More stories

  • in

    Tree-ring data set for dendroclimatic reconstructions and dendrochronological dating in European Russia

    The data set consists of tree-ring width measurements in Decadal/Tuscon RWL format24, COFECHA25 listings for every RWL file, online-only Tables 1 and 2 with the description for every living-tree and historical chronology. In each RWL file the measurements for each tree denoted by a number are usually represented by several cores denoted by the letters a,b,c, etc., e.g. T15S1a and T15S1b are two cores for the first tree at the site T15S, T15S15a and T15S15b are two cores for the 15th tree at the site. The historical chronologies usually contain several codes referring to different sources of materials, but the numbering is the same – numbers denote different beams from each source and letters a-d denote the measurements along different radii from each beam.Missing values in RWL files are denoted either by zeroes in the case of missing rings or by −888 in the case of missing core segments. The description of each site contains the information on the location, geographical coordinates, number of trees and samples, information on series intercorrelation, average mean sensitivity, quality of the cross-dating, and related publications (online-only Tables 1, 2). Some sites also have descriptions of vegetation and soils. The RWL files of the measurements and the related COFECHA quality control listings are publicly available in ITRDB. The ITRDB codes and links are provided in the online-only Tables 1 and 2. The whole data set is also available as a standalone set of files26 in Figshare repository, where RWL files are named as the site code plus ‘.rwl’ extension, the COFECHA listings are named as the site code plus ‘COF.txt’. For example, the site T15S is represented by the files ‘T15S.rwl’ and ‘T15SCOF.txt’. Supplementary Tables 1 and 2 represent printable versions of Online-only Tables 1 and 2, respectively.Below we describe the sources of material for each historical chronology.KirillovMaterials for the Kirillov chronology were collected over many years from archaeological excavations in the town of Kirillov, Vologda region. They include wood samples obtained from architectural buildings and various small archaeological excavations in the vicinity of the Kirillo-Belozersky monastery (59.86°N, 38.37°E). During restoration work in 1969, 1971, 1985, and 1987, samples of wooden ties and piles of foundations from brick defensive walls and monastery buildings were collected. The archaeological part of the collection also contains samples from wooden log cabins, wells, and log heaps (remnants of buildings demolished during renovation) and discovered during rescue excavations in 1994, 1998–2000, 2007, 2008, 2011, 2015, 2016, and 2018. The samples were processed in the Laboratory of Natural Science Methods in Archaeology, Institute of Archaeology RAS. Unfortunately, most of the original material has not been archived after the measurements were made. The Kirillov chronology was calendar dated with living trees from the Vologda region (sites KOV and SHBO) and materials from the Museum of Wooden Architecture of the Vologda Region “Semyonkovo”27.VologdaThe collection consists of materials from wooden buildings in the city of Vologda (59.22°N, 39.89°E). The data was assembled by D. Kats in the 1990s and later archived at the Institute of Plant and Animal Ecology in Ekaterinburg. In 2009 the collection was transferred again, and now resides at the Institute of Geography RAS, where ring-widths were measured a second time. The data set includes the samples from 19th century wooden houses on Gogol Street, numbers 3 and 5 (codes AU and AV), from Gertsen Street number 58 (code BA), from the Spaso-Prilutskiy Monastery in the northern outskirts of Vologda (code BB), and from samples of unknown origin from the 18th century (code M). The Vologda chronology was calendar dated with the Kirillov chronology.NovgorodMaterials in the Novgorod chronology are derived from archaeological excavations in the city of Velikiy Novgorod (58.52°N, 31.27°E), in addition to samples from wooden buildings of the Novgorod Region. The latter include materials from building transferred to the Museum of Wooden Architecture “Vitoslavlitsy” from the Novgorod region. These include the Chapel of Magdalena (code N04A), the Church of St. Nicolay from the village of Visokiy Ostrov (code N09A), and a church from the village of Tukholi (code N11A). Archaeological materials come from the city of Novgorod, from the excavation of Yaroslavovo Dvorische (archaeologist A.V. Andrienko, code N02A28), as well as excavations on Telegina-Redyatina Street (code ‘tere’), Posolskaya Street (code ‘posol’), Znamenskaya Street (code ‘znam’), Troitskaya Street (codes ‘35a-1-b1’ and ‘16a-1-v2’), and B. Konyushennaya Street (code ‘kon’), which were directed by archaeologist O.I. Oleynikov. The Novgorod chronology was calendar dated using the russ1 chronology from the ITRDB (with a correction for the known error of 1 year29), and by crossdating with the Kirillov and Vologda chronologies.ArkhangelskThe Arkhangelsk chronology includes samples from houses and churches from the northwestern part of the Arkhangelsk region (63.4–64.7°N, 37.4–43.4°E). These include wooden houses from the town of Pinega, Kudrina Street 45 and 55 (codes I15A and I14A, 64.70°N, 43.39°E), the house of the Bazheniny family in the village of Vavchuga, Kholmogorskoye district (code I21A, 64.23°N, 41.92°E), the Church of Introduction in the village of Vorzogory (code I02A, 63.89°N, 37.67°E), the Church of Vladimir in the village of Medvedevskaya (code I04A, 63.81°N, 38.32°E), and from the the Ensemble of the Church in the village of Piyala (codes I08A, I09A, P, 63.43°N, 39.08°E), all located in the Onezhskiy District. The chronology was calendar dated using a living pine tree-ring series (code I24S, 64.11°N, 38.03°E) in addition to crossdating with the Solovki chronology30.KareliaThis chronology includes materials from eight churches in the Republic of Karelia, all located along the shores of Onega Lake (60.80–62.72°N, 33.06–35.27°E)31. Most of these measurements are of lower precision than of the other data in this study (0.05 mm versus 0.001 mm) however, they are vital to the dendrochronological dating in the region. The Karelia chronology was calendar dated using the Solovki and Arkhangelsk chronologies.Zapadnaya Dvina (ZD1, ZD2)Tree-ring chronologies ZD1 and ZD2 were constructed with subfossil oak trees sampled in the alluvial deposits of the Zapadnaya Dvina River and its tributary, the Velesa River. The sample sites include reaches of both rivers upstream of their confluence (56.06°N, 31.97°E). Subfossil oak tree trunks were discovered in the riverbed as well as in riverbank alluvial deposits and oxbow lakes. The ZD1 and ZD2 chronologies do not overlap with the living oak tree-ring series from the region, but were crossdated with chronologies from Belarus and from the Baltic region. ZD1 (CE 572–1382) was calendar dated with oak samples from the Church of the Saviour’s Transfiguration in Polotsk (Belarus) which spans CE 869-112232; it also crossdates with subfossil oak series from Smarhon, Belarus33 and the Baltic 1 chronology34. A detailed report was previously published elsewhere14. The calendar age of the ZD2 chronology (CE 1346–1762) was established by comparison with the 2021BLT3 chronology35.KostromaMaterials for the Kostroma chronology come from archaeological excavations in the City of Kostroma and from the wooden buildings from the surrounding Kostroma Region. They include materials from a church in the Andreevskoye village (code K2A, 58.16°N, 41.30°E), two buildings from the Museum of Wooden Architecture in the Kostroma region, which include the house of Skobyolkin (code K13A), and the Church of Ilijah the Prophet (code K14A). The other materials come from the ‘Melochniye Ryady’ excavations in the center of Kostroma, (archaeologist A.Lazarev, code K09A). The chronology was calendar dated using the Kirillov and Vologda chronologies.SmolenskSeven beams of pine come from archaeological excavations at Pobedy Square in the city of Smolensk (54.78°N, 32.05°E)36. They were crossdated using the chronology from the Dannenshtern House in Riga37. The material of the Dannenshtern House likely comes from near the headwaters of the Kasplya tributary of the Daugava River (Zapadnaya Dvina River) located near Smolensk.SolovkiThe Solovki chronology consists of measurements from living trees (pines PDB and spruce PDEL; 65.12°N, 35.57°E), beams in a church on Malaya Muksalma Island (code MMCH; 65.01°N, 36.00°E), a building built for resin extraction (code SMOL), a barn (code SOLAM), and from a monastery outbuilding (or skit) on Sekirnaya Hill (code SLKL; 64.08°N, 35.57°E). Also included in the chronology are series from a satellite monastery building on Bolshaya Muksalma Island (code BMSK; 65.03°N, 35.90°E), series from a bathhouse nearby (code BMBN), samples from the Church of Andrew the First-Called on Zayatskiy Island (code B24A; 64.97°N, 35.65°E), series from a 19th century building (code SOLIZ), along with archaeological materials from the monastery (codes B27A, B28A), and a barn on Anzer Island (codes B39A, B38A; 65.19°N, 35.98°E). The earliest part of the chronology consists of ring-width series from beams from the 16th century Spaso-Preobrazhenskiy Cathedral (code SP; 65.02°N, 35.71°E). More

  • in

    Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests

    Chuine, I. Why does phenology drive species distribution? Philos. Trans. 365, 3149–3160 (2010).
    Google Scholar 
    Chuine, I. & Beaubien, E. G. Phenology is a major determinant of tree species range. Ecol. Lett. 4, 500–510 (2001).
    Google Scholar 
    Richardson, D. A. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).ADS 

    Google Scholar 
    Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).
    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Fu, Y. H. et al. Three times greater weight of daytime than of night‐time temperature on leaf unfolding phenology in temperate trees. N. Phytol. 212, 590–597 (2016).CAS 

    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).ADS 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).CAS 
    PubMed 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lang, G. A. Dormancy: a new universal terminology. HortScience 22, 817–820 (1987).
    Google Scholar 
    Perry, T. O. Dormancy of trees in winter. Science 171, 29–36 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, J. et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiol. 38, 1225–1236 (2018).PubMed 

    Google Scholar 
    Knowles, J. F. et al. Montane forest productivity across a semi-arid climatic gradient. Glob. Chang. Biol. 26, 6945–6958 (2020).ADS 
    PubMed 

    Google Scholar 
    Richard, S., Kjellsen, T. D., Schaberg, P. G. & Murakami, P. F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiol. 28, 1365–1374 (2008).
    Google Scholar 
    Roxas, A. A., Orozco, J., Guzmán-Delgado, P. & Zwieniecki, M. A. Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiol. 41, 1425–1438 (2021).CAS 

    Google Scholar 
    Palacio, S., Martínez, M. M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS 

    Google Scholar 
    Fierravanti, A., Rossi, S., Kneeshaw, D., Grandpré, L. D. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. For. Glob. Change. 2, 1–13 (2019).
    Google Scholar 
    Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A. & Wieser, G. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. N. Phytol. 209, 521–530 (2016).
    Google Scholar 
    Weber, R., Gessler, A. & Hoch, G. High carbon storage in carbon-limited trees. N. Phytol. 222, 171–182 (2019).CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Lidong, M., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).CAS 

    Google Scholar 
    Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32, 219–231 (2012).CAS 
    PubMed 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Terashima, I. & Hikosaka, K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18, 1111–1128 (1995).
    Google Scholar 
    Liang, J., Xia, J., Liu, L. & Wan, S. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. J. Plant. Ecol. 6, 437–447 (2013).
    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Chang. Biol. 23, 5189–5202 (2017).ADS 
    PubMed 

    Google Scholar 
    Keenan, T. F., Richardson, A. D. & Hufkens, K. On quantifying the apparent temperature sensitivity of plant phenology. N. Phytol. 225, 1033–1040 (2020).
    Google Scholar 
    Klein, T., Vitasse, Y. & Hoch, G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol. 36, 847–855 (2016).CAS 
    PubMed 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. N. Phytol. 171, 793–804 (2010).
    Google Scholar 
    Rinne, K. T. et al. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ(13) C and concentration analyses. Plant Cell Environ. 38, 2340–2352 (2015).CAS 
    PubMed 

    Google Scholar 
    Schädel, C., Blöchl, A., Richter, A. & Hoch, G. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol. 29, 901–911 (2009).PubMed 

    Google Scholar 
    Kaurin, A., Junttila, O. & Hanson, J. Seasonal changes in frost hardiness in cloudberry (Rubus chamaemorus) in relation to carbohydrate content with special reference to sucrose. Physiol. Plant. 52, 310–314 (1981).CAS 

    Google Scholar 
    Shahba, M. A., Qian, Y. L., Hughes, H. G., Koski, A. J. & Christensen, D. Relationships of soluble carbohydrates and freeze tolerance in saltgrass. Crop Sci. 43, 2148–2153 (2003).CAS 

    Google Scholar 
    Wang, J. et al. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Glob. Chang. Biol. 27, 5084–5093 (2021).PubMed 

    Google Scholar 
    Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric Meteorol. 290, 108031 (2020).
    Google Scholar 
    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric Meteorol. 291, 108077 (2020).
    Google Scholar 
    Chen, L. et al. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 25, 997–1004 (2019).ADS 
    PubMed 

    Google Scholar 
    Hanninen, H. Boreal and temperate trees in a changing climate: modelling the ecophysiology of seasonality. (Springer, 2016).Dreyer, E., Le Roux, X., Montpied, P., Daudet, F. A. & Masson, F. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 21, 223–232 (2001).CAS 
    PubMed 

    Google Scholar 
    Devi, A. F. & Garkoti, S. C. Variation in evergreen and deciduous species leaf phenology in Assam. India Trees 27, 985–997 (2013).
    Google Scholar 
    Bai, K., He, C., Wan, X. & Jiang, D. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB PLANTS 7, plv064 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Qi, J., Fan, Z., Fu, P., Zhang, Y. & Sterck, F. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiol. 41, 12–23 (2021).CAS 
    PubMed 

    Google Scholar 
    Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front. Plant Sci. 11, 1–18 (2020).
    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int J. Biometeorol. 62, 1109–1113 (2018).ADS 
    PubMed 

    Google Scholar 
    Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    Richardson, A. D. et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data. 5, 180028 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Klosterman, S. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).ADS 

    Google Scholar 
    Zhang, Y. et al. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 224, 1–10 (2016).ADS 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).ADS 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Validation of MODIS-GPP product at 10 flux sites in northern China. Int. J. Remote Sens. 34, 587–599 (2013).
    Google Scholar 
    Julien, Y. & Sobrino, J. Global land surface phenology trends from GIMMS database. Int J. Remote Sens. 30, 3495–3513 (2009).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens Environ. 84, 471–475 (2003).ADS 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 7, 1–27 (2020).
    Google Scholar 
    Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).PubMed 

    Google Scholar 
    Tang, Y., Xu, X., Zhou, Z., Qu, Y. & Sun, Y. Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecol. Inform. 63, 101307 (2021).
    Google Scholar 
    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. U.S.A. 112, 2788–2793 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 27, 2–23 (1996).MathSciNet 

    Google Scholar 
    Biriukova, K. et al. Performance of singular spectrum analysis in separating seasonal and fast physiological dynamics of solar-induced chlorophyll fluorescence and PRI optical signals. J. Geophys. Res. Biogeosci. 126, e2020JG006158 (2021).ADS 
    CAS 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C. et al. Interannual variability of net carbon exchange is related to the lag between the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two contrasting forest stands. Agric. For. Meteorol. 164, 29–38 (2012).ADS 

    Google Scholar 
    Cornes, R., der Schrier, G. V., den Besselaar, E. J. M. V. & Jones, P. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster. R package version 3.5-15 (2022).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Erb, I. Partial correlations in compositional data analysis. Comput. Geosci. 6, 100026 (2020).
    Google Scholar 
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. U.S.A. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    Kim, S. ppcor: Partial and semi-partial (part) correlation. https://CRAN.R-project.org/package=ppcor. R package version 1.1 (2015).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).
    Google Scholar 
    Freeman, E. A., Moisen, G. G., Coulston, J. W. & Wilson, B. T. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Can. J. For. Res. 46, 323–339 (2016).
    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Cutler, D. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 

    Google Scholar  More

  • in

    Value wild animals’ carbon services to fill the biodiversity financing gap

    Pettorelli, N. et al. J. Appl. Ecol. 58, 2384–2393 (2021).Article 

    Google Scholar 
    CBD High-Level Panel Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource Needs for Implementing the Strategic Plan for Biodiversity 2011–2020 (Secretariat of the Convention on Biological Diversity, 2014).Schmitz, O. J. et al. Science 362, eaar3213 (2018).Article 

    Google Scholar 
    Krause, T. & Nielsen, M. R. Forests 10, 344 (2019).Article 

    Google Scholar 
    Jørgensen, D. BioScience 63, 719–720 (2013).Article 

    Google Scholar 
    Berzaghi, F., Chami, R., Cosimano, T. & Fullenkamp, C. Proc. Natl Acad. Sci. USA 119, e2120426119 (2022).Article 

    Google Scholar 
    van Duuren, E., Plantinga, A. & Scholtens, B. J. Bus. Ethics 138, 525–533 (2016).Article 

    Google Scholar 
    Broadstock, D. C., Chan, K., Cheng, L. T. W. & Wang, X. Finance Res. Lett. 38, 101716 (2021).Article 

    Google Scholar 
    Joos, F., Meyer, R., Bruno, M. & Leuenberger, M. Geophys. Res. Lett. 26, 1437–1440 (1999).CAS 
    Article 

    Google Scholar 
    Wang, F. et al. Biol. Conserv. 253, 108913 (2021).Article 

    Google Scholar 
    Sullivan, S. Antipode 45, 198–217 (2013).Article 

    Google Scholar 
    Kamilaris, A., Cole, I. R. & Prenafeta-Boldú, F. X., in Food Technology Disruptions (ed. Galanakis, C. M.) 247–284 (Academic Press, 2021).O’Donnell, E. & Talbot-Jones, J. Ecol. Soc. 23, 7 (2018).Article 

    Google Scholar 
    Anderson, K. & Peters, G. Science 354, 182–183 (2016).CAS 
    Article 

    Google Scholar 
    Berzaghi, F. et al. Nat. Geosci. 12, 725–729 (2019).CAS 
    Article 

    Google Scholar 
    Mariani, G. et al. Sci. Adv. 6, eabb4848 (2020).CAS 
    Article 

    Google Scholar 
    Martin, A. H., Pearson, H. C., Saba, G. K. & Olsen, E. M. One Earth 4, 680–693 (2021).Article 

    Google Scholar 
    Durfort, A., Mariani, G., Troussellier, M., Tulloch, V. & Mouillot, D. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-92037/v1 (2021).Norris, K., Terry, A., Hansford, J. P. & Turvey, S. T. Trends Ecol. Evol. 35, 919–926 (2020).Article 

    Google Scholar 
    Berzaghi, F. et al. Ecography 41, 1934–1954 (2018).Article 

    Google Scholar  More

  • in

    Archiving the genomic and genetic resources of glaciers

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01367-2 (2022). More

  • in

    Regenerative living cities and the urban climate–biodiversity–wellbeing nexus

    CIAT Global Rural-Urban Mapping Project, v1 (GRUMPv1): Urban Extents Grid (NASA SEDAC, 2011).Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector (UNEP, 2020).Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-being: Biodiversity Synthesis (Millenium Ecosystem Assessment, World Resources Institute, 2005).Xu, C. et al. Resour. Conserv. Recycl. 151, 104478 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. Nat. Commun. 12, 5050 (2021).CAS 
    Article 

    Google Scholar 
    van den Berg, M. et al. Urban For. Urban Green. 14, 806–816 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Lindenmayer, D. et al. Ecol. Lett. 11, 78–91 (2008).
    Google Scholar 
    Knapp, S., Jaganmohan, M. & Schwarz, N. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M. et al.) 167–172 (Springer, 2019).Kim, H. Y. Geomat. Nat. Hazards Risk 12, 1181–1194 (2021).Article 

    Google Scholar 
    Vargas-Hernández, J. G., Pallagst, K. & Zdunek-Wielgołaska, J. in Handbook of Engaged Sustainability (ed. Marques, J.) 885–916 (Springer, 2018).Manso, M. et al. Renew. Sustain. Energy Rev. 135, 110111 (2021).Article 

    Google Scholar 
    Assimakopoulos, M.-N. et al. Sustainability 12, 3772 (2020).CAS 
    Article 

    Google Scholar 
    Mora-Melià, D. et al. Sustainability 10, 1130 (2018).Article 

    Google Scholar 
    IPBES. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Google Scholar 
    Schröpfer, T. & Menz, S. in Dense and Green Building Typologies: Research, Policy and Practice Perspectives (eds Schröpfer, T. & Menz, S.) 1–4 (Springer, 2019).Pedersen Zari, M. & Hecht, K. Biomimetics 5, 18 (2020).Article 

    Google Scholar  More

  • in

    Network analysis suggests changes in food web stability produced by bottom trawl fishery in Patagonia

    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. (2018).Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 

    Google Scholar 
    Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: Prognosis and solutions. Fish Fish. 3, 114–136 (2002).
    Google Scholar 
    Hiddink, J. G. et al. Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats. J. Appl. Ecol. 57, 1199–1209 (2020).
    Google Scholar 
    Funes, M., Marinao, C. & Galván, D. E. Does trawl fisheries affect the diet of fishes? A stable isotope analysis approach. Isotop. Environ. Health Stud. 10, 1–17 (2019).
    Google Scholar 
    Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Ind. 98, 442–452 (2019).
    Google Scholar 
    Su, L. et al. Decadal-scale variation in mean trophic level in Beibu Gulf based on bottom-trawl survey data. Mar. Coast. Fish. 13, 174–182 (2021).
    Google Scholar 
    Jennings, S., van Hal, R., Hiddink, J. G. & Maxwell, T. A. D. Fishing effects on energy use by North Sea fishes. J. Sea Res. 60, 74–88 (2008).ADS 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality?. Freshw. Biol. 62, 821–832 (2017).
    Google Scholar 
    Borrelli, J. J. & Ginzburg, L. R. Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1, 10–17 (2014).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. USA 108, 3648–52 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Márquez-Velásquez, V., Raimundo, R. L. G., de Souza Rosa, R. & Navia, A. F. The use of ecological networks as tools for understanding and conserving marine biodiversity. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences, pp 179–202 (eds Ortiz, M. & Jordán, F.) (Springer, 2021). https://doi.org/10.1007/978-3-030-58211-1_9.Chapter 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol. Lett. 17, 651–661 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Beyond connectedness: Why pairwise metrics cannot capture community stability. Ecol. Evol. 6, 7199–7206 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 3, 25 (2021).
    Google Scholar 
    Góngora, M. E., GonzalezZevallos, D., Pettovello, A. & Mendia, L. Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Latin Am. J. Aquat. Res. 40, 1–11 (2012).
    Google Scholar 
    Yorio, P. Marine protected areas, spatial scales, and governance: Implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
    Google Scholar 
    Rincón-Díaz, M. P., Bovcon, N. D., Cochia, P. D., Góngora, M. E. & Galván, D. E. Fish functional diversity as an indicator of resilience to industrial fishing in Patagonia Argentina. J. Fish Biol. 99, 1650–1667 (2021).PubMed 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Consumption of discards and interactions between Black-browed Albatrosses (Thalassarche melanophrys) and Kelp Gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J. Ornithol. 152, 827–838 (2011).
    Google Scholar 
    Vinuesa, J. H. & Varisco, M. Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investig. Mar. 35, 25–34 (2007).
    Google Scholar 
    Belleggia, M. et al. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish Biol. 88, 1070–1087 (2016).CAS 
    PubMed 

    Google Scholar 
    Pasti, A. T. et al. The diet of Mustelus schmitti in areas with and without commercial bottom trawling (Central Patagonia, Southwestern Atlantic): Is it evidence of trophic interaction with the Patagonian shrimp fishery?. Food Webs 29, e00214 (2021).
    Google Scholar 
    Yorio, P., Bertellotti, M., Gandini, P. & Frere, E. Kelp gulls Larus dominicanus breeding on the argentine coast: Population status and relationship with coastal management and conservation. Mar. Ornithol. 26, 11–18 (1998).
    Google Scholar 
    Dans, S. et al. El golfo san jorge como área prioritaria de investigación, manejo y conservación en el marco de la iniciativa pampa azul. Rev. Cie. Investig. 71, 21–43 (2021).
    Google Scholar 
    de la Garza, J. M., Ferníndez, M. & Ravalli, C. Langostino patagónico (Pleoticus muelleri). Inf. Campa 20, 20 (2013).
    Google Scholar 
    Varisco, M. & La Vinuesa, J. H. Alimentación de Munida gregaria (Fabricius, 1793) (Crustacea:Anomura:Galatheidae) en fondos de pesca del Golfo San Jorge, Argentina. Rev. Biol. Mar. Oceanogr. 42, 221–229 (2007).
    Google Scholar 
    Tschopp, A., Cristiani, F., García, N. A., Crespo, E. A. & Coscarella, M. A. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina. J. Fish. Biol. 97, 656–667 (2020).PubMed 

    Google Scholar 
    Kasinsky, T., Yorio, P., Dell’Arciprete, P., Marinao, C. & Suárez, N. Geographical differences in sex-specific foraging behaviour and diet during the breeding season in the opportunistic Kelp Gull (Larus dominicanus). Mar. Biol. 168, 14 (2021).CAS 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Seabird use of discards and incidental captures at the Argentine hake trawl fishery in the Golfo San Jorge, Argentina. Mar. Ecol. Progress Ser. 316, 175–183 (2006).ADS 

    Google Scholar 
    Crespo, E. A. et al. Direct and indirect effects of the Highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northw. Atl. Fish. Sci. 22, 189–207 (1997).
    Google Scholar 
    Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. Condor 101, 783–789 (1999).
    Google Scholar 
    Fu, C. et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Ind. 105, 16–28 (2019).
    Google Scholar 
    Olivier, P. et al. Exploring the temporal variability of a food web using long-term biomonitoring data. Ecography 42, 2107–2121 (2019).
    Google Scholar 
    Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).MATH 

    Google Scholar 
    Gellner, G. & McCann, K. Reconciling the omnivory-stability debate. Am. Nat. 179, 22–37 (2012).PubMed 

    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 26113 (2004).ADS 
    CAS 

    Google Scholar 
    Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 16110 (2006).ADS 
    MathSciNet 

    Google Scholar 
    Allesina, S. & Pascual, M. Network structure, predator-prey modules, and stability in large food webs. Theor. Ecol. 1, 55–64 (2008).
    Google Scholar 
    Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scholz, F. W. & Stephens, M. A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82, 918–924 (1987).MathSciNet 

    Google Scholar 
    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A. Multiweb: An R Package for Multiple Interaction Ecological Networks (Zenodo, 2019). https://doi.org/10.5281/zenodo.3370397.Book 

    Google Scholar 
    Kortsch, S. et al. Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. J. Anim. Ecol. 20, 20 (2021).
    Google Scholar 
    Marina, T. I. et al. Architecture of marine food webs: To be or not be a “small-world’’. PLoS One 13, 1–13 (2018).
    Google Scholar 
    Panel, E. P. A. Ecosystem-based Fishery Management: A Report to Congress by the Ecosystem Principles Advisory Panel. https://repository.library.noaa.gov/view/noaa/23730 (1998)Armoškaitė, A. et al. Establishing the links between marine ecosystem components, functions and services: An ecosystem service assessment tool. Ocean Coast. Manage. 193, 105229 (2020).
    Google Scholar 
    Navia, A. F., Cruz-Escalona, V. H., Giraldo, A. & Barausse, A. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecol. Model. 328, 23–33 (2016).
    Google Scholar 
    Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: An ecosystem modeling approach. PLoS One 14, e0210659 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Sciencehttps://doi.org/10.1126/science.1079777 (2003).Article 
    PubMed 

    Google Scholar 
    Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endang. Species Res. 5, 1–12 (2008).
    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 

    Google Scholar 
    Reyes, L. M. Cetaceans of Central Patagonia, Argentina. Aquat. Mammals 32, 20–30 (2006).
    Google Scholar 
    Lisnizer, N., Garcia-Borboroglu, P. & Yorio, P. Spatial and temporal variation in population trends of Kelp Gulls in northern Patagonia, Argentina. Emu Austral Ornithol. 111, 259–267 (2011).
    Google Scholar 
    Yorio, P. et al. Population trends of Imperial Cormorants (Leucocarbo atriceps) in northern coastal Argentine Patagonia over 26 years. Emu Austral Ornithol. 120, 114–122 (2020).
    Google Scholar 
    Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: Insights from fishers’ knowledge. Neotrop. Ichthyol. 14, 20 (2016).
    Google Scholar 
    Vasas, V., Lancelot, C., Rousseau, V. & Jordán, F. Eutrophication and overfishing in temperate nearshore pelagic food webs: A network perspective. Mar. Ecol. Prog. Ser. 336, 1–14 (2007).ADS 
    CAS 

    Google Scholar 
    Gilarranz, L. J., Mora, C. & Bascompte, J. Anthropogenic effects are associated with a lower persistence of marine food webs. Nat. Commun. 7, 10737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 

    Google Scholar 
    May, R. M. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton University Press, 1974).
    Google Scholar 
    McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 

    Google Scholar 
    van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: The complexity-stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
    Google Scholar 
    Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F. & Mazza, C. The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate. PLoS Comput. Biol. 14, e1005988 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McCann, K. & Hastings, A. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264, 1249–1254 (1997).ADS 

    Google Scholar 
    Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542–544 (1978).ADS 

    Google Scholar 
    Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser. 230, 1–9 (2002).ADS 

    Google Scholar 
    Bieg, C. et al. Linking humans to food webs: A framework for the classification of global fisheries. Front. Ecol. Environ. 16, 412–420 (2018).
    Google Scholar 
    Shephard, S. et al. Scavenging on trawled seabeds can modify trophic size structure of bottom-dwelling fish. ICES J. Mar. Sci. 71, 398–405 (2014).
    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Danet, A., Mouchet, M., Bonnaffé, W., Thébault, E. & Fontaine, C. Species richness and food-web structure jointly drive community biomass and its temporal stability in fish communities. Ecol. Lett. 24, 2364–2377 (2021).PubMed 

    Google Scholar 
    Shanafelt, D. W. & Loreau, M. Stability trophic cascades in food chains. R. Soc. Open Sci. 5, 180995 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 

    Google Scholar 
    Sánchez, M. F. et al. Caracterización ecológica del Golfo San Jorge (Argentina) mediante modelación ecotrófica multiespecífica. 30 https://www.inidep.edu.ar/wordpress/?page_id=1959 (2009)Gaitán, E. N. Tramas Tróficas en Sistemas Frontales del Mar Argentino: Estructura, Dinámica y Complejidad Analizada Mediante Isótopos Estables (Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, 2012).
    Google Scholar 
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).
    Google Scholar 
    Philippsen, J. S. & Benedito, E. Discrimination factor in the trophic ecology of fishes: A review about sources of variation and methods to obtain it. Oecol. Aust. 17, 205–2016 (2013).
    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    Lefebvre, S. & Dubois, S. The stony road to understand isotopic enrichment and turnover rates: Insight into the metabolic part. Vie Milieu-life Environ. 66, 305–314 (2016).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, e00101 (2018).
    Google Scholar 
    Santos, B. & Villarino, M. F. Evaluación del Estado de Explotación del Efectivo sur de 41 S de la Merluza (Merluccius hubbsi) y Estimación de la Captura Biológicamente Aceptable Para 2014. Informe Técnico Oficial INIDEP. 1–30 (2013).Belleggia, M., Giberto, D. & Bremec, C. Adaptation of diet in a changed environment: Increased consumption of lobster krill Munida gregaria (Fabricius, 1793) by Argentine hake. Mar. Ecol. 38, e12445 (2017).ADS 

    Google Scholar 
    Diez, M. J., Cabreira, A. G., Madirolas, A. & Lovrich, G. A. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. J. Sea Res. 114, 1–12 (2016).ADS 

    Google Scholar 
    Ravalli, C., De La Garza, J. & Greco, L. L. Distribución de los morfotipos gregaria y subrugosa de la langostilla Munida gregaria (Decapoda, Galatheidae) en el Golfo San Jorge en la campaña de verano AE-01/2011. Integración de resultados con las campañas 2009 y 2010. Rev. Invest. Desarr. Pesq. 22, 29–41 (2013).
    Google Scholar 
    Belleggia, M. et al. Are hakes truly opportunistic feeders? A case of prey selection by the Argentine hake Merluccius hubbsi off southwestern Atlantic. Fish. Res. 214, 166–174 (2019).
    Google Scholar 
    Roux, A., Piñero, R., Moriondo, P. & Fernández, M. Diet of the red shrimp Pleoticus muelleri (Bate, 1888) in Patagonian fishing grounds, Argentine. Rev. Biol. Mar. Oceanogr. 44, 25 (2009).
    Google Scholar 
    de la Garza, J. et al. An Overview of the Argentine Red Shrimp (Pleoticus muelleri, Decapoda, Solenoceridae) Fishery in Argentina: Biology, Fishing, Management and Ecological Interactions (Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 2017).
    Google Scholar 
    Sánchez, M. F. & Prenski, L. B. Ecología trófica de peces demersales en el Golfo San Jorge. Trophic Ecol. Demersal Fish San Jorge Gulf 10, 57–71 (1996).
    Google Scholar 
    Copello, S., Quintana, F. & Pérez, F. Diet of the southern giant petrel in Patagonia: Fishery-related items and natural prey. Endang. Species Res. 6, 15–23 (2008).
    Google Scholar 
    Alonso, R. B. et al. The opportunistic sense: The diet of Argentine hake Merluccius hubbsi reflects changes in prey availability. Region. Stud. Mar. Sci. 27, 100540 (2019).
    Google Scholar 
    Marón, C. F. et al. Increased wounding of southern right whale (Eubalaena australis) calves by kelp gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS One 10, e0139291 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fazio, A., Argüelles, M. B. & Bertellotti, M. Change in southern right whale breathing behavior in response to gull attacks. Mar. Biol. 162, 267–273 (2015).
    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).
    Google Scholar 
    Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 29929 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Manure amendment can reduce rice yield loss under extreme temperatures

    Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).
    Google Scholar 
    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO Agricultural Development Economics Division, 2012).Arunrat, N., Pumijumnong, N., Sereenonchai, S., Chareonwong, U. & Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 726, 137864 (2020).CAS 

    Google Scholar 
    Lafferty, D. C. et al. Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on U.S. maize yields. Commun. Earth Environ. 2, 196 (2021).
    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food. 2, 54–65 (2021).
    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).
    Google Scholar 
    Sun, T. et al. Current rice models underestimate yield losses from short-term heat stresses. Glob. Chang. Biol. 27, 402–416 (2020).
    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014).
    Google Scholar 
    Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).
    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
    Google Scholar 
    Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 1–10 (2020).
    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 494, 390 (2013).CAS 

    Google Scholar 
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).CAS 

    Google Scholar 
    Guo, J. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).CAS 

    Google Scholar 
    Galloway, J. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).CAS 

    Google Scholar 
    Xia, L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 51, 7450–7457 (2017).CAS 

    Google Scholar 
    Zhang, T. et al. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resour. Conserv. Recycl. 168, 105301 (2021).
    Google Scholar 
    Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).
    Google Scholar 
    Du, Y. et al. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 193, 104617 (2020).CAS 

    Google Scholar 
    Wang, K., Zhang, X. & Ervin, E. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J. Plant Physiol. 169, 492–500 (2012).CAS 

    Google Scholar 
    Jespersen, D. & Huang, B. Proteins associated with heat‐induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics. 15, 798–812 (2015).CAS 

    Google Scholar 
    Xi, Y. et al. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicol. Environ. Saf. 190, 110048 (2020).CAS 

    Google Scholar 
    Waraich, E. A., Ahmad, R., Halim, A. & Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nut. 12, 221–244 (2012).
    Google Scholar 
    Yamori, W., Noguchi, K., Hikosaka, K. & Terashima, I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 152, 388–399 (2010).CAS 

    Google Scholar 
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7, 405–410 (2002).CAS 

    Google Scholar 
    Wang, Q., Chen, J., He, N. & Guo, F. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19, 849 (2018).
    Google Scholar 
    Cheng, Q. et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol. 17, 419–429 (2015).CAS 

    Google Scholar 
    Miura, K. et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403–1414 (2007).CAS 

    Google Scholar 
    Xie, G., Kato, H., Sasaki, K. & Imai, R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett. 583, 2734–2738 (2009).CAS 

    Google Scholar 
    Hasanuzzaman, M., Hossain, M. A. & Fujita, M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 5, 353 (2011).
    Google Scholar 
    Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T. & Takabe, T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163, 515–523 (2002).CAS 

    Google Scholar 
    Khan, S. et al. Plants mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8, 508 (2019).CAS 

    Google Scholar 
    Li, Y., Gao, Y., Xu, X., Shen, Q. & Guo, S. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Exp. Bot. 60, 2351–2360 (2009).CAS 

    Google Scholar 
    Xiong, D. et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature, and irradiance are affected by N supplements in rice. Plant. Cell Environ. 38, 2541–2550 (2015).CAS 

    Google Scholar 
    Waraich, E. A., Ahmad, R., Ashraf, M. Y., Saifullah & Ahmad, M. Improving agricultural water use effciency by nutrient management in crop plants. Acta Agric. Scand. Sect.-B Soil. Plant Sci. 61, 291–304 (2011).CAS 

    Google Scholar 
    Dias, A. S. & Lidon, F. C. Bread and durum wheat tolerance under heat stress: A synoptical overview. Emir. J. Food Agric. 22, 412–436 (2010).
    Google Scholar 
    Meshah, E. A. E. Effect of irrigation regimes and foliar spraying of potassium on yield, yield components and water use efficiency of wheat in sandy soils. World J. Agric. Sci. 5, 662–669 (2009).
    Google Scholar 
    Huang, G., Zhang, Q., Wei, X., Peng, S. & Li, Y. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Front. Plant Sci. 8, 945 (2017).
    Google Scholar 
    Zhou, Y. et al. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crop. Res. 228, 68–75 (2018).
    Google Scholar 
    Hou, L. et al. Effects of different phosphate fertilizer application on permeability of membrane and antioxidative enzymes in rice under low temperature stress. Acta Agriculturae. Boreali-Sinica 27, 118–123 (2012).
    Google Scholar 
    Dong, W. et al. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7, e44504 (2012).CAS 

    Google Scholar 
    Bertollo, A. M. et al. Precrops alleviate soil physical limitations for soybean root growth in an Oxisol from southern Brazil. Soil Till. Res. 206, 104820 (2021).
    Google Scholar 
    Ren, Y. et al. Functional compensation dominates plant rhizosphere microbiota assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 150, 107968 (2020).CAS 

    Google Scholar 
    Oka, Y. Mechanisms of nematode suppression by organic soil amendments—a review. Appl. Soil Ecol. 44, 101–115 (2010).
    Google Scholar 
    Rose, M. T. et al. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron 124, 37–89 (2014).CAS 

    Google Scholar 
    García, A. C. et al. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J. Plant Physiol. 192, 56–63 (2016).
    Google Scholar 
    Dieleman, W. I. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 18, 2681–2693 (2012).
    Google Scholar 
    Muhammad, Q. et al. Yield sustainability, soil organic carbon sequestration, and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 198, 104509 (2020).
    Google Scholar 
    Zhang, X. et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta‐analysis. Glob. Chang. Biol. 26, 888–900 (2020).
    Google Scholar 
    Zhang, X. et al. Significant residual effects of wheat fertilization on greenhouse gas emissions in succeeding soybean growing season. Soil Till. Res. 169, 7–15 (2017).
    Google Scholar 
    Latare, A. M., Kumar, O., Singh, S. K. & Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 69, 17–24 (2014).
    Google Scholar 
    Zhang, J. et al. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system. Crop J. 9, 1191–1197 (2021).
    Google Scholar 
    Pachauri, R. K. et al. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).Choi, W. J., Lee, M. S., Choi, J. E., Yoon, S. & Kim, H. Y. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine. Glob. Chang. Biol. 19, 1300–1310 (2013).
    Google Scholar 
    FAO. FAOSTAT Online Statistical Service. https://www.fao.org/faostat/en/#data/RFN, (FAO, 2016).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 

    Google Scholar 
    Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).
    Google Scholar 
    Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R. & Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 465, 72–96 (2013).CAS 

    Google Scholar 
    Aryal, J. P. et al. Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environ. Sci. Pollut. Res. 28, 51480–51496 (2021).CAS 

    Google Scholar 
    Zhang, Q. et al. Targeting hotspots to achieve sustainable nitrogen management in China’s smallholder-dominated cereal production. Agronomy 11, 557 (2021).
    Google Scholar 
    Tyagi, V. K. et al. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable Sustain. Energy Rev. 93, 380–399 (2018).
    Google Scholar 
    Schlesinger, W. H. Carbon sequestration in soils: Some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 

    Google Scholar 
    Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).
    Google Scholar 
    Zhao, F., Yang, L., Chen, L., Li, S. & Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response, and human exposure. Chemosphere 219, 882–895 (2019).CAS 

    Google Scholar 
    Chadwick, D. R. et al. Strategies to reduce nutrient pollution from manure management in China. Front. Agr. Sci. Eng. 7, 45–55 (2020).
    Google Scholar 
    Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain 4, 48–55 (2021).
    Google Scholar 
    Chen, D., Yuan, L., Liu, Y., Ji, J. & Hou, H. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 90, 34–42 (2017).
    Google Scholar 
    Siddik, M. A. et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 106, 30–38 (2019).
    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207 (1973).CAS 

    Google Scholar 
    Page, A. L., Miller, R. H. & Dennis, R. K. Methods of Soil Analysis. Part 2 Chemical Methods (ed Page, A. L.) (Soil Science Society of America, 1982).Black, C. A. Methods of Soil Analysis Part II. Chemical and Microbiological Properties (ed Norman, A. G.) (American Society of Agriculture, 1965).Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).CAS 

    Google Scholar 
    Knudsen, D., Peterson, G. A. & Pratt, P. F. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (ed Page, A. L.) (American Society of Agriculture, 1982).Olsen, S. R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (United States Department of Agriculture Circular, 1954).Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science 331, 554–554 (2011).CAS 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    van Groenigen, K. J., Van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 3, 288–291 (2013).
    Google Scholar 
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).
    Google Scholar 
    Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).
    Google Scholar  More

  • in

    Natural forest growth and human induced ecosystem disturbance influence water yield in forests

    Forest complexity increases hydrological resistance to disturbancesIn general, natural forests, old forests, forests with high coverage, and forests located in low aridity regions (P/PET ≥ 1) are characterized by higher ecosystem complexity than planted forests, young forests, forests with low coverage, and forests located in arid regions (P/PET  More