More stories

  • in

    Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides

    Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020;46:1–13.Article 

    Google Scholar 
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82–343ra82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akagawa S, Tsuji S, Onuma C, Akagawa Y, Yamaguchi T, Yamagishi M, et al. Effect of delivery mode and nutrition on gut microbiota in neonates. Ann Nutr Metab. 2019;74:132–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5.Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.Article 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Fukami T, Nakajima M. Community assembly: Alternative stable states or alternative transient states? Ecol Lett. 2011;14:973–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2018;15:197–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tannock GW, Lawley B, Munro K, Pathmanathan SG, Zhou SJ, Makrides M, et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol. 2013;79:3040–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv. 2019;5:eaaw7696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macrobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18:12–15.Article 

    Google Scholar 
    Macrobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.Article 
    CAS 

    Google Scholar 
    Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients. 2020;12:71.CAS 
    Article 

    Google Scholar 
    Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem. 2016;80:621–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol. 2009;75:1534–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gore C, Munro K, Lay C, Bibiloni R, Morris J, Woodcock A, et al. Bifidobacterium pseudocatenulatum is associated with atopic eczema: A nested case-control study investigating the fecal microbiota of infants. J Allergy Clin Immunol. 2008;121:135–40.PubMed 
    Article 

    Google Scholar 
    Lewis ZT, Mills DA. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr Inst Work Ser. 2017;88:149–59.Article 

    Google Scholar 
    Tannock GW, Lee PS, Wong KH, Lawley B. Why don’t all infants have bifidobacteria in their stool? Front Microbiol. 2016;7:6–10.Article 

    Google Scholar 
    Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:1–12.CAS 
    Article 

    Google Scholar 
    Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M, Tancredi DJ, et al. A comparison of two probiotic strains of bifidobacteria in preterm infants. J Pediatr. 2013;163:1585–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 2018;18:1–8.Article 
    CAS 

    Google Scholar 
    Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 1997;76:101–7.Article 

    Google Scholar 
    Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol. 2022;73:108–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25:716–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet. 2016;387:649–60.PubMed 
    Article 

    Google Scholar 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules. Microorganisms. 2020;8:481.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014;14:1–14.Article 
    CAS 

    Google Scholar 
    Higgins MA, Ryan KS. Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697. Anaerobe. 2021;68:102320.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Micro Biotechnol. 2013;6:67–79.Article 
    CAS 

    Google Scholar 
    Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, et al. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette RL, Fukami T. Historical contingency in species interactions: Towards niche-based predictions. Ecol Lett. 2014;17:115–24.PubMed 
    Article 

    Google Scholar 
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.PubMed 
    Article 
    CAS 

    Google Scholar 
    Pu Z, Jiang L. Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos. 2015;124:1327–36.Article 

    Google Scholar 
    Chase JM. Community assembly: when should history matter? Oecologia. 2003;136:489–98.PubMed 
    Article 

    Google Scholar 
    Schröder A, Persson L, De Roos AM. Direct experimental evidence for alternative stable states: A review. Oikos. 2005;110:3–19.Article 

    Google Scholar 
    Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286:34583–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep. 2018;8:13958.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, et al. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Avershina E, Storrø O, Øien T, Johnsen R, Wilson R, Egeland T, et al. Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol. 2013;79:497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7:20–4.Article 
    CAS 

    Google Scholar 
    James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M, Motherway MO, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep. 2019;9:1–20.Article 
    CAS 

    Google Scholar 
    Dedon LR, Özcan E, Rani A, Sela DA. Bifidobacterium infantis metabolizes 2′fucosyllactose-derived and free fucose through a common catabolic pathway resulting in 1,2-propanediol secretion. Front Nutr. 2020;7:1–16.Article 
    CAS 

    Google Scholar 
    Sprockett D, Martin M, Costello E, Burns A, Holmes S, Gurven M, et al. Microbiota assembly, structure, and dynamics among tsimane horticulturalists of the Bolivian Amazon. Nat Commun. 2019;11:1–14.Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6:1367–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020;88:209–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bunesova V, Lacroix C, Schwab C. Fucosyllactose and l-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol. 2016;16:248.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz-Moyano S, Totten SM, Garrido D, Smilowitz JT, Bruce German J, Lebrilla CB, et al. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol. 2013;79:6040–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during l-fucose and fucosyllactose degradation. Front Microbiol. 2017;8:1–14.Article 

    Google Scholar 
    Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165:842–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019;25:324–335.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.PubMed 
    Article 

    Google Scholar 
    Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75:965–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int. 2004;46:509–15.PubMed 
    Article 

    Google Scholar 
    Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem. 2007;71:2101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y. Arita M. DFAST and DAGA: Web-based integrated genome annotation tools and resources. Biosci Microbiota, Food Heal. 2016;35:173–84.CAS 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:206–14.Article 
    CAS 

    Google Scholar 
    Price MN, Arkin AP. PaperBLAST: Text-mining papers for information about homologs. bioRxiv. 2017;2:1–10.
    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.Article 
    CAS 

    Google Scholar 
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75:4175–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350:1–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohenford MA, Abraham A, Abraham J, Dain JA. Colorimetric assay for free and bound l-fucose. Anal Biochem. 1989;177:172–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut Bifidobacterium species. Curr Microbiol. 2017;74:987–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13.Article 
    CAS 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;2017:1–17.CAS 

    Google Scholar 
    Milani C, Lugli GA, Fontana F, Mancabelli L, Alessandri G, Longhi G, et al. METAnnotatorX2: A comprehensive tool for deep and shallow metagenomic data set analyses. mSystems. 2021;6:1–15.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019. More

  • in

    Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig

    Misra, V. K. & Draper, D. E. On the role of magnesium ions in RNA stability. Biopolymers 48, 113–135 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apell, H.-J., Hitzler, T. & Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry 56, 1005–1016 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iseri, L. T. & French, J. H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 108, 188–193 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. USA 72, 3551–3555 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 95, 1–46 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).Article 

    Google Scholar 
    Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. Hypomagnesemia in type 2 diabetes: A vicious circle?. Diabetes 65, 3–13 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pham, P.-C.T., Pham, P.-M.T., Pham, S. V., Miller, J. M. & Pham, P.-T.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2, 366–373 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mather, H. M. et al. Hypomagnesaemia in diabetes. Clin. Chim. Acta 95, 235–242 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kurstjens, S. et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 11–19 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Viering, D. H. H. M., de Baaij, J. H. F., Walsh, S. B., Kleta, R. & Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 32, 1123–1135 (2017).PubMed 
    Article 

    Google Scholar 
    Peacock, J. M. et al. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 160, 464–470 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez-Morán, M., Simental-Mendía, L. E., Gamboa-Gómez, C. I. & Guerrero-Romero, F. Oral magnesium supplementation and metabolic syndrome: A randomized double-blind placebo-controlled clinical trial. Adv. Chronic Kidney Dis. 25, 261–266 (2018).PubMed 
    Article 

    Google Scholar 
    Grigoryan, R. et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients. J. Anal. At. Spectrom. 34, 1514–1521 (2019).CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jouzel, J. et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Albarède, F., Télouk, P. & Balter, V. Medical applications of isotope metallomics. Rev. Mineral. Geochem. 82, 851–885 (2017).Article 
    CAS 

    Google Scholar 
    Balter, V. et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112, 982–985 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Télouk, P. et al. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7, 299–308 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lobo, L. et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 165, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costas-Rodríguez, M. et al. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 11, 1093–1103 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lamboux, A. et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease. Metallomics 12, 1781–1790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sauzéat, L. et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience 6, 264–271 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krayenbuehl, P.-A., Walczyk, T., Schoenberg, R., von Blanckenburg, F. & Schulthess, G. Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105, 3812–3816 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anoshkina, Y. et al. Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 9, 517–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, J. L. L. et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 9989–9994 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, A. et al. Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis. Bone Rep. 10, 100200 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isaji, Y. et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments. ACS Earth Space Chem. 3, 1073–1079 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pokharel, R. et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environ. Sci. Technol. 52, 12216–12224 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolou-Bi, E. B., Poszwa, A., Leyval, C. & Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta 74, 2523–2537 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Y. et al. Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: A greenhouse study with wheat. Plant Soil 455, 93–105 (2020).CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112, 430–435 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214 (1979).CAS 
    Article 

    Google Scholar 
    Kim, J. K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. In Type 2 Diabetes: Methods and Protocols, Methods in Molecular Biology (ed. Stocker, C.) 221–238 (Humana Press, 2009).Chapter 

    Google Scholar 
    DeFronzo, R. A., Hendler, R. & Simonson, D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31, 795–801 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B., Podolskiy, D. I., Mariotti, M., Seravalli, J. & Gladyshev, V. N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19, e13119 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morel, J.-D. et al. The mouse metallomic landscape of aging and metabolism. Nat. Commun. 13, 607 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoryan, R., Costas-Rodríguez, M., Vandenbroucke, R. E. & Vanhaecke, F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation—Application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal. Chim. Acta 1130, 137–145 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goff, S. L., Albalat, E., Dosseto, A., Godin, J.-P. & Balter, V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 35, e9074 (2021).PubMed 

    Google Scholar 
    DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansen, T., Hansen, H. S., Richelsen, B. & Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).CAS 
    PubMed 

    Google Scholar 
    Coelho, P. G. et al. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: A pilot study. J. Oral Maxillofac. Surg. 76, 1677–1687 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elin, R. J. Assessment of magnesium status. Clin. Chem. 33, 1965–1970 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., van der Meulen, J., Dekker, R., Corbijn, H. & Mroz, Z. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals. Horm. Metab. Res. 38, 607–613 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., Maassen, J. A., Radder, J. K. & Frölich, M. In vivo insulin responsiveness for glucose uptake and production at eu- and hyperglycemic levels in normal and diabetic rats. Biochimica et Biophysica Acta (BBA) General Subjects 1115, 230–238 (1992).CAS 
    Article 

    Google Scholar 
    Koopmans, S. J. et al. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2–like diabetic pig model. Metabolism 55, 960–971 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Grey wolf genomic history reveals a dual ancestry of dogs

    Sampling, DNA preparation and sequencingStockholmSamples LOW002, LOW003, LOW006, LOW007, LOW008 and PON012 were processed at the Archaeological Research Laboratory at Stockholm University, Sweden, following methods previously described8. In brief, this involved extracting DNA by incubating the bone powder for 24 h at 37 °C in 1.5 ml of digestion buffer (0.45 M EDTA (pH 8.0) and 0.25 mg ml–1 proteinase K), concentrating supernatant on Amicon Ultra-4 (30-kDa molecular weight cut-off (MWCO)) filter columns (MerckMillipore) and purifying on Qiagen MinElute columns. Double-stranded Illumina libraries were prepared using the protocol outlined in ref. 48, with the inclusion of USER enzyme and the modifications described in ref. 49.Samples 367, PDM100, Taimyr-1 and Yana-1 were processed at the Swedish Museum of Natural History in Stockholm, Sweden, following previously described methods8. In brief, this involved extracting DNA using a silica-based method with concentration on Vivaspin filters (Sartorius), according to a protocol optimized for recovery of ancient DNA50. Double-stranded Illumina libraries were prepared using the protocol outlined in ref. 48, with the inclusion of USER enzyme.Samples ALAS_024, VAL_033, ALAS_016, VAL_008, HMNH_007, HMNH_011, VAL_050, VAL_005, DS04, VAL_037, VAL_012, VAL_011, VAL_18A, IN18_016 and IN18_005 were processed at the Swedish Museum of Natural History in Stockholm, Sweden, following previously described methods for permafrost bone and tooth samples51. In brief, this involved DNA extraction using the methodology of ref. 52 and double-stranded Illumina library preparation as described in ref. 48, with dual unique indexes and the inclusion of USER enzyme. Between eight and ten separate PCR reactions with unique indexes were carried out for each sample to maximize library complexity. The libraries were sequenced alongside samples HOV4, AL2242, AL2370, AL2893, AL3272 and AL3284 across three Illumina NovaSeq 6000 lanes with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.PotsdamSamples JAL48, JAL65, JAL69, JAL358, AH574, AH575 and AH577 were processed at the University of Potsdam. Pre-amplification steps (DNA extraction and library preparation) were conducted in separated laboratory rooms specially equipped for the processing of ancient DNA. Amplification and post-amplification steps were performed in different laboratory rooms. DNA was extracted from bone powder (29–54 mg) following a protocol specially adapted to recover short DNA fragments52. Single-stranded double-indexed libraries were built from 20 µl of DNA extract according to the protocol in ref. 53. The libraries were sequenced on an HiSeq X platform at SciLifeLab in Stockholm.Tübingen/JenaSamples JK2174, JK2175, JK2179, JK2181, JK2183, TU144, TU148, TU839 and TU840 were processed at the University of Tübingen, with DNA extraction and pre-amplification steps undertaken in clean room facilities and post-amplification steps performed in a separate DNA laboratory. Both laboratories fulfil standards for work with ancient DNA54,55. All surfaces of tooth and bone samples were initially UV irradiated for 30 min, to minimize the potential risk of modern DNA contamination. Subsequently, DNA was extracted by applying a well-established guanidine silica-based protocol for ancient samples52. Illumina sequencing libraries were prepared by using 20 µl of DNA extract per library48; afterwards, dual barcodes (indexes) were chemically added to the prime ends of the libraries56. For the samples from Auneau (TU839 and TU840), five sequencing libraries each were prepared; for all other samples processed in Tübingen, three sequencing libraries each were prepared. To detect potential contamination of the chemicals, negative controls were conducted for extraction and library preparation. After preparation of the sequencing libraries, DNA concentration was measured with qPCR (Roche LightCycler) using corresponding primers48. The DNA concentration was given by the copy number of the DNA fragments in 1 µl of the sample.Amplification of the indexed sequencing libraries was performed using Herculase II Fusion under the following conditions: 1× Herculase II buffer, 0.4 µM IS5 primer and 0.4 µM IS6 primer48, Herculase II Fusion DNA polymerase (Agilent Technologies), 0.25 mM dNTPs (100 mM; 25 mM each dNTP) and 0.5–4 µl barcoded library as template in a total reaction volume of 100 µl. The applied amplification thermal profile was processed as follows: initial denaturation for 2 min at 95 °C; denaturation for 30 s at 95 °C, annealing for 30 s at 60 °C and elongation for 30 s at 72 °C for 3 to 20 cycles; and a final elongation step for 5 min at 72 °C. Thereafter, the amplified DNA was purified using a MinElute purification step and DNA was eluted in 20 µl TET. The concentration of the amplified DNA sequencing libraries was measured using a Bioanalyzer (Agilent Technologies) and a DNA1000 lab chip from Agilent Technologies.The sequencing libraries were sequenced on an Illumina HiSeq 4000 platform at the Max Planck Institute for Science of Human History in Jena. The samples from Auneau (TU839 and TU840) were paired-end sequenced applying 2 × 50 + 8 + 8 cycles. All other libraries prepared in Tübingen were single-end sequenced using 75 + 8 + 8 cycles.OxfordSamples AL2657, AL2541, AL2741, AL2744, AL3185, AL2350, CH1109, AL2370, AL3272 and AL3284 were processed at the dedicated ancient DNA facility at the PalaeoBARN laboratory at the University of Oxford, following methods described previously8. In brief, double-stranded libraries were constructed following the protocol in ref. 48. These libraries were sequenced on a HiSeq 2500 (AL2657, AL2541, AL2741, AL2744) or a HiSeq 4000 (AL3185, AL2350, CH1109) instrument at the Danish National Sequencing Center or on a NextSeq 550 instrument (AL2741) at the Natural History Museum of London. For samples AL2370, AL3272 and AL3284, between six and eight separate PCR reactions with unique indexes were carried out on their libraries and they were sequenced alongside samples HOV4, VAL_18A and IN18_016 on an Illumina NovaSeq 6000 lane with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.CopenhagenSamples CGG13, CGG17, CGG19, CGG20, CGG21, CGG25, CGG26, CGG27, CGG28, CGG34, Tumat1 and IRK were processed at the GLOBE Institute, University of Copenhagen. All pre-PCR work was performed in ancient DNA facilities following ancient DNA guidelines57. The details of extraction, library construction and sequencing for the samples with CGG codes are described in ref. 21, in relation to the publication of mitochondrial data from these specimens. The Tumat1 sample was processed following the exact same protocol. In brief, DNA extraction was performed using a buffer containing urea, EDTA and proteinase K50, double-stranded libraries were prepared with NEBNext DNA Sample Prep Master MixSet 2 (E6070S, New England Biolabs) and Illumina-specific adaptors48, and sequencing was performed on an Illumina HiSeq 2500 platform using 100-bp single-read chemistry. For the IRK sample, DNA was extracted from three subsamples and purified as described in ref. 21. The three DNA extracts and the purified pre-digest of one subsample were incorporated into double-stranded libraries following the BEST protocol58, with the modifications described in ref. 59, and sequenced on a BGISEQ-500 platform using 100-bp single-read chemistry.Santa CruzSamples SC19.MCJ017, SC19.MCJ015, SC19.MCJ010 and SC19.MCJ014 were processed at the UCSC Paleogenomics Lab and were provided by the Yukon Government Paleontology program. All pre-PCR work was performed in a dedicated ancient DNA facility at the University of California, Santa Cruz, following standard ancient DNA methods60. Subsamples (250–350 mg) were sent to the UCI KECK AMS facility for radiocarbon dating, and the remaining amounts were powdered in a Retsch MM400 for extraction. For each sample, ~100 mg of powder was treated with a 0.5% sodium hypochlorite solution before extraction to remove surface contaminants61 and then combined with 1 ml lysis buffer for extraction, following the protocol in ref. 52. Samples were processed in parallel with a negative control. We quantified the extracts using a Qubit 1× dsDNA HS Assay kit (Q33231) before preparing libraries. We prepared single-stranded libraries following the protocol in ref. 62 and amplified the libraries for 9–16 cycles as informed by qPCR. After amplification, we cleaned the libraries using a 1.2× SPRI bead solution and pooled them to an equimolar ratio for in-house shallow quality-control sequencing on a NextSeq 550 paired-end 75-bp run. We then sent the libraries to Fulgent Genetics for deeper sequencing on two paired-end 150-bp lanes on a HiSeq X instrument.ViennaSample HOV4 was processed at the Department of Anthropology, University of Vienna. The sample is a canine tooth, which after sequencing was determined to derive from a dhole (Cuon alpinus). DNA was extracted from its cementum using the methods described in ref. 63 with a modified incubation time of ~18 h. The library was prepared according to the protocol in ref. 48 with the modifications from ref. 64. Five separate PCR reactions with unique indexes were carried out on the library and were sequenced alongside samples VAL_18A, IN18_016, AL2242, AL2370, AL2893, AL3272 and AL3284 on an Illumina NovaSeq 6000 lane with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.An overview of all samples and their associated metadata is available in Supplementary Data 1.Genome sequence data processingFor paired-end data, read pairs were merged and adaptors were trimmed using SeqPrep (https://github.com/jstjohn/SeqPrep), discarding reads that could not be successfully merged. Reads were mapped to the dog reference genome canFam3.1 using BWA aln (v.0.7.17)65 with permissive parameters, including a disabled seed (-l 16500 -n 0.01 -o 2). Duplicates were removed by keeping only one read from any set of reads that had the same orientation, length and start and end coordinates. For sample Taimyr-1, previously published data13 were merged with newly generated data. Data from samples processed in Copenhagen were processed as described previously66 except that they were also mapped to canFam3.1. Post-mortem damage was quantified using PMDtools (v0.60)67 with the ‘–first’ and ‘–CpG’ arguments.Genotyping and integration with previously published genomesTo construct a comparative dataset for population genetic analyses, we started from a published variant call set compiling 722 modern dog, wolf and other canid genomes from multiple previous studies (NCBI BioProject accession PRJNA448733)40. To this, we added additional modern whole genomes from other studies: 4 African golden wolves and 15 Nigerian village dogs (Genome Sequence Archive (http://gsa.big.ac.cn/), accession PRJCA000335)68, 12 Scandinavian wolves (European Nucleotide Archive accession PRJEB20635)69, 9 North American wolves and coyotes (European Nucleotide Archive accession PRJNA496590)25 and 8 other canids (African hunting dog, dhole, Ethiopian wolf, golden jackal, Middle Eastern grey wolves) (European Nucleotide Archive accession PRJNA494815)22. Reads from these genomes were mapped to the dog reference genome using bwa mem (version 0.7.15)70, marked for duplicates using Picard Tools (v2.21.4) (http://broadinstitute.github.io/picard), genotyped at the sites present in the above dataset using GATK HaplotypeCaller (v3.6)71 with the ‘-gt_mode GENOTYPE_GIVEN_ALLELES’ argument and then merged into the dataset using bcftools merge (http://www.htslib.org/). The following filters were then applied to sites and genotypes across the full dataset: sites with excess heterozygosity (bcftools fill-tags ‘ExcHet’ P value 5.8×. For divergence time analyses, haploid X chromosomes from two different male genomes were combined and the point at which the inferred effective population size for this ‘pseudodiploid’ chromosome increased sharply upwards was taken to correspond to a population divergence. Results were scaled using a mutation rate of 0.4 × 10−8 mutations per site per generation13,87 (with a 25% lower rate for X-chromosome analyses) and a mean generational interval of 3 years13. For effective population size inferences, transition variants were ignored and results were scaled using a transversions-only mutation rate inferred from results on modern genomes. For more details on the MSMC2 analyses, see Supplementary Information section 3.Selection analysesSelection analysis was performed using PLINK (v1.90b5.2)88. This analysis used the 72 ancient wolf genomes and 68 modern wolf genomes (with the latter including a historical Japanese wolf genome73 treated as ancient for analysis purposes, with its age set to 200 bp). A list of the genomes used for this analysis is available in Supplementary Data 2 (“Used for selection scan” column). All SNPs, not only transversions, were used for this analysis. The age of each wolf was set as the phenotype, with values of 0 for modern wolves, and the ‘–linear’ argument was used to test for an association between SNP genotypes and age, also applying the ‘–adjust’ argument to correct P values using genomic control. The application of genomic control34 here aimed to use the magnitude of temporal allele frequency variance observed across the genome to account for what was observed from genetic drift alone given wolf demographic history. Only results for the following sets of sites were retained and included in the Manhattan plot: sites where at least 40 ancient genomes had a genotype call, sites with a minor allele frequency among the ancient wolves of ≥5% and sites that had at least 7 neighbouring sites within a 50-kb window with a P value that was at least 90% as large (on a log10 scale) as the P value of the site itself. The last ‘neighbourhood filter’ aimed to reduce false positives by requiring similar evidence across multiple nearby sites. As a P-value significance cut-off to correct for the genome-wide testing, we used 5 × 10−8, which is commonly used in genome-wide association studies in humans and also in dogs89. We excluded 15 regions where only a single variant reached significance. A detailed table with the 24 detected regions is available in Supplementary Data 3. To test the robustness of this analysis to false positives arising from genetic drift alone, we applied the same analysis to data from neutral coalescent simulations generated using ms90 and found no false positives. For more details, see Supplementary Information section 4.Ancestry modelling with qpAdm and qpWaveWe used the qpAdm and qpWave methods43 from ADMIXTOOLS (v5.0)84 to test ancestry models for wolf and dog targets postdating 23 ka. For the primary analyses, we used the following set of candidate source populations (age estimate in brackets, years bp): Armenia_Hovk1.HOV4 (ancient dhole), Siberia_UlakhanSular.LOW008 (70,772), Germany_Aufhausener.AH575 (57,233), Siberia_BungeToll.CGG29 (48,210), Germany_HohleFels.JK2183 (32,366), Siberia_BelayaGora.IN18_016 (32,020), Yukon_QuartzCreek.SC19.MCJ010 (29,943), Altai_Razboinichya.AL2744 (28,345), Siberia_BelayaGora.IN18_005 (18,148) and Germany_HohleFels.JK2179 (13,229). We used a rotating approach in which, for each target, we tested all possible one-, two- and three-source models that could be enumerated from the above set. Individuals from the set that were not used as a source in a given model served as thereference set (or the ‘right’ population in the qpAdm framework). This means that, in every model, each of the above individuals was always either in the source list or in the reference list. We ranked models on the basis of their P values, but prioritized models with fewer sources using a P-value threshold of 0.01: if a simpler model (meaning a model with fewer sources) had a P value above this threshold, it ranked above a more complex model (meaning a model with more sources) regardless of the P value of the latter. We also failed models with inferred ancestry proportions larger than 1.1 or smaller than −0.1. For single-source models, qpWave was run instead of qpAdm. Both programs were run with the ‘allsnps: YES’ option (without this option, there was very little power to reject models). We describe ancestry assigned to the ancient dhole source (Armenia_Hovk1.HOV4) as ‘unsampled’ ancestry; note that this does not imply that such ancestry is of non-wolf origin, only that it is not represented by (that is, diverged early from and lacks shared genetic drift with) the ancient wolf genomes in the reference set.To test whether any post-23 ka or modern wolf genome available might be a good proxy for the western Eurasian wolf-related ancestry identified in Near Eastern and African dogs, we added the 9,500-year-old Zhokhov dog17 to the rotating set of candidate source populations. Chosen for its high coverage, early date and easterly location, this makes the assumption that the Zhokhov dog is a good representative for the eastern dog ancestry component. Using the African Basenji dog as a target, models involving the Zhokhov dog plus another given wolf thus allowed us to test whether that wolf was a good match for the additional component of ancestry. For more details on the qpAdm and qpWave analyses, see Supplementary Information sections 2 (wolf targets) and  5 (dog targets).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    Cross-feeding niches among commensal leaf bacteria are shaped by the interaction of strain-level diversity and resource availability

    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature.2020;580:653–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE. Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research. 2017;6:1698.PubMed 
    Article 

    Google Scholar 
    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–83. e14PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, et al. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe. 2018;24:168–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, et al. Host selection shapes crop microbiome assembly and network complexity. N. Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol. 2014;85:473–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nobori T, Cao Y, Entila F, Dahms E, Tsuda Y, Garrido-Oter R, et al. Dissecting the co-transcriptome landscape of plants and microbiota members. bioRxiv; 2022. p. 2021.04.25.440543.Yamada K, Saijo Y, Nakagami H, Takano Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science. 2016;354:1427–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants. Mol Plant. 2012;5:766–8.PubMed 
    Article 

    Google Scholar 
    Tegeder M, Hammes UZ. The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol. 2018;43:16–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant Cell Environ. 2016;39:2172–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact. MPMI. 2008;21:269–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA. 2013;110:E425.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Winter H, Riens B, Heldt HW. Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995;108:270–5.CAS 
    Article 

    Google Scholar 
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xin XF, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature. 2016;539:524–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005;23:873–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLOS Biol. 2016;14:e1002540.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020;14:26–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat Ecol Evol. 2021;5:195–203.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:1–17.Article 

    Google Scholar 
    Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate metabolism in C4 Flaveria species is controlled by the root and connected to serine biosynthesis. Plant Physiol. 2018;178:565–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4? Plant Cell. 2011;23:2087–105.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKown AD, Dengler NG. Vein patterning and evolution in C4 plants. Botany. 2010;88:775–86.CAS 
    Article 

    Google Scholar 
    Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 2019;179:1265–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayer T, Mari A, Almario J, Murillo-Roos M, Syed M, Abdullah H, et al. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Mol Ecol Resour. 2021;21:1952–65.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/.Callahan B, McMurdie PJ, Rosen M, Han A, Johnson A, Holmes S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:61217.Article 
    CAS 

    Google Scholar 
    Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package [Internet]. 2020. Available from: https://CRAN.R-project.org/package=vegan.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Muñoz-Lintz DA, et al. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front Microbiol. 2018;9:3052.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant. 2001;111:457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dal Bello M, Lee H, Goyal A, Gore J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat Ecol Evol. 2021;5:1424–34.PubMed 
    Article 

    Google Scholar 
    Sattelmacher B. The apoplast and its significance for plant mineral nutrition. N. Phytol. 2001;149:167–92.CAS 
    Article 

    Google Scholar 
    Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, et al. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J. 2020;14:2116–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 2020;117:1148–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Herren CM. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc R Soc B Biol Sci. 2020;287:20192945.Article 

    Google Scholar 
    Rahme LG, Mindrinos MN, Panopoulos NJ. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1992;174:3499–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3:177–90.Article 

    Google Scholar 
    Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundberg DS, Jové R de P, Ayutthaya PPN, Karasov TL, Shalev O, Poersch K, et al. Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. bioRxiv. 2021;2021.04.06.438366.Ikawa Y, Tsuge S. The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett. 2016;363:fnw071.Wei ZM, Sneath BJ, Beer SV. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol. 1992;174:1875–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA. 2002;99:3695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett. 2022;25:1410–20.Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9:103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci USA. 2019;116:12558–65.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001;3:139–48.CAS 
    Article 

    Google Scholar 
    Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10:10691.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Reply to: “Steller’s sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes”

    Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Crerar, L. D., Crerar, A. P., Domning, D. P. & Parsons, E. C. Rewriting the history of an extinction-was a population of Steller’s sea cows (Hydrodamalis gigas) at St Lawrence Island also driven to extinction? Biol. Lett. 10, 20140878 (2014).Article 

    Google Scholar 
    Domning, D. P., Thomason, J. & Corbett, D. G. Steller’s sea cow in the Aleutian Islands. Mar. Mamm. Sci. 23, 976–983 (2007).Article 

    Google Scholar 
    Savinetsky, A. B., Kiseleva, N. K. & Khassanov, B. F. Dynamics of sea mammal and bird populations of the Bering Sea region over the last several millennia. Palaeogeogra. Palaeoclimatol. Palaeoecol. 20, 335–352 (2004).ADS 
    Article 

    Google Scholar 
    Whitmore, F. C. & Gard, L. M. J. Steller’s sea cow (Hydrodamalis gigas) of late Pleistocene age from Amchitka, Aleutian Islands, Alaska. US Geol. Surv. Prof. Pap. 1036, 1–19 (1977).
    Google Scholar 
    Sheppard, J. K. et al. Movement heterogeneity of dugongs, Dugong dugon (Muller), over large spatial scales. J. Exp. Mar. Biol. Ecol. 334, 64–83 (2006).Article 

    Google Scholar 
    Deutsch C. J., et al. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic Coast of the United States. Wildlife Monogr., 151, 1–77 (2003).Reed, R. K. Transport of the Alaskan Stream. Nature 220, 681–682 (1968).ADS 
    Article 

    Google Scholar 
    Detlef, H. et al. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea. Nat. Commun. 9, 941 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ragen, T. J., Antonelis, G. A. & Kiyota, M. Early migration of northern fur-seal pups from St-Paul Island, Alaska. J. Mammal. 76, 1137–1148 (1995).Article 

    Google Scholar 
    Estes, J. A., Burdin, A. & Doak, D. F. Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc. Natl Acad. Sci. USA 113, 880–885 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Larson, S., Jameson, R., Etnier, M., Jones, T. & Hall, R. Genetic diversity and population parameters of sea otters, Enhydra lutris, before fur trade extirpation from 1741–1911. PLoS ONE 7, e32205 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bullen, C. D., Campos, A. A., Gregr, E. J., McKechnie, I. & Chan, K. M. A. The ghost of a giant – Six hypotheses for how an extinct megaherbivore structured kelp forests across the North Pacific Rim. Glob. Ecol. Biogeogr. 30, 2101–2118 (2021).Article 

    Google Scholar 
    Plon, S., Thakur, V., Parr, L. & Lavery, S. D. Phylogeography of the dugong (Dugong dugon) based on historical samples identifies vulnerable Indian Ocean populations. PLoS ONE 14, e0219350 (2019).CAS 
    Article 

    Google Scholar 
    Seddon, J. M. et al. Fine scale population structure of dugongs (Dugong dugon) implies low gene flow along the southern Queensland coastline. Conserv. Genet. 15, 1381–1392 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Darwin, C. On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. (1859).Wallace, A. R. The Malay Archipelago: The Land of the Orang-utan and the Bird of Paradise; a Narrative of Travel, with Studies of Man and Nature (Courier Corporation, 1962).Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist (Columbia Uni. Press, 1942).Emerson, B. C. Speciation on islands: what are we learning? Biol. J. Linn. Soc. Lond. 95, 47–52 (2008).
    Google Scholar 
    Lomolino, M. V., Riddle, B. R., Whittaker, R. J., Brown, J. H. & Lomolino, M. V. Biogeography (Sunderland, Mass: Sinauer Associates, 2017).Baeckens, S. & Van Damme, R. The island syndrome. Curr. Biol. 30, R338–R339 (2020).CAS 

    Google Scholar 
    Burns, K. C. Evolution in Isolation: The Search for an Island Syndrome in Plants (Cambridge University Press, 2019).Blaschke, J. D. & Sanders, R. W. Preliminary insights into the phylogeny and speciation of scalesia (asteraceae), galápagos islands. J. Bot. Res. Inst. Tex. 3, 177–191 (2009).
    Google Scholar 
    Fernández-Mazuecos, M. et al. The radiation of Darwin’s giant daisies in the Galápagos Islands. Curr. Biol. 30, 4989–4998.e7 (2020).
    Google Scholar 
    Crawford, D. J. et al. Genetic diversity in Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. Syst. Evol. Biogeogr. Compos 139, 151 (2009).
    Google Scholar 
    Eliasson, U. Studies in Galápagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).
    Google Scholar 
    Itow, S. Phytogeography and ecology of Scalesia (compositae) endemic to the Galapagos islands! Pac. Sci. 49, 17–30 (1995).
    Google Scholar 
    Stöcklin, J. Darwin and the plants of the Galápagos-Islands. Bauhinia 21, 33–48 (2009).
    Google Scholar 
    Ono, M. Chromosome number of Scalesia (Compositae), an endemic genus of the Galapagos Islands. J. Jpn. Bot. 42, 353–360 (1967).
    Google Scholar 
    Eliasson, U. Studies in Galapagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).
    Google Scholar 
    Meudt, H. M. et al. Polyploidy on islands: its emergence and importance for diversification. Front. Plant Sci. 12, 637214 (2021).PubMed Central 

    Google Scholar 
    Spring, O., Heil, N. & Vogler, B. Sesquiterpene lactones and flavanones in Scalesia species. Phytochemistry 46, 1369–1373 (1997).CAS 

    Google Scholar 
    Schilling, E. E., Panero, J. L. & Eliasson, U. H. Evidence from chloroplast DNA restriction site analysis on the relationships of Scalesia (Asteraceae: Heliantheae). Am. J. Bot. 81, 248–254 (1994).
    Google Scholar 
    Peona, V., Weissensteiner, M. H. & Suh, A. How complete are ‘complete’ genome assemblies?-An avian perspective. Mol. Ecol. Resour. 18, 1188–1195 (2018).CAS 

    Google Scholar 
    Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).ADS 
    CAS 

    Google Scholar 
    Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14953 (2017).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Bellinger, M. R., Datlof, E., Selph, K. E., Gallaher, T. J. & Knope, M. L. A genome for Bidens hawaiensis: a member of a hexaploid Hawaiian plant adaptive radiation. J. Hered. https://doi.org/10.1093/jhered/esab077 (2022).Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat. Commun. 11, 5442 (2020).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Funk, V. A. Systematics, Evolution, and Biogeography of Compositae (International Association for Plant Taxonomy, 2009).Julca, I. et al. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 18, 148 (2020).PubMed Central 

    Google Scholar 
    te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 109, 19–45 (2012).
    Google Scholar 
    Mandel, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Whittaker, R. J., School of Geography Robert J Whittaker & Fernandez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (OUP Oxford, 2007).Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J. 101, 1378–1396 (2020).CAS 

    Google Scholar 
    Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Lang, D. et al. ThePhyscomitrella patenschromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).CAS 

    Google Scholar 
    Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. N. Phytol. 220, 87–93 (2018).
    Google Scholar 
    Freeling, M., Scanlon, M. J. & Fowler, J. E. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35, 110–118 (2015).CAS 

    Google Scholar 
    Wolfe, K. H. Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).CAS 

    Google Scholar 
    Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. N. Phytol. 230, 354–371 (2021).CAS 

    Google Scholar 
    Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).CAS 

    Google Scholar 
    Renny-Byfield, S., Gong, L., Gallagher, J. P. & Wendel, J. F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 1063–1071 (2015).CAS 

    Google Scholar 
    Douglas, G. M. et al. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl Acad. Sci. USA 112, 2806–2811 (2015).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Barrier, M., Baldwin, B. G., Robichaux, R. H. & Purugganan, M. D. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol. Biol. Evol. 16, 1105–1113 (1999).CAS 

    Google Scholar 
    Catchen, J. M., Conery, J. S. & Postlethwait, J. H. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 19, 1497–1505 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Őszi, E. et al. E2FB interacts with RETINOBLASTOMA RELATED and regulates cell proliferation during leaf development. Plant Physiol. 182, 518–533 (2020).
    Google Scholar 
    Berckmans, B. et al. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 157, 1440–1451 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Kojima, S. et al. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol. 52, 1259–1273 (2011).CAS 

    Google Scholar 
    Husbands, A. Y., Benkovics, A. H., Nogueira, F. T. S., Lodha, M. & Timmermans, M. C. P. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27, 3321–3335 (2016).
    Google Scholar 
    Crane, R. A. et al. Negative regulation of age-related developmental leaf senescence by the IAOx pathway, PEN1, and PEN3. Front. Plant Sci. 10, 1202 (2019).PubMed Central 

    Google Scholar 
    Fu, M. et al. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. Plant Sci. 285, 44–54 (2019).CAS 

    Google Scholar 
    Zhang, B., Jia, J., Yang, M., Yan, C. & Han, Y. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis. Mol. Cells 34, 367–374 (2012).PubMed Central 

    Google Scholar 
    Ma, Z., Wu, W., Huang, W. & Huang, J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. Photosynth. Res. 126, 301–310 (2015).CAS 

    Google Scholar 
    Wang, Z. et al. Two chloroplast proteins suppress drought resistance by affecting ROS production in guard cells. Plant Physiol. 172, 2491–2503 (2016).CAS 
    PubMed Central 

    Google Scholar 
    Meurer, J. et al. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. Plant J. 92, 400–413 (2017).CAS 

    Google Scholar 
    Holding, D. The chloroplast and leaf developmental mutant, pale cress, exhibits light-conditional severity and symptoms characteristic of its ABA deficiency. Ann. Bot. 86, 953–962 (2000).CAS 

    Google Scholar 
    Meurer, J., Grevelding, C., Westhoff, P. & Reiss, B. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol. Gen. Genet. MGG 258, 342–351 (1998).CAS 

    Google Scholar 
    Lawesson, J. E. Stand-level dieback and regeneration of forests in the Galápagos Islands. Temporal and Spatial Patterns of Vegetation Dynamics 87–93. https://doi.org/10.1007/978-94-009-2275-4_10 (1988).Endo, M., Kudo, D., Koto, T., Shimizu, H. & Araki, T. Light-dependent destabilization of PHL in Arabidopsis. Plant Signal. Behav. 9, e28118 (2014).PubMed Central 

    Google Scholar 
    Endo, M., Tanigawa, Y., Murakami, T., Araki, T. & Nagatani, A. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl Acad. Sci. USA 110, 18017–18022 (2013).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13, 616–622 (2011).CAS 

    Google Scholar 
    Basset, G. J. C. et al. Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J. 40, 453–461 (2004).CAS 

    Google Scholar 
    Smeekens, S. Faculty Opinions recommendation of Large-scale analysis of mRNA translation states during sucrose starvation in arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032260.373846 (2006).Oravecz, A. et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975–1990 (2006).CAS 
    PubMed Central 

    Google Scholar 
    Dal Bosco, C. et al. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J. Biol. Chem. 279, 1060–1069 (2004).CAS 

    Google Scholar 
    Tan, Y.-F., O’Toole, N., Taylor, N. L. & Millar, A. H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 152, 747–761 (2010).CAS 
    PubMed Central 

    Google Scholar 
    Kim, J. Y. et al. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439–451 (2007).CAS 

    Google Scholar 
    ten Hove, C. A. et al. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol. Biol. 76, 69–83 (2011).PubMed Central 

    Google Scholar 
    Jakoby, M. J. et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148, 1583–1602 (2008).CAS 
    PubMed Central 

    Google Scholar 
    Fox, A. R. et al. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. N. Phytol. 228, 973–988 (2020).CAS 

    Google Scholar 
    Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132 (2019).ADS 
    PubMed Central 

    Google Scholar 
    Bittner, A., Hause, B. & Baier, M. Cold-priming causes oxylipin dampening during the early cold and light response of Arabidopsis thaliana. J. Exp. Bot. https://doi.org/10.1093/jxb/erab314 (2021).Kuki, Y., Ohno, R., Yoshida, K. & Takumi, S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 150, 71–79 (2020).CAS 

    Google Scholar 
    Czarnocka, W. et al. FMO1 is involved in excess light stress-induced signal transduction and cell death signaling. Cells 9, 2163 (2020).Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L. & Strand, A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol. 144, 1391–1406 (2007).CAS 
    PubMed Central 

    Google Scholar 
    Castells, E. et al. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J. 30, 1162–1172 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Lahari, T., Lazaro, J., Marcus, J. M. & Schroeder, D. F. RAD7 homologues contribute to Arabidopsis UV tolerance. Plant Sci. 277, 267–277 (2018).CAS 

    Google Scholar 
    Kim, A. et al. Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Rep. 39, 473–487 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Chen, D., Molitor, A., Liu, C. & Shen, W.-H. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20, 1332–1344 (2010).CAS 

    Google Scholar 
    Shen, L. et al. The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis. Development 141, 1303–1312 (2014).CAS 

    Google Scholar 
    Li, J., Wang, Z., Hu, Y., Cao, Y. & Ma, L. Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in Arabidopsis. Front. Plant Sci. 8, 867 (2017).PubMed Central 

    Google Scholar 
    An, Z. et al. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. Plant J. 103, 1010–1024 (2020).CAS 

    Google Scholar 
    Gómez-Zambrano, Á. et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes. Mol. Plant 11, 815–832 (2018).
    Google Scholar 
    Glass, M., Barkwill, S., Unda, F. & Mansfield, S. D. Endo-β−1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. J. Integr. Plant Biol. 57, 396–410 (2015).CAS 

    Google Scholar 
    Markakis, M. N. et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 12, 1–11 (2012).Noutoshi, Y. et al. Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62, 29–42 (2006).CAS 

    Google Scholar 
    Fukunaga, S. et al. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J. 89, 381–393 (2017).CAS 

    Google Scholar 
    Singh, S., Kailasam, S., Lo, J. & Yeh, K. Histone H3 lysine4 trimethylation‐regulated GRF11 expression is essential for the iron‐deficiency response in Arabidopsis thaliana. N. Phytologist 230, 244–258 (2021).CAS 

    Google Scholar 
    Fal, K. et al. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development https://doi.org/10.1242/dev.154369 (2017).He, Y. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18, 2774–2784 (2004).CAS 
    PubMed Central 

    Google Scholar 
    Hoson, T. et al. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. 16, 91–96 (2014).
    Google Scholar 
    Xiong, X., Xu, D., Yang, Z., Huang, H. & Cui, X. A single amino-acid substitution at lysine 40 of an Arabidopsis thaliana α-tubulin causes extensive cell proliferation and expansion defects. J. Integr. Plant Biol. 55, 209–220 (2013).CAS 

    Google Scholar 
    Whitewoods, C. D. et al. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 30, 2645–2648 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Galbraith, D. W. et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).ADS 
    CAS 

    Google Scholar 
    Dolezel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plant. 85, 625–631 (1992).CAS 

    Google Scholar 
    Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed Central 

    Google Scholar 
    Suda, J. et al. Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100, 1323–1335 (2007).PubMed Central 

    Google Scholar 
    Greilhuber, J., Dolezel, J., Lysák, M. A. & Bennett, M. D. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 95, 255–260 (2005).CAS 
    PubMed Central 

    Google Scholar 
    Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytom. Part A: J. Int. Soc. Anal. Cytol. 51, 127–128 (2003).CAS 

    Google Scholar 
    Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).CAS 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Res. 6, 1287 (2017).
    Google Scholar 
    Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bradnam, K. R. et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2, 10 (2013).PubMed Central 

    Google Scholar 
    Smit, A., Hubley, R. & Green, P. RepeatMasker 4.0 (Institute for Systems Biology, 2013).Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Tardaguila, M. et al. Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 1096 (2018).CAS 
    PubMed Central 

    Google Scholar 
    Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinforma. 12, 491 (2011).
    Google Scholar 
    Moore, B., Holt, C., Alvarado, A. S. & Yandell, M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome 18, 188–196 (2008).Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 

    Google Scholar 
    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
    Google Scholar 
    Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763 (2011).CAS 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).CAS 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Mandel, J. R. et al. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Appl. Plant Sci. 2, 1300085 (2014).Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).CAS 

    Google Scholar 
    Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).
    Google Scholar 
    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed Central 

    Google Scholar 
    Delcher, A. L. et al. Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376 (1999).CAS 
    PubMed Central 

    Google Scholar 
    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).PubMed Central 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).PubMed Central 

    Google Scholar 
    Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 6, e251 (2020).PubMed Central 

    Google Scholar 
    Laforest, M. et al. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag. Sci. 76, 2158–2169 (2020).CAS 

    Google Scholar 
    Liu, B. et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat. Commun. 11, 340 (2020).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).PubMed Central 

    Google Scholar 
    Cerca, J. et al. The Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spiders. Genome Biol. Evol. 13, evab262 (2021).Laetsch, D. R. & Blaxter, M. L. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 7, 3349–3357 (2017).CAS 
    PubMed Central 

    Google Scholar 
    Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).CAS 
    PubMed Central 

    Google Scholar 
    Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).CAS 

    Google Scholar 
    Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).
    Google Scholar 
    Steinbiss, S., Willhoeft, U., Gremme, G. & Kurtz, S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37, 7002–7013 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Eddy, S. HMMER user’s guide. Dep. Genet., Wash. Univ. Sch. Med. 2, 13 (1992).
    Google Scholar 
    Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).CAS 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).CAS 

    Google Scholar 
    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
    Google Scholar 
    Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa1022 (2020).Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 
    PubMed Central 

    Google Scholar 
    Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. Package Version 2, 2010 (2010).
    Google Scholar 
    Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv 27, 1–26 (2009).
    Google Scholar 
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).
    Google Scholar 
    Wu, M., Chatterji, S. & Eisen, J. A. Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7, e30288 (2012).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed Central 

    Google Scholar 
    Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).CAS 

    Google Scholar 
    Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).CAS 

    Google Scholar  More

  • in

    Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners

    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.CAS 
    PubMed 

    Google Scholar 
    Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    PubMed 

    Google Scholar 
    Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea. 2017;2017:1–22.
    Google Scholar 
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science. 2004;305:1457–62.CAS 
    PubMed 

    Google Scholar 
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 

    Google Scholar 
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.CAS 
    PubMed 

    Google Scholar 
    McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol. 2019;4:614–22.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019;4:595–602.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl‐coenzyme M reductase‐based anaerobic alkane oxidation in archaea. Environ Microbiol. 2021;23:530–41.CAS 
    PubMed 

    Google Scholar 
    Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R. Methanogenic capabilities of ANME‐archaea deduced from 13C‐labelling approaches. Environ Microbiol. 2013;15:2384–93.CAS 
    PubMed 

    Google Scholar 
    Sousa DZ, Smidt H, Alves MM, Stams AJM. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Micr. 2007;57:609–15.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Micr. 2006;56:1331–40.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microb. 2005;71:7493–503.CAS 

    Google Scholar 
    Manzoor S, Schnürer A, Bongcam-Rudloff E, Müller B. Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Stand Genomic Sci. 2016;11:80.PubMed 
    PubMed Central 

    Google Scholar 
    Engelhardt T, Sahlberg M, Cypionka H, Engelen B. Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J. 2013;7:199–209.CAS 
    PubMed 

    Google Scholar 
    Nölling J, Groffen A, de Vos WM. φ F1 and φF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus. Methanobacterium Microbiol. 1993;139:2511–6.
    Google Scholar 
    Meile L, Jenal U, Studer D, Jordan M, Leisinger T. Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol. 1989;152:105–10.CAS 

    Google Scholar 
    Weidenbach K, Nickel L, Neve H, Alkhnbashi OS, Künzel S, Kupczok A, et al. Methanosarcina spherical virus, a novel archaeal lytic virus targeting Methanosarcina strains. J Virol. 2017;91:e00955–17.PubMed 
    PubMed Central 

    Google Scholar 
    Molnár J, Magyar B, Schneider G, Laczi K, Valappil SK, Kovács ÁL, et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLOS ONE. 2020;15:e0231864.PubMed 
    PubMed Central 

    Google Scholar 
    Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun. 2015;6:6585.CAS 
    PubMed 

    Google Scholar 
    Pourcel C, Touchon M, Villeriot N, Vernadet J-P, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2019;48:D535–D544.PubMed Central 

    Google Scholar 
    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife. 2015;4:e08490.PubMed Central 

    Google Scholar 
    Lever MA, Teske AP. Diversity of methane-cycling Archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microb. 2015;81:1426–41.
    Google Scholar 
    Jian H, Yi Y, Wang J, Hao Y, Zhang M, Wang S, et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 2021;15:3094–110.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nature Protoc. 2017;12:1673–82.CAS 

    Google Scholar 
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Páez-Espino D, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2020;49:D764–D775.PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Sandaa R, Gómez‐Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG, et al. Viral control of bacterial biodiversity – evidence from a nutrient‐enriched marine mesocosm experiment. Environ Microbiol. 2009;11:2585–97.CAS 
    PubMed 

    Google Scholar 
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang J-H, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krupovič M, Forterre P, Bamford DH. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol. 2010;397:144–60.PubMed 

    Google Scholar 
    Thiroux S, Dupont S, Nesbø CL, Bienvenu N, Krupovic M, L’Haridon S, et al. The first head‐tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep‐sea archaea. Environ Microbiol. 2021;23:3614–26.CAS 
    PubMed 

    Google Scholar 
    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
    Google Scholar 
    Hao L, Bize A, Conteau D, Chapleur O, Courtois S, Kroff P, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions. Water Res. 2016;102:158–69.CAS 
    PubMed 

    Google Scholar 
    Bedoya K, Hoyos O, Zurek E, Cabarcas F, Alzate JF. Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia. Sci Total Environ. 2020;726:138479.CAS 
    PubMed 

    Google Scholar 
    Murphy KC, Fenton AC, Poteete AR. Sequence of the bacteriophage P22 Anti-RecBCD (abc) genes and properties of P22 abc region deletion mutants. Virology. 1987;160:456–64.CAS 
    PubMed 

    Google Scholar 
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, et al. Bacterial retrons function in anti-phage defense. Cell. 2020;183:1551–61.CAS 
    PubMed 

    Google Scholar 
    Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol. 2018;16:12–7.CAS 
    PubMed 

    Google Scholar 
    Jonge PA, de, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2018;27:51–63.PubMed 

    Google Scholar 
    Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE, et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol. 2019;4:352–61.CAS 
    PubMed 

    Google Scholar 
    Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13:777–86.CAS 
    PubMed 

    Google Scholar 
    Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol. 2005;5:28.PubMed 
    PubMed Central 

    Google Scholar 
    Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme deviations from expected evolutionary rates in archaeal protein families. Genome Biol Evol. 2017;9:2791–811.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155.PubMed 
    PubMed Central 

    Google Scholar 
    Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.PubMed 
    PubMed Central 

    Google Scholar 
    Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfennig N, Widdel F, Trüper HG. The prokaryotes, A handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, Berlin, Germany. 1981.Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.CAS 
    PubMed 

    Google Scholar 
    Kumar S, Cheng X, Klimasauskas S, Sha M, Posfai J, Roberts RJ, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashcroft AE, Lago H, Macedo JMB, Horn WT, Stonehouse NJ, Stockley PG. Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechno. 2005;5:2034–41.CAS 

    Google Scholar 
    Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, et al. Structure of the receptor-binding protein of bacteriophage Det7: a podoviral tail spike in a Myovirus. J Virol. 2008;82:2265–73.CAS 
    PubMed 

    Google Scholar 
    Shai Y. Mode of action of membrane active antimicrobial peptides. Peptide Sci. 2002;66:236–48.CAS 

    Google Scholar 
    Thevissen K, Ferket KKA, François IEJA, Cammue BPA. Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003;24:1705–12.CAS 
    PubMed 

    Google Scholar 
    Broderick JB, Duffus BR, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev. 2014;114:4229–317.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wildschutte H, Preheim SP, Hernandez Y, Polz MF. O‐antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol. 2010;12:2977–87.CAS 
    PubMed 

    Google Scholar 
    Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohyd Res. 2003;338:2503–19.CAS 

    Google Scholar 
    Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Markine-Goriaynoff N, Gillet L, Etten JLV, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol. 2004;85:2741–54.CAS 
    PubMed 

    Google Scholar 
    Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant-microbe Interac. 2013;26:676–85.CAS 

    Google Scholar 
    Trueba G, Zapata S, Madrid K, Cullen P, Haake D. Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol Official J Span Soc Microbiol. 2004;7:35–40.
    Google Scholar 
    Trunk T, Khalil HS, Leo JC. Norway BCSG Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslb,. Bacterial autoaggregation. Aims Microbiol. 2018;4:140–164.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guan S, Bastin DA, Verma NK. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology. 1999;145:1263–73.CAS 
    PubMed 

    Google Scholar 
    Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59:145–55.CAS 
    PubMed 

    Google Scholar 
    Silva JB, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363:fnw002.
    Google Scholar 
    Tsuzuki K, Kimura K, Fujii N, Yokosawa N, Oguma K. The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin. Biochem Bioph Res Co. 1992;183:1273–9.CAS 

    Google Scholar 
    Enav H, Mandel-Gutfreund Y, Béjà O. Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome. 2014;2:9.PubMed 
    PubMed Central 

    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome. 2019;7:58.PubMed 
    PubMed Central 

    Google Scholar 
    Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun. 2017;8:1114.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome. 2020;8:124.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. Peerj Comput Sci. 2017;3:e104.
    Google Scholar 
    Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peerj. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;3:1043–55.
    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;6:1925–7.
    Google Scholar 
    Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–52.PubMed Central 

    Google Scholar 
    Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in the Pfam database. BMC Bioinform. 2007;8:298.
    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pratama AA, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. Peerj. 2021;9:e11447.PubMed 
    PubMed Central 

    Google Scholar 
    Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–43.CAS 
    PubMed 

    Google Scholar 
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinform Oxf Engl. 2011;27:1009–10.CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler Avon, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:gkab301-.
    Google Scholar 
    Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009;10:R85–R85.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Morphological variation and reproductive isolation in the Hetaerina americana species complex

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
    Google Scholar 
    Gröning, J. & Hochkirch, A. Reproductive interference between animal species. Q. Rev. Biol. 83, 257–282 (2008).PubMed 

    Google Scholar 
    Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).PubMed 

    Google Scholar 
    Hettyey, A. & Pearman, P. B. Social environment and reproductive interference affect reproductive success in the frog Rana latastei. Behav. Ecol. 14, 294–300 (2003).
    Google Scholar 
    Kyogoku, D. & Sota, T. A generalized population dynamics model for reproductive interference with absolute density dependence. Sci. Rep. 7, 257–258 (2017).
    Google Scholar 
    Anderson, C. N. & Grether, G. F. Multiple routes to reduced interspecific territorial fighting in Hetaerina damselflies. Behav. Ecol. 22, 527–534 (2011).
    Google Scholar 
    Hochkirch, A., Gröning, J. & Bücker, A. Sympatry with the devil: Reproductive interference could hamper species coexistence. J. Anim. Ecol. 76, 633–642 (2007).PubMed 

    Google Scholar 
    Pfennig, K. S. & Pfennig, D. W. Character displacement: Ecological and reproductive responses to a common evolutionary problem. Q. Rev. Biol. 84, 253–276 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Garrison, R. A synopsis of the genus Hetaerina with description of four new species (Odonata: Calopterygidae). Trans. Am. Entomol. Soc. 116, 175–259 (1990).
    Google Scholar 
    Grether, G. F., Drury, J. P., Berlin, E. & Anderson, C. N. The role of wing coloration in sex recognition and competitor recognition in rubyspot damselflies (Hetaerina spp.). Ethology 121, 674–685 (2015).
    Google Scholar 
    Drury, J. P. et al. A general explanation for the persistence of reproductive interference. Am. Nat. 194, 268–275 (2019).PubMed 

    Google Scholar 
    Cabezas Castillo, M. B. & Grether, G. F. Why are female color polymorphisms rare in territorial damselflies?. Ethology 124, 667–673 (2018).
    Google Scholar 
    Drury, J. P. & Grether, G. F. Interspecific aggression, not interspecific mating, drives character displacement in the wing coloration of male rubyspot damselflies (Hetaerina). Proc. R. Soc. B Biol. Sci. 281, 20141737 (2014).CAS 

    Google Scholar 
    Grether, G. F. Intersexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution (N. Y.) 50, 1949 (1996).
    Google Scholar 
    McEachin, S., Drury, J. P., Anderson, C. N. & Grether, G. F. Mechanisms of reduced interspecific interference between territorial species. Behav. Ecol. 33, 126–136 (2022).
    Google Scholar 
    Vega-Sánchez, Y. M., Mendoza-Cuenca, L. F. & González-Rodríguez, A. Complex evolutionary history of the American Rubyspot damselfly, Hetaerina americana (Odonata): Evidence of cryptic speciation. Mol. Phylogenet. Evol. 139, 106536 (2019).PubMed 

    Google Scholar 
    Vega-Sánchez, Y. M., Mendoza-Cuenca, L. F. & González-Rodríguez, A. Hetaerina calverti (Odonata: Zygoptera: Calopterygidae) sp. Nov., a new cryptic species of the American Rubyspot complex. Zootaxa 4766, 485–497 (2020).
    Google Scholar 
    Paulson, D. R. Reproductive isolation in damselflies. Syst. Zool. 23, 40–49 (1974).
    Google Scholar 
    Sánchez-Guillén, R. A., Córdoba-Aguilar, A., Cordero-Rivera, A. & Wellenreuther, M. Rapid evolution of prezygotic barriers in non-territorial damselflies. Biol. J. Linn. Soc. 113, 485–496 (2014).
    Google Scholar 
    Svensson, E. I. & Waller, J. T. Ecology and sexual selection: Evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Nat. 182, E174–E195 (2013).PubMed 

    Google Scholar 
    Sánchez-Herrera, M., Beatty, C. D., Nunes, R., Salazar, C. & Ware, J. L. An exploration of the complex biogeographical history of the neotropical banner-wing damselflies (Odonata: Polythoridae). BMC Evol. Biol. 20, 74 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Battin, T. J. The odonate mating system, communication, and sexual selection: A review. Boll. Zool. 60, 353–360 (1993).
    Google Scholar 
    Drury, J. P., Okamoto, K. W., Anderson, C. N. & Grether, G. F. Reproductive interference explains persistence of aggression between species. Proc. R. Soc. B Biol. Sci. 282, 20142256 (2015).
    Google Scholar 
    Svensson, E. I., Karlsson, K., Friberg, M. & Eroukhmanoff, F. Gender differences in species recognition and the evolution of asymmetric sexual isolation. Curr. Biol. 17, 1943–1947 (2007).CAS 
    PubMed 

    Google Scholar 
    McPeek, M. A., Symes, L. B., Zong, D. M. & McPeek, C. L. Species recognition and patterns of population variation in the reproductive structures of a damselfly genus. Evolution (N. Y.) 65, 419–428 (2011).
    Google Scholar 
    Nagel, L. & Schluter, D. Body size, natural selection, and speciation in sticklebacks. Evolution (N. Y.) 52, 209–218 (1998).
    Google Scholar 
    Baube, C. L. Body size and the maintenance of reproductive isolation in stickleback, genus Gasterosteus. Ethology 114, 1122–1134 (2008).
    Google Scholar 
    Head, M. L., Kozak, G. M. & Boughman, J. W. Female mate preferences for male body size and shape promote sexual isolation in threespine sticklebacks. Ecol. Evol. 3, 2183–2196 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Serrano-Meneses, M. A., López-García, K. & Carrillo-Muñoz, A. I. Assortative mating by size in the American rubyspot damselfly (Hetaerina americana). J. Insect Behav. 31, 585–598 (2018).
    Google Scholar 
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: Connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).PubMed 

    Google Scholar 
    Class, B. & Dingemanse, N. J. A variance partitioning perspective of assortative mating: Proximate mechanisms and evolutionary implications. J. Evol. Biol. 35, 483–490 (2022).PubMed 

    Google Scholar 
    Corbet, P. S. A Biology of Dragonflies 247 (Witherby, 1962).
    Google Scholar 
    Grether, G. F. Sexual selection and survival selection on wing coloration and body size in the Rubyspot damselfly Hetaerina americana. Evolution (N. Y.) 50, 1939 (1996).
    Google Scholar 
    Raihani, G., Serrano-Meneses, M. A. & Córdoba-Aguilar, A. Male mating tactics in the American rubyspot damselfly: Territoriality, nonterritoriality and switching behaviour. Anim. Behav. 75, 1851–1860 (2008).
    Google Scholar 
    Serrano-Meneses, M. A., Córdoba-Aguilar, A., Méndez, V., Layen, S. J. & Székely, T. Sexual size dimorphism in the American rubyspot: Male body size predicts male competition and mating success. Anim. Behav. 73, 987–997 (2007).
    Google Scholar 
    Contreras-Garduño, J., Buzatto, B. A., Abundis, L., Nájera-Cordero, K. & Córdoba-Aguilar, A. Wing colour properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113, 944–952 (2007).
    Google Scholar 
    Serrano-Meneses, M. A., Córdoba-Aguilar, A., Azpilicueta-Amorín, M., González-Soriano, E. & Székely, T. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. J. Evol. Biol. 21, 1259–1273 (2008).CAS 
    PubMed 

    Google Scholar 
    Betts, C. R. & Wootton, R. J. Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. J. Exp. Biol. 138, 271–288 (1988).
    Google Scholar 
    Outomuro, D. & Johansson, F. The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biol. J. Linn. Soc. 102, 263–274 (2011).
    Google Scholar 
    Outomuro, D., Adams, D. C. & Johansson, F. The evolution of wing shape in ornamented-winged damselflies (Calopterygidae, Odonata). Evol. Biol. 40, 300–309 (2013).
    Google Scholar 
    Córdoba-Aguilar, Raihani, Serrano-Meneses, & Contreras-Garduño,. The lek mating system of Hetaerina damselflies (Insecta: Calopterygidae). Behaviour 146, 189–207 (2009).
    Google Scholar 
    Córdoba-Aguilar, A. Adult survival and movement in males of the damselfly Hetaerina cruentata (Odonata: Calopterygidae). Florida Entomol. 77, 256 (1994).
    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—A free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Google Scholar 
    Viscosi, V. & Cardini, A. Correction: Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS ONE https://doi.org/10.1371/annotation/bc347abe-8d03-4553-8754-83f41a9d51ae (2012).Article 
    PubMed Central 

    Google Scholar 
    Maia, R., Gruson, H., Endler, J. A. & White, T. E. PAVO 2: New tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).
    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Outomuro, D., Söderquist, L., Johansson, F., Ödeen, A. & Nordström, K. The price of looking sexy: Visual ecology of a three-level predator–prey system. Funct. Ecol. 31, 707–718 (2017).
    Google Scholar 
    Laughlin, S. B. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol. A 111, 221–247 (1976).
    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).
    Google Scholar 
    Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: Behaviour and physiology compared. Vision Res. 41, 639–653 (2001).CAS 
    PubMed 

    Google Scholar 
    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 

    Google Scholar 
    Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer Vol. 95, 443 (Elsevier Academic Press, 2004).MATH 

    Google Scholar 
    Rohlf, F. J. TpsDig, Digitize Landmarks and Outlines v. 2.0 (Department of Ecology and Evolution, State University of New York at Stony Brook, 2004).
    Google Scholar  More