Coronilla juncea, a native candidate for phytostabilization of potentially toxic elements and restoration of Mediterranean soils
Pourret, O. & Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. IJERPH 16, 4446 (2019).CAS
PubMed Central
Google Scholar
Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).
Google Scholar
Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).CAS
PubMed
Google Scholar
Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).CAS
Google Scholar
Desjardins, D., Nissim, W. G., Pitre, F. E., Naud, A. & Labrecque, M. Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol. Eng. 64, 385–390 (2014).
Google Scholar
Marchiol, L. et al. Gentle remediation at the former “Pertusola Sud” zinc smelter: Evaluation of native species for phytoremediation purposes. Ecol. Eng. 53, 343–353 (2013).
Google Scholar
van Oort, F. et al. Les pollutions métalliques d’un site industriel et des sols environnants : distributions hétérogènes des métaux et relations avec l’usage des sols. In: Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains 15–44 (Editions Quae, 2009).Hodge, A. Plastic plants and patchy soils. J. Exp. Bot. 57, 401–411 (2006).CAS
PubMed
Google Scholar
Huber-Sannwald, E. & Jackson, R. B. Heterogeneous soil-resource distribution and plant responses—from individual-plant growth to ecosystem functioning. In Progress in Botany Vol. 62 (eds Esser, K. et al.) 451–476 (Springer, 2001).
Google Scholar
Loecke, T. D. & Philip Robertson, G. Soil resource heterogeneity in the form of aggregated litter alters maize productivity. Plant Soil 325, 231–241 (2009).CAS
Google Scholar
Reynolds, H. L., Hungate, B. A., Iii, F. S. C. & D’Antonio, C. M. Soil Heterogeneity and Plant Competition in an Annual Grassland. 16 (2021).Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6, 630–643 (2003).
Google Scholar
Shutcha, M. N. et al. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 82, 81–90 (2015).
Google Scholar
Testiati, E. et al. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard. Mater. 248–249, 131–141 (2013).PubMed
Google Scholar
Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R. & Murillo, J. M. Heavy metal pollution of soils affected by the Guadiamar toxic fiood. Sci. Total Environ. 242, 117–129 (1999).CAS
PubMed
Google Scholar
Imperato, M. et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 124, 247–256 (2003).CAS
PubMed
Google Scholar
Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J. & Weis, P. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environ. Pollut. 153, 351–361 (2008).CAS
PubMed
Google Scholar
Gallagher, F. J., Pechmann, I., Holzapfel, C. & Grabosky, J. Altered vegetative assemblage trajectories within an urban brownfield. Environ. Pollut. 159, 1159–1166 (2011).CAS
PubMed
Google Scholar
Heckenroth, A. et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. J. Environ. Manag. 183, 850–863 (2016).CAS
Google Scholar
Dickinson, N. M., Turner, A. P. & Lepp, N. W. How do trees and other long-lived plants survive in polluted environments?. Funct. Ecol. 5, 5 (1991).
Google Scholar
Partida-Martínez, L. P. & Heil, M. The microbe-free plant: Fact or artifact?. Front. Plant Sci. 2, 100 (2011).PubMed
PubMed Central
Google Scholar
Giller, K. E., Witter, E. & Mcgrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30, 1389–1414 (1998).CAS
Google Scholar
Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants (CRC Press, 2001).
Google Scholar
Tyler, G. Heavy metal pollution and mineralisation of nitrogen in forest soils. Nature 255, 701–702 (1975).CAS
Google Scholar
Seshadri, B., Bolan, N. S. & Naidu, R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162015005000043 (2015).Article
Google Scholar
Kidd, P. et al. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009).CAS
Google Scholar
Rivera-Becerril, F. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53, 1177–1185 (2002).CAS
PubMed
Google Scholar
Krupa, P. & Kozdrój, J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 182, 83–90 (2007).CAS
Google Scholar
Janoušková, M., Pavlíková, D. & Vosátka, M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65, 1959–1965 (2006).PubMed
Google Scholar
Leyval, C., Turnau, K. & Haselwandter, K. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7, 139–153 (1997).CAS
Google Scholar
Zhang, Y., Zhang, Y., Liu, M., Shi, X. & Zhao, Z. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J. Microbiol. 46, 624–632 (2008).PubMed
Google Scholar
Krumins, J. A., Goodey, N. M. & Gallagher, F. Plant–soil interactions in metal contaminated soils. Soil Biol. Biochem. 80, 224–231 (2015).CAS
Google Scholar
Glick, B. R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393 (2003).CAS
PubMed
Google Scholar
Heckenroth, A. et al. What are the potential environmental solutions for diffuse pollution ? In Pollution of Marseille’s Industrial Calanques—The Impact of the Past on the Present 291–328 (REF2C, 2016).Li, M. S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 357, 38–53 (2006).CAS
PubMed
Google Scholar
Mendez, M. O. & Maier, R. M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 7, 47–59 (2008).CAS
Google Scholar
Yaalon, D. H. Soils in the Mediterranean region: What makes them different?. CATENA 28, 157–169 (1997).CAS
Google Scholar
Li, S. et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 400, 123255 (2020).CAS
PubMed
Google Scholar
Pérez-de-Mora, A. et al. Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biol. Biochem. 38, 327–341 (2006).
Google Scholar
Keller, C. et al. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil. 249, 67–81 (2003).CAS
Google Scholar
Lambrechts, T. et al. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: Implications for phytostabilization. Plant Soil 376, 229–244 (2014).CAS
Google Scholar
Pauwels, M., Frérot, H., Bonnin, I. & Saumitou-Laprade, P. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J. Evol. Biol. 19, 1838–1850 (2006).CAS
PubMed
Google Scholar
Padilla, F. M. & Pugnaire, F. I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4, 196–202 (2006).
Google Scholar
Robles, A. B., Allegretti, L. I. & Passera, C. B. Coronilla juncea is both a nutritive fodder shrub and useful in the rehabilitation of abandoned Mediterranean marginal farmland. J. Arid Environ. 50, 381–392 (2002).
Google Scholar
Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).
Google Scholar
Laffont-Schwob, I. et al. Diffuse and widespread present-day pollution. In Pollution of Marseille’s industrial Calanques—The Impact of the Past on the Future 204–249 (REF2C, 2016).Gelly, R. et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512 (2019).CAS
PubMed
Google Scholar
Tóth, G. et al. Soils of the European Union. JRC Scientific and Technical Reports 85 (2008).IUSS Working Group WRB. Base de référence mondiale pour les ressources en sols 2014, Mise à jour 2015. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Rapport sur les ressources en sols du monde. Vol. 106 (2015).Dias, T. et al. Ammonium as a driving force of plant diversity and ecosystem functioning: Observations based on 5 years’ manipulation of n dose and form in a Mediterranean ecosystem. PLoS ONE 9, e92517 (2014).PubMed
PubMed Central
Google Scholar
Remon, E. et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 137, 316–323 (2005).CAS
PubMed
Google Scholar
Baumberger, T. et al. Plant community changes as ecological indicator of seabird colonies’ impacts on Mediterranean Islands. Ecol. Ind. 15, 76–84 (2012).
Google Scholar
Navas, M.-L., Roumet, C., Bellmann, A., Laurent, G. & Garnier, E. Suites of plant traits in species from different stages of a Mediterranean secondary succession: Plant traits and succession. Plant Biol. 12, 183–196 (2010).CAS
PubMed
Google Scholar
Guillamot, F., Calvert, V., Millot, M.-V. & Criquet, S. Does antimony affect microbial respiration in Mediterranean soils? A microcosm experiment. Pedobiologia 57, 119–121 (2014).
Google Scholar
Wang, A., He, M., Ouyang, W., Lin, C. & Liu, X. Effects of antimony (III/V) on microbial activities and bacterial community structure in soil. Sci. Total Environ. 789, 148073 (2021).CAS
PubMed
Google Scholar
Oleńska, E. et al. Trifolium repens-associated bacteria as a potential tool to facilitate phytostabilization of zinc and lead polluted waste heaps. Plants 9, 1002 (2020).PubMed Central
Google Scholar
Stambulska, U. Y., Bayliak, M. M. & Lushchak, V. I. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 1–13 (2018).
Google Scholar
Karthika, K. S., Rashmi, I. & Parvathi, M. S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance 1–49 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-10-9044-8_1.Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).CAS
PubMed
Google Scholar
Reichman, S. M. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39, 2587–2593 (2007).CAS
Google Scholar
Parraga-Aguado, I., Querejeta, J.-I., González-Alcaraz, M.-N., Jiménez-Cárceles, F. J. & Conesa, H. M. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. J. Environ. Manag. 133, 51–58 (2014).CAS
Google Scholar
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
Google Scholar
Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS
PubMed
Google Scholar
Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).
Google Scholar
Ilunga wa Ilunga, E. et al. Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecol. Eng. 82, 214–221 (2015).
Google Scholar
Salducci, M.-D. et al. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere 217, 887–896 (2019).CAS
PubMed
Google Scholar
Kachout, S. S. et al. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 92, 336–342 (2012).CAS
PubMed
Google Scholar
Schaeffer, A. et al. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Sci. Total Environ. 568, 1076–1085 (2016).CAS
PubMed
Google Scholar
Tosini, L. et al. Gain in biodiversity but not in phytostabilization after 3 years of ecological restoration of contaminated Mediterranean soils. Ecol. Eng. 157, 105998 (2020).
Google Scholar
Michelaki, C. et al. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Sci. Total Environ. 672, 583–592 (2019).CAS
PubMed
Google Scholar
Affholder, M.-C. et al. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci. Total Environ. 454–455, 219–229 (2013).PubMed
Google Scholar
Affholder, M.-C. et al. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: Do native symbionts matter?. Plant Soil 382, 219–236 (2014).CAS
Google Scholar
Ellili, A. et al. Decision-making criteria for plant-species selection for phytostabilization: Issues of biodiversity and functionality. J. Environ. Manag. 201, 215–226 (2017).CAS
Google Scholar
Laffont-Schwob, I. et al. Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. ecmed 37, 57–62 (2011).
Google Scholar
Rabier, J. et al. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water Air Soil Pollut. 225, 1993 (2014).
Google Scholar
Quevauviller, Ph. et al. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci. Total Environ. 178, 127–132 (1996).CAS
Google Scholar
Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).CAS
Google Scholar
R Development Core Team.pdf.Dray, S., Dufour, A. B. & Chessel, D. The ade4 package—II: Two-table and K-table methods. R News 7, 6 (2007).
Google Scholar More