, H. B. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 417, 108924. https://doi.org/10.1016/j.ecolmodel.2019.108924 (2020).Article 

    Google Scholar 
    Kazak, J. K. The use of a decision support system for sustainable urbanization and thermal comfort in adaptation to climate change actions-The case of the Wroclaw larger urban zone (Poland). Sustainability https://doi.org/10.3390/su10041083 (2013).Article 

    Google Scholar 
    Sonnenberg, F. A. & Beck, J. R. Markov-models in medical decision-making—A practical guide. Med. Decis. Mak. 13, 322–338. https://doi.org/10.1177/0272989×9301300409 (1993).CAS 
    Article 

    Google Scholar 
    Nadoushan, M. A., Soffianian, A. & Alebrahim, A. Modeling land use/cover changes by the combination of Markov chain and cellular automata Markov CA-Markov models. Int. J. Environ. Health Res. https://doi.org/10.4103/WKMP-0092.159922 (2015).Article 

    Google Scholar 
    Mansour, S., Al-Belushi, M. & Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Pol. 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414 (2020).Article 

    Google Scholar 
    Karimi, H., Jafarnezhad, J., Khaledi, J. & Ahmadi, P. Monitoring and prediction of land use/land cover changes using CA-Markov model: A case study of Ravansar County in Iran. Arab. J. Geosci. https://doi.org/10.1007/s12517-018-3940-5 (2018).Article 

    Google Scholar 
    Mondal, M. S., Sharma, N. C. P. K. G. & Kappas, M. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egypt. J. Remote Sens. Space Sci. https://doi.org/10.1016/j.ejrs.2016.08.001 (2016).Article 

    Google Scholar 
    Liu, Q. et al. Multi-scenario simulation of land use change and its eco-environmental effect in Hainan Island based on CA-Markov model. Ecol. Environ. Sci. 30, 1522–1531. https://doi.org/10.16258/j.cnki.1674-5906.2021.07.021 (2021).Article 

    Google Scholar 
    Pontius, R. G. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm. Eng. Remote Sens. 68, 1041–1049 (2002).
    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 30, 456–459 (2009).Article 

    Google Scholar 
    Chang, Q., Liu, X. W., Wu, J. S. & He, P. MSPA-based urban green infrastructure planning and management approach for urban sustainability: Case study of Longgang in China. J. Urban Plan. Dev. https://doi.org/10.1061/(asce)up.1943-5444.0000247 (2015).Article 

    Google Scholar 
    Li, K. M. et al. Spatiotemporal evolution characteristics of urban green infrastructure in central Liaoning urban agglomeration during the past 20 years based on landscape ecology and morphology. Acta Ecol. Sin. https://doi.org/10.5846/stxb202007221918 (2021).Article 

    Google Scholar 
    Ning, J. et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 28, 547–562. https://doi.org/10.1007/s11442-018-1490-0 (2018).Article 

    Google Scholar 
    Sawyer, S. C., Epps, C. W. & Brashares, J. S. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48, 668–678. https://doi.org/10.1111/j.1365-2664.2011.01970.x (2011).Article 

    Google Scholar 
    Yin, G. Y., Liu, L. M. & Jiang, X. L. The sustainable arable land use pattern under the tradeoff of agricultural production, economic development, and ecological protection—An analysis of Dongting Lake basin, China. Environ. Sci. Pollut. Res. 24, 25329–25345. https://doi.org/10.1007/s11356-017-0132-x (2017).Article 

    Google Scholar  More