More stories

  • in

    Major biodiversity summit will go ahead in Canada not China: what scientists think

    Deforestation, in places such as the Amazon, contributes to biodiversity loss.Credit: Ivan Valencia/Bloomberg/Getty

    Researchers are relieved that a pivotal summit to finalize a new global agreement to save nature will go ahead this year, after two-years of delays because of the pandemic. But they say the hard work of negotiating an ambitious deal lays ahead.The United Nations Convention on Biological Diversity (CBD) announced yesterday that the meeting will move from Kunming in China to Montreal in Canada. The meeting of representatives from almost 200 member states of the CBD — known as COP15 — will now run from 5 to 17 December. China will continue as president of the COP15 and Huang Runqiu, China’s minister of ecology and environment, will continue as chairman.Conservation and biodiversity scientists were growing increasingly concerned that China’s strict ‘zero COVID’ strategy, which uses measures such as lockdowns to quash all infections, would force the host nation to delay the meeting again. Researchers warned that another setback to the agreement, which aims to halt the alarming rate of species extinctions and protect vulnerable ecosystems, would be disastrous for countries’ abilities to meet ambitious targets to protect biodiversity over the next decade.“We are relieved and thankful that we have a firm date for these critically important biodiversity negotiations within this calendar year,” says Andrew Deutz, an expert in biodiversity law and finance at the Nature Conservancy, a conservation group in Virginia, US. “The global community is already behind in agreeing, let alone implementing, a plan to halt and reverse biodiversity loss by 2030,” he says.With the date now set, Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services, says the key to success in Montreal will be for the new global biodiversity agreement to focus on the direct and indirect drivers of nature loss, and the behaviors that underpin them. “Policy should be led by science, action adequately resourced and change should be transformative,” she adds.New locationThe decision to move the meeting came about after representatives of the global regions who make up the decision-making body of the COP reached a consensus to shift it to Montreal. China and Canada then thrashed out the details of how the move would work. The CBD has provisions that if a host country is unable to hold a COP, the meeting shifts to the home of the convention’s secretariat, Montreal.Announcing the decision, Elizabeth Mrema, executive secretary of the CBD, said in a statement, “I want to thank the government of China for their flexibility and continued commitment to advancing our path towards an ambitious post 2020 Global Biodiversity Framework.”In a statement, Runqiu said, “China would like to emphasize its continued strong commitment, as COP president, to ensure the success of the second part of COP 15, including the adoption of an effective post 2020 Global Biodiversity Framework, and to promote its delivery throughout its presidency.”China also agreed to pay for ministers from the least developed countries and small Island developing states to travel to Montreal to participate in the meeting.Work aheadPaul Matiku, an environmental scientist and head of Nature Kenya, a conservation organization in Nairobi, Kenya, says the move “is a welcome decision” after “the world lost patience after a series of postponements”.But he says that rich nations need to reach deeper into their pockets to help low- and middle-income countries — which are home to much of the world’s biodiversity — to implement the deal, including meeting targets such as protecting at least 30% of the world’s land and seas and reducing the rate of extinction. Disputes over funding already threaten to stall the agreement. At a meeting in Geneva in March, nations failed to make progress on the new deal because countries including Gabon and Kenya argued that the US$10 billion of funding per year proposed in the draft text of the agreement was insufficient. They called for $100 billion per year in aid.“The extent to which the CBD is implemented will depend on the availability of predictable, adequate financial flows from developed nations to developing country parties,” says Matiku.Talks on the agreement are resuming in Nairobi from 21-26 June, where Deutz hopes countries can find common ground on key issues such as financing before heading to Montreal. Having a firm date set for the COP15 will help push negotiations forward, he says.“Negotiators only start to compromise when they are up against a deadline. Now they have one,” he says. More

  • in

    Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean

    Sherr, E. B. & Sherr, B. F. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33, 1225–1227 (1988).ADS 
    Article 

    Google Scholar 
    Weisse, T. Pelagic microbes—Protozoa and the microbial food web. In The Lakes Handbook, Vol. 1—Limnology and Limnetic Ecology (eds O’Sullivan, P. & Reynolds, C. S.) 417–460 (Blackwell Science Ltd, 2004).
    Google Scholar 
    Foissner, W. Protist diversity: Estimates of the near-imponderable. Protist 150, 363–368 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sommer, U. & Sommer, F. Cladocerans versus copepods: The cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wiackowski, K., Brett, M. T. & Goldman, C. R. Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39, 486–492 (1994).ADS 
    Article 

    Google Scholar 
    Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A. & Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 2044. https://doi.org/10.1038/s41598-019-38507-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrick, H. J., Fahnenstiel, G. L., Stoermer, E. F. & Wetzel, R. G. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36, 1335–1345. https://doi.org/10.4319/lo.1991.36.7.1335 (1991).ADS 
    Article 

    Google Scholar 
    Jack, J. D. & Gilbert, J. J. Effects of metazoan predators on ciliates in freshwater plankton communities. J. Eukaryot. Microbiol. 44, 194–199. https://doi.org/10.1111/j.1550-7408.1997.tb05699.x (1997).Article 

    Google Scholar 
    Sanders, R. W. & Wickham, S. A. Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 7, 197–223 (1993).
    Google Scholar 
    Kiørboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x (2011).Article 
    PubMed 

    Google Scholar 
    Gliwicz, Z. M. Zooplankton. The Lakes Handbook: Limnology and Limnetic Ecology Vol. 1 (eds P. O’Sullivan & C. S. Reynolds) 461–516 (Blackwell Science Ltd, 2004).Wickham, S. A. The direct and indirect impact of Daphnia and cyclops on a freshwater microbial food web. J. Plankton Res. 20, 739–755 (1998).Article 

    Google Scholar 
    Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33, 1286–1303 (1988).ADS 
    Article 

    Google Scholar 
    Lampert, W. & Muck, P. Multiple aspects of food limitation in zooplankton communities: The Daphnia-Eudiaptomus example. Ergebnisse der Limnologie/Adv. Limnol. 21, 311–322 (1985).
    Google Scholar 
    Kiørboe, T. What makes pelagic copepods so successful?. J. Plankton Res. 33, 677–685. https://doi.org/10.1093/plankt/fbq159 (2011).Article 

    Google Scholar 
    Paffenhöfer, G.-A. Heterotrophic protozoa and small metazoa: Feeding rates and prey-consumer interactions. J. Plankton Res. 20, 121–133 (1998).Article 

    Google Scholar 
    Forró, L., Korovchinsky, N. M., Kotov, A. A. & Petrusek, A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. In Freshwater Animal Diversity Assessment 177–184 (Springer, 2007).Jack, J. D. & Gilbert, J. J. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshw. Biol. 29, 19–29 (1993).Article 

    Google Scholar 
    Jürgens, K. Impact of Daphnia on planktonic microbial food webs—A review. Mar. Microb. Food Webs 8, 295–324 (1994).
    Google Scholar 
    Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167. https://doi.org/10.3354/ame038157 (2005).Article 

    Google Scholar 
    Saiz, E. & Calbet, A. Scaling of feeding in marine calanoid copepods. Limnol. Oceanogr. 52, 668–675 (2007).ADS 
    Article 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 
    Article 

    Google Scholar 
    Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
    Google Scholar 
    Oghenekaro, E. U. & Chigbu, P. Population dynamics and life history of marine cladocera in the maryland coastal bays, USA. J. Coast. Res. 35, 1225–1236 (2019).Article 

    Google Scholar 
    Pestorić, B., Lučić, D & Joksimović, D. Cladocerans spatial and temporal distribution in the coastal south Adriatic waters (Montenegro). Stud. Mar. 25, 101–120 (2011).Adrian, R. & Schneider-Olt, B. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J. Plankton Res. 21, 2175–2190. https://doi.org/10.1093/plankt/21.11.2175 (1999).Article 

    Google Scholar 
    Burns, C. W. & Schallenberg, M. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton Res. 18, 683–714. https://doi.org/10.1093/plankt/18.5.683 (1996).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, W. M. Jr. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters 1, 1–28 (2011).Article 

    Google Scholar 
    Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710. https://doi.org/10.1038/NGEO1765 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Gilbert, J. J. Jumping behavior in the oligotrich ciliates Strobilidium velox and Halteria grandinella and its significance as a defense against rotifers. Microb. Ecol. 27, 189–200 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weisse, T. & Sonntag, B. Ciliates in planktonic food webs: communication and adaptive response. In Biocommunication of Ciliates (eds Witzany, G. & Nowacki, M.) 351–372 (Springer International Publishing, 2016).
    Google Scholar 
    Burns, C. W. & Gilbert, J. J. Predation on ciliates by freshwater calanoid copepods: Rates of predation and relative vulnerabilities of prey. Freshw. Biol. 30, 377–393. https://doi.org/10.1111/j.1365-2427.1993.tb00822.x (1993).Article 

    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecolgy 2nd edn. (Oxford University Press, 2007).
    Google Scholar 
    Almeda, R., Someren Gréve, H. & Kiørboe, T. Prey perception mechanism determines maximum clearance rates of planktonic copepods. Limnol. Oceanogr. 63, 2695–2707. https://doi.org/10.1002/lno.10969 (2018).ADS 
    Article 

    Google Scholar 
    Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).Article 

    Google Scholar 
    Fenchel, T. Ecology of protozoa. The Biology of Free-living Phagotrophic Protists (Science Tech./Springer, 1987).
    Google Scholar 
    Weisse, T. et al. Functional ecology of aquatic phagotrophic protists—Concepts, limitations, and perspectives. Eur. J. Protistol. 55, 50–74. https://doi.org/10.1016/j.ejop.2016.03.003 (2016).Article 
    PubMed 

    Google Scholar 
    Wickham, S. A. Cyclops predation on ciliates: Species-specific differences and functional responses. J. Plankton Res. 17, 1633–1646 (1995).Article 

    Google Scholar 
    Coats, D. W. & Bachvaroff, T. R. Parasites of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 145–170 (Wiley, 2012).Chapter 

    Google Scholar 
    Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brun, P. G., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113. https://doi.org/10.5194/essd-9-99-2017 (2017).ADS 
    Article 

    Google Scholar 
    Armengol, L., Franchy, G., Ojeda, A., Santana-del Pino, Á. & Hernández-León, S. Effects of copepods on natural microplankton communities: Do they exert top-down control?. Mar. Biol. 164, 136. https://doi.org/10.1007/s00227-017-3165-2 (2017).Article 

    Google Scholar 
    Moriarty, R. & O’Brien, T. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).ADS 
    Article 

    Google Scholar 
    Landry, M. R., Al-Mutairi, H., Selph, K. E., Christensen, S. & Nunnery, S. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2037–2061 (2001).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Model. 435, 109265. https://doi.org/10.1016/j.ecolmodel.2020.109265 (2020).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology’s “canonical” activation energies. Limnol. Oceanogr. 64, 1172–1185. https://doi.org/10.1002/lno.11105 (2019).ADS 
    Article 

    Google Scholar 
    Montagnes, D. J. Ecophysiology and behavior of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 85–121 (Wiley, 2012).Chapter 

    Google Scholar 
    McManus, G. B. & Santoferrara, L. F. Tintinnids in microzooplankton communities. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 198–213 (Wiley, 2012).Chapter 

    Google Scholar 
    Fileman, E., Petropavlovsky, A. & Harris, R. Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel. J. Plankton Res. 32, 709–724. https://doi.org/10.1093/plankt/fbp142 (2010).CAS 
    Article 

    Google Scholar 
    Zeldis, J. R. & Décima, M. Mesozooplankton connect the microbial food web to higher trophic levels and vertical export in the New Zealand Subtropical Convergence Zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 155, 103146. https://doi.org/10.1016/j.dsr.2019.103146 (2020).CAS 
    Article 

    Google Scholar 
    Stoecker, D. K. Predators of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 122–144 (Wiley, 2012).Chapter 

    Google Scholar 
    Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).ADS 
    Article 

    Google Scholar 
    Gallienne, C. & Robins, D. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23, 1421–1432. https://doi.org/10.1093/plankt/23.12.1421 (2001).Article 

    Google Scholar 
    Stoecker, D. K. & Egloff, D. A. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol. Ecol. 110, 53–68 (1987).Article 

    Google Scholar 
    Stoecker, D. & Pierson, J. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res. 41, 367–373. https://doi.org/10.1093/plankt/fbz027 (2019).Article 

    Google Scholar 
    Diehl, S. & Feissel, M. Intraguild prey suffer from enrichment of their resources: A microcosm experiment with ciliates. Ecology 82, 2977–2983 (2001).Article 

    Google Scholar 
    Broglio, E., Saiz, E., Calbet, A., Trepat, I. & Alcaraz, M. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat. Microb. Ecol. 35, 65–78 (2004).Article 

    Google Scholar 
    Sommer, U. et al. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448. https://doi.org/10.1146/annurev-ecolsys-110411-160251 (2012).Article 

    Google Scholar 
    IGKB. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 43 (2018–2019), 128 https://www.igkb.org/oeffentlichkeitsarbeit/limnologischer-zustand-des-sees-gruene-berichte/. (2020).Wetzel, R. G. Limnology—Lake and River Ecosystems 3rd edn. (Academic Press, 2001).
    Google Scholar 
    Kumar, R. Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) predation on the population growth patterns of different prey species. J. Freshw. Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.9663974 (2003).Article 

    Google Scholar 
    Porter, K. G., Pace, M. L. & Battey, F. J. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277, 563–565 (1979).ADS 
    Article 

    Google Scholar 
    Landry, M. & Fagerness, V. Behavioral and morphological influences on predatory interactions among marine copepods. Bull. Mar. Sci. 43, 509–529 (1988).
    Google Scholar 
    Krainer, K.-H. & Müller, H. Morphology, infraciliature and ecology of a nerw planktonic ciliate, Histiobalantium bodamicum n. sp. (Scuticociliatida: Histiobalantiidae). Eur. J. Protistol. 31, 389–395 (1995).Article 

    Google Scholar 
    Lu, X., Gao, Y. & Weisse, T. Functional ecology of two contrasting freshwater ciliated protists in relation to temperature. J. Eukaryot. Microb. 68, e12823. https://doi.org/10.1111/jeu.12823 (2021).CAS 
    Article 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579. https://doi.org/10.4319/lo.2000.45.3.0569 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Bergkemper, V. & Weisse, T. Phytoplankton response to the summer heat wave 2015—A case study from Lake Mondsee, Austria. Inland Waters 7, 88–99. https://doi.org/10.1080/20442041.2017.1294352 (2017).CAS 
    Article 

    Google Scholar 
    Crosbie, N. D., Teubner, K. & Weisse, T. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat. Microb. Ecol. 33, 53–66. https://doi.org/10.3354/ame033053 (2003).Article 

    Google Scholar 
    Dokulil, M. T. & Teubner, K. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698, 29–46 (2012).CAS 
    Article 

    Google Scholar 
    Weisse, T., Lukić, D. & Lu, X. Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments. J. Plankton Res. 43, 288–299. https://doi.org/10.1093/plankt/fbab017 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergkemper, V. & Weisse, T. Do current European lake monitoring programmes reliably estimate phytoplankton community changes? Hydrobiologia 824, 143–162. https://doi.org/10.1007/s10750-017-3426-6 (2018).CAS 
    Article 

    Google Scholar 
    Rosen, R. A. Length-dry weight relationships of some freshwater zooplanktona. J. Freshw. Ecol. 1, 225–229 (1981).Article 

    Google Scholar 
    Frost, B. W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).ADS 
    Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R.RStudio, http://www.rstudio.com/ (PBC, 2021).Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).MathSciNet 
    Article 

    Google Scholar 
    Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704. https://doi.org/10.4319/lo.1997.42.4.0687 (1997).ADS 
    Article 

    Google Scholar  More

  • in

    Natural and anthropogenic factors drive large-scale freshwater fish invasions

    InvasionWe used freshwater fish biodiversity data collated by and described in Milardi, et al.47. In summary, the dataset included 3777 sites sampled 1999–2014, recorded a total of 99 different fish species (35 of which were exotic and already established, even if some are restricted to areas with thermal springs), spanned  > 11 degrees of longitude (~ 1200 km) and 10 degrees of latitude (~ 1100 km), covering streams at altitudes -2.7–2500 m above sea level. Community turnover was not a relevant factor in our study, because fish communities are typically stable over these timescales and the data was collected in a restricted timeframe within each area29,39. Furthermore, time elapsed since last introductions was sufficient to analyze distribution patterns after major invasions had already occurred see e.g.23,48.Abundance of each species sampled during the monitoring was recorded with Moyle classes (Moyle and Nichols, 1973), which were weighted according to body-size classes in order to obtain a body-mass-corrected abundance, hereafter referred to simply as abundance. We then calculated an invasion degree, i.e. the share of introduced species in freshwater fish communities, based on the abundance of introduced and native species see e.g.9,49. A high invasion degree equals to a high share of introduced species and a low share of native species.We also selected the top 10 invasive species as further response variables, under the assumption that these would be the main components of the invasion degree, but would respond to different invasion drivers based on each species’ ecology. Invasiveness rank was defined through an index obtained by multiplying colonization (share of sites colonized) and prevalence (average relative abundance in the fish community) of each introduced species. The relative abundance of each of these species in the fish community was used as a response variable, being a measure comparable to invasion degree for single species.Invasion driversWe tested a combination of geographical, climate and anthropogenic impact factors as potential drivers of invasion. To avoid temporal mismatches, we chose time periods that overlapped as much as possible with our biological data.We used basin area, altitude and slope (derived from a seamless digital elevation model of the whole Italian territory at 10 m resolution, Tarquini, et al.50) as geographical variables.We derived climate data from available series of long-term national monitoring (http://www.scia.isprambiente.it/). We used daily air temperature (2000–2009), measured at a total of 2266 sites throughout the country, as a proxy for temperature regimes. We also used cumulated annual precipitations, number of annual dry days (precipitation  More

  • in

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Haque, M. N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60, 1–10. https://doi.org/10.1186/s40781-018-0175-7(2018) (2018).Article 

    Google Scholar 
    IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press (in press).Lauder, A. R. et al. Offsetting methane emissions—An alternative to emission equivalence metrics. Int. J. Greenh. 12, 419–429. https://doi.org/10.1016/j.ijggc.2012.11.028 (2013).CAS 
    Article 

    Google Scholar 
    Hill, J., McSweeney, C., Wright, A. G., Bishop-Hurley, G. & Kalantar-Zadeh, K. Measuring methane production from ruminants. Trends Biotechnol. 34, 26–35. https://doi.org/10.1016/j.tibtech.2015.10.004 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob Change Biol. 24, 4185–4194. https://doi.org/10.1111/gcb.14321 (2018).ADS 
    Article 

    Google Scholar 
    Naumann, H. D., Tedeschi, L. O., Zeller, W. E. & Huntley, N. F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. de Zootec. 46, 929–949. https://doi.org/10.1590/S1806-92902017001200009 (2017).Article 

    Google Scholar 
    Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010–2037. https://doi.org/10.1002/jsfa.2577 (2006).CAS 
    Article 

    Google Scholar 
    Burggraaf, V. T. et al. Morphology and agronomic performance of white clover with increased flowering and condensed tannin concentration. N. Z. J. Agric. Res. 49, 147–155. https://doi.org/10.1080/00288233.2006.9513704 (2006).CAS 
    Article 

    Google Scholar 
    Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288. https://doi.org/10.1038/s41597-021-01061-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salminen, J.-P. & Karonen, M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x (2011).Article 

    Google Scholar 
    Zeller, W. E. Activity, purification, and analysis of condensed tannins: current state of affairs and future endeavors. Crop Sci. 59, 886–904. https://doi.org/10.2135/cropsci2018.05.0323 (2019).CAS 
    Article 

    Google Scholar 
    Barbehenn, R. V. & Peter Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chung, Y. H. et al. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa1. J. Anim. Sci. 91, 4861–4874. https://doi.org/10.2527/jas.2013-6498 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christensen, R. G. et al. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows1. J. Dairy Sci. 98, 7982–7992. https://doi.org/10.3168/jds.2015-9348 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonker, A. & Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 18, 1105. https://doi.org/10.3390/ijms18051105 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81, 263–272. https://doi.org/10.1017/S0007114599000501 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verma, S., Taube, F. & Malisch, C. S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 13, 2743. https://doi.org/10.3390/su13052743 (2021).CAS 
    Article 

    Google Scholar 
    Malisch, C. S. et al. Large variability of proanthocyanidin content and composition in Sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 63, 10234–10242. https://doi.org/10.1021/acs.jafc.5b04946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verma, S., Salminen, J.-P., Taube, F. & Malisch, C. S. Large inter- and intraspecies variability of polyphenols and proanthocyanidins in eight temperate forage species indicates potential for their exploitation as nutraceuticals. J. Agric. Food Chem. 69, 12445–12455. https://doi.org/10.1021/acs.jafc.1c03898 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, H., Reinsch, T., Kluß, C., Taube, F. & Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley?. Sustainability 12, 5842. https://doi.org/10.3390/su12145842 (2020).Article 

    Google Scholar 
    Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    Mueller-Harvey, I. et al. Benefits of condensed tannins in forage legumes fed to ruminants : Importance of structure, concentration and diet compsition. Crop Sci. 59, 861–885. https://doi.org/10.2135/cropsci2017.06.0369 (2017).CAS 
    Article 

    Google Scholar 
    Loza, C. et al. Assessing the potential of diverse forage mixtures to reduce enteric methane emissions in vitro. Animals 11, 1126. https://doi.org/10.3390/ani11041126 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Min, B. R. et al. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 6, 231–236. https://doi.org/10.1016/j.aninu.2020.05.002 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Gastelen, S., Dijkstra, J. & Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?. J. Dairy Sci. 102, 6109–6130. https://doi.org/10.3168/jds.2018-15785 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hatew, B. et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202, 20–31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 (2015).CAS 
    Article 

    Google Scholar 
    Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2, 160–183. https://doi.org/10.3390/ani2020160 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 48, 167–187 (2009).CAS 

    Google Scholar 
    Hakl, J., Fuksa, P., Konečná, J. & Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 71, 413–423. https://doi.org/10.1111/gfs.12192 (2016).CAS 
    Article 

    Google Scholar 
    Jayanegara, A., Makkar, H. & Becker, K. The use of principal component analysis in identifying and integrating variables related to forage quality and methane production. J. Indones. Trop. Anim. 34, 241–247. https://doi.org/10.14710/jitaa.34.4.241-247 (2009).Article 

    Google Scholar 
    Maccarana, L. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 7, 35–35. https://doi.org/10.1186/s40104-016-0094-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baruah, L., Malik, P. K., Kolte, A. P., Dhali, A. & Bhatta, R. Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet. World 11, 809–818. https://doi.org/10.14202/vetworld.2018.809-818 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassanat, F. & Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339. https://doi.org/10.1002/jsfa.5763 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123. https://doi.org/10.3390/molecules23092123 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jayanegara, A., Makkar, H. P. S. & Becker, K. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan 38, 57–63. https://doi.org/10.5398/medpet.2015.38.1.57 (2015).Article 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H. P. S. & Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209, 60–68. https://doi.org/10.1016/j.anifeedsci.2015.08.002 (2015).CAS 
    Article 

    Google Scholar 
    Hatew, B. et al. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 70, 474–490. https://doi.org/10.1111/gfs.12125 (2015).CAS 
    Article 

    Google Scholar 
    Huyen, N. T. et al. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487. https://doi.org/10.1017/S0021859616000393 (2016).CAS 
    Article 

    Google Scholar 
    Salami, S. A. et al. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy061 (2018).Article 
    PubMed 

    Google Scholar 
    Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem.-Eur. J. 17, 2806–2816. https://doi.org/10.1002/chem.201002662 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bezabih, M., Pellikaan, W. F., Tolera, A., Khan, N. A. & Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 69, 635–643. https://doi.org/10.1111/gfs.12091 (2013).CAS 
    Article 

    Google Scholar 
    Navarrete, S., Kemp, P. D., Pain, S. J. & Back, P. J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008 (2016).CAS 
    Article 

    Google Scholar 
    Basha, N. A., Scogings, P. F. & Nsahlai, I. V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 93, 1338–1348. https://doi.org/10.1002/jsfa.5895 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Donovan, L. & Brooker, J. D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033. https://doi.org/10.1099/00221287-147-4-1025 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhatta, R. et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522. https://doi.org/10.3168/jds.2008-1441 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. D. et al. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 199, 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H.P.S., & Becker, K. Reduction in
    methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Food and Agriculture Organization of the United Nations (FAO) Rome, Italy, 151–157. ISBN 978-92-5-106697-3 (2010).Hatew, B. et al. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100, 348–360. https://doi.org/10.1111/jpn.12336 (2016).CAS 
    Article 

    Google Scholar 
    Waghorn, G. C., Douglas, G. B., Niezen, J. H., McNabb, W. C. & Foote, A. G. Forages with condensed tannins-their management and nutritive value for ruminants. Proc. N. Z. Grassl. Assoc., 60, 89−98 (1998).Woodward, S. L., Waghorn, G. C. & Lassey, K. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23–26 (2001).
    Google Scholar 
    Molle, G. et al. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 123, 138–146. https://doi.org/10.1016/j.livsci.2008.11.018 (2009).Article 

    Google Scholar 
    Orlandi, T., Kozloski, G. V., Alves, T. P., Mesquita, F. R. & Ávila, S. C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 210, 37–45. https://doi.org/10.1016/j.anifeedsci.2015.09.012 (2015).CAS 
    Article 

    Google Scholar 
    Patra, A. K. & Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01434 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niderkorn, V. et al. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 13, 718–726. https://doi.org/10.1017/S1751731118002185 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, J., Hemmingson, N., Minneé, E. & Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics, and plant density. Crop Pasture Sci. 66, 168. https://doi.org/10.1071/CP14181 (2015).CAS 
    Article 

    Google Scholar 
    Cong, W.-F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1422. https://doi.org/10.1038/s41598-017-01632-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanderson, M. A., Labreveux, M., Hall, M. H. & Elwinger, G. F. Nutritive value of chicory and English plantain forage. Crop Sci. 43, 1797. https://doi.org/10.2135/cropsci2003.1797 (2003).CAS 
    Article 

    Google Scholar 
    Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 (1991).Article 
    PubMed 

    Google Scholar 
    Engström, M. T. et al. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390–3399. https://doi.org/10.1021/jf500745y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Menke, K. & Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Venables, B. & Ripley, B. Generalised linear models. In Modern Applied Statistics With S.(4th edition) 183–208 (Springer, 2013). More

  • in

    High source–sink ratio at and after sink capacity formation promotes green stem disorder in soybean

    Harbach, C. J. et al. Delayed senescence in soybean: Terminology, research update, and survey results from growers. Plant Health Progress 17, 76–83 (2016).Article 

    Google Scholar 
    Hobbs, H. A. et al. Green stem disorder of soybean. Plant Dis. 90, 513–518 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, C. B., Hartman, G. L., Esgar, R. & Hobbs, H. A. Field evaluation of green stem disorder in soybean cultivars. Crop Sci. 46, 879–885 (2006).Article 

    Google Scholar 
    Morita, K. et al. (2006) Effect of green stem on soiled bean index at harvest of soybean by combine harvester. Hokuriku Crop Sci. 41, 107–109 (2006) (in Japanese).
    Google Scholar 
    Ogiwara, H. Delayed leaf senescence. In: Agriculture, Forestry and Fisheries Research Council of Japan, ed. Soybean-technical development for improving national food self-sufficiency ratio. Annotated bibliography of Agriculture, Forestry, and Fisheries Research, vol. 27, 291–294 (2002). (in Japanese).Crafts-Brandner, S. J. & Egli, D. B. Sink removal and leaf senescence in soybean. Plant Physiol. 85, 662–666 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crafts-Brandner, S. J., Below, F. E., Harper, J. E. & Hageman, R. H. Effects of pod removal on metabolism and senescence of nodulating and nonnodulating soybean isolines. Plant Physiol. 75, 311–317 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Egli, D. B. & Bruening, W. P. Depodding causes green-stem syndrome in soybean. Crop Manag. 5(1), 1–9. https://doi.org/10.1094/CM-2006-0104-01-RS (2006).Article 

    Google Scholar 
    Htwe, N. M. P. S. et al. Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4. Plant Prod. Sci. 14, 141–147 (2011).CAS 
    Article 

    Google Scholar 
    Leopold, A. C., Niedergang-Kamien, E. & Janick, J. Experimental modification of plant senescence. Plant Physiol. 34, 570–573 (1959).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mondal, M. H., Brun, W. A. & Brenner, M. L. Effects of sink removal on photosynthesis and senescence in leaves of soybean (Glycine max L.) plants. Plant Physiol. 61, 394–397 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wittenbach, V. A. Effect of pod removal on leaf senescence in soybean. Plant Physiol. 70, 1544–1548 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wittenbach, V. A. Effect of pod removal on leaf photosynthesis and soluble protein composition of field-grown soybeans. Plant Physiol. 73, 121–124 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wittenbach, V. A. Purification and characterization of a soybean leaf storage glycoprotein. Plant Physiol. 73, 125–129 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staswick, P. E. Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression in soybean leaves. Plant Physiol. 89, 309–315 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sato, J., Shiraiwa, T., Sakashita, M., Tsujimoto, Y. & Yoshida, R. The occurrence of delayed stem senescence in relation to trans-zeatin riboside level in the xylem exudate in soybeans grown under excess-wet and drought soil conditions. Plant Prod. Sci. 10, 460–467 (2007).Article 

    Google Scholar 
    Takehara, T. et al. Occurrence of delayed leaf senescence of soybean caused by Rhizoctonia aerial blight in Japan. Jpn. Agric. Res. Q. 50, 201–208 (2016).Article 

    Google Scholar 
    Boethel, D. J. et al. Delayed maturity associated with southern green stink bug (Heteroptera: Pentatomidae) injury at various soybean phenological stages. J. Econ. Entomol. 93, 707–712 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. M. et al. Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Acta Physiol. Plant. 39, 42 (2017).Article 
    CAS 

    Google Scholar 
    Yamazaki, R., Katsube-Tanaka, T. & Shiraiwa, T. Effect of thinning and shade removal on green stem disorder in soybean. Plant Prod. Sci. 21, 83–92 (2018).CAS 
    Article 

    Google Scholar 
    Yamazaki, R., Katsube-Tanaka, T., Kawasaki, Y., Katayama, K. & Shiraiwa, T. Effect of thinning on cultivar differences of green stem disorder in soybean. Plant Prod. Sci. 22, 311–318 (2019).CAS 
    Article 

    Google Scholar 
    Board, J. E. & Tan, Q. Assimilatory capacity effects on soybean yield components and pod number. Crop Sci. 35, 846–851 (1995).Article 

    Google Scholar 
    Egli, D. B. Soybean reproductive sink size and short-term reductions in photosynthesis during flowering and pod set. Crop Sci. 50, 1971–1977 (2010).Article 

    Google Scholar 
    Wells, R., Schulze, L. L., Ashley, D. A., Boerma, H. R. & Brown, R. H. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybean. Crop Sci. 22, 886–890 (1982).Article 

    Google Scholar 
    Islam, M. M. et al. Nitrogen redistribution and its relationship with the expression of GmATG8c during seed filling in soybean. J. Plant Physiol. 192, 71–74 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao, X., Zheng, S. H. & Arima, S. Influence of nitrogen enrichment during reproductive growth stage on leaf nitrogen accumulation and seed yield in soybean. Plant Prod. Sci. 17, 209–217 (2014).CAS 
    Article 

    Google Scholar 
    Brown, A. W. & Hudson, K. A. Transcriptional profiling of mechanically and genetically sink-limited soybeans. Plant Cell Environ. 40, 2307–2318 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tranbarger, T. J., Franceschi, V. R., Hildebrand, D. F. & Grimes, H. D. The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell 3, 973–987 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Melo, B. P. et al. Revisiting the soybean GmNAC superfamily. Front. Plant Sci. 9, 1864 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, H. J. et al. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signaling in Arabidopsis. J. Exp. Bot. 65, 4023–4036 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tucker, M. L., Burke, A., Murphy, C. A., Thai, V. K. & Ehrenfried, M. L. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. J. Exp. Bot. 58, 3395–3406 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, G. W. et al. Experimental sink removal induces stress responses, including shifts in amino acid and phenylpropanoid metabolism, in soybean leaves. Planta 235, 939–954 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roach, T. & Krieger-Liszkay, A. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg. 1817, 2158–2165 (2012).CAS 
    Article 

    Google Scholar 
    Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutin, C. et al. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. U.S.A. 100, 4921–4926 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wang, H. et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS ONE 8, e78484 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Saravitz, D. M. & Siedow, J. N. The differential expression of wound-inducible lipoxygenase genes in soybean leaves. Plant Physiol. 110, 287–299 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pimenta, M. R. et al. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant Cell Physiol. 57, 1098–1114 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fujimoto, M. et al. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc. Natl. Acad. Sci. U.S.A. 115, 8783–8792 (2018).Article 
    CAS 

    Google Scholar 
    Egli, D. B. Variation in leaf starch and sink limitations during seed filling in soybean. Crop Sci. 39, 1361–1368 (1999).CAS 
    Article 

    Google Scholar 
    Board, J. E. & Harville, B. G. Late-planted soybean yield response to reproductive source/sink stress. Crop Sci. 38, 763–771 (1998).Article 

    Google Scholar 
    Fatichin, Zheng, S. H., Narasaki, K. & Arima, S. Genotypic adaptation of soybean to late sowing in southwestern Japan. Plant Prod. Sci. 16, 123–130 (2013).CAS 
    Article 

    Google Scholar 
    Wakasugi, K. & Fujimori, S. Subsurface Water Level Control System “FOEAS” that promotes the full use of paddy fields. J. Jpn. Soc. Irrig. Drain. Rural Eng. 77, 705–708 (2009) (in Japanese).
    Google Scholar 
    Fehr, W. R. & Caviness, C. E. Stages of soybean development. Spec. Rep. 80. Iowa Agric. Home Econ. Exp. Stn. Iowa State Univ., Ames. (1977).Furuya, T. & Umezaki, T. Simplified distinction method of degree of delayed stem maturation of soybean plants. Jpn. J. Crop Sci. 62, 126–127 (1993) (in Japanese with English abstract).Article 

    Google Scholar 
    Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    A framework to understand the role of biological time in responses to fluctuating climate drivers

    Mathematical theoryWe consider a biological response (e.g. body size, survival, biodiversity) to two environmental drivers (i.e. any abiotic or biotic factor) but the same idea may be applied to a larger number of drivers. The response depends of a set of predictors consisting in the magnitudes (m1 and m2) and time scales of fluctuation of two drivers (i = 1, 2); in addition, the response is quantified at least once after the fluctuations have been experienced (Fig. 1a).Time is defined using two different frames; chronological (= clock) time (measured by clocks) and biological time. For the “clock” time scales of the fluctuations (t1, t2) there are associated biological times (τ1, τ2). Likewise, for the clock time at which the response is quantified (({t}^{^*})) there is an associated biological time (τ({^*})).Biological time is the proportion of (clock) time needed to reach a life history event (e.g. moulting, maturity). Hence, for t1, t2 and t({^*}) we obtain τi = ti/D and τ({^*}) = t({^*})/D, (D = clock time needed to reach such life history event). We express the τi and τ({^*}) in terms of a function L = 1/D. For instance, for t({^*}) we obtain:$${tau }^{^*}={t}^{^*}cdot{L}$$
    (1)
    where L = L(ω) = D−1(ω) characterises the timing of a life history event (with units as the inverse of clock time units). L depends on the set of predictors ω associated to the fluctuations; an important set of predictors will be defined by thermal fluctuations (the amplitude and time scales), which in ectotherm species have a strong influence on developmental time32,33. We find by differentiation that L provides the transform function between clock and biological time frames; for instance, if L does not depend on any ti we have L = dτ/dti.The response is expressed as a function of the predictors defined above, as R(m1, m2, t1, t2, t({^*})) = r[m1, m2, τ1 (t1), τ2(t2), τ({^*})]. The contribution of each predictor to the response is better understood by the partial derivatives with respect to each predictor; this defines a system of partial differential equations (PDE; Supplementary note 1) which expressed in matrix form give the following matrix equation.$$left[begin{array}{c}frac{dR}{d{m}_{1}}\ frac{dR}{d{m}_{2}}\ frac{dR}{d{t}_{1}}\ frac{dR}{d{t}_{2}}\ frac{dR}{d{t}^{^*}}end{array}right]=left[begin{array}{ccccc}1& frac{d{m}_{2}}{d{m}_{1}}& frac{d{tau }_{1}}{d{m}_{1}}& frac{d{tau }_{2}}{d{m}_{1}}& frac{d{tau }^{^*}}{d{m}_{1}}\ frac{d{m}_{1}}{d{m}_{2}}& 1& frac{d{tau }_{1}}{d{m}_{2}}& frac{d{tau }_{2}}{d{m}_{2}}& frac{d{tau }^{^*}}{d{m}_{2}}\ frac{d{m}_{1}}{d{t}_{1}}& frac{d{m}_{2}}{d{t}_{1}}& frac{d{tau }_{1}}{d{t}_{1}}& frac{d{tau }_{2}}{d{t}_{1}}& 0\ frac{d{m}_{1}}{d{t}_{2}}& frac{d{m}_{2}}{d{t}_{2}}& frac{d{tau }_{1}}{d{t}_{2}}& frac{d{tau }_{2}}{d{t}_{2}}& 0\ 0& 0& 0& 0& frac{d{tau }^{^*}}{d{t}^{^*}}end{array}right]cdot left[begin{array}{c}frac{dr}{d{m}_{1}}\ frac{dr}{d{m}_{2}}\ frac{dr}{d{tau }_{1}}\ frac{dr}{d{tau }_{2}}\ frac{dr}{d{tau }^{^*}}end{array}right]$$
    (2)
    In the PDE (Eq. 2), the left-hand side is a vector column of the derivatives of the response in clock time (R), with respect to each predictor; the right-hand side is the standard (= inner) product of a matrix (M) by a vector of the derivatives of the response in biological time (r), i.e. R = Mr. The matrix contains the derivatives of the predictors with respect to each other, with time both expressed in clock or biological scales; one can think of M as an object containing coefficients that transform r into R in the same way as a constant (= 1000) would transform kilometres into meters of distance. The large number of terms in M highlights the considerable diversity and the challenges in quantifying responses to multivariate environmental fluctuations. We show below how to use Eq. (2) to quantify the effect of fluctuating environmental drivers on biological responses, as mediated by biological time.First, we note that M contains three groups of terms: (1) Terms accounting for situations where the magnitude of a driver affects the magnitude of the second driver (e.g. temperature drives oxygen concentration in aquatic habitats): these are dmi/dmj for any i, j = 1, 2. (2) Terms accounting for cases where the magnitudes and time scales of stressors are related: dmi/dtj and dmi/dti. (3) Terms where biological time depends on the magnitude or time scale of the environmental fluctuation dτi/dtj and dτi/dmj. The terms of groups (1) and (2) are zero when they are mutually independent, such as in a factorial experiment with orthogonal manipulation. We will set those to zero in the rest of this analysis.Second, we note that for group (3) there are three scenarios: (3a) biological time does not depend on any environmental driver. This is the trivial case where biological time is proportional to clock time, not considered here; M is simplified to a diagonal matrix, i.e. with constants in the diagonal, and zero’s otherwise leading to a single constant term per equation (3b). Biological time depends on the magnitudes of any or both drivers. In such case, τ1 τ2, and τ({^*}) will be driven by the same equation: if τi = ti · L (m1, m2) we obtain dτi/dtj = dτi/dti = L (m1, m2). (3c) Biological time depends on the time scale of the fluctuations: in such case, differentiating Eq. (1) with respect to time, we obtain dτi/dti = L + ti dL/dti.Here, we explore four special cases where the equations are simplified to highlight the importance of biological time in modifying the responses as compared to clock time. We start with the simplest case where there is a single environmental variable and then we consider cases with two variables. We focus on cases representing the most frequent experiments carried out on multiple driver research, i.e. factorial manipulations where terms of the groups 1 and 2 are zero.Case 1: responses to the magnitude of a single variableWe start with the simplest case i.e. where the response is driven by the magnitude of a single driver, e.g. temperature (= m). Examples of this case are laboratory experiments quantifying the effect of temperature on body mass or survival of a given species, or mesocosm experiments quantifying effects of temperature on species richness where thermal treatments are kept constant over time. Here, the response is quantified at different times, both in the clock and biological frames. In such case we have R(m, t({^*})) = r[m, τ({^*})(m, t({^*}))] and the PDEs simplify to.$$frac{dR}{dm}=frac{partial r}{partial m}+frac{partial r}{partial {tau }^{^*}}cdot frac{d{tau }^{^*}}{dm}$$
    (3)
    From Eq. (3), and because dR/dm ≠ dr/dm, we see that the response to the magnitude of the driver depends on a component quantifying the effect biological time: as long as dτ({^*})/dm ≠ 0 the time reference frame affects the observed effect of m on the response. The simulation illustrated in Fig. 2 shows a case where there are differences between the observed responses at clock vs biological times. In the simulated experiment, there is a strong effect of the magnitude of the driver on the response at clock time, but such effect is much less pronounced at biological time. By contrast, there is no effect when the response is measured in the biological time frame.Figure 2Case 1: Response to the magnitude of a single variable (m). Horizontal line: measurement taken at clock time t({^*}) = t({^*})c; note that, along the line, the response increase with m (it crosses the colour gradient). Curve with yellow circles: measurements taken at a constant biological time (τ({^*})c = 100); along the curve, the response does not vary with m. The equations used were: R = m(0.5t({^*})), τ({^*}) = t. m giving r = 0.5. τ({^*}) not depending on m.Full size imageEquation (3) (details in Supplementary code 1) captures an obvious but important feature of experiments manipulating temperature over the development of ectotherms, for instance, from birth to metamorphosis; namely that there is no consistent definition of a simultaneous event across the different time frames. Experiments are usually stopped at different clock times because organisms must be sampled at the same biological time. All points located in the horizonal line in Fig. 3 represent simultaneous events, as defined in clock time occurring at different temperatures (e.g. whether an animal is dead or alive); however, simultaneous events occurring in biological time are represented by the points on the curve. Hence, Fig. 2 gives a geometric representation of such fact. Temperature as a driver of developmental rates32 is a central candidate to produce responses that differ at clock vs biological time.
    We explore further this case with an example where the response is expressed as a function of time and an instantaneous rate μ(m) quantifying for instance mortality, growth or biomass loss. For this example, we obtain R(m, t({^*})) = r[μ(m), τ({^*})(m, t({^*}))]. By differentiating in both sides, we get:$$frac{dR}{dm}=frac{partial r}{partial mu }cdot frac{dmu }{dm}+frac{partial r}{partial {tau }^{^*}}cdot frac{d{tau }^{^*}}{dm}$$
    (4)
    Equation (4) shows that m affects the response through two components: the instantaneous rate (dμ/dm) and the biological time (dτ({^*})/dm). We call the first component “eco-physiological” and the second component “phenological” (m drives the timing of a biological event, e.g. time to maturation). Those components are not evident if the response is expressed in clock time; otherwise we would obtain dR/dm = ∂R/∂μ · dμ/dm.In order to better understand Eq. (4), consider an example where the response is biomass loss experienced by an organism during the process of migration (e.g. towards a feeding or reproductive ground); when the access to food during migration is very limited the result should be a decrease in body mass reserves through time. Let biomass (B) be modelled as an exponential decaying function of time and an instantaneous rate of biomass loss μ; let μ depend on temperature (= m) such that, μ = μ(m). In such case we obtain:$$B(m,t)={e}^{-mu left(mright)cdot {t}^{^*}}={e}^{-mu left(mright)cdot {tau }^{^*}left(m,{t}^{^*}right)}$$
    (5)
    By differentiation in both sides of Eq. (5) we get:$$frac{dB}{dm}={-e}^{-mu left(mright)cdot {tau }^{^*}left(m,{t}^{^*}right)}left{{tau }^{^*}cdot frac{dmu }{dm}+mu cdot frac{d{tau }^{^*}}{dm}right}$$
    (6)
    Equation (6) shows the eco-physiological (dμ/dm) and phenological components (dτ({^*})/dm) within the brackets. If μ responds linearly to temperature, then dμ/dm would be represented by a constant quantifying the thermal sensitivity of biomass loss; the value of such constant would depend on physiological processes associated to use of reserves to sustain movement and the basal metabolic rate. Likewise, if τ({^*}) responds linearly to temperature, the dτ({^*})/dm would be driven by a constant controlling the sensitivity of developmental time to temperature.Because biomass is a trait that is central to fitness, Eq. (6) gives the indirect contribution of phenological and physiological responses to fitness. Assuming that fitness should be maximised, adaptive responses should involve the mitigation of negative effect of m on both components of Eq. (5), represented by the partial derivative of the right-hand term. For instance, organisms with the ability to minimise the eco-physiological effect (through e.g. a compensatory physiological mechanisms) or the phenological effect (e.g. shortening the exposure time) would complete the migration minimal loss of reserves.By generalization, Eqs. (4–6) help us to provide biological meaning to the terms of the matrix M: any term of the form dτ({^*})/dmj, dτi/dmj or dτi/dtj represents the effect of an environmental driver on the timing of a phenological event; hence, they are phenological components. Terms that contain the effect of an environmental variable on an instantaneous rate are eco-physiological components. By substitution we find that the terms of the matrix in Eq. (2) can be classified in two categories according to whether the component is eco-physiological (E) or phenological (P):$$left[begin{array}{ccccc}E& 0& P& P& P\ 0& E& P& P& P\ 0& 0& P& P& 0\ 0& 0& P& P& 0\ 0& 0& 0& 0& Pend{array}right]$$
    (7)
    Case 2: multiple driver responsesHere we expand the previous case by looking at a response to the magnitude of two different drivers; i.e. keeping the levels of each driver constant over the duration of the experiment. Examples of this case are experiments quantifying the effect of temperature and nutrient load on body mass (e.g. in a rearing containers) or species richness (e.g. in mesocosms). This case is represented by the terms of first two rows of the matrix and the vectors of Eq. (2), with the terms of the remaining rows set to zero. Here, there are different scenarios, but we focus on the one highlighting the importance of biological time.Consider a case where biological time depends on the magnitude of the first driver while the response is explicitly driven by the magnitude of the second driver (Fig. 4). For instance, the response may be the survival rate of a host organism exposed to different temperature and parasitic load. The response in clock time is described as R(mP, t({^*})). The driver controlling the biological time is temperature (mT) while the parasitic load (mP) controls survival. In such case, dτ({^*})/∂mP = 0, dR/dmP ≠ 0 and dR/dmT = 0. Although by definition the response in clock time does not depend on mT , it will do so in biological time. This is because, applying the matrix multiplication in Eq. (2), we obtain:
    $$frac{partial R}{partial {m}_{T}}=frac{partial r}{partial {m}_{T}}+frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8a)
    $$0=frac{partial r}{partial {m}_{T}}+frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8b)
    $$frac{partial r}{partial {m}_{T}}=-frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8c)
    The second right-hand term in Eq. (8a) quantifies the effect of temperature on the response mediated by biological time. In order to better understand the responses, consider a simple linear response: R = R0 − mP·t({^*}) and notice that, for a fixed clock time (t({^*})c) the effect of the magnitude of parasitism is constant (dR/dmP = −t({^*})c); hence, the response can be understood, geometrically, as a flat surface with slope not depending on temperature. Now, note that under the specific conditions of our example, r = R0 − mP·τ({^*})/L(mT). Hence, for a fixed biological time (τ({^*})c) we obtain ∂r/∂mP = −τ({^*})c/L(mT); i.e. the importance of the parasitic effect depends now on temperature. In addition, this example is valid for the case of additive effects of any two environmental drivers: assuming R = R0 − (a1·mP + a2· mT)·t({^*}) (a1, a2 are constants), we obtain dR/dmP = −a1t({^*}); however, ∂r/∂mP = −a1τ({^*})c/L(mT). In words, additive effects observed in clock time become interactive in biological time. This is illustrated in the simulation (Supplementary code 2) depicted in Fig. 4: the response in clock time depends on a single driver (parasite load); however, the response in biological time is interactive, i.e. the effect of parasite load depends on temperature.Figure 3Case 2: Multiple driver responses. (A) Modelled responses (colour scale) at a specific clock (t({^*}) = 40) and biological times (τ({^*}) = 1), showing an interactive effect only in the biological time frame. (B) Interaction plots of the responses for specific levels of temperature and a second driver showing that the effect high temperature mitigates the negative effect of the second driver on the response. The response was modelled with as a sigmoidal function R = exp(−t({^*})φ) with φ = 0.1[1 + exp(m2/2)]−1 to produce a strong gradient in the range of m2 = 25–30 units. The biological time was modelled based on the effect of temperature on the development of marine organisms33 as so that t({^*}) = τ({^*}) exp[−22.47 + 0.64/(k(m1 + 273)], i.e., using the Arrhenius equation with k: Boltzmann constant (≈ 8.617 10–5 eV K−1).Full size imageCase 3: role of clock and biological time scale of fluctuationPrevious examples did not consider, the time scale of the fluctuations as drivers of the response. Here we explore how a biological variable (= survival rate) responds to different levels of magnitude of a driver (= temperature) and to simultaneously changing the time scale of a fluctuation (from clock to biological time) of a second driver (= food limitation). As model, we use larval stages of a crab because there is sufficient information on the effect of temperature and food levels on survival and the timing of moulting33,34.We performed the so-called point-of-reserve-saturation experiment (PRS35), i.e. exposing groups of recently hatched larvae of the crab Hemigrapsus sanguineus to different initial feeding periods (= our time scale of fluctuation), after which they were starved until they either died or moulted to the second larval stage (Supplementary Fig. 1). H. sanguineus is originated from East Asia but has invaded the Atlantic shores of North America and North Europe36,37. This experiment was carried out at 4 temperature levels (15–21 °C), within the range of thermal tolerance of larvae of this species, i.e. where the magnitude of temperature does not affect survival38,39. In addition, because there is a single level of food limitation (= starvation), the magnitude of food limitation (mF) is not considered as a variable in the example.The response variable was the proportion of first stage larvae surviving the moulting event to the second stage, set to biological time τ({^*}) = 1. In response to different starvation periods (preceded by feeding), the survival shows a sigmoidal pattern35, characterised by a parameter, PRS50. This is the point of development where larval reserves are “saturated”; i.e. enough reserves have been accumulated during the previous feeding period to ensure survival and moulting to the next stage.Under the conditions of the experiment, the survival proportion (= R) is driven only by the time scale of a fluctuation (here t1 = t, τ1 = τ for simplicity), characterised by the starvation period; hence, R = R(t) = r[τ(t)] given that there is a single time of observation fixed to τ({^*}) = 1. Because biological time does not depend t, we get L = dτ/dt and:$$frac{dR}{dt}=frac{partial r}{partial tau }cdot mathcal{L}({m}_{2})$$
    (9)
    Equation (9) is represented in the PDE by the terms of row 3 and column 4 of M multiplied by the term of row 3 of the column vector r; dτ/dt = L(m), m represents the magnitude of temperature.The relationship between biological time and temperature was best explained by a power function D(T) = aTb (Fig. 4A, Supplementary Table 1, Supplementary Fig. 2), in consistence with previous studies36,40. The interaction between starvation time and temperature was weak (Supplementary Fig. 3); best models retained starvation time only at 21 °C where the percentage of explained variance was still low (R2  More

  • in

    Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe

    Backman, C. R. The worlds of medieval Europe. (Oxford University Press, 2003).Brown, P. The World of Late Antiquity. From Marcus Aurelius to Muhammad. (Thames & Hudson, 1971).Brown, P. The Making of Late Antiquity. (Harvard University Press, 1978).Holmes, G. The Oxford History of Medieval Europe. (Oxford University Press, 2002).Hoffmann, R. C. An environmental history of medieval Europe. (Cambridge University Press, 2014).Ward-Perkins, B. The Fall of Rome: And the End of Civilization. (Oxford University Press, 2006).Wickham, C. Framing the Early Middle Ages: Europe and the Mediterranean, 400–800. (Oxford University Press, 2006).Wickham, C. The inheritance of Rome: a history of Europe from 400 to 1000. (Penguin Books, 2010).Wickham, C. Medieval Europe. (Yale University Press, 2016).Halsall, G. The sources and their interpretations. In The New Cambridge Medieval History, Volume 1 c.500–c.700 (ed. Fouracre, P.) 56–92 (Cambridge University Press, 2005).Alexander, M. M., Gerrard, C. M., Gutiérrez, A. & Millard, A. R. Diet, society, and economy in late medieval Spain: Stable isotope evidence from Muslims and Christians from Gandía, Valencia. Am. J. Phys. Anthropol. 156, 263–273 (2015).PubMed 
    Article 

    Google Scholar 
    Alexander, M. M., Gutiérrez, A., Millard, A. R., Richards, M. P. & Gerrard, C. M. Economic and socio-cultural consequences of changing political rule on human and faunal diets in medieval Valencia (c. fifth–fifteenth century AD) as evidenced by stable isotopes. Archaeol. Anthropol. Sci. 11, 3875–3893 (2019).Article 

    Google Scholar 
    Dotsika, E., Michael, D. E., Iliadis, E., Karalis, P. & Diamantopoulos, G. Isotopic reconstruction of diet in Medieval Thebes (Greece). J. Archaeol. Sci. Rep. 22, 482–491 (2018).
    Google Scholar 
    Francisci, G. et al. Strontium and oxygen isotopes as indicators of Longobards mobility in Italy: an investigation at Povegliano Veronese. Sci. Rep. 10, 11678 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guede, I. et al. Isotope analyses to explore diet and mobility in a medieval Muslim population at Tauste (NE Spain). PLOS ONE 12, e0176572 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hakenbeck, S., McManus, E., Geisler, H., Grupe, G. & O’Connell, T. Diet and mobility in Early Medieval Bavaria: A study of carbon and nitrogen stable isotopes. Am. J. Phys. Anthropol. 143, 235–249 (2010).PubMed 
    Article 

    Google Scholar 
    Hughes, S. S., Millard, A. R., Chenery, C. A., Nowell, G. & Pearson, D. G. Isotopic analysis of burials from the early Anglo-Saxon cemetery at Eastbourne, Sussex, U.K. J. Archaeol. Sci. Rep. 19, 513–525 (2018).
    Google Scholar 
    Kaupová, S. D. et al. Diet in transitory society: isotopic analysis of medieval population of Central Europe (ninth–eleventh century AD, Czech Republic). Archaeol. Anthropol. Sci. 10, 923–942 (2018).Article 

    Google Scholar 
    Lamb, A. L., Evans, J., Buckley, R. & Appleby, J. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J. Archaeol. Sci. 50, 559–565 (2014).CAS 
    Article 

    Google Scholar 
    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).Article 

    Google Scholar 
    Lubritto, C. et al. New Dietary Evidence on Medieval Rural Communities of the Basque Country (Spain) and Its Surroundings from Carbon and Nitrogen Stable Isotope Analyses: Social Insights, Diachronic Changes and Geographic Comparison: Palaeodietary Evidence on Medieval Basque Rural Communities. Int. J. Osteoarchaeol. 27, 984–1002 (2017).Article 

    Google Scholar 
    MacRoberts, R. A. et al. Diet and mobility during the Christian conquest of Iberia: The multi-isotopic investigation of a 12th–13th century military order in Évora. Portugal. J. Archaeol. Sci. Rep. 30, 102210 (2020).
    Google Scholar 
    Miclon, V. et al. Social characterization of the medieval and modern population from Joué-lès-Tours (France): Contribution of oral health and diet. BMSAP 31, 77–92 (2017).Article 

    Google Scholar 
    Mion, L. et al. The influence of religious identity and socio-economic status on diet over time, an example from medieval France. Archaeol. Anthropol. Sci. 11, 3309–3327 (2019).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Oras, E. Isotopic provenancing of the Salme ship burials in Pre-Viking Age Estonia. Antiquity 90, 1022–1037 (2016).Article 

    Google Scholar 
    Tafuri, M. A., Goude, G. & Manzi, G. Isotopic evidence of diet variation at the transition between classical and post-classical times in Central Italy. J. Archaeol. Sci. Rep. 21, 496–503 (2018).
    Google Scholar 
    Torino, M. et al. Convento di San Francesco a Folloni: the function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    Toso, A., Gaspar, S. Banha da Silva, R., Garcia, S. J. & Alexander, M. High status diet and health in Medieval Lisbon: a combined isotopic and osteological analysis of the Islamic population from São Jorge Castle, Portugal. Archaeol. Anthropol. Sci. 11, 3699–3716 (2019).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Dreslerová, D. et al. Maintaining soil productivity as the key factor in European prehistoric and Medieval farming. J. Archaeol. Sci. Rep. 35, 102633 (2021).
    Google Scholar 
    Evans, J., Tatham, S., Chenery, S. R. & Chenery, C. A. Anglo-Saxon animal husbandry techniques revealed through isotope and chemical variations in cattle teeth. Appl. Geochem. 22, 1994–2005 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, A. & Thomas, R. Isotopic and zooarchaeological investigation of later medieval and post-medieval cattle husbandry at Dudley Castle, West Midlands. Environ. Archaeol. 17, 151–167 (2012).Article 

    Google Scholar 
    Halley, D. J. & Rosvold, J. Stable isotope analysis and variation in medieval domestic pig husbandry practices in northwest Europe: absence of evidence for a purely herbivorous diet. J. Archaeol. Sci. 49, 1–5 (2014).CAS 
    Article 

    Google Scholar 
    Hamerow, H. et al. An Integrated Bioarchaeological Approach to the Medieval ‘Agricultural Revolution’: A Case Study from Stafford, England, c. AD 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).Article 

    Google Scholar 
    Hamilton, J. & Thomas, R. Pannage, Pulses and Pigs: Isotopic and Zooarchaeological Evidence for Changing Pig Management Practices in Later Medieval England. Mediev. Archaeol. 56, 234–259 (2012).Article 

    Google Scholar 
    Hammond, C. & O’Connor, T. Pig diet in medieval York: carbon and nitrogen stable isotopes. Archaeol. Anthropol. Sci. 5, 123–127 (2013).Article 

    Google Scholar 
    Kovačiková, L. et al. Pig-Breeding Management in the Early Medieval Stronghold at Mikulčice (Eighth–Ninth Centuries, Czech Republic). Environ. Archaeol. 1–15, https://doi.org/10.1080/14614103.2020.1782583 (2020).Lahtinen, M. Isotopic Evidence for Environmental Adaptation in Medieval Iin Hamina, Northern Finland. Radiocarbon 59, 1117–1131 (2017).CAS 
    Article 

    Google Scholar 
    Müldner, G., Britton, K. & Ervynck, A. Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD). J. Archaeol. Sci. 41, 322–332 (2014).Article 

    Google Scholar 
    Orton, D. C. et al. Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery. PLoS ONE 6, e27568 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reitsema, L. J., Kozłowski, T. & Makowiecki, D. Human–environment interactions in medieval Poland: a perspective from the analysis of faunal stable isotope ratios. J. Archaeol. Sci. 40, 3636–3646 (2013).CAS 
    Article 

    Google Scholar 
    Sirignano, C. et al. Animal husbandry during Early and High Middle Ages in the Basque Country (Spain). Quat. Int. 346, 138–148 (2014).Article 

    Google Scholar 
    Vogel, J. C. & Van Der Merwe, N. J. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiq. 42, 238–242 (1977).CAS 
    Article 

    Google Scholar 
    Van Der Merwe, N. J. & Vogel, J. C. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).ADS 
    PubMed 
    Article 

    Google Scholar 
    Leng, M. J. Isotopes in Palaeoenvironmental Research. Isotopes in Palaeoenvironmental Research (Springer, 2006).Meier-Augenstein, W. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis. (Wiley, 2011).Archaeological Science: An Introduction. (Cambridge University Press, 2020).Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L. & Riehl, S. Stable isotopes in archaeobotanical research. Veg. Hist. Archaeobotany 24, 215–227 (2015).Article 

    Google Scholar 
    Hedges, R. E. M., Stevens, R. E. & Richards Michael. P. Bone as a stable isotope archive for local climatic information. Quat. Sci. Rev. 23, 959–965 (2004).ADS 
    Article 

    Google Scholar 
    Lahtinen, M., Arppe, L. & Nowell, G. Source of strontium in archaeological mobility studies—marine diet contribution to the isotopic composition. Archaeol. Anthropol. Sci. 13, 1 (2021).Article 

    Google Scholar 
    Lee-Thorp, J. A. On Isotopes and Old Bones. Archaeometry 50, 925–950 (2008).CAS 
    Article 

    Google Scholar 
    Lightfoot, E. & O’Connell, T. C. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations. PLOS ONE 11, e0153850 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Makarewicz, C. A. Stable isotopes in pastoralist archaeology as indicators of diet, mobility, and animal husbandry practices. in Isotopic Investigations of Pastoralism in Prehistory (eds. Ventresca Miller, A. & Makarewicz, C. A.) (Routledge, 2017).Pederzani, S. & Britton, K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Sci. Rev. 188, 77–107 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Styring, A. K. et al. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. Anthr. Rev. 3, 2–22 (2016).
    Google Scholar 
    Szpak, P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5 (2014).Roberts, P. et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 32, 361–372 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkin, S. et al. Economic Diversification Supported the Growth of Mongolia’s Nomadic Empires. Sci. Rep. 10, 3916 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. The Circulation of Ancient Animal Resources Across the Yellow River Basin: A Preliminary Bayesian Re-evaluation of Sr Isotope Data From the Early Neolithic to the Western Zhou Dynasty. Front. Ecol. Evol. 9, 16 (2021).ADS 
    CAS 

    Google Scholar 
    Leggett, S., Rose, A. & Praet, E. & Le Roux, P. Multi-tissue and multi-isotope (δ13C, δ15N, δ18O and 87/86Sr) data for early medieval human and animal palaeoecology. Ecology 102, e03349 (2021).PubMed 
    Article 

    Google Scholar 
    Mallet, S. & Stansbie, D. Substance and Subsistence. in English Landscapes and Identities. Investigating Landscape Change from 1500 BC to AD 1086 (eds. Gosden, C. & Green, C.) (Oxford University Press, 2021).Buikstra, J. E. & Ubelaker, D. H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. (Arkansas Archeological Survey, 1994).Cocozza, C., Cirelli, E., Groß, M., Teegen, W.-R. & Fernandes, R. Compendium Isotoporum Medii Aevi (CIMA). Pandora https://doi.org/10.48493/s9nf-1q80 (2021).Cocozza, C. & Fernandes, R. Amalthea: A Database of Isotopic Measurements on Archaeological and Forensic Tooth Dentine Increments. J. Open Archaeol. Data 9, 4 (2021).Article 

    Google Scholar 
    Etu-Sihvola, H. et al. The dIANA database – Resource for isotopic paleodietary research in the Baltic Sea area. J. Archaeol. Sci. Rep. 24, 1003–1013 (2019).
    Google Scholar 
    Fernandes, R. et al. The ARCHIPELAGO Archaeological Isotope Database for the Japanese Islands. J. Open Archaeol. Data 9, 3 (2021).Article 

    Google Scholar 
    Scheibner, A. Prähistorische Ernährung in Vorderasien und Europa. Eine kulturgeschichtliche Synthese auf der Basis ausgewählter Quellen. Berl. Archäol. Forschungen 16 (2016).Williams, A. N., Ulm, S., Smith, M. & Reid, J. AustArch: a database of 14C and non-14C ages from archaeological sites in Australia: composition, compilation and review. Internet Archaeol. 36, 1–12 (2014).
    Google Scholar 
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).Article 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009).Article 

    Google Scholar 
    van Klinken, G. J. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 26, 687–695 (1999).Article 

    Google Scholar 
    van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H. & Meijer, H. A. J. Status report: The Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 172, 58–65 (2000).ADS 
    Article 

    Google Scholar 
    Prasad, G. V. R., Culp, R. & Cherkinsky, A. δ13C correction to AMS data: Values derived from AMS vs IRMS values. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 244–249 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pollard, A. M., Pellegrini, M. & Lee-Thorp, J. A. Technical note: Some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. Am. J. Phys. Anthropol. 145, 499–504 (2011).CAS 
    Article 

    Google Scholar 
    Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. & Evans, J. A. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 26, 309–319 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehn, C., Rossmann, A. & Mayr, C. Stable isotope relationships between apatite phosphate (δ18O), structural carbonate (δ18O, δ13C), and collagen (δ2H, δ13C, δ15N, δ34S) in modern human dentine. Rapid Commun. Mass Spectrom. 34, e8674 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. Shiny: web application framework for R. R Package Version 1, 2017 (2017).
    Google Scholar 
    Cocozza, C., Fernandes, R., Ughi, A., Groß, M. & Alexander, M. M. Investigating infant feeding strategies at Roman Bainesse through Bayesian modelling of incremental dentine isotopic data. Int. J. Osteoarchaeol. 31, 429–439 (2021).Article 

    Google Scholar 
    Sołtysiak, A. & Fernandes, R. Much ado about nothing: assessing the impact of the 4.2 kya event on human subsistence patterns in northern Mesopotamia using stable isotope analysis. Antiquity 95, 1145–1160 (2021).Article 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).Article 

    Google Scholar 
    Montanari, M. Alimentazione e cultura nel Medioevo. (Laterza, 1988).Castiglioni, E. & Rottoli, M. Broomcorn millet, foxtail millet and sorghum in north Italian Early Medieval sites. Post-Class. Archaeol. 3, 131–144 (2013).
    Google Scholar 
    Rippon, S., Wainwright, A. & Smart, C. Farming Regions in Medieval England: The Archaeobotanical and Zooarchaeological Evidence. Mediev. Archaeol. 58, 195–255 (2014).Article 

    Google Scholar 
    Lewit, T. Pigs, presses and pastoralism: farming in the fifth to sixth centuries AD: Farming in the fifth to sixth centuries. Early Mediev. Eur. 17, 77–91 (2009).Article 

    Google Scholar 
    MacKinnon, M. Consistency and change: zooarchaeological investigation of Late Antique diets and husbandry techniques in the Mediterranean region. Antiq. Tardive 27, 135–148 (2019).Article 

    Google Scholar 
    Salvadori, F. The transition from late antiquity to early Middle Ages in Italy. A zooarchaeological perspective. Quat. Int. 499, 35–48 (2019).Article 

    Google Scholar 
    Witcher, R. Agricultural Production in Roman Italy. in A Companion to Roman Italy (ed. Cooley, A. E.) 459–482 (Wiley, 2016).Pearson, K. L. Nutrition and the Early-Medieval Diet. Speculum 72, 1–32 (1997).Article 

    Google Scholar 
    Salesse, K. et al. IsoArcH.eu: An open-access and collaborative isotope database for bioarchaeological samples from the Graeco-Roman world and its margins. J. Archaeol. Sci. Rep. 19, 1050–1055 (2018).
    Google Scholar 
    Winklerová, D. Zooarchaeological and archaeobotanical indicators for aspects of diet in medieval Kingdom of Bohemia. In Food in the Medieval Rural Environment: Processing, Storage, Distribution of Food (eds. Klápšte, J. & Sommer, P.) 421–429 (Brepols Publishers, 2011).Gyulai, F. The history of broomcorn millet (Panicum miliaceum L.) In the Carpathian-basin in the mirror of archaeobotanical remains II. From the roman age until the late medieval age. Columella J. Agric. Environ. Sci. 1 (2014).Iacumin, P., Galli, E., Cavalli, F. & Cecere, L. C4-consumers in southern europe: The case of friuli V.G. (NE-Italy) during early and central middle ages. Am. J. Phys. Anthropol. 154, 561–574 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bynum, C. W. Holy feast and holy fast: the religious significance of food to medieval women. (Univiversity of California Press, 2000).Garnsey, P. Food & Society Classical Antiquity. (Cambridge University Press, 2008).James, P. Food Provisions for Ancient Rome: A Supply Chain Approach. (Routledge).Minniti, C. L’approvvigionamento alimentare a Roma nel Medioevo: analisi dei resti faunistici provenienti dalle aree di scavo della Crypta Balbi e di Santa Cecilia. In Atti del III Convegno Nazionale di Archeozoologia (eds. Fiore, I., Malerba, G. & Chilardi, S.) 469–492 (Istituto poligrafico e Zecca dello Stato, 2005).Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian Model for Diet Reconstruction. PLoS ONE 9, e87436 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fernandes, R., Grootes, P., Nadeau, M.-J. & Nehlich, O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). Am. J. Phys. Anthropol. 158, 325–340 (2015).PubMed 
    Article 

    Google Scholar 
    Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 142, 1–17 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Sayle, K. L. et al. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland. Geochim. Cosmochim. Acta 120, 531–544 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Alt, K. W. et al. Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary. PLoS ONE 9, e110793 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brettell, R., Evans, J., Marzinzik, S., Lamb, A. & Montgomery, J. ‘Impious Easterners’: Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations? Eur. J. Archaeol. 15, 117–145 (2012).Article 

    Google Scholar 
    Knipper, C. et al. Mobility in Thuringia or mobile Thuringians: A strontium isotope study from early medieval Central Germany. In Population Dynamics in Prehistory and Early History (eds. Kaiser, E., Burger, J. & Schier, W.) 287–310, https://doi.org/10.1515/9783110266306.287 (De Gruyter, 2012).Winter-Schuh, C. & Makarewicz, C. A. Isotopic evidence for changing human mobility patterns after the disintegration of the Western Roman Empire at the Upper Rhine. Archaeol. Anthropol. Sci. 11, 2937–2955 (2019).Article 

    Google Scholar 
    Biddle, M. & Kjølbye-Biddle, B. Repton and the Vikings. Antiquity 66, 36–51 (1992).Article 

    Google Scholar 
    Biddle, M. & Kjølbye-Biddle, B. Repton and the ‘great heathen army’, 873–4. In Vikings and the Danelaw (eds. Graham-Campbell, J., Hall, R., Jesch, J. & Parsons, D. N.) 45–96 (Oxbow, 2001).Budd, P., Millard, A., Chenery, C., Lucy, S. & Roberts, C. Investigating population movement by stable isotope analysis: a report from Britain. Antiquity 78, 127–141 (2004).Article 

    Google Scholar 
    Jarman, C. L., Biddle, M. & Higham, T. & Bronk Ramsey, C. The Viking Great Army in England: new dates from the Repton charnel. Antiquity 92, 183–199 (2018).Article 

    Google Scholar 
    Roffey, S. et al. Investigation of a Medieval Pilgrim Burial Excavated from the Leprosarium of St Mary Magdalen Winchester, UK. PLoS Negl. Trop. Dis. 11, e0005186 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A functional definition to distinguish ponds from lakes and wetlands

    Current scientific definitions of pondsWe compiled existing scientific definitions of ponds by conducting a backwards and forwards search of papers referenced in or subsequently referencing three seminal pond papers8,17,18 (see “Methods”). We ultimately compiled 54 pond definitions from scientific literature (data available19). The variables most often included in definitions were surface area (91% of definitions), depth (48%), permanence (48%), origin (i.e., natural or human-made; 33%), and standing water (33%; Fig. 2a). When surface area or depth were included in definitions, they were often mentioned qualitatively (e.g., “small” and “shallow”). Of the 61% of definitions that included a maximum pond surface area, the range was 0.1 to 100 ha, the median was 2 ha, and all but two definitions were ≤ 10 ha (Fig. 2b). For depth, only 17% of studies provided a maximum depth cutoff, which ranged 2 to 8 m (Fig. 2c). Of the 26 definitions mentioning permanence, 22 stated that ponds could be temporary or permanent and only three indicated that ponds are exclusively permanent waterbodies. Of the 18 definitions mentioning origin, 17 mentioned that ponds could be natural or human-made with the remaining study indicating ponds can have diverse origins.Figure 2Summary of “pond” definitions from scientific literature including (a) presence of various morphological, biological, and physical characteristics in the definition as blue bars (n = 54 definitions total). Bold black lines indicate the number of definitions with surface area and depth values. Histograms of the upper limits from “pond” definitions for (b) surface area and (c) maximum depth.Full size imageOther important factors included in definitions related to morphometry. For example, 30% of definitions mentioned the potential for plants to colonize the entire basin, which relates to high light penetration (mentioned in 11% of definitions) and/or shallow depths. For example, Wetzel11 defines ponds as having enough light penetration that macrophyte photosynthesis can occur over the entire waterbody. As such, these conditions may be comparable to the littoral region of lakes (11% of definitions). Lastly, 7% of pond definitions mentioned mixing versus stratification, whereby ponds mix more than lakes20 yet less than shallow lakes due to a smaller fetch16.To assess if there was agreement in pond definitions among papers, we examined the number of times each definition was cited. Across the 54 definitions, there were 89 citations of 48 unique papers. Ultimately, most papers (75%) were only cited only once, indicating no consensus in pond definition. The most cited paper was Biggs et al.21, which accounted for 15% of citations. The next two most cited papers were Oertli et al.17 and Sondergaard et al.18, which were seminal papers included in our backwards-forwards search, and each comprised 8% of citations.International definitionsAt an international level, there is no consensus on how to discriminate among ponds, lakes, and wetlands. In North America, wetlands are generally considered to be shallow:  More