More stories

  • in

    A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Muhlfeld, C. C. et al. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620–624 (2014).Article 

    Google Scholar 
    Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mao, Y., Economo, E. P. & Satoh, N. The roles of introgression and climate change in the rise to dominance of Acropora corals. Curr. Biol. 28, 3373–3382.e5 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vianna, J. A. et al. Genome-wide analyses reveal drivers of penguin diversification. Proc. Natl Acad. Sci. USA 117, 22303–22310 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKelvey, K. S. et al. Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecol. Evol. 6, 688–706 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet. 14, e1007741 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D.-D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).Article 
    PubMed 

    Google Scholar 
    Wang, M.-S. et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 37, 2616–2629 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. I. V. Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv. Biol. 18, 1347–1357 (2004).Article 

    Google Scholar 
    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, S. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157, 785–794 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, V. et al. The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46487 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preuß, A., Gansloßer, U., Purschke, G. & Magiera, U. Bear-hybrids: behaviour and phenotype. Zool. Gart. 78, 204–220 (2009).Article 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. 9, e1003345 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pongracz, J. D., Paetkau, D., Branigan, M. & Richardson, E. Recent hybridization between a polar bear and grizzly bears in the Canadian Arctic. Arctic 70, 151–160 (2017).Article 

    Google Scholar 
    Pugach, I., Matveyev, R., Wollstein, A., Kayser, M. & Stoneking, M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 12, R19 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquharson, L. et al. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46, 783–786 (2018).Article 

    Google Scholar 
    Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241–249 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pease, J. B. & Hahn, M. W. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64, 651–662 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Curr. Biol. 31, 1771–1779.e7 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polyak, L. et al. History of sea ice in the Arctic. Quat. Sci. Rev. 29, 1757–1778 (2010).Article 

    Google Scholar 
    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guarino, M.-V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Change 10, 928–932 (2020).Article 

    Google Scholar 
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).Article 

    Google Scholar 
    Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524 (2018).Article 

    Google Scholar 
    Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mamm. Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Stirling, I., Spencer, C. & Andriashek, D. Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Mar. Mamm. Sci. 32, 13–37 (2016).Article 

    Google Scholar 
    Méheust, M., Stein, R., Fahl, K. & Gersonde, R. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and Uk′37 proxy records. Arktos 4, 1–19 (2018).Article 

    Google Scholar 
    Brigham-Grette, J. & Hopkins, D. M. Emergent marine record and paleoclimate of the last interglaciation along the northwest Alaskan coast. Quat. Res. 43, 159–173 (1995).Article 

    Google Scholar 
    Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Article 
    PubMed 

    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics 34, 4165–4171 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA–MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28, 2685–2686 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vihtakari, M. PlotSvalbard: User Manual. Github https://mikkovihtakari.github.io/PlotSvalbard/articles/PlotSvalbard.html (2020).Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020).Article 
    PubMed 

    Google Scholar 
    Yu, G., Lam, T. T., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-G. et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. et al. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc. Natl Acad. Sci. USA 107, 5053–5057 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vershinina, A. O. et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol. 30, 6144–6161 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar  More

  • in

    Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community

    Panti-May, J. A. et al. A two-year ecological study of Norway rats (Rattus norvegicus) in a Brazilian Urban Slum. PLoS ONE 11(3), 1–12. https://doi.org/10.1371/journal.pone.0152511 (2016).CAS 
    Article 

    Google Scholar 
    Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9(5), 97776. https://doi.org/10.1371/journal.pone.0097776 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Lambert, M. S., Quy, R. J., Smith, R. H. & Cowan, D. P. The effect of habitat management on home-range size and survival of rural Norway rat populations. J. Appl. Ecol. 45(6), 1753–1761. https://doi.org/10.1111/j.1365-2664.2008.01543.x (2008).Article 

    Google Scholar 
    Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health (Vol. 7828). https://doi.org/10.1080/10408410902989837 (2009)Buckle, A. & Smith, R. Rodent Pests and Their Control 2nd edn. (CABI Press, Wallingford, 2015).Book 

    Google Scholar 
    Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evol. 7, 1–12. https://doi.org/10.3389/fevo.2019.00013 (2019).Article 

    Google Scholar 
    Carvalho-Pereira, T. et al. The helminth community of a population of Rattus norvegicus from an urban Brazilian slum and the threat of zoonotic diseases. Parasitology 145(6), 797–806. https://doi.org/10.1017/S0031182017001755 (2018).Article 
    PubMed 

    Google Scholar 
    Costa, F. et al. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl. Trop. Dis. 9(6), 1–14. https://doi.org/10.1371/journal.pntd.0003819 (2015).CAS 
    Article 

    Google Scholar 
    Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. MedRxiv https://doi.org/10.1101/2020.07.05.20146779 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Awoniyi, A. M. et al. Effect of chemical and sanitary intervention on rat sightings in urban communities of New Providence, the Bahamas. SN Appl. Sci. 3, 495. https://doi.org/10.1007/s42452-021-04459-x (2021).CAS 
    Article 

    Google Scholar 
    Costa, F. et al. Influence of household rat infestation on leptospira transmission in the urban slum environment. PLoS Negl. Trop. Dis. 8(12), 3338. https://doi.org/10.1371/journal.pntd.0003338 (2014).Article 

    Google Scholar 
    Khalil, H. et al. Poverty, sanitation, and Leptospira transmission pathways in residents from four Brazilian slums. PLoS Negl. Trop. Dis. 15(3), 1–15. https://doi.org/10.1371/journal.pntd.0009256 (2021).Article 

    Google Scholar 
    Zeppelini, C. G. et al. Demographic drivers of Norway rat populations from urban slums in Brazil. Urban Ecosyst. https://doi.org/10.1007/s11252-020-01075-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations -UN. World Urbanization Prospects: The 2018 Revision. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 24 Dec 2020 (2018)United Nations UN-SDG. Sustainable Development Goals: Make cities and human settlements inclusive, safe, resilient and sustainable. https://unstats.un.org/sdgs/report/2019/goal-11/#:~:text=The%20absolute%20number%20of%20people,Southern%20Asia%20(227%20million). Accessed 24 Dec 2020 (2018)Russell, J. C., Towns, D. R. & Clout, M. N. Review of rat invasion biology: Implications for island biosecurity. Sci. Conserv. 286, 1–53 (2008).
    Google Scholar 
    Minter, A. et al. Optimal control of rat-borne leptospirosis in an urban environment. Front. Ecol. Evol. 7, 1–10. https://doi.org/10.3389/fevo.2019.00209 (2019).ADS 
    Article 

    Google Scholar 
    Mathur, R. P. Effectiveness of various rodent control measures in cereal crops and plantations in India. In: Leirs H. and Schockaert E. ed. Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 137–144 (1997).
    Google Scholar 
    Pascal, M., Siorat, F., Lorvelec, O., Yésou, P. & Simberloff, D. A pleasing consequence of Norway rat eradication : Two shrew species recover. Divers. Distrib. 11, 193–198. https://doi.org/10.1111/j.1366-9516.2005.00137.x (2005).Article 

    Google Scholar 
    Singleton, G. R., Hinds, L. & Leirs, H. Ecologically-based management of rodent pests. Australian Centre for International Agricultural Research, (ACIAR Monograph 59), 494. (1999)Sullivan, L. M. Roof rat control around homes and other structures. Cooper. Extens. Bull. AZ 1280, 1–6 (2002).
    Google Scholar 
    Childs, J. E. Size-dependent predation on rats (Rattus norvegicus) by house cats (Felis catus) in an urban setting. J. Mammol. 67(1), 196–199 (1986).Article 

    Google Scholar 
    Davis, D. E. The characteristics of rat populations. Quart. Rev. Biol. 28, 373–401. https://doi.org/10.1086/399860 (1953).CAS 
    Article 
    PubMed 

    Google Scholar 
    Glass, G. E. et al. Trophic garnishes: Cat-Rat interactions in an urban environment. PLoS ONE 4(6), e5794. https://doi.org/10.1371/journal.pone.0005794 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenton, G. M. Biological control of rats by owls in oil palm and other plantations. Biotrop Spec. Publ. 12, 87–94 (1980).
    Google Scholar 
    Smith, R. H. & Meyer, A. N. Rodent controlmethods: Non-chemical and non-lethal chemical, with special reference to food stores. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, 2015) (ISBN-13: 978-1-84593-817-8).
    Google Scholar 
    Oyedele, D. T., Sah, S. A. M., Kairuddin, L. & Ibrahim, W. M. M. W. Range measurement and a habitat suitability map for the Norway rat in a highly developed urban environment. Trop. Life Sci. Res. 26(2), 27–44 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, N., Hughes, N. K., Bryom, A. E. & Banks, P. B. Population recovery of alien black rats Rattus rattus: A test of reinvasion theory. Austral Ecol. 45, 291–304. https://doi.org/10.1111/aec.12855 (2020).Article 

    Google Scholar 
    Awoniyi, A. M. et al. Using Rhodamine B to assess the movement of small mammals in an urban slum. Methods Ecol. Evol. 12(11), 2234–2242. https://doi.org/10.1111/2041-210X.13693 (2021).Article 

    Google Scholar 
    Glass, G. E., Klein, S. L., Norris, D. E. & Gardner, L. C. Multiple paternity in urban Norway rats: Extended ranging for mates. Vector-Borne Zoonotic Dis. 16(5), 342–248. https://doi.org/10.1089/vbz.2015.1816 (2016).Article 
    PubMed 

    Google Scholar 
    Buckle, A. P. & Eason, C. T. Rodent control methods: Chemical. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, Wallingford, 2015) (ISBN-13: 978-1-84593-817-8).Chapter 

    Google Scholar 
    de Masi, E., Pedro, J. V. & Maria, T. P. Evaluation on the effectiveness of actions for controlling infestation by rodents in Campo Limpo region, São Paulo Municipality, Brazil Access details: Access Details: [subscription number 913003116]. Int. J. Environ. Health Res. 19(4), 291–304. https://doi.org/10.1080/09603120802592723 (2009).Article 
    PubMed 

    Google Scholar 
    Lambropoulos, A. S. et al. Rodent control in urban areas—An interdisciplinary approach. J. Environ. Health 61, 12–17 (1999).
    Google Scholar 
    Reis, R. B. et al. Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl. Trop. Dis. 2(4), 11–18. https://doi.org/10.1371/journal.pntd.0000228 (2008).MathSciNet 
    Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatistica (IBGE). Accessed 15 November 2019 (2010)CDC. Integrated pest management: conducting urban rodent surveys. Centers for Disease Control and Prevention-Atlanta: US Department of Health and Human Services (2006)Hacker, K. P. et al. A comparative assessment of track plates to quantify fine scale variations in the relative abundance of Norway rats in urban slums. Urban Ecosyst. 19(2), 561–575. https://doi.org/10.1007/s11252-015-0519-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyre, M. T. et al. A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community: A multivariate geostatistical framework for combining multiple ind. J. R. Soc. Interface 17(170), 1–21. https://doi.org/10.1098/rsif.2020.0398 (2020).Article 

    Google Scholar 
    Bursac, Z., Gauss, C. H., Williams, D. K. & Hosmer, D. W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 8, 1–8. https://doi.org/10.1186/1751-0473-3-17 (2008).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020)Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020)Richardson, J. L. et al. Using fine-scale spatial genetics of Norway rats to improve control efforts and reduce leptospirosis risk in urban slum environments. Evol. Appl. 10(4), 323–337. https://doi.org/10.1111/eva.12449 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, N. D. J., Sousa, E., Reis, M. G., Ko, A. I. & Costa, F. Rat infestation associated with environmental deficiencies in an urban slum community with high risk of leptospirosis. Cad. Saúde Pública 33(2), 1–13. https://doi.org/10.1590/0102-311X00132115 (2017).CAS 
    Article 

    Google Scholar 
    Murray, M. H. & Sanchez, C. A. Urban rat exposure to anticoagulant rodenticides and zoonotic infection risk. Biol. Lett. 17, 20210311. https://doi.org/10.1098/rsbl.2021.0311 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Parsons, M. H., Banks, P. B., Deutsch, M. A., Corrigan, R. F. & Munshi-South, J. Trends in urban rat ecology: A framework to define the prevailing knowledge gaps and incentives for academia, pest management professionals (PMPs) and public health agencies to participate. J. Urban Ecol. 3(1), 1–8. https://doi.org/10.1093/jue/jux005 (2017).Article 

    Google Scholar 
    Costa, F. et al. Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis. PLoS Negl. Trop. Dis. 15(3), 9154. https://doi.org/10.1371/journal.pntd.0009154 (2021).Article 

    Google Scholar 
    Mwanjabe, P. S. & Leirs, H. An early warning system for IPM-based rodent control in smallholder farming systems in Tanzania. In: Leirs, H., & Schockaert, E., ed., Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 4–58 (1997).
    Google Scholar 
    Richards, C. G. J. R. & Buckle, A. P. Towards integrated rodent pest management at the village level. In Control of Mammal Pests (eds Richards, C. G. J. R. & Ku, T. Y.) 293–312 (Taylor and Francis, 1987).
    Google Scholar 
    Masi, E. Socioeconomic and environmental risk factors for urban rodent infestation in Sao Paulo, Brazil. J. Pest Sci. 83(3), 231–241. https://doi.org/10.1007/s10340-010-0290-9 (2010).Article 

    Google Scholar 
    Brooks, J. E. Methods of sewer rat control. In Proceedings of the 1st Vertebrate Pest Conference. https://digitalcommons.unl.edu/vpcone/17. Accessed 20 August 2021 (1962) More

  • in

    FutureStreams, a global dataset of future streamflow and water temperature

    Variable names, units and timestampsStreamflow is runoff routed along a drainage network, in m3/s, also known as discharge, which is the variable name used in the files. Water temperature is given in units of Kelvin. Filenames include the variable name, GCM, scenario (hist for historical, or one of the RCPs) and the time period (years). The timestamps in the files reflect the last date of the period over which the output was averaged, so the first timestamp of the weekly averages is January 7th 1976.Ecologically-relevant variablesThe ecologically-relevant streamflow and water temperature variables derived from the weekly values are established based on a combination of classification frameworks, i.e., indicators of hydrologic alteration19, terrestrial bioclimatic variables in the worldclim dataset20 as well as the CMCC-BioClimInd dataset21, aggregated accordingly: 1976–2005 (1979–2005 for E2O); 2021–2040; 2041–2060; 2061–2080; 2081–2099. The scripts used to compute these derived variables can be found under Code Availability.For files containing information on timing (see Tables 2–3), note that the counting is 0-indexed. So week numbers run from 0 through 51, months from 0 to 11. For timing of quarters, 0 is DJF, 1 is MAM, 2 is JJA, 3 is SON. The week number (for WT-wmin, WT-wmax, Q-wmin, Q-wmax) is determined as the mode, i.e. the most frequent week number within a period. For each period (20, 25 or 30 years) we looked for the week number in which the minimum or maximum water temperature or discharge occurs. If that happens most often in week X, that week number is stored. It can however occur that a certain minimum/maximum temperature or discharge occurs equally often in multiple weeks – then we assign a missing value.The variables Q-bfi and Q-vi are calculated according to Pastor et al.30. The baseflow index is an indicator of the importance of stored sources; a high index indicates that flow is mostly sustained by stored sources such as groundwater.Scripts used to create the derived variables are available through the FutureStreams GitHub repository (see Code Availability below).Multi-model set-upWe provide future scenarios for four RCPs (representative concentration pathways; 2.6, 4.5, 6.0 and 8.5 W/m2 in 2100) for the five ISI-MIP GCMs. Projections differ across RCPs due to differences in greenhouse gas forcing, and across GCMs due to differences in e.g model parameterization and resolution. Generally the spread across GCMs is larger than that across RCPs7,31. When interested in the general effect of climate change, users are advised to use the mean or median across the GCMs, rather than selecting a specific GCM. When interested in the spread across GCMs, users can explore or represent that in various ways, such as color intensity indicating agreement amongst models5, bar or violin plots7 etc.Warming levelsTo facilitate assessments and comparisons of streamflow and water temperature at a certain air temperature rise rather than specific years5,7, we provide a table with the years in which each GCM/RCP reaches the global mean temperature rises 1.5°, 2.0°, 3.2°, 4.5° compared to pre-industrial temperatures (as used by Barbarossa et al.7) with our scripts (see Code Availability). These years represent the central value of a 30-year running mean, so users should evaluate the 30-year mean (or other statistic) of discharge or water temperature centered around the year that a certain warming level is reached, which is specific to each RCP and GCM combination. For instance, if 1.5° warming is reached in 2040, the 30-year period 2025–2054 should be considered.GCMs, bias-correction and reanalysis dataThe majority of our simulations are forced with meteorological time series from GCMs. Those are bias-corrected27 before being applied to impact models such as PCR-GLOBWB, which corrects for systematic deviations of the simulated historical data from observations. For instance, for temperature the offset in average temperature in the historical GCM simulation with respect to observations is subtracted from temperatures in all scenarios of that GCM. The bias-corrected GCM forcing should thus well represent climatology, but not necessarily timing of actual events such as floods and droughts. Reanalysis data is created by assimilating observations into weather models, to obtain consistent and globally complete time series. The output of the simulation forced with meteorological time series from the (E2O) reanalysis data should therefore reflect not only the average streamflow and water temperatures, but also timing of actual events such as droughts.If users want to check for themselves how the GCM-forced historical simulations discussed here deviate from reanalysis-forced simulations, they can use the output from the E2O-forced simulation provided here, the monthly output linked to Wanders et al.13 (see also Code Availability) or the daily output of those simulations which are available from Niko Wanders upon request. The latter are forced with ERA-40/ERA-Interim reanalysis data.Notes of cautionBeware of temperature in grid cells where streamflow is low, which can cause temperatures to become unrealistically high due to strong fluctuations in the water level. The computational timesteps currently implemented in DynWat are not sufficiently small to provide stable solutions for these conditions. For some lakes and reservoirs we observe a similar problem when lakes expand or shrink as a result of water levels changes. These locations can be masked and we can assume that water temperature follows the air temperature for these very shallow water layers. A file with locations of lakes and reservoirs is provided in the data repository (under indicators/mask) so users can mask these if desired.Furthermore, we provide masks for each GCM-RCP-period which users can apply to the derived variables if desired. These masks are based on Q-mean and WT-mean and thresholds of 10 m3/s and 350 K, respectively. They can be found in the data repository (i.e. indicators/waterTemperature/WT-mask). The scripts used to create these masks are provided through the FutureStreams GitHub repository (see Code Availability below), which can be used to create masks with different thresholds. These scripts are called mask_unrealistic_values.py and maskFunctions.py.We also provide scripts to mask out unrealistic values directly in the weekly Q and WT files, these scripts are mask_unrealistic_values_weekly.py and maskFunctions_weekly.py. In all these scripts the threshold for discharge is set to 10 m3/s and for water temperature to 350 K, but users can change those to their preferred values. The threshold value will be included in the resulting output file name.Furthermore, we encountered spin-up issues in some pixels for the future RCP simulations. Instead of following the temperatures from the end of the historical simulation, temperatures drop at the beginning of the future simulation, so the first few weeks of 2006 temperatures can be unrealistically low. In Fig. 2, output of the year 2007 is used for the year 2006 .Fig. 2Water temperature [°C] anomaly. The maps show the difference between the mean water temperature over the period 2070–2099 (RCP8p5) and the historical period 1975–2005. The map shows values only for rivers with streamflow greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values, thick lines represent 10 year rolling means.Full size imageFig. 3Streamflow [m3/s] anomaly. The maps show the difference between the log10 transformed mean streamflow over the period 2070–2099 (RCP8p5) and the log10 transformed mean streamflow over historical period 1975–2005. The map shows values only for rivers with streamflow values greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values and thick lines represent 10 year rolling means.Full size imageFig. 4Anomalies for selected ecologically relevant derived variables (bioclimatic indicators) for the same areas in the Amazone (left), Danube (middle) and Ganges (right) basins as used in Figs. 2 and 3. Differences are shown between RCP8.5 2080–2099 and 1976–2005. WT-cq is the water temperature of the coldest quarter, WT-range is temperature range, Q-max is maximum streamflow, Q-dm is streamflow of the driest month (see also Tables 2 and 3 below). For streamflow we show the difference between log10-transformed flow.Full size image More

  • in

    Demographic characteristics shape patterns of dawn swarming during roost switching in tree-dwelling Daubenton’s bat

    Green, P. A., Brandley, N. C. & Nowicki, S. Categorical perception in animal communication and decision-making. Behav. Ecol. 31, 859–867 (2020).
    Google Scholar 
    Petak, I. Ritualization. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–4 (Springer International Publishing, Cham, 2019).
    Google Scholar 
    Fernandez, A. A., Fasel, N., Knörnschild, M. & Richner, H. When bats are boxing: Aggressive behaviour and communication in male Seba’s short-tailed fruit bat. Anim. Behav. 98, 149–156 (2014).
    Google Scholar 
    van Schaik, J. et al. Bats swarm where they hibernate: Compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE 10, e0130850 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Vaughan, T. & O’Shea, T. Roosting ecology of the Pallid bat, Antrozous pallidus. J. Mammal. 57, 19–42 (1976).
    Google Scholar 
    Kunz, T. H. Roosting ecology. In Ecology of Bats (ed. Kunz, T. H.) (Plennum Press, 1982).
    Google Scholar 
    Kaňuch, P. Evening and morning activity schedules of the noctule bat (Nyctalus noctula) in Western Carpathians. Mammalia 71, 126–130 (2007).
    Google Scholar 
    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Processes. 120, 80–86 (2015).PubMed 

    Google Scholar 
    Zelenka, Z., Kasanický, T., Budinská, I. & Kaňuch, P. An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics. Sci. Rep. 10, 16793 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aureli, F. et al. Fission-fusion dynamics: New research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 
    Willis, C. K. R. & Brigham, R. M. Roost switching, roost sharing and social cohesion: Forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Anim. Behav. 68, 495–505 (2004).
    Google Scholar 
    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, 2016).
    Google Scholar 
    Kerth, G., Weissmann, G. & König, B. Day roost selection in female Bechstein’s bats. Oecologia 126, 1–9 (2001).ADS 
    PubMed 

    Google Scholar 
    Reckardth, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats. Oecologia 154, 581–588 (2007).ADS 

    Google Scholar 
    Mikula, P., Hromada, M. & Tryjanowski, P. Bats and swifts as food of the European kestrel (Falco tinnunculus) in small town in Slovakia. Ornis Fennica 90, 178–185 (2013).
    Google Scholar 
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking carnivorous bat. Anim. Behav. 75, 471–482 (2008).
    Google Scholar 
    Patriquin, K. J., Palstra, F., Leonard, M. L. & Broders, H. G. Female northern myotis (Myotis septentrionalis) that roost together are related. Behav. Ecol. 24, 949–954 (2013).
    Google Scholar 
    Sherman, P. W. Nepotism and the evolution of alarm calls. Science 197, 1246–1253 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Almasi, B., Ribi, N., Thiel, D. & Lüpold, S. Social interactions among wild female Bechstein’s bats (Myotis bechsteinii) living in a maternity colony. Acta Ethol. 5, 107–114 (2003).
    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentonii. Can. J. Zool. 85, 653–664 (2007).
    Google Scholar 
    Nelson, R. J. & Kriegsfeld, L. J. An Introduction to Behavioral Endocrinology (Sinauer Associates, 2017).
    Google Scholar 
    Choleris, E. & Kavaliers, M. Social learning in animals: Sex differences and neurobiological analysis. Pharmacol. Biochem. Behav. 64, 767–776 (1999).CAS 
    PubMed 

    Google Scholar 
    McCracken, G. F. & Wilkinson, G. S. Bat mating systems. In Reproductive Biology of Bats (eds Crichton, E. G. & Krutzsch, P. H.) 321–362 (Academic Press, 2000).
    Google Scholar 
    Safi, K. Social bats: The males’ perspective. J. Mammal. 89, 1342–1350 (2008).
    Google Scholar 
    Linton, D. M. & Macdonald, D. W. Roost composition and sexual segregation in a lowland population of Daubenton’s bats (Myotis daubentonii). Acta Chiropterol. 21, 129–137 (2019).
    Google Scholar 
    Ružinská, R. & Kaňuch, P. Adult males in maternity colonies of Daubenton’s bat, Myotis daubentonii: What are they?. Mammalia 85, 551–556 (2021).
    Google Scholar 
    Barale, C. L., Rubenstein, D. I. & Beehner, J. C. Juvenile social relationships reflect adult patterns of behavior in wild geladas. Am. J. Primatol. 77, 1086–1096 (2015).PubMed 

    Google Scholar 
    McFarland, D. A Dictionary of Animal Behaviour (Oxford University Press, 2006).
    Google Scholar 
    Ratcliffe, J. & Hofstede, H. Roosts as information centres: Social learning of food preferences in bats. Biol. Lett. 1, 72–74 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, A. A., Burchardt, L. S., Nagy, M. & Knörnschild, M. Babbling in a vocal learning bat resembles human infant babbling. Science 373, 923–926 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilkinson, G. S. Information transfer at evening bat colonies. Anim. Behav. 44, 501–518 (1992).
    Google Scholar 
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).CAS 
    PubMed 

    Google Scholar 
    Todd, V. L. G. & Waters, D. A. Small scale habitat preferences of Myotis daubentonii, Pipistrellus pipistrellus, and potential aerial prey in an upland river valley. Acta Chiropterol. 19, 255–272 (2017).
    Google Scholar 
    Kaňuch, P. Roosting and population ecology of three syntopic tree-dwelling bat species (Myotis nattereri, M. daubentonii and Nyctalus noctula). Biologia 60, 579–587 (2005).
    Google Scholar 
    Lučan, R. K. & Hanák, V. Population ecology of Myotis daubentonii (Mammalia: Chiroptera) in South Bohemia: Summary of two long-term studies: 1968–1984 and 1999–2009. Acta Soc. Zool. Bohem. 75, 67–85 (2011).
    Google Scholar 
    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats. In Sociality in Bats (ed. Ortega, J.) 65–104 (Springer, 2016).
    Google Scholar 
    Bogdanowicz, W. Myotis daubentonii. Mamm. Species 475, 1–9 (1994).
    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating Little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).
    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Richardson, P. W. A new method of distinguishing Daubenton’s bats (Myotis daubentonii) up to one year old from adults. J. Zool. 233, 307–344 (1994).
    Google Scholar 
    Haarsma, A. & van Alphen, J. Chin-spot as an indicator of age in pond bats. Lutra 52, 97–107 (2009).
    Google Scholar 
    Burland, T. M., Barratt, E. M. & Racey, P. A. Isolation and characterization of microsatellite loci in the brown long-eared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Mol. Ecol. 7, 136–138 (1998).CAS 

    Google Scholar 
    Castella, V. & Ruedi, M. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol. Ecol. 9, 1000–1002 (2000).CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).
    Google Scholar 
    Jan, C., Dawson, D. A., Altringham, J. D., Burke, T. & Butlin, R. K. Development of conserved microsatellite markers of high cross-species utility in bat species (Vespertilionidae, Chiroptera, Mammalia). Mol. Ecol. Resour. 12, 532–548 (2012).CAS 
    PubMed 

    Google Scholar 
    Gruber, B. & Adamack, A. PopGenReport: A simple framework to analyse population and landscape genetic data. R package version 3.04. https://cran.r-project.org/package=popgenreport (2019).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Dowd, C. twosamples: Fast permutation based two sample tests. R package version 1.1.1. https://cran.r-project.org/package=twosamples (2020).Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Soft. Code Snippets 28, 1–9 (2008).
    Google Scholar 
    Kampstra, P. beanplot: Visualization via beanplots (like boxplot/stripchart/violin plot). R package version 1.2. https://cran.r-project.org/package=beanplot (2014).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries stock analysis. R package version 0.8.30. https://github.com/droglenc/FSA (2020).Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 

    Google Scholar 
    Kassambara, A. (2020) ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://cran.r-project.org/package=ggpubr (2020).Animal Behaviour. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, I–X (2020).Russo, D. L., Cistrone, L., Jones, G. & Mazzoleni, S. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: Consequences for conservation. Biol. Conserv. 117, 73–81 (2004).
    Google Scholar 
    Arnold, B. D. & Wilkinson, G. S. Female natal philopatry and gene flow between divergent clades of pallid bats (Antrozous pallidus). J. Mammal. 96, 531–540 (2015).
    Google Scholar 
    Barclay, R. M. R. & Harder, L. D. Life histories of bats: Life in the slow lane. In Bat Ecology (eds Kunz, T. H. & Fenton, M. B.) 209–253 (University of Chicago Press, 2003).
    Google Scholar 
    Sun, D. et al. Behavioural patterns and postnatal development in pups of the Asian parti-coloured bat, Vespertilio sinensis. Animals 10, 1325 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Quantifying individual influence in leading-following behavior of Bechstein’s bats. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Bekoff, M. The development of social interaction, play, and metacommunication in mammals: An ethological perspective. Q. Rev. Biol. 47, 412–434 (1972).
    Google Scholar 
    Dunbar, R. I. M. & Shultz, S. Bondedness and sociality. Behaviour 147, 775–803 (2010).
    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruczyński, I. & Bartoń, K. A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 74, 63 (2020).
    Google Scholar 
    Červený, J. & Bürger, P. Density and structure of the bat community occupying an old park at Žihobce (Czechoslovakia). In European Bat Research 1987 (eds Hanák, V. et al.) (Charles University Press, 1989).
    Google Scholar 
    Ripperger, S. et al. Proximity sensors on common noctule bats reveal evidence that mothers guide juveniles to roosts but not food. Biol. Lett. 15, 20180884 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin

    The water table depth, surface water body area, and surface ecological processes have all changed significantly during the 20 years the ecological water conveyance projects have been underway in the lower reaches of the Tarim River. Specifically, there has been a notable increase in the water table, surface water body area, vegetation density and coverage, the vegetation index (NDVI), Net Primary Production (NPP) of natural vegetation, and ecosystem function and health. The following sections provide details on these changes.Changes in groundwater table depthGroundwater (soil water) is the most important water source for maintaining natural vegetation in the lower reaches of the Tarim River, as the climate is extremely arid and atmospheric precipitation has little ecological significance. The changes in water table depth are directly related to the composition, distribution, and growth of the natural vegetation of the desert riparian forest, which in this case is mainly P. euphratica5. During the past 20 years, the ecological water conveyance in the lower reaches of the Tarim has been intermittent, and the groundwater table elevation has been closely related to the water conveyance. From the analysis of the groundwater table’s rise in the upper, middle, and lower reaches of the Tarim River (Fig. 1), the magnitude of the uplift is clearly related to four crucial factors: the groundwater table depth prior to the water conveyance, the volume of water discharge, the duration of the transfer, and the water head location.Figure 1Changes in groundwater depth of typical monitoring cross-sections pre- and post-conveyance of water in the lower reaches of Tarim River from 2000 to 2020. Yengsu, Karday, Argan and Yikanbujima are four monitoring sections in the lower reaches of Tarim River. “#1”is the No. 1 groundwater level monitoring well on each monitoring section, which is located 50 m away from the river.Full size imageIn the early stages of the water conveyance projects (2000–2010), the groundwater table in the upper and middle segments of the lower reaches of the Tarim River rose to a relatively large extent, while the groundwater table in the lower segment of the river only showed an increasing rising trend after 2011. The monitoring results reveal that after nearly 20 years of ecological water conveyance, the groundwater table in three sections of the lower reaches of the Tarim has been affected at a range of more than 1000 m. The three sections are the Yengsu section in the upper segment, the Karday section in the middle segment, and the Yiganbujima section in the lower segment. Furthermore, the groundwater table has risen by 2.69, 1.38 and 1.59 m, respectively, in these three sections22. Within 100 m from the river, the water table depth rose from 7.76, 9.31 and 7.82 m prior to ecological water conveyance to 3.70, 4.48, and 2.69 m, and 4.06, 4.83, and 5.13 m, respectively, after it. Within 500 m from the river, the water table rose by 1.6, 3.99, and 5.26 m, respectively. The shallow groundwater in the lower reaches of the Tarim River has also been recharged to a certain extent, and the lateral influence range is still gradually expanding.Changes in water body areaThe changes in water body area in the lower reaches of the Tarim River are closely related to the amount of water delivered via conveyance. During the past 20 years, the surface water body area, seasonal water body area, and permanent water body area all decreased to the lowest point in 2009, with the river water failing to reach Taitema Lake, the river’s terminal, in 2006, 2007, and 200923. The surface water body area, seasonal water body area and permanent water body area in the river’s lower reaches fluctuated and increased during the ecological water conveyance process. In particular, the seasonal water body area in the upstream section showed a significant expansion. The area increase rate of surface water, seasonal water, and permanent water in the middle section from Yengsu to Argan is 1.75 km2 a−1, 1.58 km2 a−1, and 0.16 km2 a−1, respectively. Similarly, the area of surface water bodies, seasonal water bodies, and permanent water bodies in the lower section (below Argan) increased at the rate of 13.48 km2 a−1, 8.24 km2 a−1, and 5.23 km2 a−1, respectively. It is worth mentioning that the area of surface permanent water body and seasonal water body in Taitema Lake significantly increased, with the area of the lake waters expanding 417.08 km2, from 38.19 km2 in 2000 to 455.27 km2 in 2019. This represents a nearly 12-fold increase (Fig. 2).Figure 2Spatial distribution of water surface area in lower reaches of Tarim River in 2000 and 2019. The subfigures were generated in R 4.0.2 (https://cran.r-project.org/bin/windows/), and then merged in Microsoft PowerPoint 2013 (https://www.microsoft.com/).Full size imageVegetation sample site monitoring analysisThe vegetation species in the lower reaches of the Tarim River were sparsely distributed, with P. euphratica and Tamarix sp. as the main established species. In the longitudinal direction, surface vegetation coverage and species number decreased as the water table depth increased from the upper and middle segments to the lower segment. In the lateral direction, surface vegetation shows the same trend, with groundwater table depth increasing the greater the distance from the river13.The surface ecological processes in the lower reaches of the Tarim River have responded positively to the water conveyance project, with density, coverage and the number and diversity of species significantly increasing. However, the response of surface ecological processes to the changes in groundwater table uplift has varied from section to section. In the lateral direction, the groundwater table in areas nearer to the river had a more prominent rise and the response of surface vegetation was stronger, whereas the groundwater table rise in areas farther from the river was smaller and so the response of surface vegetation was weaker. In the longitudinal direction, the same trend was observed from the upper to the lower segments in response to changes in the groundwater table. In this paper, we analyze the changes in detail by taking a closer look at the Yengsu section, which is located at the beginning of the middle section of the lower reaches of the Tarim River. In so doing, we apply sample site investigation and dynamic monitoring of the groundwater table to the study area.Changes in vegetation density and coverageThe results of our sample site monitoring show notable positive changes in groundwater depth between 2000 and 2021 as a direct result of the ecological water conveyance initiative. At 150 m from the river, the groundwater table depth rose from 8.47 m to 4.34 m, respectively, representing an uplift of 4.13 m (Fig. 3c). Moreover, the vegetation coverage and density increased from 18.77% and 0.016 plants/m2 to 46.51% and 0.049 plants/m2, and the number of species doubled from three to six.Figure 3Changes in vegetation coverage, density and number of species (a), species diversity indices (b), and groundwater depth (c) for each site at Yengsu section in the lower reaches of Tarim River.Full size imageAt 250 m from the river, the groundwater table depth rose from 8.07 m in 2000 to 4.85 m in 2021, representing an uplift of 3.22 m. The vegetation coverage and density increased from 10.89% and 0.020 plants/m2 to 31.24% and 0.160 plants/m2, respectively, and the number of species jumped from five to seven.At 350 m from the river, the water table rose 2.48 m between 2000 and 2021. The vegetation coverage and density increased from 3.69% and 0.010 plants/m2 to 22.27% and 0.022 plants/m2, respectively, and the number of species increased from two to three. It is worth noting that the expansion in vegetation cover in the first three sample sites was mainly due to the increase in the number and canopy width of herbs and shrubs that occurred as a direct result of the ecological water conveyance process.At 750 m from the river, the groundwater table depth rose from 5.96 m to 4.98 m between 2005 and 2021, respectively, representing an uplift of 0.64 m, while the vegetation coverage and density increased from 20.07% and 0.011 plants/m2 to 26.43% and 0.019 plants/m2, respectively.At 1050 m from the river, the sample site had an elevated water table of 1.22 m. The vegetation coverage and density increased from 2.41% and 0.004 plants/m2 in 2005 to 5.89% and 0.0148 plants/m2 in 2021, respectively (Fig. 3a). Among them, the increase in canopy area of Tamarix sp. and P. euphratica in the sample site was the main reason for the expansion in coverage.Changes in species diversity indicesPlant richness and evenness in the lower reaches of the Tarim River were low, with species diversity indices showing significant changes in response to the ecological water conveyance and the rise in the groundwater table (Fig. 3b). For example, at the Yengsu section, the Simpson dominance index, McIntosh evenness index and Margalef richness index, which reflect changes in species diversity, decreased from 0.58, 0.45 and 0.74 in 2005 to 0.46, 0.03 and 0.03, respectively. These changes occurred in response to the increase in groundwater depth from the first sample site at 150 m to the sixth sample site at 1050 m from the river channel. After 20 years of ecological water conveyance, the Simpson dominance index, McIntosh evenness index and Margalef richness index had increased on average by 0.33, 0.35 and 0.49, respectively, in the first three sample sites (Fig. 3b).Vegetation index (NDVI) changesThe Normalized Difference Vegetation Index (NDVI) is an important indicator of vegetation growth24. The study results reveal that the NDVI of the lower reaches of the Tarim River increased from 0.14 in 2000 to 0.21 in 2020, representing a rise of about 33.3%. The ecological water conveyance expanded the river region’s natural vegetation 188%, from 492 km2 in 2000 to 1423 km2 in 2020. Specifically, the area of low, medium, and high vegetation cover expanded by 277 km2, 537 km2 and 132 km2, representing increases of 20.8%, 448% and 190%, respectively. Further analysis of changes in vegetation coverage at different river sections indicate that the area of low vegetation coverage in the upper and middle segments showed a decreasing trend, whereas the area of medium and high vegetation coverage in the upper and middle segments showed an increasing trend. This latter trend was especially prominent in the middle segment, where the increase in the area covered by medium and high vegetation was relatively large.In the downstream segment, the area covered by all types of vegetation showed an upward trend, with the area covered by low vegetation expanding significantly (Fig. 4). In the lateral direction, the NDVI within 2 km of the water conveyance channel showed a more obvious response with greater increases, while NDVI beyond 2 km from the channel revealed smaller increases25. These differences reflect the influence range of the ecological water conveyance.Figure 4Variation of vegetation cover in the lower reaches of Tarim River. Spatial distribution of fraction of vegetation cover in (a) 2000, (b) 2010 and (c) 2020. Trends of (d) high fraction of vegetation cover, (e) middle fraction of vegetation cover and (f) low fraction of vegetation cover in different river sections. (g) Vegetation area and (h) change trend at different distances from the river.Full size imageChanges in net primary production (NPP) of natural vegetationNet primary production (NPP) is a key parameter of carbon cycling and energy flow in terrestrial ecosystems. NPP not only reflects terrestrial ecosystem productivity, but also characterizes the quality of terrestrial ecosystems and plays an important role in global change and carbon balance26,27. The results of our study show that the area of natural vegetation in the lower reaches of the Tarim River with highly significant and significant increases in NPP during the study period accounted for 31.93% (P  herbaceous community. The largest increase in NPP was observed in the Tamarix spp. community, rising 350.20% from 2001 to 201928.Area changes in vegetation carbon sink areaThe ecological water conveyance project in the lower reaches of the Tarim expanded the vegetation coverage and enhanced the carbon sequestration capacity of the region through photosynthesis. The lower reaches of the river are dominated by desert and sparse vegetation, and the ecosystem carbon sinks are mainly low carbon sinks. The monitoring results of the study show that the vegetation carbon sink area in the river’s lower reaches indicate a gradual expansion under the influence of the ecological water conveyance29, increasing from 1.54% of the study area in 2001 to 7.8% in 2020. As well, the Net Ecosystem Productivity (NEP) of the area’s vegetation showed an increasing trend at a rate of 0.541 g C·m−2·a−1, with the largest increase – 0.406 g C·m−2·a−1 – occurring in summer29and no significant carbon sink area in winter.Furthermore, in order to quantitatively investigate the degree of influence of ecological water conveyance on the carbon sink area in the lower reaches of the Tarim, a linear fit of cumulative water conveyance and carbon sink area was performed (Fig. 5). Based on the results, a strong linear correlation was found between cumulative water conveyance and carbon sink area (R2 = 0.958, p  More

  • in

    Biological traits of marine benthic invertebrates in Northwest Europe

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Diaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Villéger, S., Scherer-Lorenzen, M. & Mason, N. W. H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6, e17476 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    Statzner, B., Resh, V. H. & Roux, A. L. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: design of a research strategy for the Upper Rhone River and its floodplain. Freshw. Biol. 31, 253–263 (1994).Article 

    Google Scholar 
    Townsend, C. R. & Hildrew, A. G. Species traits in relation to a habitat templet for river systems. Freshw. Biol. 31, 265–275 (1994).Article 

    Google Scholar 
    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31–44 (1995).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25 (2003).ADS 
    Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Indic. 6, 609–622 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Paramor, O. A. L., Brockington, S. & Bremner, J. Incorporating ecological functioning into the designation and management of marine protected areas Incorporating ecological functioning into the designation and management of marine protected areas. Hydrobiologia 606, 69–79 (2008).Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Linden, P. et al. A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecol. Indic. 20, 121–133 (2012).Article 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Bolam, S. G. & Eggleton, J. D. Macrofaunal production and biological traits: spatial relationships along the UK continental shelf. J. Sea Res. 88, 47–58 (2014).ADS 
    Article 

    Google Scholar 
    Bolam, S. G., McIlwaine, P. S. O. & Garcia, C. Application of biological traits to further our understanding of the impacts of dredged material disposal on benthic assemblages. Mar. Pollut. Bull. 105, 180–192 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolam, S. G. et al. Differences in biological traits composition of benthic assemblages between unimpacted habitats. Mar. Environ. Res. 126, 1–13 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tyler, E. H. M. et al. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21, 922–934 (2012).Article 

    Google Scholar 
    Faulwetter, S., Markantonatou, V., Pavloudi, C. & Papageorgiou, N. Polytraits: a database on biological traits of marine polychaetes. Biodivers. Data J. 2, e1024 (2014).Article 

    Google Scholar 
    Aberson, M. J. R., Bolam, S. G. & Hughes, R. G. The dispersal and colonisation behaviour of the marine polychaete Nereis diversicolor (O. F. Müller) in south-east England. Hydrobiologia 672, 3–14 (2011).Article 

    Google Scholar 
    Ahrens, J. B., Borda, E., Barroso, R. & Paiva, P. C. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2018).Article 
    CAS 

    Google Scholar 
    Alexander, M. E., Dick, J. T. A., O’Connor, N. E., Haddaway, N. R. & Farnsworth, K. D. Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 468, 191–202 (2012).ADS 
    Article 

    Google Scholar 
    Alexandridis, N. Models of general community assembly mechanisms simulating the spatial and temporal dynamics of benthic biodiversity. PhD Thesis. Université de Bretagne occidentale, Earth Sciences, Doctoral Thesis, 119pp. (2017).Aliani, S. & Meloni, R. Dispersal strategies of benthic species and water current variability in the Corsica Channel (Western Mediterranean). Sci. Mar. 63, 137–145 (1999).Article 

    Google Scholar 
    Allen, E. J. Polychaeta of Plymouth and the South Devon Coast, including a list of the Archiannelida. J. Mar. Biol. Assoc. UK 10, 592–646 (1915).Article 

    Google Scholar 
    Allen, J. A. Observations on Cochlodesma Praetenue (Pulteney) [Eulamellibranchia]. J. Mar. Biol. Assoc. UK 37, 97–112 (1958).Article 

    Google Scholar 
    Allen, J. A. Observations on the biology of Pandalina Brevirostris [Decapoda; Crustacea]. J. Mar. Biol. Assoc. UK 45, 291–304 (1965).Article 

    Google Scholar 
    Allen, J. A. The British species of Thracia (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 723–735 (1961).Article 

    Google Scholar 
    Allen, P. L. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. J. Exp. Mar. Bio. Ecol. 70, 79–90 (1983).CAS 
    Article 

    Google Scholar 
    Anker, A. et al. Macrofauna associated with echiuran burrows: A review with new observations of the innkeeper worm, Ochetostoma erythrogrammon Leuckart and Rüppel, in Venezuela. Zool. Stud. 44, 157–190 (2005).
    Google Scholar 
    Ansell, A. D. & Parulekar, A. H. On the rate of growth of Nuculana minuta (Műller) (Bivalvia; Nuculanidae). J. Molluscan Stud. 44, 71–82 (1978).
    Google Scholar 
    Ansell, A. D. Boring and burrowing mechanisms in Petricola pholadiformis Lamarck. J. Exp. Mar. Bio. Ecol. 4, 211–220 (1970).Article 

    Google Scholar 
    Ansell, A. D. Burrowing in Lyonsia norvegica (Gmelin) (Bivalvia: Lyonsiidae). J. Molluscan Stud. 37, 387–393 (1967).Article 

    Google Scholar 
    Ansell, A. D. The Functional Morphology of the British Species of Veneracea (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 489–517 (1961).Article 

    Google Scholar 
    Arias, A. & Paxton, H. Onuphis and Aponuphis (Annelida: Onuphidae) from southwestern Europe, with the description of a new species. Zootaxa 3949, 345–369 (2015).PubMed 
    Article 

    Google Scholar 
    Arias, A., Barroso, R., Anadón, N. & Paiva, P. C. On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. Zookeys 337, 19–33 (2013).Article 

    Google Scholar 
    Atkinson, R. J. A., Moore, P. G. & Morgan, P. J. The burrows and burrowing behaviour of Maera loveni (Crustacea: Amphipoda). J. Zool. Soc. Lond. 198, 399–416 (1982).Article 

    Google Scholar 
    Attrill, M. J. & Hartnoll, R. G. Aspects of the biology of the deep-sea crab Geryon Trispinosus from the Porcupine Seabight. J. Mar. Biol. Assoc. UK 71, 311–328 (2014).Article 

    Google Scholar 
    De Backer, A. et al. Bioturbation effects of Corophium volutator: Importance of density and behavioural activity. Estuar. Coast. Shelf Sci. 91, 306–313 (2011).ADS 
    Article 

    Google Scholar 
    Bailey-Brock, J. H. Ecology of the tube‐building polychaete Diopatra leuckarti Kinberg, 1865 (Onuphidae) in Hawaii: community structure, and sediment stabilizing properties. Zool. J. Linn. Soc. 80, 191–199 (1984).Article 

    Google Scholar 
    Barberá, C. et al. Trophic ecology of the sea urchin Spatangus purpureus elucidated from gonad fatty acids composition analysis. Mar. Environ. Res. 71, 235–246 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barry, P. J. Two new species of Adontorhina Berry, 1947 (Bivalvia: Thyasiridae) from the Porcupine Bank, off the west coast of Ireland. Zootaxa 1526, 37–49 (2007).Article 

    Google Scholar 
    Bartolomaeus, T. Head kidneys in hatchlings of Scoloplos armiger (Annelida: Orbiniida): implications for the occurrence of protonephridia in lecithotrophic larvae. J. Mar. Biol. Assoc. UK 78, 183–192 (1998).Article 

    Google Scholar 
    Bass, N. R. & Brafield, A. E. The life-cycle of the polychaete Nereis virens. J. Mar. Biol. Assoc. UK 52, 701–726 (1972).Article 

    Google Scholar 
    Beiras, R., Pérez-Camacho, A. & Albentosa, M. Influence of food concentration on energy balance and growth performance of Venerupis pullastra seed reared in an open-flow system. Aquaculture 116, 353–365 (1993).Article 

    Google Scholar 
    Bely, A. E. Distribution of segment regeneration ability in the Annelida. Integr. Comp. Biol. 46, 508–518 (2006).PubMed 
    Article 

    Google Scholar 
    Beninger, P. G. & Lucas, A. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams & Reeve). J. Exp. Mar. Bio. Ecol. 79, 19–37 (1984).CAS 
    Article 

    Google Scholar 
    Billett, D. S. B. The Ecology of Deep-Sea Holothurians. University of Southampton, Oceanography, Doctoral Thesis, 408pp (1988).Birkeland, C. Interactions between a sea pen and seven of its predators. Ecol. Monogr. 44, 211–232 (2013).Article 

    Google Scholar 
    Blake, J. A. & Arnofsky, P. L. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402, 57–106 (1999).Article 

    Google Scholar 
    Bolam, S. G. Population structure and reproductive biology of Pygospio elegans (Polychaeta: Spionidae) on an intertidal sandflat, Firth of Forth, Scotland. Invertebr. Biol. 123, 260–268 (2005).Article 

    Google Scholar 
    Borowsky, B. Behaviours associated with tube-sharing in Microdeutopus gryllotalpa. J. Exp. Mar. Bio. Ecol. 68, 39–51 (1983).Article 

    Google Scholar 
    Bouchet, V. M. P. et al. Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: First insight from axial tomodensitometry. J. Exp. Mar. Bio. Ecol. 371, 20–33 (2009).Article 

    Google Scholar 
    Bouma, H., De Vries, P. P., Duiker, J. M. C., Herman, P. M. J. & Wolff, W. J. Migration of the bivalve Macoma balthica on a highly dynamic tidal flat in the Westerschelde estuary, The Netherlands. Mar. Ecol. Prog. Ser. 224, 157–170 (2001).ADS 
    Article 

    Google Scholar 
    Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Brafield, A. E. & Chapman, G. Gametogenesis and breeding in a natural population of Nereis Virens. J. Mar. Biol. Assoc. UK 47, 619–627 (1967).Article 

    Google Scholar 
    Branch, G. M. & Pringle, A. The impact of the sand prawn Cdianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J. Exp. Mar. Bio. Ecol. 107, 219–235 (1987).Article 

    Google Scholar 
    Bridges, T. S. Reproductive investment in four developmental morphs of Streblospio (Polychaeta: Spionidae). Biol. Bull. 184, 144–152 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. A. Reproduction of Abra nitida (Müller) (Bivalvia) in the southern Skagerrak. Sarsia 67, 55–60 (1982).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Calocaris macandreae [Crustacea: Thalassinidea]. J. Mar. Biol. Assoc. UK 43, 729–747 (1963).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from Different habitats. J. Mar. Biol. Assoc. UK 46, 97–114 (1966).Article 

    Google Scholar 
    Carlier, A. et al. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar. Ecol. Prog. Ser. 397, 125–137 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, H. S. & Hentschel, B. T. Estimating the dispersal potential of polychaete species in the Southern California Bight: implications for designing marine reserves. Mar. Ecol. Prog. Ser. 316, 105–113 (2006).ADS 
    Article 

    Google Scholar 
    Casagranda, C. & Boudouresque, C. F. Abundance, population structure and production of Scrobicularia plana and Abra tenuis (Bivalva, Scrobicularidae) in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Int. Rev. Hydrobiol. 90, 376–391 (2005).Article 

    Google Scholar 
    Chesman, B. S. & Langston, W. J. Intersex in the clam Scrobicularia plana: a sign of endocrine disruption in estuaries? Biol. Lett. 2, 420–422 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christie, G. A comparative study of the reproductive cycles of three Northumberland populations of Chaetozone setosa (Polychaeta: Cirratulidae). J. Mar. Biol. Assoc. UK 65, 239–254 (1985).Article 

    Google Scholar 
    Christie, G. The reproductive biology of a Northumberland population of Sphaerodorum gracilis (Rathke, 1843) (Polychaeta: Sphaerodoridae). Sarsia 69, 117–121 (1984).Article 

    Google Scholar 
    Clark, R. B. Observations on the food of Nephtys. Limnol. Oceanogr. 7, 380–385 (1962).ADS 
    Article 

    Google Scholar 
    Coelho, J. P., Rosa, M., Pereira, E., Duarte, A. & Pardal, M. A. Pattern and annual rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 69, 629–635 (2006).ADS 
    Article 

    Google Scholar 
    Corey, S. The comparative life histories of three Cumacea (Crustacea): Cumopsis goodsiri (Van Beneden), Iphinoe trispinosa (Goodsir), and Pseudocuma longicornis (Bate). Can. J. Zool. 47, 695–704 (1969).Article 

    Google Scholar 
    Crawford, G. I. The fauna of certain estuaries in West England and South Wales, with special reference to the Tanaidacea, Isopoda and Amphipoda. J. Mar. Biol. Assoc. UK 21, 647–662 (1937).Article 

    Google Scholar 
    Culliney, J. L. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol. 29, 245–251 (1975).Article 

    Google Scholar 
    Dales, R. P. The reproduction and larval development of Nereis diversicolor O. F. Műller. J. Mar. Biol. Assoc. UK 29, 321–360 (1950).Article 

    Google Scholar 
    Dashtgard, S. E., Gingras, M. K. & Pemberton, S. G. Grain-size controls on the occurrence of bioturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 224–243 (2008).Article 

    Google Scholar 
    Dauer, D. M. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26, 249–257 (1993).Article 

    Google Scholar 
    Dauer, D. M. Functional morphology and feeding behavior of Scolelepis squamata (Polychaeta: Spionidae). Mar. Biol. 77, 279–285 (1983).Article 

    Google Scholar 
    Dauer, D. M., Mahon, H. K. & Sarda, R. Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae). Hydrobiologia 496, 207–213 (2003).Article 

    Google Scholar 
    Dauvin, J. C. Impact of Amoco Cadiz oil spill on the muddy fine sand Abra alba – Melinna palmata community from the Bay of Morlaix. Estuar. Coast. Shelf Sci. 14 (2018).Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and A. prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Dauvin, J.-C. Biologie, dynamique et production d’une population d’ Abra alba (Wood) (mollusque-bivalve) de la baie de Morlaix (Manche occidentiale). J. Exp. Mar. Bio. Ecol. 97, 151–180 (1986).Article 

    Google Scholar 
    Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and Abra prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Davis, W. R. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. Exp. Mar. Bio. Ecol. 171, 187–200 (1993).Article 

    Google Scholar 
    Dean, D. Migration of the sandworm Nereis virens during winter nights. Mar. Biol. 45, 165–173 (1978).Article 

    Google Scholar 
    Dekker, R. & Beukema, J. Relations of summer and winter temperatures with dynamics and growth of two bivalves, Tellina tenuis and Abra tenuis, on the northern edge of their intertidal distribution. J. Sea Res. 42, 207–220 (1999).ADS 
    Article 

    Google Scholar 
    Delgado, L., Guerao, G. & Ribera, C. The Gammaridea (Amphipoda) fauna in a Mediterranean coastal lagoon: considerations on population structure and reproductive biology. Crustaceana 82, 191–218 (2009).Article 

    Google Scholar 
    Dewarumez, J.-M. Etude biologique d’ Abra alba (Wood) Mollusque lamellibranche du littoral français de la mer du Nord. Université des Sciences et Techniques de Lille, Doctoral Thesis, 139pp (1979).Dinneen, P. Peresiella clymenoides Harmelin, 1968; A capitellid polychaete new to Ireland and Great Britain. Irish Nat. J. 20, 471–475 (2019).
    Google Scholar 
    Dobbs, F. C. & Scholly, T. A. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29, 165–176 (1986).ADS 
    Article 

    Google Scholar 
    Domingues, P. M., Turk, P. E., Andrade, J. P. & Lee, P. G. Culture of the mysid, Mysidopsis almyra (Bowman), (Crustacea: Mysidacea) in a static water system: effects of density and temperature on production, survival and growth. Aquac. Res. 30, 135–143 (1999).Article 

    Google Scholar 
    Drinan, E. M. & Rodger, H. D. An occurrence of Gnathia sp., ectoparasitic isopods, on caged Atlantic salmon. Bull. Eur. Assoc. Fish Pathol. 10, 141–142 (1990).
    Google Scholar 
    Dufour, S. C., White, C., Desrosiers, G. & Juniper, S. K. Structure and composition of the consolidated mud tube of Maldane sarsi (Polychaeta: Maldanidae). Estuar. Coast. Shelf Sci. 78, 360–368 (2008).ADS 
    Article 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. B Mol. Dev. Evol. 314, 382–389 (2010).PubMed 
    Article 

    Google Scholar 
    Duport, E., Stora, G., Tremblay, P. & Gilbert, F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776. J. Exp. Mar. Bio. Ecol. 336, 33–41 (2006).Article 

    Google Scholar 
    Eckert, G. L. Effects of the planktonic period on marine population fluctuations. Ecology 84, 372–383 (2003).Article 

    Google Scholar 
    Esselink, P. & Zwarts, L. Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar. Ecol. Prog. Ser. 56, 243–254 (1989).ADS 
    Article 

    Google Scholar 
    Farke, H. & Berghuis, E. M. Spawning, larval development and migration behaviour of Arenicola marina in the laboratory. Netherlands. J. Sea Res. 13, 512–528 (1979).
    Google Scholar 
    Fauchald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. an Annu. Rev. 17, 193–284 (1979).
    Google Scholar 
    Fauchald, K. Life diagram patterns in benthic polychaetes. Proc. Biol. Soc. Washingt. 96, 160–177 (1983).
    Google Scholar 
    Fetzer, I. & Arntz, W. Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water. Mar. Ecol. Prog. Ser. 356, 189–202 (2008).ADS 
    Article 

    Google Scholar 
    Fish, J. D. & Mills, A. The Reproductive Biology of Corophium Volutator and C. Arenarium (Crustacea: Amphipoda). J. Mar. Biol. Assoc. UK 59, 355–368 (1979).Article 

    Google Scholar 
    Fish, S. The biology of Eurydice Pulchra [Crustacea: Isopoda]. J. Mar. Biol. Assoc. UK 50, 753–768 (1970).Article 

    Google Scholar 
    Francesch, O. & Lopez-Jamar, E. Dynamics, growth and production of Abra alba and Abra nitida from La Coruna, NW of Spain. Bol. del Inst. Esp. Oceanogr. 7, 101–113 (1991).
    Google Scholar 
    François, F., Gerino, M., Stora, G., Durbec, J. P. & Poggiale, J. C. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: Modeling and application with the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 229, 127–136 (2002).ADS 
    Article 

    Google Scholar 
    Frid, C. L. J. Foraging behaviour of the spiny starfish Marthasterias glacialis in Lough Ine, Co. Cork. Mar. Behav. Physiol. 19, 227–239 (1992).Article 

    Google Scholar 
    Funder, S., Demidov, I. & Yelovicheva, Y. Hydrography and mollusc faunas of the Baltic and the White Sea–North Sea seaway in the Eemian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 275–304 (2002).Article 

    Google Scholar 
    Gemmill, J. F. I. The development of the starfish Solaster endeca Forbes. Trans. Zool. Soc. London 20, 1–71 (1912).Article 

    Google Scholar 
    Gendron, L. Determination of the size at sexual maturity of the waved whelk Buccinum undatum Linnaeus, 1758, in the Gulf of St. Lawrence, as a basis for the establishment of a minimum catchable size. J. Shellfish Res. 11, 1–7 (1992).
    Google Scholar 
    Gentil, F., Dauvin, J. C. & Ménard, F. Reproductive biology of the polychaete Owenia fusiformis Delle Chiaje in the Bay of Seine (eastern English Channel). J. Exp. Mar. Bio. Ecol. 142, 13–23 (1990).Article 

    Google Scholar 
    Gerlach, S. A., Ekstrøm, D. K. & Eckardt, P. B. Filter feeding in the hermit crab, Pagurus bernhardus. Oecologia 24, 257–264 (1976).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghertsos, K., Luczak, C., Dewarumez, J.-M. & Dauvin, J.-C. Influence of spatial scales of observation on temporal change in diversity and trophic structure of fine-sand communities from the English Channel and the southern North Sea. ICES J. Mar. Sci. 57, 1481–1487 (2000).Article 

    Google Scholar 
    Giangrande, A. Polychaete reproductive patterns, life cycle and life histories: an overview. Oceanogr. Mar. Biol. An Annu. Rev. 35, 323–386 (1997).
    Google Scholar 
    Giangrande, A., Montresor, M., Cavallo, A. & Licciano, M. Influence of Naineris laevigata (Polychaeta: Orbiniidae) on vertical grain size distribution, and dinoflagellate resting stages in the sediment. J. Sea Res. 47, 97–108 (2002).ADS 
    Article 

    Google Scholar 
    Godbold, J. & Solan, M. Relative importance of biodiversity and the abiotic environment in mediating an ecosystem process. Mar. Ecol. Prog. Ser. 396, 273–282 (2009).ADS 
    Article 

    Google Scholar 
    Gordillo, S. Puzzling distribution of the fossil and living genus Hiatella (Bivalvia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 231–249 (2001).Article 

    Google Scholar 
    Gotto, D. M. & Gotto, R. V. Labidoplax media Oestergren: A sea-cucumber new to British and Irish waters, with observational notes. Irish Nat. J. 17, 250–252 (1972).
    Google Scholar 
    Gray, A. J. S., Waldichuk, M., Newton, A. J., Berry, R. J. & Holden, A. V. Pollution-induced changes in populations [and discussion]. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 286, 545–561 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Greathead, C. F., Donnan, D. W., Mair, J. M. & Saunders, G. R. The sea pens Virgularia mirabilis, Pennatula phosphorea and Funiculina quadrangularis: distribution and conservation issues in Scottish waters. J. Mar. Biol. Assoc. UK 87, 1095–1103 (2007).Article 

    Google Scholar 
    Green, J. Activities of the siphons of Scrobicularia plana (Da Costa). J. Molluscan Stud. 37, 339–341 (1967).
    Google Scholar 
    Guerra-Garcia, J. M., Corzo, J., Garcia-Asencio, I. & Garcia-Gómez, J. C. Seasonal fluctuations of Phtisica marina Slabber (Crustacea: Amphipoda: Caprellidea) in the estuarine zone of southwest Spain. Pol. Arch. Hydrobiol. 47, 527–531 (2000).
    Google Scholar 
    Gusso, C. C., Gravina, M. F. & Maggiore, F. R. Temporal variations in soft bottom benthic communities in central Tyrrhenian Sea (Italy). Arch. di Oceanogr. e Limnol. 22, 175–182 (2001).
    Google Scholar 
    Haaland, B. & Schram, T. A. Larval development and metamorphosis of Gyptis rosea (Hesionidae, Polychaeta). Sarsia 67, 107–118 (1982).Article 

    Google Scholar 
    Hale, R., Mavrogordato, M. N., Tolhurst, T. J. & Solan, M. Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors. Sci. Rep. 4, 6463 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammond, R. A. The burrowing of Priapulus caudatus. J. Zool. Soc. Lond. 162, 469–480 (1970).Article 

    Google Scholar 
    Hansen, B. Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen) (Capitellidae). J. Exp. Mar. Bio. Ecol. 166, 273–288 (1993).Article 

    Google Scholar 
    Harley, M. B. Occurence of a filter-feeding mechanism in the polychaete Nereis diversicolor. Nature 165, 734–735 (1950).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartnoll, R. G. The Biology of the burrowing crab. Corystes cassivelaunus. Bijdr. Tot Dierkd. 42, 139–155 (1972).Article 

    Google Scholar 
    Haszprunar, G. The fine morphology of the osphradial sense organs of the Mollusca. IV. Caudofoveata and Solenogastres. Philos. Trans. R. Soc. B Biol. Sci. 315, 63–73 (1987).ADS 

    Google Scholar 
    Hedman, J. E., Gunnarsson, J. S., Samuelsson, G. & Gilbert, F. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J. Exp. Mar. Bio. Ecol. 407, 294–301 (2011).CAS 
    Article 

    Google Scholar 
    Hirasaka, K. Notes on Nucula. J. Mar. Biol. Assoc. UK 14, 629–645 (1927).Article 

    Google Scholar 
    Holmes, S., Dekker, R. & Williams, I. Population dynamics and genetic differentiation in the bivalve mollusc Abra tenuis: Aplanic dispersal. Mar. Ecol. Prog. Ser. 268, 131–140 (2004).ADS 
    Article 

    Google Scholar 
    Howie, D. I. D. The reproductive biology of the lugworm, Arenicola marina L. Fortschr. Zool. 29, 247–263 (1984).
    Google Scholar 
    Hrs-Brenko, M. & Legac, M. Inter- and Intra-species relationships of sessile bivalves on the eastern coast of the Adriatic Sea. Natura Croatica 15, 203–230 (2006).
    Google Scholar 
    Hughes, D. J., Ansell, A. D. & Atkinson, J. A. Sediment bioturbation by the echiuran worm Maxmuelleria Zankesteri (Herdman) and its consequences for radionuclide dispersal in Irish Sea sediments. J. Exp. Mar. Bio. Ecol. 195, 203–220 (1996).Article 

    Google Scholar 
    Hughes, T. G. The processing of food material within the gut of Abra tenuis (Bivalvia: Tellinacea). J. Molluscan Stud. 43, 162–180 (1977).
    Google Scholar 
    Jara-Jara, R., Abad, M., Pazos, A. J., Perez-Paralle, M. L. & Sanchez, J. L. Growth and reproductive patterns in Venerupis pullastra seed reared in waste water effluent from a fish farm in Galicia (N.W. Spain). J. Shellfish Res. 19, 949–956 (2000).
    Google Scholar 
    Jaume, D., Cartes, J. E. & Sorbe, J. C. A new species of Bathymedon Sars, 1892 (Amphipoda: Oedicerotidae) from the western Mediterranean bathyal floor. Sci. Mar. 62, 341–356 (1998).Article 

    Google Scholar 
    Jeffery, W. R. The tunicate Ciona: a model system for understanding the relationship between regeneration and aging. Invertebr. Reprod. Dev. 59, 17–22 (2015).PubMed 
    Article 

    Google Scholar 
    Jensen, A. C., Humphreys, J., Caldow, R. W. G., Grisley, C. & Dyrynda, P. E. J. Naturalization of the Manila clam (Tapes philippinarum), an alien species, and establishment of a clam fishery within Poole Harbour, Dorset. J. Mar. Biol. Assoc. UK 84, 1069–1073 (2004).Article 

    Google Scholar 
    Jensen, J. N. Increased abundance and growth of the suspension-feeding bivalve Corbula gibba in a shallow part of the eutrophic Limfjord, Denmark. Netherlands. J. Sea Res. 27, 101–108 (1990).
    Google Scholar 
    Jensen, J. N. Recruitment, growth and mortality of juvenile Corbula gibba and Abra alba in the Limfjord, Denmark. The Baltic Sea environment: History, eutrophication, recruitment and toxicology. Kieler Meeresforschungen (Sonderheft) 6, 357–365 (1988).
    Google Scholar 
    Jensen, K. The presence of the bivalve Cerastoderma edule affects migration, survival and reproduction of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 25, 269–277 (1985).ADS 
    Article 

    Google Scholar 
    Johannessen, O. H. Length and weight relationships and the potential production of the bivalve Venerupis pullastra (Montagu) on a sheltered beach in Western Norway. Sarsia 53, 41–48 (1973).Article 

    Google Scholar 
    Johannessen, O. H. Population structure and individual growth of Venerupis pullastra (Montagu) (Lamellibranchia). Sarsia 52, 97–116 (1973).Article 

    Google Scholar 
    Johnson, K. B. & Brink, L. A. Predation on bivalve veligers by polychaete larvae. Biol. Bull. 194, 297–303 (2020).Article 

    Google Scholar 
    Jones, D. A. & Naylor, E. The swimming rhythm of the sand beach isopod Eurydice pulchra. J. Exp. Mar. Bio. Ecol. 4, 188–199 (1970).Article 

    Google Scholar 
    Jönsson, B. J. et al. Does the influence of the epibenthic predator Crangon L. (brown shrimp) extend to sediment microalgae and bacteria? Netherlands. J. Sea Res. 31, 83–94 (1993).ADS 

    Google Scholar 
    Josefson, A. B. Regulation of population size, growth, and production of a deposit-feeding bivalve: A long-term field study of three deep-water populations off the swedish west coast. J. Exp. Mar. Bio. Ecol. 59, 125–150 (1982).Article 

    Google Scholar 
    Kai, R. A. Biology and life cycle of Nutatoluna borealis Lilj. 1851, a scavenging isopod from the continental slope of the Mediterranean. Deep. Res. I 44, 2045–2067 (1998).
    Google Scholar 
    Kaïm-Malka, R. A. Biology and life cycle of Tmetonyx similis (G. O. Sars, 1891) (Amphipoda, Lysianassidae), a scavenging amphipod from the continental slope of the Mediterranean. J. Nat. Hist. 39, 3163–3186 (2005).Article 

    Google Scholar 
    Kaiser, M. J., Moore, P. G., Kaiser, M. J. & Moore, P. G. Obligate marine scavengers: do they exist? J. Nat. Hist. 33, 475–481 (1999).Article 

    Google Scholar 
    Kay, M. C. & Emlet, R. B. Laboratory spawning, larval development, and metamorphosis of the limpets Lottia digitalis and Lottia asmi (Patellogastropoda, Lottiidae). Invertebr. Biol. 121, 11–24 (2002).Article 

    Google Scholar 
    King, P. E. & Case, R. M. Sea spiders (Pycnogonids) in and around Milford Haven (South West Wales). F. Stud. 6, 517–529 (1986).
    Google Scholar 
    Kongsrud, J. A. & Rapp, H. T. Nicomache (Loxochona) lokii sp. nov. (Annelida: Polychaeta: Maldanidae) from the Loki’s Castle vent field: An important structure builder in an Arctic vent system. Polar Biol. 35, 161–170 (2012).Article 

    Google Scholar 
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).ADS 
    Article 

    Google Scholar 
    Kristensen, E. Life cycle, growth and production in estuarine populations of the polychaetes Nereis virens and N. diversicolor. Holarct. Ecol. 7, 249–256 (1984).
    Google Scholar 
    Larsen, J. B., Frischer, M. E., Ockelmann, K. W., Rasmussen, L. J. & Hansen, B. W. Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. J. Plankton Res. 29, 423–436 (2007).CAS 
    Article 

    Google Scholar 
    Laudien, J., Herrmann, M. & Arntz, W. E. Soft bottom community structure and diversity in Kongsfjorden (Svalbard). In C. Wiencke (ed.): The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research at the Koldewey Station in the years 1991–2003. Berichte zur Polar- und Meeresforschung 492, 91–102 (1991).
    Google Scholar 
    Lavesque, N. et al. Heteromysis (Heteromysis) microps (Crustacea, Mysidae), a commensal species for Upogebia pusilla (Crustacea, Upogebiidae) in Arcachon Bay (NE Atlantic Ocean). Mar. Biodivers. Rec. 9, 14 (2016).Article 

    Google Scholar 
    Le Pape, O. et al. Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. J. Sea Res. 57, 126–136 (2007).Article 

    Google Scholar 
    Lebour, M. V. Notes on the breeding of some lamellibranchs from Plymouth and their larvae. J. Mar. Biol. Assoc. UK 23, 119 (1938).Article 

    Google Scholar 
    Levin, L. A. & Creed, E. L. Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 103–113 (1986).
    Google Scholar 
    Levin, L. A. Multiple patterns of development in Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biol. Bull. 166, 494–508 (1984).Article 

    Google Scholar 
    Levin, L. A., Caswell, H., DePatra, K. D. & Creed, E. L. Demographic consequences of larval development mode: planktotrophy vs. lecithotrophy in Streblospio benedicti. Ecology 68, 1877–1886 (1987).PubMed 
    Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of Deposit-Feeding Animals in Marine Sediments. Q. Rev. Biol. 62, 235–260 (1987).Article 

    Google Scholar 
    López-Jamar, E., González, G. & Mejuto, J. Temporal changes of community structure and biomass in two subtidal macroinfaunal assemblages in La Coruña bay, NW Spain. Hydrobiol. 142, 137–150 (1986).Article 

    Google Scholar 
    Maire, O., Duchêne, J., Rosenberg, R., de Mendonça, J. & Grémare, A. Effects of food availability on sediment reworking in Abra ovata and A. nitida. Mar. Ecol. Prog. Ser. 319, 135–153 (2006).ADS 
    Article 

    Google Scholar 
    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).Article 

    Google Scholar 
    Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. UK 92, 1563–1577 (2012).Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Growth, morphometry and biochemical composition of the wood boring molluscs Teredo navalis L., Bankia gouldi (Bartsch), and Nototeredo knoxi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 229–251 (1985).CAS 
    Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 211–228 (1985).CAS 
    Article 

    Google Scholar 
    Maranhão, P. & Marques, J. C. The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae). Acta Oecologica 24, 5–13 (2003).ADS 
    Article 

    Google Scholar 
    Martin, D. & Britayev, T. A. Symbiotic Polychaetes: Review of known species. Oceanogr. Mar. Biol. an Annu. Rev. 36, 217–340 (1998).
    Google Scholar 
    Mattson, S. & Cedhagen, T. Aspects of the behaviour and ecology of Dyopedos monacanthus (Metzger) and D. porrectus Bate, with comparative notes on Dulichia tuberculata Boeck (Crustacea: Amphipoda: Podoceridae). J. Exp. Mar. Bio. Ecol. 127, 253–272 (1989).Article 

    Google Scholar 
    McHugh, D. A comparative study of reproduction and development in the polychaete family Terebellidae. Biol. Bull. 185, 153–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meadows, P. S. & Reid, A. The behaviour of Corophiurn volutator (Crustacea: Amphipoda). J. Zool. Soc. Lond. 150, 387–399 (1966).Article 

    Google Scholar 
    Méndez, N. Non-pelagic development of Capitella capitata (Polychaeta) in the littoral zone of Barcelona. Sci. Mar. 59, 95–101 (1995).
    Google Scholar 
    Mercier, A., Doncaster, E. J. & Hamel, J. F. Contrasting predation rates on planktotrophic and lecithotrophic propagules by marine benthic invertebrates. J. Exp. Mar. Bio. Ecol. 449, 100–110 (2013).Article 

    Google Scholar 
    Mermillod-Blondin, F., Bernard, C., Michaud, E., Desrosiers, G. & Mermillod-blondin, F. The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J. Exp. Mar. Bio. Ecol. 326, 77–88 (2005).Article 
    CAS 

    Google Scholar 
    Mermillod-Blondin, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K. & Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Mar. Ecol. Prog. Ser. 36, 271–284 (2004).
    Google Scholar 
    Merz, R. A. & Woodin, S. A. Polychaete chaetae: Function, fossils, and phylogeny. Integr. Comp. Biol. 46, 481–496 (2006).PubMed 
    Article 

    Google Scholar 
    Messing, C. G. Postmarsupial development and growth of Pagurapseudes largoensis McSweeny (Crustacea, Tanaidacea). J. Crustac. Biol. 3, 380–408 (2020).Article 

    Google Scholar 
    Metaxatos, A. Population dynamics of the venerid bivalve Callista chione (L.) in a coastal area of the eastern Mediterranean. J. Sea Res. 52, 293–305 (2004).ADS 
    Article 

    Google Scholar 
    Meyer, K. S. et al. Hyalinoecia artifex: Field notes on a charismatic and abundant epifaunal polychaete on the US Atlantic continental margin. Invertebr. Biol. 135, 211–224 (2016).Article 

    Google Scholar 
    Moment, G. B. Simultaneous anterior and posterior regeneration and other growth phenomena in Maldanid polychaetes. J. Exp. Zool. 117, 1–13 (1951).Article 

    Google Scholar 
    Moore, P. G. & Wong, Y. M. Orchomene nanus (Kroyer) (Amphipoda: Lysianassoidea), a selective scavenger of dead crabs: feeding preferences in the field. J. Exp. Mar. Bio. Ecol. 192, 35–45 (1995).Article 

    Google Scholar 
    Moore, P. G. Observations on the behaviour of the scavenging lysianassoid Orchomene zschaui (Crustacea: Amphipoda) from South Georgia (South Atlantic). Mar. Ecol. Prog. Ser. 113, 29–38 (1994).ADS 
    Article 

    Google Scholar 
    Moore, P. G. The larger Crustacea associated with holdfasts of kelp (Laminaria hyperborea) in north-east Britain. Cah. Biol. Mar. 14, 493–518 (1973).
    Google Scholar 
    Moreira, J., Gestoso, L. & Troncoso, J. S. Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain). Mar. Ecol. 29, 12–18 (2008).ADS 
    Article 

    Google Scholar 
    Moreira, P. S. Food and feeding behavior of Arcturella sawayae Moreira, 1973 (Crustacea, Isopoda, Valvifera). Bol. do Zool. e Biol. Mar. n.s. 30, 217–232 (1973).Article 

    Google Scholar 
    Mori, M., Abello, P., National, S., Marco, M. & Ranieri, S. De. Population characteristics of the crab Monodaeus couchii (Crustacea, Brachyura, Xanthidae) in the Western Mediterranean. Misc. Zool. 18, 77–88 (1995).
    Google Scholar 
    Morton, B. The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Acores: survival at the edge. J. Mar. Biol. Assoc. UK 96, 1347–1361 (2016).Article 

    Google Scholar 
    Morton, J. E. The habitats and feeding organs of Dentalium entalis. J. Mar. Biol. Assoc. UK 38, 225–238 (1959).Article 

    Google Scholar 
    Morvan, C. & Ansell, A. D. Stereological methods applied to reproductive cycle of Tapes rhomboides. Mar. Biol. 97, 355–364 (1988).Article 

    Google Scholar 
    Morys, C., Powilleit, M. & Forster, S. Bioturbation in relation to the depth distribution of macrozoobenthos in the southwestern Baltic Sea. Mar. Ecol. Prog. Ser. 579, 19–36 (2017).ADS 
    Article 

    Google Scholar 
    Moura, P. et al. Reproductive cycle of the Manila clam (Ruditapes philippinarum): an intensively harvested invasive species in the Tagus Estuary (Portugal). J. Mar. Biol. Assoc. UK 98, 1645–1657 (2018).Article 

    Google Scholar 
    Munro, L. Determining the reproductive cycle of Eunicella verrucosa. Report Ref: RR Report 07/2004 ETR 12. (CCW, 2004).Murina, G. V. Ecology of Sipuncula. Mar. Ecol. Prog. Ser. 17, 1–7 (1984).ADS 
    Article 

    Google Scholar 
    Newell, G. E. The life-history of Clymenella tortuata (Leidy). (Polychaeta). Proc. Zool. Soc. Lond. 121, 561–586 (1951).Article 

    Google Scholar 
    Nickel, L. A. & Atkinson, R. J. A. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar. Ecol. Prog. Ser. 128, 181–197 (1995).ADS 
    Article 

    Google Scholar 
    Nicol, E. A. T. The feeding habits of the Galatheidea. J. Mar. Biol. Assoc. UK 18, 87–106 (1932).Article 

    Google Scholar 
    Nicolaidou, A. Life history and productivity of Pectinaria koreni Malmgren (polychaeta). Estuar. Coast. Shelf Sci. 17, 31–43 (1983).ADS 
    Article 

    Google Scholar 
    Nicolaisen, W. & Kanneworff, E. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia 6, 231–250 (1969).Article 

    Google Scholar 
    Nott, P. Reproduction in Abra alba (Wood) and Abra tenuis (Montagu) (Tellinacea: Scrobiculariidae). J. Mar. Biol. Assoc. UK 60, 465–479 (1980).Article 

    Google Scholar 
    Obenat, S., Spivak, E. & Garrido, L. Life history and reproductive biology of the invasive amphipod Melita palmata (Amphipoda: Melitidae) in the Mar Chiquita coastal lagoon, Argentina. J. Mar. Biol. Assoc. UK 86, 1381–1387 (2006).Article 

    Google Scholar 
    Ockelmann, K. W. & Muus, K. The biology, ecology and behaviour of the bivalve Mysella bidentata (Montagu). Ophelia 17, 1–93 (1978).Article 

    Google Scholar 
    Ockelmann, K. W. & Vahl, O. On the biology of the polychaete Glycera alba, especially its burrowing and feeding. Ophelia 8, 275–294 (1970).Article 

    Google Scholar 
    Oldfield, E. Observations on the anatomy and mode of life of Lasaea rubra (Mantagu) and Turtonia minuta (Fabricus). J. Molluscan Stud. 31, 226–249 (1955).Article 

    Google Scholar 
    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: Probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).Article 

    Google Scholar 
    Orvain, F. A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana. Mar. Ecol. Prog. Ser. 286, 43–56 (2005).ADS 
    Article 

    Google Scholar 
    Palmero, A., Martínez, A., Brito, M. & Núñez, J. Acoetidae (Annelida, Polychaeta) from the Iberian Peninsula, Madeira and Canary islands, with description of a new species. Arquipélago. Life Mar. Sci. 25, 49–62 (2008).
    Google Scholar 
    Pearce, J. B. & Thorson, G. The feeding and reproductive biology of the red whelk, Neptunea antiqua (L.) (Gastropoda, Prosobranchia). Ophelia 4, 277–314 (1967).Article 

    Google Scholar 
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. an Annu. Rev. 16, 229–311 (1977).
    Google Scholar 
    Pechenik, J. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).ADS 
    Article 

    Google Scholar 
    Peharda, M. et al. Age, growth and population structure of Acanthocardia tuberculata (Bivalvia: Cardiidae) in the eastern Adriatic Sea. Sci. Mar. 76, 59–66 (2012).Article 

    Google Scholar 
    Pekkarinen, M. Regeneration of the inhalant siphon and siphonal sense organs of brackish-water (Baltic Sea) Macoma balthica (Lamellibranchiata, Tellinacea). Ann. Zool. Fennici 21, 29–40 (1984).
    Google Scholar 
    Perez Camacho, A. Biology of Venerupis pullastra (Montagu, 1803) and Venerupis decussata (Linne, 1767) (Mollusca, Bivalvia), with special reference to the determinant factors of production. Bol. del Inst. Esp. Oceanogr. 5, 43–76 (1980).
    Google Scholar 
    Petersen, M. E. Reproduction and development in Cirratulidae (Annelida: Polychaeta). Hydrobiologia 402, 107–128 (1999).Article 

    Google Scholar 
    Pettibone, M. H. Endoparasitic polychaetous annelids of the family Arabellidae with descriptions of new species. Biol. Bull. 113, 170–187 (1957).Article 

    Google Scholar 
    Phillips, N. E. & Pernet, B. Capture of large particles by suspension-feeding scaleworm larvae (Polychaeta: Polynoidae). Biol. Bull. 191, 199–208 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinn, E. H., Atkinson, R. J. A. & Rogerson, A. The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellata (Crustacea: Decapoda: Thalassinidea). Ophelia 48, 211–223 (1998).Article 

    Google Scholar 
    Pinn, E. H., James, R., Atkinson, A. & Rogerson, A. Particle size selectivity and resource partitioning in five species of Thalassinidea (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 169, 243–250 (1998).ADS 
    Article 

    Google Scholar 
    Pinn, E. H., Richardson, C. A., Thompson, R. C. & Hawkins, S. J. Burrow morphology, biometry, age and growth of piddocks (Mollusca: Bivalvia: Pholadidae) on the south coast of England. Mar. Biol. 147, 943–953 (2005).Article 

    Google Scholar 
    Piot, A., Rochon, A., Stora, G. & Desrosiers, G. Experimental study on the influence of bioturbation performed by Nephtys caeca (Fabricius) and Nereis virens (Sars) annelidae on the distribution of dinoflagellate cysts in the sediment. J. Exp. Mar. Bio. Ecol. 359, 92–101 (2008).Article 

    Google Scholar 
    Ponurovskii, S. K. Population structure and growth of the Japanese littleneck clam Ruditapes philippinarum in Amursky Bay, Sea of Japan. Russ. J. Mar. Biol. 34, 329–332 (2008).
    Google Scholar 
    Ponurovsky, S. K. & Yakovlev, Y. M. The reproductive biology of the Japanese littleneck Tapes phillipinarum. J. Shellfish Res. 11, 265–277 (1992).
    Google Scholar 
    Prato, E. & Biandolino, F. Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy). Sci. Mar. 70, 355–362 (2006).Article 

    Google Scholar 
    Purchon, R. D. The structure and function of the British Pholadidae (Rock-Boring Lamellibranchia). Proc. Zool. Soc. Lond. 124, 859–911 (2010).Article 

    Google Scholar 
    Qian, P. Y. & Chia, F. S. Effects of diet type on the demographics of Capitella sp. (Annelida: Polychaeta): lecithotrophic development vs. planktotrophic development. J. Exp. Mar. Bio. Ecol. 157, 159–179 (1992).Article 

    Google Scholar 
    Quayle, D. B. The Rate of Growth of Venerupis pullastra (Montagu) at Millport, Scotland. Proc. R. Soc. Edinburgh. Sect. B. Biol. 64, 384–406 (1952).Article 

    Google Scholar 
    Raffaelli, D., Emmerson, M., Solan, M., Biles, C. & Paterson, D. Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. J. Sea Res. 49, 133–141 (2003).ADS 
    Article 

    Google Scholar 
    Rainer, S. F. Population dynamics and production of the bivalve Abra alba and implications for fisheries production. Mar. Biol. 85, 253–262 (1985).Article 

    Google Scholar 
    Raleigh, J. & Keegan, B. F. The gametogenic cycle of Scrobicularia plana (Mollusca: Bivalvia) in Mweeloon Bay (Galway, west coast of Ireland). J. Mar. Biol. Assoc. UK 86, 1157–1162 (2006).Article 

    Google Scholar 
    Ramsay, K. & Holt, R. H. F. Mantis shrimps Rissoides desmaresti in Tremadog Bay, North Wales. J. Mar. Biol. Assoc. UK 81, 695–696 (2001).Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. A field study of intraspecific competition for food in hermit crabs (Pagurus bernhardus). Estuar. Coast. Shelf Sci. 44, 213–220 (1997).ADS 
    Article 

    Google Scholar 
    Rasmussen, E. Systematics and ecology of the Isefjord marine fauna (Denmark): With a survey of the eelgrass (zostera) vegetation and its communities. Ophelia 11, 1–507 (1973).Article 

    Google Scholar 
    Rees, H.L. & Dare, P. J. Sources of mortality and associated life-cycle traits of selected benthic species: a review. Fisheries Research Data Report, no. 33. (MAFF, 1993).Retraubun, A. S. W., Dawson, M. & Evans, S. M. The role of the burrow funnel in feeding processes in the lugworm Arenicola marina (L.). J. Exp. Mar. Bio. Ecol. 202, 107–118 (1996).Article 

    Google Scholar 
    Riisgard, H. U. & Banta, G. T. Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu 48, 243–257 (1998).
    Google Scholar 
    Riisgard, H. U. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70, 29–37 (1991).ADS 
    Article 

    Google Scholar 
    Rijken, M. Food and food uptake in Arenicola marina. Netherlands. J. Sea Res. 13, 406–421 (1979).
    Google Scholar 
    Robertson, A. I. The relationship between annual production: Biomass ratios and lifespans for marine macrobenthos. Oecologia 38, 193–202 (1979).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rochette, R., Maltais, M. J., Dill, L. M. & Himmelman, J. H. Interpopulation and context-related differences in responses of a marine gastropod to predation risk. Anim. Behav. 57, 977–987 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrı́guez-Rúa, A., Prado, M., Romero, Z. & Bruzón, M. The gametogenic cycle of Scrobicularia plana (da Costa, 1778) (Mollusc: Bivalve) in Guadalquivir estuary (Cádiz, SW Spain). Aquaculture 217, 157–166 (2003).Article 

    Google Scholar 
    Romero-Wetzel, M. B. Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Mar. Biol. 91, 87–91 (1987).Article 

    Google Scholar 
    Rosenberg, R. Suspension feeding in Abra alba (Mollusca). Sarsi 78, 119–121 (1993).Article 

    Google Scholar 
    Rosenthal, H. Implications of transplantations to aquaculture and ecosystems. Mar. Fish. Rev. 42, 1–4 (1980).
    Google Scholar 
    Rouse, G. W. Polychaetes have evolved feeding larvae numerous times. Bull. Mar. Sci. 67, 391–409 (2000).ADS 

    Google Scholar 
    Rowden, A. A., Jones, M. B. & Morris, A. W. The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont. Shelf Res. 18, 1365–1380 (1998).ADS 
    Article 

    Google Scholar 
    Rumbold, C. E., Obenat, S. M. & Spivak, E. D. Comparison of life history traits of Tanais dulongii (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south-western Atlantic. Helgol. Mar. Res. 69, 231–242 (2015).ADS 
    Article 

    Google Scholar 
    Sánchez, L. R. & Junoy, J. Isopods of the genus Arcturella (Valvifera: Arcturidae) from the expedition FAUNA I (S Spain), with description of a new species. Sci. Mar. 66, 33–41 (2002).Article 

    Google Scholar 
    Sardá, R. & Martin, D. Populations of Streblospio (Polychaeta: Spionidae) in temperature zones: demography and production. J. Mar. Biol. Assoc. UK 73, 769–784 (1993).Article 

    Google Scholar 
    Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O. F. Műller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).Article 

    Google Scholar 
    Schembrii, P. J. Feeding in Ebalia tuberosa (Pennant) (Crustacea: Decapoda: Leucosiidae). J. Exp. Mar. Bio. Ecol. 55, 1–10 (1981).Article 

    Google Scholar 
    Schiaparelli, S., Franci, G., Albertelli, G. & Cattaneo-Vietti, R. A nondestructive method to evaluate population structure and bioerosion activity of the boring bivalve Gastrochaena dubia. J. Coast. Res. 212, 383–386 (2005).Article 

    Google Scholar 
    Schubert, A. & Reise, K. Predatory effects of Nephtys hombergii on other polychaetes in tidal flat sediments. Mar. Ecol. Prog. Ser. 34, 117–124 (1986).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS One 12, e0182753 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shaw, P. W. Effects of asexual reproduction on population structure of Sagartia elegans (Anthozoa: Actiniaria). Hydrobiologia 216/217, 519–525 (1991).Article 

    Google Scholar 
    Shcherbakova, T. D., Tzetlin, A. B., Mardashova, M. V. & Sokolova, O. S. Fine structure of the tubes of Maldanidae (Annelida). J. Mar. Biol. Assoc. UK 97, 1177–1187 (2017).CAS 
    Article 

    Google Scholar 
    Sigurdsson, J. B., Titman, C. W. & Davies, P. A. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262, 386–387 (1976).ADS 
    Article 

    Google Scholar 
    Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M. & Prevedelli, D. Organic enrichment and structure of the macrozoobenthic community in the northern Adriatic Sea in an area facing Adige and Po mouths. ICES J. Mar. Sci. 61, 871–881 (2004).Article 

    Google Scholar 
    Smaldon, G. Population structure and breeding biology of Pisidia longicornis and Porcellana platychelses. Mar. Biol. 179, 171–179 (1972).Article 

    Google Scholar 
    Smith, S. T. The ecology and life history of Retusa obtusa (Montagu) (Gastropoda, Opisthobranchia). Can. J. Zool. 45, 397–405 (1967).Article 

    Google Scholar 
    Snelgrove, P., Grant, J. & Pilditch, C. Habitat selection and adult-larvae interactions in settling larvae of soft-shell clam Mya arenaria. Mar. Ecol. Prog. Ser. 182, 149–159 (1999).ADS 
    Article 

    Google Scholar 
    So, J. J., Uthicke, S., Hamel, J. F. & Mercier, A. Genetic population structure in a commercial marine invertebrate with long-lived lecithotrophic larvae: Cucumaria frondosa (Echinodermata: Holothuroidea). Mar. Biol. 158, 859–870 (2011).Article 

    Google Scholar 
    Sola, J. C. Reproduction, population dynamics, growth and production of Scrobicularia plana da costa (pelecypoda) in the Bidasoa Estuary, Spain. Netherlands. J. Aquat. Ecol. 30, 283–296 (1997).Article 

    Google Scholar 
    Sorlin, T. Floating behaviour in the tellinid bivalve Malcoma balthica (L.). Oecologia 77, 273–277 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Speybroeck, J., Alsteens, L., Vincx, M. & Degraer, S. Understanding the life of a sandy beach polychaete of functional importance – Scolelepis squamata (Polychaeta: Spionidae) on Belgian sandy beaches (northeastern Atlantic, North Sea). Estuar. Coast. Shelf Sci. 74, 109–118 (2007).ADS 
    Article 

    Google Scholar 
    Strathmann, R. R. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978).PubMed 
    Article 

    Google Scholar 
    Sun, Z., Hamel, J. F., Parrish, C. C. & Mercier, A. Complex offspring size effects: Variations across life stages and between species. Ecol. Evol. 5, 1117–1129 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taylor, A. C. & Moore, P. G. The burrows and physiological adaptations to a burrowing lifestyle of Natatolana borealis (Isopoda: Cirolanidae). Mar. Biol. 123, 805–814 (1995).Article 

    Google Scholar 
    Taylor, A. C. Branchial ventilation in the burrowing crab, Atelecyclus rotundatus. J. Mar. Biol. Assoc. UK 64, 7–20 (1984).Article 

    Google Scholar 
    Thiel, M. Duration of extended parental care in marine amphipods. J. Crustac. Biol. 19, 60–71 (1999).Article 

    Google Scholar 
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tirado, C., Salas, C. & Márquez, I. Reproduction of Venus verrucosa L., 1758 (Bivalvia: Veneridae) in the littoral of Málaga (southern Spain). Fish. Res. 63, 437–445 (2003).Article 

    Google Scholar 
    Trevor, J. H. The burrowing of Nereis diversicolor O.F. Müller, together with some observations on Arenicola marina (L.) (Annelida: Polychaeta). J. Exp. Mar. Bio. Ecol. 30, 129–145 (1977).Article 

    Google Scholar 
    Trueman, E. R. & Brown, A. C. The burrowing habit of marine gastropods. Adv. Mar. Biol. 28, 389–431 (1992).Article 

    Google Scholar 
    Trueman, E. R. & Foster‐Smith, R. L. The mechanism of burrowing of Sipunculus nudus. J. Zool. Soc. Lond. 179, 373–386 (1976).Article 

    Google Scholar 
    Urban-Malinga, B., Drgas, A., Gromisz, S. & Barnes, N. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Mar. Biol. 161, 195–212 (2014).PubMed 
    Article 

    Google Scholar 
    Urrutia, M. B., Navarro, E., Ibarrola, I. & Iglesias, J. I. P. Preingestive selection processes in the cockle Cerastoderma edule: mucus production related to rejection of pseudofaeces. Mar. Ecol. Prog. Ser. 209, 177–187 (2001).ADS 
    Article 

    Google Scholar 
    Vader, W. & Krapp-Schickel. Redescription and biology of Stenothoe brevicornis Sars (Amphipoda: Crustacea), an obligate associate of the sea anemone Actinostola callosa (Verrill). J. Nat. Hist. 30, 51–66 (1996).Article 

    Google Scholar 
    Van Colen, C. et al. Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification. Nat. Clim. Chang. 10, 162–166 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Vaughn, D. & Allen, J. D. The peril of the plankton. Integr. Comp. Biol. 50, 552–570 (2010).PubMed 
    Article 

    Google Scholar 
    Venema, S. C. & Creutzberg, F. Seasonal migration of the swimming crab Macropipus holsatus in an estuarine area controlled by tidal streams. Netherlands. J. Sea Res. 7, 94–102 (1973).
    Google Scholar 
    Wanamaker, A. D. et al. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50, 399–412 (2008).Article 

    Google Scholar 
    Warren, L. M., Hutchings, P. A. & Doyle, S. A revision of the genus Mediomastus Hartman, 1944 (Polychaeta: Capitellidae). Rec. Aust. Museum 46, 227–256 (1994).Article 

    Google Scholar 
    Warwick, R. M. The partitioning of secondary production among species in benthic communities. Netherlands J. Sea Res. 16, 1–17 (1982).ADS 
    Article 

    Google Scholar 
    Warwick, R. M. & George, C. L. Annual macro-fauna production in an Abra community. in Industrialised embayments and their environmental problems: a case study of Swansea Bay (eds. Collins, M. B., Banner, F. T., Tyler, P. A. & James, A. E.) 517–538 (Pergamon Press, 1980).Weinberg, S. & Weinberg, F. The life cycle of a Gorgonian: Eunicella Singularis (Esper, 1794). Bijdr. tot Dierkd. 48, 127–137 (1979).Article 

    Google Scholar 
    Wennberg, S. A., Janssen, R. & Budd, G. E. Hatching and earliest larval stages of the priapulid worm Priapulus caudatus. Invertebr. Biol. 128, 157–171 (2009).Article 

    Google Scholar 
    Whitlatch, R. B. Food-Resource partitioning in the deposit feeding polychaete Pectinaria gouldii. Biol. Bull. 147, 227–235 (1974).Article 

    Google Scholar 
    Widdicombe, S. et al. Importance of bioturbators for biodiversity maintenance: Indirect effects of fishing disturbance. Mar. Ecol. Prog. Ser. 275, 1–10 (2004).ADS 
    Article 

    Google Scholar 
    Williams, G. On the occurrence of Scopelocheirus hopei and Cirolana borealis in living Acanthias vulgaris (spiny dogfish). Irish Nat. J. 7, 89–91 (1938).
    Google Scholar 
    Wilson, D. P. The larval development of three species of Magelona (Polychaeta) from localities near Plymouth. J. Mar. Biol. Assoc. UK 62, 385–401 (1982).ADS 
    Article 

    Google Scholar 
    Wilson, W. H. Sexual reproductive modes in polychaetes: classification and diversity. Bull. Mar. Sci. 48, 500–516 (1991).
    Google Scholar 
    Yonge, C. M. Observations on Sphenia binghami Turton. J. Mar. Biol. Assoc. UK 30, 387–392 (1951).Article 

    Google Scholar 
    Yonge, C. M. On the Habits and Adaptations of Aloidis (Corbula) gibba. J. Mar. Biol. Assoc. UK 26, 358–376 (1946).CAS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure and adaptions of the Tellinacea, deposit-feeding Eulamellibranchia. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 234, 29–76 (1949).ADS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure, biology and systematic position of Pharus legumen (L.). J. Mar. Biol. Assoc. UK 38, 277–290 (1959).Article 

    Google Scholar 
    Zenetos, A. The American piddock Petricola pholadiformis Lamarck, 1818 spreading in the Mediterranean Sea. Aquat. Invasions 4, 385–387 (2009).Article 

    Google Scholar 
    Zwarts, L. Burying depth of the benthic bivalve Scrobicularia plana (da Costa) in relation to siphon-cropping. J. Exp. Mar. Bio. Ecol. 101, 25–39 (1986).Article 

    Google Scholar 
    Ansell, A. D., Gibson, R. N. & Barnes, M. Oceanography and Marine Biology: An Annual Review volume 35 (UCL Press, 1997).Beesley, P. L., Ross, G. J. B. & Glasby, C. J. Polychaetes & Allies: The Southern Synthesis (CSIRO Publishing, 2000).Budd, G. C. In Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) http://www.marlin.ac.uk/species/detail/1722 (2007).Carrier, T. J., Reitzel, A. M. & Heyland, A. Evolutionary Ecology of Marine Invertebrate Larvae (Oxford University Press, 2008).Dame, R. F. D. Ecology of Marine Bivalves: an Ecosystem Approach (CRC Press, 1996).David, B., Guille, A., Féral, J.-P. & Roux, M. Echinoderms Through Time (Balkema, 1994).Dorresteijn, A. W. C. & Westheide, W. Reproductive Strategies and Developmental Patterns in Annelids (Springer Netherlands, 1999).Fauchald, K. The polychaete worms. Definitions and keys to the orders, families and genera Science Series 28 (Natural History Museum of Los Angeles, 1977).Food and Agriculture Organization of the United Nations. FAO fisheries synopsis (Food and Agriculture Organization of the United Nations, 1984). Giese, A. C. & Pearse, J. S. Reproduction of Marine Invertebrates. Volume 5. Molluscs: Pelecypods and Lesser Clades (Academic Press, 1979).Hayward, P. & Ryland, J. Handbook of the marine fauna of north-west Europe (Oxford University Press, 1995).Holtmann, S. et al. Atlas of the zoobenthos of the Dutch continental shelf (Ministry of Transport, Public works and Water management, 1996).Jangoux, M. & Lawrence, J. M. Echinoderm Nutrition (Balkema, 1982).Jones, A. M. & Baxter, J. M. Molluscs: Caudofoveata, Solenogastres, Polyplacophora and Scaphopoda: keys and notes for the identification of species (Linnean Society of London and the Estuarine and Brackish-Water Sciences Association, 1987).Little, C. The Biology of Soft Shores and Estuaries (Oxford University Press, 2000).Maldonado, M. & Bergquist, P. R. in Atlas of Marine Invertebrate Larvae (ed. Young, C. M.) Ch. 2 (Academic Press, 2002).MarLIN. BIOTIC – Biological Traits Information Catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the United Kingdom. http://www.marlin.ac.uk/biotic (2006).MBA (Marine Biological Association). Plymouth Marine Fauna. (Marine Biological Association of the United Kingdom, 1957).MolluscaBase eds. MolluscaBase: Abra tenuis (Montagu, 1803). https://www.molluscabase.org/aphia.php?p=taxdetails&id=141439 (2019).Morton, B. The Bivalvia: Proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge (Hong Kong University Press, 1990).Müller, H.-G. World Catalogue and Bibliography of the Recent Pycnogonida (Wissenschaftlicher Verlag, 1993).Oliver, P. G., Holmes, A. M., Killeen, I. J. & Turner, J. A. Marine Bivalve Shells of the British Isles. Amgueddfa Cymru – National Museum Wales http://naturalhistory.museumwales.ac.uk/britishbivalves (2016).Pandian, T. J. Reproduction and Development in Annelida (CRC Press, 2019).Poore, G. C. B., Ahyong, S. T. & Taylor, J. The Biology of Squat Lobsters (CSIRO Publishing: Melbourne and CRC Press, 2011).Purcell, S., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes No. 6 (Food and Agriculture Organization of the United Nations, 2012).Purchon, R. The Biology of Mollusca (Pergamon, 1977).Richards, S. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) https://www.marlin.ac.uk/species/detail/32 (2007).Rouse, G. & Pleijel, F. Reproductive Biology and Phylogeny of Annelida (Science Publishers, 2006).Rouse, G. & Pleijel, F. Polychaetes (Oxford University Press, 2001).Ruppert, E. E., Fox, R. S. & Barnes, R. D. Invertebrate Zoology. A functional evolutionary approach 7th Ed (Thomson Learning, 2004).Ryland, J. S. & Tyler, P. A. Recruitment in Abra tenuis (Montagu) (Bivalvia, Semelidae), a species with direct development and a protracted meiobenthic phase. Proceedings of the 23rd European Marine Biology Symposium (Olsen and Olsen, 1989).Shalla, S. Cumacea. Identification guide to British cumaceans (Dove Marine Laboratory, 2011).Sigvaldadóttir, E. et al. Advances in Polychaete Research (Springer Science & Business Media, 2003).Sigwart, J. D. & Sumner-Rooney, L. H. In Structure and Evolution of Invertebrate Nervous Systems (eds. Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G.) Ch. 18 (Oxford University Press, 2016). Simpson, A. Reproduction in Octocorals (Subclass Octocorallia): A Review of Published Literature. Deep-Sea Corals Portal http://www.ucs.louisiana.edu/~scf4101/Bambooweb/ (2009).Tebble, N. British Bivalve Seashells; A Handbook for Identification 2nd ed (1976).Thiel, M. & Watling, L. Lifestyles and Feeding Biology: The Natural History of the Crustacea volume 2 (Oxford University Press, 2015).Thorson, G. & Jørgensen, C. B. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound (Øresund) (C. A. Reitzel, 1946).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 60, Marine Gastropods 1: Patellogastropoda and Vetigastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 61, Marine Gastropods 2: Littorinimorpha and Other, Unassigned, Caenogastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 62, Marine Gastropods 3: Neogastropoda. (Field Studies Council, 2018).Yonge, C. M. & Thompson, T. E. Living Marine Molluscs (Collins, 1976).Young, C. M. & Eckelbarger, K. J. Reproduction, larval biology, and recruitment of the deep-sea benthos (Columbia University Press, 1994).Clare, D. S. et al. Ten key biological traits of marine benthic invertebrates surveyed in Northwest Europe. V2. Cefas Data Hub https://doi.org/10.14466/CefasDataHub.123 (2022).Rijnsdorp, A. D. et al. Estimating sensitivity of seabed habitats to disturbance by bottom trawling based on the longevity of benthic fauna. Ecol. Appl. 28, 1302–1312 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hiddink, J. G. et al. Assessing bottom trawling impacts based on the longevity of benthic invertebrates. J. Appl. Ecol. 56, 1075–1084 (2019).Article 

    Google Scholar 
    van Denderen, P. D. et al. Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach. ICES J. Mar. Sci. 77, 278–289 (2020).Article 

    Google Scholar 
    Bolam, S. G. Macrofaunal recovery following the intertidal recharge of dredged material: A comparison of structural and functional approaches. Mar. Environ. Res. 97, 15–29 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Denderen, P. D. et al. Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats. Mar. Ecol. Prog. Ser. 541, 31–43 (2015).ADS 
    Article 

    Google Scholar 
    Rijnsdorp, A. D. et al. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES J. Mar. Sci. 73, i172–i138 (2016).Article 

    Google Scholar 
    Sciberras, M. et al. Impacts of bottom fishing on the sediment infaunal community and biogeochemistry of cohesive and non-cohesive sediments. Limnol. Oceanogr. 61, 2076–2089 (2016).ADS 
    Article 

    Google Scholar 
    Eggleton, J. D., Depestele, J., Kenny, A. J., Bolam, S. G. & Garcia, C. How benthic habitats and bottom trawling affect trait composition in the diet of seven demersal and benthivorous fish species in the North Sea. J. Sea Res. 142, 132–146 (2018).ADS 
    Article 

    Google Scholar 
    Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Wohlgemuth, D., Solan, M. & Godbold, J. A. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proc. R. Soc. B Biol. Sci. 284, 20162805 (2017).Article 

    Google Scholar 
    Cassidy, C., Grange, L. J., Garcia, C., Bolam, S. G. & Godbold, J. A. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc. R. Soc. B Biol. Sci. 287, 20192143 (2020).Article 

    Google Scholar 
    Cesar, C. P. & Frid, C. L. J. Benthic disturbance affects intertidal food web dynamics: implications for investigations of ecosystem functioning. Mar. Ecol. Prog. Ser. 466, 35–41 (2012).ADS 
    Article 

    Google Scholar 
    Törnroos, A., Nordström, M. C., Aarnio, K. & Bonsdorff, E. Environmental context and trophic trait plasticity in a key species, the tellinid clam Macoma balthica L. J. Exp. Mar. Bio. Ecol. 472, 32–40 (2015).Article 

    Google Scholar 
    Clare, D. S., Spencer, M., Robinson, L. A. & Frid, C. L. J. Species-specific effects on ecosystem functioning can be altered by interspecific interactions. PLoS One 11, e0165739 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3, 3958–3985 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 
    Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).PubMed 
    Article 

    Google Scholar 
    Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).PubMed 
    Article 

    Google Scholar 
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).Article 

    Google Scholar 
    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).PubMed 
    Article 

    Google Scholar 
    Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).Article 

    Google Scholar 
    Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).Article 

    Google Scholar 
    Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).Article 

    Google Scholar 
    Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).PubMed 
    Article 

    Google Scholar 
    Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).CAS 
    Article 

    Google Scholar 
    Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).Article 

    Google Scholar 
    Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).Article 

    Google Scholar 
    Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).Article 

    Google Scholar 
    Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).Article 

    Google Scholar 
    Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).Article 

    Google Scholar 
    Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).Article 

    Google Scholar 
    Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).Article 

    Google Scholar 
    Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).Article 

    Google Scholar 
    Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).Article 

    Google Scholar 
    Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).Article 

    Google Scholar 
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).Article 

    Google Scholar 
    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article 

    Google Scholar 
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).Article 

    Google Scholar 
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).Article 

    Google Scholar 
    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).PubMed 
    Article 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).Article 

    Google Scholar 
    Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).Article 

    Google Scholar 
    Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).Article 

    Google Scholar 
    Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).Article 

    Google Scholar 
    Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).Article 

    Google Scholar 
    Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).Article 

    Google Scholar 
    Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).CAS 
    Article 

    Google Scholar 
    Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).Chapter 

    Google Scholar 
    Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
    Google Scholar 
    Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).PubMed 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).Article 

    Google Scholar 
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).Article 

    Google Scholar 
    Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).Article 

    Google Scholar 
    Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).Article 

    Google Scholar 
    Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).Article 

    Google Scholar 
    Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).Article 

    Google Scholar 
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).Crawley, M. J. The R Book (Wiley, Hoboken, 2007).MATH 
    Book 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 
    Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).Article 

    Google Scholar  More

  • in

    Coronilla juncea, a native candidate for phytostabilization of potentially toxic elements and restoration of Mediterranean soils

    Pourret, O. & Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. IJERPH 16, 4446 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).
    Google Scholar 
    Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).CAS 
    PubMed 

    Google Scholar 
    Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).CAS 

    Google Scholar 
    Desjardins, D., Nissim, W. G., Pitre, F. E., Naud, A. & Labrecque, M. Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol. Eng. 64, 385–390 (2014).
    Google Scholar 
    Marchiol, L. et al. Gentle remediation at the former “Pertusola Sud” zinc smelter: Evaluation of native species for phytoremediation purposes. Ecol. Eng. 53, 343–353 (2013).
    Google Scholar 
    van Oort, F. et al. Les pollutions métalliques d’un site industriel et des sols environnants : distributions hétérogènes des métaux et relations avec l’usage des sols. In: Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains 15–44 (Editions Quae, 2009).Hodge, A. Plastic plants and patchy soils. J. Exp. Bot. 57, 401–411 (2006).CAS 
    PubMed 

    Google Scholar 
    Huber-Sannwald, E. & Jackson, R. B. Heterogeneous soil-resource distribution and plant responses—from individual-plant growth to ecosystem functioning. In Progress in Botany Vol. 62 (eds Esser, K. et al.) 451–476 (Springer, 2001).
    Google Scholar 
    Loecke, T. D. & Philip Robertson, G. Soil resource heterogeneity in the form of aggregated litter alters maize productivity. Plant Soil 325, 231–241 (2009).CAS 

    Google Scholar 
    Reynolds, H. L., Hungate, B. A., Iii, F. S. C. & D’Antonio, C. M. Soil Heterogeneity and Plant Competition in an Annual Grassland. 16 (2021).Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6, 630–643 (2003).
    Google Scholar 
    Shutcha, M. N. et al. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 82, 81–90 (2015).
    Google Scholar 
    Testiati, E. et al. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard. Mater. 248–249, 131–141 (2013).PubMed 

    Google Scholar 
    Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R. & Murillo, J. M. Heavy metal pollution of soils affected by the Guadiamar toxic fiood. Sci. Total Environ. 242, 117–129 (1999).CAS 
    PubMed 

    Google Scholar 
    Imperato, M. et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 124, 247–256 (2003).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J. & Weis, P. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environ. Pollut. 153, 351–361 (2008).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Holzapfel, C. & Grabosky, J. Altered vegetative assemblage trajectories within an urban brownfield. Environ. Pollut. 159, 1159–1166 (2011).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. J. Environ. Manag. 183, 850–863 (2016).CAS 

    Google Scholar 
    Dickinson, N. M., Turner, A. P. & Lepp, N. W. How do trees and other long-lived plants survive in polluted environments?. Funct. Ecol. 5, 5 (1991).
    Google Scholar 
    Partida-Martínez, L. P. & Heil, M. The microbe-free plant: Fact or artifact?. Front. Plant Sci. 2, 100 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Giller, K. E., Witter, E. & Mcgrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30, 1389–1414 (1998).CAS 

    Google Scholar 
    Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants (CRC Press, 2001).
    Google Scholar 
    Tyler, G. Heavy metal pollution and mineralisation of nitrogen in forest soils. Nature 255, 701–702 (1975).CAS 

    Google Scholar 
    Seshadri, B., Bolan, N. S. & Naidu, R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162015005000043 (2015).Article 

    Google Scholar 
    Kidd, P. et al. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009).CAS 

    Google Scholar 
    Rivera-Becerril, F. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53, 1177–1185 (2002).CAS 
    PubMed 

    Google Scholar 
    Krupa, P. & Kozdrój, J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 182, 83–90 (2007).CAS 

    Google Scholar 
    Janoušková, M., Pavlíková, D. & Vosátka, M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65, 1959–1965 (2006).PubMed 

    Google Scholar 
    Leyval, C., Turnau, K. & Haselwandter, K. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7, 139–153 (1997).CAS 

    Google Scholar 
    Zhang, Y., Zhang, Y., Liu, M., Shi, X. & Zhao, Z. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J. Microbiol. 46, 624–632 (2008).PubMed 

    Google Scholar 
    Krumins, J. A., Goodey, N. M. & Gallagher, F. Plant–soil interactions in metal contaminated soils. Soil Biol. Biochem. 80, 224–231 (2015).CAS 

    Google Scholar 
    Glick, B. R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393 (2003).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. What are the potential environmental solutions for diffuse pollution ? In Pollution of Marseille’s Industrial Calanques—The Impact of the Past on the Present 291–328 (REF2C, 2016).Li, M. S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 357, 38–53 (2006).CAS 
    PubMed 

    Google Scholar 
    Mendez, M. O. & Maier, R. M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 7, 47–59 (2008).CAS 

    Google Scholar 
    Yaalon, D. H. Soils in the Mediterranean region: What makes them different?. CATENA 28, 157–169 (1997).CAS 

    Google Scholar 
    Li, S. et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 400, 123255 (2020).CAS 
    PubMed 

    Google Scholar 
    Pérez-de-Mora, A. et al. Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biol. Biochem. 38, 327–341 (2006).
    Google Scholar 
    Keller, C. et al. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil. 249, 67–81 (2003).CAS 

    Google Scholar 
    Lambrechts, T. et al. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: Implications for phytostabilization. Plant Soil 376, 229–244 (2014).CAS 

    Google Scholar 
    Pauwels, M., Frérot, H., Bonnin, I. & Saumitou-Laprade, P. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J. Evol. Biol. 19, 1838–1850 (2006).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M. & Pugnaire, F. I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4, 196–202 (2006).
    Google Scholar 
    Robles, A. B., Allegretti, L. I. & Passera, C. B. Coronilla juncea is both a nutritive fodder shrub and useful in the rehabilitation of abandoned Mediterranean marginal farmland. J. Arid Environ. 50, 381–392 (2002).
    Google Scholar 
    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).
    Google Scholar 
    Laffont-Schwob, I. et al. Diffuse and widespread present-day pollution. In Pollution of Marseille’s industrial Calanques—The Impact of the Past on the Future 204–249 (REF2C, 2016).Gelly, R. et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512 (2019).CAS 
    PubMed 

    Google Scholar 
    Tóth, G. et al. Soils of the European Union. JRC Scientific and Technical Reports 85 (2008).IUSS Working Group WRB. Base de référence mondiale pour les ressources en sols 2014, Mise à jour 2015. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Rapport sur les ressources en sols du monde. Vol. 106 (2015).Dias, T. et al. Ammonium as a driving force of plant diversity and ecosystem functioning: Observations based on 5 years’ manipulation of n dose and form in a Mediterranean ecosystem. PLoS ONE 9, e92517 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Remon, E. et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 137, 316–323 (2005).CAS 
    PubMed 

    Google Scholar 
    Baumberger, T. et al. Plant community changes as ecological indicator of seabird colonies’ impacts on Mediterranean Islands. Ecol. Ind. 15, 76–84 (2012).
    Google Scholar 
    Navas, M.-L., Roumet, C., Bellmann, A., Laurent, G. & Garnier, E. Suites of plant traits in species from different stages of a Mediterranean secondary succession: Plant traits and succession. Plant Biol. 12, 183–196 (2010).CAS 
    PubMed 

    Google Scholar 
    Guillamot, F., Calvert, V., Millot, M.-V. & Criquet, S. Does antimony affect microbial respiration in Mediterranean soils? A microcosm experiment. Pedobiologia 57, 119–121 (2014).
    Google Scholar 
    Wang, A., He, M., Ouyang, W., Lin, C. & Liu, X. Effects of antimony (III/V) on microbial activities and bacterial community structure in soil. Sci. Total Environ. 789, 148073 (2021).CAS 
    PubMed 

    Google Scholar 
    Oleńska, E. et al. Trifolium repens-associated bacteria as a potential tool to facilitate phytostabilization of zinc and lead polluted waste heaps. Plants 9, 1002 (2020).PubMed Central 

    Google Scholar 
    Stambulska, U. Y., Bayliak, M. M. & Lushchak, V. I. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 1–13 (2018).
    Google Scholar 
    Karthika, K. S., Rashmi, I. & Parvathi, M. S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance 1–49 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-10-9044-8_1.Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).CAS 
    PubMed 

    Google Scholar 
    Reichman, S. M. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39, 2587–2593 (2007).CAS 

    Google Scholar 
    Parraga-Aguado, I., Querejeta, J.-I., González-Alcaraz, M.-N., Jiménez-Cárceles, F. J. & Conesa, H. M. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. J. Environ. Manag. 133, 51–58 (2014).CAS 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
    Google Scholar 
    Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).
    Google Scholar 
    Ilunga wa Ilunga, E. et al. Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecol. Eng. 82, 214–221 (2015).
    Google Scholar 
    Salducci, M.-D. et al. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere 217, 887–896 (2019).CAS 
    PubMed 

    Google Scholar 
    Kachout, S. S. et al. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 92, 336–342 (2012).CAS 
    PubMed 

    Google Scholar 
    Schaeffer, A. et al. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Sci. Total Environ. 568, 1076–1085 (2016).CAS 
    PubMed 

    Google Scholar 
    Tosini, L. et al. Gain in biodiversity but not in phytostabilization after 3 years of ecological restoration of contaminated Mediterranean soils. Ecol. Eng. 157, 105998 (2020).
    Google Scholar 
    Michelaki, C. et al. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Sci. Total Environ. 672, 583–592 (2019).CAS 
    PubMed 

    Google Scholar 
    Affholder, M.-C. et al. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci. Total Environ. 454–455, 219–229 (2013).PubMed 

    Google Scholar 
    Affholder, M.-C. et al. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: Do native symbionts matter?. Plant Soil 382, 219–236 (2014).CAS 

    Google Scholar 
    Ellili, A. et al. Decision-making criteria for plant-species selection for phytostabilization: Issues of biodiversity and functionality. J. Environ. Manag. 201, 215–226 (2017).CAS 

    Google Scholar 
    Laffont-Schwob, I. et al. Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. ecmed 37, 57–62 (2011).
    Google Scholar 
    Rabier, J. et al. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water Air Soil Pollut. 225, 1993 (2014).
    Google Scholar 
    Quevauviller, Ph. et al. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci. Total Environ. 178, 127–132 (1996).CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).CAS 

    Google Scholar 
    R Development Core Team.pdf.Dray, S., Dufour, A. B. & Chessel, D. The ade4 package—II: Two-table and K-table methods. R News 7, 6 (2007).
    Google Scholar  More