More stories

  • in

    Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex

    Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).Article 

    Google Scholar 
    Félix, M. A. Phenotypic evolution with and beyond genome evolution. Curr. Top. Dev. Biol. 119, 291–347 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134, 25–36 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harvey, P. & Pagel, M. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).ADS 
    Article 

    Google Scholar 
    Klingenberg, C. P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Russell, E. S. Form and Function: A Contribution to the History of Animal Morphology. (John Murray, 1916).Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article 

    Google Scholar 
    Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).PubMed 
    Article 

    Google Scholar 
    Erwin, D. H. Disparity: Morphological pattern and developmental context. Palaeontology 50, 57–73 (2007).Article 

    Google Scholar 
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).PubMed 
    Article 

    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Volume 8: Insectivores. vol. 8 (Lynx Edicions, 2018).Jacquet, F. et al. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): From a forest origin to broad ecological expansion across Africa. BMC Evol. Biol. 15, 71. https://doi.org/10.1186/s12862-015-0344-y (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ceríaco, L. M. P. et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from PrÍncipe Island (Gulf of Guinea). Mammalia 79, 325–341 (2015).Article 

    Google Scholar 
    Nicolas, V. et al. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): Influences of the palaeoclimate on its diversification and evolution. J. Biogeogr. 46, 871–883 (2019).Article 

    Google Scholar 
    Konečný, A., Hutterer, R., Meheretu, Y. & Bryja, J. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. J. Vertebr. Biol. 69, 20064.1. https://doi.org/10.25225/jvb.20064 (2020).Article 

    Google Scholar 
    Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2021).PubMed 
    Article 

    Google Scholar 
    Mayr, E. & O’Hara, R. J. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67 (1986).PubMed 
    Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Smith, T. B., Wayne, R. K., Girman, D. J. & Bruford, M. W. A role for ecotones in generating rainforest biodiversity. Science 276, 1855–1857 (1997).CAS 
    Article 

    Google Scholar 
    Needham, A. E. & Hardy, A. C. The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc. R Soc. Lond. Ser. B Biol. Sci. 137, 115–136 (1950).ADS 
    CAS 

    Google Scholar 
    Hanken, J. & Hall, B. K. The Skull, Volume 3: Functional and Evolutionary Mechanisms. (University of Chicago Press, 1993).Hautier, L., Lebrun, R. & Cox, P. G. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J. Morphol. 273, 1319–1337 (2012).PubMed 
    Article 

    Google Scholar 
    Aristide, L. et al. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution 72, 2697–2711 (2018).PubMed 
    Article 

    Google Scholar 
    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Denys, C. et al. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. Zoosystema 43, 729–757 (2021).Article 

    Google Scholar 
    Estevo, C. A., Nagy-Reis, M. B. & Nichols, J. D. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One 12, e0179489. https://doi.org/10.1371/journal.pone.0179489 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spaeth, P. A. Morphological convergence and coexistence in three sympatric North American species of Microtus (Rodentia: Arvicolinae). J. Biogeogr. 36, 350–361 (2009).Article 

    Google Scholar 
    Adams, D. C., Berns, C. M., Kozak, K. H. & Wiens, J. J. Are rates of species diversification correlated with rates of morphological evolution?. Proc. R. Soc. B Biol. Sci. 276, 2729–2738 (2009).Article 

    Google Scholar 
    Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (marmota, Rodentia). Evolution 59, 2460–2472 (2005).PubMed 
    Article 

    Google Scholar 
    Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 376. https://doi.org/10.1038/s41467-017-02788-3 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirano, T., Kameda, Y., Kimura, K. & Chiba, S. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia. Mol. Phylogenet. Evol. 70, 171–181 (2014).PubMed 
    Article 

    Google Scholar 
    Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).Article 

    Google Scholar 
    Zou, Z. & Zhang, J. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7, 12758. https://doi.org/10.1038/ncomms12758 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ananjeva, N. B. Current state of the problems in the phylogeny of squamate reptiles (Squamata, Reptilia). Biol. Bull. Rev. 9, 119–128 (2019).Article 

    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).PubMed 
    Article 

    Google Scholar 
    Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed 
    Article 

    Google Scholar 
    Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458. https://doi.org/10.1038/ncomms3458 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Esquerré, D., Sherratt, E. & Keogh, J. S. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution 71, 2829–2844 (2017).PubMed 
    Article 

    Google Scholar 
    Marroig, G. & Cheverud, J. M. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution 59, 1128–1142 (2005).PubMed 
    Article 

    Google Scholar 
    Cornette, R., Tresset, A., Houssin, C., Pascal, M. & Herrel, A. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew. Biol. J. Linn. Soc. 114, 795–807 (2015).Article 

    Google Scholar 
    Rodgers, G. M., Downing, B. & Morrell, L. J. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 26, 242–246 (2015).Article 

    Google Scholar 
    Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).ADS 
    Article 

    Google Scholar 
    Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In Past Climate Variability Through Europe and Africa (eds. Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004). https://doi.org/10.1007/978-1-4020-2121-3_8.Smith, T. B., Schneider, C. J. & Holder, K. Refugial isolation versus ecological gradients. Genetica 112, 383–398 (2001).PubMed 
    Article 

    Google Scholar 
    Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
    Google Scholar 
    Vogel, P. et al. Genetic identity of the critically endangered Wimmer’s shrew Crocidura wimmeri. Biol. J. Linn. Soc. 111, 224–229 (2014).Article 

    Google Scholar 
    Esselstyn, J. A. et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull. Am. Mus. Nat. Hist. 454, 1–108 (2021).Article 

    Google Scholar 
    Evin, A., Bonhomme, V. & Claude, J. Optimizing digitalization effort in morphometrics. Biol. Methods Protoc. 5, bpaa023. https://doi.org/10.1093/biomethods/bpaa023 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: Phylogenetic Tools for Comparative Biology (and Other Things). (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. (Springer, 2018).Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. (2021).Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. (2021).Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlager, S., Jefferis, G. & Ian, D. Morpho: Calculations and Visualisations Related to Geometric Morphometrics. (2020). More

  • in

    Index system of rural human settlement in rural revitalization under the perspective of China

    Parra-Lopez, C., Groot, J. C. J., Carmona-Torres, C. & Rossing, W. A. H. Integrating public demands into model-based design for multifunctional agriculture: an application to intensive Dutch dairy landscapes. Ecol. Econ. 67(4), 538–551 (2008).Article 

    Google Scholar 
    Pinto-Correia, T., Guiomar, N., Guerra, C.A. et al. Assessing the ability of rural (2016)UPA. Desarrollo rural. Oportunidades Desaprovechadas La Tierra 254, 31–33 (2016).
    Google Scholar 
    Abreu, I., Nunes, J. M. & Mesias, F. J. Can rural development Be measured? Design and application of a synthetic index to Portuguese municipalities. Soc. Indic. Res. 145, 1107–1123 (2019).Article 

    Google Scholar 
    Doxiadis, C. A. Ekistics: an introduction to the science of human settlements (Oxford University Press, 1968).
    Google Scholar 
    Algeciras, J. A. R., Coch, H. & Perez, G. D. L. P. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba. Int. J. Biometeorol. 60, 1151–1164 (2016).Article 

    Google Scholar 
    Zhang, H., Zhang, S. & Liu, Z. Evolution and influencing factors of China’s rural population distribution patterns since 1990. PLoS ONE 15, e0233637 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eurostat. Eurostat Regional Yearbook. 2019 Edition. Publications Office of the European Union, Luxembourg (2019)Overview of CAP Reform 2014–2020. Agricultural Policy Perspectives. Brief, no. 5, December 2013. European Commission.Marsden, T. & Sonnino, R. Rural development and the regional state: denying multifunctional agriculture in the UK. J. Rural Stud. 24(4), 422–431 (2008).Article 

    Google Scholar 
    Adamowicz, M. Normative Aspects of Rural Development Strategy and Policy in The European Union Normative Aspects of Rural Development Strategy and Policy in The European Union, (2018)Léon, Y. Rural development in Europe: a research frontier for agricultural economists. Eur. Rev. Agric. Econ. 32, 301–317 (2005).Article 

    Google Scholar 
    Biegańska, J., Środa-Murawska, S., Kruzmetra, Z. & Swiaczny, F. Peri-Urban development as a significant rural development trend. Quaest. Geogr. 37, 125–140 (2018).Article 

    Google Scholar 
    Lee I.-H. Change of rural development policy in South Korea After Korean War. J. Reg City Plan, 2021.Oh, Y.-Y. et al. The selection of proper resource and change of salinity in Helianthus tuberosus L. cultivated in Saemangeum reclaimed tidal land. Korean J. Environ. Agric. 37, 73–78 (2018).Article 

    Google Scholar 
    Yoon, J.-Y., Jeong, J.-H. & Choi, S.-K. Validation of reference genes for quantifying changes in physiological gene expression in apple tree under cold stress and virus infection. Radiat. Prot. Dosim. 26, 144–158 (2020).
    Google Scholar 
    Faradiba, F. & Zet, L. The impact of climate factors, disaster, and social community in rural development. J. Asian Finance Econ. Bus. 7, 707–717 (2020).Article 

    Google Scholar 
    Kaneko, M., Ohta, R., Vingilis, E. & Mathews, M. Thomas Robert freeman; systematic scoping review of factors and measures of rurality: toward the development of a rurality index for health care research in Japan. BMC Health Services Res. 21, 1–11 (2021).Article 

    Google Scholar 
    Yokoyama, S. Sustainable activities for rural development, New Frontiers in Regional Science: Asian Perspectives, (2019).Georgios, C., & Barraí, H. Social innovation in rural governance: a comparative case study across the marginalised rural EU. J. Rural Stud. (2021)Michalek, J. & Zarnekow, N. Application of the rural development index to analysis of rural regions in Poland and Slovakia. Soc. Indic. Res. 105, 1–37 (2012).Article 

    Google Scholar 
    Liu, Y., Wang, G. & Zhang, F. Spatio-temporal dynamic patterns of rural area development in eastern coastal China. Chin. Geogr. Sci. 23, 173–181 (2013).Article 

    Google Scholar 
    Kim, T.-H. & Yang, S.-R. Construction of the rural development index: the case of Vietnam. J. Rural Dev. 39, 113–142 (2016).
    Google Scholar 
    Houkai, W. Current top ten frontier issues [J]in the study of agriculture. Rural Areas Rural Econ. China 4, 2–6 (2019).
    Google Scholar 
    Hu, Y., Fu, R. & Jin, S. Ecological environment concern in the organic link between poverty alleviation and rural revitalization. Reform 10, 141–148 (2019).
    Google Scholar 
    Zhang H., Gao L., & Yan K. On the theoretical origin, main innovation and realization path of rural revitalization thought rural economy in China, (11), 2–16 (2018).Feiwei, S. & Zegan, X. Construction and empirical analysis of the index system of beautiful villages in Zhejiang Province. J. Huazhong Agric. Univ. (Social Sciences Edition) 02, 45-51+132 (2017).
    Google Scholar 
    Research Group of Shanghai Rural Revitalization Index. Construction and evaluation of the index system of rural revitalization in Shanghai. Sci. Dev. 9, 56–63 (2020).World Bank, Expanding the Measure of Wealth. Indicators of Environmentally Sustainable Development. World Bank, Washington, D.C. (1997)Hicks, D. A. The inequality-adjusted human development index: a constructive proposal. World Dev. 25, 1283–1298 (1997).ADS 
    Article 

    Google Scholar 
    Zhao, R., Shao, C. & He, R. Spatiotemporal evolution of ecosystem health of China’s Provinces based on SDGs. Int. J Environ. Res. Public Health 18, 10569 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kageyama, A., Desenvolvimento rural : conceitos e aplicaçao ao caso brasileiro. UFRGS Editora, Porto Alegre (Brasil) (2008).Abreu, I. Construçao de um índice de desenvolvimento rural e sua aplicaçao ao Alto Alentejo. Instituto Polit´ecnico de Portalegre (2014)Castellani, V. & Sala, S. Sustainable performance index for tourism policy development. Tour. Manag. 31, 871–880 (2009).Article 

    Google Scholar 
    Hashemi, N. The role of ecotourism in sustainable rural development. J. Rural Dev. Stud. 13(3), 173–188 (2010).
    Google Scholar 
    Alkire, S., Conconi, A., & Seth, S. Multidimensional Poverty Index 2013: Brief methodological note and results. Oxford Poverty and Human Development Initiative (OPHI) (2014b)Alkire, S., Foster, J. & Santos, M. E. Where did identification go?. J. Econ. Inequal. 9, 501–505 (2011).Article 

    Google Scholar 
    Alkire, S. et al. Multidimensional poverty measurement and analysis (Oxford University Press, Oxford, 2015).MATH 
    Book 

    Google Scholar 
    Alkire, S., & Seth, S. Identifying destitution through linked subsetsof multidimensionally poor: an ordinal approach, OPHI Working Paper 99. University of Oxford (2016)Li, X., Yang, H., Jia, J., Shen, Y. & Liu, J. Index system of sustainable rural development based on the concept of ecological livability. Environ. Impact Assess. Rev. 86, 1–12 (2021).
    Google Scholar 
    Guo, X. & Hu, Y. Construction of evaluation index system of rural revitalization level. Agric. Econ. Manag. 05, 5–15 (2020).
    Google Scholar 
    Kong, X. & Xia, J. The value logic relation and synergy path choice between rural revitalization strategy and rural integration development. J. Northwest Univ. (Philosophy and Social Sciences Edition) 49(02), 10–18 (2019).
    Google Scholar 
    Wen, T. Three hundred years: the context and development of Chinese rural construction. Open Age. (04) (2016)Ren, C. A Study on the basis, constraints and institutional supply of industrial prosperity. Acad. Acad. 07, 15–27 (2018).
    Google Scholar 
    Ye, X., Cheng, Y., Zhao, J. & Ning, X. Rural revitalization during the 14th Five-year plan: trend judgment, general thinking and safeguard mechanism. Rural Econ. 09, 1–9 (2020).
    Google Scholar 
    Zhu, Q. The sociological explanation of the prosperity of rural industry-industry in the context of rural revitalization. J. China Agric. Univ. (Social Sciences Edition) 35(03), 89–95 (2018).
    Google Scholar 
    Bithas, K. A bioeconomic approach to sustainability with ecological thresholds as an operational indicator. Environ. Sustain. Indic. 6, 100027 (2020).Article 

    Google Scholar 
    Zheng, X. The East Asian experience of Rural Revitalization and its Enlightenment to China—Take Japan and South Korea as an example. Lanzhou J. 11, 200–208 (2019).ADS 

    Google Scholar 
    Srivastava, P. K., Kulshreshtha, K., Monhanty, C. S., Pushpangadan, P. & Singh, A. Stakeholder-based SWOT analysis for successful municipal solid waste managementin Lucknow, India. Waste Manag 25(5), 531–537 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alcon, F., Tapsuwan, S., Martínez-Paz, J. M., Brouwer, R. & Miguel, M. Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology. Technol. Forecast. Soc. Change 83, 183–193. https://doi.org/10.1016/j.techfore.2013.07.003 (2014).Article 

    Google Scholar 
    Chen, Y., Yang, G., Sweeney, S. & Feng, Y. Household biogas use in rural China: a study of opportunities and constraints. Renew. Sust. Energ. Rev. 14(1), 545–549 (2010).Article 

    Google Scholar 
    Yeh, C. H. A problem-based selection of multi-attribute decision-making methods. Int. Trans. Oper. Res. 9(2), 169–181 (2002).MATH 
    Article 

    Google Scholar 
    Chakraborty, S., & Yeh, C. -H. A simulation comparison of normalization procedures for TOPSIS, In 2009 International Conference on Computers & Industrial Engineering, IEEE, 2009.Yoon, K. & Hwang, C. L. Multiple attribute decision making. Eur. J. Oper. Res. 4(4), 287–288 (1995).
    Google Scholar 
    Sharma, N., Khan, Z.A., Siddiquee, A.N., Wahid, M.A. Proc. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci. 233 (2019) 1–10.Maniraj, S. & Thanigaivelan, R. Optimization of electrochemical micromachining process parameters for machining of AMCs with different % compositions of GGBS using Taguchi and TOPSIS methods. Trans. Indian Inst. Met. 72, 3057–3066 (2019).CAS 
    Article 

    Google Scholar 
    Martinez-Fernandez, C. et al. Shrinking cities in Australia, Japan, Europe and the USA: From a global process to local policy responses. Prog. Plan. 105, 1–48 (2016).Article 

    Google Scholar 
    Mo, G. Green poverty reduction: the value orientation and realization path of ecological poverty alleviation in the battle against poverty—a series of studies on the mechanism of improving the performance of precision poverty alleviation. Modern Econ. Discuss. 11, 10–14 (2016).
    Google Scholar 
    Wu, L. Echanism and path selection of poverty alleviation in deep-poverty areas. Chin. Soft Sci. 7, 63–70 (2018).
    Google Scholar 
    Shengzu, Gu. et al. Countermeasure reflections on advancing the poverty relief in the 13th five-year plan. China Financial Res 2, 7–16 (2016).
    Google Scholar 
    Xie, Z. & Xunwu, J. Giving full play to the advantages of financial financing to help lift out of poverty. China Finance 3, 83–84 (2018).
    Google Scholar 
    Chen, W. A Way to realize the effective linkage between poverty relief and rural revitalization. Guizhou Soc. Sci. 1, 11–14 (2020).
    Google Scholar 
    Bijker, R. & Haartsen, T. More than counterurbanisation: migration to popular andless-popular rural areas in the Netherlands. Popul. Space Place 18, 643–657 (2012).Article 

    Google Scholar  More

  • in

    Participatory mapping identifies risk areas and environmental predictors of endemic anthrax in rural Africa

    Study areaThe NCA encompasses an area of 8292 km2 and in 2020 had approximately 87,000 inhabitants23, who are primarily dependent on livestock for their livelihoods. It is a multiple-use area where people coexist with wildlife and livestock, and practise pastoralism with transhumance, characterised by seasonal movements of livestock for accessing resources such as grazing areas and water. The NCA comprises eleven administrative wards: Alailelai, Endulen, Eyasi, Laitole, Kakesio, Misigiyo, Ngorongoro, Naiyobi, Nainokanoka, Ngoile and Olbalbal (Fig. 1). The NCA was chosen for our study as it is known to be hyperendemic for anthrax4,17,20. In addition, informal consultations we held prior to the study, as well as tailored data collection at the community and household level, indicated that local communities have a good understanding of the disease in humans and animals, and of practices around carcass and livestock management that increase risks, particularly in certain locations and periods of the year24.Figure 1Locations of participatory mapping. Map showing the 11 administrative wards of the Ngorongoro Conservation Area in northern Tanzania and the locations where participatory mapping sessions took place (red dots). The maps were produced in QGIS 2.18.2 using data from the National Bureau of Statistics, Tanzania (http://www.nbs.go.tz/).Full size imageEthics approval and consent to participateThe study received approval from the National Institute for Medical Research, Tanzania, with reference number NIMRJHQ/R.8a/Vol. IX/2660; the Tanzania Commission for Science and Technology (numbers 2016-94-NA-2016-88 (O. R. Aminu), 2016-95-NA-2016-45 (T. L. Forde) and 2018-377-NA-2016-45 (T. Lembo)); Kilimanjaro Christian Medical University College Ethics Review Committee (certificate No. 2050); and the University of Glasgow College of Medical Veterinary & Life Sciences Ethics Committee (application number 200150152). Approval and permission to access communities and participants were also obtained from relevant local authorities. Written informed consent was obtained from all participants involved in the study. All data collected were analysed anonymously, ensuring the confidentiality of participants. All research activities were performed in accordance with relevant guidelines and regulations.Participatory mappingA participatory mapping approach based on methodology previously tested in East Africa25 was employed to define areas of anthrax risk for animals in the NCA based on community knowledge. Georeferenced maps of the NCA were produced using data from Google and DigitalGlobe (2016). The maps used datum Arc 1960/UTM zone 36S and grid intervals of 1000 km and were produced at 1:10,000 and 1:50,000 scales, in order to provide participants with a choice. Ten participatory mapping focus groups were held at ward administrative level (Fig. 1) in order to identify areas in the NCA that communities perceive as posing a high risk of anthrax. One mapping exercise was held in each ward. Ngoile and Olbalbal wards were covered at the same time and treated as one, as they had only recently (in 2015) been split from one ward (Olbalbal). Each session had between ten and thirteen participants, who consisted of village and ward administrators, animal health professionals (including community animal health workers and livestock field officers), community leaders, and selected community members. These participants represented members of the community concerned with animal health and owning livestock and, as such, were likely to hold in-depth knowledge relating to community experience of animal health and disease, including anthrax. Participants were recruited by consulting with animal health professionals as well as village and ward administrators, who gave permission to conduct the mapping sessions.The mapping sessions were conducted in Swahili and translated into English by an interpreter. Participants’ general knowledge of the area was first verified by testing whether they could correctly identify popular locations such as health centres, places of worship, markets and schools. Subsequently, participants discussed among themselves and came to a consensus about areas they considered to be at high risk of anthrax. Specifically, we asked them to identify locations they perceived as areas where they considered their animals to be at risk of being exposed to anthrax. These areas were drawn on the maps provided (Fig. 2). While they did not locate areas where the animals had succumbed to disease, we also asked for generic information on locations where anthrax outbreaks had occurred in the past to define areas that could be targeted for active surveillance of cases. In order to improve the fidelity of the data, participants defined risk areas in relation to their own locality (ward) and locations where their animals access resources. Therefore, the areas were not defined by administrative boundaries, as communities may access locations outside their wards, for instance for grazing or watering. The resulting maps were scanned, digitised and analysed as detailed in the following sections. Further detail on the participatory mapping process is provided in the Supplementary Methods (Additional File 1).Figure 2Participatory mapping of anthrax risk areas in the Ngorongoro Conservation Area. Images show (A) the set-up of a mapping session, (B) participants engaged during a session and (C) an example of a 1:50,000 scale map annotated by participants. The map was created with QGIS opensource mapping software. The basemap used was a scanned and geo-referenced full colour 1:50,000 scale topographic map produced by the Surveys & Mapping Division, Ministry of Lands, Housing & Human Settlements, Dar es Salaam, Tanzania. The grid is based on the Arc1960 UTM 36S projection and datum. The map was exported from QGIS in Acrobat Pdf format to enable it to be printed at suitable sizes for using in the fieldwork and to be manually annotated during the participatory mapping.Full size imageDigitisation of maps and generation of random pointsScanned maps were saved as PDF files and converted to high resolution TIFF files for digitisation in QGIS 2.18.2-Las Palmas free OpenSource software26. All maps were georeferenced with geographical coordinates during production and reference points were available to enable the precise mapping of all locations. The digitization was carried out using the QGIS digitizing tools and by creating polygon layers of the defined risk areas.Sourcing data on the environmental predictors of anthraxAvailable soil and environmental data (250 m grid) for Tanzania were obtained from various sources (Table 1). From the available data, we selected the following seven variables which have previously been shown to contribute to or explain the risk of anthrax based on the biology of B. anthracis (Table 1).Table 1 Environmental factors with potential to influence anthrax occurrence.Full size tableCation exchange capacity (CEC)Measured in cmol/kg, CEC is the total capacity of the soil to retain exchangeable cations such as Ca2+, Mg2+ etc. It is an inherent soil characteristic and is difficult to alter significantly. It influences the soil’s ability to hold on to essential nutrients and provides a buffer against soil acidification27. CEC has been reported to be positively correlated with anthrax risk. In addition, CEC is a proxy for calcium content, which may contribute to anthrax risk in a pH-dependent manner as explained below19,22.Predicted topsoil pH (pH)Soil pH below 6.0 (acidic soil) is thought to inhibit the viability of spores19 thus a positive effect of higher pH on the risk of anthrax is expected. It has been suggested that the exosporium of B. anthracis is negatively charged in soils with neutral to slightly alkaline pH. This negative charge attracts positively charged cations in soil, mainly calcium, enabling the spores to be firmly attached to soil particles and calcium to be maintained within the spore core, thereby promoting the viability of B. anthracis19,28.Distance to inland water bodies (DOWS)Both the distance from water and proximity to water may increase anthrax risk. Distance to inland water may indicate the degree to which an area is dry/arid. Anthrax outbreaks have been shown to occur in areas with very dry conditions19. Although anthrax occurrence has also been associated with high soil moisture, this relates more to the spore germination in the environment (a mechanism that is disputed) and the concentration of spores in moist humus that amount to an infectious dose18,29. Spores will survive much longer in soils with low moisture content19. Low moisture may also be associated with low vegetation which results in animals grazing close to the soil, increasing the risk of ingesting soil with spores. Hampson et al. reported that anthrax outbreaks occurred close to water sources in the Serengeti ecosystem of Tanzania in periods of heavy rainfall20, and Steenkamp et al. found that close proximity to water bodies was key to the transmission of B. anthracis spores in Kruger National Park, South Africa22. Water is an important resource for livestock and a large number of animals may congregate at water sources during dry seasons. The close proximity of a water source to a risk area may increase the chance of infection, particularly during periods of high precipitation which might unearth buried spores.Average enhanced vegetation index (EVI)Vegetation density may influence the likelihood of an animal ingesting soil or inhaling dust that may be contaminated with spores. Grazing animals are more likely to encounter bacteria in soil with low vegetation density20, although there is a possibility that spores can be washed onto higher vegetation by the action of water19. Vegetation index may also reflect the moisture content of soil. Arid/dry conditions favour the formation and resistance of spores in the environment, thus lower vegetation may be associated with the occurrence of anthrax.Average daytime land surface temperature (LSTD)Anthrax has been more commonly reported to occur in regions with warmer climates worldwide. Minett observed that under generally favourable conditions and at 32 °C to 37 °C, sporulation of B. anthracis occurs readily but vegetative cells are more likely to disintegrate at temperatures below 21 °C30. Another hypothesis for the association of high temperature with anthrax occurrence is altered host immune response to disease due to stress caused by elevated temperatures19. In addition, elevated temperatures are usually associated with arid areas where vegetation is low, limiting access to adequate nutrition, which in turn affects immunity. Similarly, in hotter climates where infectious diseases occur more often, host interactions with other pathogens may modulate immune response to anthrax31. In this case, a lower infectious and lethal dose of spores would be sufficient to cause infection and death, respectively19. Contact with and ingestion of soil, spores and abrasive pasture is also higher with low vegetation in hot and arid areas19,32. In boreal regions such as in northern Canada, where anthrax occurs in wood bison, and Siberia, the disease is more commonly reported in the summer19. We therefore hypothesised a positive effect of LSTD on the risk of anthrax.SlopeSpores of B. anthracis are hypothesized to persist more easily in flat landscapes that are characterised by shallow slopes19, as it is thought that wind and water may disperse spores more easily along areas with a higher slope gradient, thereby decreasing the density of spores to levels that may be insufficient to cause infection in a susceptible host. Therefore, we expected a negative relationship between slope and the risk of anthrax.Predicted topsoil organic carbon content (SOC)Organic matter (g/kg) may aid spore persistence by providing mechanical support. The negatively charged exosporium of spores is attracted to the positive charges on hummus-rich soil, thus anthrax is thought to persist in soil rich in organic matter18. Based on available evidence, we expected a positive effect of SOC on the risk of anthrax.Creating the datasetThe annotated and digitised maps yielded polygons of high-risk areas within the NCA (Fig. 3). After digitization, 5000 random points were generated33 to cover the 8292 km2 area of the NCA. This enabled us to obtain distinct points allowed by the 250 m grid resolution of the environmental variables. Points falling within the defined risk areas were selected to represent risk areas while those falling outside represented low-risk areas. Measures of the environmental characteristics associated with individual points were obtained with the ‘add Raster data to points’ feature in QGIS.Figure 3Ngorongoro Conservation Area map showing (A) defined risk areas (in red) and (B) distance to settlements. For analysis, 5000 random points were generated throughout the area; points falling within 4.26 km of human settlements (the average distance herds are moved from settlements in a day as determined through interviews of resident livestock owners) were retained for analysis (n = 2173, shown in blue in 3a). The maps were created in QGIS 2.18.2 using data from the National Bureau of Statistics, Tanzania (http://www.nbs.go.tz/).Full size imageIn order to focus on areas of greatest risk to humans and livestock and to exclude locations that are not accessible, only points within a certain range of distance from settlements were included (Fig. 3). On average, herders in the NCA move their livestock 4.26 km away from settlements for grazing and watering during the day (unpublished data obtained through a cross-sectional survey of 209 households). Thus, only points falling within this distance from settlements were selected, providing us with data on areas where infection is most likely to occur. Data on locations of settlements were obtained from satellite imagery and included permanent residences as well as temporary settlements (e.g. seasonal camps set up after long distance movement away from permanent settlements, typically in the dry season, in search of pasture and water). These data were collated from the Center for International Earth Science Information Network (CIESIN).After adjusting for accessibility of resource locations using the average distance moved by livestock, 2173 points were retained for analysis, of which 239 (11%) fell within high-risk areas.Data analysisAll statistical analyses were carried out in R (v 4.1.0) within the RStudio environment34. The aims of the statistical analysis were to infer the relationship between anthrax risk areas as determined through participatory mapping and the environmental factors identified in Table 1, and to use this relationship to make spatial predictions of anthrax risk across the study area. We achieved both aims by modelling the binary risk status (high or low) of the randomly generated points as a function of their environmental characteristics in a Bayesian spatial logit-binomial generalised linear mixed-effects model (GLMM), implemented in the package glmmfields35. Spatial autocorrelation (residual non-independence between nearby points) was accounted for by including spatial random effects in the GLMM. We chose relatively non-informative priors for the intercept and the covariates, using Student’s t-distributions centred at 0 and wide variances (intercept: df = 3, location = 0, scale = 10; betas: df = 3, location = 0, scale = 3). For the spatial Gaussian Process and the observation process scale parameters, we adopted the default glmmfields settings and used half-t priors (both gp_theta and gp_sigma: df = 3, location = 0, scale = 5), and 12 knots. To achieve convergence, the models were run for 5000 iterations35.First, univariable models were fitted to estimate unadjusted associations between each environmental factor (CEC, pH, DOWS, EVI, LSTD, slope, and SOC; Table 1; Supplementary Table S1) and high- and low-risk areas. Second, we constructed multivariable models by fitting multiple environmental variables (Supplementary Table S2). Three variables, SOC, slope and EVI showed a strongly right-skewed distribution and were therefore log-transformed prior to GLMM analysis to prevent excessive influence of outliers. All predictor variables were centred to zero mean and scaled to unit standard deviation for analysis, and odds ratios were rescaled back to the original units for ease of interpretation. Prior to fitting the multivariable GLMM, the presence of collinearity among the predictor variables—which were all continuous—was assessed using variance inflation factors (VIFs)36, calculated with the car package and illustrated using scatter plots (Supplementary Fig. S1)36. Three predictor variables showed a VIF greater than 3 (LSTD, ln EVI and pH with VIFs of 6.8, 4.2 and 3.5, respectively). Removal of LSTD and ln EVI reduced all VIFs to below 3, therefore these two variables were excluded from the multivariable regression analysis37.The model performance was assessed by calculating the area under the receiver operating characteristic curve. The predicted probability of being an anthrax high-risk area was determined and depicted on a map of the NCA using a regular grid of points generated throughout the NCA with one point sampled every 500 m.Consent for publicationPermission to publish was granted by the National Institute for Medical Research, Tanzania. More

  • in

    Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean

    Sherr, E. B. & Sherr, B. F. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33, 1225–1227 (1988).ADS 
    Article 

    Google Scholar 
    Weisse, T. Pelagic microbes—Protozoa and the microbial food web. In The Lakes Handbook, Vol. 1—Limnology and Limnetic Ecology (eds O’Sullivan, P. & Reynolds, C. S.) 417–460 (Blackwell Science Ltd, 2004).
    Google Scholar 
    Foissner, W. Protist diversity: Estimates of the near-imponderable. Protist 150, 363–368 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sommer, U. & Sommer, F. Cladocerans versus copepods: The cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wiackowski, K., Brett, M. T. & Goldman, C. R. Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39, 486–492 (1994).ADS 
    Article 

    Google Scholar 
    Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A. & Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 2044. https://doi.org/10.1038/s41598-019-38507-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrick, H. J., Fahnenstiel, G. L., Stoermer, E. F. & Wetzel, R. G. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36, 1335–1345. https://doi.org/10.4319/lo.1991.36.7.1335 (1991).ADS 
    Article 

    Google Scholar 
    Jack, J. D. & Gilbert, J. J. Effects of metazoan predators on ciliates in freshwater plankton communities. J. Eukaryot. Microbiol. 44, 194–199. https://doi.org/10.1111/j.1550-7408.1997.tb05699.x (1997).Article 

    Google Scholar 
    Sanders, R. W. & Wickham, S. A. Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 7, 197–223 (1993).
    Google Scholar 
    Kiørboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x (2011).Article 
    PubMed 

    Google Scholar 
    Gliwicz, Z. M. Zooplankton. The Lakes Handbook: Limnology and Limnetic Ecology Vol. 1 (eds P. O’Sullivan & C. S. Reynolds) 461–516 (Blackwell Science Ltd, 2004).Wickham, S. A. The direct and indirect impact of Daphnia and cyclops on a freshwater microbial food web. J. Plankton Res. 20, 739–755 (1998).Article 

    Google Scholar 
    Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33, 1286–1303 (1988).ADS 
    Article 

    Google Scholar 
    Lampert, W. & Muck, P. Multiple aspects of food limitation in zooplankton communities: The Daphnia-Eudiaptomus example. Ergebnisse der Limnologie/Adv. Limnol. 21, 311–322 (1985).
    Google Scholar 
    Kiørboe, T. What makes pelagic copepods so successful?. J. Plankton Res. 33, 677–685. https://doi.org/10.1093/plankt/fbq159 (2011).Article 

    Google Scholar 
    Paffenhöfer, G.-A. Heterotrophic protozoa and small metazoa: Feeding rates and prey-consumer interactions. J. Plankton Res. 20, 121–133 (1998).Article 

    Google Scholar 
    Forró, L., Korovchinsky, N. M., Kotov, A. A. & Petrusek, A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. In Freshwater Animal Diversity Assessment 177–184 (Springer, 2007).Jack, J. D. & Gilbert, J. J. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshw. Biol. 29, 19–29 (1993).Article 

    Google Scholar 
    Jürgens, K. Impact of Daphnia on planktonic microbial food webs—A review. Mar. Microb. Food Webs 8, 295–324 (1994).
    Google Scholar 
    Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167. https://doi.org/10.3354/ame038157 (2005).Article 

    Google Scholar 
    Saiz, E. & Calbet, A. Scaling of feeding in marine calanoid copepods. Limnol. Oceanogr. 52, 668–675 (2007).ADS 
    Article 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 
    Article 

    Google Scholar 
    Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
    Google Scholar 
    Oghenekaro, E. U. & Chigbu, P. Population dynamics and life history of marine cladocera in the maryland coastal bays, USA. J. Coast. Res. 35, 1225–1236 (2019).Article 

    Google Scholar 
    Pestorić, B., Lučić, D & Joksimović, D. Cladocerans spatial and temporal distribution in the coastal south Adriatic waters (Montenegro). Stud. Mar. 25, 101–120 (2011).Adrian, R. & Schneider-Olt, B. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J. Plankton Res. 21, 2175–2190. https://doi.org/10.1093/plankt/21.11.2175 (1999).Article 

    Google Scholar 
    Burns, C. W. & Schallenberg, M. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton Res. 18, 683–714. https://doi.org/10.1093/plankt/18.5.683 (1996).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, W. M. Jr. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters 1, 1–28 (2011).Article 

    Google Scholar 
    Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710. https://doi.org/10.1038/NGEO1765 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Gilbert, J. J. Jumping behavior in the oligotrich ciliates Strobilidium velox and Halteria grandinella and its significance as a defense against rotifers. Microb. Ecol. 27, 189–200 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weisse, T. & Sonntag, B. Ciliates in planktonic food webs: communication and adaptive response. In Biocommunication of Ciliates (eds Witzany, G. & Nowacki, M.) 351–372 (Springer International Publishing, 2016).
    Google Scholar 
    Burns, C. W. & Gilbert, J. J. Predation on ciliates by freshwater calanoid copepods: Rates of predation and relative vulnerabilities of prey. Freshw. Biol. 30, 377–393. https://doi.org/10.1111/j.1365-2427.1993.tb00822.x (1993).Article 

    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecolgy 2nd edn. (Oxford University Press, 2007).
    Google Scholar 
    Almeda, R., Someren Gréve, H. & Kiørboe, T. Prey perception mechanism determines maximum clearance rates of planktonic copepods. Limnol. Oceanogr. 63, 2695–2707. https://doi.org/10.1002/lno.10969 (2018).ADS 
    Article 

    Google Scholar 
    Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).Article 

    Google Scholar 
    Fenchel, T. Ecology of protozoa. The Biology of Free-living Phagotrophic Protists (Science Tech./Springer, 1987).
    Google Scholar 
    Weisse, T. et al. Functional ecology of aquatic phagotrophic protists—Concepts, limitations, and perspectives. Eur. J. Protistol. 55, 50–74. https://doi.org/10.1016/j.ejop.2016.03.003 (2016).Article 
    PubMed 

    Google Scholar 
    Wickham, S. A. Cyclops predation on ciliates: Species-specific differences and functional responses. J. Plankton Res. 17, 1633–1646 (1995).Article 

    Google Scholar 
    Coats, D. W. & Bachvaroff, T. R. Parasites of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 145–170 (Wiley, 2012).Chapter 

    Google Scholar 
    Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brun, P. G., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113. https://doi.org/10.5194/essd-9-99-2017 (2017).ADS 
    Article 

    Google Scholar 
    Armengol, L., Franchy, G., Ojeda, A., Santana-del Pino, Á. & Hernández-León, S. Effects of copepods on natural microplankton communities: Do they exert top-down control?. Mar. Biol. 164, 136. https://doi.org/10.1007/s00227-017-3165-2 (2017).Article 

    Google Scholar 
    Moriarty, R. & O’Brien, T. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).ADS 
    Article 

    Google Scholar 
    Landry, M. R., Al-Mutairi, H., Selph, K. E., Christensen, S. & Nunnery, S. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2037–2061 (2001).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Model. 435, 109265. https://doi.org/10.1016/j.ecolmodel.2020.109265 (2020).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology’s “canonical” activation energies. Limnol. Oceanogr. 64, 1172–1185. https://doi.org/10.1002/lno.11105 (2019).ADS 
    Article 

    Google Scholar 
    Montagnes, D. J. Ecophysiology and behavior of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 85–121 (Wiley, 2012).Chapter 

    Google Scholar 
    McManus, G. B. & Santoferrara, L. F. Tintinnids in microzooplankton communities. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 198–213 (Wiley, 2012).Chapter 

    Google Scholar 
    Fileman, E., Petropavlovsky, A. & Harris, R. Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel. J. Plankton Res. 32, 709–724. https://doi.org/10.1093/plankt/fbp142 (2010).CAS 
    Article 

    Google Scholar 
    Zeldis, J. R. & Décima, M. Mesozooplankton connect the microbial food web to higher trophic levels and vertical export in the New Zealand Subtropical Convergence Zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 155, 103146. https://doi.org/10.1016/j.dsr.2019.103146 (2020).CAS 
    Article 

    Google Scholar 
    Stoecker, D. K. Predators of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 122–144 (Wiley, 2012).Chapter 

    Google Scholar 
    Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).ADS 
    Article 

    Google Scholar 
    Gallienne, C. & Robins, D. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23, 1421–1432. https://doi.org/10.1093/plankt/23.12.1421 (2001).Article 

    Google Scholar 
    Stoecker, D. K. & Egloff, D. A. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol. Ecol. 110, 53–68 (1987).Article 

    Google Scholar 
    Stoecker, D. & Pierson, J. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res. 41, 367–373. https://doi.org/10.1093/plankt/fbz027 (2019).Article 

    Google Scholar 
    Diehl, S. & Feissel, M. Intraguild prey suffer from enrichment of their resources: A microcosm experiment with ciliates. Ecology 82, 2977–2983 (2001).Article 

    Google Scholar 
    Broglio, E., Saiz, E., Calbet, A., Trepat, I. & Alcaraz, M. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat. Microb. Ecol. 35, 65–78 (2004).Article 

    Google Scholar 
    Sommer, U. et al. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448. https://doi.org/10.1146/annurev-ecolsys-110411-160251 (2012).Article 

    Google Scholar 
    IGKB. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 43 (2018–2019), 128 https://www.igkb.org/oeffentlichkeitsarbeit/limnologischer-zustand-des-sees-gruene-berichte/. (2020).Wetzel, R. G. Limnology—Lake and River Ecosystems 3rd edn. (Academic Press, 2001).
    Google Scholar 
    Kumar, R. Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) predation on the population growth patterns of different prey species. J. Freshw. Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.9663974 (2003).Article 

    Google Scholar 
    Porter, K. G., Pace, M. L. & Battey, F. J. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277, 563–565 (1979).ADS 
    Article 

    Google Scholar 
    Landry, M. & Fagerness, V. Behavioral and morphological influences on predatory interactions among marine copepods. Bull. Mar. Sci. 43, 509–529 (1988).
    Google Scholar 
    Krainer, K.-H. & Müller, H. Morphology, infraciliature and ecology of a nerw planktonic ciliate, Histiobalantium bodamicum n. sp. (Scuticociliatida: Histiobalantiidae). Eur. J. Protistol. 31, 389–395 (1995).Article 

    Google Scholar 
    Lu, X., Gao, Y. & Weisse, T. Functional ecology of two contrasting freshwater ciliated protists in relation to temperature. J. Eukaryot. Microb. 68, e12823. https://doi.org/10.1111/jeu.12823 (2021).CAS 
    Article 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579. https://doi.org/10.4319/lo.2000.45.3.0569 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Bergkemper, V. & Weisse, T. Phytoplankton response to the summer heat wave 2015—A case study from Lake Mondsee, Austria. Inland Waters 7, 88–99. https://doi.org/10.1080/20442041.2017.1294352 (2017).CAS 
    Article 

    Google Scholar 
    Crosbie, N. D., Teubner, K. & Weisse, T. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat. Microb. Ecol. 33, 53–66. https://doi.org/10.3354/ame033053 (2003).Article 

    Google Scholar 
    Dokulil, M. T. & Teubner, K. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698, 29–46 (2012).CAS 
    Article 

    Google Scholar 
    Weisse, T., Lukić, D. & Lu, X. Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments. J. Plankton Res. 43, 288–299. https://doi.org/10.1093/plankt/fbab017 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergkemper, V. & Weisse, T. Do current European lake monitoring programmes reliably estimate phytoplankton community changes? Hydrobiologia 824, 143–162. https://doi.org/10.1007/s10750-017-3426-6 (2018).CAS 
    Article 

    Google Scholar 
    Rosen, R. A. Length-dry weight relationships of some freshwater zooplanktona. J. Freshw. Ecol. 1, 225–229 (1981).Article 

    Google Scholar 
    Frost, B. W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).ADS 
    Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R.RStudio, http://www.rstudio.com/ (PBC, 2021).Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).MathSciNet 
    Article 

    Google Scholar 
    Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704. https://doi.org/10.4319/lo.1997.42.4.0687 (1997).ADS 
    Article 

    Google Scholar  More

  • in

    Multi-marker DNA metabarcoding detects suites of environmental gradients from an urban harbour

    Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).Article 

    Google Scholar 
    Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 11, 1507–1516 (2011).Article 

    Google Scholar 
    Jeppesen, E., Søndergaard, M., Meerhoff, M., Lauridsen, T. L. & Jensen, J. P. Shallow lake restoration by nutrient loading reduction–some recent findings and challenges ahead. Hydrobiologia 584, 239–252 (2007).CAS 
    Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    Marburg, A. E., Turner, M. G. & Kratz, T. K. Natural and anthropogenic variation in coarse wood among and within lakes. J. Ecol. 94, 558–568 (2006).Article 

    Google Scholar 
    Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).ADS 
    Article 

    Google Scholar 
    Lau, S. S. S. & Lane, S. N. Continuity and change in environmental systems: The case of shallow lake ecosystems. Prog. Phys. Geogr. Earth Environ. 25, 178–202 (2001).Article 

    Google Scholar 
    Brinkhurst, R. O. Distribution and abundance of Tubificid (Oligochaeta) species in Toronto harbour, Lake Ontario. J. Fish. Res. Board Can. 27, 1961–1969 (1970).Article 

    Google Scholar 
    Wood, L. W. & Chua, K. E. Glucose flux at the sediment-water interface of Toronto Harbour, Lake Ontario, with reference to pollution stress. Can. J. Microbiol. 19, 413–420 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nriagu, J. O., Wong, H. K. T. & Snodgrass, W. J. Historical records of metal pollution in sediments of Toronto and Hamilton harbours. J. Gt. Lakes Res. 9(3), 365–373 (1983).CAS 
    Article 

    Google Scholar 
    Toronto & Region Remedial Action Plan. Metro Toronto and Region Remedial Action Plan (1989).Dahmer, S. C., Matos, L. & Morley, A. Restoring Toronto’s waters: Progress toward delisting the Toronto and Region area of concern. Aquat. Ecosyst. Health Manag. 21, 229–233 (2018).Article 

    Google Scholar 
    Munawar, M., Norwood, W., McCarthy, L. & Mayfield, C. In situ bioassessment of dredging and disposal activities in a contaminated ecosystem: Toronto Harbour. Hydrobiologia https://doi.org/10.1007/978-94-009-1896-2_62 (1989).Article 

    Google Scholar 
    Dahmer, S. C., Matos, L. & Jarvie, S. Assessment of the degradation of aesthetics beneficial use impairment in the Toronto and region area of concern. Aquat. Ecosyst. Health Manag. 21, 276–284 (2018).Article 

    Google Scholar 
    Metro Toronto and Region Remedial Action Plan. Within Reach: 2015 Toronto an Region Remedial Action Plan Progress Report (2016).Burniston, D. & Waltho, J. Report on Sediment Quality in the Toronto Inner Harbour 2007 (2011).Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8, 1265–1275 (2017).Article 

    Google Scholar 
    Emilson, C. E. et al. DNA metabarcoding and morphological macroinvertebrate metrics reveal the same changes in boreal watersheds across an environmental gradient. Sci. Rep. 7, 12777 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aylagas, E., Borja, Á., Muxika, I. & Rodríguez-Ezpeleta, N. Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecol. Indic. 95, 194–202 (2018).Article 

    Google Scholar 
    Bush, A. et al. Studying ecosystems with DNA metabarcoding: Lessons from biomonitoring of aquatic macroinvertebrates. Front. Ecol. Evol. 7, 434 (2019).Article 

    Google Scholar 
    Serrana, J. M., Miyake, Y., Gamboa, M. & Watanabe, K. Comparison of DNA metabarcoding and morphological identification for stream macroinvertebrate biodiversity assessment and monitoring. Ecol. Indic. 101, 963–972 (2019).Article 

    Google Scholar 
    Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401 (2019).Article 

    Google Scholar 
    Hajibabaei, M. et al. Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE 14, e0225409 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed 
    Article 

    Google Scholar 
    Hajibabaei, M., Baird, D. J., Fahner, N. A., Beiko, R. & Golding, G. B. A new way to contemplate Darwin’s tangled bank: How DNA barcodes are reconnecting biodiversity science and biomonitoring. Philos. Trans. R. Soc. B. Biol. Sci. 371, 20150330 (2016).Article 
    CAS 

    Google Scholar 
    Beermann, A. J., Zizka, V. M. A., Elbrecht, V., Baranov, V. & Leese, F. DNA metabarcoding reveals the complex and hidden responses of chironomids to multiple stressors. Environ. Sci. Eur. 30, 26 (2018).Article 

    Google Scholar 
    Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. 117, 8539–8545 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Compson, Z. G. et al. Chapter Two—Linking DNA Metabarcoding and Text Mining to Create Network-Based Biomonitoring Tools: A Case Study on Boreal Wetland Macroinvertebrate Communities. In Advances in Ecological Research Vol. 59 (eds Bohan, D. A. et al.) 33–74 (Academic Press, 2018).
    Google Scholar 
    Fernandes, K. et al. DNA metabarcoding—A new approach to fauna monitoring in mine site restoration. Restor. Ecol. 26, 1098–1107 (2018).Article 

    Google Scholar 
    Fernandes, K. et al. Invertebrate DNA metabarcoding reveals changes in communities across mine site restoration chronosequences. Restor. Ecol. 27, 1177–1186 (2019).Article 

    Google Scholar 
    Poikane, S. et al. Benthic macroinvertebrates in lake ecological assessment: A review of methods, intercalibration and practical recommendations. Sci. Total Environ. 543, 123–134 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Macher, J.-N. et al. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol. Ecol. Resour. 18, 1456–1468 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshall, N. T. & Stepien, C. A. Macroinvertebrate community diversity and habitat quality relationships along a large river from targeted eDNA metabarcode assays. Environ. DNA 2, 572–586 (2020).Article 

    Google Scholar 
    Metro Toronto and Region Remedial Action Plan. Updates on Actions 2013–2014. (2013).López-López, E. & Sedeño-Díaz, J. E. Biological indicators of water quality: The role of fish and macroinvertebrates as indicators of water quality. In Environmental Indicators (eds Armon, R. H. & Hänninen, O.) 643–661 (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9499-2_37.Chapter 

    Google Scholar 
    Berry, O. et al. A Comparison of Morphological and DNA Metabarcoding Analysis of Diets in Exploited Marine Fishes (2015).Sweeney, B. W., Battle, J. M., Jackson, J. K. & Dapkey, T. Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality?. J. N. Am. Benthol. Soc. 30, 195–216 (2011).Article 

    Google Scholar 
    Banerji, A. et al. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding. Hydrobiologia 818, 71–86 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Porter, T. M. et al. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol. Phylogenet. Evol. 46, 635–644 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rosling, A. et al. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science 333, 876–879 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mandaville, S. M. Benthic Macroinvertebrates in Freshwaters—Taxa Tolerance Values, Metrics, and Protocols, vol. 128. http://lakes.chebucto.org/H-1/tolerance.pdf (2002).Trzcinski, M. K. et al. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 85, 1147–1160 (2016).PubMed 
    Article 

    Google Scholar 
    Liu, X. & Wang, H. Contrasting patterns and drivers in taxonomic versus functional diversity, and community assembly of aquatic plants in subtropical lakes. Biodivers. Conserv. 27(12), 3103–3118 (2018).Article 

    Google Scholar 
    Kovalenko, K. E., Brady, V. J., Ciborowski, J. J. H., Ilyushkin, S. & Johnson, L. B. Functional changes in littoral macroinvertebrate communities in response to watershed-level anthropogenic stress. PLoS ONE 9, e101499 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luiza-Andrade, A., Montag, L. F. A. & Juen, L. Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics 111, 1643–1656 (2017).Article 

    Google Scholar 
    MacMillan, G. A., Chételat, J., Heath, J. P., Mickpegak, R. & Amyot, M. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environ. Sci. Process. Impacts 19, 1336–1345 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pastorino, P. et al. Macrobenthic invertebrates as tracers of rare earth elements in freshwater watercourses. Sci. Total Environ. 698, 134282 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulaš, A. et al. Ciliates (Alveolata, Ciliophora) as bioindicators of environmental pressure: A karstic river case. Ecol. Indic. 124, 107430 (2021).Article 

    Google Scholar 
    Persaud, D., Lomas, T., Boyd, D. & Mathai, S. Historical Development and Quality of the Toronto Waterfront Sediments (1985).Milani, D. & Grapentine, L. Assessment of Sediment Quality in the Bay of Quinte Area Of Concern (2000).Reynoldson, T. B., Bailey, R. C., Day, K. E. & Norris, R. H. Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20(1), 198–219 (1995).Article 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4, 558–565 (2013).Article 

    Google Scholar 
    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl. Acad. Sci. 111, 8007–8012 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments. bioRxiv https://doi.org/10.1101/2020.07.14.202960 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Anon. Conda. (2016).Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 4226 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Porter, T. M. Eukaryote CO1 Reference set for the RDP Classifier (Zenodo, 2017) https://doi.org/10.5281/zenodo.4741447.Book 

    Google Scholar 
    Porter, T. M. SILVA 18S Reference Set for the RDP Classifier(Zenodo, 2018) https://doi.org/10.5281/zenodo.4741433.Book 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009). https://doi.org/10.1007/978-0-387-98141-3.Book 
    MATH 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2020).Komsta, L. & Novomestky, F. moments: Moments, cumulants, skewness, kurtosis and related tests (2015).U.S. Environmental Protection Agency. Freshwater Biological Traits Database (Final Report) EPA/600/R-11/038F. (2012)U.S. Environmental Protection Agency. Freshwater Biological Traits Database (2012).Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).Article 

    Google Scholar 
    Moog, O. Fauna Aquatica Austriaca – Catalogue for autecological Classification of Austrian Aquatic Organisms (1995).Tachet, H., Bournaud, M., Richoux, P., Usseglio-Polatera, P. Invertébrés d’eau douce – systématique, biologie, écologie (2010).Nally, R. M. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. https://doi.org/10.1023/B:BIOC.0000009515.11717.0b (2004).Article 

    Google Scholar  More

  • in

    Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings

    Genome’s collection and phylogenetic analysisThe study examined the genomes of 139 isolates, 61 of environmental samples (ENV) and 78 clinical (CLI) (Supplementary Table 1, Supplementary Fig. 1), with origin in 21 countries: USA (23/139, 17%), UK, Portugal and Spain (each 15/139, 33%), China (14/139, 10%), Germany (13/139, 9%), Thailand (11/139, 8%) and other countries (each  More

  • in

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Haque, M. N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60, 1–10. https://doi.org/10.1186/s40781-018-0175-7(2018) (2018).Article 

    Google Scholar 
    IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press (in press).Lauder, A. R. et al. Offsetting methane emissions—An alternative to emission equivalence metrics. Int. J. Greenh. 12, 419–429. https://doi.org/10.1016/j.ijggc.2012.11.028 (2013).CAS 
    Article 

    Google Scholar 
    Hill, J., McSweeney, C., Wright, A. G., Bishop-Hurley, G. & Kalantar-Zadeh, K. Measuring methane production from ruminants. Trends Biotechnol. 34, 26–35. https://doi.org/10.1016/j.tibtech.2015.10.004 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob Change Biol. 24, 4185–4194. https://doi.org/10.1111/gcb.14321 (2018).ADS 
    Article 

    Google Scholar 
    Naumann, H. D., Tedeschi, L. O., Zeller, W. E. & Huntley, N. F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. de Zootec. 46, 929–949. https://doi.org/10.1590/S1806-92902017001200009 (2017).Article 

    Google Scholar 
    Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010–2037. https://doi.org/10.1002/jsfa.2577 (2006).CAS 
    Article 

    Google Scholar 
    Burggraaf, V. T. et al. Morphology and agronomic performance of white clover with increased flowering and condensed tannin concentration. N. Z. J. Agric. Res. 49, 147–155. https://doi.org/10.1080/00288233.2006.9513704 (2006).CAS 
    Article 

    Google Scholar 
    Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288. https://doi.org/10.1038/s41597-021-01061-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salminen, J.-P. & Karonen, M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x (2011).Article 

    Google Scholar 
    Zeller, W. E. Activity, purification, and analysis of condensed tannins: current state of affairs and future endeavors. Crop Sci. 59, 886–904. https://doi.org/10.2135/cropsci2018.05.0323 (2019).CAS 
    Article 

    Google Scholar 
    Barbehenn, R. V. & Peter Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chung, Y. H. et al. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa1. J. Anim. Sci. 91, 4861–4874. https://doi.org/10.2527/jas.2013-6498 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christensen, R. G. et al. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows1. J. Dairy Sci. 98, 7982–7992. https://doi.org/10.3168/jds.2015-9348 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonker, A. & Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 18, 1105. https://doi.org/10.3390/ijms18051105 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81, 263–272. https://doi.org/10.1017/S0007114599000501 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verma, S., Taube, F. & Malisch, C. S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 13, 2743. https://doi.org/10.3390/su13052743 (2021).CAS 
    Article 

    Google Scholar 
    Malisch, C. S. et al. Large variability of proanthocyanidin content and composition in Sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 63, 10234–10242. https://doi.org/10.1021/acs.jafc.5b04946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verma, S., Salminen, J.-P., Taube, F. & Malisch, C. S. Large inter- and intraspecies variability of polyphenols and proanthocyanidins in eight temperate forage species indicates potential for their exploitation as nutraceuticals. J. Agric. Food Chem. 69, 12445–12455. https://doi.org/10.1021/acs.jafc.1c03898 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, H., Reinsch, T., Kluß, C., Taube, F. & Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley?. Sustainability 12, 5842. https://doi.org/10.3390/su12145842 (2020).Article 

    Google Scholar 
    Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    Mueller-Harvey, I. et al. Benefits of condensed tannins in forage legumes fed to ruminants : Importance of structure, concentration and diet compsition. Crop Sci. 59, 861–885. https://doi.org/10.2135/cropsci2017.06.0369 (2017).CAS 
    Article 

    Google Scholar 
    Loza, C. et al. Assessing the potential of diverse forage mixtures to reduce enteric methane emissions in vitro. Animals 11, 1126. https://doi.org/10.3390/ani11041126 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Min, B. R. et al. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 6, 231–236. https://doi.org/10.1016/j.aninu.2020.05.002 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Gastelen, S., Dijkstra, J. & Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?. J. Dairy Sci. 102, 6109–6130. https://doi.org/10.3168/jds.2018-15785 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hatew, B. et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202, 20–31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 (2015).CAS 
    Article 

    Google Scholar 
    Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2, 160–183. https://doi.org/10.3390/ani2020160 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 48, 167–187 (2009).CAS 

    Google Scholar 
    Hakl, J., Fuksa, P., Konečná, J. & Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 71, 413–423. https://doi.org/10.1111/gfs.12192 (2016).CAS 
    Article 

    Google Scholar 
    Jayanegara, A., Makkar, H. & Becker, K. The use of principal component analysis in identifying and integrating variables related to forage quality and methane production. J. Indones. Trop. Anim. 34, 241–247. https://doi.org/10.14710/jitaa.34.4.241-247 (2009).Article 

    Google Scholar 
    Maccarana, L. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 7, 35–35. https://doi.org/10.1186/s40104-016-0094-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baruah, L., Malik, P. K., Kolte, A. P., Dhali, A. & Bhatta, R. Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet. World 11, 809–818. https://doi.org/10.14202/vetworld.2018.809-818 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassanat, F. & Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339. https://doi.org/10.1002/jsfa.5763 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123. https://doi.org/10.3390/molecules23092123 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jayanegara, A., Makkar, H. P. S. & Becker, K. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan 38, 57–63. https://doi.org/10.5398/medpet.2015.38.1.57 (2015).Article 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H. P. S. & Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209, 60–68. https://doi.org/10.1016/j.anifeedsci.2015.08.002 (2015).CAS 
    Article 

    Google Scholar 
    Hatew, B. et al. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 70, 474–490. https://doi.org/10.1111/gfs.12125 (2015).CAS 
    Article 

    Google Scholar 
    Huyen, N. T. et al. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487. https://doi.org/10.1017/S0021859616000393 (2016).CAS 
    Article 

    Google Scholar 
    Salami, S. A. et al. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy061 (2018).Article 
    PubMed 

    Google Scholar 
    Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem.-Eur. J. 17, 2806–2816. https://doi.org/10.1002/chem.201002662 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bezabih, M., Pellikaan, W. F., Tolera, A., Khan, N. A. & Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 69, 635–643. https://doi.org/10.1111/gfs.12091 (2013).CAS 
    Article 

    Google Scholar 
    Navarrete, S., Kemp, P. D., Pain, S. J. & Back, P. J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008 (2016).CAS 
    Article 

    Google Scholar 
    Basha, N. A., Scogings, P. F. & Nsahlai, I. V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 93, 1338–1348. https://doi.org/10.1002/jsfa.5895 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Donovan, L. & Brooker, J. D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033. https://doi.org/10.1099/00221287-147-4-1025 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhatta, R. et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522. https://doi.org/10.3168/jds.2008-1441 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. D. et al. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 199, 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H.P.S., & Becker, K. Reduction in
    methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Food and Agriculture Organization of the United Nations (FAO) Rome, Italy, 151–157. ISBN 978-92-5-106697-3 (2010).Hatew, B. et al. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100, 348–360. https://doi.org/10.1111/jpn.12336 (2016).CAS 
    Article 

    Google Scholar 
    Waghorn, G. C., Douglas, G. B., Niezen, J. H., McNabb, W. C. & Foote, A. G. Forages with condensed tannins-their management and nutritive value for ruminants. Proc. N. Z. Grassl. Assoc., 60, 89−98 (1998).Woodward, S. L., Waghorn, G. C. & Lassey, K. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23–26 (2001).
    Google Scholar 
    Molle, G. et al. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 123, 138–146. https://doi.org/10.1016/j.livsci.2008.11.018 (2009).Article 

    Google Scholar 
    Orlandi, T., Kozloski, G. V., Alves, T. P., Mesquita, F. R. & Ávila, S. C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 210, 37–45. https://doi.org/10.1016/j.anifeedsci.2015.09.012 (2015).CAS 
    Article 

    Google Scholar 
    Patra, A. K. & Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01434 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niderkorn, V. et al. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 13, 718–726. https://doi.org/10.1017/S1751731118002185 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, J., Hemmingson, N., Minneé, E. & Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics, and plant density. Crop Pasture Sci. 66, 168. https://doi.org/10.1071/CP14181 (2015).CAS 
    Article 

    Google Scholar 
    Cong, W.-F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1422. https://doi.org/10.1038/s41598-017-01632-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanderson, M. A., Labreveux, M., Hall, M. H. & Elwinger, G. F. Nutritive value of chicory and English plantain forage. Crop Sci. 43, 1797. https://doi.org/10.2135/cropsci2003.1797 (2003).CAS 
    Article 

    Google Scholar 
    Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 (1991).Article 
    PubMed 

    Google Scholar 
    Engström, M. T. et al. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390–3399. https://doi.org/10.1021/jf500745y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Menke, K. & Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Venables, B. & Ripley, B. Generalised linear models. In Modern Applied Statistics With S.(4th edition) 183–208 (Springer, 2013). More

  • in

    Pleistocene drivers of Northwest African hydroclimate and vegetation

    de Menocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl Acad. Sci. U.S.A. 108, 20422–20427 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maslin, M. A. et al. East african climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).ADS 
    Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of Green Sahara periods and their role in hominin evolution. PLoS One 8, 76514 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA. 106, 20159–20163 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations World Food Programme. Scaling up for resilient individuals, communities and systems in the Sahel Operational Reference Note. (2018).Barbier, B., Yacouba, H., Karambiri, H., Zoromé, M. & Somé, B. Human vulnerability to climate variability in the sahel: Farmers’ adaptation strategies in northern burkina faso. Environ. Manag. 43, 790–803 (2009).ADS 
    Article 

    Google Scholar 
    Mohamed, A. Ben Climate change risks in Sahelian Africa. Reg. Environ. Chang. 11, 109–117 (2011).Article 

    Google Scholar 
    Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 118, 1613–1623 (2013).ADS 
    Article 

    Google Scholar 
    Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Chang 21, 1073–1083 (2011).Article 

    Google Scholar 
    Keeling, R. F. & Keeling, C. D. Atmospheric monthly in situ CO2 data—Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections. https://doi.org/10.6075/J08W3BHW (2017).Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B., Ruddiman, W. F. & Pokras, E. M. Influences of high‐ and low‐latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial atlantic Ocean Drilling Program Site 663. Paleoceanography 8, 209–242 (1993).ADS 
    Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Rose, C. et al. Changes in northeast African hydrology and vegetation associated with pliocene-pleistocene sapropel cycles. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150243 (2016).Article 
    CAS 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & De Menocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tierney, J. E. & Russell, J. M. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophys. Res. Lett. 34, 1–6 (2007).Article 
    CAS 

    Google Scholar 
    Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGee, D. et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).Article 

    Google Scholar 
    Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2014).Article 

    Google Scholar 
    Mantsis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014).ADS 
    Article 

    Google Scholar 
    Rachmayani, R., Prange, M. & Schulz, M. Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Clim. Past 12, 677–695 (2016).Article 

    Google Scholar 
    Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).ADS 
    Article 

    Google Scholar 
    Bischoff, T., Schneider, T. & Meckler, A. N. A conceptual model for the response of tropical rainfall to orbital variations. J. Clim. 30, 8375–8391 (2017).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate.Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 6, 865–869 (2000).ADS 
    Article 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. N. Phytol. 191, 197–209 (2011).Article 

    Google Scholar 
    Vallé, F., Dupont, L. M., Leroy, S. A. G. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 403–414 (2014).Article 

    Google Scholar 
    Leroy, S. & Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 295–316 (1994).Article 

    Google Scholar 
    Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M. & Eglinton, G. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochim. Cosmochim. Acta 64, 3505–3513 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Chang. Biol. 18, 675–684 (2012).ADS 
    Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Stevens, N., Erasmus, B. F. N., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. B Biol. Sci. 371, (2016).Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral. Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Scheff, J., Seager, R., Liu, H., Coats, S. & Observatory, L. E. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).ADS 
    Article 

    Google Scholar 
    Bragg, F. J. et al. Stable isotope and modelling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosciences 10, 2001–2010 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, T., Tierney, J. E., Addison, J. A. & Murray, J. W. Ice-sheet modulation of deglacial North American monsoon intensification. Nat. Geosci. 11, 848–852 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 1–12 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).ADS 
    Article 

    Google Scholar 
    Raymo, M. E. & Nisancioglu, K. H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18, 1011 (2003).Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).Article 

    Google Scholar 
    Bosmans, J. H. C. et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 123, 16–30 (2015).ADS 
    Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).ADS 
    Article 

    Google Scholar 
    Bradtmiller, L. I. et al. Changes in biological productivity along the northwest African margin over the past 20,000 years. Paleoceanography 31, 185–202 (2016).ADS 
    Article 

    Google Scholar 
    Guan, K., Wood, E. F. & Caylor, K. K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 124, 653–665 (2012).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sage, R. F. The evolution of C4 photosynthesis. N. Phytol. 161, 341–370 (2004).CAS 
    Article 

    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 
    Article 

    Google Scholar 
    Archibald, S. & Hempson, G. P. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150309 (2016).Elderfield, H. et al. Evolution of ocean temperature. Science 337, 704–709 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (2006).Article 

    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).ADS 
    Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim 16, 117–140 (2020).ADS 

    Google Scholar 
    Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 4, 42–45 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J. & Thiede, J. Late quaternary climatic changes in western tropical africa deduced from deep-sea sedimentation off the Niger delta. Oceanol. Acta 1, 217–232 (1978).CAS 

    Google Scholar 
    Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N. & Schmidt, G. A. Model, proxy and isotopic perspectives on the East African Humid Period. Earth Planet. Sci. Lett. 307, 103–112 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    COHMAP members. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043–1052 (1988).Article 

    Google Scholar 
    Street-Perrott, F. A., Marchand, D. S., Roberts, N. & Harrison, S. P. Global lake-level variations from 18,000 to 0 years ago: a palaeoclimate analysis. U.S. Department of Energy Technical Report 46, 20545 (1989).de Menocal, P. B. & Tierney, J. E. Green Sahara: African humid periods paced by Earth’ s orbital changes. Nat. Educ. Knowl. 3(10):12 (2012).Sage, R. F. & Kubien, D. S. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77, 209–225 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K. & Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, 193–196 (1981).ADS 
    Article 

    Google Scholar 
    Rowland, G. H. et al. The spatial distribution of aeolian dust and terrigenous fluxes in the tropical Atlantic ocean since the last glacial maximum. Paleoceanogr. Paleoclimatol. 36, 1–17 (2021).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & DeMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Jullien, E. et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat. Res. 68, 379–386 (2007).Article 

    Google Scholar 
    Pye, K. Aeolian Dust and Dust Deposits. (Academic Press, 1987).Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Malaizé, B. et al. The impact of African aridity on the isotopic signature of Atlantic deep waters across the Middle Pleistocene Transition. Quat. Res. 77, 182–191 (2012).Article 
    CAS 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
    Google Scholar 
    Polissar, P. J. & D’Andrea, W. J. Uncertainty in paleohydrologic reconstructions from molecular D values. Geochim. Cosmochim. Acta 129, 146–156 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).ADS 
    Article 

    Google Scholar 
    Tierney, J. E. & deMenocal, P. B. Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum. Science 342, 843–846 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002).ADS 
    Article 

    Google Scholar 
    Vogts, A., Moossen, H., Rommerskirchen, F. & Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 40, 1037–1054 (2009).CAS 
    Article 

    Google Scholar 
    Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    White, F. The Vegetation of Africa. (UNESCO 1983).Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352–355 (1985).ADS 
    Article 

    Google Scholar 
    Watrin, J. et al. Plant migration and plant communities at the time of the ‘green Sahara’. Comptes Rendus—Geosci. 341, 656–670 (2009).ADS 
    Article 

    Google Scholar 
    Hély, C. et al. Holocene changes in African vegetation: tradeoff between climate and water availability. Clim 10, 681–686 (2014).ADS 

    Google Scholar 
    Lézine, A. M. Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. Comptes Rendus—Geosci. 341, 750–759 (2009).ADS 
    Article 

    Google Scholar 
    Dupont, L. M. & Hooghiemstra, H. The Saharan-Sahelian boundary during the Brunhes chron. Acta Bot. Neerl. 38, 405–415 (1989).Article 

    Google Scholar 
    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 
    Article 

    Google Scholar 
    Worden, J. et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Risi, C., Bony, S. & Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2 Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 113, D19306 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Risi, C. et al. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 35, L24808 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Badewien, T., Vogts, A. & Rullkötter, J. n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Org. Geochem. 89–90, 71–79 (2015).Bezabih, M., Pellikaan, W. F., Tolera, A. & Hendriks, W. H. Evaluation of n-alkanes and their carbon isotope enrichments (d 13 C) as diet composition markers. Anim. Int. J. Anim. Biosci. 5, 57–66 (2011).CAS 
    Article 

    Google Scholar 
    Kristen, I. et al. Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. 143–160 https://doi.org/10.1007/s10933-009-9393-9 (2010).Magill, C. R., Ashley, G. M. & Freeman, K. H. Water, plants, and early human habitats in eastern Africa. Proc. Natl Acad. Sci. 110, 1175–1180 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheddadi, R., Carré, M., Nourelbait, M., François, L. & Rhoujjati, A. Early Holocene greening of the Sahara requires Mediterranean winter rainfall. 1–7 https://doi.org/10.1073/pnas.2024898118 (2021).Niedermeyer, E. M. et al. Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C. Quat. Sci. Rev. 29, 2996–3005 (2010).ADS 
    Article 

    Google Scholar 
    Adkins, J., deMenocal, P. & Eshel, G. The ‘African humid period’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography 21, 1–14 (2006).Article 

    Google Scholar 
    Mcgee, D. Glacial—interglacial precipitation changes. Annu. Rev. Mar. Sci. 12, 525–557 (2020).Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Weijers, J. W. H., Schefuß, E., Schouten, S. & Damsté, J. S. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lezine, A. M. & Cazet, J. P. High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago. Quat. Res. 64, 432–443 (2005).Article 

    Google Scholar 
    Marret, F., Scourse, J. D., Versteegh, G., Fred Jansen, J. H. & Schneider, R. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. J. Quat. Sci. 16, 761–766 (2001).Article 

    Google Scholar 
    Dupont, L. & Behling, H. Land-sea linkages during deglaciation: High-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quat. Int. 148, 19–28 (2006).Article 

    Google Scholar 
    Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Palaeobot. Palynol. 99, 157–187 (1998).Article 

    Google Scholar 
    Giresse, P., Maley, J. & Brenac, P. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 65–78 (1994).Article 

    Google Scholar 
    Maley, J. The African rain forest vegetation and palaeoenvironments during late quaternary. Clim. Change 19, 79–98 (1991).ADS 
    Article 

    Google Scholar 
    Talbot, M. R. & Johannessen, T. A high resolution paleoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992).Anhuf, D. et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 510–527 (2006).Article 

    Google Scholar 
    Elenga, H. et al. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J. Biogeogr. 27, 621–634 (2000).Article 

    Google Scholar 
    Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J. & Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 27, 2316–2340 (2008).ADS 
    Article 

    Google Scholar 
    Wu, H., Guiot, J., Brewer, S. & Guo, Z. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, 211–229 (2007).Article 

    Google Scholar 
    Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9, 983–1004 (2003).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P. & Roulstone, I. Reconstructing ice-age palaeoclimates: quantifying low-CO2 effects on plants. Glob. Planet. Change 149, 166–176 (2017).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 103790 https://doi.org/10.1016/j.gloplacha.2022.103790 (2022).Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Winckler, G., Anderson, R. F. & Schlosser, P. Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20, 1–10 (2005).Article 

    Google Scholar 
    McGee, D. & Mukhopadhyay, S. Extraterrestrial He in sediments: from recorder of asteroid collisions to timekeeper of global environmental changes. in Advances in Isotope Geochemistry 155–176 (Springer, 2013). https://doi.org/10.1007/978-3-642-28836-4_7Costa, K. & McManus, J. Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochim. Cosmochim. Acta 197, 215–225 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Nier, A. O. & Schlutter, D. J. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27, 166–173 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, A. Application of the Helium Isotopic System to Accretion of Terrestrial and Extraterrestrial Dust Through the Cenozoic. (Harvard University, 2012).Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).ADS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 515–533 (2004).Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Eisenman, I. & Huybers, P. J. daily_insolation. (2006).Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography. Oceanography 29, 9–13 (2016).Article 

    Google Scholar 
    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Rommerskirchen, F. et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4, (2003).Zhao, M., Dupont, L., Eglinton, G. & Teece, M. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org. Geochem. 34, 131–143 (2003).CAS 
    Article 

    Google Scholar 
    Küechler, R. R. A Revised Orbital Forcing Concept of West African Climate and Vegetation Variability During the Pliocene and the Last Glacial Cycle-Molecular Isotopic Approach and Proxy Calibration. (University of Bremen, 2015). More