More stories

  • in

    Maintaining the productivity of co-culture systems in the face of environmental change

    Lee, K., Khanal, S. & Bakshi, B. R. Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs. Energy Environ. Sci. 14, 3700–3716 (2021).Article 

    Google Scholar 
    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).CAS 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1–35 (Cambridge Univ. Press, 2022).Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).CAS 
    Article 

    Google Scholar 
    Bashir, M. A. et al. Co-culture of rice and aquatic animals: an integrated system to achieve production and environmental sustainability. J. Clean. Prod. 249, 119310 (2020).Article 

    Google Scholar 
    Dong, S. et al. Evaluation of the trophic structure and energy flow of a rice–crayfish integrated farming ecosystem based on the Ecopath model. Aquaculture 539, 736626 (2021).Article 

    Google Scholar 
    Polovina, J. J. Model of a coral reef ecosystem—I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3, 1–11 (1984).Article 

    Google Scholar 
    Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Fath, B. D. et al. Ecological network analysis metrics: the need for an entire ecosystem approach in management and policy. Ocean Coast. Manag. 174, 1–14 (2019).Article 

    Google Scholar 
    Diffendorfer, J. E., Richards, P. M., Dalrymple, G. H. & DeAngelis, D. L. Applying linear programming to estimate fluxes in ecosystems or food webs: an example from the herpetological assemblage of the freshwater Everglades. Ecol. Model. 144, 99–120 (2001).Article 

    Google Scholar 
    Bolton, S. in Encyclopedia of Ecology 2nd edn, Vol. 4 (ed. Fath, B. D.) 493–497 (Elsevier, 2019).Galaitsi, S. E., Keisler, J. M., Trump, B. D. & Linkov, I. The need to reconcile concepts that characterize systems facing threats. Risk Anal. 41, 3–15 (2021).CAS 
    Article 

    Google Scholar 
    Lao, A., Cabezas, H., Orosz, A., Friedler, F. & Tan, R. Socio-ecological network structures from process graphs. PLoS ONE 15, e0232384 (2020).CAS 
    Article 

    Google Scholar 
    Friedler, F., Aviso, K. B., Bertok, B., Foo, D. C. Y. & Tan, R. R. Prospects and challenges for chemical process synthesis with P-graph. Curr. Opin. Chem. Eng. 26, 58–64 (2019).Article 

    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Hu, L. et al. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 6, 28728 (2016).CAS 
    Article 

    Google Scholar 
    He, M., Liu, F. & Wang, F. Resource utilization, competition and cannibalism of the red swamp crayfish Procambarus clarkii in integrated rice-crayfish culture without artificial diets. Aquac. Rep. 20, 100644 (2021).Article 

    Google Scholar 
    Xu, Q. et al. Conversion from rice–wheat rotation to rice–crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 319, 128883 (2021).Article 

    Google Scholar 
    Kurth, M. et al. A portfolio decision analysis approach to support energy research and development resource allocation. Energy Policy 105, 128–135 (2017).Article 

    Google Scholar 
    Friedler, F., Pimentel Lozada, J. & Orosz, Á. P-Graphs for Process Systems Engineering: Mathematical Models and Algorithms (Springer Nature, 2022).P-Graph (accessed 10 August 2021); www.p-graph.org More

  • in

    Networking for food production

    Mahdavi, A. et al. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).CAS 
    Article 

    Google Scholar 
    Levin, A. et al. Nat. Rev. Chem. 4, 615–634 (2020).CAS 
    Article 

    Google Scholar 
    Graedel, T. E. Annu. Rev. Energy Environ. 21, 69–98 (1996).Article 

    Google Scholar 
    Erkman, S. J. Clean. Prod. 5, 1–10 (1997).Article 

    Google Scholar 
    Lao, A. R., Aviso, K. B., Cabezas, H. & Tan, R. R. Nat. Sustain. https://doi.org/10.1038/s41893-022-00912-w (2022).Benke, K. & Tomkins, B. Sustain. Sci. Practice Policy 13, 13–26 (2017).
    Google Scholar 
    Treich, N. Environ. Resource Econ. 79, 33–61 (2021).Article 

    Google Scholar 
    Liu, J., Caspersen, S. & Yong, J. W. H. Elife 11, e77202 (2022).Article 

    Google Scholar 
    Friedler, F., Tarján, K., Huang, Y. W. & Fan, L. T. Chem. Eng. Sci. 47, 1973–1988 (1992).CAS 
    Article 

    Google Scholar 
    Sait, S. M., Liu, W.-C., Thompson, D. J., Godfray, H. C. J. & Begon, M. Nature 405, 448–450 (2000).CAS 
    Article 

    Google Scholar 
    Nelson, M. Space Sci. Technol. 2021, 8067539 (2021).Article 

    Google Scholar  More

  • in

    Reduction of microbial diversity in grassland soil is driven by long-term climate warming

    Rands, M. R. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S., Fargione, J., Chapin, F. S. III & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 

    Google Scholar 
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl Acad. Sci. USA 116, 19989–19994 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xue, K. et al. Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio https://doi.org/10.1128/mBio.00976-16 (2016).Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).CAS 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).PubMed 
    Article 

    Google Scholar 
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).Article 

    Google Scholar 
    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).PubMed 
    Article 

    Google Scholar 
    Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).Article 

    Google Scholar 
    Thakur, M. P. et al. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Sci. Adv. 3, e1700866 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain‐use efficiency as affected by warming, altered precipitation, and clipping in a mixed‐grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).Article 

    Google Scholar 
    Luo, Y., Sherry, R., Zhou, X. & Wan, S. Terrestrial carbon‐cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Glob. Change Biol. Bioenergy 1, 62–74 (2009).CAS 
    Article 

    Google Scholar 
    Chen, M.-M. et al. Effects of soil moisture and plant interactions on the soil microbial community structure. Eur. J. Soil Biol. 43, 31–38 (2007).CAS 
    Article 

    Google Scholar 
    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Horn, D. J. et al. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl. Environ. Microbiol. 80, 3034–3043 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Nuland, M. E. et al. Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiol. Ecol. 96, fiaa108 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reimer, L. C. et al. Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 50, D741–D746 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in respoÿnse to warming. Nat. Commun. 11, 4717 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiedje, J. M. et al. Microbes and climate change: a research prospectus for the future. MBio, e00800-22 (2022). doi:10.1128/mbio.00800-22 (2022).Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual‐dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).
    Google Scholar 
    Sherry, R. A. et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol. 14, 2923–2936 (2008).Article 

    Google Scholar 
    Catchpole, W. & Wheeler, C. Estimating plant biomass: a review of techniques. Aust. J. Ecol. 17, 121–131 (1992).Article 

    Google Scholar 
    McLean, E. in Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (ed Page, A. L.) 199–224 (1982).Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Munoz, R. et al. Release LTPs104 of the all-species living tree. Syst. Appl. Microbiol. 34, 169–170 (2011).PubMed 
    Article 

    Google Scholar 
    Nuccio, E. E. et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318 (2016).PubMed 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data (Babraham Bioinformatics, 2010).Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patel, R. K. & Jain, M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7, e30619 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2014).Oksanen, J. et al. Package ‘vegan’. Community Ecology Package v.2 (2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2018).Barton, K. & Barton, M. K. Package ‘MuMIn’ v.1.18 (2015).Carver, R. Practical Data Analysis with JMP (SAS Institute, 2019).Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Rosseel, Y. lavaan: An R Package for Structural Equation Modeling and More v.0.4-9 (BETA) (Ghent University, 2011). More

  • in

    Fleshy red algae mats act as temporary reservoirs for sessile invertebrate biodiversity

    Jones, C. G. et al. A framework for understanding physical ecosystem engineering by organisms. Oikos 119, 1862–1869 (2010).Article 

    Google Scholar 
    Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Montefalcone, M., Morri, C., Peirano, A., Albertelli, G. & Bianchi, C. N. Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 75, 63–71 (2007).Article 

    Google Scholar 
    Pergent, G. et al. Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterranean Mar. Sci. 15, 462–473 (2014).Article 

    Google Scholar 
    Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).Article 
    PubMed 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).Article 

    Google Scholar 
    Meybeck, M. The global change of continental aquatic systems: dominant impacts of human activities. Water Sci. Technol. 49, 73–83 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).Article 
    PubMed 

    Google Scholar 
    Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Chang. 7, 81–85 (2017).CAS 
    Article 

    Google Scholar 
    Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article 

    Google Scholar 
    Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cocito, S. Bioconstruction and biodiversity: their mutual influence. Sci. Mar. 68, 137–144 (2004).Article 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. U. Kingd. 96, 341–350 (2016).Article 

    Google Scholar 
    Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000). https://doi.org/10.1017/CBO9780511525551.Nellemann, C. et al. Blue Carbon – The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment (GRID-Arendal, 2009).Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).Article 

    Google Scholar 
    Romero, J., Pérez, M., Mateo, M. A. & Sala, E. The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat. Bot. 47, 13–19 (1994).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA. 106, 12377–12381 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tyler-Walters, H. Loose-lying mats of Phyllophora crispa on infralittoral muddy sediment. Mar. Inf. Netw. Biol. Sensit. Key Inf. Rev. 1–16 https://doi.org/10.17031/marlinhab.187.1 (2016).Bonifazi, A. et al. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: benthic assemblages along a depth gradient in the Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 185, 77–93 (2017).Article 

    Google Scholar 
    Navone, A., Bianchi, C. N., Orru, P. & Ulzega, A. Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolara-Capo Coda Cavallo. Oebalia 17, 469–478 (1992).Guiry, M. Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota. in European Register of Marine Species: A Check-list of the Marine Species in Europe and a Bibliography of Guides to their Identification. Collection Patrimoines Naturels (eds. Costello, M. J., Emblow, C. & White, R.) 20e38 (Collection Patrimoines Naturels, 2001).Zaitsev, Y. An Introduction to the Black Sea Ecology (Smil Edition and Publishing Agency ltd, 2008).Berov, D., Todorova, V., Dimitrov, L., Rinde, E. & Karamfilov, V. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area. Estuar. Coast. Shelf Sci. 200, 234–247 (2018).Article 

    Google Scholar 
    Bunker, F., Brodie, J. A., Maggs, C. A. & Bunker, A. R. Seaweeds of Britain and Ireland. (Wild Nature Press, 2017).Schmidt, N., El-Khaled, Y. C., Rossbach, F. I. & Wild, C. Fleshy red algae mats influence their environment in the Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721626 (2021).Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 13, 265 (2021).Article 

    Google Scholar 
    Virnstein, R. W., & Carbonara, P. A. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquat. Bot. 23, 67–82 (1985).Article 

    Google Scholar 
    Norkko, J., Bonsdorff, E. & Norkko, A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific response to a transient resource. J. Exp. Mar. Bio. Ecol. 248, 79–104 (2000).CAS 
    Article 

    Google Scholar 
    Salovius, S., Nyqvist, M. & Bonsdorff, E. Life in the fast lane: macrobenthos use temporary drifting algal habitats. J. Sea Res. 53, 169–180 (2005).Article 

    Google Scholar 
    Arroyo, N. L., Aarnio, K., Mäensivu, M. & Bonsdorff, E. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro-meiofaunal interactions. J. Exp. Mar. Bio. Ecol. 420–421, 77–90 (2012).Article 

    Google Scholar 
    McNeil, M. et al. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01400-8 (2021).Nelson, T. A. et al. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287–1298 (2008).Article 
    PubMed 

    Google Scholar 
    Coffin, M. R. S. et al. Are floating algal mats a refuge from hypoxia for estuarine invertebrates? PeerJ 5, e3080 (2017).Barnes, R. S. K. Context dependency in the effect of Ulva-induced loss of seagrass cover on estuarine macrobenthic abundance and biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 163–174 (2019).Article 

    Google Scholar 
    Hull, S. C. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25, 519–532 (1987).Article 

    Google Scholar 
    Bohórquez, J. et al. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar. Pollut. Bull. 70, 10–17 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B Biol. Sci. 285, 20172571 (2018).Teagle, H. & Smale, D. A. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib. 24, 1367–1380 (2018).Article 

    Google Scholar 
    Dean, R. L. & Connell, J. H. Marine invertebrates in an algal succession. I. Variations in abundance and diversity with succession. J. Exp. Mar. Bio. Ecol. 109, 195–215 (1987).Article 

    Google Scholar 
    Buia, M. C., Gambi, M. C. & Zupo, V. Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol. Mar. Mediterr. 7, 167–190 (2000).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).Article 

    Google Scholar 
    El-Khaled, Y. C. et al. Fleshy Red Algae Mats Act as Temporary Reservoir for Sessile Invertebrate Biodiversity – Raw Data for Biodiversity Analysis, Species List and Detailed Output Data from iNext Procedure. https://doi.org/10.5281/zenodo.5653358 (2021).Viaroli, P. et al. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, S105–S117 (2008).Article 

    Google Scholar 
    Viaroli, P., Azzoni, R., Bartoli, M., Giordani, G. & Tajé, L. Evolution of the trophic conditions and dystrophic outbreaks in the Sacca di Goro Lagoon (Northern Adriatic Sea). in Mediterranean Ecosystems (eds. Farranda, F., Guglielmo, L. & Spezie, G.) 467–475 (Springer, 2001). https://doi.org/10.1007/978-88-470-2105-1_59.Axelsson, L. Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97, 287–294 (1988).Article 

    Google Scholar 
    Morel, F. & Hering, J. G. Acids and bases. Alkalinity and pH in natural waters. in Principles and Applications of Aquatic Chemistry (eds. Morel, F. & Hering, J. G.) 127–178 (Wiley, New York, 1983).Dalla Via, J. et al. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267–278 (1998).Article 

    Google Scholar 
    Enríquez, S. & Pantoja-Reyes, N. I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145, 235–243 (2005).Article 
    PubMed 

    Google Scholar 
    Ryland, J. S. Bryozoans (Hutchinson Unviersity Library, 1970).McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (University of Chicago Press, 1991).Mullineaux, L. S. & Garland, E. D. Larval recruitment in response to manipulated field flows. Mar. Biol. 116, 667–683 (1993).Article 

    Google Scholar 
    Qian, P. Y., Rittschof, D. & Sreedhar, B. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar. Ecol. Prog. Ser. 207, 109–121 (2000).Article 

    Google Scholar 
    Qian, P. Y., Rittschof, D., Sreedhar, B. & Chia, F. S. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar. Ecol. Prog. Ser. 191, 141–151 (1999).Article 

    Google Scholar 
    Judge, M. L. & Craig, S. F. Positive flow dependence in the initial colonization of a fouling community: results from in situ water current manipulations. J. Exp. Mar. Bio. Ecol. 210, 209–222 (1997).Article 

    Google Scholar 
    Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 40, 1–13 (2021).Cummings, V., Vopel, K. & Thrush, S. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behaviour of post-settlement bivalves. Mar. Ecol. Prog. Ser. 383, 173–185 (2009).CAS 
    Article 

    Google Scholar 
    Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).CAS 

    Google Scholar 
    Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).Article 

    Google Scholar 
    Gacia, E., Granata, T. C. & Duarte, C. M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65, 255–268 (1999).Article 

    Google Scholar 
    Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 356, 163–173 (2008).Article 

    Google Scholar 
    Prathep, A., Marrs, R. H. & Norton, T. A. Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar. Biol. 142, 381–390 (2003).Article 

    Google Scholar 
    Piazzi, L. & Ceccherelli, G. Alpha and beta diversity in Mediterranean macroalgal assemblages: relevancy and type of effect of anthropogenic stressors vs natural variability. Mar. Biol. 167, 1–10 (2020).Article 

    Google Scholar 
    Lavender, J. T., Dafforn, K. A., Bishop, M. J. & Johnston, E. L. Small-scale habitat complexity of artificial turf influences the development of associated invertebrate assemblages. J. Exp. Mar. Bio. Ecol. 492, 105–112 (2017).Article 

    Google Scholar 
    Thomsen, M. S., de Bettignies, T., Wernberg, T., Holmer, M. & Debeuf, B. Harmful algae are not harmful to everyone. Harmful Algae 16, 74–80 (2012).Article 

    Google Scholar 
    Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).Article 

    Google Scholar 
    Infantes, E., Terrados, J., Orfila, A., Cañellas, B. & Álvarez-Ellacuria, A. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar. 52, 419–427 (2009).Article 

    Google Scholar 
    Procaccini, G. et al. The seagrasses of the Western Mediterranean. in World Atlas of Seagrasses (eds. Green, E. P. & Short, F. T.) 48–58 (University of California Press, 2003).Geist, J. & Hawkins, S. J. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 942–962 (2016).Article 

    Google Scholar 
    Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot. 84, 26–36 (2006).Article 

    Google Scholar 
    Mason, R., Hock, K. & Mumby, P. J. Identification of important source reefs for Great Barrier Reef Recovery following the 2016-17 Thermal Stress Events. Rep. to Natl. Environ. Sci. Progr. p. 11 (2018).Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    McCall, B. D. & Pennings, S. C. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS One 7, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    Bianchi, C. N. et al. Hard bottoms. Mediterr. Mar. Benthos a Man. Methods its Sampl. study 6, 185–215 (2004).
    Google Scholar 
    Orth, R. J., Heck, K. L. & van Montfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984).Article 

    Google Scholar 
    Bianchi, C. N., Bedulli, D., Morri, C., Occhipinti Ambrogi, A. L’herbier de Posidonies: Ecosystème ou carrefour écoéthologique? In International Workshop Posidonia Oceanica Beds. (eds. Boudouresque, C. F., Meinesz, A., Fresi, E. & Gravez, V.) (GIS Posidonie, Marseille, 1989).Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: An overview. Mar. Ecol. 37, 3–41 (2016).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (2017).RStudio Team. RStudio: Integrated Development for R (2020).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22 (2021).Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).Daraghmeh, N. & El-Khaled, Y. C. iNEXT4steps workflow for biodiversity assessment and comparison. protocols.io 1–5 (2021) https://doi.org/10.17504/protocols.io.bu6fnzbn.Chao, A. & Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 6, 873–882 (2015).Article 

    Google Scholar 
    Chao, A., & Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 100, 1–15 (2019).Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to Software and Statistical Methods (2008).Rasband, W. ImageJ (1997).Buia, M. C. M. C., Gambi, M. C. & Dappiano, M. Seagrass systems. Biol. Mar. Mediterr. 11, 133–183 (2004).
    Google Scholar 
    Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).Article 

    Google Scholar 
    Klain, D. A. An intuitive derivation of Heron’s formula. Am. Math. Mon. 111, 709–712 (2004).Article 

    Google Scholar 
    Duggins, D. O., Eckman, J. E. & Sewell, A. T. Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates. J. Exp. Mar. Bio. Ecol. 143, 27–45 (1990).Article 

    Google Scholar 
    Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Bio. Ecol. 129, 173–187 (1989).Article 

    Google Scholar 
    Mabrouk, L., Ben Brahim, M., Hamza, A. & Bradai, M. N. Diversity and temporal fluctuations of epiphytes and sessile invertebrates on the rhizomes Posidonia oceanica in a seagrass meadow off Tunisia. Mar. Ecol. 35, 212–220 (2014).Article 

    Google Scholar 
    Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. in Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 123–195 (Taylor & Francis, 2006).Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).Article 

    Google Scholar 
    Cleary, D. F. R. et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Mar. Pollut. Bull. 110, 701–717 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Milne, R. & Griffiths, C. Invertebrate biodiversity associated with algal turfs on a coral-dominated reef. Mar. Biodivers. 44, 181–188 (2014).Article 

    Google Scholar 
    Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep–water Lophelia reefs in Norway. Proc. 10th Int. Coral Reef. Symp. 1868, 1849–1868 (2006).
    Google Scholar 
    Henry, L. A., Davies, A. J. & Roberts, J. M. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs 29, 427–436 (2010).Article 

    Google Scholar 
    Farnsworth, E. J. & Ellison, A. M. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities. Ecol. Monogr. 66, 45–66 (1996).Article 

    Google Scholar 
    Graham, M. H. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).Article 

    Google Scholar 
    Gutt, J., Sirenko, B. I., Arntz, W. E., Smirnov, I. S. & Broyer, C. D. E. Biodiversity of the Weddell Sea: macrozoobenthic species (demersal fish included) sampled during the expedition ANT Xllll3 (EASIZ I) with RV ‘Polarstern’. Ber. Polarforsch. Meeresforsch. 372, 118 (2000).
    Google Scholar  More

  • in

    Sniffing out forest fungi

    Truffles are socially and economically important in parts of Croatia. They can be worth up to €5,000 (US$5,300) per kilogram. The truffle industry and related tourism provides jobs, supplements incomes and boosts local economies. It’s not just about money, however; many people just love being out in the forest looking for them.My fascination with fungi began at the age of six, when my father and grandfather began taking me out to hunt for game and to collect mushrooms near our home in Istria. Today, I focus mainly on truffles and other hypogeous fungi, which produce their fruiting bodies underground. I spend 50–100 days a year in the field with my dogs, collecting samples and data on the life cycles, ecology and geographical spread of fungi across Croatia. Here, I’m with my dog Masha. I love the work.Thirty years ago, rainfall used to be more predictable across the year in Istria. Now, the climate is more extreme, and includes droughts. Truffles require a specific amount of water to grow. And warm winters have increased the population of wild boars, which damage the soil and eat the truffles. The truffles are becoming harder to find.Truffle plantations could take the pressure off natural habitats. There, the soil water content can be controlled, agricultural methods can be used to enhance production and boars can be kept out. We’re studying the viability of farming black truffles, in part by experimenting with different ways to inoculate tree seedlings with their spores.We’re using DNA barcoding to identify fungi in soil from their spores and root-like mycelium in protected areas. We’re finding that there are often many more species present than previously thought.Our comparisons of areas with and without truffles could help to reveal why they grow in some areas but not others. Our work is also helping to show the importance of biodiversity in places such as the Adriatic islands of Brijuni National Park. More

  • in

    Safety assessment and sustainability of consuming eggplant (Solanum melongena L.) grown in wastewater-contaminated agricultural soils

    Eid, E. M., Galal, T. M. & El-Bebany, A. F. Prediction models for monitoring heavy metals accumulation by wheat (Triticum aestivum L.) plants grown in soil amended with different rates of sewage sludge. Int. J. Phytoremediation 22(10), 1000–1008 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Singh, R. P. & Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng. 36(7), 969–972 (2010).Article 

    Google Scholar 
    Wu, N., Su-mei, L., Gui-ling, Z. & Hong-mei, Z. Anthropogenic impacts on nutrient variability in the lower yellow river. Sci. Tot. Environ. 755, 142488 (2021).CAS 
    Article 

    Google Scholar 
    Jacob, J. M. et al. Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manag. 217, 56–70 (2018).CAS 
    Article 

    Google Scholar 
    Gharib, F. A., Mansour, K. H., Ahmed, E. Z. & Galal, T. M. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int. J. Phytoremediation 23(6), 641–651 (2020).PubMed 

    Google Scholar 
    Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chowdhury, A. H., Chowdhury, T. & Rahman, A. Heavy metal accumulation in tomato and cabbage grown in some industrially contaminated soils of Bangladesh. J. Bangladesh Agric. Univ. 17(3), 288–294 (2019).Article 

    Google Scholar 
    Hu, S., Liu, L., Zuo, S., Ali, M. & Wang, Z. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. J. Clean Prod. 266, 121991 (2020).CAS 
    Article 

    Google Scholar 
    Hu, W. Y., Zhang, Y. X., Huang, B. & Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170, 183–195 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Qin, S. et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2), 168–180 (2020).Article 

    Google Scholar 
    Kumar, V., Thakur, K. R. & Kumar, P. Assessment of heavy metals uptake by cauliflower (Brassica oleracea Var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Sci. Hortic. 257, 108682 (2019).CAS 
    Article 

    Google Scholar 
    Paltseva, A., Cheng, Z., Egendorf, S. & Groffman, P. Remediation of an urban garden with elevated levels of soil contamination. Sci Total Environ. 722, 137965 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, L., Liu, Y., Wu, Y., Wang, Q. & Zhou, Q. The effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium contaminated vegetable field. Environ. Pollut. 268, 115869 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Q., Fei, L., Wang, C., Hu, S. & Wang, Z. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environ. Pollut. 252, 1406–1411 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perveen, S., Ihsanullah, I., Shah, Z., Shah, W. S. S. & Shah, H. H. Study on accumulation of heavy metals in vegetables receiving sewage water. J. Chem. Soc. Pak. 33, 220 (2011).CAS 

    Google Scholar 
    Galal, T. M., Sheded, Z. A. & Hassan, L. M. Hazards assessment of the intake of trace metals by common mallow (Malva parviflora L.) growing in polluted soils. Int. J. Phytoremediation 21(14), 1397–1406 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogundeji, A. O. et al. Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium Wilt. Appl. Soil Ecol. 163, 103912 (2021).Article 

    Google Scholar 
    Mauro, R. P. et al. Recovery of eggplant field waste as a source of phytochemicals. Sci. Hort. 261, 109023 (2020).CAS 
    Article 

    Google Scholar 
    Martini, S., Conte, A., Cattivelli, A. & Tagliazucchi, D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 341, 128298 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gürbüz, N., Uluişik, S., Frary, A., Frary, A. & Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 268, 602–610 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    FAOSTAT. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/default.aspx#ancor (2014).Asgari, K. & Cornelis, W. M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 187, 410 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    IWMI. (International Water Management Institute) Global water scarcity study. From http://www.iwmi.cgiar.org/home/wsmap.htm (2000).Oweis, T. & Hachum, A. Water harvesting for improved rainfed agriculture in the dry environments. In Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P. et al.) 164–181 (CABI, 2009).Chapter 

    Google Scholar 
    Shehata, H. S. & Galal, T. M. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J. Cons. Prot. Food Safe. 15, 205–217 (2020).CAS 
    Article 

    Google Scholar 
    Elawa, O. E. Impact assessment of industrial pollution on some economic plants south of Cairo Province, Egypt. M.Sc. Thesis, Helwan Uni Cairo, Egypt 194 pp (2015).Umbriet, W. W. et al. Monometric Technique, A Manual Description Method, Applicable to Study of Desiring Metabolism 239 (Burgess Publishing Company, 1959).
    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, S. E. Chemical Analysis of Ecological Materials (Blackwell Scientific Publications, 1989).
    Google Scholar 
    Liu, R. L., Li, S. T., Wang, X. B. & Wang, M. Contents of heavy metal in commercial organic fertilizers and organic wastes. J. Agro-Environ. Sci. 24, 392–397 (2005).CAS 

    Google Scholar 
    Lu, X. W. et al. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Safe. 106, 154–163 (2014).CAS 
    Article 

    Google Scholar 
    Eid, E. M., Alrumman, S. A., Galal, T. M. & El-Bebany, A. F. Regression models for monitoring trace metal accumulations by Faba sativa Bernh. plants grown in soils amended with different rates of sewage sludge. Sci. Rep. 9, 5443 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K. & Singh, A. K. Long-term impact of irrigation with sewage effluents on heavy metals content in soils, crops and groundwater: a case study. Agric. Ecosyst. Environ. 109, 310–322 (2005).CAS 
    Article 

    Google Scholar 
    US-EPA. Environmental Protection Agency, Region 9, Preliminary remediation goals (2012).SPSS. SPSS Version 20.0. SPSS Inc, 233 S Wacker Drive, Chicago, Illinois (2012).Al-jaboobi, M. et al. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat Region, Morocco. J. Mater Environ. Sci. 5(3), 961–966 (2014).
    Google Scholar 
    Rangamani, T., Rao, K. V. & Srinivas, T. Evaluation of heavy metals in water, soil and cauliflower in Penamaluru Mandal in Vijayawada. Int. J. Multidiscip. Adv. Res. Trends 1(3), 242–248 (2017).
    Google Scholar 
    Galal, T. M. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 188(7), 134 (2016).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    Eid, E. M. et al. Evaluation of newly reclaimed areas in Abha, Saudi Arabia, for cultivation of the Phaseolus vulgaris leguminous crop under sewage sludge amendment. J. Cons. Prot. Food. Safe. https://doi.org/10.1007/s00003-020-01311-z (2021).Article 

    Google Scholar 
    Galal, T. M., Hassan, L. M. & Elawa, O. E. Impact Assessment of Industrial Pollution on Important Food Crops (Lambert Academic Publishing Gmbh&Co.KG, 2019).
    Google Scholar 
    WHO/FAO (2013) Guidelines for the Safe Use of Wastewater and foodstuff; 2(1), 14 ppGalal, T. M., Khalafallah, A. A., Elawa, O. E. & Hassan, L. M. Human health risks from consuming cabbage (Brassica oleracea L. var. capitata) grown on wastewater irrigated soil. Int. J. Phytoremediation 20(10), 1007–1016 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaturvedi, R., Favas, P., Pratas, J., Varun, M. & Paul, M. S. Ecotoxicology and environmental safety assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal (Loid) contaminated soil. Ecotoxicol. Environ. Safe. 148, 318–326 (2018).CAS 
    Article 

    Google Scholar 
    Ai, P., Jin, K., Alengebawy, A., Elsayed, M. & Meng, L. Effect of application of different biogas fertilizer on eggplant production: analysis of fertilizer value and risk assessment. Environ. Technol. Innov. 19(13), 101019 (2020).Article 

    Google Scholar 
    Ekmekçi, Y., Tanyolaç, D. & Ayhan, B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Plant Physiol. 165, 600–611 (2008).Article 
    CAS 

    Google Scholar 
    Hadi, F., Bano, A. & Fuller, M. P. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80, 457–462 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, G. et al. A multi-level analysis of China’s phosphorus flows to identify options for improved management in agriculture. Agric. Syst. 144, 87–100 (2016).Article 

    Google Scholar 
    Farahat, E. A., Galal, T. M., Elawa, O. E. & Hassan, L. M. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environ. Monit. Assess. 189, 535 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghazi, S. M., Galal, T. M. & Husein, K. H. Monitoring Water Pollution in the Egyptian Watercourses: A Phytoremediation Approach (Lap Lambert Academic Publishing, 2019).
    Google Scholar 
    Körpe, D. A. & Aras, S. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat. Res. 719, 29–34 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nagajyoti, P., Lee, K. & Sreekanth, T. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216 (2010).CAS 
    Article 

    Google Scholar 
    Ai, S. et al. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotoxicol. Environ. Safe. 153, 204–214 (2018).CAS 
    Article 

    Google Scholar 
    Vecchia, F. D. et al. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 168, 329–338 (2005).Article 
    CAS 

    Google Scholar 
    Rizwan, M. et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupper, H. & Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 8, 269–285 (2016).PubMed 
    Article 

    Google Scholar 
    Piotrowska, A., Bajguz, A., Godlewska, B., Czerpak, R. & Kaminska, M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ. Exp. Bot. 66, 507–513 (2009).CAS 
    Article 

    Google Scholar 
    Singh, R. et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 101, 3025–3032 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collado-González, J., Piñero, M. C., Otálora, G. & López-Marín, J. Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica oleracea var. botrytis L.) florets under heat stress. Sci. Hortic. 277, 109818 (2021).Article 
    CAS 

    Google Scholar 
    Al Jassir, M., Shaker, A. & Khaliq, M. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City, Saudi Arabia. Bull. Environ. Contam. Toxicol. 75, 1020–1027 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    ur Rehman, K. et al. Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: the particular case of Sahiwal District in Pakistan. Agric. Water Manag. 226, 105816 (2019).Article 

    Google Scholar 
    Misra, S. G. & Mani, D. Soil pollution (Ashish Publishing House, 1991).
    Google Scholar 
    Jolly, Y. N., Islam, A. & Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2, 385 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, H. et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 13(3), 289 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rehman, Z., Hussain, R. A., Jabeen, S. & Ali, S. Heavy metals (Cd, Pb & Zn) accumulation in cauliflower (Brassica oleracea var. botyris) and associated health risks assessment in three districts of Punjab Pakistan. Biol. Pak. 64(1), 105–110 (2018).
    Google Scholar 
    Saeedifar, F., Ziarati, P. & Ramezan, Y. Nitrate and heavy metal contents in eggplant (Solanum melongena) cultivated in the farmlands in the south of Tehran-Iran. Int. J. Farm Allied Sci. 3, 60–65 (2014).Article 

    Google Scholar 
    Khanal, B. R., Shah, S. C., Sah, S. K. & Shriwastav, C. P. Heavy metals accumulation in cauliflower (Brassica oleracea L. var. botrytis) grown in brewery sludge amended sandy loam soil. Int. J. Agric. Sci. Technol. 2(3), 87–92 (2014).
    Google Scholar  More

  • in

    Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem

    This study reveals that various measures of bee diversity-including abundance, richness, and assemblage patterns are influenced by vane color and light reflectance patterns when passively sampling bees with vane traps. In particular, brightly colored vanes with higher light reflectance within 400–600 nm range attracted a greater diversity of bees in traps placed in a livestock pasture ecosystem. Effectiveness of blue and yellow vane traps had been compared previously in different ecosystems, for instance in apple orchards17, both woodland and open agriculture farmland13, and adjacent to Helianthus spp. (Asteraceae) field27. In all these studies, blue vane trap captured more bee species and 5–6 times more individuals compared to yellow vane trap.In the current study, we assessed a different design and size of vanes and a wider array of vane colors and reflectance patterns attached to sample collection jars. In particular, we used bright blue and yellow vanes that were made of plastic sheets covered with a micro-prismatic retro-reflective sheeting that provides better daytime and nighttime brightness as well as high visibility and durability. These vanes showed higher light reflectance and captured the most bees and bee species in this study (Table 2). Similar material was used on red vanes as well, but the light reflectance from those vanes was relatively lower, and as a result captured fewer bees. Traps with bright blue vanes performed especially well in terms of rates of bee capture (Fig. 2; 11.1 bees per trap per sampling date) and rates of species accumulation (Fig. 3). Bright yellow traps exhibited the second highest values for capture rates (Fig. 2; 6.6 bees per trap per sampling date) and species accumulation (Fig. 3), but these rates were not deemed significantly different from some other colors in which the reflective sheeting was not used, such as dark yellow, dark blue and purple.Bees use visual clues for detection, recognition, and memorization of floral resources in the foraging landscape7,28. The intensity of light reflected from different colors of vanes in traps affect number of bees attracted toward the trap10. Most bees can recognize colors that fall between 300 to 600 nm visual spectrums29. While the information related to the vision of many solitary and wild bees is not available, in the case of honey bees (Apis mellifera), color vision is trichromatic with highly sensitive photoreceptors at 344 nm (ultraviolet), 436 nm (blue) and 544 nm (green)30.In this study, colored vanes at a higher light reflectance between 400 to 600 nm attracted the highest number bee species in these passive traps. Capture rate differed among traps with different colored vanes in the current study, which can be explained by sensitivity of visual spectrum of bees and variation in the light reflectance of vanes of these traps. For example, bright blue vanes had two peaks of higher light reflectance, initially in 450–455 nm range and second peak with  > 800 nm. Such higher reflectance peak within the optimal range of bee vision may have played an important role in attracting abundant and diverse bee species to these passive traps. Similarly, bright yellow captured second largest number of bees, also had higher light reflectance peak within 600 nm but gradually decreased with increasing wavelength. Though bees have color spectrum from UV to orange31, they are sensitive to color spectrum between blue, green and ultraviolet32, which is a type of trichromatic vision system28. In one study33, red color vanes showed relatively lower light reflectance within 600 nm range, but had higher reflectance later in the spectrum, and this could be a reason why a low number of bees were collected in the traps. Past research showed contradictory views regarding the ability of bees to perceive red color. For instance, an early researcher in this field33, reported that bees recognize red color objects; however, other researchers had reported inability of bees to perceive34 or discriminate red from other colors35,36. It was argued that the bees see up to 650 nm in the visual spectrum and may not miss red colored flowers while foraging. However, other factors such as background (vegetation) color could also be contributing to bees’ ability to navigate different vane or flower colors in a livestock pasture landscape. Generally bees use color contrast to locate flower source, and hence neutral colors such as white are usually ignored29. Ultraviolet signal can make flowers more or less attractive to bees depending on whether it increases or decreases color contrast37. For example, UV color component in yellow38 and red39 flower increases chromatic contrast of these colored flowers with their background contributing attractiveness to the flowers. However, UV-reflecting white flowers decreases attractiveness for bees40.Different species of bees responded to different colors of vane traps. Out of the 49 bee species collected in this study, only nine bee species were found in all vane color types, whereas 14 species were found in only one trap color. For instance, out of five bumble bee species, two were found in all six vane colors, one was found in five colors, and two species (Bombus bimaculatus and B. fervidus) were only found in the traps with bright blue vanes. Many of the species that were only found in one trap color- Calliopsis andreniformis (1, bright yellow), Ceratina dupla (1, bright yellow), Diadasia afflicta (1, bright blue), Diadasia enavata (1, dark blue), Halictus rubicundus (1, dark yellow), Hylaeus mesillae (1, red), Lasioglossum tegulare (1, bright blue), Lasioglossum trigeminum (1, purple), Megachile montivaga (1, dark yellow), Melitoma taurea (1, bright blue), Svastra atripes (1, bright blue), and Triepeolus lunatus (1, dark yellow) were singletons and it was impossible to know if this represented a true preference or pattern. Our analysis of assemblage patterns after aggregating bees at the genus level, did show a gradient-like response in bee-color associations (Fig. 4), ranging from dark blue to yellows (with no strong associations found with red vanes). These patterns may be used to guide future (passive trap-based) sampling efforts to monitor bee diversity or to target specific bee species in livestock pastures or other ecosystems. While the bright blue and yellow traps with reflective sheeting were particularly attractive to bees, dark blue and purple traps also had relatively high levels of abundance and richness and collected higher number of Melissodes. Purple, as a color, is less commonly used than blue and yellow traps in bee monitoring. While this study shows that purple may be a viable option for bee collection, it’s similar assemblage pattern (Fig. 4) and low level of complementarity with dark blue traps (Table 2) suggests that it may be redundant with blue traps that are already commonly used. Differences in species- and sex-specific associations of bees with different colors of sampling traps had also been reported in previous studies41.Most of the bees collected in the current study were from Halictidae family (77.6%) followed by Apidae. However, few bee species in the families Andrenidae, Colletidae, and Megachilidae were collected. Consistent with our findings, others42 reported that bees of the Halictidae family were the most abundant bees in rangeland of Texas. The most common species found in this study were Au. aurata, L. disparile, L. imitatum, and Ag. texanus). In our previous studies we have found similar bee diversity in this study region18. Pollinator species richness and diversity as well as population distribution in livestock pasture vary during the season43. Mid-July to mid-August is the latter half of the summer season in the Southeastern USA, and the sampling period may have missed bee species that emerge earlier in the season and are reported in other studies42,43.Overall, the findings of this study showed that the wild bees responded differently to passive traps with colored vanes of different light wavelength and reflectivity when deployed in a livestock pasture ecosystem. Among six different colors of vanes (dark blue, bright blue, dark yellow, bright yellow, purple and red), the bright blue traps captured the highest number of individuals and species of bees. This could be due to an appropriate match between the visual spectrum of bees and the light reflectance spectrum of vanes, which were made of a micro-prismatic retro-reflective material. Bees responded similarly to traps with other colors of vanes, except for red vane traps, which captured the lowest number of bees. The findings of this study would be useful in understanding bee vision and responses to passive traps, and, such information would help in optimizing bee sampling methods for future monitoring efforts. More