More stories

  • in

    Reduction of greenhouse gases emission through the use of tiletamine and zolazepam

    Caycedo-Marulanda, A. & Mathur, S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. J. Can. Anesth. 69, 269–270 (2022).CAS 
    Article 

    Google Scholar 
    World Health Organization. COP24 Special Report Health & Climate Change. https://apps.who.int/iris/bitstream/handle/10665/276405/9786057496713-tur.pdf (2018).Gadani, H. & Vyas, A. Anesthetic gases and global warming: potentials, prevention and future of anesthesia. Anesth. Essays Res. 5, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollmer, M. K. et al. Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J. & Sander, S. P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A 116, 5806–5820 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ryan, S. M. & Nielsen, C. J. Global warming potential of inhaled anesthetics: application to clinical use. Anesth. Analg. 111, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    American Society of Anesthesiologists. Task Force on Environmental Sustainability Committee on Equipment and Facilities. Greening the Operating Room and Perioperative Arena: Environmental Sustainability for Anesthesia Practice. https://www.asahq.org/about-asa/governance-and-committees/asa-committees/committee-on-equipment-and-facilities/environmental-sustainability/greening-the-operating-room#intro (2014).McGain, F., Story, D., Kayak, E., Kashima, Y. & McAlister, S. Workplace sustainability: the “cradle to grave” view of what we do. Anesth. Analg. 114, 1134–1139 (2012).PubMed 
    Article 

    Google Scholar 
    Yasny, J. S. & White, J. Environmental implications of anesthetic gases. Anesth. Prog. 59, 154–158 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byhahn, C., Wilke, H. J. & Westpphal, K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. CNS Drugs 15, 197–215 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherman, J., Le, C., Lamers, V. & Eckelman, M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 114, 1086–1090 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankes, R. F. Propofol wastage in anesthesia. Anesth. Analg. 114, 1091–1092 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weller, M. A general review of the environmental impact of health care, hospitals, operating rooms, and anesthetic care. Int. Anesthesiol. Clin. 58, 64–69 (2020).PubMed 
    Article 

    Google Scholar 
    Dawidowicz, A. L. et al. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. Biomed. Chromatogr. BMC 16, 455–458 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. L. et al. Influence of ambient temperature and confinement on the chemical immobilization of fallow deer (Dama dama). J Wildl Dis 53, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. et al. Comparison of tiletamine-zolazepam combined with dexmedetomidine or xylazine for chemical immobilization of wild fallow deer (Dama dama). J. Zoo Wildl. Med. 52, 1009–1012 (2021).PubMed 
    Article 

    Google Scholar 
    Lin, H. C., Thurmon, J. C., Benson, G. J. & Tranquilli, W. J. Telazol: a review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 16, 383–418 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. Staircase bioassay: the up-and-down method. Neurosci. Biobehav. Rev. 15, 47–50 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, C.-M. et al. Sitting position does not alter minimum alveolar concentration for desflurane. Can. J. Anesth. Can. Anesth. 54, 523–530 (2007).Article 

    Google Scholar 
    Wadhwa, A. & Sessler, D. I. Women have the same desflurane minimum alveolar concentration as men. J. Am. Soc. Anesthesiol. 99, 4 (2003).
    Google Scholar 
    Monteiro, E. R., Coelho, K., Bressan, T. F., Simões, C. R. & Monteiro, B. S. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg. 43, 27–34 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campagnol, D., Neto, F. J. T., Giordano, T., Ferreira, T. H. & Monteiro, E. R. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 68, 1308–1318 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, A., Morey, T. E., Hernandez, J. & Davies, W. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. Am. J. Vet. Res. 64, 957–962 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguado, D., Benito, J. & Gómez de Segura, I. A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 189, 63–66 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muir, W. W. III., Wiese, A. J. & March, P. A. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am. J. Vet. Res. 64, 1155–1160 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. The up-and-down method for small samples. J. Am. Stat. Assoc. 60, 967–978 (1965).MathSciNet 
    Article 

    Google Scholar 
    Paul, M. & Fisher, D. M. Are estimates of MAC reliable?. Anesthesiology 95, 1362–1370 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sonner, J. M. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth. Analg. 95, 609–614 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flecknell, P. et al. Preanesthesia, anesthesia, analgesia, and euthanasia. in Laboratory Animal Medicine 1135–1200 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409527-4.00024-9.Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A. & Robertson, S. A. Veterinary Anesthesia and Analgesia (Wiley, 2015).Book 

    Google Scholar 
    Grimm, K. A., Tranquilli, W. J. & Lamont, L. A. Essentials of Small Animal Anesthesia and Analgesia (Wiley, 2011).
    Google Scholar 
    Hanna, M. & Bryson, G. L. A long way to go: minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. Can. Anesth. 66, 838–839 (2019).Article 

    Google Scholar 
    Andersen, M. P. S., Nielsen, O. J., Wallington, T. J., Karpichev, B. & Sander, S. P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 114, 1081–1085 (2012).CAS 
    Article 

    Google Scholar 
    Ishizawa, Y. General anesthetic gases and the global environment. Anesth. Analg. 112, 213–217 (2011).PubMed 
    Article 

    Google Scholar 
    Brown, A. C., Canosa-Mas, C. E., Parr, A. D., Pierce, J. M. T. & Wayne, R. P. Tropospheric lifetimes of halogenated anaesthetics. Nature 341, 635–637 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lucio, L. M. C., Braz, M. G., don Nascimento Junior, P., Braz, J. R. C. & Braz, L. G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. Engl. Ed. 68, 33–41 (2018).
    Google Scholar 
    Waste anesthetic gases-occupational hazards in hospitals. https://www.cdc.gov/niosh/docs/2007-151/ (2007). https://doi.org/10.26616/NIOSHPUB2007151.MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e381–e388 (2017).PubMed 
    Article 

    Google Scholar 
    Rauchenwald, V. et al. New method of destroying waste anesthetic gases using gas-phase photochemistry. Anesth. Analg. 131, 288–297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Özelsel, T.J.-P., Sondekoppam, R. V., Ip, V. H. Y. & Tsui, B. C. H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anesth. Can. Anesth. 66, 249–254 (2019).Article 

    Google Scholar 
    Thiel, C. L. et al. Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States. Environ. Sci. Technol. 49, 1779–1786 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mastrangelo, G., Comiati, V., dell’Aquila, M. & Zamprogno, E. Exposure to anesthetic gases and Parkinson’s disease: a case report. BMC Neurol. 13, 194 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casale, T. et al. Anesthetic gases and occupationally exposed workers. Environ. Toxicol. Pharmacol. 37, 267–274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma, A. et al. Should total intravenous anesthesia be used to prevent the occupational waste anesthetic gas exposure of pregnant women in operating rooms?. Anesth. Analg. 128, 188–190 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, J. M. L. Comparison of disposable circle and ‘to-and-fro’ breathing systems during anaesthesia in dogs. J. Small Anim. Pract. 39, 416–420 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suttner, S. & Boldt, J. Low-flow anaesthesia: does it have potential pharmacoeconomic consequences?. Pharmacoeconomics 17, 585–590 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, R. S. & West, E. Environmental sustainability in veterinary anaesthesia. Vet. Anaesth. Analg. 46, 409–420 (2019).PubMed 
    Article 

    Google Scholar 
    Feldman, J. M. Managing fresh gas flow to reduce environmental contamination. Anesth. Analg. 114, 1093–1101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, T. V. S. Low flow anaesthesia: frequently asked questions (2020).Pattanapon, N., Bootcha, R. & Petchdee, S. The effects of anesthetic drug choice on heart rate variability in dogs. J. Adv. Vet. Anim. Res. 5, 485 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hampton, C. E. et al. Effects of intravenous administration of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for induction of anesthesia on cardiorespiratory and metabolic variables in healthy dogs before and during anesthesia maintained with isoflurane. Am. J. Vet. Res. 80, 33–44 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratnu, D. A., Anjana, R. R., Parikh, P. V. & Kelawala, D. N. Effects of tiletamine-zolazepam and isoflurane for induction and maintenance in xylazine premedicated dogs. Indian J. Vet. Sci. Biotechnol. 17, 86–88 (2021).CAS 

    Google Scholar 
    Malavasi, L. M., Jensen-Waern, M., Augustsson, H. & Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 42, 62–70 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malavasi, L. M. et al. Effects of extradural morphine on end-tidal isoflurane concentration and physiological variables in pigs undergoing abdominal surgery: a clinical study. Vet. Anaesth. Analg. 33, 307–312 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krimins, R. A., Ko, J. C., Weil, A. B., Payton, M. E. & Constable, P. D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 73, 1363–1370 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nam, S.-W., Shin, B.-J. & Jeong, S. M. Anesthetic and cardiopulmonary effects of butorphanol-tiletamine-zolazepam-medetomidine and tramadol-tiletamine-zolazepam-medetomidine in dogs. J. Vet. Clin. 30(6), 421–427 (2013).
    Google Scholar 
    Ko, J. C. H., Payton, M., Weil, A. B., Kitao, T. & Haydon, T. Comparison of anesthetic and cardiorespiratory effects of tiletamine–zolazepam–butorphanol and tiletamine–zolazepam–butorphanol– medetomidine in dogs. Vet. Ther. 8, 14 (2007).
    Google Scholar 
    Grimm, K. A., Tranquilli, W. J., Thurmon, J. C. & Benson, G. J. Duration of nonresponse to noxious stimulation after intramuscular administration of butorphanol, medetomidine, or a butorphanol-medetomidine combination during isoflurane administration in dogs. Am. J. Vet. Res. 61, 42–47 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Disease-economy trade-offs under alternative epidemic control strategies

    Here we provide an overview of the key elements of our framework including describing the contact function that links economic activities to contacts, the SIRD (Susceptible-Infectious-Recovered-Dead) model, the dynamic economic model governing choices, and calibration. The core of our approach is a dynamic optimization model of individual behavior coupled with an SIRD model of infectious disease spread. Additional details are found in the SI.Contact functionWe model daily contacts as a function of economic activities (labor supply, measured in hours, and consumption demand, measured in dollars) creating a detailed mapping between contacts and economic activities. For example, all else equal, if a susceptible individual reduces their labor supply from 8 to 4 h, they reduce their daily contacts at work from 7.5 to 3.75. Epidemiological data is central to calibrating this mapping between epidemiology and economic behavior. Intuitively, the calibration involves calculating the mean number of disease-transmitting contacts occurring at the start of the epidemic and linking it to the number of dollars spent on consumption and hours of labor supplied before the recession begins.We use an SIRD transmission framework to simulate SARS-CoV-2 transmission for a population of 331 million interacting agents. This is supported by several studies (e.g.,77,78) that identify infectiousness prior to symptom onset. We consider three health types m ∈ {S, I, R} for individuals, corresponding to epidemiological compartments of susceptible (S), infectious (I), and recovered (R). Individuals of health type m engage in various economic activities ({A}_{i}^{m}), with i denoting the activities modeled. One of the ({A}_{i}^{m}) is assumed to represent unavoidable other non-economic activities, such as sleeping and commuting, which occur during the hours of the day not used for economic activities (see SI 2.3.1). Disease dynamics are driven by contacts between susceptible and infectious types, where the number of susceptible-infectious contacts per person is given by the following linear equation:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{A}_{i}^{S}{A}_{i}^{I}$$
    (1)
    while similar in several respects to prior epi-econ models15,16,74, a methodological contribution is that ρi converts hours worked and dollars spent into contacts. For example, ρc has units of contacts per squared dollar spent at consumption activities, while ρl has units of contacts per squared hour worked.We also consider robustness to different functional forms in Fig. 6F, G as a reduced-form way to consider multiple consumption and labor activities with heterogeneous contact rates. Formally:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{({A}_{i}^{S}{A}_{i}^{I})}^{alpha },$$
    (2)
    where α  > 1 (convex) corresponds to a contact function where higher-contact activities are easiest to reduce or individuals with more contacts are easier to isolate. α  More

  • in

    Enhancing soil quality makes crop production more resilient to climate change

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01376-8 (2022). More

  • in

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds.) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Turner, J. & Marshall, G. J. Climate Change in the Polar Regions (Cambridge University Press, 2011).Book 

    Google Scholar 
    Meredith, M. et al. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (2019).Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 116, 1095–1103. https://doi.org/10.1073/pnas.1812883116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegert, M. et al. The Antarctic Peninsula under a 1.5°C global warming scenario. Front. Environ. Sci. 7, 102. https://doi.org/10.3389/fenvs.2019.00102 (2019).Article 

    Google Scholar 
    Iz, H. B. Is the global sea surface temperature rise accelerating?. Geod. Geodyn. 9, 432–438. https://doi.org/10.1016/j.geog.2018.04.002 (2018).Article 

    Google Scholar 
    Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B. 286, 20181887. https://doi.org/10.1098/rspb.2018.1887 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burge, C. A., Kim, C. J., Lyles, J. M. & Harvell, C. D. Special issue Oceans and Humans Health: The ecology of marine opportunists. Microb. Ecol. 65, 869–879. https://doi.org/10.1007/s00248-013-0190-7 (2013).Article 
    PubMed 

    Google Scholar 
    Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvell, C. D. et al. Emerging marine diseases–climate links and anthropogenic factors. Science 285, 1505–1510. https://doi.org/10.1126/science.285.5433.1505 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Egan, S. & Gardiner, M. Microbial dysbiosis: Rethinking disease in marine ecosystems. Front. Microbiol. 7, 991. https://doi.org/10.3389/fmicb.2016.00991 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 17, e3000533. https://doi.org/10.1371/journal.pbio.3000533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498. https://doi.org/10.1038/s41598-019-53580-w (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsuchiya, M. Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rocky shores. J. Exp. Mar. Biol. Ecol. 66, 101–111. https://doi.org/10.1016/0022-0981(83)90032-1 (1983).Article 

    Google Scholar 
    Malham, S. K. et al. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: The influence of temperature and nutrients on health and survival. Aquaculture 287, 128–138. https://doi.org/10.1016/j.aquaculture.2008.10.006 (2009).CAS 
    Article 

    Google Scholar 
    Beyer, J. et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 130, 338–365. https://doi.org/10.1016/j.marenvres.2017.07.024 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ladeiro, M. P. et al. Mussel as a tool to define continental watershed quality. In Organismal and Molecular Malacology (ed Ray, S.), IntechOpen. https://doi.org/10.5772/67995 (2017).Bonacci, S. et al. Esterase activities in the bivalve mollusc Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment. Mar. Pollut. Bull. 49, 445–455. https://doi.org/10.1016/j.marpolbul.2004.02.033 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Storhaug, E. et al. Seasonal and spatial variations in biomarker baseline levels within Arctic populations of mussels (Mytilus spp.). Sci. Total Environ. 656, 921–936. https://doi.org/10.1016/j.scitotenv.2018.11.397 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F. et al. Liquid biopsies for omics-based analysis in sentinel mussels. PLoS ONE 14, e0223525. https://doi.org/10.1371/journal.pone.0225359 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312. https://doi.org/10.1038/s41571-020-00457-x (2021).Article 
    PubMed 

    Google Scholar 
    Kowarsky, M. et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc. Natl. Acad. Sci. USA 114, 9623–9628. https://doi.org/10.1073/pnas.1707009114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H. et al. Circulating microbiome DNA: An emerging paradigm for cancer liquid biopsy. Cancer Lett. 521, 82–87. https://doi.org/10.1016/j.canlet.2021.08.036 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lokmer, A. et al. Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple scales. Front. Microbiol. 7, 1367. https://doi.org/10.3389/fmicb.2016.01367 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lokmer, A. & Wegner, M. K. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 9, 670–682. https://doi.org/10.1038/ismej.2014.160 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Auguste, M. et al. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 670, 129–137. https://doi.org/10.1016/j.scitotenv.2019.03.133 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA 113, E5062–E5071. https://doi.org/10.1073/pnas.1609157113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/j.scitotenv.2020.137209 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Féral, J.-P. et al. PROTEKER: Implementation of a submarine observatory at the Kerguelen islands (Southern Ocean). Underw. Technol. 34, 3–10. https://doi.org/10.3723/ut.34.003 (2016).Article 

    Google Scholar 
    Spain, E. A. et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 7, e2019EA000695. https://doi.org/10.1029/2019EA000695 (2020).ADS 
    Article 

    Google Scholar 
    Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 8, 47. https://doi.org/10.1186/s40168-020-00826-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-Y. et al. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl. Microbiol. Biotechnol. 98, 4209–4221. https://doi.org/10.1007/s00253-013-5472-y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gutierrez, T., Berry, D., Teske, A. & Aitken, M. D. Enrichment of Fusobacteria in sea surface oil slicks from the Deepwater Horizon oil spill. Microorganisms. 4, 24. https://doi.org/10.3390/microorganisms4030024 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Michelou, V. K., Caporaso, J. G., Knight, R. & Palumbi, S. R. The ecology of microbial communities associated with Macrocystis pyrifera. PLoS ONE 8, e67480. https://doi.org/10.1371/annotation/48e29578-a073-42e7-bca4-2f96a5998374 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Florez, J. Z. et al. Structure of the epiphytic bacterial communities of Macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. Algal Res. 44, 101706. https://doi.org/10.1016/j.algal.2019.101706 (2019).Article 

    Google Scholar 
    Minich, J. J. et al. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13, e0192772. https://doi.org/10.1371/journal.pone.0192772 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914. https://doi.org/10.3389/fmicb.2018.01914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J. Shellfish Res. 37, 793–806. https://doi.org/10.2983/035.037.0410 (2018).Article 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) and the Blue Mussel (Mytilus edulis): Temporal variation and the influence of marine aggregate-associated microbial communities. mSphere. 4, e00730-19. https://doi.org/10.1128/mSphere.00730-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delille, D. & Gleizon, F. Distribution of enteric bacteria in Antarctic seawater surrounding the Port-aux-Francais permanent station (Kerguelen Island). Mar. Pollut. Bull. 46, 1179–1183. https://doi.org/10.1016/S0025-326X(03)00164-4 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, T. V. & Alfaro, A. C. Metabolomics investigation of summer mortality in New Zealand Greenshell mussels (Perna canaliculus). Fish Shellfish Immunol. 106, 783–791. https://doi.org/10.1016/j.fsi.2020.08.022 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb. Ecol. 75, 495–504. https://doi.org/10.1007/s00248-017-1051-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Romalde, J. L., Diéguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413. https://doi.org/10.3389/fmicb.2013.00413 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genom. 21, 56. https://doi.org/10.1186/s12864-019-6427-1 (2020).CAS 
    Article 

    Google Scholar 
    Peng, W. et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front. Microbiol. 10, 3141. https://doi.org/10.3389/fmicb.2019.03141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koner, S. et al. Assessment of carbon substrate catabolism pattern and functional metabolic pathway for microbiota of limestone caves. Microorganisms 9, 1789. https://doi.org/10.21203/rs.3.rs-549787/v1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. F. et al. Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus. Sci. Rep. 9, 16391. https://doi.org/10.1038/s41598-019-52752-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanes, E. et al. Climate change alters the haemolymph microbiome of oysters. Mar. Pollut. Bull. 164, 111991. https://doi.org/10.1016/j.marpolbul.2021.111991 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hylander, B. L. & Repasky, E. A. Temperature as a modulator of the gut microbiome: What are the implications and opportunities for thermal medicine?. Int. J. Hyperth. 36, 83–89. https://doi.org/10.1080/02656736.2019.1647356 (2019).CAS 
    Article 

    Google Scholar 
    Lo Giudice, A. et al. Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb. Ecol. 63, 210–223. https://doi.org/10.1007/s00248-011-9904-x (2012).Article 
    PubMed 

    Google Scholar 
    Yumoto, I. et al. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch. Microbiol. 181, 345–351. https://doi.org/10.1007/s00203-004-0662-8 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weingarten, E. A., Atkinson, C. L. & Jackson, C. R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 14, e0224796. https://doi.org/10.1371/journal.pone.0224796 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 37, 727–746. https://doi.org/10.2983/035.037.0405 (2018).Article 

    Google Scholar 
    Griffiths, C. L. & King, J. A. Some relationships between size, food availability and energy balance in the ribbed mussel Aulacomya ater. Mar. Biol. 51, 141–149. https://doi.org/10.1007/BF00555193 (1979).Article 

    Google Scholar 
    Riisgård, H. U. Filtration rate and growth in the blue mussel, Mytilus edulis Linneaus, 1758: Dependence on algal concentration. J. Shellfish Res. 10, 29–36 (1991).
    Google Scholar 
    Sonier, R. et al. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar. Biol. 163, 73. https://doi.org/10.1007/s00227-016-2845-7 (2016).Article 

    Google Scholar 
    Jacobs, P., Troost, K., Riegman, R. & Van der Meer, J. Length-and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101–112. https://doi.org/10.1007/s10152-014-0419-y (2015).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. J. Exp. Mar. 300, 83–130. https://doi.org/10.1016/j.jembe.2004.03.002 (2004).Article 

    Google Scholar 
    Waite, A. M., Safi, K. A., Hall, J. A. & Nodder, S. D. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45, 87–97. https://doi.org/10.4319/lo.2000.45.1.0087 (2000).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142. https://doi.org/10.1016/j.marenvres.2009.05.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, J. E. Biodynamics of suspension-feeding in adult bivalve molluscs: Particle capture, processing, and fate. Invertebr. Biol. 115, 218–231. https://doi.org/10.2307/3226932 (1996).Article 

    Google Scholar 
    Rosa, M. et al. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. 486, 59–68. https://doi.org/10.1016/j.jembe.2016.09.007 (2017).CAS 
    Article 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Bivalve immunity and response to infections: Are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12. https://doi.org/10.1016/j.fsi.2016.03.037 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. USA 110, 10771–10776. https://doi.org/10.1073/pnas.1305923110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Mucosal immunity in mollusks. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 325–370 (Academic Press, 2015).Chapter 

    Google Scholar 
    Huang, J. et al. Hemocytes in the extrapallial space of Pinctada fucata are involved in immunity and biomineralization. Sci. Rep. 8, 4657. https://doi.org/10.1038/s41598-018-22961-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. J. et al. Isolation and characterization of two bacteriophages and their preventive effects against pathogenic Vibrio coralliilyticus causing mortality of Pacific oyster (Crassostrea gigas) larvae. Microorganisms. 8, 926. https://doi.org/10.3390/microorganisms8060926 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ihara, H. et al. Sulfur-oxidizing bacteria mediate microbial community succession and element cycling in launched marine sediment. Front. Microbiol. 8, 152. https://doi.org/10.3389/fmicb.2017.00152 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, B. B. & Nelson, D. C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol. S. Am. S. 379, 63–81. https://doi.org/10.1130/0-8137-2379-5.63 (2004).Article 

    Google Scholar 
    Zhou, M. et al. Surface currents and upwelling in Kerguelen Plateau regions. Biogeosci. Discuss. 11, 6845–6876. https://doi.org/10.5194/bgd-11-6845-2014 (2014).ADS 
    Article 

    Google Scholar 
    Gille, S. T., Carranza, M. M., Cambra, R. & Morrow, R. Wind-induced upwelling in the Kerguelen Plateau region. Biogeosciences 11, 6389–6400. https://doi.org/10.5194/bg-11-6389-2014 (2014).ADS 
    Article 

    Google Scholar 
    Park, Y. H., Roquet, F., Durand, I. & Fuda, J. L. Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res. II(55), 566–581. https://doi.org/10.1016/j.dsr2.2007.12.030 (2008).ADS 
    Article 

    Google Scholar 
    Renac, C. et al. Hydrothermal fluid interaction in basaltic lava units, Kerguelen Archipelago (SW Indian Ocean). Eur. J. 22, 215–234. https://doi.org/10.1127/0935-1221/2009/0022-1993 (2010).CAS 
    Article 

    Google Scholar 
    Vancanneyt, M. et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int. J. Syst. Evol. 51, 73–79. https://doi.org/10.1099/00207713-51-1-73 (2001).CAS 
    Article 

    Google Scholar 
    Helmuth, B. S. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384. https://doi.org/10.2307/1543615 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Testut, L., Wöppelmann, G., Simon, B. & Téchiné, P. The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn. 56, 464–472. https://doi.org/10.1007/s10236-005-0056-8 (2006).ADS 
    Article 

    Google Scholar 
    Pohl, B. et al. Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. J. Appl. Meteorol. Climatol. 60, 711–731. https://doi.org/10.1175/JAMC-D-20-0255.1 (2021).ADS 
    Article 

    Google Scholar 
    PROTEKER. Ilôt Channer (Passe Royale)—Sea water temperature at 5 and 13 m depth (T°C) daily average 2014–2019. https://www.proteker.net/swt-ilot-channer-passe-royale/ (2021).Caza, F. et al. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Mar. Environ. Res. 110, 174–182. https://doi.org/10.1016/j.marenvres.2015.09.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F., Cledon, M. & St-Pierre, Y. Biomonitoring climate change and pollution in marine ecosystems: A review on Aulacomya ater. J. Mar. Biol. 2016, 7183813. https://doi.org/10.1155/2016/7183813 (2016).Article 

    Google Scholar 
    Rey-Campos, M. et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury. Sci. Rep. 9, 3569. https://doi.org/10.1038/s41598-019-39870-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caza, F. et al. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696. https://doi.org/10.1038/s41598-020-76677-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, C. L. & Somero, G. N. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comp. Biochem. Physiol. 165, 159–168. https://doi.org/10.1016/j.cbpa.2013.02.024 (2013).CAS 
    Article 

    Google Scholar 
    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): Molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558. https://doi.org/10.1242/jeb.046094 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. & Blanchet, F. G. Vegan: Community Ecology Package. 2. 3-0 (2015).Ssekagiri, A., Sloan, W. & Ijaz, U. Z. microbiomeSeq: an R package for analysis of microbial communities in an environmental context, In ISCB Africa ASBCB Conference (Kumasi, Ghana, 2017).Cao, Y. Microbiome marker: Microbiome Biomarker Analysis Toolkit. R package version 0.99.0 (2020). https://github.com/yiluheihei/microbiomeMarker. Accessed March 2022.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS ONE 11, e0166104. https://doi.org/10.1371/journal.pone.0166104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    DNA databases of an important tropical timber tree species Shorea leprosula (Dipterocarpaceae) for forensic timber identification

    cpDNA haplotype databaseDNA sequencing of the choloroplast (cp) markers produced sequences of the following lengths: 573 bp (atpB-rbcL); 487 bp (petG-trnP); 500 bp (trnL1-trnL2); and 593 bp (psbM-trnD). Alignment of the 352 individuals from the 44 populations yielded a total 28 variable sites: 11 in the atpB-rbcL spacer, seven in both the petG-trnP and psbM-trnD spacers, and three in the trnL1-trnL2 spacer (Supplementary Table S1). Based on these 28 variable sites (21 base substitutions and 7 deletions) across the combined intergenic regions, a total of 22 unique haplotypes were found (Fig. 1a).Figure 1(a) Chloroplast haplotype distribution in the Shorea leprosula populations. The pie chart colours indicate haplotype distributions; and sector areas are proportional to sample size (Map was generated by ArcGIS-ArcMap version 10.8). (b) STRUCTURE analysis identified two clusters (K = 2) corresponding to Region A and B.Full size imageSSR allele frequency databaseThe reproducibility of SSR genotyping was confirmed by achieving consistent genotypes from five independent PCR amplifications on a single individual for each of the ten SSR loci. Individual bar plots from STRUCTURE analysis are presented in Fig. 1b. At the highest Delta K likelihood scores, the best representation of the data was K = 2 suggesting that the 44 populations in Peninsular Malaysia can be divided into two main genetic clusters: Region A and Region B. The first cluster, ‘Region A’ consists of 12 populations, namely SBadak, BPerangin, BEnggang, GJerai, RTelui, GInas, GBongsu, Belum, Piah, BHijau, Korbu and Bubu. The second cluster, ‘Region B’ consists of 32 populations, namely Behrang, Ampang, HGombak, HLangat, SLalang, PPanjang, Berembun, Angsi, Kenaboi, Triang, Pasoh, BSenggeh, GLedang, Krau, TNegara, Terenggun, SBetis, USat, CTongkat, HTerengganu, Jengai, AGading, Tekam, Beserah, Jengka, Lentang, Lesong, ERompin, GArong, Labis, AHitam and Panti. Similarly, the UPGMA dendrogram analysis also divided the 44 populations into two genetic clusters (Fig. 2) corresponding to Region A and B of the STRUCTURE result.Figure 2Dendrogram showing the relationship between 44 populations of Shorea leprosula in Peninsular Malaysia based on the UPGMA cluster analysis of SSR markers.Full size imageSSR allele frequency databases were established according to Region A and B, and characterized to evaluate the relative usefulness of each SSR marker in forensic investigation. The distribution of allele frequencies for each locus is listed in Table S2 (Region A database) and Table S3 (Region B database). Forensic parameters are shown in Table 1, with a total of 143 alleles and 174 alleles detected in the Region A and B databases, respectively. The observed (Ho) and expected (He) heterozygosity ranged from 0.3570 to 0.8346 and 0.4375 to 0.8795, respectively for populations in the Region A database; and ranged from 0.3298 to 0.8356 and 0.3469 to 0.8793, respectively for populations in the Region B database. The power of discrimination (PD) for the SSR loci ranged from 0.601 to 0.972 and 0.554 to 0.975, in Region A and B databases, respectively. The most discriminating locus was Sle605 in both the Region A (PD = 0.972) and Region B (PD = 0.975) databases. Minimum allele frequency was adjusted for alleles falling below the thresholds of 0.0066 (Region A) and 0.0024 (Region B).Table 1 Genetic diversity and forensic variables (A: total number of alleles; Ho: observed heterozygosity; He: expected heterozygosity; PIC: polymorphic information content; HWE: Hardy–Weinberg equilibrium; MP: matching probability; PD: power of discrimination) for each the 10 SSR loci of Shorea leprosula in the Region A and B databases.Full size tableDeviations from HWE were detected in four of the SSR loci for Region A (SleT11, SleT15, SleT17 and Sle465) and six SSR loci in Region B (SleT01, SleT11, SleT15, SleT17, SleT29 and SleT31). We evaluated these loci in each population independently to rule out the possible presence of null alleles. There were four populations in Region A (GJerai, RTelui, GBongsu and Piah) where a single one locus deviated from HWE; whereas there were eight populations in Region B (Behrang, HGombak, SLalang, Angsi, Klau, USat, Jengka and Panti) with a single locus and a single population (GLedang) with two loci that deviated from HWE (Table S4). Observed deviation from HWE was substantially lower in each population (either absence or not more than two loci) and thus it might be due to Wahlund effect caused by population substructuring in both Region A and B. Linkage disequilibrium (LD) testing was used to evaluate the independence of frequencies for all the SSR genotypes. A total of 13.3% and 28.9% of the 45 pairwise loci were found significant evidence of LD for Region A and B, respectively. Some of the loci might be linked as a result of population substructuring and inbreeding (inbreeding coefficient = 0.0822 [Peninsular Malaysia]). These results are in line with observations in real populations, where the assumption of completely random mating and zero migration required for HWE and LD are unlikely to be met, either in humans, animals or plants 21,22,23.Mean self-assignment, the proportion of individuals correctly assigned back to their population, was 45.9% and ranged from 14.3% (Kenaboi) to 81.3% (CTongkat) between population (Table 2). At the regional level, correct assignment rate of individuals to their region of origin was higher, 87.4% for Region A and 90.0% for Region B, (average of 88.7%).Table 2 Self-assignment test outcomes for Shorea leprosula individuals at the population and regional levels.Full size tableConservativeness of the databaseThe coancestry coefficient (θ) for Peninsular Malaysia (0.0579) was higher than those of Region A (0.0454) and Region B (0.0500) (Table 3). A total of 4.54% and 5.00% of the genetic variability was distributed among populations within Region A and Region B, respectively. In terms of inbreeding coefficient (f), the value for the Region A database (f = 0.0892) was highest, followed by Peninsular Malaysia (f = 0.0822) and Region B (f = 0.0666). All the θ and f values were significantly greater than zero, demonstrated by the 95% confidence intervals not overlapping with zero. Both of the θ and f values were used to calculate the conservativeness of each database by testing the cognate database (Porigin) against the regional database (Pcombined). The databases were non-conservative at the calculated θ value. In order for both the Region databases (A and B) to be conservative, the value of θ was adjusted from 0.0454 to 0.1900 for Region A and from 0.0500 to 0.1500 for Region B. For the Region A database, the most common SSR profile frequency is 2.69 × 10–7 or 1 in 3.72 million and the rarest profile frequency is 1.84 × 10–14 or 1 in 54.3 trillion. For the Region B database, the most common SSR profile frequency is 1.06 × 10–7 or 1 in 9.43 million and the rarest profile frequency is 4.03 × 10–16 or 1 in 2.48 quadrillion.Table 3 Coancestry (θ) and inbreeding (f) coefficients for Shorea leprosula at each hierarchical level.Full size table More

  • in

    Spotted lanternfly predicted to establish in California by 2033 without preventative management

    Model structureWe used the PoPS (Pest or Pathogen Spread) Forecasting System11 version 2.0.0 to simulate the spread of SLF and calibrated the model (Fig. 6) using Approximate Bayesian Computation (ABC) with sequential Markov chain and a multivariate normal perturbation kernel18,19. We simulated the reproduction and dispersal of SLF groups (at the grid cell level) rather than individuals, as exact measures of SLF populations are not the goal of surveys conducted by USDA and state departments of agriculture. Reproduction was simulated as a Poisson process with mean β that is modified by local conditions. For example, if we have 5 SLF groups in a cell, a β value of 2.2, and a temperature coefficient of 0.7, our modified β value becomes 1.54 and we draw five numbers from a Poisson distribution with a λ value of 1.54. β and dispersal parameters were calibrated to fit the observed patterns of spread. For this application of PoPS, we replaced the long-distance kernel (α2) with a network dispersal kernel based on railroads, along which SLF and tree of heaven are commonly observed7. For each SLF group dispersing, if a railroad is in the grid cell with SLF, we used a Bernoulli distribution with mean of γ (probability of natural dispersal) to determine if an SLF group dispersed via the natural Cauchy kernel with scale (α) or along the rail network. This network dispersal kernel accounts for dispersal along railways if SLF is present in a cell containing a rail line. The network dispersal kernel added three new parameters to the PoPS model: a network file that contained the nodes and edges, minimum distance that each railcar travels, and the maximum distance that each railcar travels. Unlike typical network models, which simulate transport simply between nodes, our approach allows for SLF to disembark a railcar at any point along an edge, more closely mimicking their actual behavior. This network therefore captures the main pathway of SLF long-distance dispersal, i.e., along railways.Fig. 6: Model structure for spotted lanternfly (SLF, Lycorma delicatula).Unused modules in the PoPS model are gray in the equation. a The number of pests that disperse from a single host under optimal environmental conditions (β) is modified by the number of currently infested hosts (I) and environmental conditions in a location (i) at a particular time (t); environmental conditions include seasonality (X) and temperature (T) (see supplementary Fig. 3 for details on temperature). Dispersal is a function of gamma (γ), which is the probability of short-distance dispersal (alpha-1, α1) or long-distance via the rail network (N (dmin, dmax)). For the natural-distance Cauchy kernel, the direction is selected using 0-359 with 0 representing North. For the network kernel, the direction along the rail is selected randomly, and then travel continues in that direction until the drawn distance is reached. Once SLF has landed in a new location, its establishment depends on environmental conditions (X, T) and the availability of suitable hosts (number of susceptible hosts [S] divided by total number of potential hosts [N]). b We used a custom host map for tree of heaven (Ailanthus altissima) to determine the locations of susceptible hosts. The number of newly infested hosts (ψ) is predicted for each cell across the contiguous US.Full size imageSpotted lanternfly model calibrationWe used 2015–2019 data (over 300,000 total observations including both positive and negative surveys) provided by the USDA APHIS and the state Departments of Agriculture of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and West Virginia to calibrate model parameters (β, α1, γ, dmin, dmax). The calibration process starts by drawing a set of parameters from a uniform distribution. Simulated results for each model run are then compared to observed data within the year they were collected, and accuracy, precision, recall, and specificity are calculated for the simulation period. If each of these statistics is above 65% the parameter set is kept. This process repeats until 10,000 parameter sets are kept; then, the next generation of the ABC process begins: the mean of each accuracy statistic becomes the new accuracy threshold, and parameters are drawn from a multivariate normal distribution based on the means and covariance matrix of the first 10,000 kept parameters. This process repeats for a total of seven generations. Compared to the 2020 and 2021 observation data (over 100,000 total observations including both positive and negative surveys), the model performed well, with an accuracy of 84.4%, precision of 79.7%, recall of 91.55%, and specificity of 77.6%. In contrast, a model run using PoPS’ previous long-distance kernel (α2) instead of the network dispersal kernel had an accuracy of 76.5%, precision of 68.1%, recall of 92.68%, and specificity of 57.2%.We applied the calibrated parameters and their uncertainties (Fig. 7) to forecast the future spread of SLF, using the status of the infestation as of January 1, 2020 as a starting point and data for temperature and the distribution of SLF’s presumed primary host (tree of heaven, Ailanthus altissima) for the contiguous US at a spatial resolution of 5 km.Fig. 7: Parameter distributions.a Reproductive rate (β), b natural dispersal distance (α1), c percent natural dispersal (γ), d minimum distance (dmin), e maximum distance (dmax).Full size imageWeather dataOverwinter survival of SLF egg masses, and therefore spread, is sensitive to temperature (see ref. 2). To run a spread model in PoPS, all raw temperature values are first converted to indices ranging 0–1 to describe their impact on a species’ ability to survive and reproduce. We converted daily Daymet20 temperature into a monthly coefficient ranging 0–1 (Supplementary Fig. 1) and then rescaled from 1 to 5 km by averaging 1-km pixel values. We used weather data 1980–2019 and randomly drew from those historical data to simulate future weather conditions in our simulations, to account for uncertainty in future weather conditions.Tree of heaven distribution mappingSLF is known to feed on >70 species of mainly woody plants7, but tree of heaven is commonly viewed as necessary, or at least highly important, for SLF spread. Young nymphs are host generalists, but older nymphs and adults strongly prefer tree of heaven (in Korea21; in Pennsylvania, US22), and experiments in captivity23 and in situ9 have shown that adult survivorship is higher on the tree of heaven and grapevine than other host plants, likely due to the presence and proportion of sugar compounds important for SLF survival23. Secondary compounds found in tree of heaven also make adult SLF more unpalatable to avian predators24, and researchers have hypothesized that these protective compounds may be passed on to eggs21. For these reasons, tree of heaven is widely considered the primary host for SLF and linked to SLF spread1,25.We, therefore, used tree of heaven as the host in our spread forecast. We estimated the geographic range of tree of heaven using the Maximum Entropy (MaxEnt) model26,27. We chose to use niche modeling because tree of heaven has been in the US for over 200 years and is well past the early stage of invasion at which niche models perform poorly; instead, tree of heaven is well into the intermediate to equilibrium stage of invasion, when niche models perform well28. We obtained 19,282 presences for tree of heaven in the US from BIEN29,30 and EDDmaps31 and selected the most important variables from an initial MaxEnt model of all 19 WorldClim bioclimatic variables32. Our final climate variables were mean annual temperature, precipitation of the coldest quarter, and precipitation of the driest quarter. Given that tree of heaven is non-native and invasive in the US, prefers open and disturbed habitat, and is commonly found along roadsides and in urban landscapes33, we also included distance to major roads and railroads as an additional variable in our model, to account for the presence of disturbed habitat as well as approximate urbanization and anthropogenic degradation. For each 1-km cell in the extent, we calculated distance to the nearest road and nearest railroad using the US Census Bureau’s TIGER data set of primary roads and railroads34. We used our final MaxEnt model to generate the probability of the presence of tree of heaven for each 1-km cell, then reset all cells with a probability ≤0.2 to a value of 0 to minimize overprediction of the tree of heaven locations (because cells ≤0.2 contained less than 1% of the presences used to build the model). We rescaled the remaining probability values 0–1. We used 10% of the tree of heaven presence data to validate the model, which performed well: 95% of the validation data set locations had a probability of presence greater than 65%. We then rescaled the 1-km MaxEnt output to 5 km using the mean value of our 1-km cells, in order to reduce computational time.Forecasting spotted lanternflyWe used the Daymet temperature data and distribution of tree of heaven to simulate SLF spread with PoPS, assuming no further efforts to contain or eradicate either tree of heaven or SLF. We ran the spread simulation 10,000 times from 2020 to 2050 for the contiguous US. After running all 10,000 iterations, we created a probability of occurrence for each cell for each year by dividing the number of simulations in which a cell was simulated as being infested in that year by 10,000 (the total number of simulations). This gave us a probability of occurrence per year. We downscaled our probability of occurrence per year from 5 km to 1 km and set the probability to 0 in 1-km pixels with no tree of heaven occurrence.Data for mapping and comparisonWe compared our probability of occurrence map in 2050 to the SLF suitability map created by Wakie et al.1 using niche modeling to see how well the two modeling approaches would agree if SLF were allowed to spread unmanaged (Fig. 5). Wakie et al.1 categorized pixels below 8.359% as unsuitable, between 8.359% and 26.89% as low risk, between 26.89% and 51.99% as medium risk, and above 51.99% as high risk. To facilitate comparison, we used this same schema to categorize pixels as low, medium, or high probability of spread.We converted the yearly raster probability maps to county-level probabilities in order to examine the yearly risk to crops in counties. We performed this conversion using two methods: (1) the highest probability of occurrence in the county (Supplementary Movie 2) and (2) the mean probability of occurrence in the county (Fig. 1 and Supplementary Movie 1). The first method provides a simple, non-statistical estimate of the probability of SLF presence by assigning the county the value of the highest cell-level probability; the second accounts for all of the probabilities of the cells in the county and typically results in a higher county-level probability. We used USDA county-level production data10 for grapes, almonds, apples, walnuts, cherries, hops, peaches, plums, and apricots to determine the amount of production at risk each year (Fig. 2).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Governance modes

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    A catastrophic collapse for the ‘flying banana’ of the Kalahari

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More