More stories

  • in

    Convergent evolution of a labile nutritional symbiosis in ants

    Genome characteristics of ancient obligate symbiontsWe first tested the hypothesis that each of the ant lineages sequenced in our study (Cardiocondyla, Formica, and Plagiolepis) hosts its own ancient strictly vertically transmitted symbiont that have co-speciated with its host, which has been shown previously in the Camponotus- Blochmannia symbiosis [17]. To address this aim, we compared the genomes of symbionts from 13 species of ants, 8 from our study combined with 5 previously published genomes, representing four independently evolved symbioses. This includes symbionts from three Formica, two Plagiolepis, and an additional three Cardiocondyla species that we sequenced, in addition to four previously published genomes from Blochmannia, the obligate symbiont of Camponotus ants, and the one pre-existing Westeberhardia genome from Cardiocondyla obscurior [8, 18,19,20,21].We found the gene order of single copy orthologs in symbionts is highly conserved in ant species belonging to the same genus (Fig. 1). This type of structural stability of genomes is typically found in symbionts that have been strictly vertically transmitted within a matriline [22] and has been documented in the obligate symbionts of whiteflies, psyllids, cockroaches, and aphids [23,24,25,26]. In contrast, genome structure differed substantially between symbionts from different ant genera (Fig. 1, Fig. S1). We also find that the host and symbiont phylogenies are in general concordance in Cardiocondyla (TreeMap: p = 0.00100 CI95% = [0.00000, 0.00424]), and in Formica the topologies suggest co-segregation, although there were too few nodes to confirm this statistically (Fig. S2). Together, this strongly suggests the symbioses in all four ant lineages are independently acquired ancient associations that have co-speciated with their hosts.Fig. 1: Structural stability of ant symbiont genomes.A Ant lineages known to host bacteriocyte-associated symbionts (red font) and lineages not known to (black font), based on [91]. Outgroup (grey font) not examined in this study. B Visualisation of symbiont genomes showing conservation of gene order in the symbionts of ant species that belong to the same genus. Blocks show the locations of single copy orthologs in the symbiont genome, lines connect shared single copy orthologs between genomes. All genomes and annotations were generated in this study except the Blochmannia symbionts and the Westeberhardia strain from C. obscurior [8, 18,19,20,21]. *Evidence of symbionts were detected in embryos of Anoplolepis [91] but it is unclear if they are localised in bacteriocytes in larvae and adults.Full size imageIn addition, our phylogenetic analysis reveals that all four symbiont lineages originate from a single clade, the Sodalis-allied bacteria (Fig. 2). This demonstrates that ant lineages that host bacteriocytes-associated symbionts have convergently acquired related bacteria, which differs from previous findings based on limited taxa and genes [27]. All of the symbionts have evidence of advanced genome reduction, which is characterized by reduced genome size, GC content, and number of coding sequences, similar to other ancient obligate symbionts of insects [4]. The three strains of Westeberhardia we analysed have extremely small (0.45–0.53 Mb) GC depleted genomes (22–26%) that are similar to the figures reported for the strain in Cardiocondyla obscurior [8]; confirming that they have some of the smallest genomes of any known gammaproteobacterial endosymbiont (Fig. 2). By comparison, the symbionts in Formica and Plagiolepis have genomes around twice the size (1.37–1.38 Mb) and GC content (~41%) of Westeberhardia (Fig. 2) raising the possibility that they are in an earlier stage of genome reduction than both Westeberhardia and Blochmannia. The Formica and Plagiolepis symbionts have a similar size, GC range, and number of coding sequences as known obligate symbionts such as Candidatus Doolittlea endobia [28], and several Serratia symbiotica lineages that are co-obligate symbionts in aphids [29].Fig. 2: Phylogenetic origins of the bacteriocyte-associated symbionts of ants.A pruned phylogeny of gammaproteobacterial endosymbionts based on Fig. S8. The phylogeny is based on a dayhoff6 recoded amino acid alignment of 72 genes analysed using phylobayes. Bar plots represent the size (in Mbp) and GC content of symbiont genomes. Bars are colour coded to represent hypothesised relationships between symbionts and hosts. Species names highlighted in red in the phylogeny indicate the four bacteriocyte-associated symbionts of ants. Genomes sequenced and assembled for this paper are referenced as ‘novel symbiont’ lineages. Full phylogenies with node support and branch lengths are available as Fig. S8 and Fig. S9, respectively.Full size imageBacteriocyte-associated endosymbiontsUsing fluorescent in situ hybridisation, we determine whether the Sodalis-allied symbionts we sequenced are localised in bacteriocytes to confirm they are the associations first observed by Lillienstern and Jungen in the early 1900’s [10, 11].Consistent with Lilienstern’s findings [11], we found the Sodalis symbiont in Formica ants is distributed in bacteriocytes surrounding the midgut in adult queens (Fig. 3A). The symbionts are also found in eggs and ovaries of adult queens, indicating they are vertically transmitted from queens to offspring (Fig. 3B–C). Sectioning of F. cinerea larvae shows the bacteriocytes to be arranged in a single layer of cells surrounding the midgut, as well as in clusters of bacteriocytes closely situated to the midgut (Fig. 3D–D’). In adult Plagiolepis queens, the symbiont was not present in bacteriocytes around the midgut, suggesting the symbiont may play a more substantive role in larval development or pupation and then migrates to the ovaries prior to or during metamorphosis. Apart from that, the localisation of the symbiont in Plagiolepis was the same as in Formica – symbionts in larval midgut bacteriocytes, ovaries and eggs (Fig. S3) – supporting Jungen’s cytological findings [10]. Bacteriocytes are also found surrounding the midgut in Camponotus and Cardiocondyla ants [8, 30, 31] indicating the symbionts are localised in a similar manner in all four ant lineages.Fig. 3: Anatomical localisation of symbiont in Formica ants.Fluorescent in situ hybridisation (FISH) generated images showing the localisation of symbionts in Formica ants. A–C Whole mount FISH of Formica fusca: queen gut (A, crop and proventriculus on the right, midgut in the middle, hindgut and Malpighian tubules on the left), ovaries (B) and egg (C). DAPI staining of host tissue in blue, symbiont stained in red. D–D’. FISH on transverse cytological sections of Formica cinerea larva midgut. DAPI staining only, showing host nuclei of bacteriocytes in a single layer surrounding the midgut (D), and a magnified region highlighting symbionts in red localised within bacteriocytes and in a bacteriome (D’). A FISH image of the symbiont-free midgut of a Formica lemani queen is available as Fig. S11.Full size imageConservation of metabolic functions in ant endosymbiontsDespite on-going genome reduction, obligate symbionts of insects typically retain gene networks required for maintaining the symbiosis with their host, such as pathways for synthesising essential nutrients. This has resulted in the symbionts of sap- and blood-feeding insects converging on genomes that have retained the same sets of metabolic pathways – to synthesise essential nutrients missing in their hosts’ diets [32, 33]. Here we compare the metabolic pathways retained in the reduced genomes of the four bacteriocyte-associated symbionts of ants to test the hypothesis that have been acquired to perform similar functions. For this, we assess whether they have consistently retained metabolic pathways to synthesise the same key nutrients. Two major patterns stand out.The first major pattern we find is that the four ant symbionts have all retained the shikimate pathway, which produces chorismate, along with most of the steps necessary to produce tyrosine from this precursor (Tables 1 and S2). Both the symbiont of Formica and Westeberhardia each lack one of the genes required to produce tyrosine. However, in Westeberhardia it is believed the host encodes the missing gene, supplying the enzyme to fulfil the final step of the pathway [8]. Intriguingly, we find that this gene is also present in the Formica ant genomes (Fig. S4). In addition, all symbionts except Westeberhardia can produce phenylalanine which is a precursor that can be converted to tyrosine by their hosts [5, 34, 35]. Tyrosine is important for insect development as it is used to produce L-DOPA, which is a key component of insect cuticles [5]. Tyrosine is also a precursor for melanin synthesis, which is important in protection against pathogens, and plays a fundamental role in neurotransmitters and hormone production [36, 37]. In several species of ants, weevils, and other beetles, symbionts are believed to provision hosts with tyrosine, and it has been shown experimentally in several of these species that removal or inhibition of their symbionts causes cuticle development to suffer [38,39,40,41,42,43,44,45,46,47]. A thicker cuticle has been shown to help symbiont-carrying grain beetles resist desiccation [43], and defend against natural enemies [48]. However, female reproduction is delayed at higher humidity, suggesting a metabolic cost to carrying their Bacteroidetes symbiont. Tyrosine provisioning is also the likely function of Westeberhardia in Cardiocondyla ants, as this is one of the few nutrient pathways retained in this symbiont. Our analysis confirms the shikimate pathway, and the symbiont portions of the tyrosine pathway, have been retained in Westeberhardia from three phylogenetically diverse Cardiocondyla lineages, providing additional support for this hypothesis. In addition to tyrosine, most of the symbionts have retained the capacity to produce vitamin B9 (tetrahydrofolate) and all can perform the single step conversions necessary to produce alanine and glycine. However, our gene enrichment analysis indicates that tyrosine, and the associated chorismate biosynthetic process, are the only enriched vitamin or amino acid pathways that are shared by all of the symbiont genomes (Table S1). This suggests that provisioning of tyrosine by symbionts, or tyrosine precursors, is of general importance across all bacteriocyte-associated symbioses of ants.Table 1 Comparison of the retention and losses of metabolic pathways for key nutrients across ant symbionts.Full size tableThe second major pattern emerging from our comparative analysis is that there are clear differences in the pathways lost or retained across symbionts (Tables 1 and S2). This is most evident when comparing Blochmannia with Westeberhardia, the latter of which has lost the capacity to synthesise most essential nutrients. The symbionts of Formica or Plagiolepis, in contrast, have retained the capacity to synthesise many of the same amino acids and B vitamins as Blochmannia, suggesting they may perform similar functions for their hosts. However, Blochmannia has retained more biosynthetic pathways, particularly those involved in the synthesis of essential amino acids. Previous experimental studies have confirmed that Blochmannia provisions hosts with essential amino acids [1]. The absence of several core essential amino acids in the Formica and Plagiolepis symbionts may reflect differences in the dietary ecology of the different ant genera. The retention of the full complement of essential amino acids biosynthetic pathways in the highly reduced genome of Blochmannia does however indicate it plays a more substantive nutrient-provisioning role for its hosts than the other ant symbionts we investigated.Previous work on the extracellular gut symbionts of several arboreal ant lineages identified nitrogen recycling via the urease operon as a function that may be of key importance for ant symbioses [1, 2, 49, 50]. However, we do not find any evidence that the symbionts of Formica, Plagiolepis, or Cardiocondyla play a role in nitrogen recycling via the urease operon (Table 1). This suggests that nitrogen recycling may play an important role for more strictly herbivorous ants, such as Cephalotes. Our results indicate tyrosine supplementation by symbionts may be universally required for essential physiological process across a broader range of ant lineages.The origins and losses of symbioses in Formica and Cardiocondyla
    We investigated the presence of the symbiont in phylogenetically diverse Formica and Cardiocondyla species to identify the evolutionary origins and losses of the symbiosis. Although the symbiont in Plagiolepis was present in P. pygmaea and two unknown Plagiolepis species we investigated, we did not have sufficient phylogenetic sampling to assess the origins of the symbiosis.In Formica, we find the symbiont is restricted to a single clade in the paraphyletic Serviformica group (Fig. 4A). The species in this clade are socially polymorphic, forming both multi-queen and single-queen colonies [51]. Based on a previously dated phylogeny of Formica ants, we estimate the symbiosis originated approximately 12–22 million years ago [52]. In Cardiocondyla, the symbiosis is widespread throughout the genus. The prevalence of the symbiont in Cardiocondyla, in combination with its highly reduced genome, suggests it is a very old association that likely dates back to the origins of the ant genus some 50–75 million years ago [53]. The symbiont was also absent in two clades, the argentea and palearctic groups (Fig. 4B). This may represent true evolutionary losses in these clades. It may be that these losses are linked to a notable change in social structure in these two Cardiocondyla clades, having gone from the ancestral state of maintaining multi-queen colonies to single-queen colonies [54], however it is not clear how this could impact the symbiosis.Fig. 4: Phylogenetic distribution of symbionts in queens of Formica and Cardiocondyla ants.Pie charts represent the proportion of Formica (A) and Cardiocondyla (B) queens sampled that carried the symbiont (red) and those that did not (grey). Numbers represent the number of queens positive for the symbiont over the total number of queens sampled (intracolony infection frequencies in Table S5). See the supplementary material for the statistical testing of differences in prevalence within Serviformica Clade 1. The Formica phylogeny is based on [81] and the Cardiocondyla phylogeny is based on [83], with major clades highlighted. Dashed lines indicate species added to the original source phylogeny based on additional published phylogenies (specified in the Taxonomic Analysis section of the methods). Starred names are provisional names of a recognised morphospecies to be described by B. Seifert.Full size imageEvidence of variation in colony-level dependence on symbiontsObservations from individual studies on F. cinerea and F. lemani [10, 11], as well as Cardiocondyla obscurior [8], reported rare cases of ant queens not harbouring their symbionts in nature. This called into question the degree to which these insects depend on symbionts for nutrients, and whether the symbiosis may be breaking down in certain host lineages. However, given the limited number of species and populations studied, it is unclear how often colonies are maintained with uninfected queens, and whether this varies across species, suggesting species may differ in their dependence on their symbiont. To answer this question, we assessed the presence of the symbionts in 838 samples from 147 colonies of phylogenetically diverse Formica and Cardiocondyla species collected across 8 countries.Our investigation reveals the natural occurrence of uninfected queens is a widespread phenomenon in many Formica and Cardiocondyla species (Fig. 4). We confirmed the absence of symbionts in queens, and that they have not been replaced with another bacterial or fungal symbiont, using multiple approaches including diagnostic PCR, metagenomic and deep-coverage amplicon sequencing (Tables S3,  S4, Figs. S5, S6). Wolbachia was high in relative abundance, especially in Formica ants, but was not sufficiently present across samples to be a feasible replacement. There was also clear evidence of variation across host species. In Formica, queens and workers of F. fusca always carried the symbiont, whereas queens and workers of F. lemani, F. cinerea, and F. selysi showed varying degrees of individuals not carrying the symbionts (Fig. 4A, Table S5). A similar pattern can be seen in Cardiocondyla, where queens of several species, such as C. obscurior, always carry the symbiont, compared to lower incidences in other species (Fig. 4B). Klein et al [8] identified a single C. obscurior colony with uninfected queens in Japan. However, queens of this species nearly always carry the symbiont in nature.The degradation and eventual loss of symbionts from bacteriocytes has been reported in males, and in sterile castes of aphids and ants [55], which do not transmit symbionts to offspring. In reproductive females, bacteriocytes may degrade as a female ages; however, symbionts are typically retained at high bacterial loads in the ovaries, as this is required to maintain the symbionts within the germline [31]. All of the symbiotic ant species we investigated maintain multi-queen colonies, and the vast majority had at least one queen, often more, within a colony that carried the symbiont (Table S5). We hypothesize that species that maintain colonies with uninfected queens may be able to retain sufficient colony-level fitness with only a fraction of queens harbouring the symbiont and receiving its nutritive benefits.Dependence on symbionts in a socioecological contextThe retention of symbionts in queens and workers of some species, but not others, suggests species either differ in their dependence on symbiont-derived nutrients, or that symbionts have lost the capacity to make nutrients in certain host lineages. Our analysis of symbiont genomes did not reveal any structural differences, such as the disruption of metabolic pathways, which could explain differences in symbiont retention between host species (Table S2). This suggests differences in the retention of symbionts may reflect differences in host ecologies.In ants, which occupy a wide range of feeding niches, reliance on symbiont-derived nutrients will largely depend on lineage-specific feeding ecologies. For example, several species of arboreal Camponotus ants have been shown to be predominantly herbivorous [56]. Blochmannia, in turn, has retained the capacity to synthesise key nutrients lacking in their plant-based diets, such as essential amino acids [1]. Blochmannia is also always present in queens and workers [31], which is a testament to the importance of these nutrients for the survival of its primarily herbivorous host [13]. In contrast, Formica and Cardiocondyla species are thought to have a more varied diet [14]. Diet flexibility and altered foraging efforts may therefore reduce their reliance on a limited number of symbiont-derived nutrients allowing colonies of some species to persist with uninfected queens in certain contexts. Silvanid beetles and grain weevils, for example, can survive in the absence of their tyrosine-provisioning symbionts [38, 57, 58] when provided nutritionally balanced diets, in the laboratory [57] or in cereal grain elevators [59, 60]. Similarly, studies on Cardiocondyla and Camponotus ants have shown they can maintain sufficient colony health in the absence of their symbionts, if provided a balanced diet [31, 61]. It would be interesting to know whether species of Formica and Cardiocondyla that always carry the symbiont in nature, such as F. fusca and C. obscurior, have more restricted diets with less access to nutrients such as tyrosine, as this may explain their dependence on their symbiont for nutrients and tendency to harbour them in queens.Although it is unusual for bacteriocyte-associated symbionts to be absent in reproductive females, the fact that it is simultaneously occurring in phylogenetically diverse species from many locations suggests the symbiosis may have persisted in this manner over evolutionary time. Perhaps through diet flexibility colonies can be maintained with uninfected queens in some contexts, however we expect them to be disadvantaged in other ecological scenarios. Fluctuating environmental conditions may therefore eventually purge asymbiotic queens from lineages, allowing the symbiosis to be retained over longer periods of evolutionary time. The multiple-queen colony lifestyle in all symbiotic Formica and Cardiocondyla species we investigated may also provide an additional social buffer that limits the costs to individual queens being asymbiotic. Workers will still nourish larvae and queens without symbionts and colony fitness may be maintained through the reproductive output of nestmate queens that carry the symbiont. There may also be an adaptive explanation for the losses if, for example, metabolic costs to maintain the symbiosis trade off in a context dependent manner [44, 62, 63]. Under this scenario, maintaining a mix of infected and uninfected queens may benefit a colony by allowing for optimal reproduction under a broader range of environmental scenarios.Our data suggest that symbiotic relationships can evolve to solve common problems but also rapidly break down if the symbiosis is no longer required, or potentially when costs are too high [44]. We have identified tyrosine provisioning as a possible unifying function across bacteriocyte-associated symbionts of ants. But we have also shown species can vary in how much they depend on symbionts for nutrients. Our results demonstrate that ants have a unique labile symbiotic system, allowing us to better understand the evolutionary forces that influence the persistence and breakdown of long-term endosymbiotic mutualisms.
    Candidatus Liliensternia hugann and Candidatus Jungenella plagiolepisWe propose the names Candidatus Liliensternia hugann for the Sodalis-allied symbiont found in Formica. The genus name is in honour of Margarete Lilienstern who first identified the symbiont [11]. The species name is derived from the combined first names of the first authors parents. Similarly, we propose the name of Candidatus Jungenella plagiolepis for the Plagiolepis-bound symbiont. The genus name is in honour of Hans Jungen who originally discovered the symbiont [10], and the species name is derived from Plagiolepis, the genus in which the symbiont can be found. More

  • in

    Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene

    Theodor, J. M., Erfort, J. & Métais, G. The earliest artiodactyls: Diacodexeidae, Dichobunidae, Homacodontidae, Leptochoeridae and Raoellidae. in Evolution of Artiodactyls (eds. Prothero, D.R. & Foss, S. E.). 32–58. (Johns Hopkins University, 2007).Badiola, A. et al. The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography. Geol. Acta. 7(1–2), 243–258 (2009).
    Google Scholar 
    Boivin, M. et al. New material of Diacodexis (Mammalia, Artiodactyla) from the early Eocene of Southern Europe. Geobios 51(4), 285–306 (2018).Article 

    Google Scholar 
    Ellenberger, P. Sur les empreintes de pas des gros mammiféres de l’Eocene supérieur de Garrigues-Ste-Eulalie (Gard). Palaeovertebr. Mém. Jubil. R. Lavocat. 13, 37–78 (1980).
    Google Scholar 
    Santamaría, R. L. G. & Casanovas-Cladellas, M. L. Nuevos yacimientos con icnitas de mamíferos del Oligoceno de los alrededores de Agramunt (Lleida, España). Paleont. Evol. 23, 141–152 (1990).
    Google Scholar 
    Sarjeant, W. A. S. & Langston, W. Jr. Vertebrate footprints and invertebrate traces from the Chadronian (Late Eocene) of Trans-Pecos. Texas. Mem. Mus. Bull. 36, 1–86 (1994).
    Google Scholar 
    Costeur, L., Balme, C. & Legal, S. Early Oligocene mammal tracks from southeastern France. Hist. Biol. 16(4), 257–267. https://doi.org/10.1080/10420940902953197 (2009).Article 

    Google Scholar 
    Wroblewski, A.F.-J. & Gulas-Wroblewski, B. E. Earliest evidence of marine habitat use by mammals. Sci. Rep. 11, 8846. https://doi.org/10.1038/s41598-021-88412-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fornós, J. J. & Pons-Moya, J. Icnitas de Myotragus balearicus del yacimiento de Ses Piquetes (Santanyi, Mallorca). Bol. Soc. Hist. Nat. Balears 26, 135–144 (1982).
    Google Scholar 
    Flor, G. Estructuras de deformación por pisadas de cérvidos en la duna cementada de Gorliz (Vizcaya, N de España). Rev. Soc. Geol. Esp. 2(1–2), 23–29 (1989).
    Google Scholar 
    Fornós, J. J., Bromley, R. G., Clemmensen, L. B. & Rodríguez-Perea, A. Tracks and trackways of Myotragus balearicus Bate (Artiodactyla, Caprinae) in Pleistocene aeolianites from Mallorca (Balearic Islands, Western Mediterranean). Palaeogr. Palaeocl. Palaeoecol. 180, 277–313 (2002).ADS 
    Article 

    Google Scholar 
    Neto de Carvalho, C. Vertebrate tracksites from the Mid-Late Pleistocene eolianites of Portugal: The first record of elephant tracks in Europe. Geol. Q. 53(4), 407–414 (2009).
    Google Scholar 
    Neto de Carvalho, C., Saltão, S., Ramos, J. C. & Cachão, M. Pegadas de Cervus elaphus nos eolianitos plistocénicos da ilha do Pessegueiro (SW Alentejano, Portugal). Ciênc. Terra 5, 36–40 (2003).
    Google Scholar 
    Neto de Carvalho, C., Figueiredo, S. & Belo, J. Vertebrate tracks and trackways from the Pleistocene eolianites of SW Portugal. Commun. Geol. 103(1), 101–116 (2016).CAS 

    Google Scholar 
    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the Last Interglacial (MIS 5) at Huelva (SW Spain). Palaios https://doi.org/10.2110/palo.2020.058 (2020).Article 

    Google Scholar 
    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106508 (2020).Article 

    Google Scholar 
    Cardoso, J. L. Les grands mammifères du Pléistocène supérieur du Portugal. Essai de synthése. Geobios 29(2), 235–250 (1996).Article 

    Google Scholar 
    Sala, M. T. N., Pantoja, A., Arsuaga, J. L. & Algaba, M. Presencia de bisonte (Bison priscus Bojanus, 1827) y uro (Bos primigenius Bojanus, 1827) en las cuevas del Búho y de la Zarzamora (Segovia, España). Munibe 61, 43–55 (2010).
    Google Scholar 
    Figueiredo, S. D. & Sousa, M. F. O registo de bovídeos plistocénicos em Portugal. in Livro de Resumos das IV Jornadas de Arqueologia do Vale do Tejo. Vol. 10. (Centro Português de Geo-História e Pré-História, 2017).Barr, K. & Bell, M. Neolithic and Bronze age ungulate footprint-tracks of the Severn Estuary: Species, age, identification and the interpretation of husbandry practices. Environ. Archaeol. 22(1), 1–15 (2017).Article 

    Google Scholar 
    Bell, M. Making One’s Way in the World (Oxbow Books, 2020).Book 

    Google Scholar 
    Díaz-Martínez, I. et al. Multi-aged social behavior based on artiodactyl tracks in an early Miocene palustrine wetland (Ebro Basin, Spain). Sci. Rep. 10, 1099. https://doi.org/10.1038/s41598-020-57438-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quintana, J. Descripción de un rastro de Myotragus e icnitas de Hypnomys del yacimiento cuaternario de Ses Penyes d’es Perico (Ciutadella de Menorca, Balears). Paleont. Evol. 26–27, 271–279 (1993).
    Google Scholar 
    Muñiz, F. et al. Following the last Neanderthals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).ADS 
    Article 

    Google Scholar 
    Altuna, J. Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Con catálogo de los mamíferos cuaternarios del Cantábrico y del Pirineo occidental. Munibe 24, 1–464 (1972).
    Google Scholar 
    López González, F., Vila Taboada, M. & Grandal d’Anglade. Sobre los grandes bóvidos pleistocenos (Bovidae, Mammalia) en el NO de la Península Ibérica. Cad. Lab. Xeol. Laxe 24, 57–71 (1999).Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljengren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306. https://doi.org/10.1111/jbi.12193 (2014).Article 

    Google Scholar 
    Whittle, A., Antoine, S., Gardiner, N., Milles, A. & Webster, A. Two Later Bronze Age occupations and an Iron Age channel on the Gwent foreshore. Bull. Board Celt. Stud. 36, 200–223 (1989).
    Google Scholar 
    Aldhouse-Green, S. et al. Prehistoric human footprints from the Severn Estuary at Uskmouth and Magor Pill, Gwent, Wales. Archae. Cambr. 141, 4–55 (1992).
    Google Scholar 
    Allen, J. R. L. Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: Mechanics of formation, preservation and distribution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352(1352), 481–518 (1997).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, M. Prehistoric coastal communities: the Mesolithic in western Britain. in CBA Research Report. Vol. 149. (Council for British Archaeology, 2007).Bell, M. The Bronze Age in the Severn estuary. in Research Report. Vol. 172. (Council for British Archaeology, 2013).Scales, R. Footprint tracks of people and animals. in Prehistoric Coastal Communities: The Mesolithic in Western Britain (ed. Bell, M.). Vol. 149. 139–147. CBA Research Report 149. (Council of British Archaeology, 2007).Roberts, G. Ephemeral, subfossil mammalian, avian and hominid footprints within Flandrian sediment exposures at Formby Point, Sefton Coast, North West England. Ichnos 16, 33–48 (2009).Article 

    Google Scholar 
    Waddington, C. Low Hauxley, Northumberland: A review of archaeological interventions and site condition. Archael. Res. Serv. 2010/25 (2010).Eadie, G. & Waddington, C. Rescue recording of an eroding inter-tidal peat bed at Lower Hauxley, Northumberland (6109). Archael. Res. Serv. 2013/17 (2013).Burns, A. The prehistoric footprints at Formby. in Sefton Coast Landscape Partnership Scheme (2014).Pandolfi, L., Petronio, C. & Salari, L. Bos primigenius Bojanus, 1827 from the Early Late Pleistocene deposit of Avetrana (southern Italy) and the variation in size of the species in southern Europe: Preliminary report. J. Geol. Res. https://doi.org/10.1155/2011/245408 (2011).Article 

    Google Scholar 
    Currant, A. P. A review of the Quaternary mammals of Gibraltar. in Neanderthals on the Edge: 150th Anniversary Conference of the Forbes’ Quarry Discovery, Gibraltar (eds. Stringer, C. B., Barton, R. N. E. & Finlayson, J.C.). 201–206. (Oxbow, 2000).Penela, A. J. M. Los grandes mamíferos del yacimiento acheulense de la Solana del Zamborino, Fonelas (Granada, España). Antr. Paleoecol. Hum. 5, 29–187 (1988).
    Google Scholar 
    Bataille, G. Prehistoric Painting. Lascaux or the Birth of Art (MacMillan, 1980).
    Google Scholar 
    Zazo, C. et al. Palaeoenvironmental evolution of the Barbate-Trafalgar coast (Cadiz) during the last ~140 ka: Climate, sea-level interactions and tectonics. Geomorphology 100, 212–222 (2008).ADS 
    Article 

    Google Scholar 
    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290. https://doi.org/10.1016/j.geomorph.2004.11.022 (2005).ADS 
    Article 

    Google Scholar 
    García de Domingo, A., González Lastra, J., Hernaiz Huerta, P. P., Zazo Cardeña, C. & Goy Goy, J. L. Mapa Geológico de la Hoja No. 1073 (Vejer de la Frontera). Mapa Geológico de España a Escala 1:50.000. Segunda Serie (MAGNA). http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=1073&language=es (©Instituto Geológico y Minero de España (IGME), 1990).Demathieu, G., Ginsburg, L., Guérin, C. & Truc, G. Étude paléontologique, ichnologique et paléoécologique du gisêment oligocène de Saignon (bassin d’Apt, Vaucluse). Bull. Mus. Natl. Hist. Nat. 6(2), 153–183 (1984).
    Google Scholar 
    Bang, P. & Dahlstrøm, P. Animal Tracks and Signs (Oxford University Press, 2001).
    Google Scholar 
    Wright, E. The History of the European Aurochs (Bos primigenius) from the Middle Pleistocene to Its Extinction: An Archaeological Investigation of Its Evolution, Morphological Variability and Response to Human Exploitation. (PhD. Thesis, University of Sheffield, 2013).Koenigswald, W. V., Sander, P. M. & Walders, M. The Upper Pleistocene tracksite Bottrop-Welheim (Germany). Acta Zool. Cracov. 39(1), 235–244 (1996).
    Google Scholar 
    Martínez-Navarro, B., Rook, L., Papini, M. & Libsekal, Y. A new species of bull from the Early Pleistocene paleoanthropological site of Buia (Eritrea): Parallelism on the dispersal of the genus Bos and the Acheulian culture. Quat. Intern. 212(2), 169–175. https://doi.org/10.1016/j.quaint.2009.09.003 (2010).Article 

    Google Scholar 
    Van Vuure, C. Retracing the Aurochs: History, Morphology and Ecology of an Extinct Ox (Coronet Books, 2005).
    Google Scholar 
    Franks, J. W. Interglacial deposits at Trafalgar Square, London. N. Phytologist 59(2), 145–152 (1960).Article 

    Google Scholar 
    Estévez, J. & Saña, M. Auerochsenfunde auf der Iberischen Halbinsel. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.) (Neanderthal Museum, 1999).Mona, S. et al. Population dynamic of the extinct European aurochs: Genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion. BMC Evol. Biol. 10, 1–13 (2010).Article 
    CAS 

    Google Scholar 
    Rodríguez-Vidal, J. et al. Undrowning a lost world—The Marine isotope stage 3 landscape of Gibraltar. Geomorphology 203, 105–114 (2013).ADS 
    Article 

    Google Scholar 
    Pfeiffer, T. Systematic relationship between the Bovini with special references to the fossil taxa Bos primigenius Bojanus and Bison priscus Bojanus. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.). 59–70. (Neanderthal Museum, 1999).Zazula, G. D. et al. A late Pleistocene steppe bison (Bison priscus) partial carcass from Tsiigehtchic, Northwest Territories, Canada. Quat. Sci. Rev. 28(25–26), 2734–2742 (2009).ADS 
    Article 

    Google Scholar 
    Boeskorov, G. G. et al. The Yukagir Bison: The exterior morphology of a complete frozen mummy of the extinct steppe bison, Bison priscus from the early Holocene of northern Yakutia, Russia. Quat. Intern. 406, 94–110. https://doi.org/10.1016/j.quaint.2015.11.084 (2016).Article 

    Google Scholar 
    Ekström, J. The Late Quaternary History of the Urus (Bos primigenius Bojanus 1827) in Sweden. PhD. Thesis. (Lund University, 1993).Grange, T. et al. The evolution and population diversity of Bison in Pleistocene and Holocene Eurasia: Sex matters. Diversity 10(3), 65. https://doi.org/10.3390/d10030065 (2018).Article 

    Google Scholar 
    Castaños, J., Castaños, P. & Murelaga, X. First complete skull of a Late Pleistocene Steppe Bison (Bison priscus) in the Iberian Peninsula. Ameghiniana 53(5), 543–551. https://doi.org/10.5710/amgh.03.06.2016.2995 (2016).Article 

    Google Scholar 
    Álvarez-Lao, D. J., Kahlke, R.-D., García, N. & Mol, D. The Padul mammoth finds: On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene. Palaeogeogr. Palaeocl. Palaeoecol. 278(1–4), 57–70 (2009).ADS 
    Article 

    Google Scholar 
    Loope, D. B. Recognizing and utilizing vertebrate tracks in cross section: Cenozoic hoofprints from Nebraska. Palaios 1, 141–151 (1986).ADS 
    Article 

    Google Scholar 
    Albarella, U., Dobney, K. & Rowley-Conwy, P. Size and shape of the Eurasian wild boar (Sus scrofa), with a view to the reconstruction of its Holocene history. Environ. Archaeol. 14, 103–136 (2009).Article 

    Google Scholar 
    Davis, S. J. M. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Palaeobiology 7, 101–114 (1981).Article 

    Google Scholar 
    Cerilli, E. & Petronio, C. Biometrical variations of Bos primigenius Bojanus 1827 from middle Pleistocene to Holocene. in Proceedings of the International Symposium on ‘Ongulés/Ungulates’, Toulouse. 37–42. (1991).Davis, S. J. M. & Mataloto, R. Animal remains from Chalcolithic of São Pedro (Redondo, Alentejo): Evidence for a crisis in the Mesolithic. Rev. Port. Arqueol. 15, 47–85 (2012).
    Google Scholar 
    Mariezkurrena, K. & Altuna, J. Biometría y diformismo sexual en el esqueleto de Cervus elaphus würmiense, postwürmiense y actual del Cantábrico. Munibe (Antr.-Arkeol.) 35, 203–246 (1983).
    Google Scholar 
    Davis, S. J. M. The mammals and birds from the Gruta do Caldeirão, Portugal. Rev. Port. Arqueol. 5, 29–98 (2002).CAS 

    Google Scholar 
    Barr, K. Prehistoric Avian, Mammalian and H. sapiens Footprint—Tracks from Intertidal Sediments as Evidence of Human Palaeoecology. PhD. Thesis. (University of Reading, 2018).Hall, J. G. A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography 31, 187–190 (2008).Article 

    Google Scholar 
    Bicho, N. F., Gibaja, J. F., Stiner, M. & Manne, T. L. Paléolithique supérieur au sud du Portugal: Le site du Vale do Boi. L’antropologie 114, 48–67 (2010).
    Google Scholar 
    Bicho, N. & Haws, J. The Magdelian in central and southern Portugal: Human ecology at the end of the Pleistocene. Quatern. Int. 272–273, 6–16 (2012).Article 

    Google Scholar 
    Cortés-Sánchez, M. et al. Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quatern. Sci. Rev. 27, 2176–2193 (2008).ADS 
    Article 

    Google Scholar 
    Bohórquez, A. M., Ruiz, C. B., Caparrós, M. & Moigne, A. M. Una aproximación a la compreensión de la fauna de macromamiferos de la Cueva de Zafarraya (Alcaucín, Málaga). Menga Rev. Prehist. Andalucía 3, 83–105 (2012).
    Google Scholar 
    Ripoll, M. P. & Maroto, J. L. fauna mediterránea durante el Pleistoceno superior del Mediterráneo Ibérico. Kobie Serie Anejo 18, 27–38 (2021).
    Google Scholar 
    Lazo, A. Ranging behaviour of feral cattle (Bos taurus) in Doñana National Park, S.W. Spain. J. Zool. 236(3), 359–369. https://doi.org/10.1111/j.1469-7998.1995.tb02718.x (1995).Article 

    Google Scholar 
    AliceVision. Meshroom: V2021.1.0. GNU-GPL. https://alicevision.org/ (2020).OpenDroneMap Authors ODM. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. OpenDroneMap/ODM GitHub Page. https://github.com/OpenDroneMap/WebODM (2020).Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. & Ranzuglia, G. MeshLab: an open-source mesh processing tool. in Sixth Eurographics Italian Chapter Conference. 129–136. MeshLab V. 2020.12. https://www.meshlab.net/ (2008).CloudCompare. V2.11.0. GNU-GPL. https://www.cloudcompare.org (2020).Zhukov, S., Iones, A. & Kronin, G. An ambient light illumination model. Render. Tech. 98, 45–55 (1998).Article 

    Google Scholar 
    Vergne, R., Pacanowski, R., Barla, P., Granier, X., & Schlick, C. Radiance scaling for versatile surface enhancement. in Proceedings of the 2010 ACMSIGGRAPH Symposium on Interactive 3D Graphics and Games.143–150. (2010). More

  • in

    Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf

    Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495. https://doi.org/10.1126/science.284.5413.493%JScience (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brüchert, V. et al. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia. In Past and Present Water Column Anoxia (ed. Neretin, L. N.) 161–193 (Springer, 2006).Chapter 

    Google Scholar 
    Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341. https://doi.org/10.3389/fmars.2018.00341 (2018).Article 

    Google Scholar 
    Emeis, K. C. et al. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24, 627–642 (2004).ADS 
    Article 

    Google Scholar 
    Eisenbarth, S. & Zettler, M. L. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea. J. Mar. Syst. 155, 1–10 (2016).Article 

    Google Scholar 
    Zettler, M. L., Bochert, R. & Pollehne, F. Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia. Mar. Biol. 156, 1949–1961. https://doi.org/10.1007/s00227-009-1227-9 (2009).CAS 
    Article 

    Google Scholar 
    Cary, S. C., Vetter, R. D. & Felbeck, H. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55, 31–45 (1989).ADS 
    Article 

    Google Scholar 
    Le Pennec, M., Beninger, P. G. & Herry, A. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp. Biochem. Physiol. A Physiol. 111, 183–189. https://doi.org/10.1016/0300-9629(94)00211-B (1995).Article 

    Google Scholar 
    Taylor, J. D. & Glover, E. A. Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol. Soc. Lond. Spec. Publ. 177, 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12 (2000).ADS 
    Article 

    Google Scholar 
    Lim, S. J. et al. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. MSystems 4, e00280. https://doi.org/10.1128/mSystems.00280-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    König, S. et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat. Microbiol. 2, 16193. https://doi.org/10.1038/nmicrobiol.2016.193 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16195. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc. Natl. Acad. Sci. 118, e2104378118. https://doi.org/10.1073/pnas.2104378118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lim, S. J. et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 13, 902–920. https://doi.org/10.1038/s41396-018-0318-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Taylor, J., Glover, E. & Williams, S. Diversification of chemosymbiotic bivalves: Origins and relationships of deeper water Lucinidae. Biol. J. Lin. Soc. 111, 401–420. https://doi.org/10.1111/bij.12208 (2014).Article 

    Google Scholar 
    Taylor, J. & Glover, E. Biology, Evolution and Generic Review of the Chemosymbiotic Bivalve Family Lucinidae (Ray Society, 2021).
    Google Scholar 
    Nagel, B. et al. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf-An isotope-based approach. J. Geophys. Res. Biogeosci. 118, 361–371. https://doi.org/10.1002/jgrg.20040 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Neumann, A. & Flohr, A. The bivalve Lembulus bicuspidatus may enhance denitrification in shelf sediment at the Angola-Benguela Frontal Zone. Afr. J. Mar. Sci. 40, 91–96. https://doi.org/10.2989/1814232X.2018.1437774 (2018).Article 

    Google Scholar 
    Sampaio, L., Rodrigues, A. M. & Quintino, V. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60, 1790–1802. https://doi.org/10.1016/j.marpolbul.2010.06.003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakko, A. L. The influence of the Benguela upwelling system on Namibia’s marine biodiversity. Biodivers. Conserv. 7, 419–433. https://doi.org/10.1023/A:1008867310010 (1998).Article 

    Google Scholar 
    Levin, L. A., Mendoza, G. F., Konotchick, T. & Lee, R. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res. II 56, 1632–1648. https://doi.org/10.1016/j.dsr2.2009.05.010 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Soto, L. A. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Res. II 56, 1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Weems, J., Iken, K., Gradinger, R. & Wooller, M. J. Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Biol. Ecol. 430, 32–42. https://doi.org/10.1016/j.jembe.2012.06.015 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740. https://doi.org/10.1002/ece3.4712 (2019).Article 
    PubMed 

    Google Scholar 
    DavySimon, K., Allemand, D. & WeisVirginia, M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261. https://doi.org/10.1128/MMBR.05014-11 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429 (2011).ADS 
    Article 

    Google Scholar 
    Berg, C. J. & Alatalo, P. Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165–179. https://doi.org/10.1016/0044-8486(84)90264-3 (1984).CAS 
    Article 

    Google Scholar 
    Dando, P. R. & Southward, A. J. Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. Mar. Biol. Assoc. U.K. 66, 915–929. https://doi.org/10.1017/S0025315400048529 (1986).CAS 
    Article 

    Google Scholar 
    Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. 13C/12C ratios in marine invertebrates from reducing sediments: Confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, C. R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 (1990).CAS 

    Google Scholar 
    Duperron, S., Fiala-Medioni, A., Caprais, J. C., Olu, K. & Sibuet, M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): Comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol. Ecol. 59, 64–70. https://doi.org/10.1111/j.1574-6941.2006.00194.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanzerl, H., Salvo, F., Jones, S. W. & Dufour, S. C. Feeding strategies in symbiotic and asymbiotic thyasirid bivalves. J. Sea Res. 145, 16–23. https://doi.org/10.1016/j.seares.2018.12.005 (2019).ADS 
    Article 

    Google Scholar 
    Descolas-Gros, C. & Fontugne, M. R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87, 1–6. https://doi.org/10.1007/BF00396999 (1985).CAS 
    Article 

    Google Scholar 
    Brooks, J. M. et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238, 1138. https://doi.org/10.1126/science.238.4830.1138 (1987).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conway, N., Capuzzo, J. M. & Fry, B. The role of endosymbiotic bacteria in the nutrition of Solemya velum: Evidence from a stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34, 249–255. https://doi.org/10.4319/lo.1989.34.1.0249 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Conway, N. M., Howes, B. L., McDowell Capuzzo, J. E., Turner, R. D. & Cavanaugh, C. M. Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 601–613. https://doi.org/10.1007/BF00346178 (1992).Article 

    Google Scholar 
    Rau, G. H. Low 15N/14N in hydrothermal vent animals: Ecological implications. Nature 289, 484. https://doi.org/10.1038/289484a0 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennicutt, M. C. et al. Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. https://doi.org/10.1016/0009-2541(92)90009-T (1992).CAS 
    Article 

    Google Scholar 
    Lee, R. W. & Childress, J. J. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl. Environ. Microbiol. 60, 1852–1858. https://doi.org/10.1128/AEM.60.6.1852-1858.1994 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Zanden, M. J. V. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).ADS 
    Article 

    Google Scholar 
    Nagel, B., Gaye, B., Lahajnar, N., Struck, U. & Emeis, K.-C. Effects of current regimes and oxygenation on particulate matter preservation on the Namibian shelf: Insights from amino acid biogeochemistry. Mar. Chem. 186, 121–132. https://doi.org/10.1016/j.marchem.2016.09.001 (2016).CAS 
    Article 

    Google Scholar 
    Holmes, M. E. et al. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134, 1–12. https://doi.org/10.1016/0025-3227(96)00031-X (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article 

    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750. https://doi.org/10.4319/lom.2009.7.740 (2009).CAS 
    Article 

    Google Scholar 
    Glibert, P. M., Middelburg, J. J., McClelland, J. W. & Jake Vander Zanden, M. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol. Oceanogr. 64, 950–981. https://doi.org/10.1002/lno.11087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. I 114, 137–148. https://doi.org/10.1016/j.dsr.2016.05.005 (2016).CAS 
    Article 

    Google Scholar 
    Steinkopf, M. Trophische Strukturen des Mesozooplanktons im Benguela Auftriebsgebiet vor Namibia (Universität Rostock, 2018).
    Google Scholar 
    Sigman, D. & Fripiat, F. Nitrogen isotopes in the Ocean. In Encyclopedia of Ocean Sciences 3rd edn, Vol. 263 (eds Cochran, J. K. et al.) 268 (Academic Press, 2019).
    Google Scholar 
    Nagel, B. et al. Nutrients and δ15N measured in water samples in the oxygen minimum zone over the Namibian shelf during the Meteor campaign M76–2 in 2008. PANGAEA. https://doi.org/10.1594/PANGAEA.892369 (2018).Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T. & Tortell, P. D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74, 1030–1040 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Prokopenko, M. G., Hammond, D. E. & Stott, L. Lack of isotopic fractionation of δ 15N of organic matter during long-term diagenesis in marine sediments, ODP Leg 202, Sites 1234 and 1235. In Proc. Ocean Drilling Program(eds. R. Tiedemann, A. C. Mix, C. Richter and W. F. Ruddiman) 22 (2006).Prokopenko, M. G. et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“Riding on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, 4203. https://doi.org/10.1029/2012PA002321 (2012).ADS 
    Article 

    Google Scholar 
    Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol. J. 12, 113–127. https://doi.org/10.1080/01490459409377977 (1994).CAS 
    Article 

    Google Scholar 
    Grasshoff, K. et al. (eds) Methods of Seawater Analysis 3rd edn. (Wiley, 2009).
    Google Scholar 
    Hofmann, D., Gehre, M. & Jung, K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39, 233–244. https://doi.org/10.1080/1025601031000147630 (2003).CAS 
    Article 

    Google Scholar 
    Veuger, B., Middelburg, J. J., Boschker, H. T. S. & Houtekamer, M. Analysis of 15N incorporation into D-alanine: A new method for tracing nitrogen uptake by bacteria. Limnol. Oceanogr. Methods 3, 230–240. https://doi.org/10.4319/lom.2005.3.230 (2005).CAS 
    Article 

    Google Scholar 
    Loick-Wilde, N. et al. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob. Change Biol. 25, 794–810. https://doi.org/10.1111/gcb.14546 (2019).ADS 
    Article 

    Google Scholar 
    Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26, 835–844. https://doi.org/10.1007/s11284-011-0844-1 (2011).Article 

    Google Scholar 
    Chikaraishi, Y. et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. Evol. 4, 2423–2449. https://doi.org/10.1002/ece3.1103 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eglite, E. et al. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: A stable nitrogen isotope approach. Ecosphere 9, e02135. https://doi.org/10.1002/ecs2.2135 (2018).Article 

    Google Scholar 
    Fujii, T. et al. Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8, 1221. https://doi.org/10.3390/microorganisms8081221 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral–dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182. https://doi.org/10.3390/microorganisms9010182 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Maeda, T. et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7, e42024. https://doi.org/10.1371/journal.pone.0042024 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pjevac, P. et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front. Microbiol. 12, 1069 (2021).Article 

    Google Scholar 
    Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. https://doi.org/10.1038/srep08365 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541. https://doi.org/10.1002/ece3.2951 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, J. J. & Cavanaugh, C. M. Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 1496–1502. https://doi.org/10.4319/lo.1995.40.8.1496 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Fry, B. Stable Isotope Ecology (Springer, 2006).Book 

    Google Scholar 
    Emeis, K. et al. pCO2 underway data from the Benguela upwelling system in southeastern South Atlantic Ocean. PANGAEA. https://doi.org/10.1594/PANGAEA.880406 (2017).Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Goericke, R., Montoya, J. & Fry, B. Physiology and isotopic fractionation in algae and cyanobacteria. In Stable Isotopes in Ecology and Environmental Science (eds Kajtah, K. & Michener, R. H.) 187–221 (Blackwell, 1994).
    Google Scholar 
    Duplessis, M. R., Dufour, S. C., Blankenship, L. E., Felbeck, H. & Yayanos, A. A. Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551–561. https://doi.org/10.1007/s00227-004-1350-6 (2004).Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of deposit-feeding animals in marine Sediments. Q. Rev. Biol. 62, 235–260. https://doi.org/10.1086/415511 (1987).Article 

    Google Scholar 
    Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).ADS 
    Article 

    Google Scholar 
    Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85, 186–196. https://doi.org/10.1016/j.seares.2013.04.018 (2014).ADS 
    Article 

    Google Scholar 
    McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744. https://doi.org/10.1016/j.gca.2007.06.061 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Zbinden, M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar. Biol. 162, 435–448. https://doi.org/10.1007/s00227-014-2591-7 (2015).CAS 
    Article 

    Google Scholar 
    Whitlatch, R. B. & Obrebski, S. Feeding selectivity and coexistence in two deposit-feeding gastropods. Mar. Biol. 58, 219–225. https://doi.org/10.1007/BF00391879 (1980).Article 

    Google Scholar 
    Connor, M. S. & Robert, K. E. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53, 271–275 (1982).ADS 
    Article 

    Google Scholar 
    Feller, R. J. Dietary immunoassay of Ilyanassa obsoleta, the eastern mud snail. Biol. Bull. 166, 96–102. https://doi.org/10.2307/1541433 (1984).Article 

    Google Scholar 
    Kelaher, B. P., Levinton, J. S. & Matthew Hoch, J. Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 292, 139–157. https://doi.org/10.1016/S0022-0981(03)00183-7 (2003).Article 

    Google Scholar 
    Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    Checkley, D. M. & Miller, C. A. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1449–1456. https://doi.org/10.1016/0198-0149(89)90050-2 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. C. & Fisher, C. R. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In The Microbiology of Deep-Sea Hydrothermal Vents (ed. Karl, D. M.) 125–167 (CRC Press, 1995).
    Google Scholar 
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134. https://doi.org/10.1038/s41396-019-0486-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289 (1999).CAS 
    Article 

    Google Scholar 
    Hentschel, U. & Felbeck, H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata is not regulated by oxygen. Appl. Environ. Microbiol. 61, 1630–1633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sacks, L. E. & Barker, H. A. The influence of oxygen on nitrate and nitrite reduction. J. Bacteriol. 58, 11–22. https://doi.org/10.1128/JB.58.1.11-22.1949 (1949).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Aguiar-Melo C, Zanella CM, Goetze M, Palma-Silva C, Hirsch LD, Neves B et al. (2019) Ecological niche modeling and a lack of phylogeographic structure in Vriesea incurvata suggest historically stable areas in the southern Atlantic Forest. Am J Bot https://doi.org/10.1002/ajb2.1317Bicudo MOP, Ribani RH, Beta T (2014) Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis M.) along the on-tree ripening process. Plant Foods Hum Nutr https://doi.org/10.1007/s11130-014-0406-0Blengini IAD, Cintra MAMU, Caiafa AN (2015) Proposta de Unidade de Conservação da Serra da Jiboia. Gambá, Salvador, BA, https://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf Accessed 05 May 2022Bourscheid K (2011) Euterpe edulis—Palmito juçara. In: Coradin L, Siminski A, Câmara, Reis A (Eds) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – Região Sul. Ministério do Meio Ambiente, Brasília, D, p 179–183
    Google Scholar 
    Cabanne GS, d’Horta FM, Sari EHR, Santos FR, Miyaki CY (2008) Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): Biogeography and systematics implications Molecular. Mol Phylogenet Evol https://doi.org/10.1016/j.ympev.2008.09.013Cabanne GS, Santos FR, Miyaki CY (2007) Phylogeography of Xiphorhynchus fuscus (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol J Linn Soc https://doi.org/10.1111/j.1095-8312.2007.00775.xCâmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo Leal C, Câmara IG (Eds.) The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. CABS and Island Press, Washington, p 31–42
    Google Scholar 
    Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest J Biogeogr https://doi.org/10.1111/j.1365-2699.2007.01870.xCarnaval AC, Moritz C, Hickerson M, Haddad C, Rodrigues M (2009) Stability predicts diversity in the Brazilian Atlantic Forest hotspot. Science https://doi.org/10.1126/science.1166955Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWa J, Damasceno R et al. (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc Lond https://doi.org/10.1098/rspb.2014.1461Carvalho CDS, Garcia C, Lucas MS, Jordano P, Cortes MC (2021) Extant fruit‐eating birds promote genetically diverse seed rain, but disperse to fewer sites in defaunated tropical forests. J Ecol https://doi.org/10.1111/1365-2745.13534Carvalho CS, Ballesteros-Mejia L, Ribeiro MC, Côrtes MC, Santos AS, Collevatti RG (2017) Climatic stability and contemporary human impacts affect the genetic diversity and conservation status of a tropical palm in the Atlantic Forest of Brazil Conserv Genet https://doi.org/10.1007/s10592-016-0921-7Carvalho CS, Galetti M, Colevatti RG, Jordano P (2016) Defaunation leads to microevolutionary changes in a tropical palm. Sci Rep https://doi.org/10.1038/srep31957Carvalho CS, Ribeiro MC, Côrtes MC, Galetti M, Collevatti RG (2015) Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm. Heredity https://doi.org/10.1038/hdy.2015.30Carvalho MS, Noia LR, Ferreira MFS, Ferreira A (2019) DNA de alta qualidade isolado a partir do córtex de Euterpe edulis Mart. (Arecaceae). Cienc Florest https://doi.org/10.5902/1980509824130Chávez-Pesqueira M, Núñez-Farfán J (2016) Genetic diversity and structure of wild populations of Carica papaya in Northern Mesoamerica inferred by nuclear microsatellites and chloroplast markers. Ann Bot https://doi.org/10.1093/aob/mcw183Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM et al. (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun https://doi.org/10.1038/ncomms2415Chhatre VE, Emerson KJ (2017) StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinform https://doi.org/10.1186/s12859-017-1593-0Chybicki IJ, Burczyk J (2009) Simultaneous Estimation of Null Alleles and Inbreeding Coefficients. J Hered https://doi.org/10.1093/jhered/esn088Collevatti RG, Lima-Ribeiro MS, Terribile LC et al. (2014) Recovering species demographic history from multi-model inference: the case of a Neotropical savanna tree species. BMC Evol Biol https://doi.org/10.1186/s12862-014-0213-0Côrtes MC, Uriarte M, Lemes MR, Gribel R, Kress WJ, Smouse PE et al. (2013) Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol Ecol https://doi.org/10.1111/mec.12495Cortez MBS, Sforça DA, Alves FM, Vidal JD, Alves-Pereira A, Mori GM, Andreotti IA et al. (2019) Elucidating the Clusia criuva species ‘complex’: cryptic taxa can exhibit great genetic and geographical variation. Biol J Linn Soc https://doi.org/10.1093/botlinnean/boz004Costa PC, Lorenz-Lemke AP, Furini PR, Honorio Coronado EN, Kjellberg F, Pereira RA (2017) The phylogeography of two disjunct Neotropical Ficus (Moraceae) species reveals contrasted histories between the Amazon and the Atlantic Forests. Biol J Linn Soc https://doi.org/10.1093/botlinnean/box056d’Horta FM, Cabanne GS, Meyer D, Miyaki CY (2011) The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Mol Ecol https://doi.org/10.1111/j.1365-294X.2011.05063.xEarl DA, Von Holdt BM (2011) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resources https://doi.org/10.1007/s12686-011-9548-7Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol https://doi.org/10.1111/j.1365-294X.2005.02553.xExcoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform PMCID: PMC2658868Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics PMCID: PMC1462648Fantini AC, Guries R, Ribeiro RJ (2000) Produção de palmito (Euterpe edulis Martius Arecaceae) na Floresta Ombrófila Densa: potenciais, problema e possíveis soluções. In: Reis MS, Reis A (Eds.) Euterpe edulis Martius (Palmiteiro) Biologia, Conservação e Manejo. Herbário Barbosa Rodrigues, Itajaí, p 256–280
    Google Scholar 
    Fundação Instituto Brasileiro de Geografia e Estatística (1993) Recursos naturais e meio ambiente: Uma visão do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro
    Google Scholar 
    Gaiotto FA, Brondani RPV, Grattapaglia D (2001) Microsatellite markers for heart of palm–Euterpe edulis and E, oleracea Mart, (Arecaceae). Mol Ecol Notes https://doi.org/10.1046/j.1471-8278.2001.00036.xGaiotto FA, Grattapaglia D, Vencovsky V (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94(5):399–406. https://doi.org/10.1093/jhered/esg087CAS 
    Article 
    PubMed 

    Google Scholar 
    Galetti M, Fernandez JC (1998) Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade. J Appl Ecol https://doi.org/10.1046/j.1365-2664.1998.00295.xGaletti M, Guevara R, Côrtes MC, Fadini R, Von Mattes S, Leite AB et al. (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science https://doi.org/10.1126/science.1233774Gatti MG, Campanello PI, Montti LF, Goldstein G (2008) Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. For Ecol Manag https://doi.org/10.1016/j.foreco.2008.05.012Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biological Reviews Cambridge Philosophical Society. https://doi.org/10.1017/S1464793105006731Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htmGugger PF, Ikegami M, Sork VL (2013) Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata. Mol Ecol https://doi.org/10.1111/mec.12317Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics https://doi.org/10.1093/genetics/163.4.1467Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyses spatial genetic structure at the individual or population levels. Mol Ecol Notes https://doi.org/10.1046/j.1471-8286.2002.00305.xHenderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton, NJ, p 352
    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature https://doi.org/10.1038/35016000Hulce D, Li X, Snyder-Leiby T, Johathan Liu CS (2011) GeneMarker® Genotyping Software: tools to increase the statistical power of DNA fragment analysis. J Biomol Screen PMCID: PMC3186482Joly C, Aidar M, Klink CA, McGrath DG, Moreira AG, Moutinho P et al. (1999) Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciên e Cul 51:331–348
    Google Scholar 
    Konzen ER, Martins, MP (2017) Contrasting levels of genetic diversity among populations of the endangered tropical palm Euterpe edulis Martius, Cerne https://doi.org/10.1590/01047760201723012237.Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour https://doi.org/10.1111/1755-0998.12387Lauterjung MB, Montagna T, Bernardi AP, Silva JZ, Freitas NCC, Steiner, F et al. (2019) Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape. For Ecol Manag https://doi.org/10.1016/j.foreco.2018.12.058Leitman P, Judice DM, Barros FSM, Prieto PV (2013) Arecaceae, In: Martinelli G, Moraes MA (org) Livro Vermelho da Flora do Brasil. CNCFlora, Rio de Janeiro, pp 187–195Lewis PO, Zaykin D (2002) Genetic data analysis: Computer program for the analysis of allelic data. http://phylogeny.uconn.edu/software/Martins FM (2011) Historical biogeography of the Brazilian Atlantic forest and the Carnaval—Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol. J Linn Soc https://doi.org/10.1111/j.1095-8312.2011.01745.xMartins FM, Ditchfield AD, Meyer D, Morgante JS (2007) Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). J Zoolog Syst Evol https://doi.org/10.1111/j.1439-0469.2007.00419.xNovello M, Viana JPG, Alves-Pereira A, Silvestre EA, Nunes HF, Pinheiro JB et al. (2017) Genetic conservation of a threatened Neotropical palm through community-management of fruits in agroforests and second-growth forests. For Ecol Manag https://doi.org/10.1016/j.foreco.2017.06.059Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica https://doi.org/10.1111/j.1744-7429.2000.tb00619.xOrtego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol https://doi.org/10.1111/j.1365-294X.2012.05591.xPalma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, BodaneseZanettini MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103:503–512CAS 
    Article 

    Google Scholar 
    Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol https://doi.org/10.1111/mec.12152Petit RJ, Csaiklb UM, Bordácsbc S, Burgb K, Coartd E, Cottrelle J et al. (2002) Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag https://doi.org/10.1016/S0378-1127(01)00645-4Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics https://doi.org/10.1093/genetics/155.2.945Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version o2.3. http://web.stanford.edu/group/pritchardlab/structure.htmlRambaut A, Drummond AJ (2007) TRACER version 1.4. http://beast.bio.ed.ac.uk/Tracer. Accessed 05 May 2022Reis A, Kageyama PY (2000) Dispersão de sementes de Euterpe edulis Martius Palmae. In: Reis MS, Reis A (Eds.) Euterpe edulis Martius (Palmiteiro): biologia, conservação e manejo. Herbário Barbosa Rodrigues, Itajaí, p 60–92
    Google Scholar 
    Ribeiro MC, Metzger JP, Martensen AC, FPonzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv https://doi.org/10.1016/j.biocon.2009.02.021Santos AS, Cazetta E, Morante Filho JC, Baumgarten J, Faria D, Gaiotto FA (2015) Lessons from a palm: genetic diversity and structure in anthropogenic landscapes from Atlantic Forest, Brazil. Conserv Genet https://doi.org/10.1007/s10592-015-0740-2Soares LASS, Cazetta E, Santos LR, França DS, Gaiotto FA (2019). Anthropogenic disturbances eroding the genetic diversity of a threatened palm tree: a multiscale approach. Front Genet https://doi.org/10.3389/fgene.2019.01090Szpiecha ZA, Rosenberga NA (2011) On the size distribution of private microsatellite alleles. Theor Popul Biol https://doi.org/10.1016/j.tpb.2011.03.006Thomé MTC, Zamudio KR, Giovanelli JGR, Haddad CFB, Baldissera Jr FA, Alexandrino J (2010) Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest Mol Phylogenet Evol https://doi.org/10.1016/j.ympev.2010.02.003Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol https://doi.org/10.1111/mec.12323Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes https://doi.org/10.1111/j.1471-8286.2004.00684.xWilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics https://doi.org/10.1093/genetics/163.3.1177Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Conserv Biol https://doi.org/10.1016/j.biocon.2009.12.003 More

  • in

    Networking for food production

    Mahdavi, A. et al. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).CAS 
    Article 

    Google Scholar 
    Levin, A. et al. Nat. Rev. Chem. 4, 615–634 (2020).CAS 
    Article 

    Google Scholar 
    Graedel, T. E. Annu. Rev. Energy Environ. 21, 69–98 (1996).Article 

    Google Scholar 
    Erkman, S. J. Clean. Prod. 5, 1–10 (1997).Article 

    Google Scholar 
    Lao, A. R., Aviso, K. B., Cabezas, H. & Tan, R. R. Nat. Sustain. https://doi.org/10.1038/s41893-022-00912-w (2022).Benke, K. & Tomkins, B. Sustain. Sci. Practice Policy 13, 13–26 (2017).
    Google Scholar 
    Treich, N. Environ. Resource Econ. 79, 33–61 (2021).Article 

    Google Scholar 
    Liu, J., Caspersen, S. & Yong, J. W. H. Elife 11, e77202 (2022).Article 

    Google Scholar 
    Friedler, F., Tarján, K., Huang, Y. W. & Fan, L. T. Chem. Eng. Sci. 47, 1973–1988 (1992).CAS 
    Article 

    Google Scholar 
    Sait, S. M., Liu, W.-C., Thompson, D. J., Godfray, H. C. J. & Begon, M. Nature 405, 448–450 (2000).CAS 
    Article 

    Google Scholar 
    Nelson, M. Space Sci. Technol. 2021, 8067539 (2021).Article 

    Google Scholar  More

  • in

    Maintaining the productivity of co-culture systems in the face of environmental change

    Lee, K., Khanal, S. & Bakshi, B. R. Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs. Energy Environ. Sci. 14, 3700–3716 (2021).Article 

    Google Scholar 
    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).CAS 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1–35 (Cambridge Univ. Press, 2022).Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).CAS 
    Article 

    Google Scholar 
    Bashir, M. A. et al. Co-culture of rice and aquatic animals: an integrated system to achieve production and environmental sustainability. J. Clean. Prod. 249, 119310 (2020).Article 

    Google Scholar 
    Dong, S. et al. Evaluation of the trophic structure and energy flow of a rice–crayfish integrated farming ecosystem based on the Ecopath model. Aquaculture 539, 736626 (2021).Article 

    Google Scholar 
    Polovina, J. J. Model of a coral reef ecosystem—I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3, 1–11 (1984).Article 

    Google Scholar 
    Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Fath, B. D. et al. Ecological network analysis metrics: the need for an entire ecosystem approach in management and policy. Ocean Coast. Manag. 174, 1–14 (2019).Article 

    Google Scholar 
    Diffendorfer, J. E., Richards, P. M., Dalrymple, G. H. & DeAngelis, D. L. Applying linear programming to estimate fluxes in ecosystems or food webs: an example from the herpetological assemblage of the freshwater Everglades. Ecol. Model. 144, 99–120 (2001).Article 

    Google Scholar 
    Bolton, S. in Encyclopedia of Ecology 2nd edn, Vol. 4 (ed. Fath, B. D.) 493–497 (Elsevier, 2019).Galaitsi, S. E., Keisler, J. M., Trump, B. D. & Linkov, I. The need to reconcile concepts that characterize systems facing threats. Risk Anal. 41, 3–15 (2021).CAS 
    Article 

    Google Scholar 
    Lao, A., Cabezas, H., Orosz, A., Friedler, F. & Tan, R. Socio-ecological network structures from process graphs. PLoS ONE 15, e0232384 (2020).CAS 
    Article 

    Google Scholar 
    Friedler, F., Aviso, K. B., Bertok, B., Foo, D. C. Y. & Tan, R. R. Prospects and challenges for chemical process synthesis with P-graph. Curr. Opin. Chem. Eng. 26, 58–64 (2019).Article 

    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Hu, L. et al. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 6, 28728 (2016).CAS 
    Article 

    Google Scholar 
    He, M., Liu, F. & Wang, F. Resource utilization, competition and cannibalism of the red swamp crayfish Procambarus clarkii in integrated rice-crayfish culture without artificial diets. Aquac. Rep. 20, 100644 (2021).Article 

    Google Scholar 
    Xu, Q. et al. Conversion from rice–wheat rotation to rice–crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 319, 128883 (2021).Article 

    Google Scholar 
    Kurth, M. et al. A portfolio decision analysis approach to support energy research and development resource allocation. Energy Policy 105, 128–135 (2017).Article 

    Google Scholar 
    Friedler, F., Pimentel Lozada, J. & Orosz, Á. P-Graphs for Process Systems Engineering: Mathematical Models and Algorithms (Springer Nature, 2022).P-Graph (accessed 10 August 2021); www.p-graph.org More

  • in

    Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem

    This study reveals that various measures of bee diversity-including abundance, richness, and assemblage patterns are influenced by vane color and light reflectance patterns when passively sampling bees with vane traps. In particular, brightly colored vanes with higher light reflectance within 400–600 nm range attracted a greater diversity of bees in traps placed in a livestock pasture ecosystem. Effectiveness of blue and yellow vane traps had been compared previously in different ecosystems, for instance in apple orchards17, both woodland and open agriculture farmland13, and adjacent to Helianthus spp. (Asteraceae) field27. In all these studies, blue vane trap captured more bee species and 5–6 times more individuals compared to yellow vane trap.In the current study, we assessed a different design and size of vanes and a wider array of vane colors and reflectance patterns attached to sample collection jars. In particular, we used bright blue and yellow vanes that were made of plastic sheets covered with a micro-prismatic retro-reflective sheeting that provides better daytime and nighttime brightness as well as high visibility and durability. These vanes showed higher light reflectance and captured the most bees and bee species in this study (Table 2). Similar material was used on red vanes as well, but the light reflectance from those vanes was relatively lower, and as a result captured fewer bees. Traps with bright blue vanes performed especially well in terms of rates of bee capture (Fig. 2; 11.1 bees per trap per sampling date) and rates of species accumulation (Fig. 3). Bright yellow traps exhibited the second highest values for capture rates (Fig. 2; 6.6 bees per trap per sampling date) and species accumulation (Fig. 3), but these rates were not deemed significantly different from some other colors in which the reflective sheeting was not used, such as dark yellow, dark blue and purple.Bees use visual clues for detection, recognition, and memorization of floral resources in the foraging landscape7,28. The intensity of light reflected from different colors of vanes in traps affect number of bees attracted toward the trap10. Most bees can recognize colors that fall between 300 to 600 nm visual spectrums29. While the information related to the vision of many solitary and wild bees is not available, in the case of honey bees (Apis mellifera), color vision is trichromatic with highly sensitive photoreceptors at 344 nm (ultraviolet), 436 nm (blue) and 544 nm (green)30.In this study, colored vanes at a higher light reflectance between 400 to 600 nm attracted the highest number bee species in these passive traps. Capture rate differed among traps with different colored vanes in the current study, which can be explained by sensitivity of visual spectrum of bees and variation in the light reflectance of vanes of these traps. For example, bright blue vanes had two peaks of higher light reflectance, initially in 450–455 nm range and second peak with  > 800 nm. Such higher reflectance peak within the optimal range of bee vision may have played an important role in attracting abundant and diverse bee species to these passive traps. Similarly, bright yellow captured second largest number of bees, also had higher light reflectance peak within 600 nm but gradually decreased with increasing wavelength. Though bees have color spectrum from UV to orange31, they are sensitive to color spectrum between blue, green and ultraviolet32, which is a type of trichromatic vision system28. In one study33, red color vanes showed relatively lower light reflectance within 600 nm range, but had higher reflectance later in the spectrum, and this could be a reason why a low number of bees were collected in the traps. Past research showed contradictory views regarding the ability of bees to perceive red color. For instance, an early researcher in this field33, reported that bees recognize red color objects; however, other researchers had reported inability of bees to perceive34 or discriminate red from other colors35,36. It was argued that the bees see up to 650 nm in the visual spectrum and may not miss red colored flowers while foraging. However, other factors such as background (vegetation) color could also be contributing to bees’ ability to navigate different vane or flower colors in a livestock pasture landscape. Generally bees use color contrast to locate flower source, and hence neutral colors such as white are usually ignored29. Ultraviolet signal can make flowers more or less attractive to bees depending on whether it increases or decreases color contrast37. For example, UV color component in yellow38 and red39 flower increases chromatic contrast of these colored flowers with their background contributing attractiveness to the flowers. However, UV-reflecting white flowers decreases attractiveness for bees40.Different species of bees responded to different colors of vane traps. Out of the 49 bee species collected in this study, only nine bee species were found in all vane color types, whereas 14 species were found in only one trap color. For instance, out of five bumble bee species, two were found in all six vane colors, one was found in five colors, and two species (Bombus bimaculatus and B. fervidus) were only found in the traps with bright blue vanes. Many of the species that were only found in one trap color- Calliopsis andreniformis (1, bright yellow), Ceratina dupla (1, bright yellow), Diadasia afflicta (1, bright blue), Diadasia enavata (1, dark blue), Halictus rubicundus (1, dark yellow), Hylaeus mesillae (1, red), Lasioglossum tegulare (1, bright blue), Lasioglossum trigeminum (1, purple), Megachile montivaga (1, dark yellow), Melitoma taurea (1, bright blue), Svastra atripes (1, bright blue), and Triepeolus lunatus (1, dark yellow) were singletons and it was impossible to know if this represented a true preference or pattern. Our analysis of assemblage patterns after aggregating bees at the genus level, did show a gradient-like response in bee-color associations (Fig. 4), ranging from dark blue to yellows (with no strong associations found with red vanes). These patterns may be used to guide future (passive trap-based) sampling efforts to monitor bee diversity or to target specific bee species in livestock pastures or other ecosystems. While the bright blue and yellow traps with reflective sheeting were particularly attractive to bees, dark blue and purple traps also had relatively high levels of abundance and richness and collected higher number of Melissodes. Purple, as a color, is less commonly used than blue and yellow traps in bee monitoring. While this study shows that purple may be a viable option for bee collection, it’s similar assemblage pattern (Fig. 4) and low level of complementarity with dark blue traps (Table 2) suggests that it may be redundant with blue traps that are already commonly used. Differences in species- and sex-specific associations of bees with different colors of sampling traps had also been reported in previous studies41.Most of the bees collected in the current study were from Halictidae family (77.6%) followed by Apidae. However, few bee species in the families Andrenidae, Colletidae, and Megachilidae were collected. Consistent with our findings, others42 reported that bees of the Halictidae family were the most abundant bees in rangeland of Texas. The most common species found in this study were Au. aurata, L. disparile, L. imitatum, and Ag. texanus). In our previous studies we have found similar bee diversity in this study region18. Pollinator species richness and diversity as well as population distribution in livestock pasture vary during the season43. Mid-July to mid-August is the latter half of the summer season in the Southeastern USA, and the sampling period may have missed bee species that emerge earlier in the season and are reported in other studies42,43.Overall, the findings of this study showed that the wild bees responded differently to passive traps with colored vanes of different light wavelength and reflectivity when deployed in a livestock pasture ecosystem. Among six different colors of vanes (dark blue, bright blue, dark yellow, bright yellow, purple and red), the bright blue traps captured the highest number of individuals and species of bees. This could be due to an appropriate match between the visual spectrum of bees and the light reflectance spectrum of vanes, which were made of a micro-prismatic retro-reflective material. Bees responded similarly to traps with other colors of vanes, except for red vane traps, which captured the lowest number of bees. The findings of this study would be useful in understanding bee vision and responses to passive traps, and, such information would help in optimizing bee sampling methods for future monitoring efforts. More

  • in

    Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups

    Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jhan, K. Y. et al. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasites Vectors. 13, 405. https://doi.org/10.1186/s13071-020-04230-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boillat, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 30, 320–334 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. Nippostrongylus brasiliensis infection leads to impaired reference memory and myeloid cell interference. Sci. Rep. 8, 2958. https://doi.org/10.1038/s41598-018-20770-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavaliers, M. & Colwell, D. D. Reduced spatial learning in mice infected with the nematode Heligmosomoides polygyrus. Parasitology 110(Pt 5), 591–597 (1995).PubMed 
    Article 

    Google Scholar 
    Pan, S. C. et al. Cognitive and microbiome impacts of experimental Ancylostoma ceylanicum hookworm infections in hamsters. Sci. Rep. 9, 7868. https://doi.org/10.1038/s41598-019-44301-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blecharz-Klin, K. et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 18, e1010330–e1010330. https://doi.org/10.1371/journal.ppat.1010330 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braithwaite, V. et al. Spatial and discrimination learning in rodents infected with the nematode Strongyloides ratti. Parasitology 117(Pt 2), 145–154 (1998).PubMed 
    Article 

    Google Scholar 
    Sharma, S., Rakoczy, S. & Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 87, 521–536 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J. 55, 310–332 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pelletier, F., Page, K. A., Ostiguy, T. & Festa-Bianchet, M. Fecal counts of lungworm larvae and reproductive effort in bighorn sheep. Ovis canadensis. Oikos. 110, 473–480 (2005).Article 

    Google Scholar 
    Odiere, M. R., Koski, K. G., Weiler, H. A. & Scott, M. E. Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus. Parasitology 137, 991–1002 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitzgerald, E., Hor, K. & Drake, A. J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum. Dev. 150, 105190. https://doi.org/10.1016/j.earlhumdev.2020.105190 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24, 881–897 (2010).PubMed 
    Article 

    Google Scholar 
    Akitake, Y. et al. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring. Nutr. Res. 35, 76–87 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammelrath, L. et al. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. Neuroimage 125, 144–152 (2016).PubMed 
    Article 

    Google Scholar 
    Wills, T., Muessig, L. & Cacucci, F. The development of spatial behaviour and the hippocampal neural representation of space. Philos. Trans. R. Soc. B: Biol. Sci. 369, 20130409. https://doi.org/10.1098/rstb.2013.0409 (2014).Article 

    Google Scholar 
    Travaglia, A., Steinmetz, A. B., Miranda, J. M. & Alberini, C. M. Mechanisms of critical period in the hippocampus underlie object location learning and memory in infant rats. Learn Mem. 25, 176–182 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McHail, D. G., Valibeigi, N. & Dumas, T. C. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem. 25, 138–146 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bliss, T. V. P., Collingridge, G. L., Morris, R. G. M. & Reymann, K. G. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum 24, A103–A120 (2018).Article 

    Google Scholar 
    Schiller, D. et al. Memory and space: Towards an understanding of the cognitive map. J. Neurosci. 35, 13904–13911 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, P. et al. The persistent effects of maternal infection on the offspring’s cognitive performance and rates of hippocampal neurogenesis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 44, 279–289 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wallace, K. L. et al. Interleukin-10/Ceftriaxone prevents E. coli-induced delays in sensorimotor task learning and spatial memory in neonatal and adult Sprague-Dawley rats. Brain. Res. Bull. 81, 141–148 (2010).Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denenberg, V. H. Open-field behavior in the rat: what does it mean?. Ann. N. Y. Acad. Sci. 159, 852–859 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel-Ciernia, A. & Wood, M. A. Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1–17 (2014).Denninger, J. K., Smith, B. M. & Kirby, E. D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. https://doi.org/10.3791/58593 (2018).Article 
    PubMed 

    Google Scholar 
    Krüger, H.-S., Brockmann, M. D., Salamon, J., Ittrich, H. & Hanganu-Opatz, I. L. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn. Mem. 97, 470–481 (2012).PubMed 
    Article 

    Google Scholar 
    Cruz-Sanchez, A. et al. Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci. Rep. 10, 10612. https://doi.org/10.1038/s41598-020-67619-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunyer, B., Patil, S., Hoger, H. & Lubec, G. Barnes maze, a useful task to assess spatial reference memory in the mice. Nat. Protoc. https://doi.org/10.1038/nprot.2007.390 (2007).Article 

    Google Scholar 
    Schenk, F. Development of place navigation in rats from weaning to puberty. Behav. Neural Biol. 43, 69–85 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. W. & Kraemer, P. J. Ontogenetic differences in retention of spatial learning tested with the Morris water maze. Dev. Psychobiol. 30, 329–341 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Batinić, B. et al. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav. Brain Res. 299, 72–80 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lante, F. et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic. Biol. Med. 42, 1231–1245 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, H. et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol. Lett. 192, 245–251 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yagi, S. & Galea, L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44, 200–213 (2019).PubMed 
    Article 

    Google Scholar 
    Vuoksimaa, E. et al. Brain structure mediates the association between height and cognitive ability. Brain Struct. Func. 223, 3487–3494 (2018).Article 

    Google Scholar 
    Harris, M. A., Brett, C. E., Deary, I. J. & Starr, J. M. Associations among height, body mass index and intelligence from age 11 to age 78 years. BMC Geriatr. 16, 167. https://doi.org/10.1186/s12877-016-0340-0 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, V. H. et al. Adult body height is a good predictor of different dimensions of cognitive function in aged individuals: A cross-sectional study. Front. Aging Neurosci. 8, 1. https://doi.org/10.3389/fnagi.2016.00217 (2016).Case, A. & Paxson, C. Stature and status: Height, ability, and labor market outcomes. J. Polit. Econ. 116, 499–532 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frick, K. M., Kim, J., Tuscher, J. J. & Fortress, A. M. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem. 22, 472–493 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qiu, L. R. et al. Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat. Commun. 9, 2615. https://doi.org/10.1038/s41467-018-04921-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Towe, A. L. & Mann, M. D. Brain size/body length relations among myomorph rodents. Brain Behav. Evol. 39, 17–23 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perepelkina, O. V., Tarasova, A. Y., Ogienko, N. A., Lil’p, I. G. & Poletaeva, I. I. Brain weight and cognitive abilities of laboratory mice. Biol. Bull. Rev. 10, 91–101 (2020).Odiere, M. R., Scott, M. E., Weiler, H. A. & Koski, K. G. Protein deficiency and nematode infection during pregnancy and lactation reduce maternal bone mineralization and neonatal linear growth in mice. J. Nutr. 140, 1638–1645 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, M. B. et al. Leishmania amazonensis infection impairs reproductive and fetal parameters in female mice. Rev. Argent. Microbiol. 53, 194–201 (2021).PubMed 

    Google Scholar 
    Haque, M., Koski, K. G. & Scott, M. E. Maternal gastrointestinal nematode infection up-regulates expression of genes associated with long-term potentiation in perinatal brains of uninfected developing pups. Sci. Rep. 9, 4165. https://doi.org/10.1038/s41598-019-40729-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregory, R. D., Montgomery, S. S. J. & Montgomery, W. I. Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J. Anim. Ecol. 61, 749–757 (1992).Article 

    Google Scholar 
    Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maizels, R. M. et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp. Parasitol. 132, 76–89 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haque, M., Starr, L. M., Koski, K. G. & Scott, M. E. Differential expression of genes in fetal brain as a consequence of maternal protein deficiency and nematode infection. Int. J. Parasitol. 48, 51–58 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsueh, P.-T. et al. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. Genes Brain Behav. 17, e12479. https://doi.org/10.1111/gbb.12479 (2018).Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ricceri, L., Colozza, C. & Calamandrei, G. Ontogeny of spatial discrimination in mice: A longitudinal analysis in the modified open-field with objects. Dev. Psychobiol. 37, 109–118 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howland, J. G., Cazakoff, B. N. & Zhang, Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201, 184–198 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ito, H. T., Smith, S. E. P., Hsiao, E. & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun. 24, 930–941 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry. 13, 208–221 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapillon, P. & Roullet, P. Use of proximal and distal cues in place navigation by mice changes during ontogeny. Dev. Psychobiol. 29, 529–545 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Variyam, E. P. & Banwell, J. G. Hookworm disease: Nutritional implications. Rev. Infect. Dis. 4, 830–835 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bansemir, A. D. & Sukhdeo, M. V. The food resource of adult Heligmosomoides polygyrus in the small intestine. J. Parasitol. 80, 24–28 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Starr, L. M., Scott, M. E. & Koski, K. G. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines. J. Nutr. 145, 41–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herring, C. M., Bazer, F. W., Johnson, G. A. & Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. (Maywood). 243, 525–533 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Starr, L. M., Odiere, M. R., Koski, K. G. & Scott, M. E. Protein deficiency alters impact of intestinal nematode infection on intestinal, visceral and lymphoid organ histopathology in lactating mice. Parasitology 141, 801–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., von Hohenberg, W. C., Mickelson, D. J., Lanier, L. M. & Georgieff, M. K. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev. Neurosci. 38, 264–276 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., Rao, R., Tran, P. V. & Georgieff, M. K. The effects of early-life iron deficiency on brain energy metabolism. Neurosci. Insights. 15, 2633105520935104. https://doi.org/10.1177/2633105520935104 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, J. M. et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc. Natl. Acad. Sci. 115, E7398–E7407. https://doi.org/10.1073/pnas.1721876115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radlowski, E. & Johnson, R. Perinatal iron deficiency and neurocognitive development. Front. Hum. Neurosci. 7, 585 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rytych, J. L. et al. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr. 142, 2050–2056 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brązert, M. et al. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol. Med. Rep. 21, 1749–1760 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431 (1999).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain. Res. 1531, 1–8 (2013).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Odiere, M. R., Scott, M. E., Leroux, L. P., Dzierszinski, F. S. & Koski, K. G. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J. Nutr. 143, 100–107 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    El Ahdab, N., Haque, M., Madogwe, E., Koski, K. G. & Scott, M. E. Maternal nematode infection upregulates expression of Th2/Treg and diapedesis related genes in the neonatal brain. Sci. Rep. 11, 22082. https://doi.org/10.1038/s41598-021-01510-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: A key role for IL-4. Exp. Med. 207, 1067–1080 (2010).CAS 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci. Rep. 10, 16506. https://doi.org/10.1038/s41598-020-73574-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13. https://doi.org/10.3389/fncel.2019.00363 (2019).Williamson, L. L. et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav. Immun. 51, 14–28 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McKay, D. M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 137, 385–394 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, U., Feldon, J. & Fatemi, S. H. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 33, 1061–1079 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, C. J. C. et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J. Vis. Exp. e52412–e52412. https://doi.org/10.3791/52412 (2015).Valanparambil, R. M. et al. Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat. Protoc. 9, 2740–2754 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Murai, T., Okuda, S., Tanaka, T. & Ohta, H. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol. Behav. 90, 116–124 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patil, S. S., Sunyer, B., Hoger, H. & Lubec, G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav. Brain. Res. 198, 58–68 (2009).PubMed 
    Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Lazic, S. E. The problem of pseudoreplication in neuroscientific studies: Is it affecting your analysis?. BMC Neurosci. 11, 5. https://doi.org/10.1186/1471-2202-11-5 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Vol. 1–574 (2009).Bates, D., Maechler, M., Bolker, B. & Steve, W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Sanford, W. An R Companion to Applied Regression. 3 edn, (Sage, 2019).emmeans: Estimated marginal means, aka least-squares means v. 1.4.8 (R package, 2020).RVAideMemoire: Testing and plotting procedures for biostatistics. v. 0.9-78 (R package, 2020).DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models v. 0.3.3.0 (R package, 2020).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar  More