More stories

  • in

    Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests

    Chuine, I. Why does phenology drive species distribution? Philos. Trans. 365, 3149–3160 (2010).
    Google Scholar 
    Chuine, I. & Beaubien, E. G. Phenology is a major determinant of tree species range. Ecol. Lett. 4, 500–510 (2001).
    Google Scholar 
    Richardson, D. A. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).ADS 

    Google Scholar 
    Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).
    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Fu, Y. H. et al. Three times greater weight of daytime than of night‐time temperature on leaf unfolding phenology in temperate trees. N. Phytol. 212, 590–597 (2016).CAS 

    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).ADS 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).CAS 
    PubMed 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lang, G. A. Dormancy: a new universal terminology. HortScience 22, 817–820 (1987).
    Google Scholar 
    Perry, T. O. Dormancy of trees in winter. Science 171, 29–36 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, J. et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiol. 38, 1225–1236 (2018).PubMed 

    Google Scholar 
    Knowles, J. F. et al. Montane forest productivity across a semi-arid climatic gradient. Glob. Chang. Biol. 26, 6945–6958 (2020).ADS 
    PubMed 

    Google Scholar 
    Richard, S., Kjellsen, T. D., Schaberg, P. G. & Murakami, P. F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiol. 28, 1365–1374 (2008).
    Google Scholar 
    Roxas, A. A., Orozco, J., Guzmán-Delgado, P. & Zwieniecki, M. A. Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiol. 41, 1425–1438 (2021).CAS 

    Google Scholar 
    Palacio, S., Martínez, M. M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS 

    Google Scholar 
    Fierravanti, A., Rossi, S., Kneeshaw, D., Grandpré, L. D. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. For. Glob. Change. 2, 1–13 (2019).
    Google Scholar 
    Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A. & Wieser, G. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. N. Phytol. 209, 521–530 (2016).
    Google Scholar 
    Weber, R., Gessler, A. & Hoch, G. High carbon storage in carbon-limited trees. N. Phytol. 222, 171–182 (2019).CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Lidong, M., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).CAS 

    Google Scholar 
    Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32, 219–231 (2012).CAS 
    PubMed 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Terashima, I. & Hikosaka, K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18, 1111–1128 (1995).
    Google Scholar 
    Liang, J., Xia, J., Liu, L. & Wan, S. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. J. Plant. Ecol. 6, 437–447 (2013).
    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Chang. Biol. 23, 5189–5202 (2017).ADS 
    PubMed 

    Google Scholar 
    Keenan, T. F., Richardson, A. D. & Hufkens, K. On quantifying the apparent temperature sensitivity of plant phenology. N. Phytol. 225, 1033–1040 (2020).
    Google Scholar 
    Klein, T., Vitasse, Y. & Hoch, G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol. 36, 847–855 (2016).CAS 
    PubMed 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. N. Phytol. 171, 793–804 (2010).
    Google Scholar 
    Rinne, K. T. et al. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ(13) C and concentration analyses. Plant Cell Environ. 38, 2340–2352 (2015).CAS 
    PubMed 

    Google Scholar 
    Schädel, C., Blöchl, A., Richter, A. & Hoch, G. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol. 29, 901–911 (2009).PubMed 

    Google Scholar 
    Kaurin, A., Junttila, O. & Hanson, J. Seasonal changes in frost hardiness in cloudberry (Rubus chamaemorus) in relation to carbohydrate content with special reference to sucrose. Physiol. Plant. 52, 310–314 (1981).CAS 

    Google Scholar 
    Shahba, M. A., Qian, Y. L., Hughes, H. G., Koski, A. J. & Christensen, D. Relationships of soluble carbohydrates and freeze tolerance in saltgrass. Crop Sci. 43, 2148–2153 (2003).CAS 

    Google Scholar 
    Wang, J. et al. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Glob. Chang. Biol. 27, 5084–5093 (2021).PubMed 

    Google Scholar 
    Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric Meteorol. 290, 108031 (2020).
    Google Scholar 
    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric Meteorol. 291, 108077 (2020).
    Google Scholar 
    Chen, L. et al. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 25, 997–1004 (2019).ADS 
    PubMed 

    Google Scholar 
    Hanninen, H. Boreal and temperate trees in a changing climate: modelling the ecophysiology of seasonality. (Springer, 2016).Dreyer, E., Le Roux, X., Montpied, P., Daudet, F. A. & Masson, F. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 21, 223–232 (2001).CAS 
    PubMed 

    Google Scholar 
    Devi, A. F. & Garkoti, S. C. Variation in evergreen and deciduous species leaf phenology in Assam. India Trees 27, 985–997 (2013).
    Google Scholar 
    Bai, K., He, C., Wan, X. & Jiang, D. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB PLANTS 7, plv064 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Qi, J., Fan, Z., Fu, P., Zhang, Y. & Sterck, F. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiol. 41, 12–23 (2021).CAS 
    PubMed 

    Google Scholar 
    Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front. Plant Sci. 11, 1–18 (2020).
    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int J. Biometeorol. 62, 1109–1113 (2018).ADS 
    PubMed 

    Google Scholar 
    Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    Richardson, A. D. et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data. 5, 180028 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Klosterman, S. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).ADS 

    Google Scholar 
    Zhang, Y. et al. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 224, 1–10 (2016).ADS 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).ADS 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Validation of MODIS-GPP product at 10 flux sites in northern China. Int. J. Remote Sens. 34, 587–599 (2013).
    Google Scholar 
    Julien, Y. & Sobrino, J. Global land surface phenology trends from GIMMS database. Int J. Remote Sens. 30, 3495–3513 (2009).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens Environ. 84, 471–475 (2003).ADS 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 7, 1–27 (2020).
    Google Scholar 
    Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).PubMed 

    Google Scholar 
    Tang, Y., Xu, X., Zhou, Z., Qu, Y. & Sun, Y. Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecol. Inform. 63, 101307 (2021).
    Google Scholar 
    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. U.S.A. 112, 2788–2793 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 27, 2–23 (1996).MathSciNet 

    Google Scholar 
    Biriukova, K. et al. Performance of singular spectrum analysis in separating seasonal and fast physiological dynamics of solar-induced chlorophyll fluorescence and PRI optical signals. J. Geophys. Res. Biogeosci. 126, e2020JG006158 (2021).ADS 
    CAS 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C. et al. Interannual variability of net carbon exchange is related to the lag between the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two contrasting forest stands. Agric. For. Meteorol. 164, 29–38 (2012).ADS 

    Google Scholar 
    Cornes, R., der Schrier, G. V., den Besselaar, E. J. M. V. & Jones, P. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster. R package version 3.5-15 (2022).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Erb, I. Partial correlations in compositional data analysis. Comput. Geosci. 6, 100026 (2020).
    Google Scholar 
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. U.S.A. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    Kim, S. ppcor: Partial and semi-partial (part) correlation. https://CRAN.R-project.org/package=ppcor. R package version 1.1 (2015).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).
    Google Scholar 
    Freeman, E. A., Moisen, G. G., Coulston, J. W. & Wilson, B. T. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Can. J. For. Res. 46, 323–339 (2016).
    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Cutler, D. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 

    Google Scholar  More

  • in

    Long-term evidence for ecological intensification as a pathway to sustainable agriculture

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).Article 

    Google Scholar 
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B 363, 495–515 (2008).Article 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    Article 

    Google Scholar 
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).CAS 
    Article 

    Google Scholar 
    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).Article 

    Google Scholar 
    Ecosystems and Human Well-being: Synthesis (Millenium Ecosystem Assessment, 2005); http://www.millenniumassessment.org/documents/document.356.aspx.pdfBommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2018).Article 

    Google Scholar 
    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).CAS 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. Sustain. Agric. 2, 27–43 (2009).
    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).CAS 
    Article 

    Google Scholar 
    Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).Article 

    Google Scholar 
    Tittonell, P. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).Article 

    Google Scholar 
    Jenkinson, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228, 3–15 (2001).CAS 
    Article 

    Google Scholar 
    Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J. & Smith, C. J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 94, 23–38 (2009).Article 

    Google Scholar 
    Peoples, M. B. et al. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 123–142 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00008-XStorkey, J., Bruce, T., McMillan, V. & Neve, P. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 199–209 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00012-1Schröder, J. Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 96, 253–261 (2005).Article 
    CAS 

    Google Scholar 
    Mhlanga, B., Ercoli, L., Pellegrino, E., Onofri, A. & Thierfelder, C. The crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa. Agron. Sustain. Dev. 41, 29–43 (2021).Article 

    Google Scholar 
    Barrett, C. B. & Bevis, L. E. M. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).CAS 
    Article 

    Google Scholar 
    Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    Sandén, T. et al. European long-term field experiments: knowledge gained about alternative management practices. Soil Use Manage. 34, 167–176 (2018).Article 

    Google Scholar 
    Storkey, J. et al. The unique contribution of Rothamsted to ecological research at large temporal scales. Adv. Ecol. Res. 55, 3–42 (2016).Article 

    Google Scholar 
    Johnston, A. E. & Poulton, P. R. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69, 113–125 (2018).CAS 
    Article 

    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15, 124011 (2020).Article 

    Google Scholar 
    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).Article 

    Google Scholar 
    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935 (2015).Article 

    Google Scholar 
    Storkey, J., Mead, A., Addy, J. & MacDonald, A. J. Agricultural intensification and climate change have increased the threat from weeds. Glob. Change Biol. 27, 2416–2425 (2021).Article 

    Google Scholar 
    Vanlauwe, B. et al. in Integrated Plant Nutrient Management in Sub-Saharan Africa: From Concept to Practice (eds Vanlauwe, B. et al.) 173–184 (CABI, 2002).Hijbeek, R. et al. Do organic inputs matter—a meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 411, 293–303 (2017).CAS 
    Article 

    Google Scholar 
    Thierfelder, C. & Wall, P. C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 105, 217–227 (2009).Article 

    Google Scholar 
    Gentile, R., Vanlauwe, B., Chivenge, P. & Six, J. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol. Biochem. 40, 2375–2384 (2008).CAS 
    Article 

    Google Scholar 
    Mupangwa, W. et al. Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies. Agric. Ecosyst. Environ. 306, 107170 (2021).Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).CAS 
    Article 

    Google Scholar 
    Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).Article 

    Google Scholar 
    Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).Article 

    Google Scholar 
    Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    Kirkegaard, J. A. et al. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 187, 133–145 (2014).Article 

    Google Scholar 
    Thierfelder, C. et al. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev. 38, 16–37 (2018).Article 

    Google Scholar 
    Alignier, A. et al. Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 57, 654–663 (2020).Article 

    Google Scholar 
    Liebman, M. et al. Ecologically sustainable weed management: how do we get from proof-of-concept to adoption? Ecol. Appl. 26, 1352–1369 (2016).Article 

    Google Scholar 
    Giller, K. E. The food security conundrum of sub-Saharan Africa. Glob. Food Sec. 26, 100431 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Addy, J. W. G., Ellis, R. H., Macdonald, A. J., Semenov, M. A. & Mead, A. Changes in agricultural climate in South-Eastern England from 1892 to 2016 and differences in cereal and permanent grassland yield. Agric. For. Meteorol. 308–309, 108560 (2021).Article 

    Google Scholar 
    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. Preprint at https://arXiv.org/abs/1506.04967v2 (2018).MacLaren, C., Glendining, M., Poulton, P., Macdonald, A. & Clark, S. Woburn Ley-Arable Experiment: Yields of Wheat as First Test Crop, 1976–2018 (e-RA Rothamsted, 2022); https://doi.org/10.23637/wrn3-wheat7618-01 .Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means: R package version 1.7.2 https://CRAN.R-project.org/package=emmeans (2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Lajeunesse, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar  More

  • in

    Regenerative living cities and the urban climate–biodiversity–wellbeing nexus

    CIAT Global Rural-Urban Mapping Project, v1 (GRUMPv1): Urban Extents Grid (NASA SEDAC, 2011).Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector (UNEP, 2020).Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-being: Biodiversity Synthesis (Millenium Ecosystem Assessment, World Resources Institute, 2005).Xu, C. et al. Resour. Conserv. Recycl. 151, 104478 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. Nat. Commun. 12, 5050 (2021).CAS 
    Article 

    Google Scholar 
    van den Berg, M. et al. Urban For. Urban Green. 14, 806–816 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Lindenmayer, D. et al. Ecol. Lett. 11, 78–91 (2008).
    Google Scholar 
    Knapp, S., Jaganmohan, M. & Schwarz, N. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M. et al.) 167–172 (Springer, 2019).Kim, H. Y. Geomat. Nat. Hazards Risk 12, 1181–1194 (2021).Article 

    Google Scholar 
    Vargas-Hernández, J. G., Pallagst, K. & Zdunek-Wielgołaska, J. in Handbook of Engaged Sustainability (ed. Marques, J.) 885–916 (Springer, 2018).Manso, M. et al. Renew. Sustain. Energy Rev. 135, 110111 (2021).Article 

    Google Scholar 
    Assimakopoulos, M.-N. et al. Sustainability 12, 3772 (2020).CAS 
    Article 

    Google Scholar 
    Mora-Melià, D. et al. Sustainability 10, 1130 (2018).Article 

    Google Scholar 
    IPBES. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Google Scholar 
    Schröpfer, T. & Menz, S. in Dense and Green Building Typologies: Research, Policy and Practice Perspectives (eds Schröpfer, T. & Menz, S.) 1–4 (Springer, 2019).Pedersen Zari, M. & Hecht, K. Biomimetics 5, 18 (2020).Article 

    Google Scholar  More

  • in

    Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Hou, E. Q. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X. L., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–234 (2021).Article 

    Google Scholar 
    Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cy. 25, GB2014 (2011).Article 
    CAS 

    Google Scholar 
    Fornara, D. A. et al. Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecol. Res. 26, 201–208 (2011).CAS 
    Article 

    Google Scholar 
    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 

    Google Scholar 
    Oelmann, Y. et al. Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat. Commun. 12, 4431 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hacker, N. et al. Plant diversity shapes microbe–rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).PubMed 
    Article 

    Google Scholar 
    Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, J. et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086 (2020).Article 

    Google Scholar 
    Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156, 1078–1086 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, X. J. et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil 464, 257–272 (2021).CAS 
    Article 

    Google Scholar 
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).Article 

    Google Scholar 
    Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).Article 

    Google Scholar 
    Maddhesiya, P. K., Singh, K. & Singh, R. P. Effects of perennial aromatic grass species richness and microbial consortium on soil properties of marginal lands and on biomass production. Land Degrad. Dev. 32, 1008–1021 (2021).Article 

    Google Scholar 
    Zhang, C. B. et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 101, 1686–1692 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Štursová, M. & Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338, 99–110 (2011).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Funct. Ecol. 33, 1549–1560 (2019).Article 

    Google Scholar 
    Steinauer, K. et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96, 99–112 (2015).PubMed 
    Article 

    Google Scholar 
    Zhang, D. S. et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. 209, 823–831 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendse, F., van Ruijven, J., Jongejans, E. & Keesstra, S. Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18, 881–888 (2015).CAS 
    Article 

    Google Scholar 
    Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. Rep. 2, 45–61 (2016).Article 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).PubMed 
    Article 

    Google Scholar 
    Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).Article 

    Google Scholar 
    Chen, X. & Chen, H. Y. H. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 12, 4562 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl Acad. Sci. USA 101, 10101–10106 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11, 4546 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).Article 

    Google Scholar 
    Tang, X. Y. et al. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant Soil 460, 89–104 (2021).CAS 
    Article 

    Google Scholar 
    Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K., Prusisz, B. & Ehlers, K. in Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (eds Bünemann, E. et al.) 37–57 (Springer, 2011).Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).Article 

    Google Scholar 
    Mellado-Vazquez, P. G. et al. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol. Biochem. 94, 122–132 (2016).CAS 
    Article 

    Google Scholar 
    Qin, Y. et al. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil Ecol. 170, 104294 (2022).Article 

    Google Scholar 
    Rojo, M. J., Carcedo, S. G. & Mateos, M. P. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22, 169–174 (1990).CAS 
    Article 

    Google Scholar 
    Barrow, N. The effects of pH on phosphate uptake from the soil. Plant Soil 410, 401–410 (2017).CAS 
    Article 

    Google Scholar 
    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, R. P., Li, X. X., Xiao, Z. H., Lambers, H. & Li, L. Phosphorus facilitation and covariation of root traits in steppe species. New Phytol. 226, 1285–1298 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6, e1000097 (2009).Jenkins, D. G. & Quintana-Ascencio, P. F. A solution to minimum sample size for regressions. PLoS ONE 15, e0229345 (2020)..Rohatgi, A. WebPlotDigitizer v.4.5 (Automeris, 2021); https://automeris.io/WebPlotDigitizerJobbagy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth:global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).CAS 
    Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org/data/global-aridity-and-pet-databaseBridgham, S. D., Pastor, J., Mcclaugherty, C. A. & Richardson, C. J. Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am. Nat. 145, 1–21 (1995).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-10 https://cran.r-project.org/web/packages/lme4/index.html (2017).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    MuMIn: Multi-model inference. R package version 1.42.1 (2018).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Long, J. A. Interactions: comprehensive, user-friendly toolkit for probing interactions. R package version 1.1.5 https://cran.r-project.org/package=interactions (2021).Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Archiving the genomic and genetic resources of glaciers

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01367-2 (2022). More

  • in

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Presence of mucin stabilizes survival of both the bacterium and the phage during 16 weeks of co-cultureAn overview of our main experimental setup is shown in Fig. 1. To avoid population bottlenecks, our sampling was based on the weekly collecting 20% of the cultures and replacing with the same volume of fresh medium. Long term co-existence of both F. columnare B245 and its phage V156 was observed in all treatments. In lake water with (LW + M) or without mucin (LW), the closest approximations of natural conditions for F. columnare, the phage titers remained similar until week 9, after which LW + M showed a significant decline in phage numbers compared to LW (LM, t1,46 = −2.737, P = 0.0088) with roughly a ten-fold difference at week 16 (Fig. 2a, Supplementary Fig. 1a). Bacterial population densities in these treatments were opposite and more dramatic, with an average of 45-fold higher numbers in LW + M than in LM across all time points after an initial spike at week 1 (LM, t1,77 = 4.836, P  More

  • in

    Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds

    Hewitt, G. M. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Drovetski, S. V. et al. A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proc. R. Soc. B 285, 20181606 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).PubMed 
    Article 

    Google Scholar 
    Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, I. Speciation and Biogeography of Birds (Academic Press, 2003).
    Google Scholar 
    Pellegrino, I. et al. Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156, 639–657 (2014).Article 

    Google Scholar 
    Tietze, D. T. Bird Species: How they Arise, Modify and Vanish (Springer Nature, 2018).Book 

    Google Scholar 
    Carrera, L., Pavia, M., Peresani, M. & Romandini, M. Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate. Boll. Soc. Paleontol. I(57), 145–174 (2018).
    Google Scholar 
    Carrera, L., Pavia, M., Romandini, M. & Peresani, M. Avian fossil assemblages at the onset of the LGM in the eastern Alps: a palaecological contribution from the Rio Secco Cave (Italy). C. R. Palevol 17, 166–177 (2018).Article 

    Google Scholar 
    Carrera, L., Scarponi, D., Martini, F., Sarti, L. & Pavia, M. Mid-Late Pleistocene Neanderthal landscapes in southern Italy: paleoecological contributions of the avian assemblage from Grotta del Cavallo, Apulia, southern Italy. Palaeogeogr. Palaeocl. 567, 110256 (2021).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hampe, A. & Jump, A. S. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. S. 42, 313–333 (2011).Article 

    Google Scholar 
    Holm, S. R. & Svenning, J. C. 180,000 years of climate change in Europe: avifaunal responses and vegetation implications. PLoS ONE 9, e94021 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Sanchez Marco, A. Avian zoogeographical patterns during the Quaternary in the Mediterranean region and paleoclimatic interpretation. Ardeola 51, 91–132 (2004).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677–697 (2009).Article 

    Google Scholar 
    Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54 (2014).PubMed 
    Article 

    Google Scholar 
    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).Article 

    Google Scholar 
    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nogues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).Article 
    ADS 

    Google Scholar 
    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeocl. 310, 451–463 (2011).Article 

    Google Scholar 
    Arcones, A., Ponti, R., Ferrer, X. & Vieites, D. R. Pleistocene glacial cycles as drivers of allopatric differentiation in Arctic shorebirds. J. Biogeogr. 48, 747–759 (2021).Article 

    Google Scholar 
    Kozma, R., Melsted, P., Magnússon, K. P. & Höglund, J. Looking into the past–the reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol. Ecol. 25, 570–580 (2016).PubMed 
    Article 

    Google Scholar 
    Lagerholm, V. K. et al. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds. Glob. Change Biol. 23, 1425–1435 (2017).Article 
    ADS 

    Google Scholar 
    Metcalf, J. L. et al. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proc. R. Soc. B 281, 20132782. https://doi.org/10.1098/rspb.2013.2782 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perktaş, U., Peterson, A. T. & Dyer, D. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J. Ornithol. 158, 1–13 (2017).Article 

    Google Scholar 
    Perktaş, U., De Silva, T. N., Quintero, E. & Tavşanoğlu, Ç. Adding ecology into phylogeography: ecological niche models and phylogeography in tandem reveals the demographic history of the subalpine warbler complex. Bird Study 66, 234–242 (2019).Article 

    Google Scholar 
    Fløjgaard, C., Normand, S., Skov, F. & Svenning, J. C. Ice age distributions of European small mammals: insights from species distribution modelling. J. Biogeogr. 36, 1152–1163 (2009).Article 

    Google Scholar 
    Lima-Ribeiro, M. S., Varela, S., Nogués-Bravo, D. & Diniz-Filho, J. A. F. Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Nat. Conserv. 10, 145–151 (2012).Article 

    Google Scholar 
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waltari, E. et al. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2, e563 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barrientos, R. et al. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Mol. Ecol. 23, 390–407 (2014).PubMed 
    Article 

    Google Scholar 
    Huntley, B. & Green, R. E. Bioclimatic models of the distributions of Gyrfalcons and ptarmigan. In Gyrfalcons and Ptarmigan in a Changing World Vol. II (eds Watson, R. T. et al.) 329–338 (The Peregrine Fund, 2011).
    Google Scholar 
    Huntley, B., Allen, J. R. M., Barnard, P., Collingham, Y. C. & Holliday, P. R. Species distribution models indicate contrasting late-Quaternary histories for Southern and Northern Hemisphere bird species. Glob. Ecol. Biogeogr. 22, 277–288 (2013).Article 

    Google Scholar 
    Kiss, O. et al. Past and future climate-driven shifts in the distribution of a warm-adapted bird species, the European Roller Coracias garrulus. Bird Study 67, 143–159 (2020).Article 

    Google Scholar 
    Koparde, P., Mehta, P., Mukherjee, S. & Robin, V. V. Quaternary climatic fluctuations and resulting climatically suitable areas for Eurasian owlets. Ecol. Evol. 9, 4864–4874 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peterson, A. T. & Ammann, C. M. Global patterns of connectivity and isolation of populations of forest bird species in the late Pleistocene. Glob. Ecol. Biogeogr. 22, 596–606 (2013).Article 

    Google Scholar 
    Peterson, A. T., Martínez-Meyer, E. & González-Salazar, C. Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Divers. Distrib. 10, 237–246 (2004).Article 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Lack of evidence of a Pleistocene migratory switch in current bird long-distance migrants between Eurasia and Africa. J. Biogeogr. 47, 1564–1573 (2020).Article 

    Google Scholar 
    Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).Article 

    Google Scholar 
    Smith, S. E., Gregory, R. D., Anderson, B. J. & Thomas, C. D. The past, present and potential future distributions of cold-adapted bird species. Divers. Distrib. 19, 352–362 (2013).Article 

    Google Scholar 
    Sutton, L. J. et al. Geographic range estimates and environmental requirements for the harpy eagle derived from spatial models of current and past distribution. Ecol. Evol. 11, 481–497 (2021).PubMed 
    Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Storch, D. Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions. Glob. Change Biol. 21, 1475–1481 (2015).Article 
    ADS 

    Google Scholar 
    Scridel, D. et al. Thermal niche predicts recent changes in range size for bird species. Clim. Res. 73, 207–216 (2017).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Relating Habitat and Climatic Niches in Birds. PLoS Biol. 7, e32819 (2012).CAS 
    ADS 

    Google Scholar 
    Devictor, V., Julliard, R., Jiguet, F. & Couvet, D. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. Lond. [Biol.] 275, 2743–2748 (2008).
    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Glob. Change Biol. 21, 3367–3378 (2015).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A., Julliard, R., Newson, S. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1673–1685 (2007).Article 
    ADS 

    Google Scholar 
    Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. Lond. [Biol.] 277, 3601–3608 (2010).
    Google Scholar 
    Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Glob. Change Biol. 16, 497–505 (2010).Article 
    ADS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).PubMed 
    Article 

    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    BirdLife International. Crex crex. The IUCN Red List of Threatened Species 2016: e.T22692543A86147127. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692543A86147127.en (2016).BirdLife International. Perdix perdix. The IUCN Red List of Threatened Species 2016: e.T22678911A85929015. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678911A85929015.en (2016).BirdLife International. Pyrrhocorax graculus. The IUCN Red List of Threatened Species 2016: e.T22705921A87386602. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22705921A87386602.en (2016).BirdLife International. Coturnix coturnix. The IUCN Red List of Threatened Species 2018: e.T22678944A131904485. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22678944A131904485.en (2018).BirdLife International. Athene noctua. The IUCN Red List of Threatened Species 2019: e.T22689328A155470112. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22689328A155470112.en (2019).BirdLife International. Bubo scandiacus. The IUCN Red List of Threatened Species 2020: e.T22689055A181375387. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22689055A181375387.en (2020).Cramp, S. The Complete Birds of the Western Palearctic on CD-ROM (Oxford University Press, 1998).
    Google Scholar 
    Tyrberg, T. Pleistocene Birds of the Palearctic: A Catalogue. (Publications of the Nuttall Ornithological Club No. 27, 1998).Tyrberg, T. Pleistocene Birds of the Palaearctic. http://web.telia.com/~u11502098/pleistocene.pdf (2008).Pellegrino, I. et al. Evidence for strong genetic structure in European populations of the little owl Athene noctua. J. Avian Biol. 46, 462–475 (2015).Article 

    Google Scholar 
    van Nieuwenhuyse, D., Génot, J. C. & Johnson, D. H. The Little Owl: Conservation, Ecology and Behavior of Athene noctua (Cambridge University Press, 2008).
    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the Brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).Article 
    ADS 

    Google Scholar 
    Hoag, C. & Svenning, J. C. African environmental change from the Pleistocene to the Anthropocene. Annu. Rev. Env. Resour. 42, 27–54 (2017).Article 

    Google Scholar 
    Hoelzmann, P. et al. Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 219–256 (Springer, 2004).Chapter 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Bech, N., Novoa, C., Allienne, J. F., Boissier, J. & Bro, E. Quantifying genetic distance between wild and captive strains of the grey partridge Perdix perdix in France: conservation implications. Biodivers. Conserv. 29, 609–624 (2020).Article 

    Google Scholar 
    Liukkonen-Anttila, T., Uimaniemi, L., Orell, M. & Lumme, J. Mitochondrial DNA variation and the phylogeography of the grey partridge (Perdix perdix) in Europe: from Pleistocene history to present day populations. J. Evolut. Biol. 15, 971–982 (2002).CAS 
    Article 

    Google Scholar 
    Potapova, O. Snowy owl Nyctea scandiaca (Aves: Strigiformes) in the Pleistocene of the Ural Mountains with notes on its ecology and distribution in the Northern Palearctic. Deinsea 8, 103–126 (2001).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux du Pléistocène moyen et supérieur de France. Doc. Lab. Géol. Fac. Sci. Lyon 64, 1–624 (1975).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux dans les habitats pale´olithiques: gibier des hommes ou proies des rapaces? In Animal and Archaeology: 2. Shell Middens, Fishes and Birds (eds Grigson, C. & Clutton-Brock, J.) 111–124 (British Archaeological Reports International Series 183, 1983).
    Google Scholar 
    Meijer, H. J., Pavia, M., Madurell-Malapeira, J. & Alba, D. M. A revision of fossil eagle owls (Aves: Strigiformes: Bubo) from Europe and the description of a new species, Bubo ibericus, from Cal Guardiola (NE Iberian Peninsula). Hist. Biol. 29, 822–832 (2017).Article 

    Google Scholar 
    Sanchez Marco, A. Aves fósiles de la Península Ibérica, Canarias y Baleares: balance de los estudios realizados. Investig. Rev. PH Inst. Andal. Patrim. Hist. 94, 154–181 (2018).
    Google Scholar 
    Sardella, R. et al. Grotta Romanelli (Southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. S. 124, 247–264 (2018).
    Google Scholar 
    Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea 9, 395–404 (2003).
    Google Scholar 
    Bedetti, C. & Pavia, M. Reinterpretation of the Late Pleistocene Ingarano Cave deposit based on the fossil bird association (Apulia, South-eastern Italy). Riv. Ital. Paleontol. S. 113, 487–507 (2007).
    Google Scholar 
    Tyrberg, T. Arctic, montane and steppe birds as glacial relicts in West Palearctic. Ornithol. Verh. 25, 29–49 (1991).
    Google Scholar 
    Bruderer, B. & Salewski, V. Evolution of bird migration in a biogeographical context. J. Biogeogr. 35, 1951–1959 (2008).Article 

    Google Scholar 
    Finlayson, C. Avian Survivors. The History and Biogeography of Palearctic Birds (T. & A.D. Poyser, 2011).
    Google Scholar 
    Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95, 1109–1119 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).PubMed 
    Article 

    Google Scholar 
    Somveille, M. et al. Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Fiedler, W. Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. In Avian Migration (eds Berthold, P. et al.) 21–38 (Springer, 2003).Chapter 

    Google Scholar 
    Milá, B., Smith, T. B. & Wayne, R. K. Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60, 2403–2409 (2006).PubMed 
    Article 

    Google Scholar 
    Zink, R. M. The evolution of avian migration. Biol. J. Linn. Soc. 104, 237–250 (2011).Article 

    Google Scholar 
    Zink, R. M. & Gardner, A. S. Glaciation as a migratory switch. Sci. Adv. 3, e1603133 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Matthiesen, D. G. Avian medullary bone in the fossil record, an example from the Early Pleistocene of Olduvai Gorge, Tanzania. J. Vertebr. Paleontol. 9, 34A (1990).
    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article 

    Google Scholar 
    Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071 (2005).Article 
    ADS 

    Google Scholar 
    Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database, Version 26. https://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html (2019).d’Errico, F., Banks, W. E., Vanhaeren, M., Laroulandie, V. & Langlais, M. PACEA geo-referenced radiocarbon database. Paleoanthropology https://doi.org/10.4207/PA.2011.ART40 (2011).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1897. https://doi.org/10.2458/azu_js_rc.55.16947 (2013).CAS 
    Article 

    Google Scholar 
    Serjeantson, D. Birds: a seasonal resource. Environ. Archaeol. 3, 23–33 (1998).Article 

    Google Scholar 
    Serjeantson, D. Birds. Cambridge Manuals in Archaeology (Cambridge University Press, 2009).
    Google Scholar 
    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21 (2015).Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S. & Terribile, L. C. A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10, e0129037 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar. Ecol. Prog. Ser. 321, 267–281 (2006).Article 
    ADS 

    Google Scholar 
    Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D. & Hastie, T. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J. Biogeogr. 35, 1481–1497 (2008).Article 

    Google Scholar 
    Therneau, T. & Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart (2019).Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021). More

  • in

    ORMEF: a Mediterranean database of exotic fish records

    Edelist, D., Rilov, G., Golani, D., Carlton, J. T. & Spanier, E. Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 19, 69–77, https://doi.org/10.1111/ddi.12002 (2013).Article 

    Google Scholar 
    Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253, https://doi.org/10.1111/ele.12401 (2015).Article 
    PubMed 

    Google Scholar 
    Galil, B. S. et al. International arrivals: widespread bioinvasions in European Seas. Ethol. Ecol. Evol. 26, 152–171, https://doi.org/10.1080/03949370.2014.897651 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golani, D. & Fricke, R. Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa 4509, 1–215, https://doi.org/10.11646/zootaxa.4509.1.1 (2018).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 191, 171–187, https://doi.org/10.1016/j.ecss.2017.03.031 (2017).Article 

    Google Scholar 
    Katsanevakis, S. et al. Advancing marine conservation in European and contiguous seas with the MarCons Action. Res. Ideas Outcomes 3, e11884, https://doi.org/10.3897/rio.3.e11884 (2017).Article 

    Google Scholar 
    Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M. & Ben Ismail, S. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 6, 23009, https://doi.org/10.1038/srep23009 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vargas-Yáñez, M. et al. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Change 63, 177–184, https://doi.org/10.1016/j.gloplacha.2007.09.001 (2008).Article 

    Google Scholar 
    D’Amen, M. & Azzurro, E. Lessepsian fish invasion in Mediterranean marine protected areas: a risk assessment under climate change scenarios. ICES J. Mar. Sci. 77, 388–397, https://doi.org/10.1093/icesjms/fsz207 (2020).Article 

    Google Scholar 
    Golani, D., Azzurro, E., Dulčić, J., Massutí, E. & Orsi-Relini, L. Atlas of Exotic Species in the Mediterranean Sea. F. Briand, Ed. 365 pages. CIESM Publishers, Paris, Monaco (2021).Editorial Board. AquaNIS. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. Version 2.36+ (2015).Roy, D. et al. DAISIE – Inventory of alien invasive species in Europe. https://doi.org/10.15468/ybwd3x (2020).European Commission – Joint Research Centre – European Alien Species Information Network (EASIN).Uludag, A, Scalera, R., Trichkova, T., Tomov, R. & Rat, M. East and South European Network for Invasive Alien Species (ESENIAS): Development, networking and role in the invasive alien species research and policy-making in Europe. (2016).Zenetos, A. et al. ELNAIS: A collaborative network on Aquatic Alien Species in Hellas (Greece). REABIC 6, 185–196, https://doi.org/10.3391/mbi.2015.6.2.09 (2015).Article 

    Google Scholar 
    European Network on Invasive Alien Species. NOBANIS (Gateway to information on Invasive Alien species in North and Central Europe) (2013).MAMIAS – Marine Mediterranean Invasive Alien Species. (2014).MedMIS – Mediterranean Marine Invasive SpeciesKatsanevakis, S. et al. Identifying where vulnerable species occur in a data-poor context: combining satellite imaging and underwater occupancy surveys. Mar. Ecol. Prog. Ser. 577, 17–32, https://doi.org/10.3354/meps12232 (2017).Article 

    Google Scholar 
    Galil, B. S. Alien species in the Mediterranean Sea—which, when, where, why? In Challenges to Marine Ecosystems (eds. Davenport, J. et al.) 105–116, https://doi.org/10.1007/978-1-4020-8808-7_10 (Springer Netherlands (2008).Galil, B. S. Taking stock: inventory of alien species in the Mediterranean sea. Biol. Invasions 11, 359–372, https://doi.org/10.1007/s10530-008-9253-y (2009).Article 

    Google Scholar 
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530, https://doi.org/10.1890/13-1380.1 (2014).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118, https://doi.org/10.12681/mms.186 (2005).Article 

    Google Scholar 
    Zenetos, A. et al. Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on Foraminifera and Parasites. Mediterr. Mar. Sci. 9, 119–166, https://doi.org/10.12681/mms.146 (2008).Article 

    Google Scholar 
    Zenetos, A. et al. Alien species in the Mediterranean sea by 2010. A contribution to the application of european union’s marine strategy framework directive (MSFD). Part I. Spatial distribution. https://doi.org/10.12681/mms.87 (2010)Zenetos, Α et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13, 328–352, https://doi.org/10.12681/mms.327 (2012).Article 

    Google Scholar 
    Dimitriadis, C. et al. Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 21, 62–69, https://doi.org/10.12681/mms.21845 (2020).Article 

    Google Scholar 
    Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106, https://doi.org/10.1016/0006-3207(96)00020-1 (1996).Article 

    Google Scholar 
    Olenin, S., Minchin, D., Daunys, D. & Zaiko, A. Pathways of aquatic invasions in Europe. Atlas of biodiversity risk 138–139 (2010).Essl, F. et al. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience 69, 908–919 (2019).Article 

    Google Scholar 
    Golani, D., Orsi-Relini, L., Massuti, E. & Quignard, J. P. CIESM Atlas of Exotic Species in the Mediterranean. vol. 1 (2002).D’Amen, M. & Azzurro, E. Integrating univariate niche dynamics in species distribution models: A step forward for marine research on biological invasions. J. Biogeogr. 47, 686–697, https://doi.org/10.1111/jbi.13761 (2020).Article 

    Google Scholar 
    Azzurro, E., Smeraldo, S. & D’Amen, M. ORMEF: Occurrence Records of Mediterranean Exotic Fishes database. SEANOE. https://doi.org/10.17882/84182 (2021).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van Der Laan, R. Eschmeyer’s Catalog of Fishes: genera, species, references. California Academy of Sciences (2022).Azzurro, E., Goren, M., Diamant, A., Galil, B. & Bernardi, G. Establishing the identity and assessing the dynamics of invasion in the Mediterranean Sea by the dusky sweeper, Pempheris homboidei Kossmann & Räuber, 1877 (Pempheridae, Perciformes). Biol. Invasions 17, 815–826, https://doi.org/10.1007/s10530-014-0836-5 (2015).Article 

    Google Scholar 
    Evans, J. & Schembri, P. On the occurrence of Cephalopholis hemistiktos and C. taeniops (Actinopterygii, Perciformes, Serranidae) in Malta, with corrections of previous misidentifications. Acta Ichthyol. Piscat. 47, 197–200, https://doi.org/10.3750/AIEP/02064 (2017).Article 

    Google Scholar 
    Dragicevic, B. et al. New Mediterranean Biodiversity Records (December 2019). https://doi.org/10.12681/mms.20913 (2019).UNEP/MAP – United Nation Environment Programme – Mediterranean Action Plan. Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria (IMAP). (2016). More