More stories

  • in

    Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 

    Google Scholar 
    Heiri, O. et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 5, 1–7 (2014).Article 
    CAS 

    Google Scholar 
    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).CAS 
    Article 

    Google Scholar 
    Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2021).Article 

    Google Scholar 
    Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 117, 23408–23417 (2020).CAS 
    Article 

    Google Scholar 
    van Hoesel, A., Hoek, W. Z., Pennock, G. M. & Drury, M. R. The Younger Dryas impact hypothesis: a critical review. Quat. Sci. Rev. 83, 95–114 (2014).Article 

    Google Scholar 
    Partin, J. W. et al. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nat. Commun. 6, 1–9 (2015).Article 

    Google Scholar 
    Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).CAS 
    Article 

    Google Scholar 
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).Article 

    Google Scholar 
    Hoek, W. Z. Vegetation response to the ∼ 14.7 and ∼ 11.5 ka cal. BP climate transitions: is vegetation lagging climate? Glob. Planet. Change 30, 103–115 (2001).Article 

    Google Scholar 
    Litt, T. et al. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 20, 1233–1249 (2001).Article 

    Google Scholar 
    Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).Article 

    Google Scholar 
    Nakagawa, T. et al. The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: implications for palaeoclimatology and archaeology. Glob. Planet. Change 202, 103493 (2021).Article 

    Google Scholar 
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).Article 

    Google Scholar 
    Engels, S. et al. Subdecadal‐scale vegetation responses to a previously unknown late‐Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci 31, 741–752 (2016).Article 

    Google Scholar 
    Van Raden, U. J. et al. High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 13–24 (2013).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Lotter, A. F., Anselmetti, F. S. & Sinninghe Damsté, J. S. A TEX86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophys. Res. Lett. 40, 948–953 (2013).Article 

    Google Scholar 
    Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109 (2014).CAS 
    Article 

    Google Scholar 
    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).CAS 
    Article 

    Google Scholar 
    Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).Article 

    Google Scholar 
    Jones, G. et al. The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. Boreas 47, 28–40 (2018).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Heiri, O. & Damsté, J. S. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).Article 

    Google Scholar 
    Bechtel, A., Smittenberg, R. H., Bernasconi, S. M. & Schubert, C. J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: insights into sources and GDGT-based proxies. Org. Geochem. 41, 822–832 (2010).CAS 
    Article 

    Google Scholar 
    Lowe, J. et al. On the timing of retreat of the Loch Lomond (‘Younger Dryas’) Readvance icefield in the SW Scottish Highlands and its wider significance. Quat. Sci. Rev. 219, 171–186 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R news 8, 20–25 (2008).
    Google Scholar 
    Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).Article 

    Google Scholar 
    Litt, T. & Stebich, M. Bio-and chronostratigraphy of the lateglacial in the Eifel region, Germany. Quat. Int. 61, 5–16 (1999).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Giesecke, T. Holocene dynamics of the southern boreal forest in Sweden. The Holocene 15, 858–872 (2005).Article 

    Google Scholar 
    Müller, D. et al. New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland. Boreas 50, 535–555 (2021).Article 

    Google Scholar 
    Davis, B. A. S. et al. The Eurasian Modern Pollen Database (EMPD), version 2. Earth Syst. Sci. data 12, 2423–2445 (2020).Article 

    Google Scholar 
    Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).Article 

    Google Scholar 
    Ralska-Jasiewiczowa, M. et al. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościaż, Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 225–247 (2003).Article 

    Google Scholar 
    Bonk, A. et al. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quat. Sci. Rev. 251, 106715 (2021).Article 

    Google Scholar 
    Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).CAS 
    Article 

    Google Scholar 
    Mekhaldi, F. et al. Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum. Clim. Past 16, 1145–1157 (2020).Article 

    Google Scholar 
    Mayfield, R. J. et al. Metrics of structural change as indicators of chironomid community stability in high latitude lakes. Quat. Sci. Rev. 249, 106594 (2020).Article 

    Google Scholar 
    van der Knaap, W. O. & Van Leeuwen, J. F. N. Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. The Holocene 13, 809–828 (2003).Article 

    Google Scholar 
    Bazelmans, J. et al. Environmental changes in the late Allerød and early Younger Dryas in the Netherlands: a multiproxy high-resolution record from a site with two Pinus sylvestris populations. Quat. Sci. Rev. 272, 107199 (2021).Article 

    Google Scholar 
    Birks, H. H., Battarbee, R. W. & Birks, H. J. B. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene-a synthesis. J. Paleolimnol 23, 91–114 (2000).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci 29, 506–507 (2014).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. Precise 14 C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC 05) chronology. J. Quat. Sci 28, 490–500 (2013).Article 

    Google Scholar 
    Wohlfarth, B. et al. Hässeldala–a key site for last termination climate events in northern Europe. Boreas 46, 143–161 (2017).Article 

    Google Scholar 
    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).Article 

    Google Scholar 
    Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006079 (2006).Brauer, A., Endres, C., Zolitschka, B. & Negendank, J. F. W. AMS radiocarbon and varve chronology from the annually laminated sediment record of Lake Meerfelder Maar, Germany. Radiocarbon 42, 355–368 (2000).CAS 
    Article 

    Google Scholar 
    Wulf, S. et al. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).Article 

    Google Scholar 
    Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quat. Sci. Rev. 106, 47–66 (2014).Article 

    Google Scholar 
    Lane, C. S. et al. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 122 192–206 (2015).Article 

    Google Scholar 
    Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene–Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).Article 

    Google Scholar 
    Muschitiello, F. et al. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Adolphi, F. et al. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 7, 662–666 (2014).CAS 
    Article 

    Google Scholar 
    Siegenthaler, U., Heimann, M. & Oeschger, H. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22, 177–191 (1980).CAS 
    Article 

    Google Scholar 
    Muscheler, R., Adolphi, F. & Svensson, A. Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth Planet. Sci. Lett. 394, 209–215 (2014).CAS 
    Article 

    Google Scholar 
    Muschitiello, F. An improved and continuous synchronization of the Greenland ice-core and Hulu Cave U-Th timescales using probabilistic inversion. Clim. Past Discuss. 1–39 https://doi.org/10.5194/cp-2021-116 (2021).Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis. (Blackwell scientific publications, 1991).Engels, S. et al. Haemelsee: late-glacial pollen counts. PANGAEA, https://doi.org/10.1594/PANGAEA.939693 (2021).Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).CAS 
    Article 

    Google Scholar 
    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol 25, 101–110 (2001).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. Tech. Guid. i–vi. Vol. 10, 1–276 (2007).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 

    Google Scholar 
    Heiri, O. & Lotter, A. F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolimnol 26, 343–350 (2001).Article 

    Google Scholar 
    Rach, O., Hadeen, X. & Sachse, D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. Org. Geochem. 142, 103995 (2020).CAS 
    Article 

    Google Scholar 
    Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).CAS 
    Article 

    Google Scholar 
    Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).CAS 
    Article 

    Google Scholar 
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. The Holocene 18, 19–30 (2008).Article 

    Google Scholar 
    R CORE TEAM, A. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. URL http://www.R-project.org (2020).Engels, S., van Geel, B., Buddelmeijer, N. & Brauer, A. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol. 221, 160–170 (2015).Article 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45 (2016).Article 

    Google Scholar  More

  • in

    Reduction of greenhouse gases emission through the use of tiletamine and zolazepam

    Caycedo-Marulanda, A. & Mathur, S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. J. Can. Anesth. 69, 269–270 (2022).CAS 
    Article 

    Google Scholar 
    World Health Organization. COP24 Special Report Health & Climate Change. https://apps.who.int/iris/bitstream/handle/10665/276405/9786057496713-tur.pdf (2018).Gadani, H. & Vyas, A. Anesthetic gases and global warming: potentials, prevention and future of anesthesia. Anesth. Essays Res. 5, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollmer, M. K. et al. Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J. & Sander, S. P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A 116, 5806–5820 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ryan, S. M. & Nielsen, C. J. Global warming potential of inhaled anesthetics: application to clinical use. Anesth. Analg. 111, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    American Society of Anesthesiologists. Task Force on Environmental Sustainability Committee on Equipment and Facilities. Greening the Operating Room and Perioperative Arena: Environmental Sustainability for Anesthesia Practice. https://www.asahq.org/about-asa/governance-and-committees/asa-committees/committee-on-equipment-and-facilities/environmental-sustainability/greening-the-operating-room#intro (2014).McGain, F., Story, D., Kayak, E., Kashima, Y. & McAlister, S. Workplace sustainability: the “cradle to grave” view of what we do. Anesth. Analg. 114, 1134–1139 (2012).PubMed 
    Article 

    Google Scholar 
    Yasny, J. S. & White, J. Environmental implications of anesthetic gases. Anesth. Prog. 59, 154–158 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byhahn, C., Wilke, H. J. & Westpphal, K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. CNS Drugs 15, 197–215 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherman, J., Le, C., Lamers, V. & Eckelman, M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 114, 1086–1090 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankes, R. F. Propofol wastage in anesthesia. Anesth. Analg. 114, 1091–1092 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weller, M. A general review of the environmental impact of health care, hospitals, operating rooms, and anesthetic care. Int. Anesthesiol. Clin. 58, 64–69 (2020).PubMed 
    Article 

    Google Scholar 
    Dawidowicz, A. L. et al. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. Biomed. Chromatogr. BMC 16, 455–458 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. L. et al. Influence of ambient temperature and confinement on the chemical immobilization of fallow deer (Dama dama). J Wildl Dis 53, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. et al. Comparison of tiletamine-zolazepam combined with dexmedetomidine or xylazine for chemical immobilization of wild fallow deer (Dama dama). J. Zoo Wildl. Med. 52, 1009–1012 (2021).PubMed 
    Article 

    Google Scholar 
    Lin, H. C., Thurmon, J. C., Benson, G. J. & Tranquilli, W. J. Telazol: a review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 16, 383–418 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. Staircase bioassay: the up-and-down method. Neurosci. Biobehav. Rev. 15, 47–50 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, C.-M. et al. Sitting position does not alter minimum alveolar concentration for desflurane. Can. J. Anesth. Can. Anesth. 54, 523–530 (2007).Article 

    Google Scholar 
    Wadhwa, A. & Sessler, D. I. Women have the same desflurane minimum alveolar concentration as men. J. Am. Soc. Anesthesiol. 99, 4 (2003).
    Google Scholar 
    Monteiro, E. R., Coelho, K., Bressan, T. F., Simões, C. R. & Monteiro, B. S. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg. 43, 27–34 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campagnol, D., Neto, F. J. T., Giordano, T., Ferreira, T. H. & Monteiro, E. R. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 68, 1308–1318 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, A., Morey, T. E., Hernandez, J. & Davies, W. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. Am. J. Vet. Res. 64, 957–962 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguado, D., Benito, J. & Gómez de Segura, I. A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 189, 63–66 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muir, W. W. III., Wiese, A. J. & March, P. A. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am. J. Vet. Res. 64, 1155–1160 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. The up-and-down method for small samples. J. Am. Stat. Assoc. 60, 967–978 (1965).MathSciNet 
    Article 

    Google Scholar 
    Paul, M. & Fisher, D. M. Are estimates of MAC reliable?. Anesthesiology 95, 1362–1370 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sonner, J. M. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth. Analg. 95, 609–614 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flecknell, P. et al. Preanesthesia, anesthesia, analgesia, and euthanasia. in Laboratory Animal Medicine 1135–1200 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409527-4.00024-9.Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A. & Robertson, S. A. Veterinary Anesthesia and Analgesia (Wiley, 2015).Book 

    Google Scholar 
    Grimm, K. A., Tranquilli, W. J. & Lamont, L. A. Essentials of Small Animal Anesthesia and Analgesia (Wiley, 2011).
    Google Scholar 
    Hanna, M. & Bryson, G. L. A long way to go: minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. Can. Anesth. 66, 838–839 (2019).Article 

    Google Scholar 
    Andersen, M. P. S., Nielsen, O. J., Wallington, T. J., Karpichev, B. & Sander, S. P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 114, 1081–1085 (2012).CAS 
    Article 

    Google Scholar 
    Ishizawa, Y. General anesthetic gases and the global environment. Anesth. Analg. 112, 213–217 (2011).PubMed 
    Article 

    Google Scholar 
    Brown, A. C., Canosa-Mas, C. E., Parr, A. D., Pierce, J. M. T. & Wayne, R. P. Tropospheric lifetimes of halogenated anaesthetics. Nature 341, 635–637 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lucio, L. M. C., Braz, M. G., don Nascimento Junior, P., Braz, J. R. C. & Braz, L. G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. Engl. Ed. 68, 33–41 (2018).
    Google Scholar 
    Waste anesthetic gases-occupational hazards in hospitals. https://www.cdc.gov/niosh/docs/2007-151/ (2007). https://doi.org/10.26616/NIOSHPUB2007151.MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e381–e388 (2017).PubMed 
    Article 

    Google Scholar 
    Rauchenwald, V. et al. New method of destroying waste anesthetic gases using gas-phase photochemistry. Anesth. Analg. 131, 288–297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Özelsel, T.J.-P., Sondekoppam, R. V., Ip, V. H. Y. & Tsui, B. C. H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anesth. Can. Anesth. 66, 249–254 (2019).Article 

    Google Scholar 
    Thiel, C. L. et al. Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States. Environ. Sci. Technol. 49, 1779–1786 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mastrangelo, G., Comiati, V., dell’Aquila, M. & Zamprogno, E. Exposure to anesthetic gases and Parkinson’s disease: a case report. BMC Neurol. 13, 194 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casale, T. et al. Anesthetic gases and occupationally exposed workers. Environ. Toxicol. Pharmacol. 37, 267–274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma, A. et al. Should total intravenous anesthesia be used to prevent the occupational waste anesthetic gas exposure of pregnant women in operating rooms?. Anesth. Analg. 128, 188–190 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, J. M. L. Comparison of disposable circle and ‘to-and-fro’ breathing systems during anaesthesia in dogs. J. Small Anim. Pract. 39, 416–420 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suttner, S. & Boldt, J. Low-flow anaesthesia: does it have potential pharmacoeconomic consequences?. Pharmacoeconomics 17, 585–590 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, R. S. & West, E. Environmental sustainability in veterinary anaesthesia. Vet. Anaesth. Analg. 46, 409–420 (2019).PubMed 
    Article 

    Google Scholar 
    Feldman, J. M. Managing fresh gas flow to reduce environmental contamination. Anesth. Analg. 114, 1093–1101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, T. V. S. Low flow anaesthesia: frequently asked questions (2020).Pattanapon, N., Bootcha, R. & Petchdee, S. The effects of anesthetic drug choice on heart rate variability in dogs. J. Adv. Vet. Anim. Res. 5, 485 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hampton, C. E. et al. Effects of intravenous administration of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for induction of anesthesia on cardiorespiratory and metabolic variables in healthy dogs before and during anesthesia maintained with isoflurane. Am. J. Vet. Res. 80, 33–44 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratnu, D. A., Anjana, R. R., Parikh, P. V. & Kelawala, D. N. Effects of tiletamine-zolazepam and isoflurane for induction and maintenance in xylazine premedicated dogs. Indian J. Vet. Sci. Biotechnol. 17, 86–88 (2021).CAS 

    Google Scholar 
    Malavasi, L. M., Jensen-Waern, M., Augustsson, H. & Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 42, 62–70 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malavasi, L. M. et al. Effects of extradural morphine on end-tidal isoflurane concentration and physiological variables in pigs undergoing abdominal surgery: a clinical study. Vet. Anaesth. Analg. 33, 307–312 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krimins, R. A., Ko, J. C., Weil, A. B., Payton, M. E. & Constable, P. D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 73, 1363–1370 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nam, S.-W., Shin, B.-J. & Jeong, S. M. Anesthetic and cardiopulmonary effects of butorphanol-tiletamine-zolazepam-medetomidine and tramadol-tiletamine-zolazepam-medetomidine in dogs. J. Vet. Clin. 30(6), 421–427 (2013).
    Google Scholar 
    Ko, J. C. H., Payton, M., Weil, A. B., Kitao, T. & Haydon, T. Comparison of anesthetic and cardiorespiratory effects of tiletamine–zolazepam–butorphanol and tiletamine–zolazepam–butorphanol– medetomidine in dogs. Vet. Ther. 8, 14 (2007).
    Google Scholar 
    Grimm, K. A., Tranquilli, W. J., Thurmon, J. C. & Benson, G. J. Duration of nonresponse to noxious stimulation after intramuscular administration of butorphanol, medetomidine, or a butorphanol-medetomidine combination during isoflurane administration in dogs. Am. J. Vet. Res. 61, 42–47 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Disease-economy trade-offs under alternative epidemic control strategies

    Here we provide an overview of the key elements of our framework including describing the contact function that links economic activities to contacts, the SIRD (Susceptible-Infectious-Recovered-Dead) model, the dynamic economic model governing choices, and calibration. The core of our approach is a dynamic optimization model of individual behavior coupled with an SIRD model of infectious disease spread. Additional details are found in the SI.Contact functionWe model daily contacts as a function of economic activities (labor supply, measured in hours, and consumption demand, measured in dollars) creating a detailed mapping between contacts and economic activities. For example, all else equal, if a susceptible individual reduces their labor supply from 8 to 4 h, they reduce their daily contacts at work from 7.5 to 3.75. Epidemiological data is central to calibrating this mapping between epidemiology and economic behavior. Intuitively, the calibration involves calculating the mean number of disease-transmitting contacts occurring at the start of the epidemic and linking it to the number of dollars spent on consumption and hours of labor supplied before the recession begins.We use an SIRD transmission framework to simulate SARS-CoV-2 transmission for a population of 331 million interacting agents. This is supported by several studies (e.g.,77,78) that identify infectiousness prior to symptom onset. We consider three health types m ∈ {S, I, R} for individuals, corresponding to epidemiological compartments of susceptible (S), infectious (I), and recovered (R). Individuals of health type m engage in various economic activities ({A}_{i}^{m}), with i denoting the activities modeled. One of the ({A}_{i}^{m}) is assumed to represent unavoidable other non-economic activities, such as sleeping and commuting, which occur during the hours of the day not used for economic activities (see SI 2.3.1). Disease dynamics are driven by contacts between susceptible and infectious types, where the number of susceptible-infectious contacts per person is given by the following linear equation:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{A}_{i}^{S}{A}_{i}^{I}$$
    (1)
    while similar in several respects to prior epi-econ models15,16,74, a methodological contribution is that ρi converts hours worked and dollars spent into contacts. For example, ρc has units of contacts per squared dollar spent at consumption activities, while ρl has units of contacts per squared hour worked.We also consider robustness to different functional forms in Fig. 6F, G as a reduced-form way to consider multiple consumption and labor activities with heterogeneous contact rates. Formally:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{({A}_{i}^{S}{A}_{i}^{I})}^{alpha },$$
    (2)
    where α  > 1 (convex) corresponds to a contact function where higher-contact activities are easiest to reduce or individuals with more contacts are easier to isolate. α  More

  • in

    Compensation for wind drift during raptor migration improves with age through mortality selection

    Newton, I. The Migration Ecology of Birds (Academic Press, 2008).Dingle, H. Migration: The Biology of Life on the Move (Oxford Univ. Press, 1996).Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alerstam, T. Wind as a selective agent in bird migration. Ornis Scand. 10, 76–93 (1979).Article 

    Google Scholar 
    Berthold, P. Bird Migration: A General Survey (Oxford Univ. Press, 2001).Alerstam, T. & Lindstrom, A. in Bird Migration: Physiology and Ecophysiology (ed. Gwinner, E.) 331–351 (Springer, 1990).Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2014).PubMed 
    Article 

    Google Scholar 
    Chapman, J. W. et al. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J. Anim. Ecol. 85, 115–124 (2016).PubMed 
    Article 

    Google Scholar 
    Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).Article 

    Google Scholar 
    Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).Article 

    Google Scholar 
    Shamoun, J., Felix, B. & Wouter, L. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A 203, 509–529 (2017).Article 
    CAS 

    Google Scholar 
    Liechti, F. Birds: Blowin’ by the wind? J. Ornithol. 147, 202–211 (2006).Article 

    Google Scholar 
    Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. B 270, 8–11 (2003).Article 

    Google Scholar 
    Sergio, F. et al. Migration by breeders and floaters of a long-lived raptor: implications for recruitment and territory quality. Anim. Behav. 131, 59–72 (2017).Article 

    Google Scholar 
    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).PubMed 
    Article 

    Google Scholar 
    Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ. Press, 2006).Zalles, J. I. & Bildstein, K. L. Raptor Watch: A Global Directory of Raptor Migration Sites (Birdlife International, 2000).Kerlinger, P. Flight Strategies of Migrating Hawks (University of Chicago Press, 1989).Sergio, F. et al. When and where mortality occurs throughout the annual cycle changes with age in a migratory bird: individual vs population implications. Sci. Rep. 9, 17352 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sergio, F. et al. Raptor nest decorations are a reliable threat against conspecifics. Science 331, 327–330 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, D. & Diop-Kane, M. Meteorology of Tropical West Africa: The Forecaster’s Handbook (2017).Liechti, F., Hedenström, A. & Alerstam, T. Effects of sidewinds on optimal flight speed of birds. J. Theor. Biol. 170, 219–225 (1994).Article 

    Google Scholar 
    Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29, 561–568 (1998).Article 

    Google Scholar 
    Cresswell, W. Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493–510 (2014).Article 

    Google Scholar 
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Bowlin, M. S. et al. Grand challenges in migration biology. Integr. Comp. Biol. 50, 261–279 (2010).PubMed 
    Article 

    Google Scholar 
    Mitchell, G. W., Woodworth, B. K., Taylor, P. D. & Norris, D. R. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov. Ecol. https://doi.org/10.1186/s40462-015-0046-5 (2015).Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).Horvitz, N. et al. The gliding speed of migrating birds: slow and safe or fast and risky? Ecol. Lett. 17, 670–679 (2014).PubMed 
    Article 

    Google Scholar 
    Reichler, T. Changes in the Atmospheric Circulation as Indicator of Climate Change (Elsevier, 2009).Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).Article 

    Google Scholar 
    Drake, A., Rock, C. A., Quinlan, S. P., Martin, M. & Green, D. J. Wind speed during migration influences the survival, timing of breeding, and productivity of a neotropical migrant, Setophaga petechia. PLoS ONE 9, e97152 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newton, I. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 147, 146–166 (2006).Article 

    Google Scholar 
    Loonstra, A. H. J., Verhoeven, M. A., Senner, N. R., Both, C. & Piersma, T. Adverse wind conditions during northward Sahara crossings increase the in-flight mortality of black-tailed godwits. Ecol. Lett. 22, 2060–2066 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blas, J., Sergio, F. & Hiraldo, F. Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography 32, 647–657 (2009).Article 

    Google Scholar 
    Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52, 1665–1675 (2015).Article 

    Google Scholar 
    Kenward, R. A Manual for Wildlife Radio Tagging (Academic Press, 2001).Hersbach, H., et al. ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service Climate Data Store https://doi.org/10.24381/cds.bd0915c6 (2018).Klaassen, R. H. G., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. B 278, 1339–1346 (2011).PubMed 
    Article 

    Google Scholar 
    Bohrer, G. et al. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol. Lett. 15, 96–103 (2012).PubMed 
    Article 

    Google Scholar 
    Shannon, H. D., Young, G. S., Yates, M. A., Fuller, M. R. & Seegar, W. S. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model. Bound. Layer Meteorol. 104, 167–199 (2002).Article 

    Google Scholar 
    Stull, R. B. An Introduction to Boundary Layer Meteorology (Springer, 1988).Safi, K. et al. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 1–13 (2013).Article 

    Google Scholar 
    Batschelet, E. Circular Statistics in Biology (Academic Press, 1981).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).O’Neill, P. Magnetoreception and baroreception in birds. Dev. Growth Differ. 55, 188–197 (2013).PubMed 
    Article 

    Google Scholar 
    Bingman, V.P. and Moore, P. in Aeroecology (eds. Chilson, P. B. et al.) 119–143 (Springer International Publishing, 2017).Liechti, F. and McGuire, L. P. in Aeroecology (eds. Chilson, P. B. et al.) 179–198 (Springer International Publishing, 2017).Richardson, W. J. Wind and orientation of migrating birds: a review. EXS 60, 226–249 (1991).CAS 
    PubMed 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 
    Article 

    Google Scholar 
    Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B 369, 20130195 (2014).Article 

    Google Scholar 
    Schaub, M., Kania, W. & Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 74, 656–666 (2005).Article 

    Google Scholar 
    Despland, E., Rosenberg, J. & Simpson, S. J. Landscape structure and locust swarming: a satellite’s eye view. Ecography 27, 381–391 (2004).Article 

    Google Scholar 
    Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Sapir, N., Horvitz, N., Dechmann, D. K. N., Fahr, J. & Wikelski, M. Commuting fruit bats beneficially modulate their flight in relation to wind. Proc. R. Soc. B 281, 20140018 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becciu, P., Panuccio, M., Catoni, C., Dell’omo, G. & Sapir, N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav. Ecol. Sociobiol. 72, 28 (2018).Article 

    Google Scholar 
    Klaassen, R. H. G. et al. Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J. Avian Biol. 41, 200–207 (2010).Article 

    Google Scholar 
    Strandberg, R., Klaassen, R. H. G., Hake, M. & Alerstam, T. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. Biol. Lett. 6, 297–300 (2010).PubMed 
    Article 

    Google Scholar 
    Pennycuick, D. J. Modelling the Flying Bird (Academic Press, 2008).Shepard, E. L. C., Ross, A. N. & Portugal, S. J. Moving in a moving medium: new perspectives on flight. Phil. Trans. R. Soc. B 371, 20150382 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Doren, B. M., Horton, K. G., Stepanian, P. M., Mizrahi, D. S. & Farnsworth, A. Wind drift explains the reoriented morning flights of songbirds. Behav. Ecol. 27, 1122–1131 (2016).Article 

    Google Scholar 
    Sergio, F., Tanferna, A., Blas, J., Blanco, G. & Hiraldo, F. Reliable methods for identifying animal deaths in GPS- and satellite-tracking data: review, testing, and calibration. J. Appl. Ecol. 56, 562–572 (2019).Article 

    Google Scholar 
    Crawley, M. J. The R Book (Wiley, 2013).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA

    Chloroplast and repetitive nuclear DNA enrichment in the sedaDNA extractsTo the best of our knowledge, we generated the first large-scale target enriched dataset using sedaDNA extracted from sediments of multiple lakes. Sequencing of two datasets produced 325.5 million (M) quality-filtered paired-end DNA sequences. The first target enriched dataset, targeting both the chloroplast and a set of nuclear genes of Larix on 64 sedaDNA extracts and 19 negative controls from seven lake sediment records resulted in 324 M quality-filtered paired-end sequences. The second target enriched dataset, targeting only the set of nuclear genes of Larix on four samples and two negative controls from an additional lake (Lake CH12) resulted in 1.5 M sequences. Quality-filtering of an additional published target enriched dataset29, targeting the Larix chloroplast genome on the same CH12 samples as applied for the second dataset, added another 54 M sequences.For the chloroplast enrichment, 390 thousand (K) sequences (1%) were classified as Larix at the genus or species level. The average coverage of bait regions was 19% at a mean sequence depth of 0.8. Sequencing of 19 library and extraction blank (negative control) samples resulted in 597 K paired-end sequences, of which 58% quality-filtered and deduplicated sequences remained. Of these, 38% were classified, with 0.03% of them (463 sequences) corresponding to the genus Larix. Negative controls from library preparation resulted in no to very few (0 to 5) sequences mapping to the Larix chloroplast reference genome. Negative controls from DNA extractions, which were in several cases pooled to one library, showed a low number of sequences mapped to Larix (0 to 94 sequences, except 237 sequences in one case). Excluding all sequences in negative controls from the sample analysis had no impact on the patterns resulting from the analysis of sample data. Detailed results and evaluation of negative controls are included in the Supplementary Information (Fig. S5) and Supplementary Data 1 and 2. Samples of all lake records with sufficient sequence coverage showed damage patterns typical of ancient DNA (see Supplementary Data 3).These results are comparable to the results obtained by Schulte et al.29, where 36% of quality-filtered sequences were classified as Viridiplantae with 9% assigned to Larix. In contrast to29, we raised the confidence threshold of taxonomic classification (a parameter defining the number of k-mers needed to produce a match against a taxon in the database), which drastically reduced the number of classified sequences, but increased the confidence in the analysis36.To analyze the enrichment obtained by the nuclear gene bait set, taxonomic classification was repeated using a plant genome database including available Pinaceae genomes. The classification resulted in 716 K sequences assigned to Larix, increasing the previous results by 325 K sequences. However, almost no sequences were mapped against the targeting baits (a maximum of five sequences for some samples). A closer inspection of unmapped sequences assigned to Larix revealed a high content of repetitive DNAs. More specifically, taxonomically classified Larix sequences could be assembled to EulaSat1, the most abundant satellite repeat in the nuclear genome of Larix32,37. This short repeat with a 173 bp long motif is arranged in large arrays of tandemly repeated motifs and is exclusively present in larches32. Analysis of modern L. sibirica, and L. gmelinii (western and eastern range) genomes reveals that EulaSat1 occurs in all species, contributing to 0.62% (L. sibirica), 2.52% (western range L. gmelinii), and 2.39% (eastern range L. gmelinii), of the genomes, respectively (Fig. S2). A comparison of the sequence proportions mapping to the repeat motif in the different datasets of Lake CH12 showed a specific enrichment of the repeat motif by the nuclear gene hybridization probe set (Fig. S3).In total, 17 K sequences mapped to the repeat motif of EulaSat1. The abundance of all sequences mapped per sample is in agreement with the abundance of sequences mapped to the chloroplast genome, confirming the general history of forest development (Fig. 2). Analysis of the nucleotide frequencies in the repeat motif showed a high constancy over all samples (Fig. S4). This suggests high conservation of the EulaSat1 motif in Siberian larches over time and space. Although satellite repeats are reported to have a high sequence turnover, for larches it has been shown that repeat profiles between two geographically well-separated species—the European larch (L. decidua) and the Japanese larch (L. kaempferi)—are very similar32. The main satellite in all larches, EulaSat1, is believed to have greatly multiplied after the split of Larix from Pseudotsuga32. Given the ongoing hybridization between the three Siberian larch species, it is not surprising to find a consistent pattern of nucleotide frequencies in all samples.Fig. 2: Comparison of target enrichment with available DNA metabarcoding and pollen datasets.From left to right: Larix-classified sequence counts mapping to (1) the Larix chloroplast and (2) the EulaSat1 satellite repeat motif, (3) percentage of Larix counts in metabarcoding data, (4) percentage of Larix pollen in pollen assemblages. All data from this study, except metabarcoding data from lakes CH1213 and Bolshoye Shchuchye55 and all pollen data except for several samples of Lake Kyutyunda which were produced in this study56,57,71. Pollen data of Lake Lama and the Holocene part of Lake Kyutyunda are based on parallel sediment cores PG1111 and PG2022, respectively. No available data are marked with crosses, asterisk marks a single Larix pollen grain found in the Bolshoye Shchuchye sediments.Full size imageOff-target sequences in target enriched datasets have already been demonstrated to be useful for the analysis of high-copy DNA such as ribosomal DNA or plastomes34,38,39. A recent study on five modern sedges showed that target enriched sequencing data originally targeting a set of gene exons can also be used to study the repetitive sequence fraction and even infer phylogenetic relationships based on repetitive sequence abundance35. Another study showed that also sequence similarities between homologous repeat motifs can be used to reconstruct phylogenetic relationships among closely related taxa40,41. In the case of Larix satellite EuLaSat1 in our study, no change in nucleotide frequencies, neither related to locations nor in time, could be detected. However, our results show that the off-target fraction in target enriched sedaDNA datasets can hold valuable information and that repeat motifs in more diverse taxon groups could even be a target for enrichment. Specifically enriching for repeat motifs in sedaDNA extracts could enable the study of satellite repeat evolution as well as giving additional information on species abundance and phylogeography.In the two target enriched datasets, sequences taxonomically classified to the genus Larix and mapping to the chloroplast and to the repeat sequence, respectively, show similar patterns of abundance (see Fig. 2). Compared with published metabarcoding and pollen data from the same locations, the Larix abundance patterns can be globally reproduced, underpinning the notion that sequence abundances in target enriched data can be used as good estimates of plant abundances. For older parts of the lake records, target enriched data show Larix where metabarcoding data were unable to detect a clear signal (see Fig. 2, lakes Billyakh, Bolshoye Shchuchye, Kyutyunda, and Lama). This shows that target enrichment is superior to metabarcoding when analyzing one taxonomic group in-depth, as it is less prone to errors by DNA degradation, which can impede primer binding if the molecule becomes too short. Also, independent of age, rare taxa mostly need multiple PCR replicates to be detected by metabarcoding42,43. Target enrichment, however, is more sensitive in identifying one focal taxon group, as the total target length can be much larger (e.g., a complete organellar genome) than for metabarcoding, and the DNA damage patterns are put to use to authenticate ancient DNA. Also, it is limited by molecule length only by the applied threshold in the bioinformatic analysis, for which we used 30 base pairs (bp) as opposed to a minimum of 85 bp molecule length for the Larix metabarcoding marker (for the plant-specific trnL g/h marker44). Similarly, compared to traditional pollen analysis, target enrichment is more accurate at tracing a specific target group, as it is not dependent on pollen productivity. Especially in the case of Larix, pollen productivity is low and preservation poor, resulting in rare findings of its pollen in the sediments22,45. This could explain why for Lake Bolshoye Shchuchye, only a single Larix pollen grain was retrieved throughout the core, whereas target enrichment and metabarcoding show a strong signal in the Holocene sediments (last ~12 ka BP). Target-enriched data also records signals in MIS 2 sediments, however, sequence counts are extremely low, and as it is the only record, where both of the other proxies fail to report a signal, it should be interpreted with caution.A wider pre-glacial distribution of L. sibirica
    Chloroplast genomes of L. gmelinii and L. sibirica differ at 157 positions, which can be used to differentiate species in target enriched sedaDNA29. Here, we applied this approach to lake sediment records, which are distributed across Siberia (Fig. 1) and have time ranges back to MIS3, and thereby were able to track species composition in space and time for wide parts of the species ranges.In lakes Billyakh and Kyutyunda, ca. 1500 km east of L. sibirica current range (Fig. 1), we found evidence for a wider distribution of L. sibirica around 32 and 34 ka BP in MIS3 (Fig. 3). Billyakh is situated in the western part of the Verkhoyansk Mountains, and Kyutyunda on the Central Siberian Plateau. Both lakes have low counts of Larix DNA sequences in their oldest samples dated to 51 ka BP (Billyakh) and 38 ka BP (Kyutyunda) with variants of L. gmelinii, but there is a sudden rise in variants attributed to L. sibirica at 34 ka BP (Billyakh) and 32 ka BP (Kyutyunda), which persists in the following samples, but strongly decreases in younger samples (Fig. 3). The rise in the L. sibirica DNA sequence variants coincides with a peak in sequence counts for Lake Kyutyunda. These signals suggest a rapid invasion of L. sibirica into the ranges of L. gmelinii in climatically favorable times and a local depletion or extinction of L. sibirica during the following harsher climates. Lake Billyakh pollen data suggest a moister and warmer climate around 50–30 ka BP than in the latter part of the Last Glacial associated with the MIS3 Interstadial in Siberia46.Fig. 3: Percentage and sequence counts at variable positions along Larix chloroplast genome assigned to species.Left: Alignment of Larix-classified DNA sequences against the chloroplast genome at the 157 variable positions between the species. For each position, the percentage of sequences assigned to a single species is displayed. Each row represents one sample named according to the calibrated age before present. Gray background indicates no coverage at the respective position. Right: Total number of sequences assigned to each of the species per sample.Full size imageStrong support for a wider pre-glacial distribution of L. sibirica comes from genetic analyses which show that it is genetically close to L. olgensis, today occurring on the Korean Peninsula and adjacent areas of China and Russia27,47. It is assumed that the L. sibirica-L. olgensis complex used to share a common range, which was disrupted and displaced when the better cold-adapted L. gmelinii expanded south and southwest during the more continental climatic conditions of the Pleistocene47,48. Furthermore, modern and ancient genetic studies suggest that the L. sibirica zone was recently invaded by L. gmelinii from the east in the hybridization zone of the species, as the climate cooled after the mid-Holocene thermal maximum13,23. Today, pure stands of L. sibirica do not form a continuous habitat, but occur in netted islands5 and morphological features of L. sibirica can be found in populations of L. gmelinii located at least a hundred kilometers east of the closest L. sibirica populations49. Macrofossil findings of L. sibirica in Scandinavia dated to the early Holocene, point to the capability of rapid long-distance jump dispersal of this species50. Fossil L. sibirica cones dated to the end of the Pliocene and in the Pleistocene have also been found far east of its current range in several river valleys including Kolyma, Aldan, and Omolon, and even in the basin of the Sea of Okhotsk9. These indicate long-distance seed dispersal by rivers which may also have assisted in successful establishment since the active-layer depth is deeper close to rivers51,52. As mentioned earlier, L. sibirica is sensitive to permafrost and waterlogged soils. A warmer phase with a deeper thawed layer above the permafrost could have enabled L. sibirica to spread and establish in regions that today are part of the geographic range of L. gmelinii, as L. sibirica is reported to have higher growth rates than L. gmelinii13.
    Larix gmelinii formed northern LGM refugia across SiberiaThe possible survival of Larix in high latitude glacial refugia during the LGM is still under discussion4,53 although more and more evidence is reported in favor of the existence of such refugia17,20,21. The question of which of the Larix species formed these populations has hitherto been unanswered, as both pollen and established metabarcoding markers are not able to distinguish between species in the genus Larix, and findings of fossilized cones identifiable to species are rare. By enriching sedaDNA extracts for chloroplast genome sequences, we are, to the best of our knowledge, for the first time, able to distinguish between L. sibirica and L. gmelinii in glacial refugial populations.From Lake Lama, located at the western margin of the Putorana Plateau (Taymyr Peninsula), we obtained a continuous record extending from 23 ka BP to today with varying sequence counts with minima around 18–17 ka BP and 13 ka BP. All samples prior to the Holocene show variations predominantly assigned to L. gmelinii (Fig. 3). Our results suggest a local survival of L. gmelinii in the vicinity of Lake Lama throughout the LGM, which is supported by low numbers of Larix pollen detected through this period. Both target enriched sequence data and pollen indicate an increase from ca. 11 ka BP54. Sparse Larix pollen in the bottom part of the record could be an indication of a possible refugial population (Fig. 2; ref. 54).In Bolshoye Shchuchye, the westernmost lake of the study, situated in the Polar Ural Mountains, all Pleistocene samples show similarly a dominance of L. gmelinii sequence variations (Fig. 3). However, sequence counts for some samples are extremely low and samples from 18 and 10 ka BP had so low counts of mapped DNA sequences that none of the variable positions between the species was covered. Although sequences mapped to the satellite repeat of Larix also showed a Pleistocene signal, this was not repeated in pollen or metabarcoding (Fig. 2) which instead indicates a treeless arctic-alpine flora for the late Pleistocene55,56. Especially for the sample of 20.4 ka, Larix sequence counts are extremely low and new investigations would be needed to confirm a local presence of Larix during the LGM.The record of Lake Billyakh situated in the western Verkhoyansk Mountain Range, likewise shows extremely low counts of sequences mapped to the reference for a range of samples with no sequences covering the studied variable sites (45, 42, and 15 ka BP, 11–56 sequences mapped to non-variable sites). However, the pollen record for the same core shows a quasi-continuous record of Larix with a gap only occurring during the early LGM46 (25–22 ka BP, Fig. 2). Considering the known short-distance dispersal ability and poor preservation of Larix pollen, this strongly supports the presumed existence of a local glacial refugium at Lake Billyakh during that time20. Our samples also show a low but steady presence of Larix throughout the rest of the record, thus making glacial survival probable. The sample closest to the LGM (24 ka BP) indicates a clear dominance of L. gmelinii type variations.The only exception to this general pattern is the record from Lake Kyutyunda, which is located on the Central Siberian Plateau west of the Verkhoyansk Mountain Range. In this record, LGM samples have extremely low counts but show variations assigned to L. sibirica and not to L. gmelinii as in the other lakes. In addition, the preceding sample dated to the MIS3 interstadial shows L. sibirica variation. A possible explanation is that relics of L. sibirica survived during the LGM, but were unable to spread after climate warming, possibly due to genetic depletion or later local extinction. The presence of reworked sediment material can also not be excluded, as suggested by reworked pollen in the record57.In conclusion, our data show almost exclusively L. gmelinii variation for samples covering the most severe LGM climate conditions. This is in agreement with the ecological characteristics describing the species as adapted to extreme cold. In contrast to L. sibirica, it can grow in dwarf forms and propagate clonally and potentially survive thousands of years of adverse climatic conditions58.Postglacial colonization history—differences among larch speciesOf great interest in the Larix history is not only the location and extent of possible high latitude glacial refugia but also if and to what extent these refugia contributed to the recolonization of Siberia after the LGM. Northern refugial populations could have functioned as kernels of postglacial population spread and recolonization, or spreading could have been driven by populations that survived in southern refugia. There are only a few studies on modern populations that report evidence for possible recolonization scenarios of Larix23,27,28. Here, we show that patterns differ between L. sibirica and L. gmelinii.In the western part of our study region, two lakes are situated in the current distribution range of L. sibirica (Figs. 1, 4): Lake Bolshoye Shchuchye in the Polar Ural Mountains and Lake Lama on the Taymyr Peninsula. Despite this, both lakes show L. gmelinii for all Pleistocene samples, and a strong signal of L. sibirica variants only in the Holocene samples, with ages of 5.1 ka BP in Lake Bolshoye Shchuchye and 9.7 ka BP in Lake Lama (Fig. 3). The peak in L. sibirica also coincides with a peak of sequence counts in the respective sample, with a Larix pollen peak in Lake Lama sediments54, and metabarcoding for Lake Bolshoye Shchuchye55. This points to a migration of L. sibirica in its current northern area of northern distribution in the course of climate warming during the early Holocene, whereas glacial refugial populations were consisting of L. gmelinii. Although the local survival of L. gmelinii around Lake Bolshoye Shchuchye remains uncertain due to extremely low sequence counts, it is clear that L. sibirica did not form a refugial population at this site.Fig. 4: Percentage of DNA sequences assigned to references displayed on the geographical locations of the lakes investigated.Samples in the same time frame are averaged. Lake names and current species ranges are annotated in the middle plots. Colors indicate current species distribution (adapted from Semerikov and Lascoux72). The base map is done with ggmap73, map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.Full size imageA range-wide genetic study of L. sibirica analyzing chlorotypes and mitotypes of individuals23 found strong indications for rapid colonization of the West Siberian Plains from populations originating from the foothills of the Sayan Mountains in the south, close to the border of Mongolia, with only limited contribution from local populations. According to our results, the local populations could have been L. gmelinii populations, while the rapid invasion could have been L. sibirica.In the eastern range of the study region, in the current range of L. gmelinii, namely at lakes Emanda, Satagay, and Malaya Chabyda, genetic variations throughout the records are less pronounced. Of the three lake records, only that from Lake Emanda reaches back beyond the LGM, but with a sampling gap for the time of the LGM. Therefore, it remains uncertain whether populations survived the LGM locally, or whether they were invaded or replaced by populations coming from the south with Holocene warming. The restricted variations throughout the record, however, hint at stable populations, which is supported by scarce pollen findings (Fig. 2).Our data suggest that postglacial recolonization of L. sibirica was not started from high latitude glacial refugia, but from southern populations. In contrast, northern glacial populations of L. gmelinii could have potentially enhanced rapid dispersal after the LGM in their current area of distribution.Environment likely plays a more important role than historical factorsThe current boundaries of boreal Larix species arranged from west to east suggest a possible strong influence of the historical species distribution on the current distribution, whereas the gradient of increasing continental climate towards the east assumes a strong influence on the environment. By tracking species distribution in the past, spanning the time of the strongly adverse climate of the LGM, we can give hitherto unprecedented insights into species distribution history.Several lines of evidence suggest a strong influence of the environment on species distribution: (1) Signals for L. sibirica appeared in its current area of distribution as late as the Holocene warming, whereas cold Pleistocene samples are dominated by L. gmelinii type variation; (2) in lakes far east of its modern range, signals of variation typical for L. sibirica coincide with peaks in sequence counts (29 ka BP, Lake Billyakh; 32 ka BP Lake Kyutyunda), which point to more forested vegetation around the lakes and consequently a more favorable climate at that time; and (3) samples dated to the severely cold LGM are dominated by variations of the L. gmelinii type.This is in accordance with the different ecological characteristics described for the species. L. sibirica is sensitive to permafrost and only occurs outside of the zone of continuous permafrost5. In addition, L. sibirica achieves substantially higher growth rates and longer growth periods than L. gmelinii9,13 and can also produce more than twice as many seeds5. This potentially gives L. sibirica the ability to quickly react to climate change and outcompete the other species when the climate becomes more favorable.In contrast, L. gmelinii is adapted to extremely low soil and air temperatures and is able to grow on permafrost with very shallow thaw depths. It’s distribution almost completely coincides with continuous permafrost5, and even a restriction to permafrost areas is discussed as it does not grow well in field trials on warmer soils or where there is a small temperature gradient between air and soil9. Due to this ecology, L. gmelinii is more likely to survive in a high latitude refugium, even during the severe continental climate of the LGM, which was most probably connected to continuous permafrost of low active-layer depths.A study combining mitochondrial barcoding on sedaDNA and a modeling approach on Larix distribution in the Taymyr region around Lake CH12 concluded that the distributions of L. gmelinii and L. sibirica are most strongly influenced by stand density and thus by competition between the species, with L. gmelinii outcompeting L. sibirica at high stand densities13. As our study includes sediment cores reaching further back in time, we see a different trend. Instead of L. gmelinii, it was L. sibirica, which dominated samples with high sequence counts, suggesting high stand density and a more favorable climate. A possible explanation for the different outcomes is the use of different organelle genomes. Epp et al.13 used a marker representing the mitochondrial genome, which is known to introgress more rapidly and as a consequence might show a long past species history59,60.Our findings have potentially important implications for the projections of vegetation-climate feedback. A warming climate in conjunction with a greater permafrost thaw depth could enable the replacement of L. gmelinii by L. sibirica. In contrast to L. gmelinii, L. sibirica is not known to stabilize permafrost thus potentially further promoting permafrost thaw and with it the release of greenhouse gases, creating positive feedback on global warming11. On the other hand, the substantially higher growth rates of L. sibirica in comparison to L. gmelinii would increase carbon sequestration, thus mitigating global warming13. This shows the importance of understanding species-specific reactions to climate change, which can result in great shifts in distribution. Target enrichment applied on sedaDNA is able to reveal the impact of past climate change on populations and the increasing availability of modern reference genomes will further enhance its value of information. More

  • in

    Enhancing soil quality makes crop production more resilient to climate change

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01376-8 (2022). More

  • in

    The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation

    Fisheries overexploitation is a problem in all oceans and seas globally. Authorities and administrations in charge of assigning quotas have very little fine-grained information on the fish captures, and instead use large-scale, coarse data to assess the health level of fisheries. Thus, being able to cross-match fish species and sizes, to the sea regions they were captured from, can be helpful in this regard, providing finer-grained information.Previous attempts at assembling datasets for fish detection and classification exist, ranging from fish detection or counting in underwater images and video streams1,2,3, to counting on belts on trawler ships4, to classification in laboratory conditions5,6, or in underwater preprocessed images of single fish7,8,9, or single fish in free-form pictures10, as well as simultaneous detection and classification of several fish11,12. However, none of the works found in the literature addresses the topic of simultaneous instance segmentation and species classification, along with fish size estimation, in a fish market environment, as is the aim of this paper. Instance segmentation refers to the extraction of pixel-level masks for each individual object (in this case fish specimens), rather than bounding boxes (object detection), or class label masks (e.g. a single mask for all fish specimens of the same species, also referred to as semantic segmentation). Moreover, works in the literature use pictures taken in laboratory conditions (with a single fish per image, shown from the side), or in underwater conditions. Only French et al.4 uses pictures of fish catches on a belt, for counting purposes. Table 1 shows a summary of the datasets identified in the literature, along with their characteristics, including how the proposed dataset compares.Table 1 Summary of previous datasets found in the literature, and comparison to proposed dataset.Full size tableThe DeepFish project (website: http://deepfish.dtic.ua.es/) is aimed at providing fish species classification and size estimation for fish specimens arriving at fish markets, both for the automation of fish sales, and the retrieval of fine-grained information about the health of fisheries. For a period of six months (April to September 2021), images have been captured at the fish market in El Campello (Alicante, Spain). Images of market trays show a variety of fish species, including targeted as well as accidental captures from the ‘Cabo de la Huerta’, an important site for protection and preservation of marine habitats and biodiversity as defined by the European Comission Habitats Directive (92/43/EEC). From the pictures, a total of 59 different species are identified with 12 species having more than 100 specimens and 25 with more than 10 specimens, as shown in Table 2. There is a high imbalance of species captured due to the natural variation in fish species populations according to seasonality and other ecological factors (rarity of the species, i.e. total population count, etc). Due to some species showing sexual dimorphism (i.e. Symphodus tinca), this species is split into two separate class labels, leading to a different number of species, and class labels (59 species, but 60 class labels). The dataset presents a high temporal imbalance too. As shown in Fig. 1, the capture of new fish tray images was not evenly distributed during the six month study period. Several factors contributed to this: wholesale fish market operating days (e.g. no weekend data, holidays and stop periods, etc.), fish species variability (one of the aims was to be able to capture at least 100 specimens from several species, and seasonality meant some could not be available for capture in later months), as well as the time availability of research group members to attend the fish arrival, tray preparation and auctioning in the evenings.Table 2 Distribution of fish species in the dataset.Full size tableFig. 1Temporal distribution of fish tray images captured. It can be observed that April (04) and May (05) were much more active than the rest of months. This is due to several contributing factors.Full size imageThe resulting DeepFish dataset introduced here contains annotated images from 1,291 fish market trays, with a total of 7,339 specimens (individual fish instances) which were labelled (species and mask) using a specially-adapted version of the Django labeller instance segmentation labelling tool13. Subsequently, another JSON file is generated, following the Microsoft Common Objects in Context (MS COCO) dataset format14, which can be directly fed to a neural network. This is done via a script that is also provided15. Figure 2 shows the distribution of individuals for the selected species within the dataset. Furthermore, Fig. 3 shows examples of the trays, with instance segmentation (ground truth silhouette, i.e. as an interpolation from human-provided points) along with species labelling (different colour shading).Fig. 2Graphical view of the distribution of fish species in the DeepFish dataset for species above 10 specimens. Note, Symphodus tinca is considered separately due to sexual dimorphism (211 male; 335 female samples).Full size imageFig. 3Examples of ground truth fish instance masks with class labelling, showing the 12 species (13 labels) with more than 100 specimens (in bold in Table 2).Full size imageFrom the point of view of research, this data is important for the classification of fish species, instance segmentation, as well as specimen size estimation (e.g. as a regression problem, or otherwise). From an end-results perspective, data automatically labelled with fish instance segmentation accompanied by species name and estimated size is useful to different stakeholders, namely: fishing authorities (to understand how much of each species is being caught per zone), maritime conservation (to calculate depletion of fisheries), but also managers of the markets themselves, as well as clients (digitized sales, e-commerce), etc.The usage of the provided data can be manifold, as it can be used for several problems, namely: object detection and classification, which involves finding objects (in this case fish specimens) providing a bounding box, and a class for each of these boxes; additionally, the data can also be used for semantic segmentation, which can provide a pixel-wise segmentation of the image providing labels (in this case species labels) to different pixel regions of the image; furthermore, also instance segmentation is possible, in which not just a single label for all instances of the same species is provided, but each specimen is provided with a mask (specimen segmentation), as well as a label (species). Furthermore, several measurements of each fish are provided, which can also be used to estimate their size, since they have been shown to be correlated with each other16. These are estimated from the calculated homography (given the tray size is known), given the burden of measuring each fish due to the large amount of specimens in the dataset. More

  • in

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds.) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Turner, J. & Marshall, G. J. Climate Change in the Polar Regions (Cambridge University Press, 2011).Book 

    Google Scholar 
    Meredith, M. et al. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (2019).Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 116, 1095–1103. https://doi.org/10.1073/pnas.1812883116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegert, M. et al. The Antarctic Peninsula under a 1.5°C global warming scenario. Front. Environ. Sci. 7, 102. https://doi.org/10.3389/fenvs.2019.00102 (2019).Article 

    Google Scholar 
    Iz, H. B. Is the global sea surface temperature rise accelerating?. Geod. Geodyn. 9, 432–438. https://doi.org/10.1016/j.geog.2018.04.002 (2018).Article 

    Google Scholar 
    Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B. 286, 20181887. https://doi.org/10.1098/rspb.2018.1887 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burge, C. A., Kim, C. J., Lyles, J. M. & Harvell, C. D. Special issue Oceans and Humans Health: The ecology of marine opportunists. Microb. Ecol. 65, 869–879. https://doi.org/10.1007/s00248-013-0190-7 (2013).Article 
    PubMed 

    Google Scholar 
    Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvell, C. D. et al. Emerging marine diseases–climate links and anthropogenic factors. Science 285, 1505–1510. https://doi.org/10.1126/science.285.5433.1505 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Egan, S. & Gardiner, M. Microbial dysbiosis: Rethinking disease in marine ecosystems. Front. Microbiol. 7, 991. https://doi.org/10.3389/fmicb.2016.00991 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 17, e3000533. https://doi.org/10.1371/journal.pbio.3000533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498. https://doi.org/10.1038/s41598-019-53580-w (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsuchiya, M. Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rocky shores. J. Exp. Mar. Biol. Ecol. 66, 101–111. https://doi.org/10.1016/0022-0981(83)90032-1 (1983).Article 

    Google Scholar 
    Malham, S. K. et al. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: The influence of temperature and nutrients on health and survival. Aquaculture 287, 128–138. https://doi.org/10.1016/j.aquaculture.2008.10.006 (2009).CAS 
    Article 

    Google Scholar 
    Beyer, J. et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 130, 338–365. https://doi.org/10.1016/j.marenvres.2017.07.024 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ladeiro, M. P. et al. Mussel as a tool to define continental watershed quality. In Organismal and Molecular Malacology (ed Ray, S.), IntechOpen. https://doi.org/10.5772/67995 (2017).Bonacci, S. et al. Esterase activities in the bivalve mollusc Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment. Mar. Pollut. Bull. 49, 445–455. https://doi.org/10.1016/j.marpolbul.2004.02.033 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Storhaug, E. et al. Seasonal and spatial variations in biomarker baseline levels within Arctic populations of mussels (Mytilus spp.). Sci. Total Environ. 656, 921–936. https://doi.org/10.1016/j.scitotenv.2018.11.397 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F. et al. Liquid biopsies for omics-based analysis in sentinel mussels. PLoS ONE 14, e0223525. https://doi.org/10.1371/journal.pone.0225359 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312. https://doi.org/10.1038/s41571-020-00457-x (2021).Article 
    PubMed 

    Google Scholar 
    Kowarsky, M. et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc. Natl. Acad. Sci. USA 114, 9623–9628. https://doi.org/10.1073/pnas.1707009114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H. et al. Circulating microbiome DNA: An emerging paradigm for cancer liquid biopsy. Cancer Lett. 521, 82–87. https://doi.org/10.1016/j.canlet.2021.08.036 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lokmer, A. et al. Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple scales. Front. Microbiol. 7, 1367. https://doi.org/10.3389/fmicb.2016.01367 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lokmer, A. & Wegner, M. K. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 9, 670–682. https://doi.org/10.1038/ismej.2014.160 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Auguste, M. et al. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 670, 129–137. https://doi.org/10.1016/j.scitotenv.2019.03.133 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA 113, E5062–E5071. https://doi.org/10.1073/pnas.1609157113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/j.scitotenv.2020.137209 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Féral, J.-P. et al. PROTEKER: Implementation of a submarine observatory at the Kerguelen islands (Southern Ocean). Underw. Technol. 34, 3–10. https://doi.org/10.3723/ut.34.003 (2016).Article 

    Google Scholar 
    Spain, E. A. et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 7, e2019EA000695. https://doi.org/10.1029/2019EA000695 (2020).ADS 
    Article 

    Google Scholar 
    Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 8, 47. https://doi.org/10.1186/s40168-020-00826-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-Y. et al. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl. Microbiol. Biotechnol. 98, 4209–4221. https://doi.org/10.1007/s00253-013-5472-y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gutierrez, T., Berry, D., Teske, A. & Aitken, M. D. Enrichment of Fusobacteria in sea surface oil slicks from the Deepwater Horizon oil spill. Microorganisms. 4, 24. https://doi.org/10.3390/microorganisms4030024 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Michelou, V. K., Caporaso, J. G., Knight, R. & Palumbi, S. R. The ecology of microbial communities associated with Macrocystis pyrifera. PLoS ONE 8, e67480. https://doi.org/10.1371/annotation/48e29578-a073-42e7-bca4-2f96a5998374 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Florez, J. Z. et al. Structure of the epiphytic bacterial communities of Macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. Algal Res. 44, 101706. https://doi.org/10.1016/j.algal.2019.101706 (2019).Article 

    Google Scholar 
    Minich, J. J. et al. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13, e0192772. https://doi.org/10.1371/journal.pone.0192772 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914. https://doi.org/10.3389/fmicb.2018.01914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J. Shellfish Res. 37, 793–806. https://doi.org/10.2983/035.037.0410 (2018).Article 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) and the Blue Mussel (Mytilus edulis): Temporal variation and the influence of marine aggregate-associated microbial communities. mSphere. 4, e00730-19. https://doi.org/10.1128/mSphere.00730-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delille, D. & Gleizon, F. Distribution of enteric bacteria in Antarctic seawater surrounding the Port-aux-Francais permanent station (Kerguelen Island). Mar. Pollut. Bull. 46, 1179–1183. https://doi.org/10.1016/S0025-326X(03)00164-4 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, T. V. & Alfaro, A. C. Metabolomics investigation of summer mortality in New Zealand Greenshell mussels (Perna canaliculus). Fish Shellfish Immunol. 106, 783–791. https://doi.org/10.1016/j.fsi.2020.08.022 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb. Ecol. 75, 495–504. https://doi.org/10.1007/s00248-017-1051-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Romalde, J. L., Diéguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413. https://doi.org/10.3389/fmicb.2013.00413 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genom. 21, 56. https://doi.org/10.1186/s12864-019-6427-1 (2020).CAS 
    Article 

    Google Scholar 
    Peng, W. et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front. Microbiol. 10, 3141. https://doi.org/10.3389/fmicb.2019.03141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koner, S. et al. Assessment of carbon substrate catabolism pattern and functional metabolic pathway for microbiota of limestone caves. Microorganisms 9, 1789. https://doi.org/10.21203/rs.3.rs-549787/v1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. F. et al. Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus. Sci. Rep. 9, 16391. https://doi.org/10.1038/s41598-019-52752-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanes, E. et al. Climate change alters the haemolymph microbiome of oysters. Mar. Pollut. Bull. 164, 111991. https://doi.org/10.1016/j.marpolbul.2021.111991 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hylander, B. L. & Repasky, E. A. Temperature as a modulator of the gut microbiome: What are the implications and opportunities for thermal medicine?. Int. J. Hyperth. 36, 83–89. https://doi.org/10.1080/02656736.2019.1647356 (2019).CAS 
    Article 

    Google Scholar 
    Lo Giudice, A. et al. Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb. Ecol. 63, 210–223. https://doi.org/10.1007/s00248-011-9904-x (2012).Article 
    PubMed 

    Google Scholar 
    Yumoto, I. et al. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch. Microbiol. 181, 345–351. https://doi.org/10.1007/s00203-004-0662-8 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weingarten, E. A., Atkinson, C. L. & Jackson, C. R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 14, e0224796. https://doi.org/10.1371/journal.pone.0224796 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 37, 727–746. https://doi.org/10.2983/035.037.0405 (2018).Article 

    Google Scholar 
    Griffiths, C. L. & King, J. A. Some relationships between size, food availability and energy balance in the ribbed mussel Aulacomya ater. Mar. Biol. 51, 141–149. https://doi.org/10.1007/BF00555193 (1979).Article 

    Google Scholar 
    Riisgård, H. U. Filtration rate and growth in the blue mussel, Mytilus edulis Linneaus, 1758: Dependence on algal concentration. J. Shellfish Res. 10, 29–36 (1991).
    Google Scholar 
    Sonier, R. et al. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar. Biol. 163, 73. https://doi.org/10.1007/s00227-016-2845-7 (2016).Article 

    Google Scholar 
    Jacobs, P., Troost, K., Riegman, R. & Van der Meer, J. Length-and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101–112. https://doi.org/10.1007/s10152-014-0419-y (2015).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. J. Exp. Mar. 300, 83–130. https://doi.org/10.1016/j.jembe.2004.03.002 (2004).Article 

    Google Scholar 
    Waite, A. M., Safi, K. A., Hall, J. A. & Nodder, S. D. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45, 87–97. https://doi.org/10.4319/lo.2000.45.1.0087 (2000).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142. https://doi.org/10.1016/j.marenvres.2009.05.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, J. E. Biodynamics of suspension-feeding in adult bivalve molluscs: Particle capture, processing, and fate. Invertebr. Biol. 115, 218–231. https://doi.org/10.2307/3226932 (1996).Article 

    Google Scholar 
    Rosa, M. et al. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. 486, 59–68. https://doi.org/10.1016/j.jembe.2016.09.007 (2017).CAS 
    Article 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Bivalve immunity and response to infections: Are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12. https://doi.org/10.1016/j.fsi.2016.03.037 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. USA 110, 10771–10776. https://doi.org/10.1073/pnas.1305923110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Mucosal immunity in mollusks. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 325–370 (Academic Press, 2015).Chapter 

    Google Scholar 
    Huang, J. et al. Hemocytes in the extrapallial space of Pinctada fucata are involved in immunity and biomineralization. Sci. Rep. 8, 4657. https://doi.org/10.1038/s41598-018-22961-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. J. et al. Isolation and characterization of two bacteriophages and their preventive effects against pathogenic Vibrio coralliilyticus causing mortality of Pacific oyster (Crassostrea gigas) larvae. Microorganisms. 8, 926. https://doi.org/10.3390/microorganisms8060926 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ihara, H. et al. Sulfur-oxidizing bacteria mediate microbial community succession and element cycling in launched marine sediment. Front. Microbiol. 8, 152. https://doi.org/10.3389/fmicb.2017.00152 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, B. B. & Nelson, D. C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol. S. Am. S. 379, 63–81. https://doi.org/10.1130/0-8137-2379-5.63 (2004).Article 

    Google Scholar 
    Zhou, M. et al. Surface currents and upwelling in Kerguelen Plateau regions. Biogeosci. Discuss. 11, 6845–6876. https://doi.org/10.5194/bgd-11-6845-2014 (2014).ADS 
    Article 

    Google Scholar 
    Gille, S. T., Carranza, M. M., Cambra, R. & Morrow, R. Wind-induced upwelling in the Kerguelen Plateau region. Biogeosciences 11, 6389–6400. https://doi.org/10.5194/bg-11-6389-2014 (2014).ADS 
    Article 

    Google Scholar 
    Park, Y. H., Roquet, F., Durand, I. & Fuda, J. L. Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res. II(55), 566–581. https://doi.org/10.1016/j.dsr2.2007.12.030 (2008).ADS 
    Article 

    Google Scholar 
    Renac, C. et al. Hydrothermal fluid interaction in basaltic lava units, Kerguelen Archipelago (SW Indian Ocean). Eur. J. 22, 215–234. https://doi.org/10.1127/0935-1221/2009/0022-1993 (2010).CAS 
    Article 

    Google Scholar 
    Vancanneyt, M. et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int. J. Syst. Evol. 51, 73–79. https://doi.org/10.1099/00207713-51-1-73 (2001).CAS 
    Article 

    Google Scholar 
    Helmuth, B. S. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384. https://doi.org/10.2307/1543615 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Testut, L., Wöppelmann, G., Simon, B. & Téchiné, P. The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn. 56, 464–472. https://doi.org/10.1007/s10236-005-0056-8 (2006).ADS 
    Article 

    Google Scholar 
    Pohl, B. et al. Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. J. Appl. Meteorol. Climatol. 60, 711–731. https://doi.org/10.1175/JAMC-D-20-0255.1 (2021).ADS 
    Article 

    Google Scholar 
    PROTEKER. Ilôt Channer (Passe Royale)—Sea water temperature at 5 and 13 m depth (T°C) daily average 2014–2019. https://www.proteker.net/swt-ilot-channer-passe-royale/ (2021).Caza, F. et al. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Mar. Environ. Res. 110, 174–182. https://doi.org/10.1016/j.marenvres.2015.09.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F., Cledon, M. & St-Pierre, Y. Biomonitoring climate change and pollution in marine ecosystems: A review on Aulacomya ater. J. Mar. Biol. 2016, 7183813. https://doi.org/10.1155/2016/7183813 (2016).Article 

    Google Scholar 
    Rey-Campos, M. et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury. Sci. Rep. 9, 3569. https://doi.org/10.1038/s41598-019-39870-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caza, F. et al. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696. https://doi.org/10.1038/s41598-020-76677-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, C. L. & Somero, G. N. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comp. Biochem. Physiol. 165, 159–168. https://doi.org/10.1016/j.cbpa.2013.02.024 (2013).CAS 
    Article 

    Google Scholar 
    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): Molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558. https://doi.org/10.1242/jeb.046094 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. & Blanchet, F. G. Vegan: Community Ecology Package. 2. 3-0 (2015).Ssekagiri, A., Sloan, W. & Ijaz, U. Z. microbiomeSeq: an R package for analysis of microbial communities in an environmental context, In ISCB Africa ASBCB Conference (Kumasi, Ghana, 2017).Cao, Y. Microbiome marker: Microbiome Biomarker Analysis Toolkit. R package version 0.99.0 (2020). https://github.com/yiluheihei/microbiomeMarker. Accessed March 2022.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS ONE 11, e0166104. https://doi.org/10.1371/journal.pone.0166104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More