More stories

  • in

    Drivers of parasite communities in three sympatric benthic sharks in the Gulf of Naples (central Mediterranean Sea)

    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marcogliese, D. J. Food webs and the transmission of parasites to marine fish. Parasitology 124(7), 83–99. https://doi.org/10.1017/s003118200200149x (2002).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164. https://doi.org/10.1007/s10393-004-0028-3 (2004).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health?. Int. J. Parasitol. 35(7), 705–716. https://doi.org/10.1016/j.ijpara.2005.01.015 (2005).Article 
    PubMed 

    Google Scholar 
    Rasmussen, T. K. & Randhawa, H. S. Host diet influences parasite diversity: A case study looking at tapeworm diversity among sharks. Mar. Ecol. Prog. Ser. 605, 1–16. https://doi.org/10.3354/meps12751 (2018).ADS 
    Article 

    Google Scholar 
    Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact?. Trends Parasitol. 26(1), 44–51. https://doi.org/10.1016/j.pt.2009.11.001 (2010).Article 
    PubMed 

    Google Scholar 
    Derbel, H., Châari, M. & Neifar, L. Digenean species diversity in teleost fishes from the Gulf of Gabes, Tunisia (Western Mediterranean). Parasite 19(2), 129–135. https://doi.org/10.1051/parasite/2012192129 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiucci, S. et al. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica). Int. J. Parasitol. Parasites Wildl. 4(3), 356–367. https://doi.org/10.1016/j.ijppaw.2015.10.004 (2015).Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasit. Vectors 10, 65. https://doi.org/10.1186/s13071-017-2001-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santoro, M., Iaccarino, D. & Bellisario, B. Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Sci. Rep. 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, F., Poulin, R., de Meeüs, T., Guégan, J. F. & Renaud, F. Parasites and ecosystem engineering: What roles could they play?. Oikos 84, 167–171. https://doi.org/10.2307/3546879 (1999).Article 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50(10–11), 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 
    PubMed 

    Google Scholar 
    Lafferty, et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23(4), 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article 
    PubMed 

    Google Scholar 
    Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57(3), 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).Article 

    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315(5820), 1846–1850. https://doi.org/10.1126/science.1138657 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Palm, H. W. Fish parasites as biological indicators in a changing world: can we monitor environmental impact and climate change? In: Progress in Parasitology (ed. Melhorn, H.) 223–250 (Berlin, 2011).Dallarés, S. Twenty thousand parasites under the sea: A multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean). PhD Thesis. Universitat Autònoma de Barcelona. (2016).Dallarés, S., Pérez-del-Olmo, A., Montero, F. E. & Carrassón, M. Composition and seasonal dynamics of the parasite communities of Scyliorhinus canicula (L., 1758) and Galeus melastomus Rafinesque. (Elasmobranchii) from the NW Mediterranean Sea in relation to host biology and ecological features. Hydrobiologia 799(275–291). https://doi.org/10.1007/s10750-017-3226-z (2017).Article 

    Google Scholar 
    Dallarés, S., Padrós, F., Cartes, J. E., Solé, M. & Carrassón, M. The parasite community of the sharks Galeus melastomus, Etmopterus spinax and Centroscymnus coelolepis from the NW Mediterranean deep-sea in relation to feeding ecology and health condition of the host and environmental gradients and variables. Deep Sea Res. Part I Oceanogr. Res. Pap. 129, 41–58. https://doi.org/10.1016/j.dsr.2017.09.007 (2017).Ebert, D. A. & Dando, M. Field Guide to Sharks, Rays & Chimaeras of Europe and the Mediterranean. 385 (Princeton University Press, 2021).Santoro, M., Bellisario, B., Crocetta, F., Degli Uberti, B. & Palomba, M. A molecular and ecological study of Grillotia (Cestoda: Trypanorhyncha) larval infection in small to mid-sized benthonic sharks in the Gulf of Naples, Mediterranean Sea. Ecol. Evol. 11(20), 13744–13755. https://doi.org/10.1002/ece3.7933 (2021).Crocetta, F. et al. Bottom-trawl catch composition in a highly polluted coastal area reveals multifaceted native biodiversity and complex communities of fouling organisms on litter discharge. Mar. Environ. Res. 155, 104875. https://doi.org/10.1016/j.marenvres.2020.104875 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hay Mele, B. et al. Ecological assessment of anthropogenic impact in marine ecosystems: the case of Bagnoli Bay. Mar. Environ. Res. 158, 104953. https://doi.org/10.1016/j.marenvres.2020.104953 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rizzo, L., Musco, L. & Crocetta, F. Cohabiting with litter: Fish and benthic assemblages in coastal habitats of a heavily urbanized area. Mar. Poll. Bull. 164, 112077. https://doi.org/10.1016/j.marpolbul.2021.112077 (2021).CAS 
    Article 

    Google Scholar 
    Tanduo, V., Osca, D. & Crocetta, F. A bycatch surprise: Scyllarus subarctus Crosnier, 1970 (Decapoda: Achelata: Scyllaridae) in the Mediterranean Sea. J. Crust. Biol. 41(2), ruab010. https://doi.org/10.1093/jcbiol/ruab010 (2021).Follesa, M. C. & Carbonara, P. Atlas of the maturity stages of Mediterranean fishery resources in General Fisheries Commission for the Mediterranean.Studies and Reviews (ed. FAO) 259 (FAO, 2019).Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fuviatilis). J. Anim. Ecol. 20, 201–219 (1951).Article 

    Google Scholar 
    Mouine, N., Francour, P., Ktari, M. H. & Chakroun-Marzouk, N. The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (Central Mediterranean). Sci. Mar. 71(3), 461–469. https://doi.org/10.3989/scimar.2007.71n3461 (2007).Article 

    Google Scholar 
    Santoro, M., Palomba, M., Mattiucci, S., Osca, D. & Crocetta, F. New parasite records for the sunfish Mola mola in the Mediterranean Sea and their potential use as biological tags for long-distance host migration. Front. Vet. Sci. 7, 579728. https://doi.org/10.3389/fvets.2020.579728 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kabata, Z. Parasitic Copepoda of British Fishes. 468 (The Ray Society, British Museum, 1979).Bray, R. A. & Moore, A. B. M. The first record of the elasmobranch parasite Diphterostomum betencourti (Monticelli, 1893) (Digenea, Zoogonidae) in the coastal waters of southern England. Acta Parasitol. 45(4), 299–302 (2000).
    Google Scholar 
    Gibson, D. I. Superfamily Azygioidea Lühe, 1909 in Keys to the Trematoda. Vol. 1(eds. Gibson, D. I., Jones, A. & Bray, R. A.) 19–24 (CAB International, 2002).Anderson, R. C., Chabaud, A. G. & Willmott, S. CIH keys to the nematode parasites of vertebrates: Archival volume (eds. Anderson, R. C., Chabaud, A. G. & Willmott, S.) 463 (CAB International, 2009).Palm, H. W. The Trypanorhyncha Diesing, 1863 (IPB-PKSPL Press, 2004).
    Google Scholar 
    Dallarés, S., Pérez-del-Olmo, A., Carrassón, M. & Kuchta, R. Morphological and molecular characterisation of Ditrachybothridium macrocephalum Rees, 1959 (Cestoda: Diphyllidea) from Galeus melastomus Rafinesque in the Western Mediterranean. Syst. Parasitol. 92, 45–55. https://doi.org/10.1007/s11230-015-9586-8 (2015).Article 
    PubMed 

    Google Scholar 
    Zhu, X., Gasser, R. B., Podolska, M. & Chilton, N. B. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 28(12), 1911–1921. https://doi.org/10.1016/s0020-7519(98)00150-7 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van der Auwera, G., Chapelle, S. & De Wachter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338(2), 133–136. https://doi.org/10.1016/0014-5793(94)80350-1 (1994).Article 
    PubMed 

    Google Scholar 
    Palm, H. W., Waeschenbach, A., Olson, P. D. & Littlewood, D. T. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol. Phyl. Evol. 52(2), 351–367. https://doi.org/10.1016/j.ympev.2009.01.019 (2009).CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Euzet, L. & Combes, C. Les problèmes de l’espèces chez les animaux parasites. Bull. Soc. Zool. Fr. 40, 239–285 (1980).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: .a comment on distance-based redundancy analysis. Ecology 82(1), 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article 

    Google Scholar 
    Locke, S. A., McLaughlin, J. D. & Marcogliese, D. J. Predicting the similarity of parasite communities in freshwater fishes using the phylogeny, ecology and proximity of hosts. Oikos 122(1), 73–83. https://doi.org/10.1111/j.1600-0706.2012.20211.x (2013).Article 

    Google Scholar 
    McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077. https://doi.org/10.1007/s11336-016-9527-8 (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2017).Caira, J. N., Bueno, V. & Jensen, K. Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Zool. J. Linnean Soc. 193, 1336–1363. https://doi.org/10.1093/zoolinnean/zlaa185 (2021).Article 

    Google Scholar 
    Fanelli, E., Rey, J., Torres, P. & Gil de Sola, L. Feeding habits of blackmouth catshark Galeus melastomus Rafinesque, 1810 and velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) in the western Mediterranean. J. Appl. Ichthyol. 25(1), 83–93. https://doi.org/10.1111/j.1439-0426.2008.01112.x (2009).Article 

    Google Scholar 
    Anastasopoulou, A. et al. Diet and feeding strategy of blackmouth catshark Galeus melastomus. J. Fish Biol. 83(6), 1637–1655. https://doi.org/10.1111/jfb.12269 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    D’Iglio, C. et al. Biological and ecological aspects of the blackmouth catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. J. Mar. Sci. Eng. 9(9), 967. https://doi.org/10.3390/jmse9090967 (2021).Article 

    Google Scholar 
    Saldanha, L., Almeida, A. J., Andrade, F. & Guerreiro, J. Observations on the diet of some slope dwelling fishes of Southern Portugal. Int. Rev. der Gesamten Hydrobiol. 80(2), 217–234. https://doi.org/10.1002/iroh.19950800210 (1995).Article 

    Google Scholar 
    Mnasri, N., El Kamel, O., Boumaïza, M., Reynaud, C. & Capapé, C. Food and feeding habits of the small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (central Mediterranean). Cah. Biol. Mar. 53(1), 139–150 (2012).
    Google Scholar 
    Šantić, M., Rađa, B. & Pallaoro, A. Feeding habits of small-spotted catshark (Scyliorhinus canicula Linnaeus, 1758) from the eastern central Adriatic Sea. Mar. Biol. Res. 8(10), 1003–1011. https://doi.org/10.1080/17451000.2012.702912 (2012).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Org. 129(3), 175–182. https://doi.org/10.3354/dao03251 (2018).CAS 
    Article 

    Google Scholar 
    Cipriani, P. et al. The Mediterranean European hake, Merluccius merluccius: detecting drivers influencing the Anisakis spp. larvae distribution. Fish. Res. 202, 79–89. https://doi.org/10.1016/j.fishres.2017.07.010 (2018).Article 

    Google Scholar 
    Levsen, A. et al. Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus, from major European fishing grounds—Reflecting changing fish host distribution and migration pattern. Fish. Res. 202, 112–121. https://doi.org/10.1016/j.fishres.2017.07.030 (2018).Article 

    Google Scholar 
    Palomba, M., Mattiucci, S., Crocetta, F., Osca, D. & Santoro, M. Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters. Sci. Rep. 11, 7135. https://doi.org/10.1038/s41598-021-86248-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palombi, A. Il ciclo biologico di Diphterostomum brusinae Stossich (Trematode digenetico: fam. Zoogonidae Odhner). Considerazioni sui cicli evolutivi delle specie affini e dei trematodi in generale. Pubbl. Stn. Zool. 10, 111–149 (1930).
    Google Scholar 
    Gilardoni, C. et al. Cryptic speciation of the zoogonid digenean Diphterostomum flavum n. sp. demonstrated by morphological and molecular data. Parasite 27(44). https://doi.org/10.1051/parasite/2020040 (2020).Campbell, R. A., Haedrich, R. L. & Munroe, T. A. Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. 57, 301–313. https://doi.org/10.1007/BF00387573 (1980).Article 

    Google Scholar 
    Campbell R. A. Parasitism in the deep-sea in Deep-sea Biology, The Sea (ed. Rowe, G. T.) 473–552 (Wiley, 1983).Isbert, W. et al. Metazoan parasite communities and diet of the velvet belly lantern shark Etmopterus spinax (Squaliformes: Etmopteridae): a comparison of two deep-sea ecosystems. J. Fish Biol. 86(2), 687–706. https://doi.org/10.1111/jfb.12591 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klimpel, S., Palm, H. W. & Seehagen, A. Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep. Parasitol. Res. 89, 245–251. https://doi.org/10.1007/s00436-002-0741-1 (2003).Article 
    PubMed 

    Google Scholar 
    Moore, A. B. M. Metazoan parasites of the lesser-spotted dogfish Scyliorhinus canicula and their potential as stock discrimination tools. J. Mar. Biol. Assoc. UK 81(6), 1009–1013. https://doi.org/10.1017/S0025315401004982 (2001).Article 

    Google Scholar 
    Silva, C., Veríssimo, A., Cardoso, P., Cable, J. & Xavier, R. Infection of the lesser spotted dogfish with Proleptus obtusus Dujardin, 1845 (Nematoda: Spirurida) reflects ontogenetic feeding behaviour and seasonal differences in prey availability. Acta Parasit. 62(2), 471–476. https://doi.org/10.1515/ap-2017-0055 (2017).CAS 
    Article 

    Google Scholar 
    Bakopoulos, V. et al. Parasites of Scyliorhinus canicula (Linnaeus, 1758) in the north-eastern Aegean Sea. J. Mar. Biol. Assoc. UK 98(8), 2133–2143. https://doi.org/10.1017/S0025315417001552 (2018).MathSciNet 
    Article 

    Google Scholar 
    Moravec, F., Van As, J. G. & Dyková, I. Proleptus obtusus Dujardin, 1845 (Nematoda: Physalopteridae) from the puffadder shyshark Haploblepharus edwardsii (Scyliorhinidae) from off South Africa. Syst. Parasitol. 53, 169–173. https://doi.org/10.1023/A:1021130825469 (2002).Article 
    PubMed 

    Google Scholar 
    Morris, T., Avenant-Oldewage, A., Lamberth, S. & Reed, C. Shark parasites as bio-indicators of metals in two South African embayments. Mar. Pollut. Bull. 104(1–2), 221–228. https://doi.org/10.1016/j.marpolbul.2016.01.027 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kennedy, C. R., Bush, A. O. & Aho, J. M. Patterns in helminth communities: why are birds and fish different?. Parasitology 93(1), 205–215. https://doi.org/10.1017/S0031182000049945 (1986).Article 
    PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poulin, R. Species richness of parasite assemblages: Evolution and patterns. Annu. Rev. Ecol. Syst. 28, 341–358 (1997).Article 

    Google Scholar 
    Rizzo, E. & Bazzoli, N. Reproduction and embryogenesis in Biology and physiology of freshwater neotropical fish (eds. Baldisserotto, B., Criscuolo Urbinati, E. & Cyrino J. E. P.) 287–313 (Academic Press, 2020).Poulin, R. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: Biological and statistical causes. J. Fish Biol. 56(1), 123–137. https://doi.org/10.1111/j.1095-8649.2000.tb02090.x (2005).Article 

    Google Scholar 
    Poulin, R. & Morand, S. Parasite Biodiversity (eds.) 216 Smithsonian Institution Books, 2004.Capapé, C. et al. Production, maturity, reproductive cycle and fecundity of small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (Central Mediterranean). J. Ichthyol. 54, 111–126. https://doi.org/10.1134/S0032945214010020 (2014).Article 

    Google Scholar 
    Kennedy, C.R Helminth communities in freshwater fish: structured communities or stochastic assemblages? in Parasite Communities: Patterns and Processes (eds. Esch G. W., Bush A. O., Aho J. M.) 156 (Chapman and Hall, 1990).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 1 – Hexanchiformes to Lamniformes (ed. FAO) 249 (FAO, 1984).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 2 – Carcharhiniformes (ed. FAO) 486 (FAO, 1984). More

  • in

    Composition and decomposition of rhizoma peanut (Arachis glabrata Benth.) belowground biomass

    Experimental siteAll procedures for the experiment involving animals were carried out in accordance with relevant guidelines and regulations and they were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Florida (protocol #201509019). The experiment was conducted at the University of Florida North Florida Research and Education Center (NFREC) located in Marianna, FL (30° 52ʹ N, 85° 11ʹ W, 35 m asl) during 2018 and 2019.The study site was an existing mixed RP-bahiagrass grazing study where ‘Ecoturf’ RP was strip-planted into ‘Argentine’ bahiagrass on 12 June 2014. Rhizoma peanut strips were approximately 2-m wide, making it possible to harvest RP forage, roots, and rhizomes free of bahiagrass contamination3,4. The RP was collected from a nursery at the University of Florida—NFREC, whereas the bahiagrass seeds were bought from a seed company. All plants were collected, purchased, managed, and the research was conducted in compliance with relevant institutional, the corresponding national, and international guidelines and legislation.Soils at the experimental site were classified as Orangeburg loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults24. At the beginning of the study, soil pH was 5.7 and soil OM was 15.4 g kg−1. Additionally, Mehlich-I extractable soil P, K, Mg, and Ca concentrations at the beginning of the experiment were 26, 99, 43, and 224 mg kg−1, respectively. Total annual rainfall and average annual temperature at the experimental site were 1889 and 602 mm, and 19 and 21 °C, for 2018 and 2019, respectively, and their monthly averages are shown in Fig. 5.Figure 5Monthly weather conditions at North Florida Research and Education Center (NFREC) Marianna, FL, during the experimental years.Full size imageTreatments and experimental designTreatments were two defoliation regimes applied to RP, continuously stocking and 56-days interval between clipping harvests. At the continuous stocking, stocking rates were variable to maintain similar herbage allowance among pastures, which was assessed every 14 days as described by Sollenberger et al.25. Two tester Angus crossbred steers (Bos spp.) remained on each pasture throughout the experimental period. Put-and-take cattle were allocated as needed to maintain a target herbage allowance of 1.5 kg DM kg−1 bodyweight3. Treatments were situated adjacent to each other (i.e., paired sites) in monoculture strips of RP within each of three 0.85-ha pastures. Each pasture was considered a block, thus the experiment consisted of three replicates of each treatment in a randomized complete block design. Within each replicate, treatments had three repetitions (pseudo replicates). To prohibit animal access to the non-grazed treatment, three 2 × 2-m exclusion cages were placed on RP strips in each pasture. Rhizoma peanut herbage mass was determined at both the grazed and non-grazed sites three times each year, at days 56, 112, and 168 of the experimental period by using a 0.25-m−2 quadrat. Two quadrats were collected in each repetition by clipping all the biomass within each quadrat at 2-cm stubble height. After each herbage mass sampling, the non-grazed residual dry matter inside the cages was clipped to a 2-cm stubble height using a weed eater and the herbage removed by raking. On average, across sampling dates and years, herbage mass at the grazed and non-grazed sites was 1050 and 1810 kg of organic matter (OM) ha−1, respectively.Long-term and short-term decomposition studiesThere were two types of root-rhizome decomposition trials. The first is referred to as the long-term decomposition study, and the second is the short-term decomposition study. The long-term study had an incubation period of 168 days, with a single in-situ incubation per year starting in May. The short-term study had in-situ incubation periods of 56 days and there were three incubations per year, occurring in May, June, and August. In all cases, only roots and rhizomes attached to the plant were used in both trials.Long-term studyOn 26 Apr. 2018 and on 23 Apr. 2019, right after RP emergence after breaking dormancy, RP roots and rhizomes were collected from an existing mixed RP-bahiagrass grazing study where RP had been planted in strips into bahiagrass (Paspalum notatum Flüggé) in 2014. Rhizoma peanut strips were approximately 2.75-m wide, alternating with similar wide bahiagrass strips. A pure stand of RP had been maintained in the strips during previous years using herbicides3, making it possible to harvest RP roots and rhizomes free of bahiagrass contamination. Roots and rhizomes were collected at 24 different points in each of three blocks of the original experiment. Roots and rhizomes were collected at 20-cm depth using shovels. As defoliation treatments had not being applied at this time of the year, the same material was used to perform the incubation inside and outside the exclusion cages. After harvesting, excess soil was removed by shaking from the root-rhizome mat using a 1.4-cm diameter sieve. Thereafter, the existing aboveground material was clipped, and the roots and rhizomes were then washed over the same sieve to remove the remaining soil. After washing, roots and rhizomes were dried to constant weight in a forced-air drying oven at 55 °C.To perform the decomposition study, approximately 12 g of dry roots and rhizomes were placed in Ankom bags (10 by 20 cm, 50 µm porosity; ANKOM Technology) and sealed17. Roots and rhizomes were aimed to be placed intact into Ankom bags, nonetheless, when they could not fit inside the bags, they were cut in the middle before being placed. On 2 May 2018 and 1 May 2019, the incubation period began. For each treatment, bags were incubated in situ in the field at 10-cm depth in the same blocks from which they were collected. Bags were removed from the field after 0, 3, 7, 14, 28, 56, 112, and 168 days. For each treatment within each block, three bags were incubated for each incubation time. Additionally, empty bags (one bag per treatment per time per block) were placed in the field. After removal of the in-situ bags from the field, samples and empty bags were dried at 55 °C for 72 h, cleaned with a brush, and weighed. Thereafter, samples were ground to pass a 2-mm screen using a Wiley Mill (Model 4, Thomas-Wiley Laboratory Mill, Thomas Scientific) and analyzed for DM and OM. Subsamples of the 2-mm ground samples were ball milled in a Mixer Mill (MM 400, Retsch) at 25 Hz for 9 min. Ball-milled samples were analyzed for C and N by dry combustion using an elemental analyzer (Vario Micro cube, Elementar). Additionally, samples ground at 2-mm were used to determine ADF in aboveground samples26. The N concentration in the ADF was determined using the above protocol to obtain the ADIN.Short-term studiesThe short-term studies were performed following the same procedures as the long-term study, except that the incubation period was only 56 days, and these studies were repeated three times each year. Roots and rhizomes were incubated in situ on 2 May, 27 June, and 23 Aug. 2018 and on 1 May, 26 June, and 21 Aug. 2019, following the same protocol as described above, except that bags were removed from the field after 0, 3, 7, 14, 28, and 56 days of incubation. The incubations occurring in May, June, and August will be referred as early, middle, and late season, respectively.The early-season incubation period uses the data from the first 56 days of the long-term study described above. For the middle- and late-season incubations each year, roots and rhizomes were harvested approximately 7 days days prior to incubation. Approximately six points in each repetition were collected at 20-cm depth using shovels. For the grazed treatment, roots and rhizomes were collected in the grazed area nearby the exclusion cages, whereas for the non-grazed treatment, the material was collected inside the exclusion cages. After removal of the bags from the field, they were processed and analyzed for DM, OM, C, and N following the protocol described above.Statistical analysesLong-term studyRemaining biomass, remaining N, C:N ratio, ADF, and ADIN were analyzed using the PROC GLIMMIX from SAS27, with treatment and days of incubation as fixed effects, and years and blocks as random effects. Days of incubation were considered repeated measures. Means were compared using the PDIFF procedure at the 5% significance level. When treatment or the interaction of treatment × day of incubation were statistically significant in the ANOVA, nonlinear models were tested to fit the data for each variable and treatment. Nonlinear models were selected for a given response based on data distribution and type of response. If only days of incubation was significant, the same model was applied for all treatments.Remaining biomass (OM basis), remaining N, and C:N ratio were explained by the single exponential decay model14,17,28. The equation describing this process is:$$X=B0, {exp}^{-kt},$$
    (1)
    where X is the remaining biomass, remaining N, or C:N ratio at day t, B0 is the disappearance coefficient, and k is the relative decay rate (g g−1 day−1). The model used to describe ADF and ADIN was the two-stage model “linear plateau”15,29. The equation describing this process is:$$begin{gathered} Xt = A + b1 times t, {text{if t }} le {text{ T}}, hfill \ {text{and}},{ } Xt = A + b1 times T, {text{if t }} > {text{ T}}, hfill \ end{gathered}$$
    (2)
    where X is the concentration of ADIN, t is the day of incubation, A is the initial concentration, b1 is the rate of increase in concentration from the beginning of incubation until plateau is reached; and T is the day in which concentration reaches the plateau.Short-term studiesThe single exponential model was applied in the remaining OM and remaining N, for each experimental unit, to obtain individual values for B0 and k. The data for initial N concentration, initial C:N ratio, and B0 and k for remaining OM and remaining N were analyzed using the PROC GLIMMIX from SAS27, with treatment and period as fixed effects, and years and blocks as random effects. Means were compared using the PDIFF procedure at the 5% significance level.Arrive guidelinesThis is study is reported in accordance to ARRIVE guidelines. More

  • in

    Dispersal and oviposition patterns of Lycorma delicatula (Hemiptera: Fulgoridae) during the oviposition period in Ailanthus altissima (Simaroubaceae)

    Fluorescent markingDispersal of SLF adults was tracked using a fluorescent marking system (FMS), which has been demonstrated to be applicable for multiple insect species including SLF nymphs21,22,24. To mark the SLF, either red, yellow, or blue fluorescent paint (#1166R, #1166Y, #1166B, BioQuip Products, USA) was diluted with distilled water (1:4). The mixture was then gently sprayed three times (ca. 20 mg each time) on each SLF individual using a mist sprayer from a distance of 30–50 cm (SI 2). Throughout the field survey, a handheld ultraviolet (UV) laser (PX 600 mW, class IIIB purple laser, 405 nm, Big Lasers, USA) was used to detect fluorescent-marked SLF individuals25.Effect of fluorescent marking on SLFPrior to field survey, the potential effects of fluorescent marking on the survivorship and flight behavior of SLF adults (sex ratio 1:1) were evaluated. SLF adults were collected using sweeping nets (BioQuip Products, USA) from Gyeonggi-do, South Korea (37°47′85.95″ N, 127°11′64.58″E) in September 2020. Two hours after fluorescent marking of SLF, both fluorescent-marked and unmarked SLF were subjected to survivorship and flight behavior assessment.Survivorship of insects was measured on two A. altissima trees (ca. 2 m in height) located in Gachon University, South Korea (37°45′38.50″N, 127°13′37.75″E). Two fluorescent-marked and two unmarked insects were placed in a cylindrical mesh cage [25 × 30 cm (radius × height)] enclosing a tree branch; a total of 20 groups were tested (n = 40). Then, survivorship of SLF was determined once every two days until no individuals were alive. Survivorship was compared between fluorescent-marked and unmarked SLF using Kaplan-Meir survivorship analysis (JMP 12, SAS Institute Inc., USA).The effects of fluorescent marking on flight behavior were evaluated in an open space (986 m2) in Gachon University, South Korea (37°45′08.37″N, 127°12′79.69″E) at 26 ± 1 °C and a relative humidity of 30 ± 5%. To induce flight of SLF adults, a wooden square rod [3 × 3 × 100 cm (width × length × height)] was established upright at the center of the arena. The SLF adult was placed individually 10 cm away from the top on the wooden square rod. To minimize any unnecessary stimuli from experimenter, SLF flight was induced by following the same sequence: once the insect climbed up the rod and oriented itself staying still to a random direction, then an experimenter carefully positioned at the back of the insect and gently pecked the forewings using tweezers to initiate its flight33,34. Pecking was intended to mimic predatory behavior of birds. Once the insect jumped away, an operator followed the individual until it landed on the ground (n = 30). The experiment was conducted for 2 h between 13:00–15:00 and marked and unmarked SLF were randomly tested during the evaluation. The number of pecks to initiate the flight, flight duration, and flight distance of SLF were compared using t-test (JMP 12, SAS Institute Inc., USA).Field study sitesDispersal patterns of SLF adults in A. altissima patches and their oviposition patterns were investigated in multiple A. altissima patches located along two streams in Gyeonggi-do, South Korea: Tan stream in Seongnam-si (37°48′01.80″N, 127°11′56.03″E) and Gyeongan stream in Gwangju-si (37°41′54.21″N, 127°27′12.37″E). Both Tan and Gyeongan streams run along suburban residential areas in their respective cities, with pedestrian lanes built along the streams. We selected seven A. altissima patches as study patches when more than 10 SLF adults were found per patch (Fig. 3). In the study patch, all SLF individuals or ca. up to 30 adults were florescent-marked. In addition, when the number of SLF adults was less than 10 from an A. altissima patch, those patches were designated as neighboring patches (Fig. 3). Dispersal and oviposition of SLF adults were monitored from both study and neighboring patches during the study.In Tan stream, four study patches (patches A–D) and one neighboring patch, which were distributed over ca. 1760 m, were selected (Fig. 3a). Areas around the patches were generally covered with grass and shrubs, and the areas were occasionally managed by local administration. Deciduous trees were regularly planted along the pedestrian lanes. There were a total of four, four, 61, and 47 A. altissima trees in patches A to D, respectively (Table 2). Compared with Tan stream, A. altissima patches were located closely to each other in Gyeongan stream: three study patches (patches E–G) and three neighboring patches were spread over only ca. 90 m (Fig. 3b). Vegetation surrounding A. altissima patches consisted of grasses and small shrubs as well as deciduous trees planted along the border of residential area nearby. There were a total of 69, nine, and 53 A. altissima trees in patches E to G, respectively (Table 2). Unlike Tan stream, 45% of A. altissima trees had trunks having cut off by local administration in Gyeongan stream (Table 2; Fig. 5).Dispersal pattern of SLF on A. altissima
    Three fluorescent paint colors were used to mark SLF individuals in the study patches (Fig. 3; SI 2). Insects that took off during marking were captured and excluded from the experiment. Among the selected study patches, SLF adults were generally distributed throughout each patch, while SLF adults were observed only from one out of 61 A. altissima trees in patch C. As a result, in Tan stream, 15 (color of paint used to fluorescent-marking; red), 31 (yellow), 11 (blue), and 32 (red) adults were marked from patches A to D, respectively, whereas in Gyeongan stream, 30 (red), 30 (blue), and 33 (yellow) adults were marked from patches E to G, respectively. Starting from September 14th, 2020 in Tan stream and September 18th in Gyeongan stream, fluorescent-marked SLF adults on A. altissima trees in both study and neighboring patches were counted with a UV laser twice a week (Fig. 3). Survey continued until no individuals were observed from the study patches.Oviposition pattern of SLF on A. altissima
    Oviposition pattern of SLF was surveyed on all A. altissima trees in the study patches in December in both streams (Table 2). For the survey, SLF egg masses were categorized into three types as follows: egg mass with waxy layer, egg mass without waxy layer, and scattered eggs (SI 3). Eggs that were not covered with waxy layer and did not form aggregates were categorized as scattered (SI 3). In the field, A. altissima trees were visually inspected to identify SLF egg mass, and the number of egg masses and their distances from the ground were recorded. In addition, the number of eggs per egg mass was recorded for egg masses located  5 generally indicates collinearity35,36. VIF between height and DRC was 1.56, and therefore the two variables were included together in the GLMM model.Policy statementExperiments involving Ailanthus altissima were conducted in compliance with relevant institutional, national, and international guidelines and legislation. More

  • in

    Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 
    Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).PubMed 
    Article 

    Google Scholar 
    Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).PubMed 
    Article 

    Google Scholar 
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).Article 

    Google Scholar 
    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).PubMed 
    Article 

    Google Scholar 
    Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).Article 

    Google Scholar 
    Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).Article 

    Google Scholar 
    Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).Article 

    Google Scholar 
    Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).PubMed 
    Article 

    Google Scholar 
    Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).CAS 
    Article 

    Google Scholar 
    Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).Article 

    Google Scholar 
    Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).Article 

    Google Scholar 
    Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).Article 

    Google Scholar 
    Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).Article 

    Google Scholar 
    Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).Article 

    Google Scholar 
    Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).Article 

    Google Scholar 
    Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).Article 

    Google Scholar 
    Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).Article 

    Google Scholar 
    Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).Article 

    Google Scholar 
    Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).Article 

    Google Scholar 
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).Article 

    Google Scholar 
    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article 

    Google Scholar 
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).Article 

    Google Scholar 
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).Article 

    Google Scholar 
    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).PubMed 
    Article 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).Article 

    Google Scholar 
    Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).Article 

    Google Scholar 
    Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).Article 

    Google Scholar 
    Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).Article 

    Google Scholar 
    Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).Article 

    Google Scholar 
    Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).Article 

    Google Scholar 
    Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).CAS 
    Article 

    Google Scholar 
    Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).Chapter 

    Google Scholar 
    Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
    Google Scholar 
    Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).PubMed 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).Article 

    Google Scholar 
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).Article 

    Google Scholar 
    Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).Article 

    Google Scholar 
    Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).Article 

    Google Scholar 
    Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).Article 

    Google Scholar 
    Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).Article 

    Google Scholar 
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).Crawley, M. J. The R Book (Wiley, Hoboken, 2007).MATH 
    Book 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 
    Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).Article 

    Google Scholar  More

  • in

    Biological traits of marine benthic invertebrates in Northwest Europe

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Diaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Villéger, S., Scherer-Lorenzen, M. & Mason, N. W. H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6, e17476 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    Statzner, B., Resh, V. H. & Roux, A. L. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: design of a research strategy for the Upper Rhone River and its floodplain. Freshw. Biol. 31, 253–263 (1994).Article 

    Google Scholar 
    Townsend, C. R. & Hildrew, A. G. Species traits in relation to a habitat templet for river systems. Freshw. Biol. 31, 265–275 (1994).Article 

    Google Scholar 
    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31–44 (1995).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25 (2003).ADS 
    Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Indic. 6, 609–622 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Paramor, O. A. L., Brockington, S. & Bremner, J. Incorporating ecological functioning into the designation and management of marine protected areas Incorporating ecological functioning into the designation and management of marine protected areas. Hydrobiologia 606, 69–79 (2008).Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Linden, P. et al. A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecol. Indic. 20, 121–133 (2012).Article 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Bolam, S. G. & Eggleton, J. D. Macrofaunal production and biological traits: spatial relationships along the UK continental shelf. J. Sea Res. 88, 47–58 (2014).ADS 
    Article 

    Google Scholar 
    Bolam, S. G., McIlwaine, P. S. O. & Garcia, C. Application of biological traits to further our understanding of the impacts of dredged material disposal on benthic assemblages. Mar. Pollut. Bull. 105, 180–192 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolam, S. G. et al. Differences in biological traits composition of benthic assemblages between unimpacted habitats. Mar. Environ. Res. 126, 1–13 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tyler, E. H. M. et al. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21, 922–934 (2012).Article 

    Google Scholar 
    Faulwetter, S., Markantonatou, V., Pavloudi, C. & Papageorgiou, N. Polytraits: a database on biological traits of marine polychaetes. Biodivers. Data J. 2, e1024 (2014).Article 

    Google Scholar 
    Aberson, M. J. R., Bolam, S. G. & Hughes, R. G. The dispersal and colonisation behaviour of the marine polychaete Nereis diversicolor (O. F. Müller) in south-east England. Hydrobiologia 672, 3–14 (2011).Article 

    Google Scholar 
    Ahrens, J. B., Borda, E., Barroso, R. & Paiva, P. C. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2018).Article 
    CAS 

    Google Scholar 
    Alexander, M. E., Dick, J. T. A., O’Connor, N. E., Haddaway, N. R. & Farnsworth, K. D. Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 468, 191–202 (2012).ADS 
    Article 

    Google Scholar 
    Alexandridis, N. Models of general community assembly mechanisms simulating the spatial and temporal dynamics of benthic biodiversity. PhD Thesis. Université de Bretagne occidentale, Earth Sciences, Doctoral Thesis, 119pp. (2017).Aliani, S. & Meloni, R. Dispersal strategies of benthic species and water current variability in the Corsica Channel (Western Mediterranean). Sci. Mar. 63, 137–145 (1999).Article 

    Google Scholar 
    Allen, E. J. Polychaeta of Plymouth and the South Devon Coast, including a list of the Archiannelida. J. Mar. Biol. Assoc. UK 10, 592–646 (1915).Article 

    Google Scholar 
    Allen, J. A. Observations on Cochlodesma Praetenue (Pulteney) [Eulamellibranchia]. J. Mar. Biol. Assoc. UK 37, 97–112 (1958).Article 

    Google Scholar 
    Allen, J. A. Observations on the biology of Pandalina Brevirostris [Decapoda; Crustacea]. J. Mar. Biol. Assoc. UK 45, 291–304 (1965).Article 

    Google Scholar 
    Allen, J. A. The British species of Thracia (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 723–735 (1961).Article 

    Google Scholar 
    Allen, P. L. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. J. Exp. Mar. Bio. Ecol. 70, 79–90 (1983).CAS 
    Article 

    Google Scholar 
    Anker, A. et al. Macrofauna associated with echiuran burrows: A review with new observations of the innkeeper worm, Ochetostoma erythrogrammon Leuckart and Rüppel, in Venezuela. Zool. Stud. 44, 157–190 (2005).
    Google Scholar 
    Ansell, A. D. & Parulekar, A. H. On the rate of growth of Nuculana minuta (Műller) (Bivalvia; Nuculanidae). J. Molluscan Stud. 44, 71–82 (1978).
    Google Scholar 
    Ansell, A. D. Boring and burrowing mechanisms in Petricola pholadiformis Lamarck. J. Exp. Mar. Bio. Ecol. 4, 211–220 (1970).Article 

    Google Scholar 
    Ansell, A. D. Burrowing in Lyonsia norvegica (Gmelin) (Bivalvia: Lyonsiidae). J. Molluscan Stud. 37, 387–393 (1967).Article 

    Google Scholar 
    Ansell, A. D. The Functional Morphology of the British Species of Veneracea (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 489–517 (1961).Article 

    Google Scholar 
    Arias, A. & Paxton, H. Onuphis and Aponuphis (Annelida: Onuphidae) from southwestern Europe, with the description of a new species. Zootaxa 3949, 345–369 (2015).PubMed 
    Article 

    Google Scholar 
    Arias, A., Barroso, R., Anadón, N. & Paiva, P. C. On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. Zookeys 337, 19–33 (2013).Article 

    Google Scholar 
    Atkinson, R. J. A., Moore, P. G. & Morgan, P. J. The burrows and burrowing behaviour of Maera loveni (Crustacea: Amphipoda). J. Zool. Soc. Lond. 198, 399–416 (1982).Article 

    Google Scholar 
    Attrill, M. J. & Hartnoll, R. G. Aspects of the biology of the deep-sea crab Geryon Trispinosus from the Porcupine Seabight. J. Mar. Biol. Assoc. UK 71, 311–328 (2014).Article 

    Google Scholar 
    De Backer, A. et al. Bioturbation effects of Corophium volutator: Importance of density and behavioural activity. Estuar. Coast. Shelf Sci. 91, 306–313 (2011).ADS 
    Article 

    Google Scholar 
    Bailey-Brock, J. H. Ecology of the tube‐building polychaete Diopatra leuckarti Kinberg, 1865 (Onuphidae) in Hawaii: community structure, and sediment stabilizing properties. Zool. J. Linn. Soc. 80, 191–199 (1984).Article 

    Google Scholar 
    Barberá, C. et al. Trophic ecology of the sea urchin Spatangus purpureus elucidated from gonad fatty acids composition analysis. Mar. Environ. Res. 71, 235–246 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barry, P. J. Two new species of Adontorhina Berry, 1947 (Bivalvia: Thyasiridae) from the Porcupine Bank, off the west coast of Ireland. Zootaxa 1526, 37–49 (2007).Article 

    Google Scholar 
    Bartolomaeus, T. Head kidneys in hatchlings of Scoloplos armiger (Annelida: Orbiniida): implications for the occurrence of protonephridia in lecithotrophic larvae. J. Mar. Biol. Assoc. UK 78, 183–192 (1998).Article 

    Google Scholar 
    Bass, N. R. & Brafield, A. E. The life-cycle of the polychaete Nereis virens. J. Mar. Biol. Assoc. UK 52, 701–726 (1972).Article 

    Google Scholar 
    Beiras, R., Pérez-Camacho, A. & Albentosa, M. Influence of food concentration on energy balance and growth performance of Venerupis pullastra seed reared in an open-flow system. Aquaculture 116, 353–365 (1993).Article 

    Google Scholar 
    Bely, A. E. Distribution of segment regeneration ability in the Annelida. Integr. Comp. Biol. 46, 508–518 (2006).PubMed 
    Article 

    Google Scholar 
    Beninger, P. G. & Lucas, A. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams & Reeve). J. Exp. Mar. Bio. Ecol. 79, 19–37 (1984).CAS 
    Article 

    Google Scholar 
    Billett, D. S. B. The Ecology of Deep-Sea Holothurians. University of Southampton, Oceanography, Doctoral Thesis, 408pp (1988).Birkeland, C. Interactions between a sea pen and seven of its predators. Ecol. Monogr. 44, 211–232 (2013).Article 

    Google Scholar 
    Blake, J. A. & Arnofsky, P. L. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402, 57–106 (1999).Article 

    Google Scholar 
    Bolam, S. G. Population structure and reproductive biology of Pygospio elegans (Polychaeta: Spionidae) on an intertidal sandflat, Firth of Forth, Scotland. Invertebr. Biol. 123, 260–268 (2005).Article 

    Google Scholar 
    Borowsky, B. Behaviours associated with tube-sharing in Microdeutopus gryllotalpa. J. Exp. Mar. Bio. Ecol. 68, 39–51 (1983).Article 

    Google Scholar 
    Bouchet, V. M. P. et al. Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: First insight from axial tomodensitometry. J. Exp. Mar. Bio. Ecol. 371, 20–33 (2009).Article 

    Google Scholar 
    Bouma, H., De Vries, P. P., Duiker, J. M. C., Herman, P. M. J. & Wolff, W. J. Migration of the bivalve Macoma balthica on a highly dynamic tidal flat in the Westerschelde estuary, The Netherlands. Mar. Ecol. Prog. Ser. 224, 157–170 (2001).ADS 
    Article 

    Google Scholar 
    Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Brafield, A. E. & Chapman, G. Gametogenesis and breeding in a natural population of Nereis Virens. J. Mar. Biol. Assoc. UK 47, 619–627 (1967).Article 

    Google Scholar 
    Branch, G. M. & Pringle, A. The impact of the sand prawn Cdianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J. Exp. Mar. Bio. Ecol. 107, 219–235 (1987).Article 

    Google Scholar 
    Bridges, T. S. Reproductive investment in four developmental morphs of Streblospio (Polychaeta: Spionidae). Biol. Bull. 184, 144–152 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. A. Reproduction of Abra nitida (Müller) (Bivalvia) in the southern Skagerrak. Sarsia 67, 55–60 (1982).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Calocaris macandreae [Crustacea: Thalassinidea]. J. Mar. Biol. Assoc. UK 43, 729–747 (1963).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from Different habitats. J. Mar. Biol. Assoc. UK 46, 97–114 (1966).Article 

    Google Scholar 
    Carlier, A. et al. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar. Ecol. Prog. Ser. 397, 125–137 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, H. S. & Hentschel, B. T. Estimating the dispersal potential of polychaete species in the Southern California Bight: implications for designing marine reserves. Mar. Ecol. Prog. Ser. 316, 105–113 (2006).ADS 
    Article 

    Google Scholar 
    Casagranda, C. & Boudouresque, C. F. Abundance, population structure and production of Scrobicularia plana and Abra tenuis (Bivalva, Scrobicularidae) in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Int. Rev. Hydrobiol. 90, 376–391 (2005).Article 

    Google Scholar 
    Chesman, B. S. & Langston, W. J. Intersex in the clam Scrobicularia plana: a sign of endocrine disruption in estuaries? Biol. Lett. 2, 420–422 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christie, G. A comparative study of the reproductive cycles of three Northumberland populations of Chaetozone setosa (Polychaeta: Cirratulidae). J. Mar. Biol. Assoc. UK 65, 239–254 (1985).Article 

    Google Scholar 
    Christie, G. The reproductive biology of a Northumberland population of Sphaerodorum gracilis (Rathke, 1843) (Polychaeta: Sphaerodoridae). Sarsia 69, 117–121 (1984).Article 

    Google Scholar 
    Clark, R. B. Observations on the food of Nephtys. Limnol. Oceanogr. 7, 380–385 (1962).ADS 
    Article 

    Google Scholar 
    Coelho, J. P., Rosa, M., Pereira, E., Duarte, A. & Pardal, M. A. Pattern and annual rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 69, 629–635 (2006).ADS 
    Article 

    Google Scholar 
    Corey, S. The comparative life histories of three Cumacea (Crustacea): Cumopsis goodsiri (Van Beneden), Iphinoe trispinosa (Goodsir), and Pseudocuma longicornis (Bate). Can. J. Zool. 47, 695–704 (1969).Article 

    Google Scholar 
    Crawford, G. I. The fauna of certain estuaries in West England and South Wales, with special reference to the Tanaidacea, Isopoda and Amphipoda. J. Mar. Biol. Assoc. UK 21, 647–662 (1937).Article 

    Google Scholar 
    Culliney, J. L. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol. 29, 245–251 (1975).Article 

    Google Scholar 
    Dales, R. P. The reproduction and larval development of Nereis diversicolor O. F. Műller. J. Mar. Biol. Assoc. UK 29, 321–360 (1950).Article 

    Google Scholar 
    Dashtgard, S. E., Gingras, M. K. & Pemberton, S. G. Grain-size controls on the occurrence of bioturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 224–243 (2008).Article 

    Google Scholar 
    Dauer, D. M. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26, 249–257 (1993).Article 

    Google Scholar 
    Dauer, D. M. Functional morphology and feeding behavior of Scolelepis squamata (Polychaeta: Spionidae). Mar. Biol. 77, 279–285 (1983).Article 

    Google Scholar 
    Dauer, D. M., Mahon, H. K. & Sarda, R. Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae). Hydrobiologia 496, 207–213 (2003).Article 

    Google Scholar 
    Dauvin, J. C. Impact of Amoco Cadiz oil spill on the muddy fine sand Abra alba – Melinna palmata community from the Bay of Morlaix. Estuar. Coast. Shelf Sci. 14 (2018).Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and A. prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Dauvin, J.-C. Biologie, dynamique et production d’une population d’ Abra alba (Wood) (mollusque-bivalve) de la baie de Morlaix (Manche occidentiale). J. Exp. Mar. Bio. Ecol. 97, 151–180 (1986).Article 

    Google Scholar 
    Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and Abra prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Davis, W. R. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. Exp. Mar. Bio. Ecol. 171, 187–200 (1993).Article 

    Google Scholar 
    Dean, D. Migration of the sandworm Nereis virens during winter nights. Mar. Biol. 45, 165–173 (1978).Article 

    Google Scholar 
    Dekker, R. & Beukema, J. Relations of summer and winter temperatures with dynamics and growth of two bivalves, Tellina tenuis and Abra tenuis, on the northern edge of their intertidal distribution. J. Sea Res. 42, 207–220 (1999).ADS 
    Article 

    Google Scholar 
    Delgado, L., Guerao, G. & Ribera, C. The Gammaridea (Amphipoda) fauna in a Mediterranean coastal lagoon: considerations on population structure and reproductive biology. Crustaceana 82, 191–218 (2009).Article 

    Google Scholar 
    Dewarumez, J.-M. Etude biologique d’ Abra alba (Wood) Mollusque lamellibranche du littoral français de la mer du Nord. Université des Sciences et Techniques de Lille, Doctoral Thesis, 139pp (1979).Dinneen, P. Peresiella clymenoides Harmelin, 1968; A capitellid polychaete new to Ireland and Great Britain. Irish Nat. J. 20, 471–475 (2019).
    Google Scholar 
    Dobbs, F. C. & Scholly, T. A. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29, 165–176 (1986).ADS 
    Article 

    Google Scholar 
    Domingues, P. M., Turk, P. E., Andrade, J. P. & Lee, P. G. Culture of the mysid, Mysidopsis almyra (Bowman), (Crustacea: Mysidacea) in a static water system: effects of density and temperature on production, survival and growth. Aquac. Res. 30, 135–143 (1999).Article 

    Google Scholar 
    Drinan, E. M. & Rodger, H. D. An occurrence of Gnathia sp., ectoparasitic isopods, on caged Atlantic salmon. Bull. Eur. Assoc. Fish Pathol. 10, 141–142 (1990).
    Google Scholar 
    Dufour, S. C., White, C., Desrosiers, G. & Juniper, S. K. Structure and composition of the consolidated mud tube of Maldane sarsi (Polychaeta: Maldanidae). Estuar. Coast. Shelf Sci. 78, 360–368 (2008).ADS 
    Article 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. B Mol. Dev. Evol. 314, 382–389 (2010).PubMed 
    Article 

    Google Scholar 
    Duport, E., Stora, G., Tremblay, P. & Gilbert, F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776. J. Exp. Mar. Bio. Ecol. 336, 33–41 (2006).Article 

    Google Scholar 
    Eckert, G. L. Effects of the planktonic period on marine population fluctuations. Ecology 84, 372–383 (2003).Article 

    Google Scholar 
    Esselink, P. & Zwarts, L. Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar. Ecol. Prog. Ser. 56, 243–254 (1989).ADS 
    Article 

    Google Scholar 
    Farke, H. & Berghuis, E. M. Spawning, larval development and migration behaviour of Arenicola marina in the laboratory. Netherlands. J. Sea Res. 13, 512–528 (1979).
    Google Scholar 
    Fauchald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. an Annu. Rev. 17, 193–284 (1979).
    Google Scholar 
    Fauchald, K. Life diagram patterns in benthic polychaetes. Proc. Biol. Soc. Washingt. 96, 160–177 (1983).
    Google Scholar 
    Fetzer, I. & Arntz, W. Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water. Mar. Ecol. Prog. Ser. 356, 189–202 (2008).ADS 
    Article 

    Google Scholar 
    Fish, J. D. & Mills, A. The Reproductive Biology of Corophium Volutator and C. Arenarium (Crustacea: Amphipoda). J. Mar. Biol. Assoc. UK 59, 355–368 (1979).Article 

    Google Scholar 
    Fish, S. The biology of Eurydice Pulchra [Crustacea: Isopoda]. J. Mar. Biol. Assoc. UK 50, 753–768 (1970).Article 

    Google Scholar 
    Francesch, O. & Lopez-Jamar, E. Dynamics, growth and production of Abra alba and Abra nitida from La Coruna, NW of Spain. Bol. del Inst. Esp. Oceanogr. 7, 101–113 (1991).
    Google Scholar 
    François, F., Gerino, M., Stora, G., Durbec, J. P. & Poggiale, J. C. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: Modeling and application with the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 229, 127–136 (2002).ADS 
    Article 

    Google Scholar 
    Frid, C. L. J. Foraging behaviour of the spiny starfish Marthasterias glacialis in Lough Ine, Co. Cork. Mar. Behav. Physiol. 19, 227–239 (1992).Article 

    Google Scholar 
    Funder, S., Demidov, I. & Yelovicheva, Y. Hydrography and mollusc faunas of the Baltic and the White Sea–North Sea seaway in the Eemian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 275–304 (2002).Article 

    Google Scholar 
    Gemmill, J. F. I. The development of the starfish Solaster endeca Forbes. Trans. Zool. Soc. London 20, 1–71 (1912).Article 

    Google Scholar 
    Gendron, L. Determination of the size at sexual maturity of the waved whelk Buccinum undatum Linnaeus, 1758, in the Gulf of St. Lawrence, as a basis for the establishment of a minimum catchable size. J. Shellfish Res. 11, 1–7 (1992).
    Google Scholar 
    Gentil, F., Dauvin, J. C. & Ménard, F. Reproductive biology of the polychaete Owenia fusiformis Delle Chiaje in the Bay of Seine (eastern English Channel). J. Exp. Mar. Bio. Ecol. 142, 13–23 (1990).Article 

    Google Scholar 
    Gerlach, S. A., Ekstrøm, D. K. & Eckardt, P. B. Filter feeding in the hermit crab, Pagurus bernhardus. Oecologia 24, 257–264 (1976).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghertsos, K., Luczak, C., Dewarumez, J.-M. & Dauvin, J.-C. Influence of spatial scales of observation on temporal change in diversity and trophic structure of fine-sand communities from the English Channel and the southern North Sea. ICES J. Mar. Sci. 57, 1481–1487 (2000).Article 

    Google Scholar 
    Giangrande, A. Polychaete reproductive patterns, life cycle and life histories: an overview. Oceanogr. Mar. Biol. An Annu. Rev. 35, 323–386 (1997).
    Google Scholar 
    Giangrande, A., Montresor, M., Cavallo, A. & Licciano, M. Influence of Naineris laevigata (Polychaeta: Orbiniidae) on vertical grain size distribution, and dinoflagellate resting stages in the sediment. J. Sea Res. 47, 97–108 (2002).ADS 
    Article 

    Google Scholar 
    Godbold, J. & Solan, M. Relative importance of biodiversity and the abiotic environment in mediating an ecosystem process. Mar. Ecol. Prog. Ser. 396, 273–282 (2009).ADS 
    Article 

    Google Scholar 
    Gordillo, S. Puzzling distribution of the fossil and living genus Hiatella (Bivalvia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 231–249 (2001).Article 

    Google Scholar 
    Gotto, D. M. & Gotto, R. V. Labidoplax media Oestergren: A sea-cucumber new to British and Irish waters, with observational notes. Irish Nat. J. 17, 250–252 (1972).
    Google Scholar 
    Gray, A. J. S., Waldichuk, M., Newton, A. J., Berry, R. J. & Holden, A. V. Pollution-induced changes in populations [and discussion]. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 286, 545–561 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Greathead, C. F., Donnan, D. W., Mair, J. M. & Saunders, G. R. The sea pens Virgularia mirabilis, Pennatula phosphorea and Funiculina quadrangularis: distribution and conservation issues in Scottish waters. J. Mar. Biol. Assoc. UK 87, 1095–1103 (2007).Article 

    Google Scholar 
    Green, J. Activities of the siphons of Scrobicularia plana (Da Costa). J. Molluscan Stud. 37, 339–341 (1967).
    Google Scholar 
    Guerra-Garcia, J. M., Corzo, J., Garcia-Asencio, I. & Garcia-Gómez, J. C. Seasonal fluctuations of Phtisica marina Slabber (Crustacea: Amphipoda: Caprellidea) in the estuarine zone of southwest Spain. Pol. Arch. Hydrobiol. 47, 527–531 (2000).
    Google Scholar 
    Gusso, C. C., Gravina, M. F. & Maggiore, F. R. Temporal variations in soft bottom benthic communities in central Tyrrhenian Sea (Italy). Arch. di Oceanogr. e Limnol. 22, 175–182 (2001).
    Google Scholar 
    Haaland, B. & Schram, T. A. Larval development and metamorphosis of Gyptis rosea (Hesionidae, Polychaeta). Sarsia 67, 107–118 (1982).Article 

    Google Scholar 
    Hale, R., Mavrogordato, M. N., Tolhurst, T. J. & Solan, M. Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors. Sci. Rep. 4, 6463 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammond, R. A. The burrowing of Priapulus caudatus. J. Zool. Soc. Lond. 162, 469–480 (1970).Article 

    Google Scholar 
    Hansen, B. Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen) (Capitellidae). J. Exp. Mar. Bio. Ecol. 166, 273–288 (1993).Article 

    Google Scholar 
    Harley, M. B. Occurence of a filter-feeding mechanism in the polychaete Nereis diversicolor. Nature 165, 734–735 (1950).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartnoll, R. G. The Biology of the burrowing crab. Corystes cassivelaunus. Bijdr. Tot Dierkd. 42, 139–155 (1972).Article 

    Google Scholar 
    Haszprunar, G. The fine morphology of the osphradial sense organs of the Mollusca. IV. Caudofoveata and Solenogastres. Philos. Trans. R. Soc. B Biol. Sci. 315, 63–73 (1987).ADS 

    Google Scholar 
    Hedman, J. E., Gunnarsson, J. S., Samuelsson, G. & Gilbert, F. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J. Exp. Mar. Bio. Ecol. 407, 294–301 (2011).CAS 
    Article 

    Google Scholar 
    Hirasaka, K. Notes on Nucula. J. Mar. Biol. Assoc. UK 14, 629–645 (1927).Article 

    Google Scholar 
    Holmes, S., Dekker, R. & Williams, I. Population dynamics and genetic differentiation in the bivalve mollusc Abra tenuis: Aplanic dispersal. Mar. Ecol. Prog. Ser. 268, 131–140 (2004).ADS 
    Article 

    Google Scholar 
    Howie, D. I. D. The reproductive biology of the lugworm, Arenicola marina L. Fortschr. Zool. 29, 247–263 (1984).
    Google Scholar 
    Hrs-Brenko, M. & Legac, M. Inter- and Intra-species relationships of sessile bivalves on the eastern coast of the Adriatic Sea. Natura Croatica 15, 203–230 (2006).
    Google Scholar 
    Hughes, D. J., Ansell, A. D. & Atkinson, J. A. Sediment bioturbation by the echiuran worm Maxmuelleria Zankesteri (Herdman) and its consequences for radionuclide dispersal in Irish Sea sediments. J. Exp. Mar. Bio. Ecol. 195, 203–220 (1996).Article 

    Google Scholar 
    Hughes, T. G. The processing of food material within the gut of Abra tenuis (Bivalvia: Tellinacea). J. Molluscan Stud. 43, 162–180 (1977).
    Google Scholar 
    Jara-Jara, R., Abad, M., Pazos, A. J., Perez-Paralle, M. L. & Sanchez, J. L. Growth and reproductive patterns in Venerupis pullastra seed reared in waste water effluent from a fish farm in Galicia (N.W. Spain). J. Shellfish Res. 19, 949–956 (2000).
    Google Scholar 
    Jaume, D., Cartes, J. E. & Sorbe, J. C. A new species of Bathymedon Sars, 1892 (Amphipoda: Oedicerotidae) from the western Mediterranean bathyal floor. Sci. Mar. 62, 341–356 (1998).Article 

    Google Scholar 
    Jeffery, W. R. The tunicate Ciona: a model system for understanding the relationship between regeneration and aging. Invertebr. Reprod. Dev. 59, 17–22 (2015).PubMed 
    Article 

    Google Scholar 
    Jensen, A. C., Humphreys, J., Caldow, R. W. G., Grisley, C. & Dyrynda, P. E. J. Naturalization of the Manila clam (Tapes philippinarum), an alien species, and establishment of a clam fishery within Poole Harbour, Dorset. J. Mar. Biol. Assoc. UK 84, 1069–1073 (2004).Article 

    Google Scholar 
    Jensen, J. N. Increased abundance and growth of the suspension-feeding bivalve Corbula gibba in a shallow part of the eutrophic Limfjord, Denmark. Netherlands. J. Sea Res. 27, 101–108 (1990).
    Google Scholar 
    Jensen, J. N. Recruitment, growth and mortality of juvenile Corbula gibba and Abra alba in the Limfjord, Denmark. The Baltic Sea environment: History, eutrophication, recruitment and toxicology. Kieler Meeresforschungen (Sonderheft) 6, 357–365 (1988).
    Google Scholar 
    Jensen, K. The presence of the bivalve Cerastoderma edule affects migration, survival and reproduction of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 25, 269–277 (1985).ADS 
    Article 

    Google Scholar 
    Johannessen, O. H. Length and weight relationships and the potential production of the bivalve Venerupis pullastra (Montagu) on a sheltered beach in Western Norway. Sarsia 53, 41–48 (1973).Article 

    Google Scholar 
    Johannessen, O. H. Population structure and individual growth of Venerupis pullastra (Montagu) (Lamellibranchia). Sarsia 52, 97–116 (1973).Article 

    Google Scholar 
    Johnson, K. B. & Brink, L. A. Predation on bivalve veligers by polychaete larvae. Biol. Bull. 194, 297–303 (2020).Article 

    Google Scholar 
    Jones, D. A. & Naylor, E. The swimming rhythm of the sand beach isopod Eurydice pulchra. J. Exp. Mar. Bio. Ecol. 4, 188–199 (1970).Article 

    Google Scholar 
    Jönsson, B. J. et al. Does the influence of the epibenthic predator Crangon L. (brown shrimp) extend to sediment microalgae and bacteria? Netherlands. J. Sea Res. 31, 83–94 (1993).ADS 

    Google Scholar 
    Josefson, A. B. Regulation of population size, growth, and production of a deposit-feeding bivalve: A long-term field study of three deep-water populations off the swedish west coast. J. Exp. Mar. Bio. Ecol. 59, 125–150 (1982).Article 

    Google Scholar 
    Kai, R. A. Biology and life cycle of Nutatoluna borealis Lilj. 1851, a scavenging isopod from the continental slope of the Mediterranean. Deep. Res. I 44, 2045–2067 (1998).
    Google Scholar 
    Kaïm-Malka, R. A. Biology and life cycle of Tmetonyx similis (G. O. Sars, 1891) (Amphipoda, Lysianassidae), a scavenging amphipod from the continental slope of the Mediterranean. J. Nat. Hist. 39, 3163–3186 (2005).Article 

    Google Scholar 
    Kaiser, M. J., Moore, P. G., Kaiser, M. J. & Moore, P. G. Obligate marine scavengers: do they exist? J. Nat. Hist. 33, 475–481 (1999).Article 

    Google Scholar 
    Kay, M. C. & Emlet, R. B. Laboratory spawning, larval development, and metamorphosis of the limpets Lottia digitalis and Lottia asmi (Patellogastropoda, Lottiidae). Invertebr. Biol. 121, 11–24 (2002).Article 

    Google Scholar 
    King, P. E. & Case, R. M. Sea spiders (Pycnogonids) in and around Milford Haven (South West Wales). F. Stud. 6, 517–529 (1986).
    Google Scholar 
    Kongsrud, J. A. & Rapp, H. T. Nicomache (Loxochona) lokii sp. nov. (Annelida: Polychaeta: Maldanidae) from the Loki’s Castle vent field: An important structure builder in an Arctic vent system. Polar Biol. 35, 161–170 (2012).Article 

    Google Scholar 
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).ADS 
    Article 

    Google Scholar 
    Kristensen, E. Life cycle, growth and production in estuarine populations of the polychaetes Nereis virens and N. diversicolor. Holarct. Ecol. 7, 249–256 (1984).
    Google Scholar 
    Larsen, J. B., Frischer, M. E., Ockelmann, K. W., Rasmussen, L. J. & Hansen, B. W. Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. J. Plankton Res. 29, 423–436 (2007).CAS 
    Article 

    Google Scholar 
    Laudien, J., Herrmann, M. & Arntz, W. E. Soft bottom community structure and diversity in Kongsfjorden (Svalbard). In C. Wiencke (ed.): The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research at the Koldewey Station in the years 1991–2003. Berichte zur Polar- und Meeresforschung 492, 91–102 (1991).
    Google Scholar 
    Lavesque, N. et al. Heteromysis (Heteromysis) microps (Crustacea, Mysidae), a commensal species for Upogebia pusilla (Crustacea, Upogebiidae) in Arcachon Bay (NE Atlantic Ocean). Mar. Biodivers. Rec. 9, 14 (2016).Article 

    Google Scholar 
    Le Pape, O. et al. Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. J. Sea Res. 57, 126–136 (2007).Article 

    Google Scholar 
    Lebour, M. V. Notes on the breeding of some lamellibranchs from Plymouth and their larvae. J. Mar. Biol. Assoc. UK 23, 119 (1938).Article 

    Google Scholar 
    Levin, L. A. & Creed, E. L. Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 103–113 (1986).
    Google Scholar 
    Levin, L. A. Multiple patterns of development in Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biol. Bull. 166, 494–508 (1984).Article 

    Google Scholar 
    Levin, L. A., Caswell, H., DePatra, K. D. & Creed, E. L. Demographic consequences of larval development mode: planktotrophy vs. lecithotrophy in Streblospio benedicti. Ecology 68, 1877–1886 (1987).PubMed 
    Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of Deposit-Feeding Animals in Marine Sediments. Q. Rev. Biol. 62, 235–260 (1987).Article 

    Google Scholar 
    López-Jamar, E., González, G. & Mejuto, J. Temporal changes of community structure and biomass in two subtidal macroinfaunal assemblages in La Coruña bay, NW Spain. Hydrobiol. 142, 137–150 (1986).Article 

    Google Scholar 
    Maire, O., Duchêne, J., Rosenberg, R., de Mendonça, J. & Grémare, A. Effects of food availability on sediment reworking in Abra ovata and A. nitida. Mar. Ecol. Prog. Ser. 319, 135–153 (2006).ADS 
    Article 

    Google Scholar 
    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).Article 

    Google Scholar 
    Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. UK 92, 1563–1577 (2012).Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Growth, morphometry and biochemical composition of the wood boring molluscs Teredo navalis L., Bankia gouldi (Bartsch), and Nototeredo knoxi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 229–251 (1985).CAS 
    Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 211–228 (1985).CAS 
    Article 

    Google Scholar 
    Maranhão, P. & Marques, J. C. The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae). Acta Oecologica 24, 5–13 (2003).ADS 
    Article 

    Google Scholar 
    Martin, D. & Britayev, T. A. Symbiotic Polychaetes: Review of known species. Oceanogr. Mar. Biol. an Annu. Rev. 36, 217–340 (1998).
    Google Scholar 
    Mattson, S. & Cedhagen, T. Aspects of the behaviour and ecology of Dyopedos monacanthus (Metzger) and D. porrectus Bate, with comparative notes on Dulichia tuberculata Boeck (Crustacea: Amphipoda: Podoceridae). J. Exp. Mar. Bio. Ecol. 127, 253–272 (1989).Article 

    Google Scholar 
    McHugh, D. A comparative study of reproduction and development in the polychaete family Terebellidae. Biol. Bull. 185, 153–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meadows, P. S. & Reid, A. The behaviour of Corophiurn volutator (Crustacea: Amphipoda). J. Zool. Soc. Lond. 150, 387–399 (1966).Article 

    Google Scholar 
    Méndez, N. Non-pelagic development of Capitella capitata (Polychaeta) in the littoral zone of Barcelona. Sci. Mar. 59, 95–101 (1995).
    Google Scholar 
    Mercier, A., Doncaster, E. J. & Hamel, J. F. Contrasting predation rates on planktotrophic and lecithotrophic propagules by marine benthic invertebrates. J. Exp. Mar. Bio. Ecol. 449, 100–110 (2013).Article 

    Google Scholar 
    Mermillod-Blondin, F., Bernard, C., Michaud, E., Desrosiers, G. & Mermillod-blondin, F. The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J. Exp. Mar. Bio. Ecol. 326, 77–88 (2005).Article 
    CAS 

    Google Scholar 
    Mermillod-Blondin, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K. & Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Mar. Ecol. Prog. Ser. 36, 271–284 (2004).
    Google Scholar 
    Merz, R. A. & Woodin, S. A. Polychaete chaetae: Function, fossils, and phylogeny. Integr. Comp. Biol. 46, 481–496 (2006).PubMed 
    Article 

    Google Scholar 
    Messing, C. G. Postmarsupial development and growth of Pagurapseudes largoensis McSweeny (Crustacea, Tanaidacea). J. Crustac. Biol. 3, 380–408 (2020).Article 

    Google Scholar 
    Metaxatos, A. Population dynamics of the venerid bivalve Callista chione (L.) in a coastal area of the eastern Mediterranean. J. Sea Res. 52, 293–305 (2004).ADS 
    Article 

    Google Scholar 
    Meyer, K. S. et al. Hyalinoecia artifex: Field notes on a charismatic and abundant epifaunal polychaete on the US Atlantic continental margin. Invertebr. Biol. 135, 211–224 (2016).Article 

    Google Scholar 
    Moment, G. B. Simultaneous anterior and posterior regeneration and other growth phenomena in Maldanid polychaetes. J. Exp. Zool. 117, 1–13 (1951).Article 

    Google Scholar 
    Moore, P. G. & Wong, Y. M. Orchomene nanus (Kroyer) (Amphipoda: Lysianassoidea), a selective scavenger of dead crabs: feeding preferences in the field. J. Exp. Mar. Bio. Ecol. 192, 35–45 (1995).Article 

    Google Scholar 
    Moore, P. G. Observations on the behaviour of the scavenging lysianassoid Orchomene zschaui (Crustacea: Amphipoda) from South Georgia (South Atlantic). Mar. Ecol. Prog. Ser. 113, 29–38 (1994).ADS 
    Article 

    Google Scholar 
    Moore, P. G. The larger Crustacea associated with holdfasts of kelp (Laminaria hyperborea) in north-east Britain. Cah. Biol. Mar. 14, 493–518 (1973).
    Google Scholar 
    Moreira, J., Gestoso, L. & Troncoso, J. S. Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain). Mar. Ecol. 29, 12–18 (2008).ADS 
    Article 

    Google Scholar 
    Moreira, P. S. Food and feeding behavior of Arcturella sawayae Moreira, 1973 (Crustacea, Isopoda, Valvifera). Bol. do Zool. e Biol. Mar. n.s. 30, 217–232 (1973).Article 

    Google Scholar 
    Mori, M., Abello, P., National, S., Marco, M. & Ranieri, S. De. Population characteristics of the crab Monodaeus couchii (Crustacea, Brachyura, Xanthidae) in the Western Mediterranean. Misc. Zool. 18, 77–88 (1995).
    Google Scholar 
    Morton, B. The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Acores: survival at the edge. J. Mar. Biol. Assoc. UK 96, 1347–1361 (2016).Article 

    Google Scholar 
    Morton, J. E. The habitats and feeding organs of Dentalium entalis. J. Mar. Biol. Assoc. UK 38, 225–238 (1959).Article 

    Google Scholar 
    Morvan, C. & Ansell, A. D. Stereological methods applied to reproductive cycle of Tapes rhomboides. Mar. Biol. 97, 355–364 (1988).Article 

    Google Scholar 
    Morys, C., Powilleit, M. & Forster, S. Bioturbation in relation to the depth distribution of macrozoobenthos in the southwestern Baltic Sea. Mar. Ecol. Prog. Ser. 579, 19–36 (2017).ADS 
    Article 

    Google Scholar 
    Moura, P. et al. Reproductive cycle of the Manila clam (Ruditapes philippinarum): an intensively harvested invasive species in the Tagus Estuary (Portugal). J. Mar. Biol. Assoc. UK 98, 1645–1657 (2018).Article 

    Google Scholar 
    Munro, L. Determining the reproductive cycle of Eunicella verrucosa. Report Ref: RR Report 07/2004 ETR 12. (CCW, 2004).Murina, G. V. Ecology of Sipuncula. Mar. Ecol. Prog. Ser. 17, 1–7 (1984).ADS 
    Article 

    Google Scholar 
    Newell, G. E. The life-history of Clymenella tortuata (Leidy). (Polychaeta). Proc. Zool. Soc. Lond. 121, 561–586 (1951).Article 

    Google Scholar 
    Nickel, L. A. & Atkinson, R. J. A. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar. Ecol. Prog. Ser. 128, 181–197 (1995).ADS 
    Article 

    Google Scholar 
    Nicol, E. A. T. The feeding habits of the Galatheidea. J. Mar. Biol. Assoc. UK 18, 87–106 (1932).Article 

    Google Scholar 
    Nicolaidou, A. Life history and productivity of Pectinaria koreni Malmgren (polychaeta). Estuar. Coast. Shelf Sci. 17, 31–43 (1983).ADS 
    Article 

    Google Scholar 
    Nicolaisen, W. & Kanneworff, E. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia 6, 231–250 (1969).Article 

    Google Scholar 
    Nott, P. Reproduction in Abra alba (Wood) and Abra tenuis (Montagu) (Tellinacea: Scrobiculariidae). J. Mar. Biol. Assoc. UK 60, 465–479 (1980).Article 

    Google Scholar 
    Obenat, S., Spivak, E. & Garrido, L. Life history and reproductive biology of the invasive amphipod Melita palmata (Amphipoda: Melitidae) in the Mar Chiquita coastal lagoon, Argentina. J. Mar. Biol. Assoc. UK 86, 1381–1387 (2006).Article 

    Google Scholar 
    Ockelmann, K. W. & Muus, K. The biology, ecology and behaviour of the bivalve Mysella bidentata (Montagu). Ophelia 17, 1–93 (1978).Article 

    Google Scholar 
    Ockelmann, K. W. & Vahl, O. On the biology of the polychaete Glycera alba, especially its burrowing and feeding. Ophelia 8, 275–294 (1970).Article 

    Google Scholar 
    Oldfield, E. Observations on the anatomy and mode of life of Lasaea rubra (Mantagu) and Turtonia minuta (Fabricus). J. Molluscan Stud. 31, 226–249 (1955).Article 

    Google Scholar 
    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: Probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).Article 

    Google Scholar 
    Orvain, F. A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana. Mar. Ecol. Prog. Ser. 286, 43–56 (2005).ADS 
    Article 

    Google Scholar 
    Palmero, A., Martínez, A., Brito, M. & Núñez, J. Acoetidae (Annelida, Polychaeta) from the Iberian Peninsula, Madeira and Canary islands, with description of a new species. Arquipélago. Life Mar. Sci. 25, 49–62 (2008).
    Google Scholar 
    Pearce, J. B. & Thorson, G. The feeding and reproductive biology of the red whelk, Neptunea antiqua (L.) (Gastropoda, Prosobranchia). Ophelia 4, 277–314 (1967).Article 

    Google Scholar 
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. an Annu. Rev. 16, 229–311 (1977).
    Google Scholar 
    Pechenik, J. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).ADS 
    Article 

    Google Scholar 
    Peharda, M. et al. Age, growth and population structure of Acanthocardia tuberculata (Bivalvia: Cardiidae) in the eastern Adriatic Sea. Sci. Mar. 76, 59–66 (2012).Article 

    Google Scholar 
    Pekkarinen, M. Regeneration of the inhalant siphon and siphonal sense organs of brackish-water (Baltic Sea) Macoma balthica (Lamellibranchiata, Tellinacea). Ann. Zool. Fennici 21, 29–40 (1984).
    Google Scholar 
    Perez Camacho, A. Biology of Venerupis pullastra (Montagu, 1803) and Venerupis decussata (Linne, 1767) (Mollusca, Bivalvia), with special reference to the determinant factors of production. Bol. del Inst. Esp. Oceanogr. 5, 43–76 (1980).
    Google Scholar 
    Petersen, M. E. Reproduction and development in Cirratulidae (Annelida: Polychaeta). Hydrobiologia 402, 107–128 (1999).Article 

    Google Scholar 
    Pettibone, M. H. Endoparasitic polychaetous annelids of the family Arabellidae with descriptions of new species. Biol. Bull. 113, 170–187 (1957).Article 

    Google Scholar 
    Phillips, N. E. & Pernet, B. Capture of large particles by suspension-feeding scaleworm larvae (Polychaeta: Polynoidae). Biol. Bull. 191, 199–208 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinn, E. H., Atkinson, R. J. A. & Rogerson, A. The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellata (Crustacea: Decapoda: Thalassinidea). Ophelia 48, 211–223 (1998).Article 

    Google Scholar 
    Pinn, E. H., James, R., Atkinson, A. & Rogerson, A. Particle size selectivity and resource partitioning in five species of Thalassinidea (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 169, 243–250 (1998).ADS 
    Article 

    Google Scholar 
    Pinn, E. H., Richardson, C. A., Thompson, R. C. & Hawkins, S. J. Burrow morphology, biometry, age and growth of piddocks (Mollusca: Bivalvia: Pholadidae) on the south coast of England. Mar. Biol. 147, 943–953 (2005).Article 

    Google Scholar 
    Piot, A., Rochon, A., Stora, G. & Desrosiers, G. Experimental study on the influence of bioturbation performed by Nephtys caeca (Fabricius) and Nereis virens (Sars) annelidae on the distribution of dinoflagellate cysts in the sediment. J. Exp. Mar. Bio. Ecol. 359, 92–101 (2008).Article 

    Google Scholar 
    Ponurovskii, S. K. Population structure and growth of the Japanese littleneck clam Ruditapes philippinarum in Amursky Bay, Sea of Japan. Russ. J. Mar. Biol. 34, 329–332 (2008).
    Google Scholar 
    Ponurovsky, S. K. & Yakovlev, Y. M. The reproductive biology of the Japanese littleneck Tapes phillipinarum. J. Shellfish Res. 11, 265–277 (1992).
    Google Scholar 
    Prato, E. & Biandolino, F. Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy). Sci. Mar. 70, 355–362 (2006).Article 

    Google Scholar 
    Purchon, R. D. The structure and function of the British Pholadidae (Rock-Boring Lamellibranchia). Proc. Zool. Soc. Lond. 124, 859–911 (2010).Article 

    Google Scholar 
    Qian, P. Y. & Chia, F. S. Effects of diet type on the demographics of Capitella sp. (Annelida: Polychaeta): lecithotrophic development vs. planktotrophic development. J. Exp. Mar. Bio. Ecol. 157, 159–179 (1992).Article 

    Google Scholar 
    Quayle, D. B. The Rate of Growth of Venerupis pullastra (Montagu) at Millport, Scotland. Proc. R. Soc. Edinburgh. Sect. B. Biol. 64, 384–406 (1952).Article 

    Google Scholar 
    Raffaelli, D., Emmerson, M., Solan, M., Biles, C. & Paterson, D. Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. J. Sea Res. 49, 133–141 (2003).ADS 
    Article 

    Google Scholar 
    Rainer, S. F. Population dynamics and production of the bivalve Abra alba and implications for fisheries production. Mar. Biol. 85, 253–262 (1985).Article 

    Google Scholar 
    Raleigh, J. & Keegan, B. F. The gametogenic cycle of Scrobicularia plana (Mollusca: Bivalvia) in Mweeloon Bay (Galway, west coast of Ireland). J. Mar. Biol. Assoc. UK 86, 1157–1162 (2006).Article 

    Google Scholar 
    Ramsay, K. & Holt, R. H. F. Mantis shrimps Rissoides desmaresti in Tremadog Bay, North Wales. J. Mar. Biol. Assoc. UK 81, 695–696 (2001).Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. A field study of intraspecific competition for food in hermit crabs (Pagurus bernhardus). Estuar. Coast. Shelf Sci. 44, 213–220 (1997).ADS 
    Article 

    Google Scholar 
    Rasmussen, E. Systematics and ecology of the Isefjord marine fauna (Denmark): With a survey of the eelgrass (zostera) vegetation and its communities. Ophelia 11, 1–507 (1973).Article 

    Google Scholar 
    Rees, H.L. & Dare, P. J. Sources of mortality and associated life-cycle traits of selected benthic species: a review. Fisheries Research Data Report, no. 33. (MAFF, 1993).Retraubun, A. S. W., Dawson, M. & Evans, S. M. The role of the burrow funnel in feeding processes in the lugworm Arenicola marina (L.). J. Exp. Mar. Bio. Ecol. 202, 107–118 (1996).Article 

    Google Scholar 
    Riisgard, H. U. & Banta, G. T. Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu 48, 243–257 (1998).
    Google Scholar 
    Riisgard, H. U. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70, 29–37 (1991).ADS 
    Article 

    Google Scholar 
    Rijken, M. Food and food uptake in Arenicola marina. Netherlands. J. Sea Res. 13, 406–421 (1979).
    Google Scholar 
    Robertson, A. I. The relationship between annual production: Biomass ratios and lifespans for marine macrobenthos. Oecologia 38, 193–202 (1979).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rochette, R., Maltais, M. J., Dill, L. M. & Himmelman, J. H. Interpopulation and context-related differences in responses of a marine gastropod to predation risk. Anim. Behav. 57, 977–987 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrı́guez-Rúa, A., Prado, M., Romero, Z. & Bruzón, M. The gametogenic cycle of Scrobicularia plana (da Costa, 1778) (Mollusc: Bivalve) in Guadalquivir estuary (Cádiz, SW Spain). Aquaculture 217, 157–166 (2003).Article 

    Google Scholar 
    Romero-Wetzel, M. B. Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Mar. Biol. 91, 87–91 (1987).Article 

    Google Scholar 
    Rosenberg, R. Suspension feeding in Abra alba (Mollusca). Sarsi 78, 119–121 (1993).Article 

    Google Scholar 
    Rosenthal, H. Implications of transplantations to aquaculture and ecosystems. Mar. Fish. Rev. 42, 1–4 (1980).
    Google Scholar 
    Rouse, G. W. Polychaetes have evolved feeding larvae numerous times. Bull. Mar. Sci. 67, 391–409 (2000).ADS 

    Google Scholar 
    Rowden, A. A., Jones, M. B. & Morris, A. W. The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont. Shelf Res. 18, 1365–1380 (1998).ADS 
    Article 

    Google Scholar 
    Rumbold, C. E., Obenat, S. M. & Spivak, E. D. Comparison of life history traits of Tanais dulongii (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south-western Atlantic. Helgol. Mar. Res. 69, 231–242 (2015).ADS 
    Article 

    Google Scholar 
    Sánchez, L. R. & Junoy, J. Isopods of the genus Arcturella (Valvifera: Arcturidae) from the expedition FAUNA I (S Spain), with description of a new species. Sci. Mar. 66, 33–41 (2002).Article 

    Google Scholar 
    Sardá, R. & Martin, D. Populations of Streblospio (Polychaeta: Spionidae) in temperature zones: demography and production. J. Mar. Biol. Assoc. UK 73, 769–784 (1993).Article 

    Google Scholar 
    Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O. F. Műller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).Article 

    Google Scholar 
    Schembrii, P. J. Feeding in Ebalia tuberosa (Pennant) (Crustacea: Decapoda: Leucosiidae). J. Exp. Mar. Bio. Ecol. 55, 1–10 (1981).Article 

    Google Scholar 
    Schiaparelli, S., Franci, G., Albertelli, G. & Cattaneo-Vietti, R. A nondestructive method to evaluate population structure and bioerosion activity of the boring bivalve Gastrochaena dubia. J. Coast. Res. 212, 383–386 (2005).Article 

    Google Scholar 
    Schubert, A. & Reise, K. Predatory effects of Nephtys hombergii on other polychaetes in tidal flat sediments. Mar. Ecol. Prog. Ser. 34, 117–124 (1986).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS One 12, e0182753 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shaw, P. W. Effects of asexual reproduction on population structure of Sagartia elegans (Anthozoa: Actiniaria). Hydrobiologia 216/217, 519–525 (1991).Article 

    Google Scholar 
    Shcherbakova, T. D., Tzetlin, A. B., Mardashova, M. V. & Sokolova, O. S. Fine structure of the tubes of Maldanidae (Annelida). J. Mar. Biol. Assoc. UK 97, 1177–1187 (2017).CAS 
    Article 

    Google Scholar 
    Sigurdsson, J. B., Titman, C. W. & Davies, P. A. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262, 386–387 (1976).ADS 
    Article 

    Google Scholar 
    Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M. & Prevedelli, D. Organic enrichment and structure of the macrozoobenthic community in the northern Adriatic Sea in an area facing Adige and Po mouths. ICES J. Mar. Sci. 61, 871–881 (2004).Article 

    Google Scholar 
    Smaldon, G. Population structure and breeding biology of Pisidia longicornis and Porcellana platychelses. Mar. Biol. 179, 171–179 (1972).Article 

    Google Scholar 
    Smith, S. T. The ecology and life history of Retusa obtusa (Montagu) (Gastropoda, Opisthobranchia). Can. J. Zool. 45, 397–405 (1967).Article 

    Google Scholar 
    Snelgrove, P., Grant, J. & Pilditch, C. Habitat selection and adult-larvae interactions in settling larvae of soft-shell clam Mya arenaria. Mar. Ecol. Prog. Ser. 182, 149–159 (1999).ADS 
    Article 

    Google Scholar 
    So, J. J., Uthicke, S., Hamel, J. F. & Mercier, A. Genetic population structure in a commercial marine invertebrate with long-lived lecithotrophic larvae: Cucumaria frondosa (Echinodermata: Holothuroidea). Mar. Biol. 158, 859–870 (2011).Article 

    Google Scholar 
    Sola, J. C. Reproduction, population dynamics, growth and production of Scrobicularia plana da costa (pelecypoda) in the Bidasoa Estuary, Spain. Netherlands. J. Aquat. Ecol. 30, 283–296 (1997).Article 

    Google Scholar 
    Sorlin, T. Floating behaviour in the tellinid bivalve Malcoma balthica (L.). Oecologia 77, 273–277 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Speybroeck, J., Alsteens, L., Vincx, M. & Degraer, S. Understanding the life of a sandy beach polychaete of functional importance – Scolelepis squamata (Polychaeta: Spionidae) on Belgian sandy beaches (northeastern Atlantic, North Sea). Estuar. Coast. Shelf Sci. 74, 109–118 (2007).ADS 
    Article 

    Google Scholar 
    Strathmann, R. R. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978).PubMed 
    Article 

    Google Scholar 
    Sun, Z., Hamel, J. F., Parrish, C. C. & Mercier, A. Complex offspring size effects: Variations across life stages and between species. Ecol. Evol. 5, 1117–1129 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taylor, A. C. & Moore, P. G. The burrows and physiological adaptations to a burrowing lifestyle of Natatolana borealis (Isopoda: Cirolanidae). Mar. Biol. 123, 805–814 (1995).Article 

    Google Scholar 
    Taylor, A. C. Branchial ventilation in the burrowing crab, Atelecyclus rotundatus. J. Mar. Biol. Assoc. UK 64, 7–20 (1984).Article 

    Google Scholar 
    Thiel, M. Duration of extended parental care in marine amphipods. J. Crustac. Biol. 19, 60–71 (1999).Article 

    Google Scholar 
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tirado, C., Salas, C. & Márquez, I. Reproduction of Venus verrucosa L., 1758 (Bivalvia: Veneridae) in the littoral of Málaga (southern Spain). Fish. Res. 63, 437–445 (2003).Article 

    Google Scholar 
    Trevor, J. H. The burrowing of Nereis diversicolor O.F. Müller, together with some observations on Arenicola marina (L.) (Annelida: Polychaeta). J. Exp. Mar. Bio. Ecol. 30, 129–145 (1977).Article 

    Google Scholar 
    Trueman, E. R. & Brown, A. C. The burrowing habit of marine gastropods. Adv. Mar. Biol. 28, 389–431 (1992).Article 

    Google Scholar 
    Trueman, E. R. & Foster‐Smith, R. L. The mechanism of burrowing of Sipunculus nudus. J. Zool. Soc. Lond. 179, 373–386 (1976).Article 

    Google Scholar 
    Urban-Malinga, B., Drgas, A., Gromisz, S. & Barnes, N. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Mar. Biol. 161, 195–212 (2014).PubMed 
    Article 

    Google Scholar 
    Urrutia, M. B., Navarro, E., Ibarrola, I. & Iglesias, J. I. P. Preingestive selection processes in the cockle Cerastoderma edule: mucus production related to rejection of pseudofaeces. Mar. Ecol. Prog. Ser. 209, 177–187 (2001).ADS 
    Article 

    Google Scholar 
    Vader, W. & Krapp-Schickel. Redescription and biology of Stenothoe brevicornis Sars (Amphipoda: Crustacea), an obligate associate of the sea anemone Actinostola callosa (Verrill). J. Nat. Hist. 30, 51–66 (1996).Article 

    Google Scholar 
    Van Colen, C. et al. Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification. Nat. Clim. Chang. 10, 162–166 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Vaughn, D. & Allen, J. D. The peril of the plankton. Integr. Comp. Biol. 50, 552–570 (2010).PubMed 
    Article 

    Google Scholar 
    Venema, S. C. & Creutzberg, F. Seasonal migration of the swimming crab Macropipus holsatus in an estuarine area controlled by tidal streams. Netherlands. J. Sea Res. 7, 94–102 (1973).
    Google Scholar 
    Wanamaker, A. D. et al. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50, 399–412 (2008).Article 

    Google Scholar 
    Warren, L. M., Hutchings, P. A. & Doyle, S. A revision of the genus Mediomastus Hartman, 1944 (Polychaeta: Capitellidae). Rec. Aust. Museum 46, 227–256 (1994).Article 

    Google Scholar 
    Warwick, R. M. The partitioning of secondary production among species in benthic communities. Netherlands J. Sea Res. 16, 1–17 (1982).ADS 
    Article 

    Google Scholar 
    Warwick, R. M. & George, C. L. Annual macro-fauna production in an Abra community. in Industrialised embayments and their environmental problems: a case study of Swansea Bay (eds. Collins, M. B., Banner, F. T., Tyler, P. A. & James, A. E.) 517–538 (Pergamon Press, 1980).Weinberg, S. & Weinberg, F. The life cycle of a Gorgonian: Eunicella Singularis (Esper, 1794). Bijdr. tot Dierkd. 48, 127–137 (1979).Article 

    Google Scholar 
    Wennberg, S. A., Janssen, R. & Budd, G. E. Hatching and earliest larval stages of the priapulid worm Priapulus caudatus. Invertebr. Biol. 128, 157–171 (2009).Article 

    Google Scholar 
    Whitlatch, R. B. Food-Resource partitioning in the deposit feeding polychaete Pectinaria gouldii. Biol. Bull. 147, 227–235 (1974).Article 

    Google Scholar 
    Widdicombe, S. et al. Importance of bioturbators for biodiversity maintenance: Indirect effects of fishing disturbance. Mar. Ecol. Prog. Ser. 275, 1–10 (2004).ADS 
    Article 

    Google Scholar 
    Williams, G. On the occurrence of Scopelocheirus hopei and Cirolana borealis in living Acanthias vulgaris (spiny dogfish). Irish Nat. J. 7, 89–91 (1938).
    Google Scholar 
    Wilson, D. P. The larval development of three species of Magelona (Polychaeta) from localities near Plymouth. J. Mar. Biol. Assoc. UK 62, 385–401 (1982).ADS 
    Article 

    Google Scholar 
    Wilson, W. H. Sexual reproductive modes in polychaetes: classification and diversity. Bull. Mar. Sci. 48, 500–516 (1991).
    Google Scholar 
    Yonge, C. M. Observations on Sphenia binghami Turton. J. Mar. Biol. Assoc. UK 30, 387–392 (1951).Article 

    Google Scholar 
    Yonge, C. M. On the Habits and Adaptations of Aloidis (Corbula) gibba. J. Mar. Biol. Assoc. UK 26, 358–376 (1946).CAS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure and adaptions of the Tellinacea, deposit-feeding Eulamellibranchia. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 234, 29–76 (1949).ADS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure, biology and systematic position of Pharus legumen (L.). J. Mar. Biol. Assoc. UK 38, 277–290 (1959).Article 

    Google Scholar 
    Zenetos, A. The American piddock Petricola pholadiformis Lamarck, 1818 spreading in the Mediterranean Sea. Aquat. Invasions 4, 385–387 (2009).Article 

    Google Scholar 
    Zwarts, L. Burying depth of the benthic bivalve Scrobicularia plana (da Costa) in relation to siphon-cropping. J. Exp. Mar. Bio. Ecol. 101, 25–39 (1986).Article 

    Google Scholar 
    Ansell, A. D., Gibson, R. N. & Barnes, M. Oceanography and Marine Biology: An Annual Review volume 35 (UCL Press, 1997).Beesley, P. L., Ross, G. J. B. & Glasby, C. J. Polychaetes & Allies: The Southern Synthesis (CSIRO Publishing, 2000).Budd, G. C. In Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) http://www.marlin.ac.uk/species/detail/1722 (2007).Carrier, T. J., Reitzel, A. M. & Heyland, A. Evolutionary Ecology of Marine Invertebrate Larvae (Oxford University Press, 2008).Dame, R. F. D. Ecology of Marine Bivalves: an Ecosystem Approach (CRC Press, 1996).David, B., Guille, A., Féral, J.-P. & Roux, M. Echinoderms Through Time (Balkema, 1994).Dorresteijn, A. W. C. & Westheide, W. Reproductive Strategies and Developmental Patterns in Annelids (Springer Netherlands, 1999).Fauchald, K. The polychaete worms. Definitions and keys to the orders, families and genera Science Series 28 (Natural History Museum of Los Angeles, 1977).Food and Agriculture Organization of the United Nations. FAO fisheries synopsis (Food and Agriculture Organization of the United Nations, 1984). Giese, A. C. & Pearse, J. S. Reproduction of Marine Invertebrates. Volume 5. Molluscs: Pelecypods and Lesser Clades (Academic Press, 1979).Hayward, P. & Ryland, J. Handbook of the marine fauna of north-west Europe (Oxford University Press, 1995).Holtmann, S. et al. Atlas of the zoobenthos of the Dutch continental shelf (Ministry of Transport, Public works and Water management, 1996).Jangoux, M. & Lawrence, J. M. Echinoderm Nutrition (Balkema, 1982).Jones, A. M. & Baxter, J. M. Molluscs: Caudofoveata, Solenogastres, Polyplacophora and Scaphopoda: keys and notes for the identification of species (Linnean Society of London and the Estuarine and Brackish-Water Sciences Association, 1987).Little, C. The Biology of Soft Shores and Estuaries (Oxford University Press, 2000).Maldonado, M. & Bergquist, P. R. in Atlas of Marine Invertebrate Larvae (ed. Young, C. M.) Ch. 2 (Academic Press, 2002).MarLIN. BIOTIC – Biological Traits Information Catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the United Kingdom. http://www.marlin.ac.uk/biotic (2006).MBA (Marine Biological Association). Plymouth Marine Fauna. (Marine Biological Association of the United Kingdom, 1957).MolluscaBase eds. MolluscaBase: Abra tenuis (Montagu, 1803). https://www.molluscabase.org/aphia.php?p=taxdetails&id=141439 (2019).Morton, B. The Bivalvia: Proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge (Hong Kong University Press, 1990).Müller, H.-G. World Catalogue and Bibliography of the Recent Pycnogonida (Wissenschaftlicher Verlag, 1993).Oliver, P. G., Holmes, A. M., Killeen, I. J. & Turner, J. A. Marine Bivalve Shells of the British Isles. Amgueddfa Cymru – National Museum Wales http://naturalhistory.museumwales.ac.uk/britishbivalves (2016).Pandian, T. J. Reproduction and Development in Annelida (CRC Press, 2019).Poore, G. C. B., Ahyong, S. T. & Taylor, J. The Biology of Squat Lobsters (CSIRO Publishing: Melbourne and CRC Press, 2011).Purcell, S., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes No. 6 (Food and Agriculture Organization of the United Nations, 2012).Purchon, R. The Biology of Mollusca (Pergamon, 1977).Richards, S. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) https://www.marlin.ac.uk/species/detail/32 (2007).Rouse, G. & Pleijel, F. Reproductive Biology and Phylogeny of Annelida (Science Publishers, 2006).Rouse, G. & Pleijel, F. Polychaetes (Oxford University Press, 2001).Ruppert, E. E., Fox, R. S. & Barnes, R. D. Invertebrate Zoology. A functional evolutionary approach 7th Ed (Thomson Learning, 2004).Ryland, J. S. & Tyler, P. A. Recruitment in Abra tenuis (Montagu) (Bivalvia, Semelidae), a species with direct development and a protracted meiobenthic phase. Proceedings of the 23rd European Marine Biology Symposium (Olsen and Olsen, 1989).Shalla, S. Cumacea. Identification guide to British cumaceans (Dove Marine Laboratory, 2011).Sigvaldadóttir, E. et al. Advances in Polychaete Research (Springer Science & Business Media, 2003).Sigwart, J. D. & Sumner-Rooney, L. H. In Structure and Evolution of Invertebrate Nervous Systems (eds. Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G.) Ch. 18 (Oxford University Press, 2016). Simpson, A. Reproduction in Octocorals (Subclass Octocorallia): A Review of Published Literature. Deep-Sea Corals Portal http://www.ucs.louisiana.edu/~scf4101/Bambooweb/ (2009).Tebble, N. British Bivalve Seashells; A Handbook for Identification 2nd ed (1976).Thiel, M. & Watling, L. Lifestyles and Feeding Biology: The Natural History of the Crustacea volume 2 (Oxford University Press, 2015).Thorson, G. & Jørgensen, C. B. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound (Øresund) (C. A. Reitzel, 1946).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 60, Marine Gastropods 1: Patellogastropoda and Vetigastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 61, Marine Gastropods 2: Littorinimorpha and Other, Unassigned, Caenogastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 62, Marine Gastropods 3: Neogastropoda. (Field Studies Council, 2018).Yonge, C. M. & Thompson, T. E. Living Marine Molluscs (Collins, 1976).Young, C. M. & Eckelbarger, K. J. Reproduction, larval biology, and recruitment of the deep-sea benthos (Columbia University Press, 1994).Clare, D. S. et al. Ten key biological traits of marine benthic invertebrates surveyed in Northwest Europe. V2. Cefas Data Hub https://doi.org/10.14466/CefasDataHub.123 (2022).Rijnsdorp, A. D. et al. Estimating sensitivity of seabed habitats to disturbance by bottom trawling based on the longevity of benthic fauna. Ecol. Appl. 28, 1302–1312 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hiddink, J. G. et al. Assessing bottom trawling impacts based on the longevity of benthic invertebrates. J. Appl. Ecol. 56, 1075–1084 (2019).Article 

    Google Scholar 
    van Denderen, P. D. et al. Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach. ICES J. Mar. Sci. 77, 278–289 (2020).Article 

    Google Scholar 
    Bolam, S. G. Macrofaunal recovery following the intertidal recharge of dredged material: A comparison of structural and functional approaches. Mar. Environ. Res. 97, 15–29 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Denderen, P. D. et al. Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats. Mar. Ecol. Prog. Ser. 541, 31–43 (2015).ADS 
    Article 

    Google Scholar 
    Rijnsdorp, A. D. et al. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES J. Mar. Sci. 73, i172–i138 (2016).Article 

    Google Scholar 
    Sciberras, M. et al. Impacts of bottom fishing on the sediment infaunal community and biogeochemistry of cohesive and non-cohesive sediments. Limnol. Oceanogr. 61, 2076–2089 (2016).ADS 
    Article 

    Google Scholar 
    Eggleton, J. D., Depestele, J., Kenny, A. J., Bolam, S. G. & Garcia, C. How benthic habitats and bottom trawling affect trait composition in the diet of seven demersal and benthivorous fish species in the North Sea. J. Sea Res. 142, 132–146 (2018).ADS 
    Article 

    Google Scholar 
    Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Wohlgemuth, D., Solan, M. & Godbold, J. A. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proc. R. Soc. B Biol. Sci. 284, 20162805 (2017).Article 

    Google Scholar 
    Cassidy, C., Grange, L. J., Garcia, C., Bolam, S. G. & Godbold, J. A. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc. R. Soc. B Biol. Sci. 287, 20192143 (2020).Article 

    Google Scholar 
    Cesar, C. P. & Frid, C. L. J. Benthic disturbance affects intertidal food web dynamics: implications for investigations of ecosystem functioning. Mar. Ecol. Prog. Ser. 466, 35–41 (2012).ADS 
    Article 

    Google Scholar 
    Törnroos, A., Nordström, M. C., Aarnio, K. & Bonsdorff, E. Environmental context and trophic trait plasticity in a key species, the tellinid clam Macoma balthica L. J. Exp. Mar. Bio. Ecol. 472, 32–40 (2015).Article 

    Google Scholar 
    Clare, D. S., Spencer, M., Robinson, L. A. & Frid, C. L. J. Species-specific effects on ecosystem functioning can be altered by interspecific interactions. PLoS One 11, e0165739 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3, 3958–3985 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Plant tissue characteristics of Miscanthus x giganteus

    Geospatial dataSampling locations were established, flagged, and recorded in June 2016, using a Trimble Geo7X global navigation satellite system (GNSS) receiver using the Trimble® VRS Now real-time kinematic (RTK) correction. Location accuracies were verified to within ±2 cm. Points were imported into a geodatabase using Esri ArcMap (Advanced license, Version 10.5) and projected using the Universal Transverse Mercator (UTM), Zone 17 North projection, with the 1983 North American datum (NAD83). Field investigators navigated to the flagged locations by visually locating them in the field or by using recreational grade GNSS receivers with the locations stored as waypoints.Plant tissue sampling and preparationMiscanthus x giganteus grows in clumps of bamboo-like canes. A single cane was cut at soil level from each of the five sample collection points in each circular plot, individually labelled, and brought to the lab for processing (Fig. 2). Each stem was measured from the cut at the base to the last leaf node, and the length was recorded. Green, fully expanded leaves were cut from each stem and leaves and stems from each plant were placed in separate paper bags and dried at 60 °C. The dry leaf and stem tissues were ground to pass a 1 mm screen (Wiley Mill Model 4, Thomas Scientific, Swedesboro, New Jersey, USA). Subsamples of the ground material were analyzed for total carbon (C) and nitrogen (N), acid-digested for the analysis of total macro- and micronutrients, and water-extracted for spectroscopic analysis and the characterization of the water extractable organic matter (WEOM) (Fig. 2).Fig. 2Images of field samples, and diagram of plant tissue processing. Center panel – flow chart outlining the procedures for plant tissue processing, the kinds of analyses performed, and the type of data generated. Upper left inset panel – ground level picture of Miscanthus x giganteus circular plots. Upper right inset panel – some plant samples on the day of collection.Full size imageTotal carbon and nitrogenDried and ground leaf and stem material (~4–6 mg) was analyzed for total C and N content by combustion (Vario EL III, Elementar Americas Inc., Mt. Laurel, New Jersey, USA). The instrument was calibrated using an aspartic acid standard (36.08% C ± 0.52% and 10.53% N ± 0.18%). Validation by inclusion of two aspartic acid samples as checks in each autosampler carousel (80 wells) resulted in a net positive bias of 1.44 and 1.68% for C and N, respectively. The mean C and N concentrations and standard deviations for the sample set are presented in Table 1.Table 1 Giant miscanthus composition including leaf (L) and stem (S) dry weight, length, and carbon (C) and nitrogen (N) concentrations (n = 165). Values are reported as means ± standard deviations.Full size tableMacro- and micronutrientsPlant tissue samples were analyzed for a suite of macro- and micronutrients including aluminum (Al), arsenic (As), boron (B), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), selenium (Se), silicon (Si), titanium (Ti), vanadium (V), and zinc (Zn) using Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Samples (0.5 g) were digested using 10 mL of trace metal grade nitric acid (HNO3) in a microwave digestion system (Mars 6, CEM, Matthews, North Carolina, USA). During the digestion procedure (CEM Mars 6 Plant Material Method), the oven temperature was increased from room temperature to 200 °C in 15 minutes and held at 200 °C for 10 minutes. The pressure limit of the digestion vessels was set to 800 psi although it was not monitored during individual runs. Sample digestates were transferred quantitatively to centrifuge tubes, diluted to 50 mL with 2% HNO3 (prepared with lab grade deionized water), and centrifuged at 2500 rpm for 10 min (Sorvall ST8 centrifuge, Thermo Fisher Scientific, San Jose, California, USA). The digestates were decanted into clean centrifuge tubes and analyzed using an iCAP 7400 ICP-OES Duo equipped with a Charge Injection Device detector (Thermo Fisher Scientific, San Jose, California, USA). An aliquot of digested sample was aspirated from the centrifuge tube using a CETAC ASX-520 autosampler (Teledyne CETAC Technologies, Omaha, Nebraska, USA) and passed through a concentric tube nebulizer. The resulting aerosol was then swept through the plasma using argon as the carrier gas with a flow rate of 0.5 L/min and a nebulizer gas flow rate of 0.7 L/min. Macro- and micronutrients were quantified by monitoring the emission wavelengths (Em λ) reported in Table 2.Table 2 Macro- and micronutrients measured, and emission wavelengths (Em λ) used to quantify them in the miscanthus leaves (L) and stems (S), the total number and percentage detected (n = 150 for leaves and 162 for stems), the mean detected concentration ± standard deviation, and the mean method detection limit (MDL) ± standard deviation.Full size tableCharacterization of the water extractable organic matter (WEOM)The WEOM of the giant miscanthus leaves and stems was isolated by extracting the plant material with deionized water at room temperature6. The water extractions were performed by mixing ~0.2 g of dry, ground leaves and stems with 100 mL of deionized water in 125 mL pre-washed brown Nalgene bottles. All brown Nalgene bottles used for these extractions were pre-washed by soaking them for 24 hours in a 10% hydrochloric acid solution followed by 24 hours in a 10% sodium hydroxide solution, and a thorough rinse with deionized water. The bottles containing the extraction solution were shaken on an orbital shaker at 180 rpm for 24 hours. The extract was vacuum filtered using 0.45 µm glass fibre filters (GF/F, Whatman) into pre-washed 60 mL brown Nalgene bottles. The filtered water extracts containing the WEOM were stored in the dark in a refrigerator (4 °C) until analysis by UV-Visible and fluorescence spectroscopy. Samples were visually inspected just prior to analysis to ensure no colloids or precipitates had formed during storage. Samples that had become visually cloudy were re-filtered.On the day of analysis, the water extracts were removed from the refrigerator and allowed to warm up to room temperature. Chemical characteristics of the WEOM were assessed through the analysis of optical properties on an Aqualog spectrofluorometer (Horiba Scientific, New Jersey, USA) equipped with a 150 W continuous output Xenon arc lamp. Excitation-emission matrix (EEM) scans were acquired in a 1 cm quartz cuvette with excitation wavelengths (Ex λ) scanned using a double-grating monochrometer from 240 to 621 nm at 3 nm intervals. Emission wavelengths (Em λ) were scanned from 246 to 693 nm at 2 nm intervals and emission spectra were collected using a Charge Coupled Device (CCD) detector. All fluorescence spectra were acquired in sample over reference ratio mode to account for potential fluctuations and wavelength dependency of the excitation lamp output. Samples were corrected for the inner filter effect7 and each sample EEM underwent spectral subtraction with a deionized water blank to remove the effects due to Raman scattering. Rayleigh masking was applied to remove the signal intensities for both the first and second order Rayleigh lines. Instrument bias related to wavelength-dependent efficiencies of the specific instrument’s optical components (gratings, mirrors, etc.) was automatically corrected by the Aqualog software after each spectral acquisition. The fluorescence intensities were normalized to the area under the water Raman peak collected on each day of analysis and are expressed in Raman-normalized intensity units (RU). All sample EEM processing was performed with the Aqualog software (version 4.0.0.86).The optical data obtained from the EEM scans were used to calculate several indices representative of WEOM chemical composition (Table 3) including the absorbance at 254 nm (Abs254), the ratio of the absorbance at 254 to 365 nm (Abs254:365), the ratio of the absorbance at 280 to 465 nm (Abs280:465), the spectral slope ratio (SR), the fluorescence index (FI), the humification index (HIX), the biological index (BIX), and the freshness index (β:α). The SR was calculated as the ratio of two spectral slope regions of the absorbance spectra (275–295 and 350–400 nm)8. The FI was calculated as the ratio of the emission intensities at Em λ 470 and 520 nm, at an Ex λ of 370 nm9. The HIX was calculated by dividing the emission intensity in the 435–480 nm region by the sum of emission intensities in the 300–345 and 435–480 nm regions, at an Ex λ of 255 nm10. The BIX was calculated as the ratio of emission intensities at 380 and 430 nm, at an Ex λ of 310 nm11. The freshness index β:α was calculated as the emission intensity at 380 nm divided by the maximum emission intensity between 420 and 432 nm, at an Ex λ of 310 nm12. To further characterize the giant miscanthus WEOM, the fluorescence intensity at specific excitation-emission pairs was also identified. The fluorescence peaks identified here have previously been reported for surface water samples and water extracts13 and include peak A (Ex λ 260, Em λ 450), peak C (Ex λ 340, Em λ 440), peak M (Ex λ 300, Em λ 390), peak B (Ex λ 275, Em λ 310), and peak T (Ex λ 275, Em λ 340). A brief description of these optical indices is provided in Table 3.Table 3 Description of the optical indices calculated from the excitation-emission matrix (EEM) fluorescence scans and used to analyze the WEOM composition of giant miscanthus leaves and stems.Full size table More

  • in

    Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance

    Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsetsos, K. et al. Economic irrationality is optimal during noisy decision making. Proc. Natl. Acad. Sci. 113, 3102–3107 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bushnell, P. J. Behavioral approaches to the assessment of attention in animals. Psychopharmacology 138, 231–259 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katsuki, F. & Constantinidis, C. Bottom-up and top-down attention: Different processes and overlapping neural systems. Neuroscientist 20, 509–521 (2014).PubMed 
    Article 

    Google Scholar 
    Moore, T. & Zirnsak, M. Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 68, 47–72 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferguson, K. I. & Stiling, P. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108, 375–379 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soluk, D. A. & Collins, N. C. Synergistic interactions between fish and stoneflies: Facilitation and interference among stream predators. Oikos. 52, 94–100 (1988).
    Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Hawlena, D. Number, speeds, and approach paths of predators affect escape behavior by the Balearic lizard, Podarcis lilfordi. J. Herpetol. 41, 197–204 (2007).Article 

    Google Scholar 
    Relyea, R. A. How prey respond to combined predators: A review and an empirical test. Ecology 84, 1827–1839 (2003).Article 

    Google Scholar 
    Krupa, J. J. & Sih, A. Fishing spiders, green sunfish, and a stream-dwelling water strider: Male–female conflict and prey responses to single versus multiple predator environments. Oecologia 117, 258–265 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nityananda, V. Attention-like processes in insects. Proc. R. Soc. B Biol. Sci. 283, 20161986 (2016).Article 

    Google Scholar 
    Amo, L., López, P. & Martín, J. in Annales Zoologici Fennici, 671–679 (JSTOR).Bagheri, Z. M., Donohue, C. G. & Hemmi, J. M. Evidence of predictive selective attention in fiddler crabs during escape in the natural environment. J. Exp. Biol. 223, 234963 (2020).Article 

    Google Scholar 
    Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2005).
    Google Scholar 
    McIntosh, A. R. & Peckarsky, B. L. Criteria determining behavioural responses to multiple predators by a stream mayfly. Oikos. 554–564 (1999).Hemmi, J. M. & Tomsic, D. The neuroethology of escape in crabs: From sensory ecology to neurons and back. Curr. Opin. Neurobiol. 22, 194–200 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeil, J. & Hemmi, J. M. The visual ecology of fiddler crabs. J. Comp. Physiol. A. 192, 1–25 (2006).ADS 
    Article 

    Google Scholar 
    Nalbach, H.-O., Nalbach, G. & Forzin, L. Visual control of eye-stalk orientation in crabs: Vertical optokinetics, visual fixation of the horizon, and eye design. J. Comp. Physiol. A. 165, 577–587 (1989).Article 

    Google Scholar 
    Zeil, J. & Al-Mutairi, M. The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J. Exp. Biol. 199, 1569–1577 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard, J. & Snyder, A. W. Transduction as a limitation on compound eye function and design. Proc. R. Soc. Lond. Series B Biol. Sci. 217, 287–307 (1983).ADS 

    Google Scholar 
    Land, M. F. Visual acuity in insects. Annu. Rev. Entomol. 42, 147–177 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Land, M. F. & Nilsson, D.-E. Animal Eyes (OUP, 2012).Book 

    Google Scholar 
    Bagheri, Z. M. et al. A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. J. Exp. Biol. 223, 210195 (2020).Article 

    Google Scholar 
    Smolka, J. & Hemmi, J. M. Topography of vision and behaviour. J. Exp. Biol. 212, 3522–3532 (2009).PubMed 
    Article 

    Google Scholar 
    Land, M. & Layne, J. The visual control of behaviour in fiddler crabs. J. Comp. Physiol. A. 177, 91–103 (1995).Article 

    Google Scholar 
    Layne, J., Land, M. & Zeil, J. Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence. J. Mar. Biol. Assoc. UK. 77, 43–54 (1997).Article 

    Google Scholar 
    Hemmi, J. M. Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behav. 69, 603–614 (2005).Article 

    Google Scholar 
    Layne, J. E. Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J. Exp. Biol. 201, 2253–2261 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nalbach, H.-O. Frontiers in Crustacean Neurobiology 165–172 (Springer, 1990).Book 

    Google Scholar 
    Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. R. Soc. B Biol. Sci. 278, 3584–3592 (2011).Article 

    Google Scholar 
    Hemmi, J. M. Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behav. 69, 615–625 (2005).Article 

    Google Scholar 
    Hemmi, J. M. & Pfeil, A. A multi-stage anti-predator response increases information on predation risk. J. Exp. Biol. 213, 1484–1489 (2010).PubMed 
    Article 

    Google Scholar 
    Smolka, J., Raderschall, C. A. & Hemmi, J. M. Flicker is part of a multi-cue response criterion in fiddler crab predator avoidance. J. Exp. Biol. 216, 1219–1224 (2013).PubMed 

    Google Scholar 
    How, M. J., Pignatelli, V., Temple, S. E., Marshall, N. J. & Hemmi, J. M. High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J. Exp. Biol. 215, 2128–2134 (2012).PubMed 
    Article 

    Google Scholar 
    Paulk, A. C. et al. Selective attention in the honeybee optic lobes precedes behavioral choices. Proc. Natl. Acad. Sci. 111, 5006–5011 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, S. & Juusola, M. Intrinsic activity in the fly brain gates visual information during behavioral choices. Nat. Precedings. 1–1 (2010).Bagheri, Z. M., Cazzolato, B. S., Grainger, S., O’Carroll, D. C. & Wiederman, S. D. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. J. Neural Eng. 14, 046030 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chancán, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B. & Milford, M. A hybrid compact neural architecture for visual place recognition. IEEE Robot. Automat. Lett. 5, 993–1000 (2020).Article 

    Google Scholar 
    Colonnier, F., Ramirez-Martinez, S., Viollet, S. & Ruffier, F. A bio-inspired sighted robot chases like a hoverfly. Bioinspir. Biomim. 14, 036002 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Medan, V., Oliva, D. & Tomsic, D. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J. Neurophysiol. 98, 2414–2428 (2007).PubMed 
    Article 

    Google Scholar 
    Oliva, D. & Tomsic, D. Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. J. Neurophysiol. 112, 1477–1490 (2014).PubMed 
    Article 

    Google Scholar 
    Oliva, D. & Tomsic, D. Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice. J. Exp. Biol. 219, 3339–3352 (2016).PubMed 

    Google Scholar 
    Sztarker, J., Strausfeld, N. J. & Tomsic, D. Organization of optic lobes that support motion detection in a semiterrestrial crab. J. Comparat. Neurol. 493, 396–411 (2005).Article 

    Google Scholar 
    Medan, V., De Astrada, M. B., Scarano, F. & Tomsic, D. A network of visual motion-sensitive neurons for computing object position in an arthropod. J. Neurosci. 35, 6654–6666 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomsic, D. & Sztarker, J. in Oxford Research Encyclopedia of Neuroscience (2019).Sztarker, J. & Tomsic, D. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J. Comp. Physiol. A. 194, 587–596 (2008).Article 

    Google Scholar 
    Tomsic, D., de Astrada, M. B. & Sztarker, J. Identification of individual neurons reflecting short-and long-term visual memory in an arthropodo. J. Neurosci. 23, 8539–8546 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Layne, J. E., Barnes, W. J. P. & Duncan, L. M. J. Mechanisms of homing in the fiddler crab Uca rapax 1. Spatial and temporal characteristics of a system of small-scale navigation. J. Exp. Biol. 206, 4413–4423 (2003).PubMed 
    Article 

    Google Scholar 
    Dahmen, H., Wahl, V. L., Pfeffer, S. E., Mallot, H. A. & Wittlinger, M. Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. J. Exp. Biol. 220, 634–644 (2017).PubMed 
    Article 

    Google Scholar 
    Hemmi, J. M. & Merkle, T. High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc. R. Soc. B Biol. Sci. 276, 4381–4388 (2009).Article 

    Google Scholar 
    Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol.-Paris 108, 141–147 (2014).PubMed 
    Article 

    Google Scholar 
    Ryan, T. P. & Morgan, J. P. Modern experimental design. J. Stat. Theory Practice 1, 501–506 (2007).MATH 
    Article 

    Google Scholar 
    Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. (2014).emmeans: Estimated Marginal Means, aka Least-Squares Means. v. R package version 1.5.2-1. (2020).Cremers, J. Bpnreg: Bayesian projected normal regression models for circular data. R Package Version 1, 3 (2018).
    Google Scholar 
    Cremers, J. & Klugkist, I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 2040 (2018).Oliva, D., Medan, V. & Tomsic, D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J. Exp. Biol. 210, 865–880 (2007).PubMed 
    Article 

    Google Scholar 
    Gabbiani, F., Krapp, H. G. & Laurent, G. Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simultaneous Inference in General Parametric Models. v. R package version v1.4-10 (2019).Avargues-Weber, A., Deisig, N. & Giurfa, M. Visual cognition in social insects. Annu. Rev. Entomol. 56, 423–443 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Avarguès-Weber, A. & Giurfa, M. Conceptual learning by miniature brains. Proc. R. Soc. B Biol. Sci. 280, 20131907 (2013).Article 

    Google Scholar 
    De Bivort, B. L. & Van Swinderen, B. Evidence for selective attention in the insect brain. Curr. Opin. Insect Sci. 15, 9–15 (2016).PubMed 
    Article 

    Google Scholar 
    Klapoetke, N. C. et al. Ultra-selective looming detection from radial motion opponency. Nature 551, 237–241 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970 (2014).Article 
    CAS 

    Google Scholar 
    Fotowat, H. & Gabbiani, F. Collision detection as a model for sensory-motor integration. Annu. Rev. Neurosci. 34, 1–19 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strausfeld, N. J. & Olea-Rowe, B. Convergent evolution of optic lobe neuropil in Pancrustacea. Arthropod. Struct. Dev. 61, 101040 (2021).PubMed 
    Article 

    Google Scholar 
    Tomsic, D. Visual motion processing subserving behavior in crabs. Curr. Opin. Neurobiol. 41, 113–121 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giribet, G. & Edgecombe, G. D. The phylogeny and evolutionary history of arthropods. Curr. Biol. 29, R592–R602 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christian, E. V. Sprung der Collembolen. Zoologische Jahrbucher. Abteilung fur Systematik, Okologie und Geographie der Tiere (1979).Brackenbury, J. Regulation of swimming in the Culex pipiens (Diptera, Culicidae) pupa: Kinematics and locomotory trajectories. J. Exp. Biol. 202, 2521–2529 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Domenici, P. & Blake, R. W. Escape trajectories in angelfish (Pterophyllum eimekei). J. Exp. Biol. 177, 253–272 (1993).Article 

    Google Scholar 
    Kimura, H. & Kawabata, Y. Effect of initial body orientation on escape probability of prey fish escaping from predators. Biol. Open. 7, bio023812 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martín, J. & López, P. The escape response of juvenile Psammodromus algirus lizards. J. Comp. Psychol. 110, 187 (1996).Article 

    Google Scholar 
    Lancer, B. H., Evans, B. J. E., Fabian, J. M., O’Carroll, D. C. & Wiederman, S. D. A target-detecting visual neuron in the dragonfly locks on to selectively attended targets. J. Neurosci. 39, 8497–8509 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nityananda, V. & Pattrick, J. G. Bumblebee visual search for multiple learned target types. J. Exp. Biol. 216, 4154–4160 (2013).PubMed 

    Google Scholar 
    Pollack, G. S. Selective attention in an insect auditory neuron. J. Neurosci. 8, 2635–2639 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossel, S. Binocular vision in insects: How mantids solve the correspondence problem. Proc. Natl. Acad. Sci. 93, 13229–13232 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wiederman, S. D. & O’Carroll, D. C. Selective attention in an insect visual neuron. Curr. Biol. 23, 156–161 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. R. & Cross, F. R. Spider cognition. Adv. Insect Physiol. 41, 115–174 (2011).Article 

    Google Scholar 
    Jackson, R. R. & Li, D. One-encounter search-image formation by araneophagic spiders. Anim. Cogn. 7, 247–254 (2004).PubMed 
    Article 

    Google Scholar 
    Guest, B. B. & Gray, J. R. Responses of a looming-sensitive neuron to compound and paired object approaches. J. Neurophysiol. 95, 1428–1441 (2006).PubMed 
    Article 

    Google Scholar 
    Eliassen, S., Jørgensen, C., Mangel, M. & Giske, J. Quantifying the adaptive value of learning in foraging behavior. Am. Nat. 174, 478–489 (2009).PubMed 
    Article 

    Google Scholar 
    Eliassen, S., Andersen, B. S., Jørgensen, C. & Giske, J. From sensing to emergent adaptations: Modelling the proximate architecture for decision-making. Ecol. Model. 326, 90–100 (2016).Article 

    Google Scholar 
    Gigerenzer, G. Why heuristics work. Perspect. Psychol. Sci. 3, 20–29 (2008).PubMed 
    Article 

    Google Scholar  More

  • in

    Coronilla juncea, a native candidate for phytostabilization of potentially toxic elements and restoration of Mediterranean soils

    Pourret, O. & Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. IJERPH 16, 4446 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).
    Google Scholar 
    Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).CAS 
    PubMed 

    Google Scholar 
    Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).CAS 

    Google Scholar 
    Desjardins, D., Nissim, W. G., Pitre, F. E., Naud, A. & Labrecque, M. Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol. Eng. 64, 385–390 (2014).
    Google Scholar 
    Marchiol, L. et al. Gentle remediation at the former “Pertusola Sud” zinc smelter: Evaluation of native species for phytoremediation purposes. Ecol. Eng. 53, 343–353 (2013).
    Google Scholar 
    van Oort, F. et al. Les pollutions métalliques d’un site industriel et des sols environnants : distributions hétérogènes des métaux et relations avec l’usage des sols. In: Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains 15–44 (Editions Quae, 2009).Hodge, A. Plastic plants and patchy soils. J. Exp. Bot. 57, 401–411 (2006).CAS 
    PubMed 

    Google Scholar 
    Huber-Sannwald, E. & Jackson, R. B. Heterogeneous soil-resource distribution and plant responses—from individual-plant growth to ecosystem functioning. In Progress in Botany Vol. 62 (eds Esser, K. et al.) 451–476 (Springer, 2001).
    Google Scholar 
    Loecke, T. D. & Philip Robertson, G. Soil resource heterogeneity in the form of aggregated litter alters maize productivity. Plant Soil 325, 231–241 (2009).CAS 

    Google Scholar 
    Reynolds, H. L., Hungate, B. A., Iii, F. S. C. & D’Antonio, C. M. Soil Heterogeneity and Plant Competition in an Annual Grassland. 16 (2021).Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6, 630–643 (2003).
    Google Scholar 
    Shutcha, M. N. et al. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 82, 81–90 (2015).
    Google Scholar 
    Testiati, E. et al. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard. Mater. 248–249, 131–141 (2013).PubMed 

    Google Scholar 
    Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R. & Murillo, J. M. Heavy metal pollution of soils affected by the Guadiamar toxic fiood. Sci. Total Environ. 242, 117–129 (1999).CAS 
    PubMed 

    Google Scholar 
    Imperato, M. et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 124, 247–256 (2003).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J. & Weis, P. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environ. Pollut. 153, 351–361 (2008).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Holzapfel, C. & Grabosky, J. Altered vegetative assemblage trajectories within an urban brownfield. Environ. Pollut. 159, 1159–1166 (2011).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. J. Environ. Manag. 183, 850–863 (2016).CAS 

    Google Scholar 
    Dickinson, N. M., Turner, A. P. & Lepp, N. W. How do trees and other long-lived plants survive in polluted environments?. Funct. Ecol. 5, 5 (1991).
    Google Scholar 
    Partida-Martínez, L. P. & Heil, M. The microbe-free plant: Fact or artifact?. Front. Plant Sci. 2, 100 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Giller, K. E., Witter, E. & Mcgrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30, 1389–1414 (1998).CAS 

    Google Scholar 
    Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants (CRC Press, 2001).
    Google Scholar 
    Tyler, G. Heavy metal pollution and mineralisation of nitrogen in forest soils. Nature 255, 701–702 (1975).CAS 

    Google Scholar 
    Seshadri, B., Bolan, N. S. & Naidu, R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162015005000043 (2015).Article 

    Google Scholar 
    Kidd, P. et al. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009).CAS 

    Google Scholar 
    Rivera-Becerril, F. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53, 1177–1185 (2002).CAS 
    PubMed 

    Google Scholar 
    Krupa, P. & Kozdrój, J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 182, 83–90 (2007).CAS 

    Google Scholar 
    Janoušková, M., Pavlíková, D. & Vosátka, M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65, 1959–1965 (2006).PubMed 

    Google Scholar 
    Leyval, C., Turnau, K. & Haselwandter, K. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7, 139–153 (1997).CAS 

    Google Scholar 
    Zhang, Y., Zhang, Y., Liu, M., Shi, X. & Zhao, Z. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J. Microbiol. 46, 624–632 (2008).PubMed 

    Google Scholar 
    Krumins, J. A., Goodey, N. M. & Gallagher, F. Plant–soil interactions in metal contaminated soils. Soil Biol. Biochem. 80, 224–231 (2015).CAS 

    Google Scholar 
    Glick, B. R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393 (2003).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. What are the potential environmental solutions for diffuse pollution ? In Pollution of Marseille’s Industrial Calanques—The Impact of the Past on the Present 291–328 (REF2C, 2016).Li, M. S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 357, 38–53 (2006).CAS 
    PubMed 

    Google Scholar 
    Mendez, M. O. & Maier, R. M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 7, 47–59 (2008).CAS 

    Google Scholar 
    Yaalon, D. H. Soils in the Mediterranean region: What makes them different?. CATENA 28, 157–169 (1997).CAS 

    Google Scholar 
    Li, S. et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 400, 123255 (2020).CAS 
    PubMed 

    Google Scholar 
    Pérez-de-Mora, A. et al. Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biol. Biochem. 38, 327–341 (2006).
    Google Scholar 
    Keller, C. et al. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil. 249, 67–81 (2003).CAS 

    Google Scholar 
    Lambrechts, T. et al. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: Implications for phytostabilization. Plant Soil 376, 229–244 (2014).CAS 

    Google Scholar 
    Pauwels, M., Frérot, H., Bonnin, I. & Saumitou-Laprade, P. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J. Evol. Biol. 19, 1838–1850 (2006).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M. & Pugnaire, F. I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4, 196–202 (2006).
    Google Scholar 
    Robles, A. B., Allegretti, L. I. & Passera, C. B. Coronilla juncea is both a nutritive fodder shrub and useful in the rehabilitation of abandoned Mediterranean marginal farmland. J. Arid Environ. 50, 381–392 (2002).
    Google Scholar 
    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).
    Google Scholar 
    Laffont-Schwob, I. et al. Diffuse and widespread present-day pollution. In Pollution of Marseille’s industrial Calanques—The Impact of the Past on the Future 204–249 (REF2C, 2016).Gelly, R. et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512 (2019).CAS 
    PubMed 

    Google Scholar 
    Tóth, G. et al. Soils of the European Union. JRC Scientific and Technical Reports 85 (2008).IUSS Working Group WRB. Base de référence mondiale pour les ressources en sols 2014, Mise à jour 2015. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Rapport sur les ressources en sols du monde. Vol. 106 (2015).Dias, T. et al. Ammonium as a driving force of plant diversity and ecosystem functioning: Observations based on 5 years’ manipulation of n dose and form in a Mediterranean ecosystem. PLoS ONE 9, e92517 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Remon, E. et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 137, 316–323 (2005).CAS 
    PubMed 

    Google Scholar 
    Baumberger, T. et al. Plant community changes as ecological indicator of seabird colonies’ impacts on Mediterranean Islands. Ecol. Ind. 15, 76–84 (2012).
    Google Scholar 
    Navas, M.-L., Roumet, C., Bellmann, A., Laurent, G. & Garnier, E. Suites of plant traits in species from different stages of a Mediterranean secondary succession: Plant traits and succession. Plant Biol. 12, 183–196 (2010).CAS 
    PubMed 

    Google Scholar 
    Guillamot, F., Calvert, V., Millot, M.-V. & Criquet, S. Does antimony affect microbial respiration in Mediterranean soils? A microcosm experiment. Pedobiologia 57, 119–121 (2014).
    Google Scholar 
    Wang, A., He, M., Ouyang, W., Lin, C. & Liu, X. Effects of antimony (III/V) on microbial activities and bacterial community structure in soil. Sci. Total Environ. 789, 148073 (2021).CAS 
    PubMed 

    Google Scholar 
    Oleńska, E. et al. Trifolium repens-associated bacteria as a potential tool to facilitate phytostabilization of zinc and lead polluted waste heaps. Plants 9, 1002 (2020).PubMed Central 

    Google Scholar 
    Stambulska, U. Y., Bayliak, M. M. & Lushchak, V. I. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 1–13 (2018).
    Google Scholar 
    Karthika, K. S., Rashmi, I. & Parvathi, M. S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance 1–49 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-10-9044-8_1.Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).CAS 
    PubMed 

    Google Scholar 
    Reichman, S. M. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39, 2587–2593 (2007).CAS 

    Google Scholar 
    Parraga-Aguado, I., Querejeta, J.-I., González-Alcaraz, M.-N., Jiménez-Cárceles, F. J. & Conesa, H. M. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. J. Environ. Manag. 133, 51–58 (2014).CAS 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
    Google Scholar 
    Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).
    Google Scholar 
    Ilunga wa Ilunga, E. et al. Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecol. Eng. 82, 214–221 (2015).
    Google Scholar 
    Salducci, M.-D. et al. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere 217, 887–896 (2019).CAS 
    PubMed 

    Google Scholar 
    Kachout, S. S. et al. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 92, 336–342 (2012).CAS 
    PubMed 

    Google Scholar 
    Schaeffer, A. et al. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Sci. Total Environ. 568, 1076–1085 (2016).CAS 
    PubMed 

    Google Scholar 
    Tosini, L. et al. Gain in biodiversity but not in phytostabilization after 3 years of ecological restoration of contaminated Mediterranean soils. Ecol. Eng. 157, 105998 (2020).
    Google Scholar 
    Michelaki, C. et al. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Sci. Total Environ. 672, 583–592 (2019).CAS 
    PubMed 

    Google Scholar 
    Affholder, M.-C. et al. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci. Total Environ. 454–455, 219–229 (2013).PubMed 

    Google Scholar 
    Affholder, M.-C. et al. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: Do native symbionts matter?. Plant Soil 382, 219–236 (2014).CAS 

    Google Scholar 
    Ellili, A. et al. Decision-making criteria for plant-species selection for phytostabilization: Issues of biodiversity and functionality. J. Environ. Manag. 201, 215–226 (2017).CAS 

    Google Scholar 
    Laffont-Schwob, I. et al. Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. ecmed 37, 57–62 (2011).
    Google Scholar 
    Rabier, J. et al. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water Air Soil Pollut. 225, 1993 (2014).
    Google Scholar 
    Quevauviller, Ph. et al. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci. Total Environ. 178, 127–132 (1996).CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).CAS 

    Google Scholar 
    R Development Core Team.pdf.Dray, S., Dufour, A. B. & Chessel, D. The ade4 package—II: Two-table and K-table methods. R News 7, 6 (2007).
    Google Scholar  More