More stories

  • in

    Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change

    Overview of the study areaBased on the actual cultivation of peanuts, the Huang-Huai-Hai region is selected as the study area (Fig. 1). The main body of the study area is the Huang-Huai-Hai Plain (North China Plain), which is a typical alluvial plain resulting from extensive sediment deposition carried by the Yellow River, the Huaihe River and the Haihe River and their tributaries, and the hills in central and southern Shandong Peninsula adjacent to it. Administrative zones include 5 provinces, 2 cities, 53 cities and 376 counties (districts). In China, The Huang-Huai-Hai region is an important production and processing centre for agricultural products, with a total land area of 4.10 × 105 square kilometers and cultivated fields of 2.15 × 107 hm2, accounting for 4.3% and 16.3% of the total amount of the country, respectively. It belongs to temperate continental monsoon climate with distinct seasons, accumulated temperature of 3600–4800 degrees above 10 °C, frost-free period of 170–200 days and annual precipitation of 500–950 mm27. The Huang-huai-hai region is the largest peanut growing area, accounting for more than 50% of the country’s peanut production and area28.Figure 1Location of the study areas. The figure was made in the ArcGIS 10.2 platform (https://www.esri.com/en-us/home).Full size imageData sourcesThe data used in the study mainly include meteorological data, geographic information data and crop data. The meteorological data comes from China Meteorological Information Center (http://data.cma.cn), including the daily maximum temperature (℃), daily minimum temperature (℃), daily average temperature (℃), daily precipitation (mm) and daily average wind speed (M/s) observed by 186 ground observation meteorological stations in the Huang-Huai-Hai region from 1960 to 2019 (Fig. 1). Geographic information data include elevation DEM data (resolution of 1 km × 1 km) and land use data in the study area, which are from the resource and environmental science and data center of Chinese Academy of Sciences (http://www.resdc.cn). Crop data, including peanut sowing area and yield data, are derived from the statistical yearbooks of provinces and cities in the study area and China Agricultural Technology Network (http://www.cast.net.cn).Data processingMeteorological data processingAnusplin software is a tool to interpolate multivariate data based on ordinary thin disks and local thin disk spline functions, enabling the introduction of covariates for simultaneous spatial interpolation of multiple surfaces, suitable for meteorological data time series29. First, the Anusplin software is used to spatially interpolate the meteorological data and suitability data of the peanut growing season (April to September) from 1960 to 2019 based on the elevation data with a resolution of 1 km × 1 km. The Inverse Distance Weight (IDW) interpolation can make the meteorological data after Anusplin interpolation maintain consistency with the original data, and is able to improve the interpolation accuracy. Finally, the meteorological and suitability data set with a resolution of 1 km × 1 km is obtained. ArcGIS and MATLAB software were used to count the median of regional meteorological factors in agricultural fields of different cities (counties), and the meteorological factors and suitability of different periods of peanut growth season in each city (county) were obtained.Yield data processingMany factors affect crop yield formation, which can be generally divided into three main categories: meteorological conditions, agronomic and technological measures, and stochastic factors. Agricultural technical measures reflect the development level of social production in a certain historical period and become time technology trend output, which is referred to as trend output for short, and meteorological production reflects short period yield components that are affected by meteorological elements. Stochastic factors account for a small proportion and are often ignored in actual calculations30. The specific calculation is as follows:$$Y={Y}_{t}+{Y}_{w}$$
    (1)

    where Y is the actual yield (single production) of the crop, Yt is the trend yield, and Yw is the meteorological yield.In this paper, a straight-line sliding average method is used to simulate the trend yield. The straight-line sliding average method is a very commonly used method to model yield, and it considers the change in the time series of yield within a certain stage as a linear function, showing a straight line, as the stage continuously slides, the straight line continuously changes the position, and the backward slip reflects the continuous change in the evolution trend of the yield history31. The regression models in each stage are obtained in turn, and the mean value of each linear sliding regression simulation value at each time point is taken as its trend yield value. The linear trend equation at some stage is:$${Y}_{i}left(tright)={a}_{i}+{b}_{i}t$$
    (2)
    where i = n-k + 1, is the number of equations; k is the sliding step; n is the number of sample sequences; t is the time serial number. Yi(t) is the function value of each equation at point t. there are q function values at point t. the number of q is related to n and k. Calculate the average value of each function value at each point:$$overline{{Y }_{i}(t)}=frac{1}{q}sum_{j=1}^{q}{Y}_{i}left(tright)$$
    (3)
    Connecting the (overline{{Y }_{i}(t)}) value of each point can represent the historical evolution trend of production. Its characteristics depend on the value of k. Only when k is large enough, the trend yield can eliminate the influence of short cycle fluctuation. After comparison and considering the length of yield series, k is taken as 5 in this paper.After the trend yield is obtained, the meteorological yield is calculated using Eq. (1), then the relative meteorological production is$${Y}_{r}=frac{{Y}_{w}}{{Y}_{t}}$$
    (4)
    The relative meteorological yield shows that the relative variability of yield fluctuation deviating from the trend, that is, the amplitude of yield fluctuation, is not affected by time and space, and is comparable. However, when the value is negative, it indicates that the meteorological conditions are unfavorable to the overall crop production, and the crop yield reduction, that is, the yield reduction rate32.Characteristics of spatial and temporal distribution of climatic resources in the Huang-Huai-Hai regionCollect meteorological resource data from 1960 to 2019. Taking 1960–1989 as the first three decades of the study and 1990–2019 as the last three decades, the climatic resource changes of peanut growth in the Huang-Huai-Hai region are analyzed by interpolation of heat resources (average temperature), water resources (precipitation) and light resources (sunshine hours) in the study area in two periods combined with topographic factors.Establishment of suitability modelAccording to the definition of phenological time and growth period of peanut planting practice in the Huang-Huai-Hai region, the growth season of peanut is divided into three growth periods and five growth stages (Table 1). Temperature, precipitation and sunshine hours are the necessary meteorological factors to determine the normal development of peanut. Therefore, combined with climatic resources in the study area, temperature, precipitation and sunshine suitability model was introduced to quantitatively analyze the suitability of peanut planting.Table 1 Division of peanut growth periods.Full size tableTemperature suitability modelTemperature is a very important factor in the growth period of peanut, and the change of temperature in different growth periods will have a great influence on the yield and quality of peanut. As a warm-loving crop, accumulated temperature plays a decisive role in the budding condition and nutrient growth stage of peanut. Temperature determines the quality of fruit and the final yield of peanut. Beta function33 is used to calculate temperature suitability, which is universal for crop-temperature relationship. The specific calculation is as follows:$${F}_{i}left(tright)=frac{(t-{t}_{1}){({t}_{h}-t)}^{B}}{({t}_{0}-{t}_{1}){({t}_{h}-{t}_{0})}^{B}}$$
    (5)
    where the value of B is shown in$$B=frac{{t}_{h}-{t}_{0}}{{t}_{0}-{t}_{1}}$$
    (6)
    where Fi(t) is the temperature suitability of a certain growth period; t is the daily average temperature of peanut at a certain development stage; t1, th and t0 are the lower limit temperature, upper limit temperature and appropriate temperature required for each growth period of peanut. Refer to the corresponding index system and combined with the peanut production practice in Huang-Huai-Hai region34,35,36, determine the three base point temperature of peanut in each growth period, as shown in the Table 2.Table 2 Three fundamental points temperature and crop coefficient of peanut at each growth stage in the study area.Full size tablePrecipitation suitability modelPeanut has a long growth period, which is nearly half a year. Insufficient or excessive water during the growth period has a great impact on the growth and development, pod yield and quality of peanut. Combined with the actual situation of Huang-Huai-Hai region and peanut precipitation / water demand index, the water suitability function is determined and calculated as follows:$${text{F}}_{{text{i}}} left( {text{r}} right) = left{ {begin{array}{*{20}l} {frac{{text{r}}}{{0.9{text{ET}}_{{text{c}}} }}} hfill & {r < 0.9E{text{T}}_{{text{c}}} } hfill \ 1 hfill & {0.9E{text{T}}_{{text{c}}} le r le 1.2E{text{T}}_{{text{c}}} } hfill \ {frac{{1.2{text{ET}}_{{text{c}}} }}{{text{r}}}} hfill & {r > 1.2E{text{T}}_{{text{c}}} } hfill \ end{array} } right.$$
    (7)
    where Fi(r) is the water suitability of a certain growth period; r is the accumulated precipitation of peanut in a certain development period; ETc is the water demand of peanut in each growth period.$${mathrm{ET}}_{mathrm{c}}={mathrm{K}}_{mathrm{c}}cdot {mathrm{ET}}_{0}$$
    (8)
    where Kc is the peanut crop coefficient (Table 2) and ET0 is the crop reference evapotranspiration, which is calculated by the Penman Monteith method recommended by the international food and Agriculture Organization (FAO).Sunshine suitability modelSunshine hours are an important condition for photosynthesis. The “light compensation point” and “light saturation point” of peanut are relatively high, and more sunshine hours are required for photosynthesis. Under certain conditions of water, temperature and carbon dioxide, photosynthesis increases or decreases with the increase or decrease of light. Relevant studies show that when the sunshine hours reach more than 55% of the available sunshine hours, the crops reach the appropriate state to reflect the light37. The following formula is used to calculate the sunshine suitability of peanut in each growth period.$${mathrm{F}}_{mathrm{i}}left(mathrm{s}right)=left{begin{array}{l}frac{mathrm{S}}{{mathrm{S}}_{0}} quad S{mathrm{S}}_{0}end{array}right.$$
    (9)
    where Fi(s) is the sunshine suitability of peanut in a certain development period, S is the actual sunshine hours in a certain growth period, S0 is 55% of the sunshine hours (L0), and the calculation method of L0 refers to the following formula.$${mathrm{L}}_{0}=frac{2mathrm{t}}{15}$$
    (10)
    $$mathrm{sin}frac{mathrm{t}}{2}=sqrt{frac{mathrm{sin}(45^circ -frac{mathrm{varnothing }-updelta -upgamma }{2})times mathrm{sin}(45^circ +frac{mathrm{varnothing }-updelta -upgamma }{2})}{mathrm{cosvarnothing }times mathrm{cosdelta }}}$$
    (11)
    where Φ is the geographic latitude, δ is the declination, γ is the astronomical refraction, t is the angle.Comprehensive suitability modelPeanut has different needs for meteorological elements such as temperature, sunshine and precipitation in different growth periods. In order to analyze the impact of meteorological factors in different growth periods on yield, correlation analysis was conducted between the suitability of temperature, precipitation and sunshine in each growth period and the relative meteorological yield of peanut, and the correlation coefficient of each growth period divided by the sum of the correlation coefficients of the whole growth period was used as the weight coefficient of the suitability of temperature, precipitation and sunshine in each growth period (Table 3). The climatic suitability of each single element in peanut growing season is calculated by using formulas (12) and (13):Table 3 The weight coefficients of climatic suitability at each growth stage.Full size table$$left{begin{array}{c}{mathrm{b}}_{mathrm{ti}}=frac{{mathrm{a}}_{mathrm{ti}}}{sum_{mathrm{i}=1}^{mathrm{n}}{mathrm{a}}_{mathrm{ti}}}\ {mathrm{b}}_{mathrm{ri}}=frac{{mathrm{a}}_{mathrm{ri}}}{{sum }_{mathrm{i}=1}^{mathrm{n}}{mathrm{a}}_{mathrm{ri}}}\ {mathrm{b}}_{mathrm{si}}=frac{{mathrm{a}}_{mathrm{si}}}{{sum }_{mathrm{i}=1}^{mathrm{n}}{mathrm{a}}_{mathrm{si}}}end{array}right.$$
    (12)
    $$left{begin{array}{c}F(t)={sum }_{mathrm{i}=1}^{mathrm{n}}left[{mathrm{b}}_{mathrm{ti}}{mathrm{F}}_{mathrm{i}}(mathrm{t})right]\ F(r)={sum }_{mathrm{i}=1}^{mathrm{n}}left[{mathrm{b}}_{mathrm{ri}}{mathrm{F}}_{mathrm{i}}(mathrm{r})right]\ F(s)={sum }_{mathrm{i}=1}^{mathrm{n}}left[{mathrm{b}}_{mathrm{si}}{mathrm{F}}_{mathrm{i}}(mathrm{s})right]end{array}right.$$
    (13)
    where bti, bri and bsi are the weight coefficients of temperature, precipitation and sunshine suitability in the i growth period respectively, ati, ari and asi are the correlation coefficients between temperature, precipitation and sunshine suitability and meteorological impact index of peanut yield in the i growth period respectively, and F(t), F(r) and F(s) are the temperature, precipitation and sunshine suitability in peanut growth season respectively.Then, the geometric average method is used to obtain the comprehensive suitability of peanut growth season, as shown in formula (14).$$F(S)=sqrt[3]{F(t)times F(r)times F(s)}$$
    (14)
    Verification of climatic zoning resultsDrought and flood disaster indexOn the basis of previous studies, in view of the different water demand of peanut in different development stages, this paper adds the water demand of peanut in different development stages as an important index to calculate, and constructs a standardized precipitation crop water demand index (SPRI) that can comprehensively characterize the drought and flood situation of peanut, so as to judge and analyze the occurrence of drought and flood disasters of peanut.Step 1: calculate the difference D between precipitation and crop water demand at each development stage$${D}_{i}={P}_{i}-{ET}_{ci}$$
    (15)
    where Pi is the precipitation in the i development period (mm), and ETci is the crop water demand in the i development period (mm).Step 2: normalize the data sequence.Since there are negative values in the original sequence, it is necessary to normalize the data when calculating the standardized precipitation crop water demand index. The normalized value is the SPRI value. The normalization method and drought and flood classification are consistent with SPEI index38,39,40.Chilling injury indexBased on the results of previous studies41, the abnormal percentage of caloric index was selected as the index of low-temperature chilling injury of peanut to judge and analyze the occurrence of chilling injury in different growth stages. The specific calculation process and formula are as follows:Step 1: calculate the caloric index of different development stages.Combined with the growth and development characteristics of peanut and considering the appropriate temperature, lower limit temperature and upper limit temperature at different growth stages of peanut, the caloric index can reflect the response of crops to environmental heat conditions. The average value of daily heat index is taken as the heat index of growth stage to reflect the influence of heat conditions in different growth stages on crop growth and development. Refer to formulas (5) and (6) to calculate the heat index Fi(t) at different development stages.Step 2: calculate the percentage of heat index anomaly$${I}_{ci}=frac{{F}_{i}(t)-overline{{F }_{i}(t)}}{overline{{F }_{i}(t)}}times 100%$$
    (16)
    where Ici is the Chilling injury index of stage i, Fi(t) is the heat index of stage i, and (overline{{F }_{i}(t)}) is the average value of the heat index of stage i over the years.Heat injury indexBased on the results of previous studies42, taking the average temperature of 26 °C, 30 °C and 28 °C and the daily maximum temperature of 35 °C, 35 °C and 37 °C as the critical temperature index to identify the heat damage of peanut in three growth stages, if this condition is met and lasts for more than 3 days, it will be recorded as a high temperature event.Disaster frequencyDisaster frequency (Pi) is defined as the ratio of the number of years of disaster at a certain station to the total number of years in the study period43, which is calculated by formula (17).$${P}_{i}=frac{n}{N}times 100%$$
    (17)
    where n is the number of years of disaster events to some extent at a certain growth period at a certain station, and N is the total number of years. More

  • in

    Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis

    Riley M, Gordon D. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin A, West S, Buckling A. Cooperation and competition in pathogenic bacteria. Nature. 2004;430:1024–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velicer G, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brockhurst M, Habets M, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.PubMed 
    Article 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972;36:478–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:e1002141.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hölscher T, Kovács ÁT. Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol. 2017;19:2537–45.PubMed 
    Article 

    Google Scholar 
    Kearns D. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogales J, Bernabéu-Roda L, Cuéllar V, Soto M. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol. 2012;194:2027–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray T, Kazmierczak B. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2008;190:2700–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinsinger R, Shirk M, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, et al. A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. MBio. 2015;6:e00581–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012;85:51–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 2013;110:13600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seminara A, Angelini T, Wilking J, Vlamakis H, Ebrahim S, Kolter R, et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci USA. 2012;109:1116–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Rep. 2016;14:22–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sexton D, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun. 2017;8:230.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xavier J, Kim W, Foster K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79:166–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tai JSB, Mukherjee S, Nero T, Olson R, Tithof J, Nadell CD, et al. Social evolution of shared biofilm matrix components. Proc Natl Acad Sci USA. 2022;119:e2123469119.PubMed 
    Article 

    Google Scholar 
    Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 2006;59:1229–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin M, Dragoš A, Hölscher T, Maróti G, Bálint B, Westermann M, et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat Commun. 2017;8:15127.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin M, Dragoš A, Schäfer D, Maróti G, Kovács ÁT. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J. 2020;14:2302–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems. 2020;5:e00425–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kovács ÁT, Dragoš A. Evolved Biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J Mol Biol. 2019;431:4749–59.Dragos A, Lakshmanan N, Martin M, Horvath B, Maroti G, Falcon Garcia C, et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol. 2018;94:fix155.Article 
    CAS 

    Google Scholar 
    Dragoš A, Martin M, Garcia CF, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun. 2021;12:2324.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gore J, Youk H, Van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hölscher T, Dragoš A, Gallegos-Monterrosa R, Martin M, Mhatre E, Richter A, et al. Monitoring spatial segregation in surface colonizing microbial populations. J Vis Exp. 2016;2016:e54752.
    Google Scholar 
    Morris R, Schor M, Gillespie R, Ferreira A, Baldauf L, Earl C, et al. Natural variations in the biofilm-associated protein BslA from the genus Bacillus. Sci Rep. 2017;7:6730.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One. 2013;8:e62044.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenski RE, Rose M, Simpson S, Tadler S. Long-term experimental evolution in Escherichia coli. I Adaptation and divergence during 2,000 generations. Am Nat. 1991;138:1315–41.Article 

    Google Scholar 
    Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Slatkin M, Excoffier L. Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics. 2012;191:171–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacLean R, Fuentes-Hernandez A, Greig D, Hurst L, Gudelj I. A mixture of ‘cheats’ and ‘co-operators’ can enable maximal group benefit. PLoS Biol. 2010;8:e1000486.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kearns DB. Division of labour during Bacillus subtilis biofilm formation. Mol Microbiol. 2008;67:229–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems. 2021;6:e00770–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stefanic P, Mandic-Mulec I. Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol. 2009;191:1756–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Even-Tov E, Omer Bendori S, Valastyan J, Ke X, Pollak S, Bareia T, et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 2016;14:e1002386.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall N. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aframian N, Eldar A. A bacterial tower of Babel: Quorum-Sensing signaling diversity and its evolution. Annu Rev Microbiol. 2020;74:587–606.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem. 2020;16:2983–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25:257–66.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kovács ÁT. Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol. 2014;5:649.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang F, Kwan A, Xu A, Süel G. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One. 2015;10:e0132948.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bruce J, West S, Griffin A. Functional amyloids promote retention of public goods in bacteria. Proc Biol Sci. 2019;286:20190709.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma L, Conover M, Lu H, Parsek M, Bayles K, Wozniak D. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6:151–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373:eabi4882.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozano-Andrade CN, Nogueira CG, Wibowo M, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. bioRxiv. 2022. https://doi.org/10.1101/2022.01.10.475645.Article 

    Google Scholar  More

  • in

    Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities

    Testing H1 and H2 at community composition levelAs noted above, the simple fact that fungi grow more slowly than bacteria is the basis of the hypotheses that (H1) fungal communities should be more resistant than bacterial communities to drought stress, and (H2) that fungal communities should be less resilient than bacterial communities when the stress is relieved by rewetting18. In addition to growth rate, these two hypotheses may be related to differences in the form of growth between fungi and bacteria. For example, multicellular hyphal growth versus unicellular division or the greater thickness of fungal cell walls as compared to those of bacteria47,48. We tested H1 and H2 at the community composition level by blending the fungal and bacterial datasets generated from the same leaf, root, rhizosphere and soil samples collected from field-grown sorghum that had been either irrigated as a control, or subjected to preflowering drought followed by regular wetting beginning at flowering10,11.We followed the approach of Shade et al.17 to detect resistance and resilience, which had been developed for univariate variables, e.g., richness. For multivariate data, e.g., community composition, we modified it by calculating pairwise community dissimilarity for two groups: within-group (control-control pairs, drought-drought pairs, or rewetting-rewetting pairs), and between-group (control-drought pairs, or control-rewetting pairs). Ecological resistance to drought stress is detected by comparing compositional dissimilarity of between-group pairs (control-drought pairs) against within-group pairs (control-control pairs and drought-drought pairs) for each of the droughted weeks (weeks 3–8). Ecological resilience to rewetting is detected by assessing, from before to after rewetting, the change in the difference of compositional dissimilarity between within-group pairs and between-group pairs. Here, the point just before rewetting was week 8 and the points after rewetting were weeks 9–17. A t-test was used to assess the statistical significance of the differences in resistance or resilience between bacterial and fungal communities at each time point for each compartment.To account for the different resolutions of ITS and 16 S, we compared bacterial 16 S OTUs against both fungal ITS, species-level OTUs as well the fungal family level (Supplementary Fig. 1). The results of analyses using either fungal families or OTUs are consistent. Out of 36 comparisons (15 roots, 15 rhizospheres and 6 soils), different family and OTUs results were detected in four instances. In two of these, significances detected by OTUs were not detected by family (root, weeks 4 and 17) and, in the other two cases, significances detected by family were not detected by OTUs (rhizosphere, weeks 7 and 8). (Fig. 1). We report only results that are consistent at both the species and family levels (Fig. 1).In line with our first hypothesis, H1, we found that the resistance to drought stress for fungal mycobiomes was consistently stronger than that for bacterial microbiomes for weeks 5 in root, weeks 4–6 in rhizosphere, and weeks 4 and 6–8 in soil (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2). In support of our second hypothesis, H2, when the stress of pre-flowering drought was relieved by rewetting, we found that the resilience of the bacterial communities was consistently higher than that for the fungi in weeks 9–16 in root, and weeks 11–17 in rhizosphere (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2).Surprisingly, we found that resilience was stronger for fungal than bacterial communities in the first week (week 9) of rewetting in the rhizosphere (Fig. 1, Supplementary Fig. 1 and Supplementary Table 2). This high resilience of fungi may be associated with the quick growth of sorghum roots when rewetted. The rhizosphere zone around these newly formed roots may be quickly colonized by soil fungi, a community that was weakly affected by drought. This result suggests that re-assembly of the rhizosphere microbial community is more complex than previously expected.The finding that fungal community composition in the soil is not shaped by drought prevented us from further detecting resilience (Fig. 1). Note fungal community in early leaves was excluded from analysis due to the high proportion of non-fungal reads in sequencing11.Testing H1 and H2 at all-correlation levelNext, we moved from the comparison of whole communities to correlation among individual bacterial and fungal taxa to test the hypotheses about resistance, H1, and resilience, H2. As noted above, previous research provided the foundation for the stress gradient hypothesis, which predicts an increase in positive associations in stress32,33,34,35,36,37. Further, ecological modeling predicts that negative associations promote stability40. Concerning specific associations, studies of Arabidopsis and associated microbes reported that positive associations are favored within kingdoms, i.e., within bacteria or within fungi, while negative associations predominate between kingdoms38,39. Given these foundations, concerning H1, we expected an increase in the proportion of positive correlation by drought stress that would be strongest for B-B, followed by F-F, and lastly by B-F; for H2 we expected rewetting to cause a decrease in the proportion of positive correlation, again most strongly for B-B, followed by F-F, and lastly by B-F.Overall, at the all-correlation level, we found no consistent support for the differences postulated for bacterial and fungal responses in H1. For example, strong increases in the proportion of positive correlations under drought could be found in all microbial pairings for some compartments (B-B in leaf and root, F-F in rhizosphere and soil, and B-F in root and rhizosphere) (Fig. 2a, Supplementary Figs. 2, 3). Neither did we find consistent support for the differences ascribed to bacteria and fungi in H2 as the strongest decreases in the proportion of positive correlations during rewetting occurred at F-F in rhizosphere and soil, and B-B in leaf and root (Fig. 2b, Supplementary Figs. 2, 3).Fig. 2: Correlations of microbes in drought stress and drought relief.Estimates of combined correlations (row a) show an increase in positive correlations under drought stress across the four compartments (root, black; rhizosphere, blue; soil, red; leaf, green). Data points underlying the lines in the figure are provided in the alternative version in Supplementary Fig. 2. This result is in line with the stress gradient hypothesis which posits that stressful environments favor positive associations because competition will be less intense than in benign environments32,33,36,37. Note that positive trends in combined correlations can arise in two ways. First, from an increase of positive correlations (row b) that exceeds the rise in negative correlations (row c), e.g., Leaf bacterial-bacterial (Bac-Bac) correlations or rhizosphere fungal-fungal (Fun-Fun) correlations in the drought period (Negative correlations in row C values are multiplied by −1 to facilitate comparison). Second, from a decrease in negative correlations that exceeds a decrease in positive correlations, e.g., root bacterial-bacterial correlations or root bacterial-fungal (Bac-Fun) correlations in drought. Combined (a), positive (b) and negative (c) estimates of correlation (Spearman’s rho, ρ) are given for four compartments (root, rhizosphere, soil and leaf), and three types of correlations (Bacterium-Bacterium, Fungus-Fungus, Bacterium-Fungus). T-tests (two sided) were carried out for linear mixed effect modelling that incorporates link type and compartments as random factors. Detailed distribution densities of correlations are presented in Supplementary Fig. 3. Source data are provided as a Source Data file.Full size imageWe found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations among microbial taxa (Fig. 2a, Supplementary Figs. 2, 3). The increases were due, largely, to B-B correlations in leaf and F-F correlations in the rhizosphere during drought, when the relative frequency of positive correlations was increased (Fig. 2b, Supplementary Figs. 2, 3) and the frequencies of negative correlations were decreased or weakly increased (Fig. 2c, Supplementary Figs. 2, 3). Less obvious increases in the relative frequency of positive correlations (such as B-B in root, F-F in soil, and B-F in root and rhizosphere) occurred where drought reduced both positive and negative correlations, but the losses of negative correlations exceeded those of positive correlations (Fig. 2, Supplementary Figs. 2, 3).In support of the expectation that correlations would be more negative between taxonomic groups than within taxonomic groups, we found that the relative frequency of positive correlations was generally lower for B-F than B-B and F-F correlations (Fig. 2, Supplementary Figs. 2, 3). Moreover, as ecological modeling has indicated that negative associations should promote stability of communities40, we hypothesize that B-F correlations would be more stable than B-B and F-F networks in response to drought stress. However, we found no support for this hypothesis, as B-F correlations (for example in root) did not always show the least response to drought stress (Fig. 2, Supplementary Figs. 2, 3).Testing H1 and H2 at species co-occurrence levelFor our final test of H1 (resistance) and H2 (resilience) we focused on co-occurrence networks based on significant, positive correlations. These networks have been reported to be destabilized for bacteria but not for fungi in mesocosms subject to drought stress19, and shown to be disrupted for bacteria in natural vegetation studied over gradients of increasing aridity41,42. Using these results as guides, for H1 we expected that drought stress should disrupt co-occurrence networks most strongly for B-B, followed by F-F, and lastly by B-F. For H2 we expected that relief of stress by rewetting should strengthen microbial co-occurrence networks most strongly for B-B, followed by F-F, and lastly by B-F.For this test we constructed microbial co-occurrence networks using significant positive pairwise correlations between microbial taxa, B-B, F-F and B-F, and compared the network complexity between fully irrigated control and drought, and between control and rewetting following drought. In general, we found no consistent support for the difference between bacteria and fungi inherent in H1. Rhizosphere was the one compartment where B-B vertices dropped and F-F vertices rose in response to drought, as expected, but this result was offset in root and soil, where vertices dropped in all networks, B-B, F-F and B-F (Figs. 3, 4; Supplementary Figs. 4, 5). Analysis by co-occurrence networks highlighted the differences between plant compartments. In root drought strongly disrupted networks of B-B, B-F and F-F, but in the other three compartments, network disruption was weaker, and networks were even enhanced by drought for F-F in rhizosphere and B-B in leaf (Figs. 3, 4).Fig. 3: Networks of significant positive cross-taxonomic group correlations (bacteria and fungi).a Fungal operational taxonomic units (OTUs) (blue) and bacterial OTUs (black) are graphed as nodes. Significant positive Spearman correlations are graphed as edges (ρ  > 0.6, false discovery rate adjusted P  More

  • in

    Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems

    Kaya, C., Murillo-Amador, B. & Ashraf, M. Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum. Antioxidants (Basel, Switzerland) 9, 1–29 (2020).
    Google Scholar 
    Darwesh, O. M., Shalaby, M. G., Abo-Zeid, A. M. & Mahmoud, Y. A. G. Nano-bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egypt. J. Chem. 64, 2499–2507 (2021).
    Google Scholar 
    Bimurzayev, N., Sari, H., Kurunc, A., Doganay, K. H. & Asmamaw, M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci. Rep. 11, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    Li, W. et al. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 10, 1–9 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Hussien, H. A., Salem, H. & Mekki, B. E. D. Ascorbate-glutathione-α-tocopherol triad enhances antioxidant systems in cotton plants grown under drought Stress. Int. J. ChemTech Res. 8, 1463–1472 (2015).CAS 

    Google Scholar 
    Hussein, H. A. A., Mekki, B. B., El-Sadek, M. E. A. & El Lateef, E. E. Effect of L-ornithine application on improving drought tolerance in sugar beet plants. Heliyon 5, e02631 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, H., Huang, Z., Li, M. & Hou, Z. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci. Rep. 10, 2 (2020).Article 
    CAS 

    Google Scholar 
    Khataar, M., Mohammadi, M. H., Shabani, F., Mohhamadi, M. H. & Shabani, F. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Hernández, J. A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 20, 2408 (2019).PubMed Central 
    Article 

    Google Scholar 
    Dubey, S., Bhargava, A., Fuentes, F., Shukla, S. & Srivastava, S. Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 48, 954–966 (2020).CAS 
    Article 

    Google Scholar 
    Devarshi, P., Grant, R., Ikonte, C. & Hazels Mitmesser, S. Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients 11, 2 (2019).Article 
    CAS 

    Google Scholar 
    Takahashi, H. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakhoum, G. S. et al. Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43 (2018).Article 
    CAS 

    Google Scholar 
    Adams, E. et al. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G. & El-Awadi, M. E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 44, 1–10 (2020).Article 

    Google Scholar 
    Wani, S. H. et al. Engineering salinity tolerance in plants: Progress and prospects. Planta 251, 1–29 (2020).Article 
    CAS 

    Google Scholar 
    Genisel, M., Erdal, S. & Kizilkaya, M. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul. 75, 187–197 (2015).CAS 
    Article 

    Google Scholar 
    Salem, H., Abo-Setta, Y., Aiad, M., Hussein, H.-A. & El-Awady, R. Effect of potassium humate on some metabolic products of wheat plants grown under saline conditions. J. Soil Sci. Agric. Eng. 8, 565–569 (2017).
    Google Scholar 
    El-Awadi, M. E., Ibrahim, S. K., Sadak, M. S., Abd Elhamid, E. M. & Gamal El-Din, K. M. Impact of cysteine or proline on growth, some biochemical attributes and yield of faba bean. Int. J. PharmTech Res. 9, 100–106 (2016).CAS 

    Google Scholar 
    Nasibi, F., Kalantari, K. M., Zanganeh, R., Mohammadinejad, G. & Oloumi, H. Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian J. Plant Physiol. 21, 279–286 (2016).Article 

    Google Scholar 
    Romero, I. et al. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit. Vectors 7, 1–11 (2014).Article 
    CAS 

    Google Scholar 
    Guo, H. et al. l-cysteine desulfhydrase-related H2S production is involved in OsSE5-promoted ammonium tolerance in roots of Oryza sativa. Plant Cell Environ. 40, 1777–1790 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colak, N., Tarkowski, P. & Ayaz, F. A. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Bot. Serbica 44, 191–201 (2020).Article 

    Google Scholar 
    Teixeira, W. F. et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 2 (2017).Article 

    Google Scholar 
    Perveen, S. et al. Cysteine-induced alterations in physicochemical parameters of oat (Avena sativa L var Scott and F-411) under drought stress. Biol. Futur. 70, 16–24 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrez, D. A., Abdelhamid, A. E. & Darwesh, O. M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 20, 100302 (2019).Article 

    Google Scholar 
    Acharya, B. R. et al. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci. Rep. 12, 1274 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hayat, S. et al. Role of proline under changing environments: A review. Plant Signal. Behav. 7, 2 (2012).
    Google Scholar 
    Thomas, J., Mandal, A. K. A., Kumar, R. R. & Chordia, A. Role of biologically active amino acid formulations on quality and crop productivity of tea (Camellia sp.). Int. J. Agric. Res. 4, 228–236 (2009).CAS 
    Article 

    Google Scholar 
    Mekki, B. E. D. B. & Hussein, H. A. A. Influence of L-ascorbate on yield components, biochemical constituents and fatty acids composition in seeds of some groundnut (Arachis hypogaea L.) cultivars grown in sandy soil. Biosci. Res. 14, 75–83 (2017).
    Google Scholar 
    Cuin, T. A. & Shabala, S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225, 753–761 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussein, H.-A.A. et al. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 11, 1219 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azarakhsh, M. R., Asrar, Z. & Mansouri, H. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. J. Soil Sci. Plant Nutr. 15, 651–662 (2015).
    Google Scholar 
    Mekki, B. E. D., Hussien, H. A. & Salem, H. Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants. Int. J. ChemTech Res. 8, 1573–1581 (2015).
    Google Scholar 
    Zhao, Y. S. et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10, 2004 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elsayed, A. A., Ibrahim, A. A. & Dakroury, M. Z. Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Sci. Exch. J. An Int Q. J. Sci. Agric. Environ. 37, 467–479 (2016).
    Google Scholar 
    Darwesh, O. M. & Elshahawy, I. E. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur. J. Plant Pathol. 160, 917–934 (2021).CAS 
    Article 

    Google Scholar 
    Metzner, H., Rau, H. & Senger, H. Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta 65, 186–194 (1965).CAS 
    Article 

    Google Scholar 
    Cerning, B. J. A note on sugar determination by the anthrone method. Cereal Chem. 52, 857–860 (1975).
    Google Scholar 
    Pourmorad, F., Hosseinimehr, S. J. & Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5, 1142–1145 (2006).CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).CAS 
    Article 

    Google Scholar 
    Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T. & Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In Methods in Enzymology Vol. 630 481–502 (Academic Press, 2020).
    Google Scholar 
    Kong, F. X., Hu, W., Chao, S. Y., Sang, W. L. & Wang, L. S. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ. Exp. Bot. 42, 201–209 (1999).CAS 
    Article 

    Google Scholar 
    Asada, K. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241 (1992).CAS 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Snedecor, G. W. & Cochran, W. G. Statistical Methods (The Iowa State University Press, 1989).MATH 

    Google Scholar  More

  • in

    Beyond nitrogen and phosphorus

    An experiment in secondary forests in the Democratic Republic of the Congo finds that calcium, an overlooked soil nutrient, is scarcer than phosphorus, and represents a potentially greater limitation on tropical forest growth.Ecology can reveal distributional patterns and dynamics in nature. One approach used is studying the elemental composition of plants, which has been linked to ecological processes such as growth, diversity or water use efficiency. More recently, elemental composition has been detected as a cofactor in governing the carbon sink capacity of plants, and therefore climate change mitigation1,2,3. This discovery has added an extra layer of urgency to the field, which now aims to better understand and predict global change. The study of nitrogen and/or phosphorus has until now received most of the attention of plant ecologists: nitrogen is the most abundant element in dry leaves after hydrogen and carbon, forms the main structure of proteins and is strongly linked to photosynthesis4. Phosphorus represents around one-tenth of nitrogen abundance in leaves and is key in energy storage and nucleic acids. However, although these represent only two of the many chemical elements that are in flux throughout ecosystems, whether others may have a dominant role in ecosystem dynamics is an open question. Writing in Nature Ecology & Evolution, Bauters et al.5 share some evidence to motivate broadening out from the dominant focus on nitrogen and phosphorus in terrestrial ecology, by revealing a crucial limiting role of calcium in the dynamics of tropical forest succession. More

  • in

    Salt flat microbial diversity and dynamics across salinity gradient

    Sabkha soil analysisSoil biochemical analysis shows higher concentration of salt in the middle (average of 200 ppt) which decreases to 20 ppt outside of the sabkha (Fig. 1B). Soil conductivity and total dissolved solids (TDS) were positively correlated with salinity (r = 0.8, p  More

  • in

    Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture

    Gabor transformThe Gabor transform has rarely been used as a feature in a landscape classification OBIA approach but has been used in other OBIA processes such as fingerprint enhancement and human iris detection and for data dimensionality reduction24,29,30,31,32,33,34,35. Gabor filters are a bandpass filter applied to an image to identify texture. The different Gabor bandpass filters mathematically model the visual cortical cells of mammalian brains and thus is expected to improve segmentation and classification accuracy when compared to a human delineated and classified image26,27.Samiappan et al.36 compared Gabor filters to other texture features (grey-level co-occurrence matrix, segmentation-based fractal texture analysis, and wavelet texture analysis) within the GEOBIA process, of a wetland, using sub-meter resolution multispectral imagery. These Gabor filters performed comparably, in overall classification accuracy and Kappa coefficients, with other texture features. However, they were still outperformed by all other texture features. This study did not use any other data for analysis for determining the performance of Gabor filters when paired with data sources such as spectral, NDVI, or LiDAR36,37. Wang et al.38 paired a Gabor transformation with a fast Fourier transformation for edge detection on an urban landscape image that contained uniform textures with promising results. Su30 used the textural attributes derived from Gabor filters for classification but had similar results to Samiappan et al.36 where they found that Gabor features were one of the least useful/influential that contributed to the classification of a mostly agricultural landscape.Gabor filters are a Fourier influenced wavelet transformation, or bandpass filter, that identifies texture as intervals in a 2-D Gaussian modulated sinusoidal wave. This modulation differentiates the Gabor transform from the Fourier transform23,26. These Gabor transformed wavelets are parameterized by the angle at which they alter the image and the frequency of the wavelet. Rather than smoothing an image at the cost of losing detail through Fourier transforms or median filters, Gabor transformed images identify the repeated pattern of localized pixels and gives them similar values if they are a part of the same repeated sequence. Gabor features can closely emulate the visual cortex of mammalian brains that utilize texture to identify objects26,27. This is based on the evaluation of neurons associated with the cortical vertex that respond to different images or light profiles39. Marcelja27 identified that cortical cells responded to signals that are localized frequencies of light like what is represented by the Gabor transformations. Within the frequency domain, the Gabor transform can be defined by Eq. (1):$$Gleft(u, v;f, theta right)= {e}^{-frac{{pi }^{2}}{{f}^{2}} ({gamma }^{2}({u}^{{prime}}-f{)}^{2}+{n}^{2}{v}^{{{prime}}2})}$$
    (1)

    where (f) is the user-determined frequency (or wavelength); (theta) is the user-determined orientation at which the wavelet is applied to the image; (gamma) and (n) are the standard deviations of the Gaussian function in either direction23,38. These parameters define the shape of the band pass filter and determines its effect on one-dimensional signals. Daugman26, created a 2-D application of this filter in Eq. (2);$$gleft(u,vright)= {e}^{-{pi }^{2}/{f}^{2}[{gamma }^{2}{left({u}^{{prime}}-fright)}^{2}+{n}^{2}{{v}^{{prime}}}^{2}]}$$
    (2)

    where u’ = ucos − vsin θ θ and v’ = usin − vcos θ.In order to implement Gabor filters on multi-band spectral images, we used Matlab’s Gabor feature on the University of Iowa’s Neon high performance computer (HPC)40 which has up to 512 GB of RAM, which was necessary for processing these images. The first implementation of Gabor filters was performed on a 1610 × 687 single band pixel array (a small subset of the study area), a filter bank of 4 orientations and 8 wavelengths, on a 32 GB RAM computer, and took approximately 8 h to complete. Filter banks are a set of Gabor filters with different parameters that is applied to the spectral image and are required to identify different textures with different orientations and frequencies. By lowering the number of wavelengths from 8 to 4 on an 8128 × 8128 single band pixel array on the same machine 32 GB RAM, the processing was reduced to an hour. Using the HPC, this was further reduced to approximately 90 s using the same filter bank. Before implementing on the HPC, the original spectral image was divided into manageable subsets with overlap in order to prevent ‘edge-effect.’ These images were converted to greyscale by averaging values across all three bands33. When wavelengths become too long, they no longer attribute the textural information desired from the image and therefore add unnecessary computing time. The wavelengths that were used for the filter bank were selected as increasing powers of two starting from 2.82842712475 ((24/sqrt{2})) up to the pixel length of the hypotenuse of the input image. From this, we used only 2.82842712475, 7.0710678, 17.6776695, and 44.19417382. The directional orientation was selected as 45° intervals, from 0 to 180: 0, 45, 90, 135. These parameters were based on the reasoning outlined within Jain and Farrokhina25. More directional orientations could have been included but four were used for computational efficiency. The radial frequencies were selected so that they could capture the different texture in the landscape represented by consistent changes in pixels values within each landcover class. When frequencies are too wide or fine of a width they no longer represent the textures of the different landcover classes and thus are not included. This selection of filter bank parameters are similar or the same as other studies that look into the use of Gabor features for OBIA25,30,31.From the different combinations of parameters (four directions and four frequencies) in the Gabor Transform filter bank, sixteen magnitude response images were created from the converted greyscale three band average image. To limit high local variance within the output Gabor texture images, a Gaussian filter was applied. The magnitude response values were normalized across the 16 different bands so that a Principal Component Analysis (PCA) could be applied. The first principal component of the PCA, from these Gabor transformed images, was used for this study since it limits the computation time to process 16 separate Gabor features, in addition to the other data sources, while still retaining the most amount of information from the different Gabor response features. The Gabor band that was used for this study can be viewed in Fig. 2.Figure 2Gabor transformation. Gabor transformed image of study area derived from original image using the first principal component of all gabor outputs using the filter bank parameters. Software: ArcMap (10.x).Full size imageSegmentationFor this study, we used the watershed algorithm for the segmentation of GEOBIA, implemented by ENVI version 5.0 Feature Extraction tool, due to its ubiquitous use within GEOBIA, its ability to create a hierarchy of segmented objects, and support within the literature as a reliable algorithm37,41,39,43. The watershed algorithm can either use a gradient image or intensity image for segmentation. Based on the observed results, this study used the intensity method. The intensity method averages the value of pixels across bands. Scale, a user-defined parameter, is selected to identify the threshold that decides if a given intensity value within the gradient image can be a boundary. This allows the user to decide the size of the objects created. A secondary, user-defined, parameter defines how similar, adjacent, objects need to be before they are combined or merged. The user arbitrarily selects the parameter value based on how it reduces both under and over segmentation. The parameters selected for this study were visually chosen based on a compromise between over and under segmentation relative to the hand demarcated objects.The merging of two separate objects was based on the full lambda schedule where the user selects a merging threshold ({t}_{i, j}) which is defined by Eq. (3):$${t}_{i, j}= frac{frac{left|{O}_{i}right|cdot left|{O}_{j}right|}{left|{O}_{i}right|+ left|{O}_{j}right|}cdot {Vert {u}_{i}-{u}_{j}Vert }^{2}}{mathrm{length}(mathrm{vartheta }left({O}_{i},{O}_{j}right))}$$
    (3)

    where ({O}_{i}) is the object of the image, (left|{O}_{i}right|) is the area of (i), ({u}_{i}) is the average of object (i), ({u}_{j}) is the average of object (j), (Vert {u}_{i}-{u}_{j}Vert) is the Euclidean distance between the average values of the pixel values in regions (i) and (j), and (mathrm{length}left(mathrm{vartheta }left({O}_{i},{O}_{j}right)right)) is the length of the shared boundary of ({O}_{i}) and ({O}_{j}).To compare the segmentation of a riparian landscape, with and without Gabor features, we conducted segmentation on two separate sets of data. One dataset was a normalized stacked layer of NDVI and CHM (see Fig. 3) with the original multispectral image used as ancillary data; the other dataset differed only by the inclusion of the Gabor feature. For both instances, the bands were converted to an intensity image by averaging across bands rather than being converted into a gradient image for segmentation. The dataset that included the Gabor features had a scale parameter set at 30 with merge settings at 95 and 95.7 for the sub and super-objects, respectively. The dataset that did not include the Gabor features had a scale parameter of 10 with merge settings at 95.6 and 98.5 for the sub and super-objects, respectively. This resulted in the creation of 87,198 and 62,905 segments for the sub and super objects, respectively, that were created when the Gabor feature was included. 191,050 and 51,664 segments were created for the sub and super objects when the Gabor features, respectively, were not included within the segmentation process. As you will see in the next section, these segments also represent the number of training data that will be included within the supervised classification.Figure 3CHM and NDVI. LiDAR derived canopy height model (top) and normalized difference vegetation index derived from original spectral image. Software: ArcMap (10.x).Full size imageTo create a hierarchy of land cover classes, two sets of segmentation parameters needed to be selected for each dataset. One set of parameters would be used for the sub-objects within the hierarchy and the other set would be used to create super-objects. All parameters used the intensity and full lambda schedule algorithms for the watershed method. The only setting that changed between the sub and super-objects, for either dataset, was the merge parameter which helped maintain similar boundaries as much as possible. Despite this, boundaries could moderately change due to the Euclidean distance, between the pixel values of (i) and (j), changing from the merging of objects; causing ({t}_{i, j}) to cross the threshold which results in a new boundary being drawn. A representation of these results can be viewed and visually compared to the hand demarcated objects in Fig. 4.Figure 4Automated and manual segmented comparison. Juxtaposition of hand delineated, sub-objects, and super-objects for segments generated using the Gabor features. Software: ArcMap (10.x).Full size imageTraining dataThe training data, used for this study, is the transfer of class attributes from hand demarcated and classified segments to automatically segmented objects based on the majority overlap of the hand demarcated segments. Experts identified them using two different classification schemes referenced from the General Wetland Vegetation Classification System44. The 7-class scheme within this system identified objects of either being forest, marsh, agriculture, developed, open water, grass/forbs, or sand/mud. The 13-class scheme identified objects of either being agriculture, developed, grass/forbs, open water, road/levee, sand/mud, scrub-shrub, shallow marsh, submerged aquatic vegetation, upland forest, wet forest, wet meadow, and wet shrub. Not every class from the 7-class scheme will have a sub-class (i.e. developed, open water) but some do for example wet and upland forest are sub-objects of the forest class and wet meadow and shallow marsh are sub-objects of marsh. Figure 5 visually illustrates both classification schemes across the study area.Figure 5Hand delineated objects of both scales. Software: ArcMap (10.x).Full size imageENVI’s feature extraction tool calculates several landscape, spectral, and textural metrics. These attributes were used for each random forest classifier. The Gabor and Hierarchical features will be included selectively to be able to compare their contributions to the (out-of-bag) OOB classification errors. When Gabor features are included within the classification, they are computed the same way as the other image bands.Random forestThe random forest classifier was implemented in R using the random forest module45. The number of trees, that were randomly generated, was large enough (n = 250) to where the Strong law of large numbers would take effect as indicated by the decrease in the change of accuracy. The default number of variables randomly sampled as candidates at each split variable (mtry parameter) was the total number of variables divided by 3 for each dataset. R also generates two separate variable indices: mean decrease in accuracy and mean decrease Gini. Mean decrease in accuracy refers to the accuracy change in the random forest when a single variable is left out. This is a practical metric to determine the usefulness of a variable. The Gini index measures the purity change within a dataset when it is split based upon a given variable within a decision tree.The random forest classification accuracy will be based on the OOB error. The random forest algorithm trains numerous decision trees on random subsets of the training set leaving out a number of training samples when training each decision tree. The samples that are left out of each decision tree are then classified by the decision tree that they were not included within during the training step. The OOB error is the average error of each predicted bootstrapped sample across the ensemble of decision trees within the random forest algorithm.Figure 6 illustrates how the Gabor and hierarchal features were included within the classification of the super and sub-objects.Figure 6Classification procedure. Schematic flow chart illustrating how the Gabor and hierarchal features were included within the classification of the super and sub-objects. OOB classification error included in parenthesis.Full size imageHierarchical schemeTo attribute the hierarchical structure to the sub-objects, we first classified the larger segments that were created with and without the Gabor features using the broader 7-class scheme. These classified super objects were then converted to raster to calculate the majority overlap with the smaller sub-objects. This gave the sub-objects an attribute, the broader 7-class scheme, that could be used to contribute to the classification of the sub-objects with the finer 13-class scheme. This builds the hierarchical relationship between the two class schemes into the supervised classification of the sub-objects. Figure 6 illustrates how the hierarchal structure was included within two of the four sub-object’s list of features used within classification. This methodological approach aligns with O’Neill et al.21 landscape ecology principle that a super-object’s class could be a useful property in defining or predicting a sub-object. This is also different than the more common rule-based approach of iteratively classifying the landscape into smaller and smaller sub-classes22.Segmentation assessmentMost studies rely upon the accuracy assessment of their classifiers to provide support for their analysis results. However, this does not provide evidence whether a new data fusion technique improves the ability to delineate objects of interest within an image. To assess the performance of our segmented polygons, this study evaluated the segments created with and without the Gabor feature using a method highlighted in Xiao et al.37.Our segmentation results were evaluated using an empirical discrepancy measure, used frequently in image segmentation evaluation37,46,47. Discrepancy measures utilize ground truth images that represent the “correct” delineated/classified image to compare the semi-automated image results. In our study, the objects that were delineated and classified by experts from the U.S. Fish and Wildlife Service, were used as training data for our random forest classifier and as ground truth for the discrepancy measure. The discrepancy measure used the percentage of right segmented pixels (PR) in the whole image. To calculate PR, we converted the classified segmented and ground truth polygons to raster and measured the ratio of incorrect pixels to total amount of pixels which was converted to a percentage.Additionally, landscape metrics were calculated using FRAGSTATS48, an open source program commonly used for calculating landscape metrics. FRAGSTATS computed these metrics from thematic raster maps that represent the land cover types of interest. These thematic classes, used for analysis, were the classified objects at both the super and sub-object level. Since we are not attempting to compare the segmentation results for any specific class or area, we calculated metrics on a landscape level. Landscape metrics will represent the segmentation patterns for the entire study area.FRAGSTATS can calculate various metrics representing different aspects of the landscape. The metrics for analysis attempts to understand object geometry. The metrics calculated, for these analyses, were the average and standard deviation for the area (AREA), the fractal dimension index (FRAC), and the perimeter area ratio (PARA). The number of patches (NP) was also included in each result. To take a more landscape centric approach, the area weighted mean was chosen over a simple average. More

  • in

    Resurrecting extinct cephalopods with biomimetic robots to explore hydrodynamic stability, maneuverability, and physical constraints on life habits

    Virtual hydrostatic model parametersVarious morphological characteristics were held constant in order to isolate and manipulate the variable of conch shape. A CT-scanned Nautilus pompilius conch was essentially morphed into ammonoid-like conch shapes, populating the Westermann morphospace22 while holding constant septal morphology, septal spacing, and shell/septal thicknesses (Fig. 9). Furthermore, body chamber proportions were determined by iteratively computing soft body volumes that yield Nautilus-like chamber liquid (~ 12% of the phragmocone volume retained)67,68. Septal spacing was measured as the angle from the ventral attachment of the current and previous septa, and the spiraling axis of the conch. Because septal spacing differs in early ontogeny (Fig. S11), only measurements from the 7th to 33rd (terminal) septum were considered. The average angle of 23.46° ± 3.32° (standard deviation) was rounded to 23° and held constant throughout the ontogeny of the hydrostatic models.Figure 9Hydrostatic models of theoretical planispiral cephalopods. These models were constructed by morphing a Nautilus pompilius conch into ammonoid shapes (see “Methods”): (a) oxycone, (b) serpenticone, (c) sphaerocone, and (d) morphospace center. The centers of buoyancy and mass are denoted by the tips of the blue (upper) and red (lower) cones. Prime symbols (′) refer to transparent, transverse views of each respective conch shape. (e) Westermann morphospace22 showing relative positions of these conch shapes. All models were rendered in MeshLab76.Full size imageShell and septal thicknesses were measured with digital calipers from a physical specimen of Nautilus pompilius (Table S13). These measurements were recorded as a ratio of inner whorl height (measured from the ventral point on the current whorl to the ventral point on the previous whorl). These ratios were used in the theoretical models to define shell and septum thicknesses (3.1% of inner whorl height for shell thickness and 2.1% of inner whorl height for septal thickness; Table S13).Hydrostatic model constructionThe near-endmember models were constructed from representative ammonoid specimens (Sphenodiscus lobatus and S. lenticularis—oxycone; Dactylioceras commune—serpenticone; Goniatites crenistria—sphaerocone). Lateral and transverse views were measured from figured specimens for the oxycone (Fig. 5 of Kennedy et al.69), serpenticone (Fig. 2 of Kutygin and Knyazev70), and sphaerocone (Figs. 17 and 20 of Korn and Ebbighausen71). These models were constructed with array algorithms similar to earlier hydrostatic models9,35,72, which were used in a piecewise manner to account for allometric changes in coiling throughout ontogeny (Table S14). These arrays replicated the adult whorl section backwards and translated, rotated, and scaled each successive one. These whorl sections were bridged together to create a single tessellated surface representing the outer interface of the shell. Shell thickness was defined by shrinking the original whorl section so that the thickness between the two was equal to 3.1% of the inner whorl height (Table S13), then using the same array to build the internal interface of the shell. The morphospace center was constructed from previously used conch measurements18 and averaging the whorl section shape in blender (Fig. S12). The corresponding Westermann morphospace parameters (Fig. S13) for each morphology are reported in Table S15.Virtual models of the septa were derived from the CT-scan of Nautilus pompilius (Fig. S14). A single septum was isolated from the adult portion of the phragmocone then smoothed to delete the siphuncular foramen. This septum was placed within the whorl section of each theoretical model and stretched in the lateral directions until it approximately fit. The “magnetize” tool in Meshmixer (Autodesk Inc.) was used to attach the septal margin to the new whorl section so that the Nautilus suture was transferred to the new whorl section. The septum was then smoothed to reconcile the first order curves with the new location of the septal margin. The respective septum for each theoretical model was then replicated with the same array instructions used to build the shell. Because each replicated object was rotated one degree (Table S14), 22 septa were deleted in between every two so that the septal spacing was equal to 23° (Fig. S11).For each theoretical model, the septa were unified with the model of the shell using Boolean operations in Netfabb (Autodesk Inc.). To perform hydrostatic calculations, virtual models must be created for each material of unique density. The virtual model of the shell constrains the shape of the soft body (within the body chamber) and chamber volumes (within the phragmocone). These internal interfaces were isolated from the model of the shell, then their faces inverted for proper, outward-facing orientations of their normals. A conservative soft body estimate was created, aligning with previously published reconstructions64,65,73. The profile shape of this soft body was scaled and maintained between each model. External interfaces of the shell and soft body were also isolated to create a model of the water displaced by each theoretical cephalopod. Each of these models are necessary for hydrostatic calculations (buoyancy and the distribution of organismal mass).Each hydrostatic model is stored in an online repository (Dataset S1; https://doi.org/10.5281/zenodo.5684906). The hydrostatic centers of each virtual model and their volumes and masses are listed in Tables S16 and S17.Hydrostatic calculationsEach theoretical model was scaled to have equal volume (near one kilogram; 0.982 kg–a result of arbitrarily scaling the sphaerocone model to 15 cm in conch diameter). An object is neutrally buoyant when the sum of organismal mass is equal to the mass of water displaced (the principle of Archimedes). The percentage of chamber liquid can be computed to satisfy this condition.$${Phi } = frac{{left( {frac{{{text{V}}_{{{text{wd}}}} {uprho }_{{{text{wd}}}} – {text{V}}_{{{text{sb}}}} {uprho }_{{{text{sb}}}} – {text{V}}_{{{text{sh}}}} {uprho }_{{{text{sh}}}} }}{{{text{V}}_{{{text{ct}}}} }}} right) – left( {{uprho }_{{{text{cl}}}} } right)}}{{left( {{uprho }_{{{text{cg}}}} – {uprho }_{{{text{cl}}}} } right)}}$$
    (1)
    where Vwd and ρwd are the volume and density of the water displaced, Vsb and ρsb are the volume and density of the soft body, Vsh and ρsh are the volume and density of the shell, ρcl is the density of cameral liquid, ρcg is the density of cameral gas, and Vct is the total volume of all chambers. A soft body density of 1.049 g/cm3 is used based on bulk density calculations of Nautilus-like tissues74, a seawater-filled mantle cavity, and thin calcitic mouthparts21. A shell density of 2.54 g/cm374, cameral liquid density of 1.025 g/cm375, and cameral gas density of 0.001 g/cm3 are adopted from recent hydrostatic studies.Other hydrostatic properties depend on the relative positions of the centers of buoyancy and mass. The center of buoyancy is equal to the center of volume of water displaced. This center and the centers of each virtual model of unique density were computed in the program MeshLab76. The individual centers for each organismal model (soft body, shell, cameral liquid and cameral gas) were used to compute the total center of mass, with an average weighted by material density:$$M = frac{{sum left( {L*m_{o} } right)}}{{sum m_{o} }}$$
    (2)
    where M is the total center of mass in a principal direction, L is the center of mass of a single object measured with respect to an arbitrary datum in each principal direction, and (m_{o}) is the mass of each object with unique density. Equation 2 was used in the x, y, and z directions to compute the 3D coordinate position of the center of mass. The centers of mass for the chamber contents (liquid and gas) were set equal to the center of volume of all chambers, a minor assumption considering the capillary retention of liquid around the septal margins in the living animals62.The hydrostatic stability index (St) is computed from the relative location of the centers of buoyancy (B) and mass (M), normalized by the cube root of volume (V) for a dimensionless metric that is independent of scale:$$S_{t} = frac{{ sqrt {left( {B_{x} – M_{x} } right)^{2} + left( {B_{y} – M_{y} } right)^{2} + left( {B_{z} – M_{z} } right)^{2} } }}{{sqrt[3]{V}}}$$
    (3)
    where the subscripts correspond to the x, y, and z components of each hydrostatic center.Apertural orientations were measured in blender after orienting each model so that the center of buoyancy was vertically aligned above the center of mass. Apertural angles of 0° correspond to a horizontally facing soft body, while angles of + 90° and − 90° correspond to upward- and downward-facing orientations, respectively.Thrust angles were measured from the hyponome location (ventral edge of the aperture) to the midpoint of the hydrostatic centers, with respect to the horizontal. Thrust angles of 0° infer idealized horizontal backward transmission of energy into movement, while thrust angles of + 90° and − 90° infer more efficient transmission of energy into downward and upward vertical movement, respectively.Biomimetic robot constructionTo isolate the variable of shell shape on swimming capabilities, only the external shape, and static orientation of each virtual hydrostatic model were used to build physical, 3D printed robots. That is, each model has artificially high hydrostatic stability (Tables S3) to nullify the effect of the thrust angle (the angle at which thrust energy passes through the hydrostatic centers and most efficiently transmits energy into movement; Table S4). Less stable morphotypes (e.g., serpenticones and sphaerocones) are more sensitive to the constraints imposed by this hydrostatic property.Space constraints inside each model were determined by first constructing a propulsion system and electronic components that operate the motor. The models use impeller-based water pumps (Figs. 1d and 10a) driven by a brushed DC motor. This system creates a partial vacuum by centrifugal acceleration, drawing water from a “mantle cavity” and expelling it out of a “hyponome”. This system was optimized by iteratively designing models in Blender77, then testing 3D-printed, stand-alone water pumps. After three iterations, a four-blade impeller and gently tapering hyponome (inner diameter at distal end = 6.7 mm) were chosen. The electronic components used to drive the motor consist of an Arduino Pro Micro microcontroller, a motor driver, and two batteries (Fig. 10). A 3.7 V battery operates the microcontroller, and a larger 7.4 V battery supplies power to the motor. Communication is achieved via infrared, allowing specification of the jet pulse duration, number of pulses, and the power level of the motor (using pulse-width modulation; PWM). Each of these electronic components fold into a compact cartridge capable of being plugged into 3D-printed models of each investigated shell shape (Figs. 2 and 10). Each model was designed with brackets to hold the electronics cartridge in place. The sphaerocone had the most severe space constraints, with low conch diameter to volume ratio. After determining the space required for the electronics (Fig. 10) this model was scaled to 15 cm, and all other models were scaled to have similar volumes (with subtle volume differences due to minor differences in soft body shape compared to the hydrostatic models).Figure 10Biomimetic cephalopod robot components. (a) Ventral view of the sphaerocone biomimetic robot (before covering the pump and mantle cavities) with assembled electronics cartridge to the right. (b) View of electronic components that fit into the cartridge. (c) Electronics cartridge placed in robot. These two halves are fit together with wax to create a water-tight seal. Each model component is denoted by letters in circles: A = Arduino microcontroller, B = microcontroller charger / voltage regulator, C = motor driver, D = infrared sensor, E = indicator LED, F = microcontroller battery (3.7 V), G = motor battery (7.4 V), H = brushed motor, I = impeller and water pump cavity, J = electronics cartridge. The colors of annotations correspond to components depicted in Figs. 1 and 2.Full size imageIn addition to having a propulsion system, biomimetic cephalopod robots must also be capable of neutral buoyancy, while assuming the proper orientation in the water. These robots, and their once-living counterparts, each have differing material densities and associated mass distributions for each component. To reconcile these differences, the total mass and total centers of mass for each model were manipulated by controlling the volume and 3D distribution of the 3D-printed PETG (polyethylene terephthalate glycol) thermoplastic. That is, the shape of this material holds each model component in place while correcting for these differences in hydrostatics. The PETG mass required for neutral buoyancy was found by subtracting the mass of every other model component from the mass of the water displaced by the model (i.e., electronics cartridge, bismuth counterweight, liquid, motor, batteries, electronic components, and self-healing rubber; Table S1). This model configuration also allows buoyancy to be fine-tuned in water, compensating for potential density differences between the virtual water and the actual water in the experimental settings. That is, each virtual model accounts for ~ 9 g of internal liquid, but the actual volume of this liquid can be adjusted in the physical robot with a syringe through a self-healing rubber valve (Table S1; Fig. 1).The 3D position of the total center of mass was manipulated by accounting for the local centers of mass of each material of unique density. Materials like the batteries, motor, and electronic components were each assigned bulk density values because they are made up of composite materials. While this is an approximation, their contributions to the total center of mass are low because they account for small fractions of the total model mass (Tables S1 and S2). These components, like all others, were digitally modeled in Blender77 and their volumes and centers of mass were computed in the program MeshLab76. A dense, bismuth counterweight was also modeled, and positioned to artificially stabilize each model (pulling the z component of the total center of mass downward, while maintaining the horizontal components). The virtual model of this counterweight was used to make a 3D-printed mold, allowing a high heat silicone mold to be casted. The bismuth counterweight was cast from this silicone mold and filed/sanded to the dimensions of its virtual counterpart. Hyponomes were oriented horizontally, to yield movement in this direction. To maintain the same static orientation as the virtual model (same x and y center of mass components), the PETG center of mass was computed with the following equation:$$D_{PETG} = frac{{Mmathop sum nolimits_{i = 1}^{n} m_{i} – mathop sum nolimits_{i = 1}^{n} (D_{i} m_{i} )}}{{left( {m_{PETG} } right)}}$$
    (4)
    where DPETG is the location of the PETG center of mass from an arbitrary datum in each principal direction. M is the total center of mass in a particular principal direction, mi is the mass of each model component, Di is the local center of mass of each model component in a particular principal direction and mPETG is the mass of the PETG required for a neutrally buoyant condition. See Tables S1 and S2 for a list of model components and measurements.Each model was 3D printed with an Ultimaker S5 3D printer using clear (natural) PETG in separate parts, allowing the internal components to be implanted (i.e., brushed DC motors and bismuth counterweights). Each model part was chemically welded together with 100% dichloromethane, with minor amounts of cyanoacrylate glue used to fill seams (e.g., the water pump lid; Fig. 10a). Each final model consists of the main body (housing the water pump, motor, and counterweight), and a “lid” with brackets that house the electronics cartridge (Figs. 2 and 10). The main body and lid were fused together before each experiment by placing wax (paraffin-beeswax blend) along a tongue and groove seam, heating it with a hairdryer, then vigorously squeezing each part together. Surplus wax extruded from the seam was removed and smoothed, producing a water-tight seal.Thrust calibrationEven though each model was designed to have equal mantle cavity and pump cavity volumes, they produced slightly different thrusts. These differences were likely due to variable degrees of friction between the impellers and the surrounding water pumps. To correct for these differences, the thrust produced by each model was measured with a Vernier Dual-Range Force Sensor (0.01 N resolution). Each robot was attached at the hyponome location, through a series of pulleys, and to the sensor with fishing line (Fig. S1; similar to the methods used for living cephalopods78). Force was recorded for 30-s intervals at a sample rate of 0.05 s. During this time, each model was recorded jetting with a 6-s pulse for 15 trials (Fig. S2A). Each trial had initial noise from setting up the model, then peaked randomly when the fishing line became taught, then stabilized after some period of oscillation. Only the stabilized portion of the thrust profile was used to record thrust at 100% voltage for each model (Fig. S2B). The true zero datum was also subtracted from each of these trials. The lowest thrust from each of the models was used as a baseline (serpenticone and oxycone). Each model was recorded again for 15 trials by lowering the motor voltage in increments of 5% until they yielded similar thrusts (0.3 N) to the original serpenticone and oxycone trials (Fig. S2C). The final power levels were then determined for each model and adjusted with pulse-width modulation (PWM) through the microcontroller: serpenticone (100%), oxycone (100%), sphaerocone (95%), and morphospace center (85%).The peak thrust measured for 1 kg extant Nautilus is around 2 N16. The time-averaged thrust during each pulse is around 23% of this value (0.46 N16). This computed value slightly overpredicts observed maximum velocities for this animal (33 cm/s instead of 25 cm/s), so the appropriate time-averaged thrust is probably slightly lower. The motor in the robots quickly reaches its maximum thrust (~ 0.3 N) once initiated then quickly declines after shutting off (Fig. S2). Therefore, the thrust produced by the robots can be treated as a conservative Nautilus-like jet thrust close to the behavior of escape jetting. One-second pulse and refill intervals are also on par with values reported for extant Nautilus16.Robot buoyancyEach of the models were made near neutrally buoyant by adjusting the allotted ~ 9 g of internal liquid with a syringe through a self-healing rubber valve. The single-pulse experiments were performed in an external pool (ranging ~ 23.5 to 26.5 °C). The three-pulse and maneuverability experiments were performed in an internal pool (the Crimson Lagoon at the University of Utah). This internal pool had slightly higher temperatures (~ 28 °C), yielding lower ambient water densities than the virtual water. These conditions required slightly less internal liquid (~ 2–5 g). These differences in internal liquid masses produced negligibly small shifts in mass distributions because they are very small proportions of total robot masses (Table S1).Perfect neutral buoyancy cannot be practically achieved, but this condition can be closely approached. Each of the biomimetic robots experience subtle upward or downward movements of the course of their 5–15 s long trials due to slightly positive or negative buoyancies. Because these differences in buoyancy influence the vertical component of movement, only the horizontal components are considered for discussion. However, a comparison of velocities computed from full, 3D movement (Eq. 5) and restricted 2D components (Eq. 6) reveals that these differences are minor (Figs. S7 and S8). These comparisons demonstrate that model buoyancy did not substantially influence kinematics other than gross trajectories (Figs. 4 and S9).3D motion trackingAfter adjusting buoyancy, each model was positioned underwater with a grabber tool. This tool was fitted with a bundle of fiber-optic cable (Fig. S4) attached to an infrared remote control. Arduino code (Dataset S2) was uploaded to the microcontroller in the robot allowing jet pulse duration, number of pulses, and power to be adjusted with this remote control. After an infrared pulse is received, the motor activates, and activity is indicated by a green LED that illuminates the model from the inside. This light is used to determine time-zero for each trial of motion tracking.After sending an infrared signal, the movement of each model was recorded with a submersible camera rig fitted with two waterproof cameras (Fig. 3). Each of the four models were monitored during a single, one-second jet for at least 9 trials each. Additionally, the laterally compressed morphotypes (serpenticone and oxycone) were monitored during three, one-second pulses for 10 trials each. The inflated morphotypes (sphaerocone and morphospace center) were not able to be monitored over longer distances because they had the tendency to rotate about the vertical axis, obscuring views of the tracking points. In addition to horizontal movement, turning efficiency (maneuverability about the vertical axis) was monitored by directing the cameras with a top-down view of each model. A 90° elbow attachment for the hyponome was fit to each model to investigate the ease or difficulty of rotation. Each model was designed to spin counter-clockwise when viewed from above so that the influence of the motor’s angular momentum was consistent between models.Footage was recorded with two GoPro Hero 8 Black cameras at 4K resolution and 24 (23.975) frames per second, with linear fields of view. Motion tracking was performed with the software DLTdv879 to record the pixel locations of each tracking point (Figs. 1c and S4). These coordinates were transformed into 3D coordinates in meters using the program easyWand580. The tracking points on each model were used for wand calibration because the distances between these sets of points were fixed. Standard deviations of the reproduced tracking point distances of less than 1 cm were considered suitable.The 3D position datasets allowed velocity, acceleration, rocking, to be computed for each experiment. Additionally angular displacement and angular velocity was of interest for the rotation experiments about the vertical axis. Velocity was computed under two scenarios: (1) using the 3D movement direction between each timestep (Eq. 5), and (2) only considering the horizontal movement direction between each time step (Eq. 6). The latter scenario was preferred to nullify the influences of model buoyancies, which were not perfectly neutral and caused some degree of vertical movement.$$V_{i} = frac{{sqrt {left( {x_{i} – x_{i – 1} } right)^{2} + left( {y_{i} – y_{i – 1} } right)^{2} + left( {z_{i} – z_{i – 1} } right)^{2} } }}{{left( {t_{i} – t_{i – 1} } right)}}$$
    (5)
    $$V_{i} = frac{{sqrt {left( {x_{i} – x_{i – 1} } right)^{2} + left( {y_{i} – y_{i – 1} } right)^{2} } }}{{left( {t_{i} – t_{i – 1} } right)}}$$
    (6)
    where V and t are velocity and time, and the subscripts i and i −1 refer to the current and previous time steps, respectively. Coordinate components are denoted by x, y, and z at each timestep. The averaged 3D location of both tracking points was used for each model (i.e., midpoints). Note that Eq. (5) uses the 3D form of the Theorem of Pythagoras, whereas Eq. (6) uses the 2D version. Time zero for each trial was defined as the frame where the robot was illuminated by the internal LED, indicating motor activity. Acceleration was modeled by fitting a linear equation to the datapoints during the one-second pulse interval(s) using the curve fitting toolbox in MATLAB R2020A.The artificially high hydrostatic stability of each model was designed to nullify rocking during movement. This behavior was computed for each model during the one-pulse experiments with the following equation:$$theta_{dv} = cos^{ – 1} left( {frac{{left( {z_{2} – z_{1} } right)}}{{sqrt {left( {x_{2} – x_{1} } right)^{2} + left( {y_{2} – y_{1} } right)^{2} + left( {z_{2} – z_{1} } right)^{2} } }}} right) – theta_{tp}$$
    (7)
    where (theta_{dv}) is the angle deviated from true vertical and (theta_{tp}) is the angle of the tracking points measured from the vertical in a static setting. The subscripts 1 and 2 of the x, y, and z coordinates refer to the anterior and posterior tracking points, respectively.Maneuverability about the vertical axis was determined by computing the angle between the horizontal components of each tracking point. The net angle from the starting angle for each trial was tabulated. Angular velocity was determined by dividing the change in angle between each frame by the frame duration (1/23.975 fps).Links to example motion tracking footage, and robotic models are deposited in an online repository60,61,63 (Dataset S2; https://doi.org/10.5281/zenodo.6180801). More