More stories

  • in

    Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf

    Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495. https://doi.org/10.1126/science.284.5413.493%JScience (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brüchert, V. et al. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia. In Past and Present Water Column Anoxia (ed. Neretin, L. N.) 161–193 (Springer, 2006).Chapter 

    Google Scholar 
    Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341. https://doi.org/10.3389/fmars.2018.00341 (2018).Article 

    Google Scholar 
    Emeis, K. C. et al. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24, 627–642 (2004).ADS 
    Article 

    Google Scholar 
    Eisenbarth, S. & Zettler, M. L. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea. J. Mar. Syst. 155, 1–10 (2016).Article 

    Google Scholar 
    Zettler, M. L., Bochert, R. & Pollehne, F. Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia. Mar. Biol. 156, 1949–1961. https://doi.org/10.1007/s00227-009-1227-9 (2009).CAS 
    Article 

    Google Scholar 
    Cary, S. C., Vetter, R. D. & Felbeck, H. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55, 31–45 (1989).ADS 
    Article 

    Google Scholar 
    Le Pennec, M., Beninger, P. G. & Herry, A. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp. Biochem. Physiol. A Physiol. 111, 183–189. https://doi.org/10.1016/0300-9629(94)00211-B (1995).Article 

    Google Scholar 
    Taylor, J. D. & Glover, E. A. Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol. Soc. Lond. Spec. Publ. 177, 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12 (2000).ADS 
    Article 

    Google Scholar 
    Lim, S. J. et al. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. MSystems 4, e00280. https://doi.org/10.1128/mSystems.00280-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    König, S. et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat. Microbiol. 2, 16193. https://doi.org/10.1038/nmicrobiol.2016.193 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16195. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc. Natl. Acad. Sci. 118, e2104378118. https://doi.org/10.1073/pnas.2104378118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lim, S. J. et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 13, 902–920. https://doi.org/10.1038/s41396-018-0318-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Taylor, J., Glover, E. & Williams, S. Diversification of chemosymbiotic bivalves: Origins and relationships of deeper water Lucinidae. Biol. J. Lin. Soc. 111, 401–420. https://doi.org/10.1111/bij.12208 (2014).Article 

    Google Scholar 
    Taylor, J. & Glover, E. Biology, Evolution and Generic Review of the Chemosymbiotic Bivalve Family Lucinidae (Ray Society, 2021).
    Google Scholar 
    Nagel, B. et al. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf-An isotope-based approach. J. Geophys. Res. Biogeosci. 118, 361–371. https://doi.org/10.1002/jgrg.20040 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Neumann, A. & Flohr, A. The bivalve Lembulus bicuspidatus may enhance denitrification in shelf sediment at the Angola-Benguela Frontal Zone. Afr. J. Mar. Sci. 40, 91–96. https://doi.org/10.2989/1814232X.2018.1437774 (2018).Article 

    Google Scholar 
    Sampaio, L., Rodrigues, A. M. & Quintino, V. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60, 1790–1802. https://doi.org/10.1016/j.marpolbul.2010.06.003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakko, A. L. The influence of the Benguela upwelling system on Namibia’s marine biodiversity. Biodivers. Conserv. 7, 419–433. https://doi.org/10.1023/A:1008867310010 (1998).Article 

    Google Scholar 
    Levin, L. A., Mendoza, G. F., Konotchick, T. & Lee, R. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res. II 56, 1632–1648. https://doi.org/10.1016/j.dsr2.2009.05.010 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Soto, L. A. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Res. II 56, 1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Weems, J., Iken, K., Gradinger, R. & Wooller, M. J. Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Biol. Ecol. 430, 32–42. https://doi.org/10.1016/j.jembe.2012.06.015 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740. https://doi.org/10.1002/ece3.4712 (2019).Article 
    PubMed 

    Google Scholar 
    DavySimon, K., Allemand, D. & WeisVirginia, M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261. https://doi.org/10.1128/MMBR.05014-11 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429 (2011).ADS 
    Article 

    Google Scholar 
    Berg, C. J. & Alatalo, P. Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165–179. https://doi.org/10.1016/0044-8486(84)90264-3 (1984).CAS 
    Article 

    Google Scholar 
    Dando, P. R. & Southward, A. J. Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. Mar. Biol. Assoc. U.K. 66, 915–929. https://doi.org/10.1017/S0025315400048529 (1986).CAS 
    Article 

    Google Scholar 
    Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. 13C/12C ratios in marine invertebrates from reducing sediments: Confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, C. R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 (1990).CAS 

    Google Scholar 
    Duperron, S., Fiala-Medioni, A., Caprais, J. C., Olu, K. & Sibuet, M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): Comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol. Ecol. 59, 64–70. https://doi.org/10.1111/j.1574-6941.2006.00194.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanzerl, H., Salvo, F., Jones, S. W. & Dufour, S. C. Feeding strategies in symbiotic and asymbiotic thyasirid bivalves. J. Sea Res. 145, 16–23. https://doi.org/10.1016/j.seares.2018.12.005 (2019).ADS 
    Article 

    Google Scholar 
    Descolas-Gros, C. & Fontugne, M. R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87, 1–6. https://doi.org/10.1007/BF00396999 (1985).CAS 
    Article 

    Google Scholar 
    Brooks, J. M. et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238, 1138. https://doi.org/10.1126/science.238.4830.1138 (1987).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conway, N., Capuzzo, J. M. & Fry, B. The role of endosymbiotic bacteria in the nutrition of Solemya velum: Evidence from a stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34, 249–255. https://doi.org/10.4319/lo.1989.34.1.0249 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Conway, N. M., Howes, B. L., McDowell Capuzzo, J. E., Turner, R. D. & Cavanaugh, C. M. Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 601–613. https://doi.org/10.1007/BF00346178 (1992).Article 

    Google Scholar 
    Rau, G. H. Low 15N/14N in hydrothermal vent animals: Ecological implications. Nature 289, 484. https://doi.org/10.1038/289484a0 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennicutt, M. C. et al. Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. https://doi.org/10.1016/0009-2541(92)90009-T (1992).CAS 
    Article 

    Google Scholar 
    Lee, R. W. & Childress, J. J. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl. Environ. Microbiol. 60, 1852–1858. https://doi.org/10.1128/AEM.60.6.1852-1858.1994 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Zanden, M. J. V. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).ADS 
    Article 

    Google Scholar 
    Nagel, B., Gaye, B., Lahajnar, N., Struck, U. & Emeis, K.-C. Effects of current regimes and oxygenation on particulate matter preservation on the Namibian shelf: Insights from amino acid biogeochemistry. Mar. Chem. 186, 121–132. https://doi.org/10.1016/j.marchem.2016.09.001 (2016).CAS 
    Article 

    Google Scholar 
    Holmes, M. E. et al. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134, 1–12. https://doi.org/10.1016/0025-3227(96)00031-X (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article 

    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750. https://doi.org/10.4319/lom.2009.7.740 (2009).CAS 
    Article 

    Google Scholar 
    Glibert, P. M., Middelburg, J. J., McClelland, J. W. & Jake Vander Zanden, M. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol. Oceanogr. 64, 950–981. https://doi.org/10.1002/lno.11087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. I 114, 137–148. https://doi.org/10.1016/j.dsr.2016.05.005 (2016).CAS 
    Article 

    Google Scholar 
    Steinkopf, M. Trophische Strukturen des Mesozooplanktons im Benguela Auftriebsgebiet vor Namibia (Universität Rostock, 2018).
    Google Scholar 
    Sigman, D. & Fripiat, F. Nitrogen isotopes in the Ocean. In Encyclopedia of Ocean Sciences 3rd edn, Vol. 263 (eds Cochran, J. K. et al.) 268 (Academic Press, 2019).
    Google Scholar 
    Nagel, B. et al. Nutrients and δ15N measured in water samples in the oxygen minimum zone over the Namibian shelf during the Meteor campaign M76–2 in 2008. PANGAEA. https://doi.org/10.1594/PANGAEA.892369 (2018).Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T. & Tortell, P. D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74, 1030–1040 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Prokopenko, M. G., Hammond, D. E. & Stott, L. Lack of isotopic fractionation of δ 15N of organic matter during long-term diagenesis in marine sediments, ODP Leg 202, Sites 1234 and 1235. In Proc. Ocean Drilling Program(eds. R. Tiedemann, A. C. Mix, C. Richter and W. F. Ruddiman) 22 (2006).Prokopenko, M. G. et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“Riding on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, 4203. https://doi.org/10.1029/2012PA002321 (2012).ADS 
    Article 

    Google Scholar 
    Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol. J. 12, 113–127. https://doi.org/10.1080/01490459409377977 (1994).CAS 
    Article 

    Google Scholar 
    Grasshoff, K. et al. (eds) Methods of Seawater Analysis 3rd edn. (Wiley, 2009).
    Google Scholar 
    Hofmann, D., Gehre, M. & Jung, K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39, 233–244. https://doi.org/10.1080/1025601031000147630 (2003).CAS 
    Article 

    Google Scholar 
    Veuger, B., Middelburg, J. J., Boschker, H. T. S. & Houtekamer, M. Analysis of 15N incorporation into D-alanine: A new method for tracing nitrogen uptake by bacteria. Limnol. Oceanogr. Methods 3, 230–240. https://doi.org/10.4319/lom.2005.3.230 (2005).CAS 
    Article 

    Google Scholar 
    Loick-Wilde, N. et al. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob. Change Biol. 25, 794–810. https://doi.org/10.1111/gcb.14546 (2019).ADS 
    Article 

    Google Scholar 
    Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26, 835–844. https://doi.org/10.1007/s11284-011-0844-1 (2011).Article 

    Google Scholar 
    Chikaraishi, Y. et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. Evol. 4, 2423–2449. https://doi.org/10.1002/ece3.1103 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eglite, E. et al. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: A stable nitrogen isotope approach. Ecosphere 9, e02135. https://doi.org/10.1002/ecs2.2135 (2018).Article 

    Google Scholar 
    Fujii, T. et al. Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8, 1221. https://doi.org/10.3390/microorganisms8081221 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral–dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182. https://doi.org/10.3390/microorganisms9010182 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Maeda, T. et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7, e42024. https://doi.org/10.1371/journal.pone.0042024 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pjevac, P. et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front. Microbiol. 12, 1069 (2021).Article 

    Google Scholar 
    Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. https://doi.org/10.1038/srep08365 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541. https://doi.org/10.1002/ece3.2951 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, J. J. & Cavanaugh, C. M. Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 1496–1502. https://doi.org/10.4319/lo.1995.40.8.1496 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Fry, B. Stable Isotope Ecology (Springer, 2006).Book 

    Google Scholar 
    Emeis, K. et al. pCO2 underway data from the Benguela upwelling system in southeastern South Atlantic Ocean. PANGAEA. https://doi.org/10.1594/PANGAEA.880406 (2017).Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Goericke, R., Montoya, J. & Fry, B. Physiology and isotopic fractionation in algae and cyanobacteria. In Stable Isotopes in Ecology and Environmental Science (eds Kajtah, K. & Michener, R. H.) 187–221 (Blackwell, 1994).
    Google Scholar 
    Duplessis, M. R., Dufour, S. C., Blankenship, L. E., Felbeck, H. & Yayanos, A. A. Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551–561. https://doi.org/10.1007/s00227-004-1350-6 (2004).Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of deposit-feeding animals in marine Sediments. Q. Rev. Biol. 62, 235–260. https://doi.org/10.1086/415511 (1987).Article 

    Google Scholar 
    Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).ADS 
    Article 

    Google Scholar 
    Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85, 186–196. https://doi.org/10.1016/j.seares.2013.04.018 (2014).ADS 
    Article 

    Google Scholar 
    McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744. https://doi.org/10.1016/j.gca.2007.06.061 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Zbinden, M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar. Biol. 162, 435–448. https://doi.org/10.1007/s00227-014-2591-7 (2015).CAS 
    Article 

    Google Scholar 
    Whitlatch, R. B. & Obrebski, S. Feeding selectivity and coexistence in two deposit-feeding gastropods. Mar. Biol. 58, 219–225. https://doi.org/10.1007/BF00391879 (1980).Article 

    Google Scholar 
    Connor, M. S. & Robert, K. E. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53, 271–275 (1982).ADS 
    Article 

    Google Scholar 
    Feller, R. J. Dietary immunoassay of Ilyanassa obsoleta, the eastern mud snail. Biol. Bull. 166, 96–102. https://doi.org/10.2307/1541433 (1984).Article 

    Google Scholar 
    Kelaher, B. P., Levinton, J. S. & Matthew Hoch, J. Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 292, 139–157. https://doi.org/10.1016/S0022-0981(03)00183-7 (2003).Article 

    Google Scholar 
    Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    Checkley, D. M. & Miller, C. A. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1449–1456. https://doi.org/10.1016/0198-0149(89)90050-2 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. C. & Fisher, C. R. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In The Microbiology of Deep-Sea Hydrothermal Vents (ed. Karl, D. M.) 125–167 (CRC Press, 1995).
    Google Scholar 
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134. https://doi.org/10.1038/s41396-019-0486-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289 (1999).CAS 
    Article 

    Google Scholar 
    Hentschel, U. & Felbeck, H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata is not regulated by oxygen. Appl. Environ. Microbiol. 61, 1630–1633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sacks, L. E. & Barker, H. A. The influence of oxygen on nitrate and nitrite reduction. J. Bacteriol. 58, 11–22. https://doi.org/10.1128/JB.58.1.11-22.1949 (1949).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Quantification and characterisation of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France

    Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).PubMed 
    Article 

    Google Scholar 
    Anderson, T. Biology of the Ubiquitous House Sparrow: From Genes to Populations (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780195304114.001.0001.Book 

    Google Scholar 
    Johnston, R. F. Synanthropic Birds of North America. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. M. et al.) 49–67 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_3.Chapter 

    Google Scholar 
    Shaw, L. M., Chamberlain, D., Conway, G. & Toms, M. Spatial distribution and habitat preferences of the House Sparrow Passer domesticus in urbanised landscapes. (2011).Guetté, A., Gaüzère, P., Devictor, V., Jiguet, F. & Godet, L. Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity. Ecol. Indic. 79, 139–154 (2017).Article 

    Google Scholar 
    Slusher, M. J. et al. Are passerine birds reservoirs for influenza A viruses?. J. Wildl. Dis. 50, 792–809 (2014).PubMed 
    Article 

    Google Scholar 
    Veen, J. et al. Ornithological data relevant to the spread of Avian Influenza in Europe (phase 2): further identification and first field assessment of Higher Risk Species. (2007).Caron, A., Cappelle, J. & Gaidet, N. Challenging the conceptual framework of maintenance hosts for influenza A viruses in wild birds. J. Appl. Ecol. 54, 681–690 (2017).Article 

    Google Scholar 
    Olsen, B. et al. Global patterns of influenza A virus in wild birds. Science 312, 384–388 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, J. D., Stallknecht, D. E., Berghaus, R. D. & Swayne, D. E. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer Domesticus) and rock pigeons (Columbia Livia). J. Vet. Diagn. Invest. 21, 437–445 (2009).PubMed 
    Article 

    Google Scholar 
    Forrest, H. L., Kim, J.-K. & Webster, R. G. Virus shedding and potential for interspecies waterborne transmission of highly pathogenic H5N1 influenza virus in sparrows and chickens. J. Virol. 84, 3718–3720 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nemeth, N. M., Thomas, N. O., Orahood, D. S., Anderson, T. D. & Oesterle, P. T. Shedding and serologic responses following primary and secondary inoculation of house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with low-pathogenicity avian influenza virus. Avian Pathol. 39, 411–418 (2010).PubMed 
    Article 

    Google Scholar 
    Yamamoto, Y., Nakamura, K., Yamada, M. & Mase, M. Pathogenesis in Eurasian tree sparrows inoculated with H5N1 highly pathogenic avian influenza virus and experimental virus transmission from tree sparrows to chickens. Avian Dis. 57, 205–213 (2013).PubMed 
    Article 

    Google Scholar 
    Ellis, J. W. et al. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLOS Pathog. 17, e1009879 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, R. A., Sorn, S., Nicholls, J. M. & Buchy, P. Eurasian tree sparrows, risk for H5N1 virus spread and human contamination through buddhist ritual: An experimental approach. PLoS ONE 6, e28609 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caron, A., Cappelle, J., Cumming, G. S., de Garine-Wichatitsky, M. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11 (2015).CAS 
    Article 

    Google Scholar 
    Guinat, C. et al. Duck production systems and highly pathogenic avian influenza H5N8 in France, 2016–2017. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    EFSA et al. Scientific report Avian influenza overview October 2016–August 2017. EFSA J. 15, 101 (2017).
    Google Scholar 
    EFSA et al. Scientific report: Avian influenza overview December 2020–February 2021. EFSA J. 19, 74 (2021).
    Google Scholar 
    Le Bouquin, S. et al. L’épisode d’influenza aviaire en France en 2015–2016: Situation épidémiologique au 30 juin 2016. Bull. Epidémiologique Santé Anim. Aliment.—DGAL—Anses 1–7 (2016).EFSA et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).
    Google Scholar 
    DGAL. Arrêté du 8 février 2016 relatif aux mesures de biosécurité applicables dans les exploitations de volailles et d’autres oiseaux captifs dans le cadre de la prévention contre l’influenza aviaire. AGRG1603907A, (2016).Koch, G. & Elbers, A. R. W. Outdoor ranging of poultry: A major risk factor for the introduction and development of high-pathogenicity avian influenza. NJAS—Wagening. J. Life Sci. 54, 179–194 (2006).Article 

    Google Scholar 
    Delpont, M. et al. Biosecurity practices on foie gras duck farms Southwest France. Prev. Vet. Med. 158, 78–88 (2018).PubMed 
    Article 

    Google Scholar 
    Bicout, J. D., Artois, M., Musseau, R., Caparros, O. & Lubac, S. Which wild birds are potentially at risk for contacts between wild avifauna and with poultry? in 9èmes Journées de la Recherche Avicole, Tours, France 5pp (World’s Poultry Science Association (WPSA), 2011).Gotteland, C., Lubac, S. & Bicout, D. Où trouve-t-on les oiseaux sauvages aux alentours des élevages? Risque de contact oiseaux sauvages et volailles. Epidemiol. Sante Anim. 55, 103–115 (2009).
    Google Scholar 
    Lubac, S., Musseau, R., Caparros, O., Artois, M. & Bicout, D. J. Interactions entre l’avifaune sauvage et les élevages de volailles: Quel risque épidémiologique vis à vis de l’Influenza aviaire ?. Innov. Agron. 25, 299–312 (2012).
    Google Scholar 
    Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 0, 1–14 (2021).Jeliazkov, A. et al. Impacts of agricultural intensification on bird communities: New insights from a multi-level and multi-facet approach of biodiversity. Agric. Ecosyst. Environ. 216, 9–22 (2016).Article 

    Google Scholar 
    Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2022).Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Bacigalupo, S. A., Dixon, L. K., Gubbins, S., Kucharski, A. J. & Drewe, J. A. Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review. PeerJ 8, e10221 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. & Seto, W. H. How far droplets can move in indoor environments: revisiting the Wells evaporation-falling curve. Indoor Air 17, 211–225 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zuo, Z. et al. Association of airborne virus infectivity and survivability with its carrier particle size. Aerosol Sci. Technol. 47, 373–382 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pons, P. & Latapy, M. Computing Communities in Large Networks Using Random Walks. in Computer and Information Sciences : ISCIS 2005 284–293 (Springer, 2005). https://doi.org/10.1007/11569596_31.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 
    Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).ADS 
    Article 

    Google Scholar 
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988). https://doi.org/10.4324/9780203771587.Book 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2022).Bartoń, K. MuMIn: Multi-Model Inference. (2022).Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lefcheck, J., Byrnes, J. & Grace, J. piecewiseSEM: Piecewise Structural Equation Modeling. (2020).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    UICN France, MNHN, LPO BirdLife France, SEOF & ONCFS. La Liste rouge des espèces menacées en France—Chapitre Oiseaux de France métropolitaine. (2016).Bestman, M., de Jong, W., Wagenaar, J.-P. & Weerts, T. Presence of avian influenza risk birds in and around poultry free-range areas in relation to range vegetation and openness of surrounding landscape. Agrofor. Syst. 92, 1001–1008 (2018).Article 

    Google Scholar 
    Scott, A. B. et al. Wildlife presence and interactions with chickens on australian commercial chicken farms assessed by camera traps. Avian Dis. 62, 65–72 (2018).PubMed 
    Article 

    Google Scholar 
    Scherer, A. L., de Scherer, J. F. M., Petry, M. V. & Sander, M. Occurrence and interaction of wild birds at poultry houses in southern Brazil. Rev. Bras. Ornitol.: Braz. J. Ornithol. 19, 74–79 (2011).
    Google Scholar 
    Burns, T. E. et al. Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada. Can. Vet. J. 53, 158–166 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Elbers, A. R. W. & Gonzales, J. L. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound. Emerg. Dis https://doi.org/10.1111/tbed.13382 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B. Biol. Sci. 370, 20140107 (2015).Article 

    Google Scholar 
    Clergeau, P., Savard, J.-P.L., Mennechez, G. & Falardeau, G. Bird abundance and diversity along an urban-rural gradient: A comparative study between two cities on different continents. The Condor 100, 413–425 (1998).Article 

    Google Scholar 
    Le Gall-Ladevèze, C. et al. Detection of a novel enterotropic Mycoplasma gallisepticum-like in European starling (Sturnus vulgaris) around poultry farms in France. Transbound. Emerg. Dis. 0, 1–12 (2021).Shriner, S. A. & Root, J. J. A review of avian influenza A virus associations in synanthropic birds. Viruses 12, 1209 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Shriner, S. A. et al. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak. Sci. Rep. 6, 36237 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davies, N. B. Food, flocking and territorial behaviour of the pied wagtail (Motacilla alba yarrellii Gould) in winter. J. Anim. Ecol. 45, 235–253 (1976).Article 

    Google Scholar 
    Snow, D. W., Perrins, C. M. & Gillmor, R. The birds of the western palaearctic. Vol. 2, Passerines. vol. 2 (Oxford University Press, 1998).Rigal, S. et al. Biotic homogenisation in bird communities leads to large-scale changes in species associations. Oikos 2022, e08756 (2022).Article 

    Google Scholar 
    Dalziel, A. E., Delean, S., Heinrich, S. & Cassey, P. Persistence of low pathogenic influenza A virus in water: A systematic review and quantitative meta-analysis. PLoS ONE 11, e0161929 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keeler, S. P., Dalton, M. S., Cressler, A. M., Berghaus, R. D. & Stallknecht, D. E. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol. 80, 2910–2917 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marois, C., Dufour-Gesbert, F. & Kempf, I. Polymerase chain reaction for detection of mycoplasma gallisepticum in environmental samples. Avian Pathol. 31, 163–168 (2002).PubMed 
    Article 

    Google Scholar 
    Blagodatski, A. et al. Avian influenza in wild birds and poultry: dissemination pathways, monitoring methods, and virus ecology. Pathogens 10, 630 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoffolano, J. G. Jr. & Geden, C. J. Succession of manure arthropods at a poultry farm in massachusetts, USA, With observations on carcinops pumilio (Coleoptera: Histeridae) sex ratios, ovarian condition, and body size1. J. Med. Entomol. 24, 212–220 (1987).Article 

    Google Scholar 
    Ushio, M. et al. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci. Rep. 8, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    Fontaine, B. et al. Suivi des oiseaux communs en France 1989–2019 : 30 ans de suivis participatifs—Executive summary of the 2019 common birds monitoring report. https://inpn.mnhn.fr/actualites/lire/12721/bilan-des-30-ans-du-suivi-temporel-des-oiseaux-communs-stoc (2020).Seamans, T. & Gosser, A. Bird dispersal techniques. in Wildlife Damage Management Technical Series 12pp (USDA, APHIS, WS National Wildlife Research Center, 2016). https://doi.org/10.32747/2016.7207730.ws.Elbers, A. R. W. & Gonzales, J. L. Efficacy of an automated laser for reducing wild bird visits to the free range area of a poultry farm. Sci. Rep. 11, 12779 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conover, M. R. & Perito, J. J. Response of starlings to distress calls and predator models holding conspecific prey. Z. Für Tierpsychol. 57, 163–172 (1981).Article 

    Google Scholar 
    Aubin, T. Synthetic bird calls and their application to scaring methods. Ibis 132, 290–299 (1990).Article 

    Google Scholar 
    Guinat, C. et al. Biosecurity risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms France. Transbound. Emerg. Dis. 67, 2961–2970 (2020).PubMed 
    Article 

    Google Scholar 
    Gaide, N. et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 11, 5928 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spekreijse, D., Bouma, A., Koch, G. & Stegeman, A. Quantification of dust-borne transmission of highly pathogenic avian influenza virus between chickens. Influenza Other Respir. Viruses 7, 132–138 (2013).PubMed 
    Article 

    Google Scholar 
    Torremorell, M. et al. Investigation into the airborne dissemination of H5N2 highly pathogenic avian influenza virus during the 2015 spring outbreaks in the midwestern United States. Avian Dis. 60, 637–643 (2016).PubMed 
    Article 

    Google Scholar 
    Caron, A., Grosbois, V., Etter, E., Gaidet, N. & de Garine-Wichatitsky, M. Bridge hosts for avian influenza viruses at the wildlife/domestic interface: An eco-epidemiological framework implemented in southern Africa. Prev. Vet. Med. 117, 590–600 (2014).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Safety assessment and sustainability of consuming eggplant (Solanum melongena L.) grown in wastewater-contaminated agricultural soils

    Eid, E. M., Galal, T. M. & El-Bebany, A. F. Prediction models for monitoring heavy metals accumulation by wheat (Triticum aestivum L.) plants grown in soil amended with different rates of sewage sludge. Int. J. Phytoremediation 22(10), 1000–1008 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Singh, R. P. & Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng. 36(7), 969–972 (2010).Article 

    Google Scholar 
    Wu, N., Su-mei, L., Gui-ling, Z. & Hong-mei, Z. Anthropogenic impacts on nutrient variability in the lower yellow river. Sci. Tot. Environ. 755, 142488 (2021).CAS 
    Article 

    Google Scholar 
    Jacob, J. M. et al. Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manag. 217, 56–70 (2018).CAS 
    Article 

    Google Scholar 
    Gharib, F. A., Mansour, K. H., Ahmed, E. Z. & Galal, T. M. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int. J. Phytoremediation 23(6), 641–651 (2020).PubMed 

    Google Scholar 
    Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chowdhury, A. H., Chowdhury, T. & Rahman, A. Heavy metal accumulation in tomato and cabbage grown in some industrially contaminated soils of Bangladesh. J. Bangladesh Agric. Univ. 17(3), 288–294 (2019).Article 

    Google Scholar 
    Hu, S., Liu, L., Zuo, S., Ali, M. & Wang, Z. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. J. Clean Prod. 266, 121991 (2020).CAS 
    Article 

    Google Scholar 
    Hu, W. Y., Zhang, Y. X., Huang, B. & Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170, 183–195 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Qin, S. et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2), 168–180 (2020).Article 

    Google Scholar 
    Kumar, V., Thakur, K. R. & Kumar, P. Assessment of heavy metals uptake by cauliflower (Brassica oleracea Var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Sci. Hortic. 257, 108682 (2019).CAS 
    Article 

    Google Scholar 
    Paltseva, A., Cheng, Z., Egendorf, S. & Groffman, P. Remediation of an urban garden with elevated levels of soil contamination. Sci Total Environ. 722, 137965 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, L., Liu, Y., Wu, Y., Wang, Q. & Zhou, Q. The effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium contaminated vegetable field. Environ. Pollut. 268, 115869 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Q., Fei, L., Wang, C., Hu, S. & Wang, Z. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environ. Pollut. 252, 1406–1411 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perveen, S., Ihsanullah, I., Shah, Z., Shah, W. S. S. & Shah, H. H. Study on accumulation of heavy metals in vegetables receiving sewage water. J. Chem. Soc. Pak. 33, 220 (2011).CAS 

    Google Scholar 
    Galal, T. M., Sheded, Z. A. & Hassan, L. M. Hazards assessment of the intake of trace metals by common mallow (Malva parviflora L.) growing in polluted soils. Int. J. Phytoremediation 21(14), 1397–1406 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogundeji, A. O. et al. Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium Wilt. Appl. Soil Ecol. 163, 103912 (2021).Article 

    Google Scholar 
    Mauro, R. P. et al. Recovery of eggplant field waste as a source of phytochemicals. Sci. Hort. 261, 109023 (2020).CAS 
    Article 

    Google Scholar 
    Martini, S., Conte, A., Cattivelli, A. & Tagliazucchi, D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 341, 128298 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gürbüz, N., Uluişik, S., Frary, A., Frary, A. & Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 268, 602–610 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    FAOSTAT. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/default.aspx#ancor (2014).Asgari, K. & Cornelis, W. M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 187, 410 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    IWMI. (International Water Management Institute) Global water scarcity study. From http://www.iwmi.cgiar.org/home/wsmap.htm (2000).Oweis, T. & Hachum, A. Water harvesting for improved rainfed agriculture in the dry environments. In Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P. et al.) 164–181 (CABI, 2009).Chapter 

    Google Scholar 
    Shehata, H. S. & Galal, T. M. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J. Cons. Prot. Food Safe. 15, 205–217 (2020).CAS 
    Article 

    Google Scholar 
    Elawa, O. E. Impact assessment of industrial pollution on some economic plants south of Cairo Province, Egypt. M.Sc. Thesis, Helwan Uni Cairo, Egypt 194 pp (2015).Umbriet, W. W. et al. Monometric Technique, A Manual Description Method, Applicable to Study of Desiring Metabolism 239 (Burgess Publishing Company, 1959).
    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, S. E. Chemical Analysis of Ecological Materials (Blackwell Scientific Publications, 1989).
    Google Scholar 
    Liu, R. L., Li, S. T., Wang, X. B. & Wang, M. Contents of heavy metal in commercial organic fertilizers and organic wastes. J. Agro-Environ. Sci. 24, 392–397 (2005).CAS 

    Google Scholar 
    Lu, X. W. et al. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Safe. 106, 154–163 (2014).CAS 
    Article 

    Google Scholar 
    Eid, E. M., Alrumman, S. A., Galal, T. M. & El-Bebany, A. F. Regression models for monitoring trace metal accumulations by Faba sativa Bernh. plants grown in soils amended with different rates of sewage sludge. Sci. Rep. 9, 5443 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K. & Singh, A. K. Long-term impact of irrigation with sewage effluents on heavy metals content in soils, crops and groundwater: a case study. Agric. Ecosyst. Environ. 109, 310–322 (2005).CAS 
    Article 

    Google Scholar 
    US-EPA. Environmental Protection Agency, Region 9, Preliminary remediation goals (2012).SPSS. SPSS Version 20.0. SPSS Inc, 233 S Wacker Drive, Chicago, Illinois (2012).Al-jaboobi, M. et al. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat Region, Morocco. J. Mater Environ. Sci. 5(3), 961–966 (2014).
    Google Scholar 
    Rangamani, T., Rao, K. V. & Srinivas, T. Evaluation of heavy metals in water, soil and cauliflower in Penamaluru Mandal in Vijayawada. Int. J. Multidiscip. Adv. Res. Trends 1(3), 242–248 (2017).
    Google Scholar 
    Galal, T. M. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 188(7), 134 (2016).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    Eid, E. M. et al. Evaluation of newly reclaimed areas in Abha, Saudi Arabia, for cultivation of the Phaseolus vulgaris leguminous crop under sewage sludge amendment. J. Cons. Prot. Food. Safe. https://doi.org/10.1007/s00003-020-01311-z (2021).Article 

    Google Scholar 
    Galal, T. M., Hassan, L. M. & Elawa, O. E. Impact Assessment of Industrial Pollution on Important Food Crops (Lambert Academic Publishing Gmbh&Co.KG, 2019).
    Google Scholar 
    WHO/FAO (2013) Guidelines for the Safe Use of Wastewater and foodstuff; 2(1), 14 ppGalal, T. M., Khalafallah, A. A., Elawa, O. E. & Hassan, L. M. Human health risks from consuming cabbage (Brassica oleracea L. var. capitata) grown on wastewater irrigated soil. Int. J. Phytoremediation 20(10), 1007–1016 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaturvedi, R., Favas, P., Pratas, J., Varun, M. & Paul, M. S. Ecotoxicology and environmental safety assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal (Loid) contaminated soil. Ecotoxicol. Environ. Safe. 148, 318–326 (2018).CAS 
    Article 

    Google Scholar 
    Ai, P., Jin, K., Alengebawy, A., Elsayed, M. & Meng, L. Effect of application of different biogas fertilizer on eggplant production: analysis of fertilizer value and risk assessment. Environ. Technol. Innov. 19(13), 101019 (2020).Article 

    Google Scholar 
    Ekmekçi, Y., Tanyolaç, D. & Ayhan, B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Plant Physiol. 165, 600–611 (2008).Article 
    CAS 

    Google Scholar 
    Hadi, F., Bano, A. & Fuller, M. P. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80, 457–462 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, G. et al. A multi-level analysis of China’s phosphorus flows to identify options for improved management in agriculture. Agric. Syst. 144, 87–100 (2016).Article 

    Google Scholar 
    Farahat, E. A., Galal, T. M., Elawa, O. E. & Hassan, L. M. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environ. Monit. Assess. 189, 535 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghazi, S. M., Galal, T. M. & Husein, K. H. Monitoring Water Pollution in the Egyptian Watercourses: A Phytoremediation Approach (Lap Lambert Academic Publishing, 2019).
    Google Scholar 
    Körpe, D. A. & Aras, S. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat. Res. 719, 29–34 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nagajyoti, P., Lee, K. & Sreekanth, T. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216 (2010).CAS 
    Article 

    Google Scholar 
    Ai, S. et al. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotoxicol. Environ. Safe. 153, 204–214 (2018).CAS 
    Article 

    Google Scholar 
    Vecchia, F. D. et al. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 168, 329–338 (2005).Article 
    CAS 

    Google Scholar 
    Rizwan, M. et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupper, H. & Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 8, 269–285 (2016).PubMed 
    Article 

    Google Scholar 
    Piotrowska, A., Bajguz, A., Godlewska, B., Czerpak, R. & Kaminska, M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ. Exp. Bot. 66, 507–513 (2009).CAS 
    Article 

    Google Scholar 
    Singh, R. et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 101, 3025–3032 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collado-González, J., Piñero, M. C., Otálora, G. & López-Marín, J. Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica oleracea var. botrytis L.) florets under heat stress. Sci. Hortic. 277, 109818 (2021).Article 
    CAS 

    Google Scholar 
    Al Jassir, M., Shaker, A. & Khaliq, M. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City, Saudi Arabia. Bull. Environ. Contam. Toxicol. 75, 1020–1027 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    ur Rehman, K. et al. Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: the particular case of Sahiwal District in Pakistan. Agric. Water Manag. 226, 105816 (2019).Article 

    Google Scholar 
    Misra, S. G. & Mani, D. Soil pollution (Ashish Publishing House, 1991).
    Google Scholar 
    Jolly, Y. N., Islam, A. & Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2, 385 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, H. et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 13(3), 289 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rehman, Z., Hussain, R. A., Jabeen, S. & Ali, S. Heavy metals (Cd, Pb & Zn) accumulation in cauliflower (Brassica oleracea var. botyris) and associated health risks assessment in three districts of Punjab Pakistan. Biol. Pak. 64(1), 105–110 (2018).
    Google Scholar 
    Saeedifar, F., Ziarati, P. & Ramezan, Y. Nitrate and heavy metal contents in eggplant (Solanum melongena) cultivated in the farmlands in the south of Tehran-Iran. Int. J. Farm Allied Sci. 3, 60–65 (2014).Article 

    Google Scholar 
    Khanal, B. R., Shah, S. C., Sah, S. K. & Shriwastav, C. P. Heavy metals accumulation in cauliflower (Brassica oleracea L. var. botrytis) grown in brewery sludge amended sandy loam soil. Int. J. Agric. Sci. Technol. 2(3), 87–92 (2014).
    Google Scholar  More

  • in

    Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem

    This study reveals that various measures of bee diversity-including abundance, richness, and assemblage patterns are influenced by vane color and light reflectance patterns when passively sampling bees with vane traps. In particular, brightly colored vanes with higher light reflectance within 400–600 nm range attracted a greater diversity of bees in traps placed in a livestock pasture ecosystem. Effectiveness of blue and yellow vane traps had been compared previously in different ecosystems, for instance in apple orchards17, both woodland and open agriculture farmland13, and adjacent to Helianthus spp. (Asteraceae) field27. In all these studies, blue vane trap captured more bee species and 5–6 times more individuals compared to yellow vane trap.In the current study, we assessed a different design and size of vanes and a wider array of vane colors and reflectance patterns attached to sample collection jars. In particular, we used bright blue and yellow vanes that were made of plastic sheets covered with a micro-prismatic retro-reflective sheeting that provides better daytime and nighttime brightness as well as high visibility and durability. These vanes showed higher light reflectance and captured the most bees and bee species in this study (Table 2). Similar material was used on red vanes as well, but the light reflectance from those vanes was relatively lower, and as a result captured fewer bees. Traps with bright blue vanes performed especially well in terms of rates of bee capture (Fig. 2; 11.1 bees per trap per sampling date) and rates of species accumulation (Fig. 3). Bright yellow traps exhibited the second highest values for capture rates (Fig. 2; 6.6 bees per trap per sampling date) and species accumulation (Fig. 3), but these rates were not deemed significantly different from some other colors in which the reflective sheeting was not used, such as dark yellow, dark blue and purple.Bees use visual clues for detection, recognition, and memorization of floral resources in the foraging landscape7,28. The intensity of light reflected from different colors of vanes in traps affect number of bees attracted toward the trap10. Most bees can recognize colors that fall between 300 to 600 nm visual spectrums29. While the information related to the vision of many solitary and wild bees is not available, in the case of honey bees (Apis mellifera), color vision is trichromatic with highly sensitive photoreceptors at 344 nm (ultraviolet), 436 nm (blue) and 544 nm (green)30.In this study, colored vanes at a higher light reflectance between 400 to 600 nm attracted the highest number bee species in these passive traps. Capture rate differed among traps with different colored vanes in the current study, which can be explained by sensitivity of visual spectrum of bees and variation in the light reflectance of vanes of these traps. For example, bright blue vanes had two peaks of higher light reflectance, initially in 450–455 nm range and second peak with  > 800 nm. Such higher reflectance peak within the optimal range of bee vision may have played an important role in attracting abundant and diverse bee species to these passive traps. Similarly, bright yellow captured second largest number of bees, also had higher light reflectance peak within 600 nm but gradually decreased with increasing wavelength. Though bees have color spectrum from UV to orange31, they are sensitive to color spectrum between blue, green and ultraviolet32, which is a type of trichromatic vision system28. In one study33, red color vanes showed relatively lower light reflectance within 600 nm range, but had higher reflectance later in the spectrum, and this could be a reason why a low number of bees were collected in the traps. Past research showed contradictory views regarding the ability of bees to perceive red color. For instance, an early researcher in this field33, reported that bees recognize red color objects; however, other researchers had reported inability of bees to perceive34 or discriminate red from other colors35,36. It was argued that the bees see up to 650 nm in the visual spectrum and may not miss red colored flowers while foraging. However, other factors such as background (vegetation) color could also be contributing to bees’ ability to navigate different vane or flower colors in a livestock pasture landscape. Generally bees use color contrast to locate flower source, and hence neutral colors such as white are usually ignored29. Ultraviolet signal can make flowers more or less attractive to bees depending on whether it increases or decreases color contrast37. For example, UV color component in yellow38 and red39 flower increases chromatic contrast of these colored flowers with their background contributing attractiveness to the flowers. However, UV-reflecting white flowers decreases attractiveness for bees40.Different species of bees responded to different colors of vane traps. Out of the 49 bee species collected in this study, only nine bee species were found in all vane color types, whereas 14 species were found in only one trap color. For instance, out of five bumble bee species, two were found in all six vane colors, one was found in five colors, and two species (Bombus bimaculatus and B. fervidus) were only found in the traps with bright blue vanes. Many of the species that were only found in one trap color- Calliopsis andreniformis (1, bright yellow), Ceratina dupla (1, bright yellow), Diadasia afflicta (1, bright blue), Diadasia enavata (1, dark blue), Halictus rubicundus (1, dark yellow), Hylaeus mesillae (1, red), Lasioglossum tegulare (1, bright blue), Lasioglossum trigeminum (1, purple), Megachile montivaga (1, dark yellow), Melitoma taurea (1, bright blue), Svastra atripes (1, bright blue), and Triepeolus lunatus (1, dark yellow) were singletons and it was impossible to know if this represented a true preference or pattern. Our analysis of assemblage patterns after aggregating bees at the genus level, did show a gradient-like response in bee-color associations (Fig. 4), ranging from dark blue to yellows (with no strong associations found with red vanes). These patterns may be used to guide future (passive trap-based) sampling efforts to monitor bee diversity or to target specific bee species in livestock pastures or other ecosystems. While the bright blue and yellow traps with reflective sheeting were particularly attractive to bees, dark blue and purple traps also had relatively high levels of abundance and richness and collected higher number of Melissodes. Purple, as a color, is less commonly used than blue and yellow traps in bee monitoring. While this study shows that purple may be a viable option for bee collection, it’s similar assemblage pattern (Fig. 4) and low level of complementarity with dark blue traps (Table 2) suggests that it may be redundant with blue traps that are already commonly used. Differences in species- and sex-specific associations of bees with different colors of sampling traps had also been reported in previous studies41.Most of the bees collected in the current study were from Halictidae family (77.6%) followed by Apidae. However, few bee species in the families Andrenidae, Colletidae, and Megachilidae were collected. Consistent with our findings, others42 reported that bees of the Halictidae family were the most abundant bees in rangeland of Texas. The most common species found in this study were Au. aurata, L. disparile, L. imitatum, and Ag. texanus). In our previous studies we have found similar bee diversity in this study region18. Pollinator species richness and diversity as well as population distribution in livestock pasture vary during the season43. Mid-July to mid-August is the latter half of the summer season in the Southeastern USA, and the sampling period may have missed bee species that emerge earlier in the season and are reported in other studies42,43.Overall, the findings of this study showed that the wild bees responded differently to passive traps with colored vanes of different light wavelength and reflectivity when deployed in a livestock pasture ecosystem. Among six different colors of vanes (dark blue, bright blue, dark yellow, bright yellow, purple and red), the bright blue traps captured the highest number of individuals and species of bees. This could be due to an appropriate match between the visual spectrum of bees and the light reflectance spectrum of vanes, which were made of a micro-prismatic retro-reflective material. Bees responded similarly to traps with other colors of vanes, except for red vane traps, which captured the lowest number of bees. The findings of this study would be useful in understanding bee vision and responses to passive traps, and, such information would help in optimizing bee sampling methods for future monitoring efforts. More

  • in

    Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups

    Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jhan, K. Y. et al. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasites Vectors. 13, 405. https://doi.org/10.1186/s13071-020-04230-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boillat, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 30, 320–334 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. Nippostrongylus brasiliensis infection leads to impaired reference memory and myeloid cell interference. Sci. Rep. 8, 2958. https://doi.org/10.1038/s41598-018-20770-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavaliers, M. & Colwell, D. D. Reduced spatial learning in mice infected with the nematode Heligmosomoides polygyrus. Parasitology 110(Pt 5), 591–597 (1995).PubMed 
    Article 

    Google Scholar 
    Pan, S. C. et al. Cognitive and microbiome impacts of experimental Ancylostoma ceylanicum hookworm infections in hamsters. Sci. Rep. 9, 7868. https://doi.org/10.1038/s41598-019-44301-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blecharz-Klin, K. et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 18, e1010330–e1010330. https://doi.org/10.1371/journal.ppat.1010330 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braithwaite, V. et al. Spatial and discrimination learning in rodents infected with the nematode Strongyloides ratti. Parasitology 117(Pt 2), 145–154 (1998).PubMed 
    Article 

    Google Scholar 
    Sharma, S., Rakoczy, S. & Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 87, 521–536 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J. 55, 310–332 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pelletier, F., Page, K. A., Ostiguy, T. & Festa-Bianchet, M. Fecal counts of lungworm larvae and reproductive effort in bighorn sheep. Ovis canadensis. Oikos. 110, 473–480 (2005).Article 

    Google Scholar 
    Odiere, M. R., Koski, K. G., Weiler, H. A. & Scott, M. E. Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus. Parasitology 137, 991–1002 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitzgerald, E., Hor, K. & Drake, A. J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum. Dev. 150, 105190. https://doi.org/10.1016/j.earlhumdev.2020.105190 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24, 881–897 (2010).PubMed 
    Article 

    Google Scholar 
    Akitake, Y. et al. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring. Nutr. Res. 35, 76–87 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammelrath, L. et al. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. Neuroimage 125, 144–152 (2016).PubMed 
    Article 

    Google Scholar 
    Wills, T., Muessig, L. & Cacucci, F. The development of spatial behaviour and the hippocampal neural representation of space. Philos. Trans. R. Soc. B: Biol. Sci. 369, 20130409. https://doi.org/10.1098/rstb.2013.0409 (2014).Article 

    Google Scholar 
    Travaglia, A., Steinmetz, A. B., Miranda, J. M. & Alberini, C. M. Mechanisms of critical period in the hippocampus underlie object location learning and memory in infant rats. Learn Mem. 25, 176–182 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McHail, D. G., Valibeigi, N. & Dumas, T. C. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem. 25, 138–146 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bliss, T. V. P., Collingridge, G. L., Morris, R. G. M. & Reymann, K. G. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum 24, A103–A120 (2018).Article 

    Google Scholar 
    Schiller, D. et al. Memory and space: Towards an understanding of the cognitive map. J. Neurosci. 35, 13904–13911 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, P. et al. The persistent effects of maternal infection on the offspring’s cognitive performance and rates of hippocampal neurogenesis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 44, 279–289 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wallace, K. L. et al. Interleukin-10/Ceftriaxone prevents E. coli-induced delays in sensorimotor task learning and spatial memory in neonatal and adult Sprague-Dawley rats. Brain. Res. Bull. 81, 141–148 (2010).Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denenberg, V. H. Open-field behavior in the rat: what does it mean?. Ann. N. Y. Acad. Sci. 159, 852–859 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel-Ciernia, A. & Wood, M. A. Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1–17 (2014).Denninger, J. K., Smith, B. M. & Kirby, E. D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. https://doi.org/10.3791/58593 (2018).Article 
    PubMed 

    Google Scholar 
    Krüger, H.-S., Brockmann, M. D., Salamon, J., Ittrich, H. & Hanganu-Opatz, I. L. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn. Mem. 97, 470–481 (2012).PubMed 
    Article 

    Google Scholar 
    Cruz-Sanchez, A. et al. Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci. Rep. 10, 10612. https://doi.org/10.1038/s41598-020-67619-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunyer, B., Patil, S., Hoger, H. & Lubec, G. Barnes maze, a useful task to assess spatial reference memory in the mice. Nat. Protoc. https://doi.org/10.1038/nprot.2007.390 (2007).Article 

    Google Scholar 
    Schenk, F. Development of place navigation in rats from weaning to puberty. Behav. Neural Biol. 43, 69–85 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. W. & Kraemer, P. J. Ontogenetic differences in retention of spatial learning tested with the Morris water maze. Dev. Psychobiol. 30, 329–341 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Batinić, B. et al. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav. Brain Res. 299, 72–80 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lante, F. et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic. Biol. Med. 42, 1231–1245 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, H. et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol. Lett. 192, 245–251 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yagi, S. & Galea, L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44, 200–213 (2019).PubMed 
    Article 

    Google Scholar 
    Vuoksimaa, E. et al. Brain structure mediates the association between height and cognitive ability. Brain Struct. Func. 223, 3487–3494 (2018).Article 

    Google Scholar 
    Harris, M. A., Brett, C. E., Deary, I. J. & Starr, J. M. Associations among height, body mass index and intelligence from age 11 to age 78 years. BMC Geriatr. 16, 167. https://doi.org/10.1186/s12877-016-0340-0 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, V. H. et al. Adult body height is a good predictor of different dimensions of cognitive function in aged individuals: A cross-sectional study. Front. Aging Neurosci. 8, 1. https://doi.org/10.3389/fnagi.2016.00217 (2016).Case, A. & Paxson, C. Stature and status: Height, ability, and labor market outcomes. J. Polit. Econ. 116, 499–532 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frick, K. M., Kim, J., Tuscher, J. J. & Fortress, A. M. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem. 22, 472–493 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qiu, L. R. et al. Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat. Commun. 9, 2615. https://doi.org/10.1038/s41467-018-04921-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Towe, A. L. & Mann, M. D. Brain size/body length relations among myomorph rodents. Brain Behav. Evol. 39, 17–23 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perepelkina, O. V., Tarasova, A. Y., Ogienko, N. A., Lil’p, I. G. & Poletaeva, I. I. Brain weight and cognitive abilities of laboratory mice. Biol. Bull. Rev. 10, 91–101 (2020).Odiere, M. R., Scott, M. E., Weiler, H. A. & Koski, K. G. Protein deficiency and nematode infection during pregnancy and lactation reduce maternal bone mineralization and neonatal linear growth in mice. J. Nutr. 140, 1638–1645 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, M. B. et al. Leishmania amazonensis infection impairs reproductive and fetal parameters in female mice. Rev. Argent. Microbiol. 53, 194–201 (2021).PubMed 

    Google Scholar 
    Haque, M., Koski, K. G. & Scott, M. E. Maternal gastrointestinal nematode infection up-regulates expression of genes associated with long-term potentiation in perinatal brains of uninfected developing pups. Sci. Rep. 9, 4165. https://doi.org/10.1038/s41598-019-40729-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregory, R. D., Montgomery, S. S. J. & Montgomery, W. I. Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J. Anim. Ecol. 61, 749–757 (1992).Article 

    Google Scholar 
    Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maizels, R. M. et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp. Parasitol. 132, 76–89 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haque, M., Starr, L. M., Koski, K. G. & Scott, M. E. Differential expression of genes in fetal brain as a consequence of maternal protein deficiency and nematode infection. Int. J. Parasitol. 48, 51–58 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsueh, P.-T. et al. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. Genes Brain Behav. 17, e12479. https://doi.org/10.1111/gbb.12479 (2018).Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ricceri, L., Colozza, C. & Calamandrei, G. Ontogeny of spatial discrimination in mice: A longitudinal analysis in the modified open-field with objects. Dev. Psychobiol. 37, 109–118 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howland, J. G., Cazakoff, B. N. & Zhang, Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201, 184–198 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ito, H. T., Smith, S. E. P., Hsiao, E. & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun. 24, 930–941 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry. 13, 208–221 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapillon, P. & Roullet, P. Use of proximal and distal cues in place navigation by mice changes during ontogeny. Dev. Psychobiol. 29, 529–545 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Variyam, E. P. & Banwell, J. G. Hookworm disease: Nutritional implications. Rev. Infect. Dis. 4, 830–835 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bansemir, A. D. & Sukhdeo, M. V. The food resource of adult Heligmosomoides polygyrus in the small intestine. J. Parasitol. 80, 24–28 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Starr, L. M., Scott, M. E. & Koski, K. G. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines. J. Nutr. 145, 41–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herring, C. M., Bazer, F. W., Johnson, G. A. & Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. (Maywood). 243, 525–533 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Starr, L. M., Odiere, M. R., Koski, K. G. & Scott, M. E. Protein deficiency alters impact of intestinal nematode infection on intestinal, visceral and lymphoid organ histopathology in lactating mice. Parasitology 141, 801–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., von Hohenberg, W. C., Mickelson, D. J., Lanier, L. M. & Georgieff, M. K. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev. Neurosci. 38, 264–276 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., Rao, R., Tran, P. V. & Georgieff, M. K. The effects of early-life iron deficiency on brain energy metabolism. Neurosci. Insights. 15, 2633105520935104. https://doi.org/10.1177/2633105520935104 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, J. M. et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc. Natl. Acad. Sci. 115, E7398–E7407. https://doi.org/10.1073/pnas.1721876115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radlowski, E. & Johnson, R. Perinatal iron deficiency and neurocognitive development. Front. Hum. Neurosci. 7, 585 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rytych, J. L. et al. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr. 142, 2050–2056 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brązert, M. et al. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol. Med. Rep. 21, 1749–1760 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431 (1999).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain. Res. 1531, 1–8 (2013).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Odiere, M. R., Scott, M. E., Leroux, L. P., Dzierszinski, F. S. & Koski, K. G. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J. Nutr. 143, 100–107 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    El Ahdab, N., Haque, M., Madogwe, E., Koski, K. G. & Scott, M. E. Maternal nematode infection upregulates expression of Th2/Treg and diapedesis related genes in the neonatal brain. Sci. Rep. 11, 22082. https://doi.org/10.1038/s41598-021-01510-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: A key role for IL-4. Exp. Med. 207, 1067–1080 (2010).CAS 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci. Rep. 10, 16506. https://doi.org/10.1038/s41598-020-73574-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13. https://doi.org/10.3389/fncel.2019.00363 (2019).Williamson, L. L. et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav. Immun. 51, 14–28 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McKay, D. M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 137, 385–394 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, U., Feldon, J. & Fatemi, S. H. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 33, 1061–1079 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, C. J. C. et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J. Vis. Exp. e52412–e52412. https://doi.org/10.3791/52412 (2015).Valanparambil, R. M. et al. Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat. Protoc. 9, 2740–2754 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Murai, T., Okuda, S., Tanaka, T. & Ohta, H. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol. Behav. 90, 116–124 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patil, S. S., Sunyer, B., Hoger, H. & Lubec, G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav. Brain. Res. 198, 58–68 (2009).PubMed 
    Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Lazic, S. E. The problem of pseudoreplication in neuroscientific studies: Is it affecting your analysis?. BMC Neurosci. 11, 5. https://doi.org/10.1186/1471-2202-11-5 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Vol. 1–574 (2009).Bates, D., Maechler, M., Bolker, B. & Steve, W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Sanford, W. An R Companion to Applied Regression. 3 edn, (Sage, 2019).emmeans: Estimated marginal means, aka least-squares means v. 1.4.8 (R package, 2020).RVAideMemoire: Testing and plotting procedures for biostatistics. v. 0.9-78 (R package, 2020).DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models v. 0.3.3.0 (R package, 2020).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar  More

  • in

    Comprehensive comparison of treatments for controlling the large pine weevil (Hylobius abietis) in Central Europe

    Day, K. R. & Leather, S. Threats to forestry by insect pests in Europe. In Forests and Insects. (eds. Watt, A. D., Stork, N. E. & Hunter, M. D.) 177–205 (Chapman and Hall, 1997).Långström, B. & Day, K.R. Damage, control and management of weevil pests, especially Hylobius abietis. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds. Lieutier, F. et al.) 415–444 (Springer, 2007).Nordlander, G., Hellqvist, C., Johansson, K. & Nordenhem, H. Regeneration of European boreal forests: Effectiveness of measures against seedling mortality caused by the pine weevil Hylobius abietis. For. Ecol. Manag. 262, 2354–2363 (2011).Article 

    Google Scholar 
    Leather, S. R., Day, K. R. & Salisbury, A. The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): A problem of dispersal?. Bull. Entomol. 89, 3–16 (1999).Article 

    Google Scholar 
    Moore, R. Managing the threat to restocking posed by the large pine weevil, Hylobius abietis: the importance of time of felling of spruce stands. Forestry Commission Information https://www.forestresearch.gov.uk/documents/323/fcin061_OIvSOQX.pdf (2004). Accessed 29 May 2022.Nordlander, G., Nordenhem, H. & Bylund, H. Oviposition patterns of the pine weevil Hylobius abietis. Entomol. Exp. Appl. 85, 1–9 (1997).Article 

    Google Scholar 
    Örlander, G., Nilsson, U. & Nordlander, G. Pine weevil abundance on clearcuts of different ages: A 6-year study using pitfall traps. Scand. J. For. Res. 12, 225–240 (1997).Article 

    Google Scholar 
    Nordlander, G., Hellqvist, C. & Hjelm, K. Replanting conifer seedlings after pine weevil emigration in spring decreases feeding damage and seedling mortality. Scand. J. For. Res. 32, 60–67 (2017).Article 

    Google Scholar 
    Fedderwitz, F., Björklund, N., Ninkovic, V. & Nordlander, G. Does the pine weevil (Hylobius abietis) prefer conifer seedlings over other main food sources?. Silva Fenn. 52, 9946 (2018).Article 

    Google Scholar 
    Day, K. R., Nordlander, G., Kenis, M., Halldórsson, G. General biology and life cycles of bark weevils. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds. Lieutier, F., et al.) 331–349 (Springer, 2007).Willoughby, I., Moore, R. & Nisbet, T. Interim guidance on the integrated management of Hylobius abietis in UK forestry. Forest Research Research Note, https://www.forestresearch.gov.uk/documents/607/FR_InterimguidanceonmanagementHylobiusabietis_2017.pdf (2017). Accessed 29 May 2022.Eidmann, H. H. & Lindelöw, A. Estimates and measurements of pine weevil feeding on conifer seedlings: Their relationships and application. Can. J. For. Res. 27, 1068–1073 (1997).Article 

    Google Scholar 
    Dillon, A. B., Moore, C. P., Downes, M. J. & Griffin, C. T. Evict of infect? Managing populations of the large pine weevil, Hylobius abietis, using bottom-up and topdown approach. For. Ecol. Manag. 255, 2634–2642 (2008).Article 

    Google Scholar 
    Moore, R., Brixey, J. M. & Milner, A. D. Effect of time of year on the development of immature stages of the large pine weevil (Hylobius abietis L.) in stumps of Sitka spruce (Picea sitchensis Carr.) and influence of felling date on their growth, density and distribution. J. Appl. Entomol. 128, 167–176 (2004).Article 

    Google Scholar 
    Inward, D. J. G., Wainhouse, D. & Peace, A. The effect on temperature on the development and life cycle regulation of the pine weevil Hylobius abietis and potential impacts of climate change. Agric. For. Entomol. 14, 348–357 (2012).Article 

    Google Scholar 
    Tudoran, A., Oltean, I. & Varga, M. Control and management of the pine weevil Hylobius abietis L. Bull. UASVM Hortic. 76, 1 (2019).
    Google Scholar 
    Wainhouse, D., Inward, G. & Morgan, G. Modelling geographical variation in voltinism of Hylobius abietis under climate change and implications for management. Agric. For. Entomol. 16, 136–146 (2014).Article 

    Google Scholar 
    Galko, J., Vakula, J., Kunca, A., Rell, S. & Gubka, A. Slovak technical standard no. 48 2712, Ochrana lesa proti tvrdoňom a lykokazom na sadeniciach (Forest protection against large pine weevil and bark beetles from genus Hylastes on seedlings), Slovak Office of Standards, Metrology and Testing, Bratislava (2016).Lalík, M. et al. Non-pesticide alternatives for reducing feeding damage caused by the large pine weevil (Hylobius abietis L.). Ann. Appl. Biol. 177, 132–142 (2020).Article 

    Google Scholar 
    Tudoran, A., Nordlander, G., Karlberg, A. & Puentes, A. A major forest insect pest, the pine weevil Hylobius abietis, is more susceptible to Diptera-than Coleoptera-targeted Bacillus thuringiensis strains. Pest Manag. Sci. 77, 1303–1315 (2020).Article 

    Google Scholar 
    Lalík, M. et al. Ecology, management and damage by the large pine weevil (Hylobius abietis) (Coleoptera: Curculionidae) in coniferous forests within Europe. Centr. Eur. For. J. 67, 91–107 (2021).
    Google Scholar 
    Örlander, G. & Nilsson, U. Effect of reforestation methods on pine weevil (Hylobius abietis) damage and seedling survival. Scand. J. For. Res. 14, 341–354 (1999).Article 

    Google Scholar 
    Petersson, M. & Örlander, G. Effectiveness of combinations of shelterwood, scarification, and feeding barriers to reduce pine weevil damage. Can. J. For. Res. 33, 64–73 (2003).Article 

    Google Scholar 
    Hardy, C., Sayyed, I., Leslie, A. D. & Dittrich, A. D. Effectiveness of insecticides, physical barriers and size of planting stock against damage by the pine weevil (Hylobius abietis). Crop Prot. 137, 105307 (2020).CAS 
    Article 

    Google Scholar 
    Harvey, C. D., Williams, C. D., Dillon, A. B. & Griffin, C. T. Inundative pest control: How risky is it? A case study using entomopathogenic nematodes in a forest ecosystem. For. Ecol. Manag. 380, 242–251 (2016).Article 

    Google Scholar 
    Willoughby, I. H. et al. Are there viable chemical and non-chemical alternatives to the use of conventional insecticides for the protection of young trees from damage by the large pine weevil Hylobius abietis L. in UK forestry?. Forestry 93, 694–712 (2020).Article 

    Google Scholar 
    Eriksson, S., Wallertz, K. & Karlsson, A.-B. Test av mekaniska plantskyddmot snytbaggar i omarkberedd ochmarkberedd mark, anlagt våren 2015. Sveriges Lantbruksuniversitet Rapport 16. (2018) https://pub.epsilon.slu.se/15698/1/eriksson_s_et_al_181010.pdf (accessed 8 Dec 2021).Swedish Forest Agency [Skogsstyrelsen] Forest seedlings delivered for planting 2020. Sveriges Officiella Statistik, Statistiska Meddelanden JO 0313 SM 2001. (2021) https://www.skogsstyrelsen.se/globalassets/statistik/statistiska-meddelanden/sm-levererade-skogsplantor-2020.pdf (accessed 8 Dec 2021).Petersson, M., Örlander, G. & Nilsson, U. Feeding barriers to reduce damage by pine weevil (Hylobius abietis). Scand. J. For. Res. 19, 48–59 (2004).Article 

    Google Scholar 
    Petersson, M., Eriksson, S. & Zetterqvist, F. Mekaniska plantskydd mot snytbaggeskador, anlagt 2003. Slutrapport SLU, Asa försökspark, Rapport, 3. (2006) https://docplayer.se/137316277-Mekaniska-plantskydd-mot-snytbaggeskador-anlagt-2006.html (accessed 10 Dec 2021).Nordlander, G., Nordenhem, H. & Hellqvist, C. A flexible sand coating (Conniflex) for the protection of conifer seedlings against damage by the pine weevil Hylobius abietis. Agric. For. Entomol. 11, 91–100 (2009).Article 

    Google Scholar 
    Leslie, K. & Liddon, T. An integrated pest management strategy for Hylobius—the holy grail of forestry? Forest and Timber News, April 2017, 44–45. https://www.confor.org.uk/media/246596/integrated-pest-managment-strategy-for-hylobius-april-2017.pdf (2017). Accessed 29 May 2022.Moore, R., Willoughby, I. H., Moffat, A. J. & Forster, J. Acetamiprid, chlorantraniliprole, and in some situations the physical barriers MultiPro® or Kvaae® wax, can be alternatives to traditional synthetic pyrethroid insecticides for the protection of young conifers from damage by the large pine weevil Hylobius abietis L. Scand. J. For. Res. 36, 230–248 (2021).Article 

    Google Scholar 
    Willoughby, I. H. et al. Are there viable chemical and non-chemical alternatives to the use of conventional insecticides for the protection of young trees from damage by the large pine weevil Hylobius abietis L. in UK forestry?. Forestry 93, 694–712 (2020).Article 

    Google Scholar 
    Galko, J., Kunca, A., Gubka, A. & Vakula, J. Predstavenie nového spôsobu ošetrenia sadeníc voskom ako účinnej ochrany pred tvrdoňom smrekovým (Introduction of a new method of wax seedling treatment as an effective protection against large pine weevil). In Actual Problems in Forest Protections 2013 (Conference Proceedings), National Forest Centre, Zvolen, vol. 22 (ed. Kunca, A.) 86–89. (2013) http://www.los.sk/data/DownloadHandler.ashx?id=38&filename=15.pdf (accessed 1 Dec 2021).Galko, J. et al. Vyhodnotenie experimentov voskom ošetrených sadeníc, ako mechanickej ochrany proti tvrdoňovi smrekovému a návrh technologického postupu voskovania (Evaluation of experiments of wax-treated seedlings as mechanical protection against large pine weevil and design of technological process of waxing). In Actual Problems in Forest Protections 2015 (Conference Proceedings), National Forest Centre, Zvolen, vol. 24 (ed. Kunca, A.) 21–30. (2015) http://www.los.sk/data/DownloadHandler.ashx?id=512&filename=Galko.4-2015.pdf (accessed 8 June, 2021).Lalík, M. Modern biotechnological control of pine weevil (Hylobius abietis). Ph.D. thesis. Czech University of Life Sciences Prague (2021).Rell, S. Alternative methods of seedling protection against the large pine weevil (Hylobius abietis). PhD. thesis Technical University Zvolen. (2018).Norsk Wax, Substitution of insecticides with wax. (2016) http://www.metla.fi/tapahtumat/2016/taimitarhapaivat/Pettersen.pdf (accessed 29 Nov 2021).Wax information. https://www.norsk-wax.no/forestry (accessed 28 Nov 2021).Watson, P. G. Influence of insecticide, wax and biofungicide treatments, applied to Pinus sylvestris and Picea abies, on the olfactory orientation of the large pine weevil, Hylobius abietis L. (Coleoptera: Curculionidae). Agric. For. Entomol. 1, 171–177 (1999).Article 

    Google Scholar 
    Härlin, C. & Eriksson, S. Test av mekaniska plantskydd mot snytbaggar i omarkberedd och markberedd mark, anlagt våren 2012. Slutrapport. SLU, Enheten för skoglig fältforskning, Rapport 12. (2016) https://pub.epsilon.slu.se/13059/7/harlin_c_eriksson_s_160223.pdf (accessed 1 Dec 2021).Glue information. https://www.moudry-cz.com/cs/vermifix-lepidlo-ve-spreji-na-ochranu-stromu-a-rostlin/ (accessed 27 Nov 2021).Azeem, M. et al. Chemical composition and antifeedant activity of some aromatic plants against pine weevil (Hylobius abietis). Ann. Appl. Biol. 177, 121–131 (2020).CAS 
    Article 

    Google Scholar 
    Unelius, C., Bohman, B. & Nordlander, G. Comparison of phenylacetates with benzoates and phenylpropanoates as antifeedants for the pine weevil, Hylobius abietis. J. Agric. Food Chem. 66, 11797–11805 (2018).CAS 
    Article 

    Google Scholar 
    Fedderwitz, F., Björklund, N., Anngren, R., Lindström, A. & Nordlander, G. Can methyl jasmonate treatment of conifer seedlings be used as a tool to stop height growth in nursery forest trees?. New For. 51, 379–394 (2020).Article 

    Google Scholar 
    Chen, Y., Bylund, H., Björkman, C., Fedderwitz, F. & Puentes, A. Seasonal timing and recurrence of methyl jasmonate treatment influence pine weevil damage to Norway spruce seedlings. New For. 52, 431–448 (2021).Article 

    Google Scholar 
    Tahvonen, O., Pukkala, T., Laiho, O., Lähde, E. & Niinimäki, S. Optimal forest management of uneven-aged Norway spruce stands. For. Ecol. Manag. 260, 106–115 (2010).Article 

    Google Scholar 
    Saniga, M. & Kucbel, S. Prírode blízke pestovanie lesa. Technická univerzita vo Zvolene, Zvolen. ISBN 978-80-228-2411-8 (2012).Vencúrik, J., Jaloviar, P., Saniga, M. & Kucbel, S. Rast prirodzenej a umelej obnovy vo vybraných rekonštruovaných smrekových porastoch Oravských Beskýd: vedecká monografia. Technická univerzita vo Zvolene, Zvolen. ISBN 978-80-228-3017-1 (2017).Kunca, A. et al. Salvage felling in the Slovak Republic’s forests during the last twenty years (1998–2017). Cent. Eur. For. J. 65, 3–11 (2019).
    Google Scholar 
    Vakula, J. et al. Influence of selected factors on bark beetle outbreak dynamics in the Western Carpathians. Cent. Eur. For. J. 61, 149–156 (2015).
    Google Scholar 
    Barta, M. et al. Hypocrealean fungi associated with Hylobius abietis in Slovakia, their virulence against weevil adults and effect on feeding damage in laboratory. Forests 10, 634 (2019).Article 

    Google Scholar 
    Lalík, M. et al. Simple is best: Pine twigs are better than artificial lures for trapping of pine weevils in pitfall traps. Forests 10, 642 (2019).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.2. (2020) https://CRAN.R-project.org/package=dplyr (accessed 23 Nov 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Petersson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2019).MathSciNet 
    Article 

    Google Scholar 
    Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2021) https://CRAN.R-project.org/package=emmeans (accessed 23 Nov 2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.5. (2022) https://CRAN.R-project.org/package=DHARMa.Fay, M. P. Applied Statistical Hypothesis Tests. R package version 0.9.6. (2020) https://CRAN.R-project.org/package=asht (accessed 15 Nov 2021).Eriksson, S., Karlsson, A. & Härlin, C. Test av mekaniska plantskydd mot snytbaggar i omarkberedd och markberedd mark, anlagt våren 2013. Slutrapport Sveriges lantbruksuniversitet, Report, 15. (2017)https://pub.epsilon.slu.se/14040/7/eriksson_s_et_al_170214.pdf (accessed 17 Nov 2021).Härlin, C. & Eriksson, S. Test av mekaniska plantskydd och insekticider mot snytbaggar, anlagt våren 2010. Slutrapport. SLU, Enheten för skoglig fältforskning, Rapport 7. (2013) https://pub.epsilon.slu.se/10901/7/harlin_c_eriksson_s_131121.pdf (accessed 22 Nov 2021).Härlin, C. & Eriksson, S. Test av mekaniska plantskydd och insekticider mot snytbaggar i omarkberedd och markberedd mark, anlagt våren 2011. Slutrapport. SLU, Enheten för skoglig fältforskning, Rapport 10. (2014) https://pub.epsilon.slu.se/11603/7/harlin_c_etal_141023.pdf (accessed 19 Nov 2021).Öhrn, P. & Nordlander, G. WeevilSTOP—Field activities in Sweden 2015. (2015) https://www.weevilstop.com/project-results (accessed 30 Oct 2021).Final Report Summary—WEEVIL STOP https://cordis.europa.eu/project/id/315404/reporting/fr (accessed 3 Dec 2021).Moore, R., 2018. Hylobius Management Support System (MSS). https://www.forestresearch.gov.uk/tools-and-resources/tree-healthand-protection-services/hylobius-management-support-system/.Olenici, N., Bouriaud, O. & Manea, I. A. Efficient conifer seedling protection against pine weevil damage using neonicotinoids. Baltic For. 24, 201–209 (2018).
    Google Scholar 
    Viiri, H., Tuomainen, A. & Tervo, L. Persistence of deltamethrin against Hylobius abietis on Norway spruce seedlings. Scand. J. For. Res. 22, 128–135 (2007).Article 

    Google Scholar 
    Lalík, M. et al. Potential of Beauveria bassiana application via a carrier to control the large pine weevil. Crop Prot. 143, 105563 (2021).Article 

    Google Scholar  More

  • in

    Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution

    Characterization of EFM adsorbentBET analysisThe surface properties of newly prepared adsorbent and its components were investigated through nitrogen adsorption–desorption isotherms. Table 1 presents the results of the adsorbent the textural properties assessment.Table 1 EFM adsorbent and raw materials used (magnetite, eggshell and fly ash)—specific surface area determinate by Brunauer–Emmett–Teller theory (BET).Full size tableFrom the quantitative data reported in Table 1 it can be observed that eggshell BET/N2 surface area is 0.67 m2/g, value similar to that in the literature15,31,40.According to Table 1 the BET/N2 specific surface area for fly ash, is 4.961 m2/g. Apparently the value obtained in this study seems higher than in the data reported in the literature (0.414 m2/g). However, it should be noted that both the type of ash used and the experimental conditions of this study differ from the data reported in the literature16,22.As expected, very different values were obtained for the specific surface of M1 (25.196 m2/g) and respectively 26.866 m2/g for M2, which correspond to the adsorbent prepared in the two molar ratios studied. This difference can be justified by the variation of the ratio between eggshell and fly ash in M1 and M2, respectively.Physical properties of adsorbent (pore size, pore volume) were investigated using the low-temperature (77 K) nitrogen adsorption–desorption isotherms. As presented in Fig. 1 the isotherms of EFM fitted in a type II isotherm with a H3 hysteresis loop, indicating a macroporous structure for the both adsorbent molar ratio (M1 and M2)38.Figure 1The nitrogen adsorption–desorption isotherms for EFM adsorbent.Full size imageXRD studiesThe mineralogical compositions of the raw materials as well as of the adsorbent were studied through XRD analysis. The size of the crystalline domains was evaluated by means of the Debye–Scherrer formula (Eq. 14)41,$$D = frac{0.89lambda }{{beta cos left( theta right)}}$$
    (14)
    where (lambda) is the X-ray wavelength of Cu K-α ((lambda = 0.15406;{text{nm}})), (beta) is the full width at half maximum in radians and (theta) is the Bragg angle.From the most prominent peak, one gets D = 21.6 nm.The XRD spectrum of magnetite sample (Fig. 2) shows the diffraction peaks of the well crystallized spinel phase magnetite Fe3O4 (COD 9005837) with average crystallite size of 21.6 nm. In the XRD spectrum of eggshell sample (Fig. 3) are recorded the diffraction peaks of the single phase well crystallized calcite CaCO3 (COD 9000965) with mean crystallite size of 125.8 nm15,40.Figure 2XRD spectra of magnetite.Full size imageFigure 3XRD spectra of eggshell.Full size imageThe XRD spectrum (Fig. 4) shows that the fly ash sample has a complex composition. Four crystalline phases have been identified whose characteristics are presented in Table 2.Figure 4XRD spectra of fly ash sample.Full size imageTable 2 The phase compositions of fly ash sample.Full size tableFrom the data presented in the Table 2 indicates that fly ash sample used in the preparation of the adsorbent is not non-hazardous solid waste22.In the XRD spectra of M1 (Fig. 5a) are visible the diffraction peaks characteristic of the crystalline phases existing in the eggshell (calcite CaCO3), the fly ash (but only those of the phase with more intense peaks, quartz SiO2), and magnetite (Fe3O4). Because the eggshell is mixed in a larger proportion than the other two components, the CaCO3 peaks are the most intense.Figure 5(a) XRD spectra of M1. (b) XRD spectra of M2. (c) XRD spectra of magnetite, eggshell, fly ash, M1 and M2.Full size imageAnalyzing the XRD spectrum obtained for M2 (Fig. 5b), the crystalline phases that can be identified are: magnetite Fe3O4, calcite CaCO3, quartz SiO2, and corundum Al2O3. The most intense are the magnetite peaks. In this sample, because the ash is mixed in a larger proportion, the SiO2 peaks are more intense and another crystalline phase present in it (Al2O3) becomes visible in the spectrum.Figure 5c shows the overlapping XRD spectra of M1, M2 and raw materials (magnetite, fly ash and eggshell). In both M1 and M2, the phase peaks of individual components can be observed.However, due to the different materials crystallinity, only the most intense peaks appear by overlap. Also, the phase diffraction lines (Figs. 2, 3, 4, 5) are no longer visible.SEM micrographsThe surface morphology and particle size of raw materials and adsorbent were investigated through SEM technique. The micrographs are presented in Figs. 6, 7, 9, 10, 11, 12, 13 and 14.Figure 6Two-dimensional image of the magnetite particle obtained by the SEM technique.Full size imageFigure 7Two-dimensional image of the ash fly particle obtained by the SEM technique.Full size imageThe SEM image of magnetite (Fig. 6) suggest that particles are of nanometric dimensions (with the average size about 21 nm), uniform and with a cubic structure25,42,43.Figure 7 shows that the fly ash particles are of porous spherical shapes with different sizes as well as porous irregularly or angularly shaped particles16,44. As can be seen in (Fig. 7) the surface of the ash sphere is irregular and has streaks due to the mechanical and thermal stress.Figure 8 presents the elemental composition of the ash fly determined through EDX analysis.Figure 8EDS spectra of fly ash sample.Full size imageAccording to the data from EDX (Fig. 8), there are only seven elements which are predominant in sample: aluminum, iron, magnesium, calcium, silica, oxygen and sulphur16,45.SEM micrograph of eggshell sample (Fig. 9a,b) indicates a different size (about 100 nm) irregular crystal on multihole surface structure36,40.Figure 9(a) Two-dimensional image of the eggshell particle obtained by the SEM technique. (b) Two-dimensional image of the eggshell particle obtained by the SEM technique.Full size imageThe morphology of M1 (Fig. 10a,b) indicates the presence of agglomerations of particles of different sizes in the nano field, spherical shape, cubic shaped and irregular crystal structure sizes, suggesting a good connectivity between them.Figure 10(a) Two-dimensional image of M1 particle obtained by the SEM technique (magnitude 3 µm). (b) Two-dimensional image of M1 particle obtained by the SEM technique (magnitude 5 µm).Full size imageAlso, the (Fig. 10b) indicates that the cubic-shaped particles characteristic of magnetite (Fig. 6) loaded into the pores of the ash and eggshell particles.The Fig. 11 shows the live map for M1 and the distribution of the identified elements.Figure 11SEM M1- Live map.Full size imageThe SEM micrograph of M2 (Fig. 12a,b) the same agglomerations of particles of different nano-sizes, spherical shape, cubic shaped and irregular crystal structure sizes are observed as in the case of SEM graph for M1.Figure 12(a) Two-dimensional image of M2 particle obtained by the SEM technique (magnitude 3 µm). (b) Two-dimensional image of M2 particle obtained by the SEM technique (magnitude 5 µm).Full size imageThe Fig. 13 shows the live map for M2 and the distribution of the identified elements.Figure 13M2 SEM—Live map.Full size imageThe comparative analysis of the Fig. 13 showing Live map for M2 and M1 (Fig. 11) highlights the presence of differences regarding the proportion of identification elements in the two samples, due to the different molar ratio between eggshell and ash.In the Fig. 14a can be observed a larger number of spherical particles characteristic of district heating ash, as a result of the change in the ratio between the two wastes (eggshell:ash = 3:1), loaded with magnetite particles. At the same time, in SEM the micrograph for M1 (Fig. 14b) is much more obvious the multihole structure of the eggshell.Figure 14(a) Two-dimensional image of M1 particle obtained by the SEM technique (magnitude 30 µm). (b) Two-dimensional image of M2 particle obtained by the SEM technique (magnitude 50 µm).Full size imageThe analysis of the SEM micrograph (Fig. 14a) of the M1 sample (in which the eggshell component is predominant) indicates that the multi porous structure of the eggshell is loaded with both the cubic-shaped particles of the magnetite and the spherical ones belonging to the ash sample. This aspect is much more visible in the case of SEM micrograph of the M2 sample (Fig. 14b), considering the fact that in this ash is found in the majority proportion (magnetite:eggshell:ash = 1:1:3).This result suggests that through the procedure of mechanical alloying in the mill with high energy balls were achieved simultaneously:

    1.

    reducing the particle size of magnetite, ash and eggshell;

    2.

    individual functionalization of each waste (eggshell, ash) with magnetite particles;

    3.

    a new, nanosized material in which the double functionalization of the eggshell with ash particles functionalized with magnetite was achieved simultaneously with the loading of the pores of the eggshell surface with the magnetite particles.

    By modifying the structure of the two wastes from the composition of the newly obtained material (decreasing the number of pores) leads to increased surface areas, confirmed by the results of the BET analysis (Table 1) and implicit sorption sites suggesting an improvement of adsorbent properties.FT-IR studiesFigure 15 shows the IR spectra for EFM adsorbent raw materials (magnetite, fly ash and eggshell).Figure 15IR spectra for adsorbent raw material samples (magnetite, eggshell and fly ash).Full size imageFT-IR spectra for EFM engineered adsorbent are presented in Fig. 16.Figure 16FT-IR spectra of adsorbent (both molar ratios: M1 and M2) and its raw materials.Full size imageThe FT-IR spectra for adsorbent (at the both molar ration: M1 and M2) presents the vibrational bands characteristic of magnetite at 589 and at 432 cm−1associated with Fe–O stretch vibration46. The peaks assigned to the fly ash component: at 588 cm-1 Ca O group, at about 670 cm−1 attributed to the Al–O–Al bending vibration, at 1100 cm−1 is associated with X–O (X = Al, Si) and asymmetric stretching vibrations and band at 830 cm−1 specific to AlO4 coordination16,22,47,48,49. In addition, in the adsorbent FTIR spectra (Fig. 16) were found the characteristic IR bands eggshell component (Fig. 15). Thus, peak at 712 cm−1 (correspond to CaO stretching vibration), peaks at 875 and 1423 are attributed to C–O stretching vibration. The bands at 1798 and 2515 cm−1 are associated with O–C–O and peaks at 2875 respectively at 2981 cm−1 are due to CH– symmetric and asymmetric stretching vibration15,31,50. The position of O–H peak at 3740 cm−1 indicates the presence of moisture and water molecules15,22. As expected, the intensity of the peaks differs in M1 and M2, due to the different molar ratio between two of the raw materials that are part of the adsorbent component (fly ash and eggshell). These results are in close agreement with the literature and theoretical values confirms the presence of magnetite, fly ash and eggshell in adsorbent (at both molar ration: M1 and M2).Thermogravimetric analysisFigure 17a presents the thermal analysis results for fly ash sample.Figure 17(a) Thermogravimetric analysis of the fly ash sample in the range of 30–500 °C with a heating rate of 10 °C/min in open aluminum crucibles in the air atmosphere. (b) Thermogravimetric analysis of the eggshell with a heating rate of 10 °C/min up to 500 °C.Full size imageThe thermal analysis performed in the interval 30–500 °C highlighted two stages of decomposition. The first stage takes place in the range of 30–49 °C with a loss of 0.22% of the sample mass. This decomposition can be attributed to water loss. This process is visible in the DTG curve with a maximum at 45.5 °C, but also on the Heat Flow curve with a maximum at the same temperature and characterized by an exothermic process with ΔH = − 12.44 J/g. The second process presents a continuous thermal decomposition with a maximum observable on the DTG and HF curve at 480 °C, characterized by an exothermic effect. The decomposition does not end in the studied interval. The total weight loss is 2% of the sample mass16.The thermal analysis, in the range of 30–500 °C, performed for the eggshell sample (Fig. 17b), revealed a complex thermal decomposition. This decomposition has several stages that are difficult to separate. It is known that, in addition to inorganic calcium carbonate compounds, in the eggshell are present a multitude of organic components such as: proteins as main constituents, small amounts of carbohydrates and lipids51,52.At the same time, uronic acid is also present, which plays an important role in the resistance of the shell, such as sialic acid in very low concentration and two glycosaminoglycans, including hyaluronic acid, as well as a copolymer consisting of chondroitin sulfate-dermatan sulfate. There is also limited information on variations in nitrogen concentrations and the amino acid composition of the eggshell. A better understanding of the chemicals present in the composition of the eggshell is very important for its application in various fields, including for the purpose of absorbent material.The analysis of the TG curve highlights three hardly separable decomposition stages, the last of which is characterized by a complex multistage decomposition process. It is observed that in the interval 30–100 °C which can be attributed to dehydration, followed by the loss of crystallization water in the range 100–266 °C (4.8% of the sample mass) and then the complex decomposition of organic components in different stages depending on their stability until at 500 °C15.The last decomposition stage results in the loss of 80% of the total mass of the sample. Over 500 °C the decomposition of the inorganic component takes place, namely Ca carbonate. It can be seen that in the analyzed sample the weight of inorganic component is relatively small, namely 12.2% of the sample mass. During the decomposition stage from the interval 266–500 °C several maxima are observed on the DTG curve, which led us to conclude that simultaneous decompositions of several organic compounds take place, observing maxima at 345, 363, 374, 403, 408, 412, 430, 466 and 470 °C. The same main decomposition steps are faintly visible and the HF curve with processes in most cases exothermic. At temperatures higher than 266 °C and on this curve are visible several processes, most of which are exothermic, which can be attributed to the oxidation of organic compounds and their decomposition. The residue left after the thermogravimetric study (performed up to 500 °C) is calcium carbonate15,53.Subsequently, the mixture of the two wastes was analyzed in the two molar ratios:eggshell:fly ash = 3:1 and eggshell:fly ash = 1:3, respectively.The profile of thermogravimetric analysis for the binary mixture eggshell:ash fly in a 1:3 mass ratio performed in the range of 30–500 °C is depicted in Fig. 18.Figure 18Thermogravimetric analysis for eggshell: fly ash binary mixture in a 1: 3 mass ratios obtained in the range of 30–500 °C.Full size imageThe thermal analysis performed in the case of the binary mixture of eggshell and ash, in a 1:3 molar ratios, highlights the decomposition stages of the two components. Namely, the stage of water loss within the ash is visible, to which is added the loss of moisture observed in the case of the eggshell. On the HF flow is visible the exothermic process with a maximum of 45 °C and a ΔH = − 17.023 J/g which represents a sum of the two processes mentioned above. Two other processes are visible on the TG curve, one in the temperature range, 51–213 °C, with a mass loss of 0.27% of the sample mass. Then followed by a loss of 1.74% in the temperature range 213–405 °C. The thermal decomposition continues even above this temperature and the decomposition process was not completed in the studied temperature range.A thermogravimetric study was performed for the same binary mixture but in the eggshell:fly ash = 3:1 molar ratio. The results are presented in the next figure (Fig. 19).Figure 19Thermogravimetric analysis for eggshell: fly ash binary mixture in a 3:1 mass ratio obtained in the range of 30–500 °C.Full size imageIn the case of the thermal analysis of the binary mixture of eggshell and ash in a 3:1 molar ratio, the decomposition stages and the thermal behaviour of the individual components in correlation with the mixing ratio are very clearly visible.Magnetic measurementsThe magnetic properties of the samples: magnetite, M1 and M2 were investigated with an induction hysteresis-graph at low frequency driving field (50 Hz)54. And the hysteresis loops are presented in Figs. 20, 21 and 22. It was found that the samples reveal ferromagnetic behaviour and from the measured hysteresis loops the saturation magnetization ((sigma_{S})), the coercive field (Hc) and the remnant magnetization ((sigma_{R})) were determined. The results are presented in Table 3.Figure 20The hysteresis loop of sample M2.Full size imageFigure 21The hysteresis loop of sample M1.Full size imageFigure 22The hysteresis loop of magnetite.Full size imageTable 3 The values of coercive field (Hc) and remnant magnetization ((sigma_{R})) of M1, M2 and magnetite sample.Full size tableAs expected, the largest value of the saturation magnetization is that of the sample consisting entirely of magnetite. By diminishing the content of ashes from the thermal power station (from three parts in M2 sample to one part in sample M1) a small increase of the saturation magnetization was observed, from 14.06 to 15.12 emu/g (see Table 3). This can be explained by the presence of diamagnetic compounds within the ashes of the thermal station, the decrease of which led to the increase in the saturation magnetization of the sample M1, as compared to the sample M2. All three samples have small values of the remnant ratio, (sigma_{R} /sigma_{S}), which is an indication of the ease with which the magnetization reorients to the nearest easy axis magnetization direction after the remove of magnetic field.The dependencies on frequency of the complex magnetic permeability of the samples, (mu left( f right) = mu^{prime}left( f right) – imu^{primeprime}left( f right)), measured at room temperature, over the frequency range 3 kHz to 2 MHz are presented in Fig. 23. The measurements were performed using an Agilent LCR-meter (E-4980A type) in conjunction with a coil containing a vial in which the samples were placed. Details on the method of measurements of the real, (mu^{prime}left( f right)) and imaginary, (mu^{primeprime}left( f right)) components of the complex magnetic permeability are given in a previous study55.Figure 23Frequency dependence of the magnetite, M1, M2 of the complex magnetic permeability.Full size imageIn the frequency range in which the measurements were made, samples M1 and magnetite exhibits visible relaxation peaks of (mu^{primeprime}left( f right)), at the frequency of 30 kHz. Even if the M1 sample and the M2 sample have the same amount of magnetite, due to the diamagnetic compounds in the fly ash, the relaxation peak of the M1 sample is very attenuated (little visible, almost missing).Given the small size of the magnetite particles in the samples (on the order of tens of nanometers), they do not have a multi-domain magnetic structure. Thus, the only magnetic relaxation process, measurable in the radio frequency field, is the Neel relaxation process. The Néel relaxation time, (tau_{N}) is given by Eq. (15)56$$tau_{N} = tau_{0} exp left( {frac{Kv}{{k_{B} T}}} right)$$
    (15)
    where K is the effective anisotropy constant of the material from which the magnetic particles are made of, v is the magnetic volume of particles, kB is the Boltzmann’s constant, T is the temperature and (tau_{0}) is a constant in order of 10–9 s56.Assuming that the frequency dependence of the complex magnetic permeability,(mu left( f right) = mu^{prime}left( f right) – imu^{primeprime}left( f right)) obeys the Debye dispersion relations, then the frequency corresponding to the maximum of (mu^{primeprime}left( f right)) is correlated with the relaxation time by the relation, (2pi {kern 1pt} ftau = 1). For measurements at room temperature, with f = 30 kHz, the magneto-crystalline anisotropy constant of magnetite, K = 1.1 × 104 J m−3 and (tau = tau_{N}), under assumption of spherical shape of particles, one gets a magnetic diameter of the magnetite particles, d = 18.2 nm. This value compares favourably with the values measured by SEM and X-ray diffraction.Adsorption propertiesEffect of adsorbent dosageFigure 24a and b show the relationships between different material dosage and the cadmium removal efficiency and respectively adsorption capacity.Figure 24(a) The relationship between different material dosage and the cadmium removal efficiency. (b) The relationship between different material dosage and the cadmium adsorption capacity.Full size imageAccording to the Fig. 24a and b, cadmium removal efficiency and adsorption capacity depending on the amount of adsorbent used shows an upward trend (for quantities between 0.05 and 0.25 g), reaches a maximum of 0.25 g adsorbent (99.9% and 75.48 mg/g for M1 and respectively 99.8% and 75.46 mg/g for M2), after which both removal efficiency and heavy metal adsorption capacity gradually decrease with the increase in the adsorbent dose (0.3 g). These results suggest that the increased amount of adsorbent provides a supplement to the free active sites, but after reaching equilibrium, it leads to the formation of agglomerations and consequently to a decrease in the number of available active sites22,23.Effect of initial concentration on cadmium removal efficiencyFigure 25a shows the influence of heavy metal initial concentration on cadmium removal efficiency. It can be seen that removal efficiency shows an upward trend simultaneously with the increase of the initial cadmium concentration in the range 0–33.5 mg/L. The maximum removal efficiency (99,9% for M1 and respectively 99.8% for M2) was reached at a concentration of 28.5 mg/L, after which the decrease in cadmium removal efficiency begins.Figure 25(a) Relationship between initial concentration and removal efficiency (%). (b) Relationship between initial concentration and adsorption capacity (mg/g).Full size imageAccording to the Fig. 25b, in the same cadmium concentration range (0–33.5 mg/L), the adsorption capacity shows a similar trend, reaching a maximum at 28.5 mg/L (75.48 mg/g for M1 and respectively 74.46 mg/g for M2), and after which gradually decreases.These results indicate the initially an increase in the concentration of heavy metal causes an increase in the amount of Cd2 + ions and implicitly in the possibility of interaction with the active sites of the EFM adsorbent. And after reaching equilibrium, the amount of available metal ions is disproportionate compared to the decreasing number of free sites in the adsorbent, causing a decrease in the adsorption efficiency of the new engineered magnetic adsorbent used in the study15,57.Effect of pHThe wastewater pH is one of the top parameters with highly influence on the adsorption process efficiency having impact direct on the adsorption rate and adsorption capacity as fluctuations in the pH value of the solute induce changes in the degree of ionization of the adsorptive species and the of adsorbent surface23,57.In this study was investigated the pH influence toward the cadmium removal using the prepared material in the pH range of 3.0–7.0, to avoid the precipitation of Cd(OH)2 at pH values  > 715.According to the experimental results presented in Fig. 26a and b, the increase in pH value (between pH 3 and pH 6) leads to a significant increase in adsorption efficiency and adsorption capacity. The adsorption efficiency and adsorption capacity reach a maximum value (99.9% and 75.48 mg/g for M1 and respectively 99.8% and 75.46 mg/g for M2) at pH 6.5, after which it decreases slightly. This could be explained as follows: at low pH values is a competition between protons and Cd2+ to occupy the active sites of the adsorbent, even if they are available in large numbers. An increase in pH simultaneously leads to a decrease in the competition of protons and electrostatic repulsion forces, which induces an increase in cadmium removal efficiency. At pH  > 6.5 the removal efficiency begins to decrease as increased hydroxyl ion generation occurs to the detriment of Cd2+ ions. Therefore, the optimal pH 6.5 was chosen for subsequent experiments15,16,25,58,59.Figure 26(a) Effect of pH variation on cadmium removal efficiency. (b) Effect of pH variation on adsorption capacity.Full size imageEffect of contact timeFigure 27a showed the relationship diagram between the contact time and cadmium adsorption capacity.Figure 27(a) Effect pf contact time on cadmium adsorption capacity (mg/g). (b) Effect of contact time on cadmium removal efficiency (%).Full size imageIt can be observed from the Fig. 27a and b that the increase of the contact time determines an increase of the adsorption capacity and of the removal efficiency respectively. Both reached the maxima at 120 min The maximum of cadmium adsorption capacity was 75.48 mg/g for M1 respectively 75.46 mg/g for M2, and the maximum of removal efficiency was 99.9% for M1 and respectively 99.8% for M232.This performance can be attributed to the higher surface, the microporous structure that results from the experimental conditions of this study15.The analysis of this diagram indicates that the adsorption of cadmium takes place in three distinct phases:

    1.

    0–90 min, characterized by adsorption is fast due to the large number of active sites available on the surface of the adsorbent.

    2.

    the second phase, 90–120 min, the adsorption is slower which can be attributed to the diminution of the free adsorbent active sites;

    3.

    phase three:120–330 min, corresponds to the time interval in which there are no more free sites on the surface of the adsorbent and the adsorption has reached equilibrium.

    According to the experimental results, optimum time in which the adsorption reaches an equilibrium is 120 min and was selected for the next investigations16,60.Effect of temperature on absorption processTemperature represents a key parameter in adsorption process. Therefore, the influence of temperature on cadmium adsorption on prepared material in the two different molar ratios (both M1 and M2) was investigated in the range of 5–50 °C (278.15–323.15 K). The cadmium removal efficiency and adsorption capacity increase first and then a very slight decrease occurs with the increase of temperature (Fig. 28a,b).Figure 28(a) Relationship between temperature and heavy metal removal efficiency. (b) Relationship between temperature and heavy metal adsorption capacity.Full size imageAt 25 °C the maximum removal efficiency is reached (99.89% for M1 and respectively 99.64% for M2). At the same temperature the heavy metal adsorption capacity is maximum of 75.48 mg/g for M1 and 75.43 mg/g for M2. This can be explained by the fact that within this temperature range indicated the favorability for the heavy metal mobilization and thus contact between cadmium and active sites from adsorbent. The relationship between temperature and cadmium adsorption effect indicates that in the range of 5–25 °C the cadmium absorption on prepared material is an endothermic process (physical adsorption). At 25–50 °C the adsorption process becomes exothermic and chemisorption occurs. However, the removal efficiency remains very high even at a temperature of 50 °C (98.78% for M1 and respectively 97.74% for M2).Comparison of cadmium removal efficiency for with other adsorbentsA comparison of cadmium removal efficiency of the newly engineered adsorbent (EFM) with other adsorbents reported in literature is presented in the next table (Table 4).Table 4 Comparison of the removal efficiency of newly nanosized magnetic adsorbent (at both molar ratios: M1 and M2) with the one reported in the literature (selected study) for some adsorbent materials that use the similar waste.Full size tableThe performance of the nanosized adsorbent EFM (at both molar ratios) can be attributed to the higher surface area, the microporous structure that results from the experimental conditions of this study15.Comparison of cadmium removal efficiency with the raw materialsThe removal efficiency of EFM adsorbent compared to that of its raw materials (fly ash, eggshell and magnetite) was investigated as the effect of contact time on the adsorption process. The relationship between the removal efficiency and contact time is presented in Fig. 29. It can be observed that there is an increase in the efficiency of removing heavy metal for all five investigated adsorbents (eggshell, ash, magnetite, M1 and M2) with a maximum of two hours of contact. According to the experimental results presented in Fig. 29, the best cadmium removal efficiency was obtained for M1 (99.89%) and 99.80% for M2, followed by eggshell (95.23%), fly ash (76.31%) and magnetite (71.44%).Figure 29Relationship between adsorbents removal efficiency and contact time.Full size imageThen, a very slight decrease occurs with the increase in contact time. These results confirm the cadmium removal efficiency dependence on the specific surface area and pores (number of available active sites) of the adsorbent used (Table 1).The maximum cadmium removal efficiencies determined experimentally in this study for the raw materials (eggshell, ash and magnetite) corroborated with the data reported in the literature15,25,33,61.Adsorption IsothermsThe absorption mechanism evaluation can be performed through an isotherm adsorbent study. The equilibrium isotherm plays a key role in the investigation of the adsorption behaviour.Due to their simplicity and convenient accuracy, Langmuir and Freundlich’s models are the most commonly used to adjust an adsorption process.Langmuir models provides information on the interaction between the solute and the monolayer surface of the adsorbent. The main working hypotheses of this model are: (1) adsorbent surface consists of uniform, identical sites distributed on the surface of adsorbent (2) adsorbent process takes place only on the surface of the adsorbent and (3) no contact between adsorbed molecules on the surface of the adsorbent.Freundlich model is appropriate to monolayer and multilayer adsorption processes on multiphase surfaces. This isotherm gives an expression on adsorbent surface heterogeneity and the variation in the heat of adsorption process. The applicability of the Freundlich model is limited by adsorption processes that take place at high pressures, but this restriction does not apply to the Langmuir model.These two adsorption isotherm models were applied in order to identify and implement an optimal model that adequately reproduces the experimental results obtained in this study were employed to study the mechanism of cadmium adsorption on the prepared material60,62.The parameters calculated as well the coefficient of correlation (R2) for both Langmuir and Freundlich models are presented in the Table 5.Table 5 Parameters of adsorption Langmuir and Freundlich isotherms for cadmium adsorption.Full size tableAs shown in the Table 5 both models fitted well for the experimental results. The maximum capacities calculated are close to the values for each component of the prepared adsorbent material (magnetite, eggshell and fly ash) and maximum capacities obtained at equilibrium (Table 5)22,23,57,63,64. However, according to the values of the correlation coefficient, R2, the behaviour of cadmium absorption suits better with Freundlich model (the higher correlation coefficient) suggests that the adsorption for cadmium ions was a multi-molecular layer adsorption process. The values for the Langmuir constant, KL, or equilibrium parameter for absorbent (the both molar ratios, M1 respectively M2) falls within the range 0  1 indicated a favourable adsorption process. Moreover, Freundlich dimensionless constant n values having greater than 1 suggests a favourable adsorption process that occurs on the investigated EFM adsorbent heterogeneous surfaces62,65,66.Adsorption kinetic studyThe kinetic models provide information on the efficiency of the adsorbent, the dynamic parameters (rate, time, etc.) of the adsorption process. The cadmium adsorption process on the prepared material was investigated employing linear and non-linear of pseudo-first-order (Eq. 6) pseudo-second-order (Eq. 7) and intraparticle diffusion models (Eq. 8) to fit the obtained experimental adsorption data. The Fig. 30a–c depicted the plots of the first-order, second-order and intraparticle diffusion models for the cadmium adsorption on nano-engineered adsorbent (EFM).Figure 30(a) Pseudo first-order model fitting diagram. (b) Pseudo second-order model fitting diagram. (c) Intraparticle diffusion model fitting diagram.Full size imageThe kinetic parameters were obtained from the slope and intercept of the fitting plots of adsorption reaction models: pseudo first-order model (the correlation between log(qe-qt) against time), respectively the pseudo second-order model (correlation between t/qt function on time) and adsorption diffusion model: intraparticle diffusion model (the plot as function of ({t}^{1/2})).The results of fitting parameters on these kinetic models are presented in Table 6.Table 6 Kinetic parameters for cadmium adsorption on nano-engineered adsorbent (EFM) at both molar rations (M1 and M2).Full size tableAccording to the data obtained in Table 6, the coefficients of adsorption reaction models have both values close to one, slightly differing only at the fourth decimal. It could suggest that cadmium removal is achieved through a physical and chemical adsorption process. It must be noted that were obtained higher values for the correlation coefficient (R2) and the calculated adsorption capacity value is very similar to those determined experimentally in the case of the pseudo-second-order kinetics model. Therefore, pseudo-second-order kinetic model was more suitable to describe the adsorption process. This indicating a chemical adsorption is assumed as the rate-limiting step for the cadmium adsorption on prepared material, involving an electron exchange between adsorbent and adsorbate (cadmium occurs with formation of strong chemical bonding)23.According to the Fig. 30c the allure of intraparticle diffusion model includes three regions. The first region corresponds to a boundary diffusion (cadmium diffusion on the prepared material exterior surface). The second region is related to heavy metal intraparticle diffusion into the pores of nano-engineered adsorbent (EFM). The third region represent the cadmium adoption into the interior site of the EFM. Since, the slope of the three regions gradually decreases (Ki1  > Ki2  > Ki3) is assumed that boundary diffusion is the limiting region, followed by intraparticle diffusion15,67. The results indicate that beginning of the adsorption process cadmium ions can be quickly bound on the prepared material exterior surface. In the intraparticle diffusion process (second region) there is a gradual decrease in adsorption at the sites on the adsorbent surface (adsorption capacity reaches the maximum value). Then, cadmium adsorption takes place on the available sites inside the adsorbent, generating significant mass transfer resistance and reaching the adsorption equilibrium and the adsorption rate gradually decreases68,69,70.The adsorption models used provide information on both the performance of the prepared material and a perspective of the adsorption mechanism.Thermodynamical studyThe Gibbs free energy in adsorption process was calculated according to the corresponding equation (Eq. 10). The thermodynamic parameters ΔS and ΔH were obtained from the slope and intercept of the adsorption thermodynamic curve. The obtained results are presented in next table (Table 7).Table 7 Thermodynamic parameters for the cadmium adsorption on adsorbent.Full size tableFrom these data obtained (Table 7) can be found that the free energy variation value of the adsorption process has negative values (ΔG  α lower than 0.05 (α = 0.05), which suggests that between the M1 and M2 there are not statistically significant differences. More