More stories

  • in

    SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet

    Derraik, J. G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44(9), 842–852 (2002).CAS 
    PubMed 

    Google Scholar 
    Gregory, M. R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2013–2025 (2009).
    Google Scholar 
    Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70(1–2), 227–233 (2013).CAS 
    PubMed 

    Google Scholar 
    Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 

    Google Scholar 
    Zobkov, M. B. & Esiukova, E. E. Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits (2018).Coyle, R., Hardiman, G. & O’Driscoll, K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).
    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment. A Report to Inform the Second United Nations Environment Assembly, 220 (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2016).
    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 

    Google Scholar 
    Cole, M. A novel method for preparing microplastic fibers. Sci. Rep. 6(1), 1–7. https://doi.org/10.1038/srep34519 (2016).CAS 
    Article 

    Google Scholar 
    Costa, M. et al. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 168, 299–304 (2010).PubMed 

    Google Scholar 
    Kershaw, P. J. et al. (eds) GESAMP Guidelines or the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean, Rep. Stud. GESAMP No. 99 130 (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2019).
    Google Scholar 
    Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346 (2017).
    Google Scholar 
    Lusher, A., Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R & D-project) (2017).Laist, D. W. Impacts of marine debris: Entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In Marine debris, 99–139 (Springer, 1997).Denuncio, P. et al. Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Mar. Pollut. Bull. 62(8), 1836–1841 (2011).CAS 
    PubMed 

    Google Scholar 
    Do Sul, J. A. I., Santos, I. R., Friedrich, A. C., Matthiensen, A. & Fillmann, G. Plastic pollution at a sea turtle conservation area in NE Brazil: Contrasting developed and undeveloped beaches. Estuar. Coasts 34(4), 814–823 (2011).
    Google Scholar 
    Lazar, B. & Gračan, R. Ingestion of marine debris by loggerhead sea turtles, Caretta caretta, in the Adriatic Sea. Mar. Pollut. Bull. 62(1), 43–47 (2011).CAS 
    PubMed 

    Google Scholar 
    Poppi, L. et al. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline. Dis. Aquat. Org. 100(1), 71–76 (2012).
    Google Scholar 
    Van Franeker, J. A. et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 159(10), 2609–2615 (2011).PubMed 

    Google Scholar 
    Betts, K. Why Small Plastic Particles May Pose a Big Problem in the Oceans 8995–8995 (ACS Publications, 2008).
    Google Scholar 
    Cefas, L. Programme 8: Bass gillnet selectivity. Fish. Sci. 09 (2008).Priscilla, V., Sedayu, A. & Patria, M. P. Microplastic abundance in the water, seagrass, and sea hare Dolabella auricularia in Pramuka Island, Seribu Islands, Jakarta Bay, Indonesia. J. Phys. Conf. Ser. 1402, 033073. https://doi.org/10.1088/1742-6596/1402/3/033073 (2019).Article 

    Google Scholar 
    Graham, E. R. & Thompson, J. T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368(1), 22–29 (2009).
    Google Scholar 
    Thompson, R. C. et al. Lost at sea: Where is all the plastic? Science 304(5672), 838–838 (2004).CAS 
    PubMed 

    Google Scholar 
    Hämer, J., Gutow, L., Köhler, A. & Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ. Sci. Technol. 48(22), 13451–13458 (2014).ADS 
    PubMed 

    Google Scholar 
    Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 

    Google Scholar 
    Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50(6), 3239–3246 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ. Sci. Technol. 50(2), 915–923 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naji, A., Nuri, M. & Vethaak, A. D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018).CAS 
    PubMed 

    Google Scholar 
    Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11(1), 78–87 (2019).CAS 

    Google Scholar 
    Gniadek, M. & Dąbrowska, A. The marine nano-and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Mar. Pollut. Bull. 148, 210–216 (2019).CAS 
    PubMed 

    Google Scholar 
    Dąbrowska, A. A roadmap for a plastisphere. Mar. Pollut. Bull. 167, 112322 (2021).PubMed 

    Google Scholar 
    Ebere, E. C. & Ngozi, V. E. Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplatics. Anal. Methods Environ. Chem. J. 2(2), 13–30 (2019).
    Google Scholar 
    Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front. Toxicol. https://doi.org/10.3389/ftox.2021.636640 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrante, M. et al. Microplastics in fillets of Mediterranean seafood. A risk assessment study. Environ. Res. 204, 112247 (2022).CAS 
    PubMed 

    Google Scholar 
    Li, J. et al. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 136, 401–406 (2018).CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pollution characteristics of microplastics in mollusks from the coastal Area of Yantai. China. Bull. Environ. Contamin. Toxicol. 107, 1–7 (2021).
    Google Scholar 
    Tarjuelo, I., Posada, D., Crandall, K., Pascual, M. & Turon, X. Cryptic species of Clavelina (Ascidiacea) in two different habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar. Biol. 139(3), 455–462 (2001).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. Botrylloides pizoni, a new species of Botryllinae (Ascidiacea) from the Mediterranean Sea R. Zootaxa 3258(1), 28–36 (2012).
    Google Scholar 
    Beli, E. et al. The zoogeography of extant rhabdopleurid hemichordates (Pterobranchia: Graptolithina), with a new species from the Mediterranean Sea. Invertebr. Syst. 32(1), 100–110 (2018).
    Google Scholar 
    Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. I Oceanogr. Res. Pap. 165, 103364 (2020).
    Google Scholar 
    Furfaro, G. & Mariottini, P. A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa. Zootaxa 4731(1), 1–22. https://doi.org/10.11646/zootaxa.4731.1.1 (2020).Article 

    Google Scholar 
    Cózar, A. et al. Plastic accumulation in the Mediterranean Sea. PLoS ONE 10(4), e0121762. https://doi.org/10.1371/journal.pone.0121762 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S., Sharma, V. & Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 8, 634934. https://doi.org/10.3389/fmars.2021.634934 (2021).Article 

    Google Scholar 
    Pinardi, N. & Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158(3–4), 153–173 (2000).
    Google Scholar 
    Suaria, G. et al. The Mediterranean Plastic soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6(1), 1–10 (2016).
    Google Scholar 
    Vianello, A. et al. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf. Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Parenzan, P. Il Mar Piccolo di Taranto. Ciem. Comm. Taranto (1984).Cavallo, R. A. & Stabili, L. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res. 36(15), 3719–3726 (2002).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N. et al. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 55(10–12), 451–458 (2007).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S. & Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 23(13), 12495–12501 (2016).
    Google Scholar 
    Tursi, A. et al. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rendiconti Lincei. Sci. Fisiche e Nat. 29(4), 817–824 (2018).
    Google Scholar 
    Mastrototaro, F. et al. Benthic diversity of the soft bottoms in a semi-enclosed basin of the Mediterranean Sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. U.K. 88(2), 247 (2008).
    Google Scholar 
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Corami, F. et al. Evidence of small microplastics (< 100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Mar. Pollut. Bull. 160, 111606 (2020).CAS  PubMed  Google Scholar  De-la-Torre, G. E., Apaza-Vargas, D. M. & Santillán, L. L. Microplastic ingestion and feeding ecology in three intertidal mollusk species from Lima, Peru. Rev. Biol. Mar. Oceanogr. 55(2), 167–171 (2020). Google Scholar  Jiang, Y. et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286, 131677 (2021).ADS  PubMed  Google Scholar  Haszprunar, G. The heterobranchia—A new concept of the phylogeny of the higher Gastropoda. J. Zool. Syst. Evol. Res. 23(1), 15–37 (1985). Google Scholar  Wägele, H., Klussmann-Kolb, A., Vonnemann, V. & Medina, M. Heterobranchia I: The Opisthobranchia. In Phylogeny and Evolution of the Mollusca (eds Ponder, W. F. & Lindberg, D.) 385–408 (University of California Press, 2008). Google Scholar  Prkic, J. et al. First record of Calma gobioophaga Calado and Urgorri, 2002 (Gastropoda: Nudibranchia) in the Mediterranean Sea. Mediterr. Mar. Sci. 15(2), 423–428 (2014). Google Scholar  Furfaro, G., Trainito, E., De Lorenzi, F., Fantin, M. & Doneddu, M. Tritonia nilsodhneri Marcus Ev., 1983 (Gastropoda, Heterobranchia, Tritoniidae): First records for the Adriatic Sea and new data on ecology and distribution of Mediterranean populations. Acta Adriat. 58, 2 (2017). Google Scholar  Thompson, T. E. Studies on ontogeny of Tritonia hombergi Cuvier (Gastropoda: Opisthobranchia). Philos. Trans. R. Soc. Lond. B 245, 171–218. https://doi.org/10.1098/rstb.1962.0009 (1962).ADS  Article  Google Scholar  Cattaneo-Vietti, R., Angelini, S. & Bavestrello, G. Skin and gut spicules in Discodoris atromaculata (Bergh, 1880) (Mollusca: Nudibranchia). Bollettino Malacol. 28, 173–180 (1993). Google Scholar  Cattaneo-Vietti, R., Angelini, S., Gaggero, L. & Lucchetti, G. Mineral composition of nudibranch spicules. J. Molluscan Stud. 61(3), 331–337. https://doi.org/10.1093/mollus/61.3.331 (1995).Article  Google Scholar  Garese, A., García-Matucheski, S., Acuña, F. H. & Muniain, C. Feeding behavior of Spurilla sp. (Mollusca: Opisthobranchia) with a description of the kleptocnidae sequestered from its sea anemone prey. Zool. Stud. 51(7), 905–912 (2012).CAS  Google Scholar  Braga, T. et al. Bursatella leachii from Mar Menor as a source of bioactive molecules: Preliminary evaluation of the nutritional profile, in vitro biological activities and fatty acids contents. J. Aquat. Food Prod. Technol. 26(10), 1337–1350 (2017).CAS  Google Scholar  Willis, T. J. et al. Kleptopredation: A mechanism to facilitate planktivory in a benthic mollusc. Biol. Let. 13, 20170447. https://doi.org/10.1098/rsbl.2017.0447 (2017).Article  Google Scholar  Goodheart, J. A. et al. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front. Zool. 15(1), 1–18. https://doi.org/10.1186/s12983-018-0289-2 (2018).CAS  Article  Google Scholar  Marin, A. & Ros, J. Chemical defenses in Sacoglossan Opisthobranchs: Taxonomic trends and evolutive implications. Sci. Mar. 67(Suppl. 1), 227–241 (2004). Google Scholar  Wägele, H., Ballestero, M. & Avila, C. Defensive glandular structures in opisthobranch molluscs—From histology to ecology. Oceanogr. Mar. Biol. Annu. Rev. 44, 197–276 (2006). Google Scholar  Pavlik, J. R. Antipredatory defensive roles of natural products from marine invertebrates. In Handbook of Marine Natural Products Vol. 12 (eds Fattorusso, E. et al.) 677–710 (Springer, 2012). Google Scholar  Avila, C., Nuñez-Pons, L. & Moles, J. From the tropics to the poles chemical defense strategies in sea slugs (Mollusca: Heterobranchia). In Chemical Ecology: The Ecological Impact of Marine Natural Products (eds Puglisi, M. P. & Becerro, M. A.) 93 (CRC Press, 2018). Google Scholar  Capper, A., Tibbetts, I. R., O’Neil, J. M. & Shaw, G. R. The fate of Lyngbya majuscula toxins in three potential consumers. J. Chem. Ecol. 31(7), 1595–1606 (2005).CAS  PubMed  Google Scholar  Dean, L. J. & Prinsep, M. R. The chemistry and chemical ecology of nudibranchs. Nat. Prod. Rep. 34(12), 1359–1390 (2017).CAS  PubMed  Google Scholar  Simmons, T. L., Andrianasolo, E., McPhail, K., Flatt, P. & Gerwick, W. H. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4(2), 333–342 (2005).CAS  PubMed  Google Scholar  Klussmann-Kolb, A. Phylogeny of the Aplysiidae (Gastropoda, Opisthobranchia) with new aspects of the evolution of seahares. Zool. Scr. 33, 439–462 (2004). Google Scholar  Willan, R. C. Phylogenetic systematics of the Notaspidea (Opisthobranchia) with reappraisal of families and genera. Am. Malacol. Bull. 5, 215–241 (1987). Google Scholar  Medina, M. & Walsh, P. J. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequences (12S, 16S, and COI). Mol. Phylogenet. Evol. 15, 41–58 (2000).CAS  PubMed  Google Scholar  Furfaro, G., De Matteo, S., Mariottini, P. & Giacobbe, S. Ecological notes of the alien species Godiva quadricolor (Gastropoda: Nudibranchia) occurring in Faro Lake (Italy). J. Nat. Hist. 52(11–12), 645–657 (2018). Google Scholar  Appleton, D. R., Sewell, M. A., Berridge, M. V. & Copp, B. R. A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J. Nat. Prod. 65(4), 630–631 (2002).CAS  PubMed  Google Scholar  Rajaganapathi, J., Kathiresan, K. & Singh, T. P. Purification of anti-HIV protein from purple fluid of the sea hare Bursatella leachii de Blainville. Mar. Biotechnol. 4(5), 447–453 (2002).CAS  Google Scholar  Suntornchashwej, S., Chaichit, N., Isobe, M. & Suwanborirux, K. Hectochlorin and morpholine derivatives from the Thai Sea Hare, Bursatella leachii. J. Nat. Prod. 68(6), 951–955 (2005).CAS  PubMed  Google Scholar  Dhahri, M. et al. Extraction, characterization, and anticoagulant activity of a sulfated polysaccharide from Bursatella leachii viscera. ACS Omega 5(24), 14786–14795 (2020).CAS  PubMed  PubMed Central  Google Scholar  Clarke, C. L. The population dynamics and feeding preferences of Bursatella leachii (Opisthobranchia: Anaspidea) in northeast Queensland, Australia. Rec. West. Austral. Museum Suppl. 69, 11–21 (2006). Google Scholar  Blainville, H. M. D. de. Bursatella, p. 138, in: Dictionnaire des Sciences Naturelles (F. Cuvier, ed.), Vol. 5, Supplément. Levrault, Strasbourg & Le Normant, Paris (1817).Trainito, E. & Doneddu, M. Nudibranchi del Mediterraneo 2nd edn, 192 (Il Castello, 2014). Google Scholar  Zbyszewski, M., Corcoran, P. L. & Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2), 288–299 (2014).CAS  Google Scholar  Wang, Z. M., Wagner, J., Ghosal, S., Bedi, G. & Wall, S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total Environ. 603, 616–626 (2017).ADS  PubMed  Google Scholar  Gewert, B., Plassmann, M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).CAS  PubMed  Google Scholar  Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).CAS  Google Scholar  Lang, M. et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci. Total Environ. 722, 137762 (2020).ADS  CAS  PubMed  Google Scholar  Ding, L., Mao, R., Ma, S., Guo, X. & Zhu, L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res. 174, 115634 (2020).CAS  PubMed  Google Scholar  Wang, F. et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. J. Hazard. Mater. 394, 122517 (2020).CAS  PubMed  Google Scholar  Ouyang, Z. et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 424, 127461 (2022).CAS  PubMed  Google Scholar  Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS  PubMed  Google Scholar  Besley, A., Vijver, M. G., Behrens, P. & Bosker, T. A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar. Pollut. Bull. 114(1), 77–83 (2017).CAS  PubMed  Google Scholar  Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS  CAS  PubMed  Google Scholar  Caron, A. G. et al. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Mar. Pollut. Bull. 127, 743–751 (2018).CAS  PubMed  Google Scholar  Piarulli, S. et al. Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres. Environ. Pollut. 251, 117–127 (2019).CAS  PubMed  Google Scholar  Pfohl, P. et al. Microplastic extraction protocols can impact the polymer structure. Microplast. Nanoplast. 1(1), 1–13 (2021). Google Scholar  Qiu, Q. et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuar. Coast. Shelf Sci. 176, 102–109 (2016).ADS  CAS  Google Scholar  Lusher, A. L., Munno, K., Hermabessiere, L. & Carr, S. Isolation and extraction of microplastics from environmental samples: An evaluation of practical approaches and recommendations for further harmonization. Appl. Spectrosc. 74(9), 1049–1065 (2020).ADS  CAS  PubMed  Google Scholar  Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G. & Bettinetti, R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Chemosphere 278, 130357 (2021).ADS  CAS  PubMed  Google Scholar  Essa, A. M. & Khallaf, M. K. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 16(1), 1–8 (2016). Google Scholar  Etcheverry, M., Ferreira, M. L., Capiati, N. J., Pegoretti, A. & Barbosa, S. E. Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Compos. A Appl. Sci. Manuf. 39(12), 1915–1923 (2008). Google Scholar  Ivanič, A., Kravanja, G., Kidess, W., Rudolf, R. & Lubej, S. The influences of moisture on the mechanical, morphological and thermogravimetric properties of mineral wool made from basalt glass fibers. Materials 13(10), 2392 (2020).ADS  PubMed Central  Google Scholar  Kavad, B. V., Pandey, A. B., Tadavi, M. V. & Jakharia, H. C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technol. 14, 457–464 (2014). Google Scholar  Alsayed, S. H., Al-Salloum, Y. A. & Almusallam, T. H. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Compos. B Eng. 31(6–7), 555–567 (2000). Google Scholar  Fries, E. et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process Impacts 15(10), 1949–1956 (2013).CAS  PubMed  Google Scholar  Turner, A. & Filella, M. The influence of additives on the fate of plastics in the marine environment, exemplified with barium sulphate. Mar. Pollut. Bull. 158, 111352 (2020).CAS  PubMed  Google Scholar  Barathi, M., Kumar, A. S. K. & Rajesh, N. Efficacy of novel Al–Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water. J. Environ. Chem. Eng. 1(4), 1325–1335 (2013).CAS  Google Scholar  Bahsis, L. et al. Cellulose-copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3+2] cycloaddition reaction in water. Int. J. Biol. Macromol. 119, 849–856 (2018).CAS  PubMed  Google Scholar  Ibrahim, N. A., Eid, B. M., Abd El-Aziz, E., Abou Elmaaty, T. M. & Ramadan, S. M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 7(53), 33219–33230 (2017).ADS  CAS  Google Scholar  Van, H. T., Le Sy, H., Nguyen, T. M. L. & Nguyen, D. K. Application of Mussell-derived biosorbent to remove NH 4+ from aqueous solution: Equilibrium and Kinetics. SN Appl. Sci. 3(4), 1–12 (2021). Google Scholar  Lakshmanna, B. et al. Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India. Data Brief 16, 705–712 (2018).CAS  PubMed  Google Scholar  Taylor, P. D., Vinn, O., Kudryavtsev, A. & Schopf, J. W. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J. Struct. Biol. 171(3), 402–405 (2010).CAS  PubMed  Google Scholar  Schröder, V. et al. Micromorphological details and identification of chitinous wall structures in Rapana venosa (Gastropoda, Mollusca) egg capsules. Sci. Rep. 10(1), 1–13 (2020). Google Scholar  Ngamniyom, A., Wongroj, W., Karnchaisri, K. & Siriwattanarat, R. Ophidascaris baylisi (Nematoda: Ascarididae): Scanning electron microscopic study of the adult surface with ultrastructure and chemical composition analysis of eggshells. Sci. Technol. Asia 26, 189–198 (2021). Google Scholar  Fabra, M. et al. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci. Total Environ. 797, 149217 (2021).ADS  CAS  PubMed  Google Scholar  Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere”. Front. Microbiol. 10, 865 (2019).PubMed  PubMed Central  Google Scholar  More

  • in

    Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem

    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S. & Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015).Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).Article 

    Google Scholar 
    Albert, J. S. & Reis, R. E. One. Introduction to Neotropical freshwaters. In Historical biogeography of Neotropical freshwater fishes (pp. 3-20). University of California Press. (2011).Allard, L., Popée, M., Vigouroux, R. & Brosse, S. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78, 315–325 (2016).Article 

    Google Scholar 
    Berry, O. et al. Making environmental DNA (eDNA) biodiversity records globally accessible. Environ. DNA 3(4), 699–705 (2020).Article 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29(6), 358–367 (2014).PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 32, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    Bonder, M. J., Abeln, S., Zaura, E. & Brandt, B. W. Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics 28(22), 2891–2897 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boussarie, G. et al. Environmental DNA illuminates the dark diversity of sharks. Sci. Adv. 4, eaap9661 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecology Resour. 16(1), 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Brandt, M.I., Trouche, B., Quintric, L., Günther, B., Wincker, P., Poulain, J. & Arnaud-Haond, S. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Molecular Ecology Resources. Accepted (2021).Brosse, S., Melki, F. & Vigouroux, R. Fishes from the Mitaraka mountains (French Guiana). Zoosystema 41, 131–151 (2019).Article 

    Google Scholar 
    Brown, E. A., Chain, F. J., Crease, T. J., MacIsaac, H. J. & Cristescu, M. E. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?. Ecol. Evol. 5(11), 2234–2251 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Busia, K., George, D. E., Fannjiang, C., Alexander, D.H., Dorfman, E., Poplin, R., Chang, P., & DePris, M. A deep learning approach to pattern recognition for short DNA sequences. BioRxiv (2020).Bylemans, J., Gleeson, D. M., Hardy, C. M. & Furlan, E. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecol. Evol. 8(17), 8697–8712 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47(1), 193–206 (2020).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cantera, I., Coutant, O., Jézéuel, C., Decotte, J.B., Dejean, T., Vigouroux, R., Valentini, A. Murienne, J. & Brosse S. Slight deforestation causes harsh biodiversity decline in Amazonian rivers (submitted)Cantera, I., Decotte, J. B., Dejean, T., Murienne, J., Vigouroux, R., Valentini, A., & Brosse, S. Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach. BioRxiv (2020).Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9(1), 1–1 (2019).CAS 
    Article 

    Google Scholar 
    Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18, 947–964 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: Addressing disparity in global monitoring. Trop. Conserv. Sci. 1(2), 75–88 (2008).Article 

    Google Scholar 
    Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27(5), 387–397 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol. Ecol. 30(13), 2937–2958 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coutant, O. et al. Detecting fish assemblages with environmental DNA: Does protocol matter? Testing eDNA metabarcoding method robustness. Environ. DNA 3(3), 619–630 (2020).Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).PubMed 
    Article 

    Google Scholar 
    Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Comput. Biol. (in press) (2021).de Mérona, B., Tejerina-Garro, F. L. & Vigouroux, R. Fish-habitat relationships in French Guiana rivers: A review. Cybium 36, 7–15 (2012).
    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10(1), 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Dornelas, M., Madin, E. M., Bunce, M., DiBattista, J. D., Johnson, M., Madin, J. S., Magurran, A. E., McGill, B. J., Pettorelli, N., Pizarro, O. & Williams, S. B. Towards a macroscope: Leveraging technology to transform the breadth, scale and resolution of macroecological data. Glob. Ecol. Biogeogr. (2019).Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J. & Cordier, T. SLIM: A flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinform. 20(1), 1–6 (2019).Article 

    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4(4), 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16(3), 604–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecology Resour. 15(3), 543–556 (2015).CAS 
    Article 

    Google Scholar 
    Flynn, J. M., Brown, E. A., Chain, F. J., MacIsaac, H. J. & Cristescu, M. E. Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecol. Evol. 5(11), 2252–2266 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gold, Z. et al. eDNA metabarcoding bioassessment of endangered fairy shrimp (Branchinecta spp.). Conserv. Genet. Resour. 12, 685–690 (2020).Article 

    Google Scholar 
    Grünig, M., Razavi, E., Calanca, P., Mazzi, D., Wegner, J. D., & Pellissier, L. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere (accepted) (2021).Helaly, M. A., Rady, S., & Aref, M. M. Convolutional neural networks for biological sequence taxonomic classification: A comparative study. In International Conference on Advanced Intelligent Systems and Informatics (pp. 523–533). Springer, Cham (2019).Holman, L. E. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat. Ecol. Evol. 5(6), 738–746 (2021).PubMed 
    Article 

    Google Scholar 
    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29(2), 97–106 (2014).PubMed 
    Article 

    Google Scholar 
    Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2(8), 1192–1193 (2018).PubMed 
    Article 

    Google Scholar 
    Juhel, J. B., Utama, R. S., Marques, V., Vimono, I. B., Sugeha, H. Y., Kadarusman, Pouyaud, L., Dejean, T., Mouillot, D. & Hocdé, R. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc. R. Soc. B 287(1930), 20200248 (2020).Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics using Janggu. Nat. Commun. 11(1), 1–7 (2020).Article 
    CAS 

    Google Scholar 
    Le Bail, P. Y. et al. Updated checklist of the freshwater and estuarine fishes of French Guiana. Cybium 36(1), 293–319 (2012).
    Google Scholar 
    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989).Article 

    Google Scholar 
    Li, W. et al. Validating eDNA measurements of the richness and abundance of anurans at a large scale. J. Anim. Ecol. 90(6), 1466–1479 (2021).PubMed 
    Article 

    Google Scholar 
    Lopes, C. M. et al. eDNA metabarcoding: A promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17(5), 904–914 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makiola, A. et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).Article 

    Google Scholar 
    Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43(12), 1779–1790 (2020).Article 

    Google Scholar 
    Marques, V. et al. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Divers. Distrib. 27(10), 1880–1892 (2020).Article 

    Google Scholar 
    Mathon, L. et al. Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Mol. Ecol. Resour. 21(7), 2565–2579 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGee, K. M., Robinson, C. & Hajibabaei, M. Gaps in DNA-based biomonitoring across the globe. Front. Ecol. Evol. 7, 337 (2019).Article 

    Google Scholar 
    Murienne, J. et al. Aquatic eDNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, e37518 (2019).Nugent, C. M. & Adamowicz, S. J. Alignment-free classification of COI DNA barcode data with the Python package Alfie. Metabarcoding Metagenomics 4, e55815 (2020).Pagni, M. et al. Density-based hierarchical clustering of pyro-sequences on a large scale-the case of fungal ITS1. Bioinformatics 29(10), 1268–1274 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papa, Y., Le Bail, P. Y. & Covain, R. Genetic landscape clustering of a large DNA barcoding dataset reveals shared patterns of genetic divergence among freshwater fishes of the Maroni Basin. Authorea Preprints (2020).Piro, V. C., Dadi, T. H., Seiler, E., Reinert, K. & Renard, B. Y. ganon: Precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics 36(Supplement 1), i12–i20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Polanco Fernández, A., Marques, V., Fopp, F., Juhel, J. B., Borrero-Pérez, G. H., Cheutin, M. C., Eme, D. & Pellissier, L. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environ. DNA 3, 142–156 (2021).Polanco, A. et al. Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environ. DNA 3(6), 1113–1127 (2021).Article 

    Google Scholar 
    Polanco Fernández, A., Martinezguerra, M. M., Marques, V., Francisco Villa-Navarro, Borrero-Pérez, G. H., Cheutin, M. C., Dejean, T., Hocdé, R., Juhel, J. B., Maire, E., Manel, S. & Pellissier, L. Recovering aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53(6), 1606–1619 (2021).Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, 1–22 (2016).Article 

    Google Scholar 
    Rojahn, J., Gleeson, D. M., Furlan, E., Haeusler, T. & Bylemans, J. Improving the detection of rare native fish species in environmental DNA metabarcoding surveys. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(4), 990–997 (2021).Article 

    Google Scholar 
    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    Sato, Y., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35(6), 1553–1555 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43(6), e37 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15(6), 1289–1303 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).PubMed 
    Article 

    Google Scholar 
    Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21(8), 1794–1805 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shorten, C. & Khoshgoftaar, T. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).Article 

    Google Scholar 
    Singer, G. A. C., Fahner, N. A., Barnes, J. G., McCarthy, A. & Hajibabaei, M. Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: A case study of eDNA metabarcoding seawater. Sci. Rep. 9(1), 1–12 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371(6531), 835 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).Book 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 32(3), 369–373 (2009).Article 

    Google Scholar 
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25(4), 929–942 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27(10), 1942–1957 (2021).Article 

    Google Scholar  More

  • in

    Reply to: Evidence confirms an anthropic origin of Amazonian Dark Earths

    Lombardo et al. argue that, if our hypothesis is correct, ADEs should be continuous rather than patchy. However, alluvium deposition can be a patchy process and the distribution of large and small ADE patches can be predicted regionally based on fluvial geomorphology. For example, 89% of all known ADEs have been predictively mapped using elevation, distance to bluff, and geological provenance as the key predictors (with a false negative rate of 6.5% and a false positive rate of 4.7%)10. Predicted areas include small and large ADE patches, up to several square kilometres in size, and indicate that ADEs cover ~154,000 km2 mostly in central and western Amazonia. This may seem to be a very large area ( >3% of the Amazon basin) but it is only a fraction of the projections found in some of the most cited anthropogenic theory literature11. Assuming the same excess fertility observed at our site, the creation of those ADEs would have required a prohibitive amount of biomass burning, in areas 800–1680 times larger (Fig. 1), which is inconsistent with the centralised small-scale deposition proposed by Lombardo et al. In this regional scenario, it remains unclear how many Amazons would have been needed to build the already-mapped ADEs.Lombardo et al. centre their opinion on settlements in other parts of the Amazon basin, under different socioecological and geomorphological contexts, and where the data we have developed are not available for comparison. Their narrative conflates the Brazilian lowland with other regions, such as the Llanos de Moxos and other systems in the Bolivian-Peruvian foreland basins, where older archeological sites occur. Their comments about the mineral composition of ADEs appear to contradict recent discoveries (made by some of their co-authors)12 which show that some oxides found at our ADE site bear “no relationship to anthropogenic activity” because “their sources are attributed to the weathering of micas, feldspars, mafic minerals (pyroxene), and sodic plagioclase” that are not found locally. To explain the inconsistency between those findings and the current theory of ADE formation, Macedo et al. argue that “sediment depositions in floodplain soils” that “are not related to human occupation” should be considered. That suggestion is consistent with our data which indicate deposition of exogenous materials to the site prior to the invention of agriculture in central Amazonia.Our study area is on a Tertiary terrace, and we acknowledge in our paper that it lies above the modern 100-year flood height for Manaus. However, significant Pleistocene and Holocene tectonic activity and river aggradation/degradation demonstrably affected the flood height over time. A complex neotectonic history has affected terrace elevations, nutrient deposition, and remobilisation, as well as flood heights and aggradation, resulting in higher base levels that were many metres above flood waters today in past millennia13,14,15. In addition, rivers transported and dispersed sediments from the Andes to the lowland, which were re-mobilised, and re-deposited in patchy patterns, from floodplains several times between 20 and 5 thousand years ago16,17,18. Such mineral inputs by past avulsion events may have occurred earlier in the Quaternary and remain as a relict soil where it has not subsequently eroded19. The older weathered sediments on the upper terraces lining the river look nothing like recent alluvium and the distribution of elements and their assemblages at our site are consistent with alluvial deposits in other sites. This process is explained in studies cited by Lombardo et al. (e.g., Pupim et al.), which note several periods of river aggradation, that support our hypothesis.As explained in our original paper, our data do not preclude a more recent human effect on the local landscape. The wisdom of indigenous populations, manifested in the application of waste materials to agricultural sites (since at least the late Holocene), may have further enriched ADEs or countered their natural degradation. Recent studies12, 16, 17, which post-date the studies that Lombardo et al. cite to argue against a geogenic influence, reveal a dynamic neotectonic history and support our hypothesis. Thus, the extent to which other ADE sites originated from depositional processes should be investigated based on evidence that goes beyond those presented by Lombardo et al. More

  • in

    PISCOeo_pm, a reference evapotranspiration gridded database based on FAO Penman-Monteith in Peru

    Allen, R. G. et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome 300, D05109 http://www.fao.org/docrep/X0490E/X0490E00.htm (1998).
    Google Scholar 
    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bulletin of the American Meteorological Society 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1 (2009).ADS 
    Article 

    Google Scholar 
    Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics 50, https://doi.org/10.1029/2011RG000373 (2012).Liu, W. Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau. Hydrology Research 49, 1977–1990, https://doi.org/10.2166/nh.2018.008 (2018).Article 

    Google Scholar 
    Valipour, M., Bateni, S. M., Gholami Sefidkouhi, M. A., Raeini-Sarjaz, M. & Singh, V. P. Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere 11, 1081, https://doi.org/10.1007/s41748-021-00252-3 (2020).ADS 
    Article 

    Google Scholar 
    Anwar, S. A., Mamadou, O., Diallo, I. & Sylla, M. B. On the influence of vegetation cover changes and vegetation-runoff systems on the simulated summer potential evapotranspiration of Tropical Africa using RegCM4. Earth Systems and Environment 5, 883–897, https://doi.org/10.3390/atmos11101081 (2021).ADS 
    Article 

    Google Scholar 
    Tomas-Burguera, M., Vicente-Serrano, S. M., Beguera, S., Reig, F. & Latorre, B. Reference crop evapotranspiration database in Spain (1961–2014). Earth System Science Data 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019 (2019).ADS 
    Article 

    Google Scholar 
    Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B. & Célleri, R. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mountain Research and Development 35, 230–239, https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1 (2015).Article 

    Google Scholar 
    Valle Júnior, L. C. G. d. et al. Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water 13, 1763, https://doi.org/10.3390/w13131763 (2021).Article 

    Google Scholar 
    Djaman, K., Irmak, S. & Futakuchi, K. Daily reference evapotranspiration estimation under limited data in Eastern Africa. Journal of Irrigation and Drainage Engineering 143, 06016015, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001154 (2017).Article 

    Google Scholar 
    Čadro, S., Uzunović, M., Žurovec, J. & Žurovec, O. Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research 5, 309–324, https://doi.org/10.1016/j.iswcr.2017.07.002 (2017).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Recent changes in monthly surface air temperature over Peru, 1964–2014. International Journal of Climatology 38, 283–306, https://doi.org/10.1002/joc.5176 (2018).ADS 
    Article 

    Google Scholar 
    Huerta, A., Aybar, C. & Lavado-Casimiro, W. PISCO temperatura versión 1.1 (PISCOt v1. 1). Lima, Peru: National Meteorology and Hydrology Service of Peru (SENAMHI) https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/.Temp/ (2018).Lavado Casimiro, W. S., Labat, D., Guyot, J. L. & Ardoin-Bardin, S. Assessment of climate change impacts on the hydrology of the Peruvian Amazon–Andes basin. Hydrological Processes 25, 3721–3734, https://doi.org/10.1002/hyp.8097 (2011).ADS 
    Article 

    Google Scholar 
    Rau, P. et al. Assessing multidecadal runoff (1970–2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrological Processes 33, 20–35, https://doi.org/10.1002/hyp.13318 (2019).ADS 
    Article 

    Google Scholar 
    Olsson, T. et al. Downscaling climate projections for the Peruvian coastal Chancay-Huaral basin to support river discharge modeling with WEAP. Journal of Hydrology: Regional Studies 13, 26–42, https://doi.org/10.1016/j.ejrh.2017.05.011 (2017).Article 

    Google Scholar 
    Lavado-Casimiro, W., Lhomme, J. P., Labat, D. & Loup, J. Estimating reference evapotranspiration (FAO 56 Penman Monteith) with limited climatic data in the Peruvian Amazon-Andes basin. Revista Peruana Geo-Atmosferica 4, 31–43 (2015).
    Google Scholar 
    Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Applied engineering in agriculture 1, 96–99, https://doi.org/10.13031/2013.26773 (1985).Article 

    Google Scholar 
    Laqui, W. et al. Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? Modeling Earth Systems and Environment 5, 1911–1924, https://doi.org/10.1007/s40808-019-00647-2 (2019).Article 

    Google Scholar 
    Baigorria, G. A., Villegas, E. B., Trebejo, I., Carlos, J. F. & Quiroz, R. Atmospheric transmissivity: distribution and empirical estimation around the central Andes. International Journal of Climatology 24, 1121–1136, https://doi.org/10.1002/joc.1060 (2004).ADS 
    Article 

    Google Scholar 
    Huerta, A. PISCO potential evapotranspiration, https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/.PET/.Oudin, L., Michel, C. & Anctil, F. Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 1—can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? Journal of Hydrology 303, 275–289, https://doi.org/10.1016/j.jhydrol.2004.08.025 (2005).ADS 
    Article 

    Google Scholar 
    Xiang, K., Li, Y., Horton, R. & Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management 232, 106043, https://doi.org/10.1016/j.agwat.2020.106043 (2020).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data 5, 1–12, https://doi.org/10.1038/sdata.2017.191 (2018).Article 

    Google Scholar 
    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437–472, 10.1175/1520-0477(1996)077  2.0.CO;2 (1996).Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049, https://doi.org/10.1002/qj.3803 (2020).ADS 
    Article 

    Google Scholar 
    Muñoz Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).ADS 
    Article 

    Google Scholar 
    Aybar, C. et al. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal 65, 770–785, https://doi.org/10.1080/02626667.2019.1649411 (2020).Article 

    Google Scholar 
    Llauca, H., Lavado-Casimiro, W., Montesinos, C., Santini, W. & Rau, P. PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020). Water 13, 1048, https://doi.org/10.3390/w13081048 (2021).Article 

    Google Scholar 
    Gubler, S. et al. The influence of station density on climate data homogenization. International Journal of Climatology 37, 4670–4683, https://doi.org/10.1002/joc.5114 (2017).ADS 
    Article 

    Google Scholar 
    Hunziker, S. et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. International Journal of Climatology 37, 4131–4145, https://doi.org/10.1002/joc.5037 (2017).ADS 
    Article 

    Google Scholar 
    Hunziker, S. et al. Effects of undetected data quality issues on climatological analyses. Climate of the Past 14, 1–20, https://doi.org/10.5194/cp-14-1-2018 (2018).ADS 
    Article 

    Google Scholar 
    Paredes, P., Pereira, L., Almorox, J. & Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agricultural Water Management 240, 106210, https://doi.org/10.1016/j.agwat.2020.106210 (2020).Article 

    Google Scholar 
    Irmak, S., Kabenge, I., Skaggs, K. E. & Mutiibwa, D. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. Journal of Hydrology 420, 228–244, https://doi.org/10.1016/j.jhydrol.2011.12.006 (2012).ADS 
    Article 

    Google Scholar 
    Tomas-Burguera, M., Vicente-Serrano, S. M., Grimalt, M. & Beguera, S. Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula. Agricultural water management 182, 103–116, https://doi.org/10.1016/j.agwat.2016.12.013 (2017).Article 

    Google Scholar 
    Mardikis, M., Kalivas, D. & Kollias, V. Comparison of interpolation methods for the prediction of reference evapotranspiration—an application in Greece. Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) 19, 251–278, https://doi.org/10.1007/s11269-005-3179-2 (2005).Article 

    Google Scholar 
    McVicar, T. R. et al. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338, 196–220, https://doi.org/10.1016/j.jhydrol.2007.02.018 (2007).ADS 
    Article 

    Google Scholar 
    Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrology and Earth System Sciences 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017 (2017).ADS 
    Article 

    Google Scholar 
    Mohammadi, B. & Moazenzadeh, R. Performance analysis of daily global solar radiation models in Peru by regression analysis. Atmosphere 12, https://doi.org/10.3390/atmos12030389 (2021).Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., García-Vera, M. A. & Stepanek, P. A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. International Journal of Climatology 30, 1146–1163, https://doi.org/10.1002/joc.1850 (2010).ADS 
    Article 

    Google Scholar 
    Lanzante, J. R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology: A Journal of the Royal Meteorological Society 16, 1197–1226, 10.1002/(SICI)1097-0088(199611)16:11 < 1197::AID-JOC89 > 3.0.CO;2-L (1996).ADS 
    Article 

    Google Scholar 
    Wood, W. H., Marshall, S. J., Whitehead, T. L. & Fargey, S. E. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010. Earth System Science Data 10, 595–607, https://doi.org/10.5194/essd-10-595-2018 (2018).ADS 
    Article 

    Google Scholar 
    Guentchev, G., Barsugli, J. J. & Eischeid, J. Homogeneity of gridded precipitation datasets for the Colorado River basin. Journal of Applied Meteorology and Climatology 49, 2404–2415, https://doi.org/10.1175/2010JAMC2484.1 (2010).ADS 
    Article 

    Google Scholar 
    Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M. & Running, S. W. Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology 35, 2258–2279, https://doi.org/10.1002/joc.4127 (2015).ADS 
    Article 

    Google Scholar 
    McAfee, S. A., McCabe, G. J., Gray, S. T. & Pederson, G. T. Changing station coverage impacts temperature trends in the Upper Colorado River basin. International Journal of Climatology 39, 1517–1538, https://doi.org/10.1002/joc.5898 (2019).ADS 
    Article 

    Google Scholar 
    Beguería, S., Vicente-Serrano, S. M., Tomás-Burguera, M. & Maneta, M. Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. International Journal of Climatology 36, 3413–3422, https://doi.org/10.1002/joc.4561 (2016).ADS 
    Article 

    Google Scholar 
    Thevakaran, A. & Sonnadara, D. Estimating missing daily temperature extremes in Jaffna, Sri Lanka. Theoretical and applied climatology 132, 145–152, https://doi.org/10.1007/s00704-017-2082-0 (2018).ADS 
    Article 

    Google Scholar 
    Hubbard, K. Spatial variability of daily weather variables in the high plains of the USA. Agricultural and Forest Meteorology 68, 29–41, https://doi.org/10.1016/0168-1923(94)90067-1 (1994).ADS 
    Article 

    Google Scholar 
    Camargo, M. B. & Hubbard, K. G. Spatial and temporal variability of daily weather variables in sub-humid and semi-arid areas of the United States high plains. Agricultural and forest meteorology 93, 141–148, https://doi.org/10.1016/S0168-1923(98)00122-1 (1999).ADS 
    Article 

    Google Scholar 
    Brugnara, Y., Good, E., Squintu, A. A., van der Schrier, G. & Brönnimann, S. The EUSTACE global land station daily air temperature dataset. Geoscience Data Journal 6, 189–204, https://doi.org/10.5285/7925ded722d743fa8259a93acc7073f2 (2019).ADS 
    Article 

    Google Scholar 
    Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M. & Cortesi, N. MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). International Journal of Climatology 35, 4444–4463, https://doi.org/10.1002/joc.4298 (2015).ADS 
    Article 

    Google Scholar 
    Gudmundsson, L., Bremnes, J. B., Haugen, J. E. & Engen-Skaugen, T. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrology and Earth System Sciences 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012 (2012).ADS 
    Article 

    Google Scholar 
    Stanley, T., Kirschbaum, D. B., Huffman, G. J. & Adler, R. F. Approximating long-term statistics early in the global precipitation measurement era. Earth Interactions 21, 1–10, https://doi.org/10.1175/EI-D-16-0025.1 (2017).Article 

    Google Scholar 
    Haimberger, L. Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate 20, 1377–1403, https://doi.org/10.1175/JCLI4050.1 (2007).ADS 
    Article 

    Google Scholar 
    Menne, M. J. & Williams, C. N. Homogenization of temperature series via pairwise comparisons. Journal of Climate 22, 1700–1717, https://doi.org/10.1175/2008JCLI2263.1 (2009).ADS 
    Article 

    Google Scholar 
    Vincent, L. A., Zhang, X., Bonsal, B. R. & Hogg, W. D. Homogenization of daily temperatures over Canada. Journal of Climate 15, 1322–1334, 10.1175/1520-0442(2002)015 < 1322:HODTOC > 2.0.CO;2 (2002).ADS 
    Article 

    Google Scholar 
    Jin, M. & Dickinson, R. E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004 (2010).ADS 
    Article 

    Google Scholar 
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day l3 global 1 km SIN grid v006. NASA EOSDIS Land Processes DAAC 10, https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS biology 14, e1002415, https://doi.org/10.1371/journal.pbio.1002415 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010) (US Department of the Interior, US Geological Survey Washington, DC, USA, 2011).Holden, Z. A., Abatzoglou, J. T., Luce, C. H. & Baggett, L. S. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agricultural and Forest Meteorology 151, 1066–1073, https://doi.org/10.1016/j.agrformet.2011.03.011 (2011).ADS 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).ADS 
    Article 

    Google Scholar 
    Willmott, C. J. & Robeson, S. M. Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology 15, 221–229, https://doi.org/10.1002/joc.3370150207 (1995).ADS 
    Article 

    Google Scholar 
    Hunter, R. D. & Meentemeyer, R. K. Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology 44, 1501–1510, https://doi.org/10.1175/JAM2295.1 (2005).ADS 
    Article 

    Google Scholar 
    Parmentier, B. et al. Using multi-timescale methods and satellite-derived land surface temperature for the interpolation of daily maximum air temperature in Oregon. International Journal of Climatology 35, 3862–3878, https://doi.org/10.1002/joc.4251 (2015).ADS 
    Article 

    Google Scholar 
    Hengl, T., Heuvelink, G. B. & Rossiter, D. G. About regression-kriging: From equations to case studies. Computers & Geosciences 33, 1301–1315, https://doi.org/10.1016/j.cageo.2007.05.001. Spatial Analysis (2007).Sun, X.-L., Yang, Q., Wang, H.-L. & Wu, Y.-J. Can regression determination, nugget-to-sill ratio and sampling spacing determine relative performance of regression kriging over ordinary kriging? CATENA 181, 104092, https://doi.org/10.1016/j.catena.2019.104092 (2019).Article 

    Google Scholar 
    Trajkovic, S. & Gocic, M. Evaluation of three wind speed approaches in temperature-based ET 0 equations: a case study in Serbia. Arabian Journal of Geosciences 14, 1–8, https://doi.org/10.1007/s12517-020-06331-5 (2021).Article 

    Google Scholar 
    Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically weighted regression: the analysis of spatially varying relationships (John Wiley & Sons, 2003).Comber, A. et al. A route map for successful applications of geographically weighted regression. Geographical Analysis https://doi.org/10.1111/gean.12316 (2021).Li, X., Zhou, Y., Asrar, G. R. & Zhu, Z. Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States. Remote Sensing of Environment 215, 74–84, https://doi.org/10.1016/j.rse.2018.05.034 (2018).ADS 
    Article 

    Google Scholar 
    Wu, J., Zhong, B., Tian, S., Yang, A. & Wu, J. Downscaling of urban land surface temperature based on multi-factor geographically weighted regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12, 2897–2911, https://doi.org/10.1109/JSTARS.2019.2919936 (2019).ADS 
    Article 

    Google Scholar 
    Zhang, G., Zhu, S., Zhang, N., Zhang, G. & Xu, Y. Downscaling hourly air temperature of WRF simulations over complex topography: A case study of Chongli District in Hebei Province, China. Journal of Geophysical Research: Atmospheres 127, e2021JD035542, https://doi.org/10.1029/2021JD035542 (2022).ADS 
    Article 

    Google Scholar 
    Callañaupa Gutierrez, S. et al. Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research 261, 105760, https://doi.org/10.1016/j.atmosres.2021.105760 (2021).Article 

    Google Scholar 
    Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W. & Morgan, K. T. Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida https://edis.ifas.ufl.edu/pdf/AE/AE45900.pdf (2010).Huerta, A. PISCOeo_pm, a reference evapotranspiration gridded database based on FAO Penman-Monteith in Peru. figshare https://doi.org/10.6084/m9.figshare.c.5633182.v3 (2021).Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. International Journal of climatology 32, 2088–2094, https://doi.org/10.1002/joc.2419 (2012).ADS 
    Article 

    Google Scholar 
    Legates, D. R. & McCabe, G. J. A refined index of model performance: a rejoinder. International Journal of Climatology 33, 1053–1056, https://doi.org/10.1002/joc.3487 (2013).ADS 
    Article 

    Google Scholar 
    Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G. & Vose, R. S. Comprehensive automated quality assurance of daily surface observations. Journal of Applied Meteorology and Climatology 49, 1615–1633, https://doi.org/10.1175/2010JAMC2375.1 (2010).ADS 
    Article 

    Google Scholar 
    Huerta, A. & Lavado-Casimiro, W. Atlas de Zonas Áridas del Perú: una evaluación presente y futura (Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú, 2021).Singer, M. B. et al. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific Data 8, 1–13, https://doi.org/10.1038/s41597-021-01003-9 (2021).Article 

    Google Scholar 
    Pelosi, A. & Chirico, G. Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data? Agricultural Water Management 258, 107169, https://doi.org/10.1016/j.agwat.2021.107169 (2021).Article 

    Google Scholar 
    McCuen, R. H. A sensitivity and error analysis cf procedures used for estimating evaporation. JAWRA Journal of the American Water Resources Association 10, 486–497, https://doi.org/10.1111/j.1752-1688.1974.tb00590.x (1974).ADS 
    Article 

    Google Scholar 
    Coleman, G. & DeCoursey, D. G. Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models. Water Resources Research 12, 873–879, https://doi.org/10.1029/WR012i005p00873 (1976).ADS 
    Article 

    Google Scholar 
    Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology 44, 169–190, https://doi.org/10.1016/0022-1694(79)90130-6 (1979).ADS 
    Article 

    Google Scholar 
    Hupet, F. & Vanclooster, M. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. Journal of Hydrology 243, 192–204, https://doi.org/10.1016/S0022-1694(00)00413-3 (2001).ADS 
    Article 

    Google Scholar 
    Ali, M. et al. Sensitivity of Penman–Monteith estimates of reference evapotranspiration to errors in input climatic data. Journal of Agrometeorology 11, 1–8, https://journal.agrimetassociation.org/index.php/jam/article/view/1214 (2009).
    Google Scholar 
    Field, C. B., Jackson, R. B. & Mooney, H. A. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant, Cell & Environment 18, 1214–1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x (1995).Article 

    Google Scholar 
    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resources Research 51, 5450–5463, https://doi.org/10.1002/2015WR017031 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences 113, 10019–10024, https://doi.org/10.1073/pnas.1604581113 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nature Climate Change 6, 946–949, https://doi.org/10.1038/nclimate3046 (2016).ADS 
    Article 

    Google Scholar 
    Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environmental Research Letters 12, 114021, https://doi.org/10.1088/1748-9326/aa89a3 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Scheff, J. Drought indices, drought impacts, CO2, and warming: a historical and geologic perspective. Current Climate Change Reports 4, 202–209, https://doi.org/10.1007/s40641-018-0094-1 (2018).Article 

    Google Scholar 
    Swann, A. L. Plants and drought in a changing climate. Current Climate Change Reports 4, 192–201, https://doi.org/10.1007/s40641-018-0097-y (2018).Article 

    Google Scholar 
    Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proceedings of the National Academy of Sciences 115, 4093–4098, https://doi.org/10.1073/pnas.1720712115 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nature Climate Change 9, 44–48, https://doi.org/10.1038/s41558-018-0361-0 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Greve, P., Roderick, M., Ukkola, A. & Wada, Y. The aridity index under global warming. Environmental Research Letters 14, 124006, https://doi.org/10.1088/1748-9326/ab5046 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Huerta, A. & Gutierrez, L. PISCOeo_pm. figshare https://doi.org/10.6084/m9.figshare.19686738.v1 (2022). More

  • in

    Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods

    Blosser, E. M. et al. Environmental drivers of seasonal patterns of host utilization by Culiseta melanura (Diptera: Culicidae) in Florida. J. Med. Entomol. 54, 1365–1374 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Burkett-Cadena, N. D., Hassan, H. K., Eubanks, M. D., Cupp, E. W. & Unnasch, T. R. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus. Biol. Lett. 8, 567–569 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Gürtler, R. E., Cecere, M. C., Vazquez, D. P., Chuit, R. & Cohen, J. E. Host-feeding patterns of domiciliary Triatoma infestans (Hemiptera: Reduviidae) in northwest Argentina: Seasonal and instar variation. J. Med. Entomol. 33, 15–26 (1996).PubMed 

    Google Scholar 
    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).PubMed 

    Google Scholar 
    Kent, R. J. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol. Ecol. Resour. 9, 4–18 (2009).CAS 
    PubMed 

    Google Scholar 
    Cecere, M. C. et al. Host-feeding sources and infection with Trypanosoma cruzi of Triatoma infestans and Triatoma eratyrusiformis (Hemiptera: Reduviidae) from the Calchaqui Valleys in Northwestern Argentina. J. Med. Entomol. 53, 666–673 (2016).CAS 
    PubMed 

    Google Scholar 
    Logue, K. et al. Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLoS Negl. Trop. Dis. 10, e0004512 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Keller, J. I., Schmidt, J. O., Schmoker, A. M., Ballif, B. A. & Stevens, L. Protein mass spectrometry extends temporal blood meal detection over polymerase chain reaction in mouse-fed Chagas disease vectors. Mem. Inst. Oswaldo Cruz 113, e180160 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borland, E. M. & Kading, R. C. Modernizing the toolkit for arthropod bloodmeal identification. Insects 12, 1–27 (2021).
    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 

    Google Scholar 
    Hamer, S. A. et al. Comparison of DNA and carbon and nitrogen stable isotope-based techniques for identification of prior vertebrate hosts of ticks. J. Med. Entomol. 52, 1043–1049 (2015).CAS 
    PubMed 

    Google Scholar 
    Scott, M. C., Harmon, J. R., Tsao, J. I., Jones, C. J. & Hickling, G. J. Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States. J. Med. Entomol. 49, 697–709 (2012).CAS 
    PubMed 

    Google Scholar 
    Arias-Giraldo, L. M. et al. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit. Vectors 13, 1–14 (2020).
    Google Scholar 
    Kieran, T. J. et al. Blood meal source characterization using Illumina sequencing in the Chagas Disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J. Med. Entomol. https://doi.org/10.1093/jme/tjx170 (2017).Article 
    PubMed 

    Google Scholar 
    Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8, 1–13 (2018).CAS 

    Google Scholar 
    Estrada-Franco, J. G. et al. Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: Non-human feeding revealed by meta-barcoding and nextgeneration sequencing. PLoS Negl. Trop. Dis. 14, 1–22 (2020).
    Google Scholar 
    Campana, M. G. et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol. Ecol. Resour. 16, 1224–1239 (2016).CAS 
    PubMed 

    Google Scholar 
    Klotz, S. A. et al. Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. Am. J. Med. 127, 421–426 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Waleckx, E., Suarez, J., Richards, B. & Dorn, P. L. Triatoma sanguisuga blood meals and potential for Chagas Disease, Louisiana, USA. Emerg. Infect. Dis. 20, 2141–2143 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kjos, S. A. et al. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J. Med. Entomol. 50, 1126–1139 (2013).PubMed 

    Google Scholar 
    Gürtler, R. E., Cohen, J. E., Cecere, M. C. & Chuit, R. Shifting host choices of the vector of Chagas Disease, Triatoma Infestans, in relation to the availability of host in houses in North-West Argentina. J. Appl. Ecol. 34, 699–715 (1997).
    Google Scholar 
    Minuzzi-Souza, T. et al. Molecular bloodmeal analyses reveal that Trypanosoma cruzi-infected, native triatomine bugs often feed on humans in houses in central Brazil. Med. Vet. Entomol. 32, 504–508 (2018).CAS 
    PubMed 

    Google Scholar 
    Lent, H. & Wygodzinsky, P. W. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ Disease. Bull. Am. Museum Nat. Hist. 163, 123–520 (1979).
    Google Scholar 
    World Health Organization. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 6, 33–44 (2015).
    Google Scholar 
    Dorn, P. L. et al. Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg. Infect. Dis. 13, 13–15 (2007).
    Google Scholar 
    Cantey, P. T. et al. The United States Trypanosoma cruzi infection study: Evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion 52, 1922–1930 (2012).PubMed 

    Google Scholar 
    Garcia, M. N. et al. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. Infect. Genet. Evol. 49, 151–156 (2017).CAS 
    PubMed 

    Google Scholar 
    Barr, S., Gossett, K. A. & Klei, T. R. Clinical, clinicopathologic, and parasitologic observations of trypanosomiasis in dogs infected with North American Trypanosoma cruzi isolates. Am. J. Vet. Res. 52, 954–960 (1991).CAS 
    PubMed 

    Google Scholar 
    Meyers, A. C., Meinders, M. & Hamer, S. A. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors. PLoS Negl. Trop. Dis. 11, 1–19 (2017).
    Google Scholar 
    Meyers, A. C., Edwards, E. E., Sanders, J. P., Saunders, A. B. & Hamer, S. A. Fatal Chagas myocarditis in government working dogs in the southern United States: Cross-reactivity and differential diagnoses in five cases across six months. Vet. Parasitol. Reg. Stud. Rep. 24, 1–7 (2021).
    Google Scholar 
    Hodo, C. L. & Hamer, S. A. Toward an ecological framework for assessing reservoirs of vector-borne pathogens: Wildlife reservoirs of Trypanosoma cruzi across the southern United States. ILAR J. 58, 379–392 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guarneri, A. A., Pereira, M. H. & Diotaiuti, L. Influence of the blood meal source on the development of Triatoma infestans, Triatoma brasiliensis, Triatoma sordida, and Triatoma pseudomaculata (Heteroptera, Reduviidae). J. Med. Entomol. 37, 373–379 (2000).CAS 
    PubMed 

    Google Scholar 
    Pippin, W. F. The biology and vector capability of Triatoma sanguisuga texana Usinger and Triatoma gerstaeckeri (Stål) compared with Rhodnius prolixus (Stål) (Hemiptera: Triatominae). J. Med. Entomol. 7, 30–45 (1970).CAS 
    PubMed 

    Google Scholar 
    Bern, C., Kjos, S., Yabsley, M. J. & Montgomery, S. P. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev. 24, 655–681 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Kjos, S. et al. Distribution and characterization of canine Chagas disease in Texas. Vet. Parasitol. 152, 249–256 (2008).CAS 
    PubMed 

    Google Scholar 
    Tenney, T. D., Curtis-Robles, R., Snowden, K. F. & Hamer, S. A. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg. Infect. Dis. 20, 1323–1326 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Curtis-Robles, R., Wozniak, E. J., Auckland, L. D., Hamer, G. L. & Hamer, S. A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 9, e0004235 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Curtis-Robles, R., Hamer, S. A., Lane, S., Levy, M. Z. & Hamer, G. L. Bionomics and spatial distribution of triatomine vectors of Trypanosoma cruzi in Texas and other southern states, USA. Am. J. Trop. Med. Hyg. 98, 113–121 (2018).PubMed 

    Google Scholar 
    Curtis-Robles, R., Aukland, L. D., Snowden, K. F., Hamer, G. L. & Hamer, S. A. Analysis of over 1500 triatomine vectors from across the US, predominantly Texas, for Trypanosoma cruzi infection and discrete typing units. Infect. Genet. Evol. 58, 171–180 (2018).PubMed 

    Google Scholar 
    Hodo, C. L., Wilkerson, G. K., Birkner, E. C., Gray, S. B. & Hamer, S. A. Trypanosoma cruzi transmission among captive nonhuman primates, wildlife, and vectors. EcoHealth 15, 426–436 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, T. et al. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl. Trop. Dis. 7, e2000 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piron, M. et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 103, 195–200 (2007).CAS 
    PubMed 

    Google Scholar 
    Curtis-Robles, R. et al. Parasitic interactions among Trypanosoma cruzi, triatomine vectors, domestic animals, and wildlife in Big Bend National Park along the Texas-Mexico border. Acta Trop. 188, 225–233 (2018).PubMed 

    Google Scholar 
    Cupp, E. W. et al. Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. Am. J. Trop. Med. Hyg. 71, 272–276 (2004).PubMed 

    Google Scholar 
    Medeiros, M. C. I., Ricklefs, R. E., Brawn, J. D. & Hamer, G. L. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors. Parasitology 142, 1612–1620 (2015).CAS 
    PubMed 

    Google Scholar 
    Hamer, G. L. et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am. J. Trop. Med. Hyg. 80, 268–278 (2009).PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Hathaway, N. J., Parobek, C. M., Juliano, J. J. & Bailey, J. A. SeekDeep: Single-base resolution de novo clustering for amplicon deep sequencing. Nucleic Acids Res. 46, e21 (2018).CAS 
    PubMed 

    Google Scholar 
    Zeledón, R. et al. An Appraisal of the Status of Chagas Disease in the United States (Elsevier Inc., Amsterdam, 2012).
    Google Scholar 
    Gorchakov, R. et al. Trypanosoma cruzi infection prevalence and bloodmeal analysis in triatomine vectors of Chagas disease from rural peridomestic locations in Texas, 2013–2014. J. Med. Entomol. 53, 911–918 (2016).CAS 
    PubMed 

    Google Scholar 
    Stevens, L. et al. Vector blood meals and Chagas Disease transmission potential, United States. Emerg. Infect. Dis. 18, 646–650 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Polonio, R., López-Domínguez, J., Herrera, C. & Dumonteil, E. Molecular ecology of Triatoma dimidiata in southern Belize reveals risk for human infection and the local differentiation of Trypanosoma cruzi parasites. Int. J. Infect. Dis. 108, 320–329 (2021).CAS 
    PubMed 

    Google Scholar 
    Sasaki, H., Rosales, R. & Tabaru, Y. Host feeding profiles of Rhodnius prolixus and Triatoma dimidiata in Guatemala (Hemiptera: Reduviidae: Triatominae). Med. Entomol. Zool. 54, 283–289 (2003).
    Google Scholar 
    Villalobos, G., Martínez-Hernández, F., de la Torre, P., Laclette, J. P. & Espinoza, B. Entomological indices, feeding sources, and molecular identification of Triatoma phyllosoma (Hemiptera: Reduviidae) one of the main vectors of Chagas disease in the Istmo de Tehuantepec, Oaxaca, Mexico. Am. J. Trop. Med. Hyg. 85, 490–497 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Mota, J. et al. Identification of blood meal source and infection with Trypanosoma cruzi of Chagas disease vectors using a multiplex cytochrome b polymerase chain reaction assay. Vector Borne Zoonotic Dis. 7, 617–627 (2007).PubMed 

    Google Scholar 
    Pizarro, J. C. & Stevens, L. A new method for forensic DNA analysis of the blood meal in Chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE 3, e3585 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abad-Franch, F. & Gurgel-Gonçalves, R. The ecology and natural history of wild triatominae in the Americas. In Triatominae—The Biology of Chagas Disease Vectors (eds Guarneri, A. & Lorenzo, M.) 387–445 (Springer Nature Switzerland AG, 2021). https://doi.org/10.1007/978-3-030-64548-9_16.Chapter 

    Google Scholar 
    Busselman, R. E. & Hamer, S. A. Chagas disease ecology in the United States: Recent advances in understanding Trypanosoma cruzi transmission among triatomines, wildlife, and domestic animals and a quantitative synthesis of vector-host interactions. Annu. Rev. Anim. Biosci. 10, 325–348 (2022).PubMed 

    Google Scholar 
    Minuzzi-Souza, T. T. C. et al. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasit. Vectors 9, 1–7. https://doi.org/10.1186/s13071-016-1334-7 (2016).CAS 
    Article 

    Google Scholar 
    Reis, F. C. et al. Trypanosomatid infections in captive wild mammals and potential vectors at the Brasilia Zoo, Federal District, Brazil. Vet. Med. Sci. 6, 248–256. https://doi.org/10.1002/vms3.216 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martínez-Hernández, F., Oria-Martínez, B., Rendón-Franco, E., Villalobos, G. & Muñoz-García, C. I. Trypanosoma cruzi, beyond the dogma of non-infection in birds. Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2022.105239 (2022).Article 
    PubMed 

    Google Scholar 
    Botto-Mahan, C. et al. Lizards as silent hosts of Trypanosoma cruzi. Emerg. Infect. Dis. 28, 1250–1253. https://doi.org/10.3201/eid2806.220079 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

    Suding, K. Understanding successes and failures in restoration ecology. Annu. Rev. Ecol. Evol. Syst. 42, (2011).Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027 (2017).Article 

    Google Scholar 
    Germino, M. J. et al. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 33, 1177–1194 (2018).Article 

    Google Scholar 
    Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).PubMed 
    Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments. Rangel. Ecol. Manag. 67, 440–454 (2014).Article 

    Google Scholar 
    Pilliod, D. S., Welty, J. L. & Toevs, G. R. Seventy-five years of vegetation treatments on public rangelands in the great basin of North America. Rangelands 39, 1–9 (2017).Article 

    Google Scholar 
    Applestein, C., Germino, M. J., Pilliod, D. S., Fisk, M. R. & Arkle, R. S. Appropriate sample sizes for monitoring burned pastures in sagebrush steppe: how many plots are enough, and can one size fit all? Rangel. Ecol. Manag. 71, 721–726 (2018).Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information Landsat-based mapping project. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    Homer, C. G., Aldridge, C. L., Meyer, D. K. & Schell, S. J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 14, 233–244 (2012).ADS 

    Google Scholar 
    Tredennick, A. T. et al. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere 7, 1–16 (2016).Article 

    Google Scholar 
    Rigge, M. et al. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 12, 1–26 (2020).Article 

    Google Scholar 
    Shi, H., Homer, C., Rigge, M., Postma, K. & Xian, G. Analyzing vegetation change in a sagebrush ecosystem using long-term field observations and Landsat imagery in Wyoming. Ecosphere 11, 1–20 (2020).Article 

    Google Scholar 
    Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. Bioscience 68, 885–895 (2018).
    Google Scholar 
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, 1–4 (2018).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2020).Article 

    Google Scholar 
    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jones, K. W. & Lewis, D. J. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS One 10, 1–22 (2015).
    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    Parkhurst, T., Prober, S. M., Hobbs, R. J. & Standish, R. J. Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J. Appl. Ecol. 1–15. https://doi.org/10.1111/1365-2664.13852. (2021)Crouzeilles, R. et al. A global meta-Analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).Article 

    Google Scholar 
    Atkinson, J. & Bonser, S. P. “Active” and “passive” ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032–1035 (2020).Article 

    Google Scholar 
    Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 170–184. https://doi.org/10.1017/CBO9780511810725.016. (1983)Angrist, J. D., & Pischke, J. S. Mostly harmless econometrics. (Princeton University Press, 2009).Bernes, C. et al. How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ. Evid. 6, 1–16 (2017).Article 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Davies, K. W. et al. Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144, 2573–2584 (2011).Article 

    Google Scholar 
    Miller, R. F. et al. Characteristics of Sagebrush Habitats and Limitations to Long-term Conservation. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. USGS Adm. Rep. (2011).Pierson, F. B. et al. Hydrologic and erosion responses of sagebrush steppe following juniper encroachment, wildfire, and tree cutting. Rangel. Ecol. Manag. 66, 274–289 (2013).Article 

    Google Scholar 
    Wijayratne, U. C. & Pyke, D. A. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am. J. Bot. 99, 438–447 (2012).PubMed 
    Article 

    Google Scholar 
    Pyke, D. A., Wirth, T. A. & Beyers, J. L. Does seeding after wildfires in rangelands reduce erosion or invasive species? Restor. Ecol. 21, 415–421 (2013).Article 

    Google Scholar 
    Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    Shriver, R. K. et al. Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 24, 4972–4982 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Eiswerth, M. E., Krauter, K., Swanson, S. R. & Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 90, 1320–1325 (2009).Article 

    Google Scholar 
    Arkle, R. S. et al. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 5, 1–32 (2014).Article 

    Google Scholar 
    Davies, K. W. & Bates, J. D. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects. Restor. Ecol. 25, 33–41 (2017).Article 

    Google Scholar 
    Davies, K. W., Bates, J. D. & Boyd, C. S. Postwildfire seeding to restore native vegetation and limit exotic annuals: an evaluation in juniper-dominated sagebrush steppe. Restor. Ecol. 27, 120–127 (2019).Article 

    Google Scholar 
    Davies, K. W., Boyd, C. S., Madsen, M. D., Kerby, J. & Hulet, A. Evaluating a seed technology for Sagebrush restoration across an elevation gradient: support for Bet Hedging. Rangel. Ecol. Manag. 71, 19–24 (2018).Article 

    Google Scholar 
    Rinella, M. J. et al. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol. Appl. 25, 1044–1053 (2015).Davies, K. W., Boyd, C. S. & Nafus, A. M. Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel. Ecol. Manag. 66, 472–478 (2013).Article 

    Google Scholar 
    United States General Accounting. WILDLAND FIRES: Better Information Needed on Effectiveness of Emergency Stabilization and Rehabilitation Treatments. Report to Congressional Requesters. https://doi.org/10.1089/blr.2006.9996. (2003)Requena-Mullor, J. M., Maguire, K. C., Shinneman, D. J. & Caughlin, T. T. Integrating anthropogenic factors into regional-scale species distribution models—A novel application in the imperiled sagebrush biome. Glob. Chang. Biol. 00, 1–15 (2019).
    Google Scholar 
    Pyke, D. A. et al. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions. U.S. Geological Survey Circular 1426 (2017).Chambers, J. C. et al. Science framework for conservation and restoration of the sagebrush biome: Linking the department of the interior’s integrated rangeland fire management strategy to long-term strategic conservation actions. USDA . Serv. – Gen. Tech. Rep. RMRS-GTR 2017, 1–217 (2017).
    Google Scholar 
    US-BLM. Burned Area Emergency Stabilization and Rehabilitation – BLM Handbook H-1742-1. 2, (2007).Pilliod, D. S. & Welty, J. L. Land Treatment Digital Library. Data Series. https://doi.org/10.3133/ds806. (2013)Bradley, B. A. et al. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506 (2018).Article 

    Google Scholar 
    Fusco, E. J., Finn, J. T., Balch, J. K., Chelsea Nagy, R. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Connor, R. C. et al. Small-scale water deficits after wildfires create long-lasting ecological impacts. Environ. Res. Lett. 15, 044001 (2020).Applestein, C., Caughlin, T. T. & Germino, M. J. Weather affects post‐fire recovery of sagebrush‐steppe communities and model transferability among sites. Ecosphere 12, (2021).Cameron, A. C. & Miller, D. L. A. Practitioner’ s Guide to Cluster-Robust Inference. J. Human Resources. 50, 317–372 (2015).Oshchepkov, A. & Shirokanova, A. Bridging the gap between multilevel modeling and economic methods. Soc. Sci. Res. in press, (2022).Aldridge, C. L. & Boyce, M. S. Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508–526 (2007).PubMed 
    Article 

    Google Scholar 
    Allen-Diaz, B. & Bartolome, J. W. Sagebrush-grass vegetation dynamics: Comparing Classical and State-Transition models. Ecol. Appl. 8, 795–804 (1998).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Natural regeneration processes in big sagebrush (Artemisia tridentata). Rangel. Ecol. Manag. 67, 344–357 (2014).Article 

    Google Scholar 
    Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).PubMed 
    Article 
    ADS 

    Google Scholar 
    Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 22, 663–680 (2020).Article 

    Google Scholar 
    Groves, A. M., Bauer, J. T. & Brudvig, L. A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Groves, A. M. & Brudvig, L. A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 27, 128–137 (2019).Article 

    Google Scholar 
    Werner, C. M., Stuble, K. L., Groves, A. M. & Young, T. P. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 0, 1–8 (2020).
    Google Scholar 
    Stuble, K. L., Fick, S. E. & Young, T. P. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 54, 1051–1057 (2017).Article 

    Google Scholar 
    Stuble, K. L., Zefferman, E. P., Wolf, K. M., Vaughn, K. J. & Young, T. P. Outside the envelope: rare events disrupt the relationshipbetween climate factors and species interactions. Ecology 98, 1623–1630 (2017).PubMed 
    Article 

    Google Scholar 
    Hardegree, S. P. et al. Weather-Centric Rangeland Revegetation Planning. Rangel. Ecol. Manag. 71, 1–11 (2018).Article 

    Google Scholar 
    Allison, B., Cara, S-W. & Applestein, M. J., Germino Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. Conservation Science and Practice https://doi.org/10.1111/csp2.12737.Callaway, B. & Sant’Anna, P. H. C. Difference-in-Differences with multiple time periods. J. Econom. 225, 200–230 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 225, 254–277 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, (2018).Ferraro, P. J. & Miranda, J. J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 4, 281–317 (2017).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecol. Modell. 286, 66–77 (2014).Article 

    Google Scholar 
    Kleinhesselink, A. R. & Adler, P. B. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99, 1139–1149 (2018).PubMed 
    Article 

    Google Scholar 
    Brabec, M. M., Germino, M. J. & Richardson, B. A. Climate adaption and post-fire restoration of a foundational perennial in cold desert: insights from intraspecific variation in response to weather. J. Appl. Ecol. 54, 293–302 (2017).Article 

    Google Scholar 
    Eidenshink, J. C. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5. http://cran.r-project.org/doc/Rnews/ (2005).Applestein, C. & Germino, M. J. Detecting shrub recovery in sagebrush steppe: comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 17, (2021).Rigge, M. et al. Rangeland fractional components across the western United States from 1985 to 2018. Remote Sens. 13, 1–26 (2021).Article 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).U.S. Geological, S. 1/3rd arc-second Digital Elevation Models (DEMs)–USGS National Map 3DEP Downloadable Data Collection. (2017).Walkinshaw, Mike, A. T. O’Geen, D. E. B. Soil Properties. California Soil Resource Lab,McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Ferraro, P. J. & Hanauer, M. M. Advances in measuring the environmental and social impacts of environmental programs. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).Article 

    Google Scholar 
    Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28, https://www.jstatsoft.org/v42/i08/ (2011).Article 

    Google Scholar 
    Guo, S. & Fraser, M. Propensity score analysis: statistical methods and applications. (Sage Publications, 2010).Puhani, P. A. The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models. Econ. Lett. 115, 85–87 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography (Cop.). 35, 374–384 (2012).Article 

    Google Scholar 
    Stan Development Team. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org (2020).Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, (2017).Mahr, T. & Gabry, J. bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/ R package version (2021).Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151 R package version 3.0.1. (2021).Simler-Williamson, A. & Germino, M. J. Data associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.25338/B8W63R (2022).Simler‐Williamson, A. B. R code associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.5281/zenodo.6565074 (2022). More

  • in

    Sex-specific movement ecology of the shortest-lived tetrapod during the mating season

    Dunham, A. E. & Miles, D. B. Patterns of covariation in life history traits of squamate reptiles: The effects of size and phylogeny reconsidered. Am. Nat. 126, 231–257 (1985).Article 

    Google Scholar 
    Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–299 (2007).Article 

    Google Scholar 
    Sæther, B. E. Pattern of covariation between life-history traits of European birds. Nature 1, 616–617 (1988).ADS 
    Article 

    Google Scholar 
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).Article 

    Google Scholar 
    De Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life—history traits. J. Evol. Biol. 22, 1770–1774 (2009).PubMed 
    Article 

    Google Scholar 
    Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 44, 17910–17914 (2013).ADS 
    Article 

    Google Scholar 
    Blanco, M. A. & Sherman, P. W. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech. Ageing Dev. 126, 794–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shine, R. & Charnov, E. L. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 139, 1257–1269 (1992).Article 

    Google Scholar 
    Pedrono, M. et al. Using a surviving lineage of Madagascar’s vanished megafauna for ecological restoration. Biol. Cons. 159, 501–506 (2013).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. A unique life history among tetrapods: An annual chameleon living mostly as an egg. Proc. Natl. Acad. Sci. USA 105, 8980–8984 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uetz, P., Freed, P. & Hošek, J. (eds) The reptile database. http://www.reptile-database.org (2020).Glaw, F. & Vences, M. A Field Guide to the Amphibians and Reptiles of Madagascar (Vences and Glaw, 2007).
    Google Scholar 
    Anderson, C. V. Off like a shot: Scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Sci. Rep. 6, 18625 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Male preference for sexual signalling over crypsis is associated with alternative mating tactics. Anim. Behav. 117, 43–49 (2016).Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Alternative mating tactics in male chameleons (Chamaeleo chamaeleon) are evident in both long-term body color and short-term courtship pattern. PLoS ONE 11, e0159032 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biol. Lett. 9, 20130892 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tolley, K. A. & Herrel, A. (eds) The Biology of Chameleons (University of California Press, 2014).
    Google Scholar 
    Andreone, F., Guarino, F. M. & Randrianirina, J. E. Life history traits, age profile, and conservation of the panther chameleon, Furcifer pardalis (Cuvier 1829), at Nosy Be, NW Madagascar. Trop. Zool. 18, 209–225 (2005).Article 

    Google Scholar 
    Tessa, G., Glaw, F. & Andreone, F. Longevity in Calumma parsonii, the World’s largest chameleon. Exp. Geront. 89, 41–44 (2017).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behav. Ecol. 20, 1079–1088 (2009).Article 

    Google Scholar 
    Eckhardt, F., Kappeler, P. M. & Kraus, C. Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Sci. Rep. 7, 11397 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eckhardt, F., Kraus, C. & Kappeler, P. M. Life histories, demographies and population dynamics of three sympatric chameleon species (Furcifer spp.) from western Madagascar. Amphibia-Reptilia 40, 41–54 (2018).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Social behavior of two species of chameleons in Madagascar: Insights into sexual selection. Herpetologica 65, 54–69 (2009).Article 

    Google Scholar 
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiaverano, L. M., Wright, M. J. & Holland, B. S. Movement behavior is habitat dependent in invasive Jackson’s chameleons in Hawaii. J. Herpetol. 48, 471–479 (2014).Article 

    Google Scholar 
    Smith, D. et al. Observations on nesting and clutch size in Furcifer oustaleti (Oustalet’s chameleon) in South Florida. Southeast Nat. 15, 75–88 (2016).Article 

    Google Scholar 
    Van Kleeck, M. J., Smith, T. A. & Holland, B. S. Paedophagic cannibalism, resource partitioning, and ontogenetic habitat use in an invasive lizard. Ethol. Ecol. Evol. 30, 497–514 (2018).Article 

    Google Scholar 
    Tolley, K. A., Raw, R. N., Altwegg, R. & Measey, J. G. Chameleons on the move: Survival and movement of the Cape dwarf chameleon, Bradypodion pumilum, within a fragmented urban habitat. Afr. Zool. 45, 99–106 (2010).Article 

    Google Scholar 
    Cuadrado, M. The influence of female size on the extent and intensity of mate guarding by males in Chamaeleo chamaeleon. J. Zool. 246, 351–358 (1998).Article 

    Google Scholar 
    Cuadrado, M. Mating asynchrony favors no assortative mating by size and serial-type polygyny in common chameleons, Chamaeleo chamaeleon. Herpetologica 55, 523–530 (1999).
    Google Scholar 
    Cuadrado, M. Influence of female’s sexual stage and number of available males on the intensity of guarding behavior by male common chameleons: A test of different predictions. Herpetologica 56, 387–393 (2000).
    Google Scholar 
    Cuadrado, M. Mate guarding and social mating system in male common chameleons (Chamaeleo chamaeleon). J. Zool. 255, 425–435 (2001).Article 

    Google Scholar 
    Kauffmann, J. L. D., Brady, L. D. & Jenkins, R. K. B. Behavioural observations of the chameleon Calumma oshaughnessyi oshaughnessyi in Madagascar. Herpetol. J. 7, 77–80 (1997).
    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Kappeler, P. M. Intrasexual selection in Mirza coquereli: Evidence for scramble competition polygyny in a solitary primate. Behav. Ecol. Sociobiol. 41, 115–127 (1997).Article 

    Google Scholar 
    Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Glaudas, X. & Rodriguez-Robles, J. A. Vagabond males and sedentary females: Spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biol. J. Linn. Soc. 103, 681–695 (2011).Article 

    Google Scholar 
    Taborsky, M. & Brockmann, H. J. Alternative reproductive tactics and life history phenotypes. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P. M.) 537–586 (Springer, 2010).Chapter 

    Google Scholar 
    Tolley, K. A., Chauke, L. F., Jackson, J. C. & Feldheim, K. A. Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum). Afr. J. Herpetol. 63, 47–56 (2014).Article 

    Google Scholar 
    Rebelo, A. D., Altwegg, R., Katz, E. M. & Tolley, K. A. Out on a limb: Female chameleons (Bradypodion pumilum) position themselves to minimise detection, whereas males maximise mating opportunity. Afr. J. Herpetol https://doi.org/10.1080/21564574.2021.1998233 (2022).Article 

    Google Scholar 
    Dollion, A. Y., Herrel, A., Marquis, O., Leroux-Coyau, M. & Meylan, S. The colour of success: Does female mate choice rely on male colour change in the chameleon Furcifer pardalis?. J. Exp. Biol. 223, jeb224550 (2020).PubMed 
    Article 

    Google Scholar 
    Dollion, A. Y., Meylan, S., Marquis, O., Leroux-Coyau, M. & Herrel, A. Do male panther chameleons use different aspects of color change to settle disputes?. Sci. Nat. 109, 13 (2022).CAS 
    Article 

    Google Scholar 
    Shine, R. Reproductive strategies in snakes. Proc. R. Soc. Lond. B 270, 995–1004 (2003).Article 

    Google Scholar 
    Andrews, R. M. & Karsten, K. B. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol. J. Linn. Soc. 100, 656–668 (2010).Article 

    Google Scholar 
    Sever, D. M. & Hamlett, W. C. Female sperm storage in reptiles. J. Exp. Zool. 292, 187–199 (2002).PubMed 
    Article 

    Google Scholar 
    Friesen, C. R., Kahrl, A. F. & Olsson, M. Sperm competition in squamate reptiles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200079 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: The history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014).PubMed 
    Article 

    Google Scholar 
    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).PubMed 
    Article 

    Google Scholar 
    Holleley, C. E., Dickman, C. R., Crowther, M. S. & Oldroyd, B. P. Size breeds success: Multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Mol. Ecol. 15, 3439–3448 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kappeler, P. M. & Fichtel, C. A 15-year perspective on the social organization and life history of sifaka in Kirindy forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 101–121 (Springer, 2012).Chapter 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2020).RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2020).Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 102. https://cran.r-project.org/package=dplyr (2020).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ggplot2. R package version 100. https://cran.r-project.org/package=cowplot (2019).Revelle, W. psych: Procedures for personality and psychological research, Northwestern University, Evanston, IL. https://cran.r-project.org/package=psych (2020).Wickham, H. modelr: Modelling functions that work with the pipe. R package version 018. https://cran.r-project.org/package=modelr (2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    Ara, T. brunnermunzel: (Permuted) Brunner–Munzel Test R Package Version 133 (2019).Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Signer, J. & Fieberg, J. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laver, P. N. & Kelly, M. J. A critical review of home range studies. J. Wildl. Manag. 72, 290–298 (2008).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2004).Article 

    Google Scholar 
    Worton, B. J. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70, 1641–1668 (1989).Article 

    Google Scholar 
    Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar  More

  • in

    Cat predation of Kangaroo Island dunnarts in aftermath of bushfire

    Kangaroo Island (~ 4400 km2, KI hereafter) is the third largest island in Australia. It underwent substantial land clearing, and consequent fragmentation of the natural bushland habitat, after World War II1,2. Relatively intact western KI was eventually identified as a key biodiversity hotspot3, home to several endangered and endemic native species including the KI dunnart.Dunnarts (Sminthopsis spp.) are small insectivorous dasyurid marsupials. The KI dunnart is distinguished from the other 17 dunnart species found in Australia by morphological features, including manus, pes, and penis shape4. This endangered species is the only dasyurid found on the island, exclusively resident in ~ 342 km2 before 20205, and found nowhere else in the world2. The species is rarely recorded, with only 28 individuals found during  > 33,000 trap-nights pre-20195. With a low number of individuals restricted to a small geographic area, the KI dunnart is exceptionally vulnerable to stochastic events. Predation by feral cats (Felis catus) is likely to be another source of pressure on the KI dunnart. Cats were introduced to KI during European settlement and quickly became apex predators, reaching higher relative abundance than adjacent mainland6 with an estimated density of 0.37 ± 0.15 cat/km25. Cat predation has been the cause for extinction or near-extinction of several native species around the globe7, with the extinction risk becoming increasingly acute in insular islands like KI. Cat predation on islands has contributed to  > 13% of globally recorded extinction events, accounting for  > 8% of instances within these taxa of species being pushed to critically endangered status8. A recent meta-analysis found evidence of cat predation for three critically endangered species and four endangered species in Australia on the IUCN Red List of Threatened Species7.Australian bushfires in 2019–2020 burnt ~ 97,000 km2 of vegetation9,10, with damage overlapping with habitats of  > 100 threatened species. Dry lightning storms in the remote and vegetated northwest of the Island started the bushfire in the KI. The bushfire eventually spread easterly, burning approximately 98% of the known and predicted habitat of the KI dunnart10.In this study, we have analysed the diet of feral cats humanely euthanized in designated areas of local conservation interest immediately after the 2019 KI bushfire. More