More stories

  • in

    Spotted lanternfly predicted to establish in California by 2033 without preventative management

    Model structureWe used the PoPS (Pest or Pathogen Spread) Forecasting System11 version 2.0.0 to simulate the spread of SLF and calibrated the model (Fig. 6) using Approximate Bayesian Computation (ABC) with sequential Markov chain and a multivariate normal perturbation kernel18,19. We simulated the reproduction and dispersal of SLF groups (at the grid cell level) rather than individuals, as exact measures of SLF populations are not the goal of surveys conducted by USDA and state departments of agriculture. Reproduction was simulated as a Poisson process with mean β that is modified by local conditions. For example, if we have 5 SLF groups in a cell, a β value of 2.2, and a temperature coefficient of 0.7, our modified β value becomes 1.54 and we draw five numbers from a Poisson distribution with a λ value of 1.54. β and dispersal parameters were calibrated to fit the observed patterns of spread. For this application of PoPS, we replaced the long-distance kernel (α2) with a network dispersal kernel based on railroads, along which SLF and tree of heaven are commonly observed7. For each SLF group dispersing, if a railroad is in the grid cell with SLF, we used a Bernoulli distribution with mean of γ (probability of natural dispersal) to determine if an SLF group dispersed via the natural Cauchy kernel with scale (α) or along the rail network. This network dispersal kernel accounts for dispersal along railways if SLF is present in a cell containing a rail line. The network dispersal kernel added three new parameters to the PoPS model: a network file that contained the nodes and edges, minimum distance that each railcar travels, and the maximum distance that each railcar travels. Unlike typical network models, which simulate transport simply between nodes, our approach allows for SLF to disembark a railcar at any point along an edge, more closely mimicking their actual behavior. This network therefore captures the main pathway of SLF long-distance dispersal, i.e., along railways.Fig. 6: Model structure for spotted lanternfly (SLF, Lycorma delicatula).Unused modules in the PoPS model are gray in the equation. a The number of pests that disperse from a single host under optimal environmental conditions (β) is modified by the number of currently infested hosts (I) and environmental conditions in a location (i) at a particular time (t); environmental conditions include seasonality (X) and temperature (T) (see supplementary Fig. 3 for details on temperature). Dispersal is a function of gamma (γ), which is the probability of short-distance dispersal (alpha-1, α1) or long-distance via the rail network (N (dmin, dmax)). For the natural-distance Cauchy kernel, the direction is selected using 0-359 with 0 representing North. For the network kernel, the direction along the rail is selected randomly, and then travel continues in that direction until the drawn distance is reached. Once SLF has landed in a new location, its establishment depends on environmental conditions (X, T) and the availability of suitable hosts (number of susceptible hosts [S] divided by total number of potential hosts [N]). b We used a custom host map for tree of heaven (Ailanthus altissima) to determine the locations of susceptible hosts. The number of newly infested hosts (ψ) is predicted for each cell across the contiguous US.Full size imageSpotted lanternfly model calibrationWe used 2015–2019 data (over 300,000 total observations including both positive and negative surveys) provided by the USDA APHIS and the state Departments of Agriculture of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and West Virginia to calibrate model parameters (β, α1, γ, dmin, dmax). The calibration process starts by drawing a set of parameters from a uniform distribution. Simulated results for each model run are then compared to observed data within the year they were collected, and accuracy, precision, recall, and specificity are calculated for the simulation period. If each of these statistics is above 65% the parameter set is kept. This process repeats until 10,000 parameter sets are kept; then, the next generation of the ABC process begins: the mean of each accuracy statistic becomes the new accuracy threshold, and parameters are drawn from a multivariate normal distribution based on the means and covariance matrix of the first 10,000 kept parameters. This process repeats for a total of seven generations. Compared to the 2020 and 2021 observation data (over 100,000 total observations including both positive and negative surveys), the model performed well, with an accuracy of 84.4%, precision of 79.7%, recall of 91.55%, and specificity of 77.6%. In contrast, a model run using PoPS’ previous long-distance kernel (α2) instead of the network dispersal kernel had an accuracy of 76.5%, precision of 68.1%, recall of 92.68%, and specificity of 57.2%.We applied the calibrated parameters and their uncertainties (Fig. 7) to forecast the future spread of SLF, using the status of the infestation as of January 1, 2020 as a starting point and data for temperature and the distribution of SLF’s presumed primary host (tree of heaven, Ailanthus altissima) for the contiguous US at a spatial resolution of 5 km.Fig. 7: Parameter distributions.a Reproductive rate (β), b natural dispersal distance (α1), c percent natural dispersal (γ), d minimum distance (dmin), e maximum distance (dmax).Full size imageWeather dataOverwinter survival of SLF egg masses, and therefore spread, is sensitive to temperature (see ref. 2). To run a spread model in PoPS, all raw temperature values are first converted to indices ranging 0–1 to describe their impact on a species’ ability to survive and reproduce. We converted daily Daymet20 temperature into a monthly coefficient ranging 0–1 (Supplementary Fig. 1) and then rescaled from 1 to 5 km by averaging 1-km pixel values. We used weather data 1980–2019 and randomly drew from those historical data to simulate future weather conditions in our simulations, to account for uncertainty in future weather conditions.Tree of heaven distribution mappingSLF is known to feed on >70 species of mainly woody plants7, but tree of heaven is commonly viewed as necessary, or at least highly important, for SLF spread. Young nymphs are host generalists, but older nymphs and adults strongly prefer tree of heaven (in Korea21; in Pennsylvania, US22), and experiments in captivity23 and in situ9 have shown that adult survivorship is higher on the tree of heaven and grapevine than other host plants, likely due to the presence and proportion of sugar compounds important for SLF survival23. Secondary compounds found in tree of heaven also make adult SLF more unpalatable to avian predators24, and researchers have hypothesized that these protective compounds may be passed on to eggs21. For these reasons, tree of heaven is widely considered the primary host for SLF and linked to SLF spread1,25.We, therefore, used tree of heaven as the host in our spread forecast. We estimated the geographic range of tree of heaven using the Maximum Entropy (MaxEnt) model26,27. We chose to use niche modeling because tree of heaven has been in the US for over 200 years and is well past the early stage of invasion at which niche models perform poorly; instead, tree of heaven is well into the intermediate to equilibrium stage of invasion, when niche models perform well28. We obtained 19,282 presences for tree of heaven in the US from BIEN29,30 and EDDmaps31 and selected the most important variables from an initial MaxEnt model of all 19 WorldClim bioclimatic variables32. Our final climate variables were mean annual temperature, precipitation of the coldest quarter, and precipitation of the driest quarter. Given that tree of heaven is non-native and invasive in the US, prefers open and disturbed habitat, and is commonly found along roadsides and in urban landscapes33, we also included distance to major roads and railroads as an additional variable in our model, to account for the presence of disturbed habitat as well as approximate urbanization and anthropogenic degradation. For each 1-km cell in the extent, we calculated distance to the nearest road and nearest railroad using the US Census Bureau’s TIGER data set of primary roads and railroads34. We used our final MaxEnt model to generate the probability of the presence of tree of heaven for each 1-km cell, then reset all cells with a probability ≤0.2 to a value of 0 to minimize overprediction of the tree of heaven locations (because cells ≤0.2 contained less than 1% of the presences used to build the model). We rescaled the remaining probability values 0–1. We used 10% of the tree of heaven presence data to validate the model, which performed well: 95% of the validation data set locations had a probability of presence greater than 65%. We then rescaled the 1-km MaxEnt output to 5 km using the mean value of our 1-km cells, in order to reduce computational time.Forecasting spotted lanternflyWe used the Daymet temperature data and distribution of tree of heaven to simulate SLF spread with PoPS, assuming no further efforts to contain or eradicate either tree of heaven or SLF. We ran the spread simulation 10,000 times from 2020 to 2050 for the contiguous US. After running all 10,000 iterations, we created a probability of occurrence for each cell for each year by dividing the number of simulations in which a cell was simulated as being infested in that year by 10,000 (the total number of simulations). This gave us a probability of occurrence per year. We downscaled our probability of occurrence per year from 5 km to 1 km and set the probability to 0 in 1-km pixels with no tree of heaven occurrence.Data for mapping and comparisonWe compared our probability of occurrence map in 2050 to the SLF suitability map created by Wakie et al.1 using niche modeling to see how well the two modeling approaches would agree if SLF were allowed to spread unmanaged (Fig. 5). Wakie et al.1 categorized pixels below 8.359% as unsuitable, between 8.359% and 26.89% as low risk, between 26.89% and 51.99% as medium risk, and above 51.99% as high risk. To facilitate comparison, we used this same schema to categorize pixels as low, medium, or high probability of spread.We converted the yearly raster probability maps to county-level probabilities in order to examine the yearly risk to crops in counties. We performed this conversion using two methods: (1) the highest probability of occurrence in the county (Supplementary Movie 2) and (2) the mean probability of occurrence in the county (Fig. 1 and Supplementary Movie 1). The first method provides a simple, non-statistical estimate of the probability of SLF presence by assigning the county the value of the highest cell-level probability; the second accounts for all of the probabilities of the cells in the county and typically results in a higher county-level probability. We used USDA county-level production data10 for grapes, almonds, apples, walnuts, cherries, hops, peaches, plums, and apricots to determine the amount of production at risk each year (Fig. 2).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    A catastrophic collapse for the ‘flying banana’ of the Kalahari

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Animal behavior is central in shaping the realized diel light niche

    Benhamou, S. Of scales and stationarity in animal movements. Ecol. Lett. 17, 261–272 (2014).PubMed 
    Article 

    Google Scholar 
    Owen-Smith, N. Effects of temporal variability in resources on foraging behaviour. In Resource Ecology (eds. Prins, H. H. T. & Van Langevelde, F.) 159–181 (Springer Netherlands, 2008).Hutchinson, G. E. The multivariate niche. Cold Spring Harb. Symp. Quant. Biol. 22, 415–421 (1957).Article 

    Google Scholar 
    Kearney, M. Habitat, environment and niche: what are we modelling? Oikos 115, 186–191 (2006).Article 

    Google Scholar 
    Tauber, E., Last, K. S., Olive, P. J. W. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythms 19, 445–458 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pilorz, V., Helfrich-Förster, C. & Oster, H. The role of the circadian clock system in physiology. Pflug. Arch. – Eur. J. Physiol. 470, 227–239 (2018).CAS 
    Article 

    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1753 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Kronfeld‐Schor, N. et al. On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint. Am. Nat. 158, 451–457 (2001).PubMed 
    Article 

    Google Scholar 
    Austin, R. W. & Petzold, T. J. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. OE OPEGAR 25, 253471 (1986).Article 

    Google Scholar 
    Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1547–1589 (2021).PubMed 
    Article 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. In Migrations and Dispersal of Marine Organisms 163–170 (Springer, 2003).Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB005886 (2018).Article 

    Google Scholar 
    Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A. & Maas, A. E. Diel metabolic patterns in a migratory oceanic copepod. J. Exp. Mar. Biol. Ecol. 545, 151643 (2021).Article 

    Google Scholar 
    Cohen, J. H. & Forward, Jr. R. B. Zooplankton diel vertical migration—a review of proximate control. In Oceanography and Marine Biology (eds Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 89–122 (CRC Press, 2009).Benoit-Bird, K. J., Au, W. W. L. & Wisdoma, D. W. Nocturnal light and lunar cycle effects on diel migration of micronekton. Limnol. Oceanogr. 54, 1789–1800 (2009).Article 

    Google Scholar 
    Last, K. S., Hobbs, L., Berge, J., Brierley, A. S. & Cottier, F. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic Winter. Curr. Biol. 26, 244–251 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Omand, M. M., Steinberg, D. K. & Stamieszkin, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. PNAS 118, e2022977118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strömberg, J.-O., Spicer, J. I., Liljebladh, B. & Thomasson, M. A. Northern krill, Meganyctiphanes norvegica, come up to see the last eclipse of the millennium? J. Mar. Biol. Assoc. UK 82, 919–920 (2002).Article 

    Google Scholar 
    Ludvigsen, M. et al. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Häfker, N. S. et al. Circadian clock involvement in zooplankton diel vertical migration. Curr. Biol. 27, 2194–2201 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Chen, C. et al. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527, 516–520 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. & Cohen, J. H. Behavioral adaptations in larvae of brachyuran crabs: a review. J. Exp. Mar. Biol. Ecol. 482, 85–105 (2016).Article 

    Google Scholar 
    Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: availability of winter prey explains mid-winter and spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 541564 (2020).Article 

    Google Scholar 
    Urmy, S. S., Horne, J. K. & Barbee, D. H. Measuring the vertical distributional variability of pelagic fauna in Monterey Bay. ICES J. Mar. Sci. 69, 184–196 (2012).Article 

    Google Scholar 
    Berge, J. et al. Arctic complexity: a case study on diel vertical migration of zooplankton. J. Plankton Res. 36, 1279–1297 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berge, J. et al. In the dark: A review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2015.08.005 (2015).Article 

    Google Scholar 
    Pavlov, A. K. et al. The underwater light climate in Kongsfjorden and Its ecological implications. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 137–170 (Springer International Publishing, 2019).Cohen, J. H. et al. Is ambient light during the high arctic polar night sufficient to act as a visual cue for Zooplankton? PLoS ONE 10, e0126247 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Veedin Rajan, V. B. et al. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat. Ecol. Evol. 5, 204–218 (2021).PubMed 
    Article 

    Google Scholar 
    Vinayak, P. et al. Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PLoS Genet. 9, e1003615 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, L. et al. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol. Lett. 17, 20200810 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daase, M., Eiane, K., Aksnes, D. L. & Vogedes, D. Vertical distribution of Calanus spp. and Metridia longa at four Arctic locations. Mar. Biol. Res. 4, 193–207 (2008).Article 

    Google Scholar 
    Irigoien, X., Conway, D. V. P. & Harris, R. P. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Mar. Ecol. Prog. Ser. 267, 85–97 (2004).Article 

    Google Scholar 
    Frost, B. W. & Bollens, S. M. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Can. J. Fish. Aquat. Sci. 49, 1137–1141 (1992).Article 

    Google Scholar 
    Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: a response to satiation or krill predation? Mar. Ecol. Prog. Ser. 240, 183–194 (2002).Article 

    Google Scholar 
    Hays, G. C., Proctor, C. A., John, A. W. G. & Warner, A. J. Interspecific differences in the diel vertical migration of marine copepods: the implications of size, color, and morphology. Limnol. Oceanogr. 39, 1621–1629 (1994).Article 

    Google Scholar 
    Gastauer, S., Nickels, C. F. & Ohman, M. D. Body size- and season-dependent diel vertical migration of mesozooplankton resolved acoustically in the San Diego Trough. Limnol. Oceanogr. 67, 300–313 (2021).Article 

    Google Scholar 
    Hardy, A. C. & Bainbridge, R. Experimental observations on the vertical migrations of plankton animals. J. Mar. Biol. Assoc. UK 33, 409–448 (1954).Article 

    Google Scholar 
    Musilova, Z. et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik, S. G. et al. Photoreceptor diversification accompanies the evolution of Anthozoa. Mol. Biol. Evol. 38, 1744–1760 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. H. et al. Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biol. 19, e3001413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopperud, K. L. & Grace, M. S. Circadian rhythms of retinal sensitivity in the Atlantic tarpon, Megalops atlanticus. Bull. Mar. Sci. https://doi.org/10.5343/bms.2016.1045 (2017).Article 

    Google Scholar 
    Ohguro, C., Moriyama, Y. & Tomioka, K. The compound eye possesses a self-sustaining Circadian Oscillator in the Cricket Gryllus bimaculatus. Zool. Sci. 38, 82–89 (2020).Article 

    Google Scholar 
    Brodrick, E. A., How, M. J. & Hemmi, J. M. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light. J. Exp. Biol. jeb.243693, https://doi.org/10.1242/jeb.243693 (2022).Kaartvedt, S., Røstad, A., Christiansen, S. & Klevjer, T. A. Diel vertical migration and individual behavior of nekton beyond the ocean’s twilight zone. Deep Sea Res. Part I: Oceanogr. Res. Pap. 103280, https://doi.org/10.1016/j.dsr.2020.103280 (2020).Flôres, D. E. F. L., Jannetti, M. G., Valentinuzzi, V. S. & Oda, G. A. Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective. Sci. Rep. 6, 34264 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hays, G. C., Kennedy, H. & Frost, B. W. Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth when others migrate. Limnol. Oceanogr. 46, 2050–2054 (2001).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Jr. Photobehavior as an inducible defense in the marine copepod Calanopia americana. Limnol. Oceanogr. 50, 1269–1277 (2005).Article 

    Google Scholar 
    Kvile, K. Ø., Altin, D., Thommesen, L. & Titelman, J. Predation risk alters life history strategies in an oceanic copepod. Ecology 102, e03214 (2021).PubMed 
    Article 

    Google Scholar 
    Spaak, P. & Ringelberg, J. Differential behaviour and shifts in genotype composition during the beginning of a seasonal period of diel vertical migration. Hydrobiologia 360, 177–185 (1997).Article 

    Google Scholar 
    Buskey, E. J. & Swift, E. Behavioral responses of oceanic zooplankton to simulated bioluminescence. Biol. Bull. 168, 263–275 (1985).Article 

    Google Scholar 
    Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282, 13011–13021 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Franz-Badur, S. et al. Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation. Sci. Rep. 9, 9896 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Biscontin, A. et al. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci. Rep. 7, 17742 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Piccolin, F. et al. Photoperiodic modulation of circadian functions in Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). J. Crustacean Biol. 38, 707–715 (2018).
    Google Scholar 
    Piccolin, F., Pitzschler, L., Biscontin, A., Kawaguchi, S. & Meyer, B. Circadian regulation of diel vertical migration (DVM) and metabolism in Antarctic krill Euphausia superba. Sci. Rep. 10, 16796 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Häfker, N. S., Teschke, M., Hüppe, L. & Meyer, B. Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Mar. Ecol. Prog. Ser. 603, 79–92 (2018).Article 
    CAS 

    Google Scholar 
    Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).Article 

    Google Scholar 
    Hüppe, L. et al. Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biol. Lett. 16, 20200257 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dmitrenko, I. A. et al. Sea-ice and water dynamics and moonlight impact the acoustic backscatter diurnal signal over the eastern Beaufort Sea continental slope. Ocean Sci. 16, 1261–1283 (2020).CAS 
    Article 

    Google Scholar 
    Hobbs, L., Cottier, F. R., Last, K. S. & Berge, J. Pan-Arctic diel vertical migration during the polar night. Mar. Ecol. Prog. Ser. 605, 61–72 (2018).Article 

    Google Scholar 
    Chittka, L., Stelzer, R. J. & Stanewsky, R. Daily changes in ultraviolet light levels can synchronize the circadian clock of Bumblebees (Bombus terrestris). Chronobiol. Int. 30, 434–442 (2013).PubMed 
    Article 

    Google Scholar 
    Pauers, M. J., Kuchenbecker, J. A., Neitz, M. & Neitz, J. Changes in the colour of light cue circadian activity. Anim. Behav. 83, 1143–1151 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouland, J. W., Martial, F., Watson, A., Lucas, R. J. & Brown, T. M. Cones support alignment to an inconsistent world by suppressing mouse circadian responses to the blue colors associated with twilight. Curr. Biol. 29, 4260–4267.e4 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walmsley, L. et al. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol. 13, e1002127 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashley, N. T., Schwabl, I., Goymann, W. & Buck, C. L. Keeping time under the midnight sun: behavioral and plasma melatonin profiles of free-living lapland longspurs (Calcarius lapponicus) during the Arctic Summer. J. Exp. Zool. Part A: Ecol. Genet. Physiol. 319, 10–22 (2013).CAS 
    Article 

    Google Scholar 
    Nordtug, T. & Melø, T. B. Diurnal variations in natural light conditions at summer time in arctic and subarctic areas in relation to light detection in insects. Ecography 11, 202–209 (1988).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Jr Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article 

    Google Scholar 
    Maas, A. E., Blanco-Bercial, L., Lo, A., Tarrant, A. M. & Timmins-Schiffman, E. Variations in copepod proteome and respiration rate in association with diel vertical migration and circadian cycle. Biol. Bull. 000–000, https://doi.org/10.1086/699219 (2018).Berge, J. et al. Diel vertical migration of Arctic zooplankton during the polar night. Biol. Lett. 5, 69–72 (2009).PubMed 
    Article 

    Google Scholar 
    Dale, T. & Kaartvedt, S. Diel patterns in stage-specific vertical migration of Calanus finmarchicus in habitats with midnight sun. ICES J. Mar. Sci. 57, 1800–1818 (2000).Article 

    Google Scholar 
    Hut, R. A., van Oort, B. E. H. & Daan, S. Natural entrainment without dawn and dusk: the case of the European Ground Squirrel (Spermophilus citellus). J. Biol. Rhythms 14, 290–299 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, C. T., Barnes, B. M., Yan, L. & Buck, C. L. Entraining to the polar day: circadian rhythms in arctic ground squirrels. J. Exp. Biol. 220, 3095–3102 (2017).PubMed 
    Article 

    Google Scholar 
    Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129 (2011).PubMed 
    Article 

    Google Scholar 
    Gattermann, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 4, 253–255 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, E. W. et al. Drosophila circadian rhythms in seminatural environments: Summer afternoon component is not an artifact and requires TrpA1 channels. PNAS 112, 8702–8707 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nagy, D. et al. A semi-natural approach for studying seasonal diapause in Drosophila melanogaster reveals robust photoperiodicity. J. Biol. Rhythms 33, 117–125 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prabhakaran, P. M., De, J. & Sheeba, V. Natural conditions override differences in emergence rhythm among closely related Drosophilids. PLoS ONE 8, e83048 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruf, F. et al. Natural Zeitgebers under temperate conditions cannot compensate for the loss of a functional circadian clock in timing of a vital behavior in Drosophila. J. Biol. Rhythms 0748730421998112, https://doi.org/10.1177/0748730421998112 (2021).Dollish, H. K., Kaladchibachi, S., Negelspach, D. C. & Fernandez, F.-X. The Drosophila circadian phase response curve to light: conservation across seasonally relevant photoperiods and anchorage to sunset. Physiol. Behav. 245, 113691 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, B., Fountain, M. & Wijnen, H. Control of daily locomotor activity patterns in Drosophila suzukii by the circadian clock, light, temperature and social interactions. J. Biol. Rhythms 34, 463–481 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).PubMed 
    Article 

    Google Scholar 
    DeCoursey, P. J. Light-sampling behavior in photoentrainment of a rodent circadian rhythm. J. Comp. Physiol. 159, 161–169 (1986).CAS 
    Article 

    Google Scholar 
    Heard, E. Molecular biologists: let’s reconnect with nature. Nature 601, 9 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deines, K. L. Backscatter estimation using Broadband acoustic Doppler current profilers. In Proc. IEEE Sixth Working Conference on Current Measurement 249–253 (1999).Darnis, G. et al. From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).CAS 
    Article 

    Google Scholar 
    Cottier, F. R., Tarling, G. A., Wold, A. & Falk-Petersen, S. Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006).Article 

    Google Scholar 
    Johnsen, G. et al. All-sky camera system providing high temporal resolution annual time series of irradiance in the Arctic. Appl. Opt. 60, 6456–6468 (2021).PubMed 
    Article 

    Google Scholar 
    Pan, X. & Zimmerman, R. C. Modeling the vertical distributions of downwelling plane irradiance and diffuse attenuation coefficient in optically deep waters. J. Geophys. Res.: Oceans 115, C08016 (2010).
    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Tidau, S. et al. Marine artificial light at night: An empirical and technical guide. Methods Ecol. Evol. 12, 1588–1601 (2021).Article 

    Google Scholar 
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press Inc, 1994).Kostakis, I. et al. Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 378, 20190367 (2020).CAS 
    Article 

    Google Scholar 
    Buskey, E. J., Baker, K. S., Smith, R. C. & Swift, E. Photosensitivity of the oceanic copepods Pleuromamma gracilis and Pleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Mar. Ecol. Prog. Ser. 55, 207–216 (1989).Article 

    Google Scholar  More

  • in

    Indigenous knowledge reveals history of fire-prone California forest

    Controlled fires can be used to reduce the risk of wildfires.Credit: David Hoffmann/Alamy

    Indigenous oral accounts have helped scientists to reconstruct a 3,000-year history of a large fire-prone forest in California. The results suggest that parts of the forest are denser than ever before, and are at risk of severe wildfires1. The research is part of a growing effort to combine Indigenous knowledge with other scientific data to improve understanding of ecosystem histories.Wildfires are a substantial threat to Californian forests. Clarke Knight, a palaeo-ecosystem scientist at the US Geological Survey in Menlo Park, California, and her colleagues wanted to understand how Indigenous communities helped shape the forest by managing this risk in the state’s lush western Klamath Mountains. Specifically, they studied Indigenous peoples’ use of cultural burning — small, controlled fires that keep biomass low and reduce the risk of more widespread burning. The results are published in the Proceedings of the National Academy of Science.“When I was a little kid, my grandmother used to burn around the house,” says Rod Mendes, fire chief for the Yurok Tribe fire department, whose family is part of the Karuk Tribe of northern California. The Karuk and Yurok tribes have called the Klamath Mountains home for thousands of years. “She was just keeping the place clean. Native people probably did some of the first prescribed fire operations in history,” says Mendes.Understanding how Indigenous tribes used fire is essential for managing forests to reduce wildfire risk, says Knight. “We need to listen to Native people and learn and understand why they managed the landscape the way they did,” adds Mendes.Collaboration for corroborationTo map the region’s forest history, the team drew on historical accounts and oral histories from Karuk, Yurok and Hoopa Valley Tribe members collected by study co-author Frank Lake, a US Forest Service research ecologist in Arcata, California, and a Karuk descendant, as part of his PhD thesis in 2007. These accounts described the tribes’ fire and land use. For instance, members lit small fires to keep trails clear; this also reduced the amount of vegetation, preventing expansion of wildfires from lightning strikes. Larger fires, called broadcast burning, were used to improve visibility, hunting and nut-harvesting conditions in the forest. The effects of fire on the vegetation lasted for decades.Knight says that it was important to collaborate with the tribes given their knowledge of the region. The Karuk Resources Advisory Board approved a proposal for the study before it began. “In a way, it’s decolonizing the existing academic model that hasn’t been very inclusive of Indigenous histories,” says Lake.The researchers also analysed sediment cores collected near two low-elevation lakes in the Klamath Mountains that are culturally important to the tribes. Layers of pollen in the cores were used to infer the approximate tree density in the area at various times, and modelling helped date the cores so they could estimate how that density changed.The team also measured charcoal in the cores’ layers, which helped to map fluctuations in the amount of fire in the region. Burn scars on tree stumps pointed to specific instances of fire in between 1700-1900. Because the stumps’ rings serve as an ecological calendar, the researchers were able to compare periods of fire with corresponding tree-density data. They then pieced together how this density fluctuated with fire incidence. Although these empirical methods could not specifically confirm that the fires were lit by the tribes, patterns suggested when this was more probable, says Knight. For instance, increased burning in cool, wet periods, when fires caused by lightning were probably less common, suggested a human influence.Combining multiple lines of evidence, Knight and her team show that the tree density in this region of Klamath Mountains started to increase as the area was colonized, partly because the European settlers prevented Indigenous peoples from practising cultural burning. In the twentieth century, total fire suppression became a standard management practice, and fires of any kind were extinguished or prevented — although controlled burns are currently used in forest management. The team reports that in some areas, the tree density is higher than it has been for thousands of years, owing in part to fire suppression.Healthy forestA dense forest isn’t necessarily a healthy one, says Knight. The Douglas-fir, which dominate the low-land Klamath forests, are less fire resilient and more prone to calamitous wildfires. “This idea that we simply should let nature take its course is just not supported by this work,” she says. She adds that one of the study’s strengths is the multiple lines of evidence showing that past Indigenous burning helped to manage tree density.Fire ecologist Jeffrey Kane at the California State Polytechnic University Humboldt in Arcata says that the study’s findings of increased tree density are not surprising. He has made similar observations in the Klamath region. “There’s a lot more trees than were there just 120 years ago,” he says.Dominick DellaSala, chief scientist at forest-protection organization Wild Heritage in Talent, Oregon, points out that the results suggesting record tree densities cannot be applied to the entire Klamath region, owing to the limited range of the study’s lakeside data.Knight, however, says that the results can be extrapolated to other similar low-elevation lake sites that have similar vegetation types.More Indigenous voicesPalaeoecology studies are increasingly incorporating Indigenous knowledge — but there’s still a long way to go, says physical geographer Michela Mariani at the University of Nottingham, UK. In Australia, Mariani has also found that tree density began to increase after British colonization hampered cultural burning. “It’s very important that we now include Indigenous people in the discussion in fire management moving on,” Mariani says. “They have a deeper knowledge of the landscape we simply don’t have.”Including Indigenous voices in research is also crucial for decolonizing conventional scientific methods, Lake emphasizes. It “becomes a form of justice for those Indigenous people who have long been excluded, marginalized and not acknowledged”, he says. More

  • in

    Original karst tiankeng with underground virgin forest as an inaccessible refugia originated from a degraded surface flora in Yunnan, China

    Zhu, X. China’s karst tiankeng and its value for science and tourism. Sci. Technol. Rev. 19, 60–63 (2001).
    Google Scholar 
    Zhu, X. et al. A brift study on karst tiankeng. Carsol. Sin. 22, 51–65 (2003).
    Google Scholar 
    Zhu, X. & Waltham, T. Tiankeng: Definition and description. Cave Karst Sci. 32, 75–79 (2005).
    Google Scholar 
    Zhu, X. & Chen, W. Tiankengs in the karst of China. Cave Karst Sci. 32, 55–56 (2005).
    Google Scholar 
    Shui, W., Chen, Y., Wang, Y., Su, Z. & Zhang, S. Origination, study progress and prospect of karst tiankeng research in China. Acta Geogr. Sin. 70, 431–446 (2015).
    Google Scholar 
    Alexander, K. Cave un-roofing as a large-scale geomorphic process. Carsol. Sin. 4, 1–11 (2006).
    Google Scholar 
    Palmer, A. & Palmer, M. Hydraulic processes in the origin of tiankengs. Speleogenesis Evol. Karst Aquifers 4, 8 (2006).
    Google Scholar 
    Waltham, T. Collapse processes at the tiankengs of Xingwen. Cave Karst Sci. 32, 107–110 (2005).
    Google Scholar 
    White, W. & White, E. Size scales for closed depression landforms: The place of tiankengs. Cave Karst Sci. 32, 111–118 (2005).
    Google Scholar 
    Chen, W., Zhu, X., Zhu, D. & Ma, Z. Karst geological relics and development of Xiaozhai Tiankeng and Tianjinxia Fissure Gorge, Fengjie, Chongqing. J. Mountain Sci. 22, 22–29 (2004).CAS 

    Google Scholar 
    Yue, Y., Wang, K., Zhang, W., Chen, H. & Wang, M. Relationships between soil and environment in Peak-Cluster Depression areas of karst region based on canonical correspondence analysis. Environ. Sci. 29, 1400–1405 (2008).
    Google Scholar 
    Huang, B., Cai, W., Xue, Y. & Zhu, X. Research on tourism resource characteristics of tiankeng group in Dashiwei, Guangxi. Geogr. Geo-Inf. Sci. 20, 109–112 (2004).CAS 

    Google Scholar 
    Zhu, X. Discovery of erosional tiankeng in Houping, Wulong and its value of science and tourism. Carsol. Sin. 2, 93–98 (2006).
    Google Scholar 
    Yuan, D. The development of modern karstology in China. Geol. Rev. 52, 733–736 (2006).CAS 

    Google Scholar 
    Gunn, J. Turloughs and tiankengs: Distinctive doline forms. Cave Karst Sci. 32, 83–84 (2005).
    Google Scholar 
    Klimchou, A. Cave un-roofing as a large-scale geomorphic process. Cave Karst Sci. 32, 93–98 (2005).
    Google Scholar 
    Zhu, X., Chen, W. & Erin, L. Wulong karst systems and as an indicator of local tectonic uplift. Carsol. Sin. 26, 119–125 (2007).
    Google Scholar 
    Shui, W. & Wang, X. Geological expedition and analysis on formation and evolvement of erosive Karst Tiankeng: A case study of Xingwen World Geopark. Adv. Mater. Res. 250–253, 2002–2006 (2011).Article 

    Google Scholar 
    Su, S., Huang, K. & Ma, B. Diversity study on pteridophyte flora in the area of Dashiwei Tiankeng group of Leye County. Hubei Agric. Sci. 51, 948–950 (2012).
    Google Scholar 
    Huang, K. & Su, S. Resource investigation and application research of pteridophyte flora resource in the area of Dashiwei Tiankeng Group. Anhui Agric. Sci. Bull. 21, 74–80 (2015).CAS 

    Google Scholar 
    Su, Y., Xue, Y., Fan, B., Mo, F. & Feng, H. Plant community structure and species diversity in Liuxing tiankeng of Guangxi. Acta Botan. Boreali-Occiden. Sin. 36, 2300–2306 (2016).
    Google Scholar 
    Li, W., Xiang, Y., Du, Y. & Wu, X. Underground forest communities in Zhanyi, Yunnan Province. For. Sci. Technol. 20–25 (2001).Jian, X. et al. Interspecific relationships of grassland plant community’s dominant species in moderate-degraded tiankeng of Yunnan, China. Chin. J. Appl. Ecol. 29, 1–14. https://doi.org/10.13287/j.1001 (2018).Article 

    Google Scholar 
    Chen, W., Zhu, D. & Zhu, X. Characteristics and evaluation of karst landscape in tiankeng-difeng scenery site, Fengjie, Chongqing. Geogr. Geo-Inf. Sci. 20, 80–83 (2004).CAS 

    Google Scholar 
    Wang, J. & Guo, C. Comparison between the positive and negative topographic ecosystem in karst mountainous areas and its bearing capability. Guizhou Agric. Sci. 35, 85–87 (2007).MathSciNet 

    Google Scholar 
    Tony, W. Tiankengs of the world, outside China. Speleogenesis Evol. Karst Aquifers 4, 1–12 (2006).
    Google Scholar 
    Su, Y., Tang, Q., Mo, F. & Xue, Y. Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. A comparison of the vegetation of forested and non-forested solution dolines in Hungary: A preliminary study. Biologia 69, 1339–1348 (2014).Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: Refugia and climate change. Int. J. Speleol. 43, 15–26 (2014).Article 

    Google Scholar 
    Bátori, Z. et al. Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: A case study from southern Hungary. J. Cave Karst Stud. Natl. Speleol. Soc. Bull. 74, 127–134 (2012).Article 

    Google Scholar 
    Bátori, Z. et al. Large-and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann. Bot. 119, 301–309 (2017).PubMed 
    Article 

    Google Scholar 
    Vilisics, F. et al. Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66, 499–505 (2011).Article 

    Google Scholar 
    Dolinar, B. & Vreš, B. Pregled flore Mišje doline in zgornjega porečja Rašice (Dolenjska, Slovenija). Hladnikia 30, 3–37 (2012).
    Google Scholar 
    Raschmanová, N., Miklisová, D., Ľubomír, K. & Šustr, V. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70, 802–811 (2016).Article 

    Google Scholar 
    Macarthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, F. & Yu, S. Study on the plant diversity of island-like habitats in Karst Mountain Areas. Guizhou For. Sci. Technol. 40, 18–22 (2012).CAS 

    Google Scholar 
    Hu, F., Lou, Q. & Sun, Y. Community composition and species diversity of different island habitat on Karst Mountainous in Central Guizhou. Guizhou Sci. 29, 23–28 (2011).
    Google Scholar 
    Culver, D. Karst environment. Z. Geomorphol. Suppl. 60, 103–117 (2016).Article 

    Google Scholar 
    Daily, G. Restoring value to the world’s degraded lands. Science 269, 350–354 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bartgis, R. The endangered sedge Scirpus ancistrochaetus and the flora of sinkhole ponds in Maryland and West Virginia. Castanea 57, 46–51 (1992).
    Google Scholar 
    Yu, X., Li, Y. & Ma, Z. A preliminary study on flora diversity of karst microhabitat in Shilin Park, Yunnan, China. J. Mountain Sci. 25, 438–447 (2007).
    Google Scholar 
    Dang, G., Feng, H., Tang, Q., Mo, F. & Xue, Y. New recorded species in Guangxi, China. J. Guangxi Normal Univ. (Nat. Sci. Edit.) 34, 147–150 (2016).
    Google Scholar 
    Eigenbrod, F., Gonzalez, P., Dash, J. & Steyl, I. Vulnerability of ecosystems to climate change moderated by habitat intactness. Glob. Change Biol. 21, 275–286 (2015).ADS 
    Article 

    Google Scholar 
    Cornell, H. & Lawton, J. Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).Article 

    Google Scholar 
    Helmus, M., Mahler, D. & Losos, J. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, T., Zhang, H., Ou, Z. & Tan, Y. Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China. Chin. J. Appl. Ecol. 25, 2803–2810 (2014).
    Google Scholar 
    Wen, L. et al. The succession characteristics and its driving mechanisms of plant community in karst region, Southwest China. Acta Ecol. Sin. 35, 5822–5833 (2015).Article 

    Google Scholar 
    Zhang, Z., Hu, G. & Ni, J. Erratum to: Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical Karst forests, Southwestern China. J. Mt. Sci. 10, 337–338 (2013).Article 

    Google Scholar 
    Du, H. et al. Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China. Chin. J. Plant Ecol. 37, 197–208 (2013).Article 

    Google Scholar 
    Liu, S., Zhang, B., Yang, Q., Hu, C. & Su, C. Species composition and diversity of plant communities in Xiaoyanwan Garden of Xingwen Karst National Geopark, Sichuan Province. Subtrop. Plant Sci. 38, 37–40 (2009).
    Google Scholar 
    Tan, C. The preliminary discussion about Haifeng’s wetland ecosystem. For. Sci. Technol. 1–8 (2002).Ma, K. & Liu, Y. Measurement of biodiversity: The measurement of α diversity. Chin. Biodivers. 2, 231–239 (1995).
    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    Simpson, E. Measurement of diversity. Nature 163, 688 (1949).ADS 
    MATH 
    Article 

    Google Scholar  More

  • in

    Asymmetric host movement reshapes local disease dynamics in metapopulations

    Ritchie, H. & Roser, M. Urbanization. Our World in Data (2018). https://ourworldindata.org/urbanization.Chen, H., Weersink, A., Beaulieu, M., Lee, Y. N. & Nagelschmitz, K. A historical review of changes in farm size in canada. Tech. Rep., University of Guelph, Institute for the Advanced Study of Food and and Agricultural Policy (2019).Gudelj, I. & White, K. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 66, 139–149 (2004).CAS 
    MATH 
    Article 

    Google Scholar 
    Augustin, N., Mugglestone, M. A. & Buckland, S. T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 339–347 (1996).Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genetics 15, 379–393 (2014).CAS 
    Article 

    Google Scholar 
    Fornaciari, A. Environmental microbial forensics and archaeology of past pandemics. Microbiol. Spect. 5, 5–1 (2017).Article 

    Google Scholar 
    Thèves, C., Crubézy, E. & Biagini, P. History of smallpox and its spread in human populations. Microbiol. Spect. 4, 4–4 (2016).Article 

    Google Scholar 
    Coltart, C. E., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160297 (2017).Article 

    Google Scholar 
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007).Article 

    Google Scholar 
    Lüthy, I. A., Ritacco, V. & Kantor, I. N. One hundred years after the “Spanish” flu. Medicina 78, 113–118 (2018).
    Google Scholar 
    Zhang, Y., Zhang, A. & Wang, J. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China. Transport Policy 94, 34–42 (2020).Article 

    Google Scholar 
    Coelho, M. T. P. et al. Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ 8, e9708 (2020).Article 

    Google Scholar 
    Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: A critical perspective. Trends Parasitol. 31, 149–159 (2015).Article 

    Google Scholar 
    Soulsbury, C. D. & White, P. C. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541–553 (2015).Article 

    Google Scholar 
    VanderWaal, K. L. et al. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control. Prevent. Vet. Med. 123, 12–22 (2016).Article 

    Google Scholar 
    Rossi, G. et al. The potential role of direct and indirect contacts on infection spread in dairy farm networks. PLOS Comput. Biol. 13, e1005301 (2017).Article 

    Google Scholar 
    Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLOS Neg. Trop. Dis. 3, e481 (2009).Article 

    Google Scholar 
    Cosner, C. Models for the effects of host movement in vector-borne disease systems. Math. Biosci. 270, 192–197 (2015).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Scherer, P.C. Infection on the move: individual host movement drives disease persistence in spatially structured landscapes. Dr. rer. nat. thesis, Universität Potsdam (2019).Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298–1301 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: Incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).Article 

    Google Scholar 
    Daversa, D., Fenton, A., Dell, A., Garner, T. & Manica, A. Infections on the move: How transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).Article 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Kobayashi, K. & Okumura, M. The growth of city systems with high-speed railway systems. Ann. Region. Sci. 31, 39–56 (1997).Article 

    Google Scholar 
    VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M. & Craft, M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics 24, 67–75 (2018).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wang, L. & Li, X. Spatial epidemiology of networked metapopulation: An overview. Chin. Sci. Bull. 59, 3511–3522 (2014).Article 

    Google Scholar 
    Ruxton, G. D. Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proc. R. Soc. Lond. Seri. B Biol. Sci. 256, 189–193 (1994).ADS 
    Article 

    Google Scholar 
    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. Seri. B Biol. Sci. 265, 7–10 (1998).CAS 
    Article 

    Google Scholar 
    Rosenzweig, M. L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    Philipson, T. Economic epidemiology and infectious diseases. Handb. Health Econ. 1, 1761–1799 (2000).Article 

    Google Scholar 
    Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resource Dynamics, Monographs in Population Biology Vol. 36 (Princeton University Press, 2003).
    Google Scholar 
    Murdoch, W. W. & Oaten, A. Predation and population stability. In Advances in Ecological Research, vol. 9, 1–131 (Elsevier, 1975).Bolker, B. & Grenfell, B. T. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 348, 309–320 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002).Article 

    Google Scholar 
    Arino, J. Spatio-temporal spread of infectious pathogens of humans. Infect. Dis. Model. 2, 218–228 (2017).
    Google Scholar 
    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011).MATH 
    Book 

    Google Scholar 
    Wilson, E. B. & Worcester, J. The spread of an epidemic. Proc. Nat. Acad. Sci. 31, 327 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Rushton, S. & Mautner, A. The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126–132 (1955).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLOS Comput. Biol. 9, e1003308 (2013).ADS 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl. Acad. Sci. 111, 10767–10772 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiao, Y., Zhou, Y. & Tang, S. Modelling disease spread in dispersal networks at two levels. Math. Med. Biol. J. IMA 28, 227–244 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Arino, J., Ducrot, A. & Zongo, P. A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol. 64, 423–448 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    De Roos, A. M., Mccauley, E. & Wilson, W. G. Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 246, 117–122 (1991).ADS 
    Article 

    Google Scholar 
    Dey, S., Goswami, B. & Joshi, A. Effects of symmetric and asymmetric dispersal on the dynamics of heterogeneous metapopulations: Two-patch systems revisited. J. Theor. Biol. 345, 52–60 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Gupta, S., Ferguson, N. & Anderson, R. Chaos persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Holland, M. D. & Hastings, A. Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792–794 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Singh, A. & Gakkhar, S. Synchronization of chaos in a food web in ecological systems. World Acad. Sci. Eng. Technol. 70, 94–98 (2010).
    Google Scholar 
    Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138, 768–776 (1991).Article 

    Google Scholar 
    Heino, M., Kaitala, V., Ranta, E. & Lindström, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 264, 481–486 (1997).ADS 
    Article 

    Google Scholar 
    Molofsky, J. & Ferdy, J.-B. Extinction dynamics in experimental metapopulations. Proc. Natl. Acad. Sci. 102, 3726–3731 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012).ADS 
    Article 

    Google Scholar 
    Majhi, S. & Ghosh, D. Amplitude death and resurgence of oscillation in networks of mobile oscillators. Europhys. Lett. 118, 40002 (2017).ADS 
    Article 

    Google Scholar 
    Shen, C., Chen, H. & Hou, Z. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators. Chaos 24, 043125 (2014).MATH 
    Article 

    Google Scholar 
    Karnatak, R., Ramaswamy, R. & Feudel, U. Conjugate coupling in ecosystems: Cross-predation stabilizes food webs. Chaos Solitons Fractals 68, 48–57 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bolker, B. M. & Grenfell, B. T. Chaos and biological complexity in measles dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 75–81 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Olsen, L. F., Truty, G. L. & Schaffer, W. M. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Lundberg, P., Ranta, E., Ripa, J. & Kaitala, V. Population variability in space and time. Trends Ecol. Evolut. 15, 460–464 (2000).CAS 
    Article 

    Google Scholar 
    Dekker, A. Realistic social networks for simulation using network rewiring. In International Congress on Modelling and Simulation, 677–683 (2007).Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).
    Google Scholar 
    Sallaberry, A., Zaidi, F. & Melançon, G. Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 3, 597–609 (2013).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).Article 

    Google Scholar 
    Pastor-Satorras, R. & Vespignani, A. Epidemics and immunization in scale-free networks. In Handbook of Graphs and Networks, 111–130 (Wiley Online Library, 2002).Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Shirley, M. D. & Rushton, S. P. The impacts of network topology on disease spread. Ecol. Complex. 2, 287–299 (2005).Article 

    Google Scholar 
    Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005).Article 

    Google Scholar 
    Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Hooper, S., Buckle, K. & McCowan, B. Network structure and prevalence of Cryptosporidium in Belding’s ground squirrels. Behav. Ecol. Sociobiol. 67, 1951–1959 (2013).Article 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evolut. 20, 345–353 (2005).Article 

    Google Scholar 
    Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, (2011).Bajardi, P. et al. Human mobility networks, travel restrictions, and the global spread of 2009 h1n1 pandemic. PloS one 6, e16591 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gog, J. R. et al. Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics 10, 45–48 (2015).Article 

    Google Scholar 
    Cen, X., Feng, Z. & Zhao, Y. Emerging disease dynamics in a model coupling within-host and between-host systems. J. Theor. Biol. 361, 141–151 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Meakin, S. R. & Keeling, M. J. Correlations between stochastic epidemics in two interacting populations. Epidemics 26, 58–67 (2019).Article 

    Google Scholar 
    Machado, G. et al. Identifying outbreaks of porcine epidemic diarrhea virus through animal movements and spatial neighborhoods. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biol. 63, 141–163 (2018).Article 

    Google Scholar 
    Pedersen, T. L. tidygraph: a tidy API for graph manipulation (2019). R package version 1.1.2.Rackauckas, C. & Nie, Q. Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017).Rackauckas, C. & Nie, Q. Confederated modular differential equation APIS for accelerated algorithm development and benchmarking. Adv. Eng. Softw. 132, 1–6 (2019).Article 

    Google Scholar 
    Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). More

  • in

    Pingers are effective in reducing net entanglement of river dolphins

    Lal Mohan, R. S., Dey, S. C., Bairagi, S. P. & Roy, S. On a survey of the Ganges River dolphin Platanista gangetica of Bramaputra River, Assam. J. Bombay Nat. Hist. Soc. 94, 483–495 (1997).
    Google Scholar 
    Sinha, R.K., et al. Status and distribution of the Ganges susu (Platanista gangetica) in Ganges River system of India and Nepal in Biology and conservation of freshwater cetaceans in Asia (eds. Reeves, R. R., Smith, B. D. & Kasuya, T). 42–48 (Switzerland: Occasional Paper of the IUCN Species Survival Commission, 2000)Sinha, R. K. & Kannan, K. Ganges River dolphin: an overview of biology, ecology, and conservation status in India. Ambio. 43,1029–1046 (2014).
    Google Scholar 
    Anderson, J. Anatomical and Zoological Researches: Comprising an Account of the Zoological Results of the Two Expeditions to Western Yunnan in 1868 and 1875; and A Monograph of the Two Cetacean Genera, Platanista and Orcella-Vol. 1 (Text). Vol. 1 (Bernard Quaritch, 1878).Herald, E. S. et al. Blind river dolphin: first side-swimming cetacean. Science 166, 1408–1410 (1969).ADS 
    CAS 

    Google Scholar 
    Herald, E. S. Field and aquarium study of the blind River Dolphin (Platanista Gangetica) (California Academy of Sciences San Fransico Steinhart Aquarium, 1969).Pilleri, G., Zbinden, K., Gihr, M. & Kraus, C. Sonar clicks, directionality of the emission field and echolocating behaviour of the Indus dolphin (Platanista indi, Blyth, 1859). Invest. Cetacea Brain Anat. Inst. Berne Switzerl. 13–43 (1976).Jensen, F. H. et al. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges river dolphins in a shallow, acoustically complex habitat. PLoS ONE 8, e59284 (2013).ADS 
    CAS 

    Google Scholar 
    Pence, E.A. Monofilament gill net acoustic study. (National Mammal Laboratory, Contract 40-ABNF-5-1988,1986)Jefferson, T. A., Würsig, B. & Fertl, D. Cetacean Detection and Responses to Fishing Gear in Marine Mammal Sensory Systems (eds. Thomas, J.A., Kastelein, R.A. & Supin, A.Y.) 663–684 (Springer, 1992)
    Google Scholar 
    Mansur, E. F., Smith, B. D., Mowgli, R. M. & Diyan, M. A. A. Two incidents of fishing gear entanglement of Ganges River dolphins (Platanista gangetica gangetica) in waterways of the Sundarbans mangrove forest, Bangladesh. Aquat. Mamm. 34, 362 (2008).
    Google Scholar 
    Sinha, R. K. An alternative to dolphin oil as a fish attractant in the Ganges River system: conservation of the Ganges River dolphin.
    Biol. Conserv. 107, 253–257 https://doi.org/10.1016/S0006-3207(02)00058-7 (2002).Article 

    Google Scholar 
    Qureshi, Q. et al. Development of conservation action plan for river dolphin. 228 (Wildlife Institute of India, Dehradun, Uttarakhand, 2018).Kolipakam, V. et al. Evidence for the continued use of river dolphin oil for bait fishing and traditional medicine: implications for conservation. Heliyon 6, e04690 (2020).
    Google Scholar 
    Wakid, A. Initiative to reduce the fishing pressures in and around identified habitats of endangered Gangetic dolphin in Brahmaputra River system. (Assam, 2010).Braulik, G.T. & Smith, B.D. Platanista gangetica (amended version of 2017
    assessment). The IUCN Red List of Threatened Species, e.T41758A151913336. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A151913336.en (2019).Dawson, S. M., Northridge, S., Waples, D. & Read, A. J. To ping or not to ping: the use of active acoustic devices in mitigating interactions between small cetaceans and gillnet fisheries. Endanger. Species Res. 19, 201–221 (2013)
    Google Scholar 
    Reeves, R. R., McClellan, K. & Werner, T. B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 20, 71–97 (2013).
    Google Scholar 
    Moore, M. J. et al. Fatally entangled right whales can die extremely slowly in OCEANS 2006. 1–3 (IEEE, 2006).Meÿer, M.A. et al. Trends and interventions in large whale entanglement along the South African coast. Afr. J. Mar. Sci. 33, 429–439 (2011).
    Google Scholar 
    Knowlton, A. R., Hamilton, P. K., Marx, M. K., Pettis, H. M. & Kraus, S. D. Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: a 30 year retrospective. Mar. Ecol. Prog. Ser. 466, 293–302 (2012).ADS 

    Google Scholar 
    Knowlton, A. R. et al. Effects of fishing rope strength on the severity of large whale entanglements. Conserv. Biol. 30, 318–328 (2016).
    Google Scholar 
    Pace, R. M. III., Cole, T. V. & Henry, A. G. Incremental fishing gear modifications fail to significantly reduce large whale serious injury rates. Endanger. Species Res. 26, 115–126 (2014).
    Google Scholar 
    Salvador, G., Kenney, J. & Higgins, J. 2008 Supplement to the Large whale gear research summary. NOAA/Fisheries Northeast Regional Office, Protected Resources Division, Gloucester, MA (2008).van der Hoop, J. M. et al. Assessment of management to mitigate anthropogenic effects on large whales. Conserv. Biol. 27, 121–133 (2013).
    Google Scholar 
    Hamilton, S. & Baker, G. B. Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: lessons learnt and future directions. Rev. Fish Biol. Fish. 29, 223–247 (2019).
    Google Scholar 
    Bordino, P., Mackay, A. I., Werner, T. B., Northridge, S. & Read, A. Franciscana bycatch is not reduced by acoustically reflective or physically stiffened gillnets. Endanger. Species Res. 21, 1–12 (2013).
    Google Scholar 
    Dawson, S. M. Incidental catch of Hector’s dolphin in inshore gillnets. Mar. Mamm. Sci. 7, 283–295 (1991).
    Google Scholar 
    Mooney, T. A., Nachtigall, P. E. & Au, W. W. Target strength of a nylon monofilament and an acoustically enhanced gillnet: predictions of biosonar detection ranges. Aquat. Mamm. 30, 220–226 (2004).
    Google Scholar 
    Northridge, S., Sanderson, D., Mackay, A. & Hammond, P. Analysis and mitigation of cetacean bycatch in UK fisheries. Final Report
    to DEFRA, Project MF0726, Sea Mammal Research Unit, School of Biology, University of St. Andrews (2003).Mangel, J. C. et al. Illuminating gillnets to save seabirds and the potential for multi-taxa bycatch mitigation. R. Soc. Open Sci. 5, 180254 (2018).ADS 

    Google Scholar 
    Stephenson, P. C. & Wells, S. Evaluation of the effectiveness of reducing dolphin catches with pingers and exclusion grids in the Pilbara trawl fishery. (Department of Fisheries, Western Australia, 2006).Santana-Garcon, J. et al. Risk versus reward: Interactions, depredation rates, and bycatch mitigation of dolphins in demersal fish trawls. Can. J. Fish. Aquat. Sci. 75, 2233–2240 (2018).
    Google Scholar 
    Carretta, J., Barlow, J. & Enriquez, L. Acoustic pingers eliminate beaked whale bycatch in a gill net fishery. Mar. Mamm. Sci. 24, 956–961 (2008).
    Google Scholar 
    Bordino, P. et al. Reducing incidental mortality of Franciscana dolphin Pontoporia blainvillei with acoustic warning devices attached to fishing nets. Mar. Mamm. Sci. 18, 833–842 (2002).
    Google Scholar 
    Khan, U. & Willems, D. Report of the Trinational workshop on the Irrawaddy Dolphin, 1st to 4th December 2020. 41 (WWF, Pakistan & Netherlands, 2021).Deori, S. et al. PINGERS: can be the eyes of blind ganges dolphins (Platanista Gangetica Gangetica, Roxburgh 1801). J. Sci. Trans. Environ. Technov. 11, 169–178 (2018).
    Google Scholar 
    Kraus, S. D. The once and future ping: challenges for the use of acoustic deterrents in fisheries. Mar. Technol. Soc. J. 33, 90 (1999).
    Google Scholar 
    Mate, B. R. & Harvey, J. T. Acoustical deterrents in marine mammal conflicts with fisheries. a workshop held February 17–18, 1986 at Newport, Oregon. NTIS, SPRINGFIELD, VA(USA) (1987).Favaro, L., Gnone, G. & Pessani, D. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): Temporal organization. Zoo Biol. 32, 210–215 (2013).
    Google Scholar 
    Dey, M., Krishnaswamy, J., Morisaka, T. & Kelkar, N. Interacting effects of vessel noise and shallow river depth elevate metabolic stress in Ganges river dolphins. Sci. Rep. 9, 15426. https://doi.org/10.1038/s41598-019-51664-1 (2019).ADS 

    Google Scholar 
    Kastelein, R. A. et al. Effects of acoustic alarms, designed to reduce small cetacean bycatch in gillnet fisheries, on the behaviour of North Sea fish species in a large tank. Mar. Environ. Res. 64, 160–180 (2007).CAS 

    Google Scholar 
    Kraus, S. et al. Acoustic alarms reduce porpoise mortality. Nature 388, 525 (1997).ADS 
    CAS 

    Google Scholar 
    Roberts, B. L. & Read, A. J. Field assessment of C-POD performance in detecting echolocation click trains of bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 169–190 (2015).
    Google Scholar 
    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag, New York, 2009).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).Crawley, M. J. Statistics: An Introduction using R (Wiley, 2005).MATH 

    Google Scholar 
    Perrin, W. F., Donovan, G.P. & Barlow, J. Report of the workshop on mortality of cetaceans in passive fishing nets and traps. Rep. Int. Whal. Commn. 1–71 (Cambridge: IWC, 1994).Read, A. J., Drinker, P. & Northridge, S. Bycatch of marine mammals in US and global fisheries. Conserv. Biol. 20, 163–169 (2006).
    Google Scholar 
    Reeves, R. & Leatherwood, S. Action plan for the conservation of cetaceans: dolphins, porpoises, and whales. IUCN/SSC Cetacean Specialist Group (IUCN Cambridge, 1998).Smith, B. D. & Braulik, G. Susu and Bhulan : Platanista gangetica gangetica and P. g. minor in Encyclopedia of Marine Mammals. 1135–1139 (Academic Press Ltd – Elsevier Science Ltd, 2009).Wakid, A. Status and distribution of the endangered Gangetic dolphin (Platanista gangetica gangetica) in the Brahmaputra River within India in 2005. Curr. Sci., 97, 1143–1151 (2009).
    Google Scholar 
    D’agrosa, C., Lennert-Cody, C. E. & Vidal, O. Vaquita bycatch in Mexico’s artisanal gillnet fisheries: driving a small population to extinction. Conserv. Biol. 14, 1110–1119 (2000).
    Google Scholar 
    Jaramillo-Legorreta, A. et al. Saving the vaquita: immediate action, not more data. Conserv. Biol., 21, 1653–1655 (2007).
    Google Scholar 
    Turvey, S. T. et al. First human-caused extinction of a cetacean species?. Biol. Lett. 3, 537–540 (2007).
    Google Scholar 
    Bashir, T., Khan, A., Gautam, P. & Behera, S. K. Abundance and prey availability assessment of Ganges River dolphin (Platanista gangetica gangetica) in a stretch of Upper Ganges River, India. Aquat. Mamm. 36, 19–26 (2010).
    Google Scholar 
    Braulik, G.T. & Smith, B.D. Platanista gangetica. The IUCN Red List of Threatened Species, e.T41758A50383612. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A50383612.en (2017).Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Smith, A. M. & Smith, B. D. Review of status and threats to river cetaceans and recommendations for their conservation. Environ. Rev. 6, 189–206 (1998).
    Google Scholar 
    Wedekin, L., Daura-Jorge, F., Piacentini, V. & Simões-Lopes, P. Seasonal variations in spatial usage by the estuarine dolphin, Sotalia guianensis (van Bénéden, 1864)(Cetacea; Delphinidae) at its southern limit of distribution. Brazil. J. Biol. 67, 1–8 (2007).CAS 

    Google Scholar 
    Omeyer, L. et al. Assessing the effects of banana pingers as a bycatch mitigation device for harbour porpoises (Phocoena phocoena). Front. Mar. Sci. 285 (2020).Barlow, J. & Cameron, G. A. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gill net fishery. Mar. Mamm. Sci. 19, 265–283 (2003).
    Google Scholar 
    Amano, M., Kusumoto, M., Abe, M. & Akamatsu, T. Long-term effectiveness of pingers on a small population of finless porpoises in Japan. Endanger. Species Res. 32, 35–40 (2017).
    Google Scholar 
    Clay, T. A., Alfaro-Shigueto, J., Godley, B. J., Tregenza, N. & Mangel, J. C. Pingers reduce the activity of Burmeister’s porpoise around small-scale gillnet vessels. Mar. Ecol. Prog. Ser. 626, 197–208 (2019).ADS 

    Google Scholar 
    Kyhn, L. A. et al. Pingers cause temporary habitat displacement in the harbour porpoise Phocoena phocoena. Mar. Ecol. Prog. Ser. 526, 253–265 (2015).ADS 

    Google Scholar 
    Sugimatsu, H. et al. Study of acoustic characteristics of Ganges river dolphin calf using echolocation clicks recorded during long-term in-situ observation in 2012 OCEANS. 1–7 (IEEE, 2012).Ayadi, A., Ghorbel, M. & Bradai, M. N. Do pingers reduce interactions between bottlenose dolphins and trammel nets around the Kerkennah Islands (Central Mediterranean Sea)?. Cahiers Biol. Mar. 54, 375–383 (2013).
    Google Scholar 
    Carretta, J. V. & Barlow, J. Long-term effectiveness, failure rates, and “dinner bell” properties of acoustic pingers in a gillnet fishery. Mar. Technol. Soc. J. 45, 7–19 (2011).
    Google Scholar 
    Read, A. J., Waples, D. M., Urian, K. W. & Swanner, D. Fine-scale behaviour of bottlenose dolphins around gillnets. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, S90–S92 (2003).
    Google Scholar 
    Olesiuk, P. F., Nichol, L. M., Sowden, M. J. & Ford, J. K. Effect of the sound generated by an acoustic harassment device on the relative abundance and distribution of harbor porpoises (Phocoena phocoena) in Retreat Passage, British Columbia. Mar. Mamm. Sci. 18, 843–862 (2002).
    Google Scholar 
    Cox, T. M., Read, A. J., Solow, A. & Tregenza, N. Will harbour porpoises (Phocoena phocoena) habituate to pingers?. J. Cetacean Res. Manag. 3, 81–86 (2001).
    Google Scholar 
    Bruno, C. A. et al. Acoustic deterrent devices as mitigation tool to prevent dolphin-fishery interactions in the Aeolian Archipelago (Southern Tyrrhenian Sea, Italy). Mediterr. Mar. Sci. 22, 408–421 (2021).
    Google Scholar 
    Enger, P. S. Frequency discrimination in teleosts—central or peripheral in Hearing and sound communication in fishes (eds. Tavolga, W. N. et al.) 243–255 (Springer-Verlag, New York, 1981).
    Google Scholar 
    Halvorsen, M. B., Casper, B. M., Matthews, F., Carlson, T. J. & Popper, A. N. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proc. R. Soc. B Biol. Sci. 279, 4705–4714 (2012).
    Google Scholar 
    Ladich, F. Sound communication in fishes and the influence of ambient and anthropogenic noise. Bioacoustics 17, 34–38 (2008).
    Google Scholar 
    McCauley, R. D., Fewtrell, J. & Popper, A. N. High intensity anthropogenic sound damages fish ears. J. Acoust. Soc. Am. 113, 638–642 (2003).ADS 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
    Google Scholar 
    Gazo, M., Gonzalvo, J. & Aguilar, A. Pingers as deterrents of bottlenose dolphins interacting with trammel nets. Fish. Res. 92, 70–75 (2008).
    Google Scholar 
    Waples, D. M. et al. A field test of acoustic deterrent devices used to reduce interactions between bottlenose dolphins and a coastal gillnet fishery. Biol. Conserv. 157, 163–171 (2013).
    Google Scholar 
    Leaper, R. & Calderan, S. Review of methods used to reduce risks of cetacean bycatch and entanglements. CMS Tech. Ser. 38 (UNEP/CMS Secretariat, Bonn, Germany, 2018). More

  • in

    Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes

    We express our gratitude to Lukáš Falteisek, Richard Dorrell, Jan Petrášek, Stanislav Volsobě, Kateřina Schwarzerová and Jana Krtková for constructive discussions. English has been kindly corrected by William Bourland. Furthermore, we thank to Dovilė Barcytė, William Bourland, Antonio Calado, Dora Čertnerová, Yana Eglit, Ivan Fiala, Martina Hálová, Miroslav Hyliš, Dagmar Jirsová, Petr Kaštánek, Viktorie Kolátková, Alena Kubátová, Alexander Kudryavtsev, Frederik Leliaert, Julius Lukeš, Jan Mach, Joost Mansour, Jan Mourek, Yvonne Němcová, Fabrice Not, Vladimír Scholtz, Alastair Simpson, Pavel Škaloud, Jan Šťastný, Róbert Šuťák, Daria Tashyreva, Dana Savická, Jan Šobotník, Zdeněk Verner, Jan Votýpka for kindly providing cultures and taxonomic identifications. More