More stories

  • in

    Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns

    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science (80-). 2006;313:1072–7.Article 

    Google Scholar 
    Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.Article 

    Google Scholar 
    Wang M, Cernava T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ Sci Ecotechnol. 2020;4:100061.Article 

    Google Scholar 
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41.Article 

    Google Scholar 
    Wang Z, Zhang XH, Huang Y, Wang H. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ Pollut. 2015;204:223–32.Article 

    Google Scholar 
    Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol. 2014;48:7683–9.Article 

    Google Scholar 
    Vila-Costa M, Cerro-Gálvez E, Martínez-Varela A, Casas G, Dachs J. Anthropogenic dissolved organic carbon and marine microbiomes. ISME J. 2020;14:2646–8.Article 

    Google Scholar 
    da Silva GCX, Medeiros de Abreu CH, Ward ND, Belúcio LP, Brito DC, Cunha HFA, et al. Environmental impacts of dam reservoir filling in the East Amazon. Front Water. 2020;2:11.Article 

    Google Scholar 
    Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol. 2012;46:1455–64.Article 

    Google Scholar 
    Liu WR, Zhao JL, Liu YS, Chen ZF, Yang YY, Zhang QQ, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environ Pollut. 2015;200:53–63.Article 

    Google Scholar 
    Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, et al. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci Total Environ. 2016;541:1625–37.Article 

    Google Scholar 
    Rodea-Palomares I, Gonzalez-Pleiter M, Gonzalo S, Rosal R, Leganes F, Sabater S, et al. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. Sci Adv. 2016;2:1–12.Article 

    Google Scholar 
    Yang X, Chen F, Meng F, Xie Y, Chen H, Young K, et al. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res. 2013;20:5864–75.Article 

    Google Scholar 
    Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of coastal marine microbiomes exposed to anthropogenic dissolved organic carbon. Environ Sci Technol. 2021;55:9609–21.Article 

    Google Scholar 
    Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, et al. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol. 2021;23:4532–46.Article 

    Google Scholar 
    Bob A, Shen D, Li S, Zhang L, Rashid A, Sun Q, et al. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Sci Total Environ. 2020;721:137767.Article 

    Google Scholar 
    Tlili A, Corcoll N, Arrhenius Å, Backhaus T, Hollender J, Creusot N, et al. Tolerance patterns in stream biofilms link complex chemical pollution to ecological impacts. Environ Sci Technol. 2020;54:10745–53.Article 

    Google Scholar 
    Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc. 2009;45:4–13.Article 

    Google Scholar 
    Zhang W, Yin K, Chen L. Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol. 2013;97:5681–9.Article 

    Google Scholar 
    Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36:2149–73.Article 

    Google Scholar 
    Choi YJ, Lee LS. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol. 2017;51:13698–704.Article 

    Google Scholar 
    McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis [4]. Nature. 1998;394:531–2.Article 

    Google Scholar 
    Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, et al. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere. 2007;67:770–8.Article 

    Google Scholar 
    Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.Article 

    Google Scholar 
    Boyd TJ, Smith DC, Apple JK, Hamdan LJ, Osburn CL, Montgomery MT. Evaluating PAH biodegradation relative to total bacterial carbon demand in coastal ecosystems: Are PAHs truly recalcitrant? In: Van Dijk T. (ed). Microbial Ecology Research Trends. Nova Science Publishers, 2008. pp 1–38.Okere UV, Cabrerizo A, Dachs J, Ogbonnaya UO, Jones KC, Semple KT. Effects of pre-exposure on the indigenous biodegradation of 14C-phenanthrene in Antarctic soils. Int Biodeterior Biodegrad. 2017;125:189–99.Article 

    Google Scholar 
    Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between aquatic micropollutant dissipation and river sediment bacterial communities. Environ Sci Technol. 2020;54:14380–92.Article 

    Google Scholar 
    Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: Theory and practice. Ecology. 1984;65:1–13.Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:1–19.Article 

    Google Scholar 
    Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol. 2012;78:3221–8.Article 

    Google Scholar 
    Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 2017;11:1447–59.Article 

    Google Scholar 
    Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun. 2021;12:1–16.Article 

    Google Scholar 
    Philippot L, Griffiths BS, Langenheder S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol Mol Biol Rev. 2021;85:e00026–20.Article 

    Google Scholar 
    Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, et al. Prokaryotic footprints in urban water ecosystems: a case study of urban landscape ponds in a coastal city, China. Environ Pollut. 2018;242:1729–39.Article 

    Google Scholar 
    Im J, Löffler FE. Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol. 2016;50:8403–16.Article 

    Google Scholar 
    Sun Q, Li M, Ma C, Chen X, Xie X, Yu CP. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ Pollut. 2016;208:371–81.Article 

    Google Scholar 
    Sun Q, Wang Y, Li Y, Ashfaq M, Dai L, Xie X, et al. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ Pollut. 2017;225:542–9.Article 

    Google Scholar 
    Sun Q, Li Y, Chou PH, Peng PY, Yu CP. Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration. Environ Sci Technol. 2012;46:4442–8.Article 

    Google Scholar 
    Zaayman M, Siggins A, Horne D, Lowe H, Horswell J. Investigation of triclosan contamination on microbial biomass and other soil health indicators. FEMS Microbiol Lett. 2017;364:1–6.Article 

    Google Scholar 
    Xie J, Zhao N, Zhang Y, Hu H, Zhao M, Jin H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere. 2022;287:132218.Article 

    Google Scholar 
    Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PKS, Moon HB, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf. 2015;122:565–72.Article 

    Google Scholar 
    Kalyuzhny M, Shnerb NM. Dissimilarity-overlap analysis of community dynamics: opportunities and pitfalls. Methods Ecol Evol. 2017;8:1764–73.Article 

    Google Scholar 
    Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Hildebrand F, Tito RY, Voigt AY, Bork P, Raes J. Correction to: LotuS: an efficient and user-friendly OTU processing pipeline [Microbiome, 2, (2014), 30]. Microbiome. 2014;2:1–7.Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Methods. 2010;7:335–6.Article 

    Google Scholar 
    Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–4.Article 

    Google Scholar 
    Wu L, Yang Y, Chen S, Zhao M, Zhu Z, Yang S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:1–15.Article 

    Google Scholar 
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:2–5.Article 

    Google Scholar 
    Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001;58:626–39.Article 

    Google Scholar 
    Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. Encyclopedia of Food and Agricultural Ethics. 2019; 2395–6.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.Article 

    Google Scholar 
    Vila JCC, Liu YY, Sanchez A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 2020;14:2505–13.Article 

    Google Scholar 
    Ahlmann-Eltze C, Patil I. ggsignif: significance Brackets for ‘ggplot2’. R package version 0.6.1. 2021.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact. mSphere. 2018;3:e00148–18.Article 

    Google Scholar 
    Lindström ES, Östman Ö. The importance of dispersal for bacterial community composition and functioning. PLoS One. 2011;6:e25883.Article 

    Google Scholar 
    Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.Article 

    Google Scholar 
    Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation. 2013;24:813–27.Article 

    Google Scholar 
    Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci Total Environ. 2019;657:1138–49.Article 

    Google Scholar 
    Danzl E, Sei K, Soda S, Ike M, Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health. 2009;6:1472–84.Article 

    Google Scholar 
    Zaborowska M, Wyszkowska J, Borowik A. Soil microbiome response to contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci. 2020;21:3529.Article 

    Google Scholar 
    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:587–9.Article 

    Google Scholar 
    Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Oh S, Choi D, Cha C-J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 2019;9:4598.Article 

    Google Scholar 
    Hagberg A, Gupta S, Rzhepishevska O, Fick J, Burmølle M, Ramstedt M. Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. Sci Total Environ. 2021;763:142991.Article 

    Google Scholar 
    Gao H, LaVergne JM, Carpenter CMG, Desai R, Zhang X, Gray K, et al. Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Environ Sci Process Impacts. 2019;21:867–80.Article 

    Google Scholar 
    Wolff D, Krah D, Dötsch A, Ghattas AK, Wick A, Ternes TA. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res. 2018;143:313–24.Article 

    Google Scholar 
    Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci USA. 2018;115:11286–91.Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and Processes of Microbial Community Assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.Article 

    Google Scholar 
    Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Bernstein HC. Reconciling ecological and engineering design principles for building microbiomes. mSystems. 2019;4:1–5.Article 

    Google Scholar 
    Borchert E, Hammerschmidt K, Hentschel U, Deines P. Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol. 2021;29:908–18.Article 

    Google Scholar 
    Rocca JD, Muscarella ME, Peralta AL, Izabel-Shen D, Simonin M. Guided by microbes: applying community coalescence principles for predictive microbiome engineering. mSystems. 2021;6:e00538–21.Article 

    Google Scholar 
    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.Article 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A, Edmonton A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Ullastres A, Merenciano M, Guio L, Gonz J. Transposable elements: a toolkit for stress and environmental adaptation in bacteria. Stress Environ Regul Gene Expr Adapt Bact. 2016;1:137–45.
    Google Scholar 
    Chang CY, Vila JCC, Bender M, Li R, Mankowski MC, Bassette M, et al. Engineering complex communities by directed evolution. Nat Ecol Evol. 2021;5:1011–23.Article 

    Google Scholar  More

  • in

    Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes

    We express our gratitude to Lukáš Falteisek, Richard Dorrell, Jan Petrášek, Stanislav Volsobě, Kateřina Schwarzerová and Jana Krtková for constructive discussions. English has been kindly corrected by William Bourland. Furthermore, we thank to Dovilė Barcytė, William Bourland, Antonio Calado, Dora Čertnerová, Yana Eglit, Ivan Fiala, Martina Hálová, Miroslav Hyliš, Dagmar Jirsová, Petr Kaštánek, Viktorie Kolátková, Alena Kubátová, Alexander Kudryavtsev, Frederik Leliaert, Julius Lukeš, Jan Mach, Joost Mansour, Jan Mourek, Yvonne Němcová, Fabrice Not, Vladimír Scholtz, Alastair Simpson, Pavel Škaloud, Jan Šťastný, Róbert Šuťák, Daria Tashyreva, Dana Savická, Jan Šobotník, Zdeněk Verner, Jan Votýpka for kindly providing cultures and taxonomic identifications. More

  • in

    Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).Article 

    Google Scholar 
    Ptacnik, R. et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl.Acad. Sci. USA 105, 5134–5138 (2008).Article 

    Google Scholar 
    Corcoran, A. A. & Boeing, W. J. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE 7, e49397 (2012).Article 

    Google Scholar 
    Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).Article 

    Google Scholar 
    Lewis, M., Hebert, D., Harrison, W. G., Platt, T. & Oakey, N. S. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).Article 

    Google Scholar 
    McGillicuddy, D. J. J. et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316, 1021–1026 (2007).Article 

    Google Scholar 
    Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).Article 

    Google Scholar 
    Tang, W. et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat. Commun. 10, 831 (2019).Article 

    Google Scholar 
    Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 

    Google Scholar 
    Lévy, M., Franks, P. J. S. & Smith, K. S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).Article 

    Google Scholar 
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Bakker, D. C., Nielsdóttir, M. C., Morris, P. J., Venables, H. J. & Watson, A. J. The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res. Pt II 54, 2174–2190 (2007).Article 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Pt I 43, 555–578 (1996).Article 

    Google Scholar 
    Palacios, D. M. Factors influencing the island-mass effect of the Galapagos archipelago. Geophys. Res. Lett. 29, 2134 (2002).Article 

    Google Scholar 
    Gilmartin, M. & Revelante, N. The ‘island mass’ effect on the phytoplankton and primary production of the Hawaiian Islands. J. Exp. Mar. Biol. Ecol. 16, 181–204 (1974).Article 

    Google Scholar 
    Signorini, S. C., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).Article 

    Google Scholar 
    Messié, M., Radenac, M.-H., Lefèvre, J. & Marchesiello, P. Chlorophyll bloom in the western Pacific at the end of the 1997-98 El Niño: the role of the Kiribati Islands. Geophys. Res. Lett. 33, L14601 (2006).Article 

    Google Scholar 
    Messié, M. & Radenac, M.-H. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep Sea Res. Pt I 53, 1581–1600 (2006).Article 

    Google Scholar 
    Le Borgne, R., Dandonneau, Y. & Lemasson, L. The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare (Loyalty Islands) and New Caledonia. Bull. Mar. Sci. 37, 450–459 (1985).
    Google Scholar 
    Messié, M. et al. The delayed island mass effect: how islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).Article 

    Google Scholar 
    Dandonneau, Y. & Charpy, L. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations. Deep Sea Res. Pt A 32, 707–721 (1985).Article 

    Google Scholar 
    Shiozaki, T., Kodama, T. & Furuya, K. Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean. Geophys. Res. Lett. 41, 2907–2913 (2014).Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33, 391–419 (2019).Article 

    Google Scholar 
    Martinez, E., Rodier, M., Pagano, M. & Sauzède, R. Plankton spatial variability within the Marquesas archipelago, South Pacific. J. Mar. Syst. 212, 103432 (2020).Article 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).Article 

    Google Scholar 
    Laws, E. A., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. A global analysis of ENSO synchrony: the oceans’ biological response to physical forcing. J. Geophys. Res. 117, C09001 (2012).
    Google Scholar 
    Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A. & Doney, S. C. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences 11, 691–708 (2014).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18 (2015).Article 

    Google Scholar 
    Mouw, C. B. et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4, 41 (2017).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Bréon, F. M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Pt I 52, 1989–2004 (2005).Article 

    Google Scholar 
    Rêve-Lamarche, A.-H. et al. Ocean color radiance anomalies in the North Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00408 (2017).Alvain, S., Loisel, H. & Dessailly, D. Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. Opt. Express 20, 1070–1083 (2012).Article 

    Google Scholar 
    Mackey, D. J., Blanchot, J., Higgins, H. W. & Neveux, J. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Res. Pt II 49, 2561–2582 (2002).Article 

    Google Scholar 
    Johnson, Z. I. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).Article 

    Google Scholar 
    Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. USA 106, 10787–10792 (2009).Article 

    Google Scholar 
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).Article 

    Google Scholar 
    Dai, S. et al. The seamount effect on phytoplankton in the tropical western Pacific. Mar. Environ. Res. 162, 105094 (2020).Article 

    Google Scholar 
    Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).Article 

    Google Scholar 
    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).Article 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).Article 

    Google Scholar 
    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).Article 

    Google Scholar 
    Harrison, A.-L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).Article 

    Google Scholar 
    Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605 (2011).Article 

    Google Scholar 
    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741––8743 (1996).Article 

    Google Scholar 
    Nunn, P. D., Kumar, L., Eliot, I. & McLean, R. F. Classifying Pacific islands. Geosci. Lett 3, 7 (2016).Article 

    Google Scholar 
    Hasegawa, D., Lewis, M. R. & Gangopadhyay, A. How islands cause phytoplankton to bloom in their wakes. Geophys. Res. Lett. 36, L20605 (2009).Article 

    Google Scholar 
    Platt, T. & Sathyendranath, S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241, 1613–1620 (1988).Article 

    Google Scholar 
    Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima, H. & Koike, Y. Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst. 69, 238–246 (2008).Article 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).Article 

    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, GB3001 (2008).Article 

    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).Article 

    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727 (2004).Article 

    Google Scholar 
    De Monte, S., Soccodato, A., Alvain, S. & d’Ovidio, F. Can we detect oceanic biodiversity hotspots from space? ISME J. 7, 2054–2056 (2013).Article 

    Google Scholar 
    Soccodato, A. et al. Estimating planktonic diversity through spatial dominance patterns in a model ocean. Mar. Geonom. 29, 9–17 (2016).Article 

    Google Scholar 
    Messié, M., Petrenko, A., Doglioli, A., Martinez, E. & Alvain, S. Data from: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6416130 (2022).Messié, M. Code for: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6494328 (2022). More

  • in

    PJ ZEON Award for outstanding papers in Polymer Journal 2021

    Yuuka Fukui
    Yuuka Fukui received Ph.D. degree from Keio University in 2012 under the supervision of Prof. Keiji Fujimoto. She was a JSPS research fellow (DC2) from 2010 to 2012. She joined the laboratory of Prof. Keiji Fujimoto at Keio university as a research associate in 2012 and was promoted to an assistant professor in 2017. Her research interests focus on the design and synthesis of polymeric materials (particles, membranes, porous structures) and organic-inorganic hybrid materials inspired from biological systems.About the award article: The authors reported a new technique to prepare nanoparticles from biomass-derived polymers, which will be utilized as an eco-friendly alternative to synthetic particulate plastics. Nanosized agarose gel particles were produced via sol-to-gel transition of agarose inside water nanodroplets prepared by W/O miniemulsion method. Subsequently, the water evaporation was carried out to generate xerogel nanoparticles (AgarX). The morphologies and crystal structure of AgarX were controlled by changing the pressure and temperature during the water evaporation. The resultant AgarX possessed high crystallinity and exhibited a water dispersibility and a water resistance.

    Mikihiro Hayashi
    Mikihiro Hayashi received his Ph.D. degree from Nagoya University (Prof. Yushu Matsushita group) in 2015. During his doctor course, he had been selected as a JSPS research fellow (DC2) and experienced researches in ESPCI Paris-Tech (Prof. Ludwik Leibler) and in Shanghai Jiao Tong University (Prof. Xinyuan Zhu). He then re-joined Ludwik Leibler’s group as a postdoc, and experienced another postdoc in Prof. Masatoshi Tokita in Tokyo institute of technology. In 2017, he became an assistant professor in Prof. Akinori Takasu group (Nagoya institute of technology), and currently manages his own laboratory as a PI. His research interest is the design of functional cross-linked materials.About the award article: the authors reported a preparation vitrimer-like elastomers with dynamic bond-exchangeable cross-links. A poly(ethyl acrylate)-based copolymer bearing random pyridine groups was synthesized, which was cross-linked by quaternization reaction with dibromo cross-linkers. In this system, the bond exchange was operated via trans-N-alkylation of the quaternized pyridine groups, showing useful sustainable functions, such as reprocessability, recyclability, and dissolution ability in some selective solvents.

    Ryohei Ishige
    Ryohei Ishige received his Ph.D. from Tokyo Institute of Technology in 2011 under the supervision of Prof. Junji Watanabe. He joined Prof. Atsushi Takahara’s laboratory at Kyushu University (2011–2013) and Prof. Yoshinobu Tsujii’s laboratory at Kyoto University (2013–2014). From 2014, he joined Prof. Shinji Ando’s laboratory at Tokyo Institute of Technology as an assistant professor and was promoted to an associate professor in 2021. His research interests are liquid-crystalline aromatic polymers and those structure-property relationships.About the award article: the authors developed a novel analytical technique integrating spectroscopies (infrared pMAIRS, and spectroscopic ellipsometry) and scattering methods (GI-WAXS), applied to the process where thin film polyimide, PI, is generated from linear poly(amic ester), PAE, precursors whose backbone consists of para-linkage. They revealed that PAE-based thin PI films form heterogeneous structure composed of non-oriented amorphous region and oriented ordered region which includes anisotropic nanopores causing structural birefringence. This method enables comprehensive evaluation of the evolution in complex hierarchical structures following chemical reactions for every noncrystalline thin film polymers.

    Ryohei Kakuchi
    Ryohei Kakuchi received his Ph.D. degree from the Hokkaido University in 2009 with a JSPS (Japan Society for Promotion of Science) research fellowship. After the Ph.D., he has made postdoctoral works in Germany from 2009 to 2014 and joined Kanazawa University as a research assistant professor in 2014. Based on the Leading Initiative for Excellent Young Researchers program, he was then appointed as an assistant professor (PI) at Gunma University in 2017. His research interests are the novel polymer synthesis based on unique organic transformation reactions including multicomponent reactions.About the award article: The authors proposed a new synthetic strategy to utilize wood-biomass sourced compounds in a green fashion. To achieve sustainable material chemistry, the intrinsic reactivity of lignin-derived poly(methacrylated vanillin) (PMV) was spotlighted because many multicomponent reactions employ aldehydes as a reactant. First, the Passerini three-component reaction (Passerini-3CR) of the PMV was revealed to proceed with >90% aldehyde conversions. Taking advantage of this high reactivity of the PMV, its immobilized cellulose fabric, a wood-biomass sourced organic hybrid, was revealed to accept the surface Passerini-3CR with amino acid derivatives, thereby demonstrating a fully bio-based material fabrication. More

  • in

    The expansion of tree plantations across tropical biomes

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    Article 

    Google Scholar 
    Payn, T. et al. Changes in planted forests and future global implications. Ecol. Manag. 352, 57–67 (2015).Article 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).Article 

    Google Scholar 
    Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).Article 

    Google Scholar 
    Vijay, V. et al. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).Article 

    Google Scholar 
    le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R. A. & Hakamada, R. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014).Article 

    Google Scholar 
    Wang, M. M. H., Carrasco, L. R. & Edwards, D. P. Reconciling rubber expansion with biodiversity conservation. Curr. Biol. 30, 3825–3832 (2020).CAS 
    Article 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019).Sloan, S., Meyfroidt, P., Rudel, T. K., Bongers, F. & Chazdon, R. The forest transformation: planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).Article 

    Google Scholar 
    Petersen, R. et al. Mapping Tree Plantations with Multispectral Imagery: Preliminary Results for Seven Tropical Countries (WRI, 2016).Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).Article 

    Google Scholar 
    Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar 
    Miettinen, J. et al. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 4, 908–918 (2012).Article 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Puyravaud, J.-P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).Article 

    Google Scholar 
    Fagan, M. E. et al. Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sens. Environ. 216, 415–426 (2018).Article 

    Google Scholar 
    Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).CAS 
    Article 

    Google Scholar 
    Global Forest Resources Assessment 2020 (FAO, 2020).FAOSTAT Agricultural Statistics Database (FAO, 2019); http://faostat.fao.org/site/291/default.aspxCook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    Hurni, K., Schneider, A., Heinimann, A., Nong, D. H. & Fox, J. Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat data. Remote Sens. 9, 320 (2017).Article 

    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article 

    Google Scholar 
    Torbick, N., Ledoux, L., Salas, W. & M. Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 8, 236 (2016).Azizan, F. A., Kiloes, A. M., Astuti, I. S. & Abdul Aziz, A. Application of optical remote sensing in rubber plantations: a systematic review. Remote Sens. 13, 429 (2021).Article 

    Google Scholar 
    Bégué, A. et al. Remote sensing and cropping practices: a review. Remote Sens. 10, 99 (2018).Article 

    Google Scholar 
    Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. 3, 115009 (2021).Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).Article 

    Google Scholar 
    Féret, J.-B. & Asner, G. P. Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens. Environ. 115, 2415–2422 (2011).Article 

    Google Scholar 
    Poortinga, A. et al. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 11, 831 (2019).Article 

    Google Scholar 
    Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).Article 

    Google Scholar 
    Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data. 13, 1211–1231 (2021).Article 

    Google Scholar 
    Ordway, E. M., Naylor, R. L., Nkongho, R. N. & Lambin, E. F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 10, 114 (2019).CAS 
    Article 

    Google Scholar 
    Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).Article 

    Google Scholar 
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    Article 

    Google Scholar 
    Fagan, M. E., Reid, J. L., Holland, M. B., Drew, J. G. & Zahawi, R. A. How feasible are global forest restoration commitments? Conserv. Lett. 13, e12700 (2020).Article 

    Google Scholar 
    Malkamäki, A. et al. A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Change 53, 90–103 (2018).Article 

    Google Scholar 
    Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).Article 

    Google Scholar 
    Noojipady, P. et al. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth Syst. Dynam. 8, 749–771 (2017).Bullock, E. L., Woodcock, C. E., Souza, C. Jr. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article 

    Google Scholar 
    Sloan, S. & Sayer, J. A. Forest Ecology and Management Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).CAS 
    Article 

    Google Scholar 
    Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).CAS 
    Article 

    Google Scholar 
    Li, W., Goodchild, M. F. & Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 27, 1227–1250 (2013).Article 

    Google Scholar 
    Asner, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22, 3855–3862 (2001).Article 

    Google Scholar 
    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).Article 
    CAS 

    Google Scholar 
    Gutiérrez-Vélez, V. H. & DeFries, R. Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon. Remote Sens. Environ. 129, 154–167 (2013).Article 

    Google Scholar 
    Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).Article 

    Google Scholar 
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).Article 

    Google Scholar 
    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).Article 

    Google Scholar 
    Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    World Database on Protected Areas User Manual 1.4 (UNEP-WCMC, 2016).AutoML: Automatic Machine Learning (H2O.ai, 2020); https://h2o-release.s3.amazonaws.com/h2o/rel-yau/5/docs-website/h2o-docs/automl.htmlHealey, S. P. et al. Mapping forest change using stacked generalization: an ensemble approach. Remote Sens. Environ. 204, 717–728 (2018).Article 

    Google Scholar 
    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 25002 (2019).Article 

    Google Scholar 
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).Article 

    Google Scholar 
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 

    Google Scholar 
    Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).Article 

    Google Scholar 
    Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).Article 

    Google Scholar 
    Database of Global Administrative Areas (GADM) v.3.6 (GADM, 2018); https://gadm.org/download_country_v3.htmlHijmans, R. J., Williams, E., Vennes, C. M. & Hijmans, M. R. J. Package ‘geosphere’ version 1.5-10. Spherical trigonometry (2017).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017). More

  • in

    Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa

    West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).Article 

    Google Scholar 
    Diggle, S. P., Griffin, A. S., Campell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl Acad. Sci. USA 116, 23309–23316 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan, J., Monaco, H. & Xavier, J. B. The ultimate guide to bacterial swarming: An experimental model to study the evolution of cooperative behavior. Annu. Rev. Microbiol. 73, 293–312 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, A., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nadal Jimenez, P. et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Gillespie, A. & Kümmerli, R. Collective decision-making in microbes. Front. Microbiol. 5, 54 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avery, A. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visca, P., Imperi, F. & Lamont, I. L. Pyoverdine siderophores: From biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Youard, Z. A., Wenner, N. & Reimmann, C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24, 513–522 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schalk, I. J. & Cunrath, O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ. Microbiol. 18, 3227–3246 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schalk, I. J., Rigouin, C. & Godet, J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ. Microbiol. 22, 1447–1466 (2020).PubMed 
    Article 

    Google Scholar 
    Ochsner, U. A. & Vasil, M. L. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: Cycle selection of iron-regulated genes. Proc. Natl Acad. Sci. USA 93, 4409–4414 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leoni, L., Ciervo, A., Orsi, N. & Visca, P. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J. Bacteriol. 178, 2299–2313 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escolar, L., Pérez-Martín, J. & de Lorenzo, V. Opening the iron box: Transcriptional metalloregulation by the fur protein. J. Bacteriol. 181, 6223–6229 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dumas, Z., Ross-Gillespie, A. & Kümmerli, R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc. R. Soc. B 280, 20131055 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lamont, I. L., Beare, P., Ochsner, U., Vasil, A. I. & Vasil, M. L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 99, 7072–7077 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. J. et al. Interactions between an anti-sigma protein and two sigma factors that regulate the pyoverdine signaling pathway in Pseudomonas aeruginosa. BMC Microbiol. 14, 287 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Heinrichs, D. E. & Poole, K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 5882–5889 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Michel, L., Gonzalez, N., Jagdeep, S., Nguyen-Ngoc, T. & Reimmann, C. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Microbiology 58, 495–509 (2005).CAS 

    Google Scholar 
    Michel, L., Bachelard, A. & Reimmann, C. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153, 1508–1518 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3, 75 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brandel, J. et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41, 2820–2834 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perraud, Q. et al. Phenotypic adaptation of Pseudomonas aeruginosa in the presence of siderophore-antibiotic conjugates during epithelial cell infection. Microorganisms 8, 1820 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mossialos, D. et al. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which Is repressed by the cognate pyoverdine. Appl. Environ. Microbiol. 66, 487–492 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tyrrell, J. et al. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. BioMetals 28, 367–380 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, Q. et al. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res. 40, 4320–4333 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frangipani, E. et al. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol. 16, 676–688 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, S. et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog. 11, e1004744 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cunrath, O. et al. The pathogen Pseudomonas aeruginosa optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics 12, 2108–2120 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, T. et al. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. eLife 10, e61885 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiburzi, F., Imperi, F. & Visca, P. Intracellular levels and activity of PvdS, the major iron starvation sigma factor of Pseudomonas aeruginosa. Mol. Microbiol. 67, 213–227 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).PubMed 
    Article 

    Google Scholar 
    Harrison, F. Dynamic social behaviour in a bacterium: Pseudomonas aeruginosa partially compensates for siderophore loss to cheats. J. Evol. Biol. 26, 1370–1378 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunrath, O. et al. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ. Microbiol. 17, 171–185 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leinweber, A., Weigert, M. & Kümmerli, R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 72, 1515–1528 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Julou, T. et al. Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc. Natl Acad. Sci. USA 110, 12577–12582 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weigert, M. & Kümmerli, R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc. R. Soc. B 284, 20170631 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaraman, P., Sakharkar, M. K., Lim, C. S., Hock Tang, T. & Sakharkar, K. R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 6, 556–568 (2010).Kapoor, G., Saigal, S. & Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33, 300–305 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wrobel, A., Arciszewska, K., Maliszewski, D. & Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. 73, 5–27 (2020).CAS 
    Article 

    Google Scholar 
    van der Veen, D. R. et al. Flexible clock systems: Adjusting the temporal programme. Phil. Trans. R. Soc. B 372, 20160254 (2017).Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Phil. Trans. R. Soc. B 372, 0246 (2017).Rivera, M. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Acc. Chem. Res. 50, 331–340 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soldano, A., Yao, H., Chandler, J. R. & Rivera, M. Inhibiting iron mobilization from bacterioferritin in Pseudomonas aeruginosa impairs biofilm formation irrespective of environmental iron availability. ACS Infectious Dis. 6, 447–458 (2020).Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alqarni, B., Colley, B., Klebensberger, J., McDougald, D. & Rice, S. A. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J. Microbiol. Methods 127, 182–187 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratcliff, W. C. & Denison, R. F. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr. Biol. 20, 1740–1744 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber, F. et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat. Microbiol. 1, 16055 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).PubMed 
    Article 

    Google Scholar 
    Sumpter, D. J. T. The principles of collective animal behaviour. Philos. Trans. R. Soc. B 361, 5–22 (2006).CAS 
    Article 

    Google Scholar 
    Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).PubMed 
    Article 

    Google Scholar 
    Bose, T., Reina, A. & Marshall, J. A. R. Collective decision-making. Curr. Opin. Behav. Sci. 16, 30–34 (2017).Article 

    Google Scholar 
    Dussutour, A., Ma, Q. & Sumpter, D. Phenotypic variability predicts decision accuracy in unicellular organisms. Proc. R. Soc. B 286, 20182825 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Gillespie, A., Dumas, Z. & Kümmerli, R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J. Evol. Biol. 28, 29–39 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, K.-H. & Schweizer, H. P. mini-Tn7 insertion in bacteria with single attTn7 sites: Example Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rezzoagli, C., Granato, E. T. & Kümmerli, R. In-vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J. 13, 2403–2414 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minoia, M. et al. Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. Proc. Natl Acad. Sci. USA 105, 20792–20797 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellini, M. et al. Generation of genetic tools for gauging multiple-gene expression at the single-cell level. Appl. Environ. Microbiol. 87, e02956–02920 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S., Crooks, P. A., Wei, X. & de Leon, J. Toxicity of dipyridyl compounds and related compounds. Crit. Rev. Toxicol. 34, 447–460 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y., Yang, L. & Molin, S. Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa growth and biofilm formation. Antimicrob. Agents Chemother. 54, 3960–3963 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henriquez, T., Stein, N. V. & Jung, H. Resistance to bipyridyls mediated by the TtgABC efflux system in Pseudomonas putida KT2440. Front. Microbiol. 11, 1974 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, J.-M., Neely, A., Stintzi, A., Georges, C. & Holder, I. A. Pyoverdin is essential for viruence of Pseudomonas aeruginosa. Infect. Immun. 64, 518–523 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Jong, I. G., Beilharz, K., Kuipers, O. P. & Veening, J. W. Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J. Vis. Exp. 53, e3145 (2011).
    Google Scholar 
    Berg, S. et al. ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Mridha, S. and Kuemmerli, R. Mridha_Kummerli_2022_CommsBiol_raw_data_figshare.xlsx. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19681962.v1 (2022) More

  • in

    Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change

    Site descriptionThe respective sites were classified into five climatic regions in California, containing San Cruz and San Rose in region 1, Saint Helena and San Jose in region 2, Livermore and Cloverdale in region 3, Davis, Lodi and Fontana in region 4, Fresno and Bakerfield in region 5 (Fig. 1). There were differences in annual mean temperature among five climatic regions, ranging from 14.3°C to 18.6°C. In each region, the GHDs, quality of musts and wines, and wine tasting notes were recorded for 148 cultivars from 1935 to 1941. Meanwhile, in region 2, namely in Napa, the GHDs and must sugar content (in °Brix) were recorded for four representative cultivars (Cabernet Sauvignon, Chardonnay, Merlot and Sauvignon Blanc) during 1991–2018.Fig. 1The locations of five climatic regions for wine grape classed by Winkler index in California. The insert plot represents the distinct Winkler index (WI) during 1935–1941 in five climatic regions.Full size imageClimate dataThe climate data was collected from five stations for over one hundred year-period (1911–2018), including daily average, maximum and minimum temperature (Table 1). Climate data was retrieved from the National Oceanic and Atmospheric Administration (NOAA)’s National Centers for Environmental Information (NCEI). The database from which the data was retrieved was the “Global Historical Climatology Network – Daily (GHCN-Daily), Version 3” (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/by_station/)25,26. Table 1 showed the search codes and names of five stations in the website. The climate data of region 1 and region 5 were for the periods of 1911–2011 and 1938–2018, respectively.Table 1 Description of weather stations and time-span in five climatic regions.Full size tableBioclimatic indicesHere, we presented seven temperature-related indices to explore the changing climate in five climatic regions during the last 100 years. We compared the changes of these indices between the past (1935–1941) and current climate conditions (1991–2018). Thereafter, four indices were chosen to describe annual changes, including average, maximum, minimum temperature and diurnal temperature range (DTR). Furthermore, other indices were used to analyse growing season temperature (GST), Winkler index (WI) and Huglin index (HI) for the grape-growing season5,27,28. The equations used to calculate the bioclimatic indices of grape-growing season are:$$GST=frac{{sum }_{Apr1}^{Oct31}frac{{T}_{max}+{T}_{min}}{2}}{n}$$
    (1)
    $$WI={sum }_{Apr1}^{Oct31}left(frac{{T}_{max}+{T}_{min}}{2}-10right)$$
    (2)
    $$HI={sum }_{Apr1}^{Sep30}left(frac{{T}_{max}+{T}_{ave}}{2}-10right)times K$$
    (3)
    where Tmax, Tmin and Tave represent daily maximum, minimum and average temperatures, respectively. K is a length of day coefficient ranging from 1.02 to 1.06 between 40 and 50 of latitude in the northern hemisphere.Sample collection, harvest dates, quality of musts and wines measurementSample collection, harvest dates, quality of musts and wines measurement were detailed in the report of Amerine and Winkler24. Briefly, grape berries (22–220 kg) were picked in the morning from representative vines of variety collections or commercial vineyards by Amerine and Winkler24, as well as numerous vineyard owners. The harvest dates were recorded after picking. All grapes picked were crushed within 24 hours except for a few samples in 1935. The clear juice was taken after the coarse sediment had settled, in order to measure total soluble solids (°Brix), total acid (grams per 100 cc), and pH of must. The must was placed in an open oak fermenting tank. After fermentation, it was completed in a closed oak container. Then, the alcohol (percent by volume), extract (grams per 100 cc), tannin (grams per 100 cc), and fixed acid (grams per 100 cc) of wine were measured. The must °Brix was measured with a Brix hydrometer floating in a cylinder, must total acid was determined by titration with sodium hydroxide to a phenolphthalein end point, and must pH was measured with a quinhydrone electrode or a Beckman pH meter. In addition, wine alcohol was measured by the hydrometer and reported as percentage by volume, the extract and tannin of wine were measured by means of a special 0° to 8° Balling hydrometer and the Association of Official Agricultural Chemists method24. Note that the fixed acid of wine are equal to total acid minus volatile acid, where the total acid was measured by titration with phenolphthalein as an indicator while the volatile acid was determined also by titration with pretreated wines by method II of the Association of Official Agricultural Chemists24.Wine tasting notesThe purpose of wine tasting was to evaluate the cultivars based on the merits and defects of wine. The descriptive terms used for recording the results of the organoleptic examination contained appearance, color, odors, volatile acidity, total acidity, dryness, body, taste, smoothness and astringency, and general quality. More

  • in

    Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances

    Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).
    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4, 25 (2013).
    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001).CAS 
    PubMed 

    Google Scholar 
    Tomasello, M., Hare, B., Lehmann, H. & Call, J. Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. J. Hum. Evol. 52, 314–320 (2007).PubMed 

    Google Scholar 
    Farroni, T. et al. Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proc. Natl. Acad. Sci. USA 102, 17245–17250 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farroni, T., Massaccesi, S., Pividori, D. & Johnson, M. H. Gaze following in newborns. Infancy 5, 39–60 (2004).
    Google Scholar 
    Itakura, S. & Tanaka, M. Use of experimenter-given cues during object-choice tasks by chimpanzees (Pan troglodytes), an orangutan (Pongo pygmaeus), and human infants (Homo sapiens). J. Comp. Psychol. 112, 119–126 (1998).CAS 
    PubMed 

    Google Scholar 
    Yorzinski, J. L., Thorstenson, C. A. & Nguyen, T. P. Sclera and iris color interact to influence gaze perception. Front. Psychol. 12, 1–11 (2021).
    Google Scholar 
    Yorzinski, J. L., Harbourne, A. & Thompson, W. Sclera color in humans facilitates gaze perception during daytime and nighttime. PLoS One 16, 1–15 (2021).
    Google Scholar 
    Yorzinski, J. L. & Miller, J. Sclera color enhances gaze perception in humans. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).CAS 
    PubMed 

    Google Scholar 
    Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014).
    Google Scholar 
    Kano, F., Kawaguchi, Y. & Yeow, H. Experimental evidence for the gaze-signaling hypothesis: White sclera enhances the visibility of eye gaze direction in humans and chimpanzees. bioRxiv 2021.09.21.461201 (2021).Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. USA 116, 19248–19250 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos ?. J. Hum. Evol. 157, 103043 (2021).PubMed 

    Google Scholar 
    Mearing, A. S., Burkart, J. M., Dunn, J., Street, S. E. & Koops, K. The evolutionary origins of primate scleral coloration. bioRxiv 40, 2021.07.25.453695 (2021).Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 

    Google Scholar 
    Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Kano, F. et al. What is unique about the human eye? Comparative image analysis on the external eye morphology of human and nonhuman great apes. Evol. Hum. Behav. https://doi.org/10.1016/j.evolhumbehav.2021.12.004 (2021).
    Google Scholar 
    Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).
    Google Scholar 
    Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752 (2005).CAS 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. The gaze of a social monkey is perceptible to conspecifics and predators but not prey. Proc. R. Soc. B Biol. Sci. 20, 10 (2002).
    Google Scholar 
    Bethell, E. J., Vick, S. & Bard, K. A. Measurement of eye-gaze in chimpanzees (Pan troglodytes). Am. J. Primatol. 69, 562–575 (2007).PubMed 

    Google Scholar 
    Sreekar, R. & Quader, S. Influence of gaze and directness of approach on the escape responses of the Indian rock lizard, Psammophilus dorsalis (Gray, 1831). J. Biosci. 38, 829–833 (2013).CAS 
    PubMed 

    Google Scholar 
    Lee, S. et al. Direct look from a predator shortens the risk-assessment time by prey. PLoS One 8, 1–7 (2013).
    Google Scholar 
    Carter, J., Lyons, N. J., Cole, H. L. & Goldsmith, A. R. Subtle cues of predation risk: Starlings respond to a predator’s direction of eye-gaze. Proc. R. Soc. B Biol. Sci. 275, 1709–1715 (2008).
    Google Scholar 
    Newton-Fisher, N. E. Chimpanzee hunting. Behav. Handb. Paleoanthropol. https://doi.org/10.1007/978-3-540-33761-4_42. (2007).
    Google Scholar 
    Caro, T. et al. The evolution of primate coloration revisited. Behav. Ecol. 32, 555–567 (2021).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergman, T. J. & Beehner, J. C. A simple method for measuring colour in wild animals: Validation and use on chest patch colour in geladas (Theropithecus gelada). Biol. J. Linn. Soc. 94, 231–240 (2008).
    Google Scholar 
    Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: Towards visual system-dependent methods. Int. J. Primatol. 30, 893–917 (2009).
    Google Scholar 
    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).
    Google Scholar 
    Deeb, S. S., Jorgensen, A. L., Battisti, L., Iwasaki, L. & Motulsky, A. G. Sequence divergence of the red and green visual pigments in great apes and humans. Proc. Natl. Acad. Sci. USA 91, 7262–7266 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsuzawa, T. Form perception and visual acuity. Folia Primatol. Int. J. Primatol. 55, 24–32 (1990).CAS 

    Google Scholar 
    Jacobs, G. H., Deegan, J. F. & Moran, J. L. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vis. Res. 36, 2587–2594 (1996).CAS 
    PubMed 

    Google Scholar 
    Jacobs, G. H. & Deegan, J. F. Uniformity of colour vision in Old World monkeys. Proc. R. Soc. B Biol. Sci. 266, 2023–2028 (1999).CAS 

    Google Scholar 
    Kemp, A. D. & Christopher Kirk, E. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).
    Google Scholar 
    Osorio, D., Smith, A. C., Vorobyev, M. & Buchanan-Smith, H. M. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164, 696–708 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour threshoIds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed 

    Google Scholar  More