More stories

  • in

    Dental macrowear reveals ecological diversity of Gorilla spp.

    Fossey, D. & Harcourt, D. H. Feeding ecology of free-ranging mountain gorilla (Gorilla gorilla beringei). In Primate ecology (ed. Clutton-Brock, T. H.) 415–447 (Academy Press, New York, 1977).Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Watts, D. Comparative socio-ecology of gorillas. In Great Ape Societies (eds. McGrew, W. C., Marchant, L. F. & Nishida, T.) 16–28 (Cambridge University Press, Cambridge, 1986).Doran, D. M. & McNeilage, A. Gorilla ecology and behavior. Evol. Anthropol. 6, 120–131 (1988).Article 

    Google Scholar 
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the mammals of the world. Primates Vol. 3 (Lynx Edicions, 2013).
    Google Scholar 
    Groves, C. Primate Taxonomy (Smithsonian Institution Press, 2001).
    Google Scholar 
    Cooksey, K. E. & Morgan, D. B. Gorilla (Gorilla). In The International encyclopedia of primatology, Vol. 1 (ed. Fuentes, A.) 472–477 (Wiley, Hoboken, 2017).McFarland, K. L. Ecology of cross river gorillas (Gorilla gorilla diehli) on Afi mountain, Cross River State, Nigeria. Ph.D. Dissertation. City University of New York, USA (2007).Rogers, M. E., Maisels, F., Wiliamson, E. A., Fernandez, M. & Tutin, C. E. G. Gorilla diet in the Lopé Reserve, Gabon: a nutritional analysis. Oecologia 84, 326–339 (1990).ADS 
    Article 

    Google Scholar 
    van Casteren, A., Wright, E., Kupczik, K. & Robbins, M. M. Unexpected hard-object feeding in Western lowland gorillas. Am. J. Phys. Anthropol. 170, 433–438 (2019).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Yamagiwa, J., Basabose, A. K., Kaleme, K. & Yumoto, T. Diet of grauer’s gorillas in montane forest of Kahuzi, Democratic Republic of Congo. Int. J. Primatol. 26, 1345–1373 (2005).Article 

    Google Scholar 
    Grueter, C. C. et al. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda. Am. J. Primatol. 75, 267–280 (2013).PubMed 
    Article 

    Google Scholar 
    Ostrofsky, K. R. & Robbins, M. M. Fruit-feeding and activity patterns of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Am. J. Phys. Anthropol. 173, 3–20 (2020).PubMed 
    Article 

    Google Scholar 
    Berthaume, M. A. Tooth cusp sharpness as a dietary correlate in great apes. Am. J. Phys. Anthropol. 153, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    King, S. J. et al. Dental senescence in a long-lived primate links infant survival to rainfall. Proc. Natl. Acad. Sci. USA 102, 16579–16583 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berthaume, M. A. & Schroer, K. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. J. Hum. Evol. 112, 15–29 (2017).PubMed 
    Article 

    Google Scholar 
    Sheine, W. S. & Kay, R. F. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47, 15–20 (1977).Article 

    Google Scholar 
    Galbany, J., Estebaranz, F., Martínez, L. M. & Pérez-Pérez, A. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates 50, 221–230 (2009).PubMed 
    Article 

    Google Scholar 
    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).PubMed 
    Article 

    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anhtropol. 80, 447–460 (1989).CAS 
    Article 

    Google Scholar 
    Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgart, A. A. Dental wear, wear rate, and dental disease in the African apes. Am. J. Primatol. 72, 481–491 (2010).PubMed 

    Google Scholar 
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anhtropol. 159, 79–104 (2016).Article 

    Google Scholar 
    Galbany, J. et al. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. Am. J. Phys. Anhtropol. 159, 457–465 (2016).Article 

    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species, in Evolutionary paleobiology of behavior and coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).Knight-Sadler, J. & Fiorenza, L. Tooth wear inclination in great ape molars. Folia Primatol. 88, 223–236 (2017).Article 

    Google Scholar 
    Kullmer, O. et al. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. et al. Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE 6, e14769 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Oxilia, G. & Kullmer, O. Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations. Int. J. Osteoarchaeol. 28, 153–161 (2018).Article 

    Google Scholar 
    Fiorenza, L. et al. The functional role of the Carabelli trait in early and late hominins. J. Hum. Evol. 145, 102816 (2020).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. & Kullmer, O. Occlusion in an adult male gorilla with a supernumerary maxillary premolar. Int. J. Primatol. 37, 762–777 (2016).Article 

    Google Scholar 
    Kullmer, O., Menz, U., & Fiorenza, L. Occlusal fingerprint analysis (OFA) reveal dental occlusal behaviour in primate teeth. In T. Martin & W. von Koenigswald (Eds.), T Martin, W von Koenigswald, K-H Südekum), Mammalian teeth: form and function. (pp. 25–43). Munich, Germany: Dr. F. Pfeil (2020)Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Estalrrich, A., & Kullmer, O. Diet and cultural diversity in Neanderthals and modern humans from dental macrowear analyses. In C. Schmidt & J. T. Watson (Eds.), Dental wear in evolutionary and biocultural contexts (pp. 39–72). London, UK: Academic Press (2020).M’Kirera, F. & Ungar, P. S. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am. J. Primatol. 60, 31–41 (2003).PubMed 
    Article 

    Google Scholar 
    Galbany, J. et al. Age-related tooth wear differs between forest and savanna primates. PLoS ONE 9, e94938 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, S. R. & Shea, B. T. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36, 37–60 (1995).PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Zanolli, C. et al. Evidence of increased hominid diversity in the Early and Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).PubMed 
    Article 

    Google Scholar 
    Krueger, K. L., Scott, J. R., Kay, R. F. & Ungar, P. S. Dental microwear textures of “phase I” and “phase II” facets. Am. J. Phys. Anthropol. 137, 485–490 (2008).PubMed 
    Article 

    Google Scholar 
    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H. & Hylander, W. L. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am. J. Phys. Anthropol. 129, 215–224 (2006).PubMed 
    Article 

    Google Scholar 
    Glowacka, H. et al. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient. Am. J. Primatol. 79, e22661 (2017).Article 

    Google Scholar 
    Cooper, J. E. & Hull, G. Gorilla pathology and health (Academic Press, 2017).
    Google Scholar 
    Hammerton, R., Hunt, K. A. & Riley, L. M. An investigation into keeper opinions of great apes diet and abnormal behaviour. J. Zoo Aquar. Res. 7, 170–178 (2019).
    Google Scholar 
    Kay, R. F. Mastication, molar tooth structure and diet in primates. Ph.D. thesis, Yale University, New Haven, CT (1973).Smith, B. H. Patterns of molar wear in hunter-gatherers and agriculturalists. Am. J. Phys. Anhtropol. 63, 39–56 (1984).CAS 
    Article 

    Google Scholar 
    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O. & Schrenk, F. Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis. Am. J. Phys. Anthropol. 143, 306–312 (2010).PubMed 
    Article 

    Google Scholar 
    Kullmer, O., Huck, M., Engel, K., Schrenk, F. & Bromage, T. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In Three-dimensional imaging in paleoanthropology and prehistoric archaeology (eds. Mafart, B. & Delingette, H.) 71–82 (Acts of the XIVth UISPP Congress, BAR Int. Ser.1049, 2002).Hammer, Ø. & Harper, D. Paleontological data analysis (Blackwell Publishing, 2006).
    Google Scholar 
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).MATH 
    Article 

    Google Scholar 
    Noguchi, K. & Gel, Y. R. Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparam. Stat. 22, 897–913 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gastwirth, J. L., et al. Lawstat: tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021)Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4 (2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs

    Lund, E. M., Armstrong, P. J., Kirk, C. A. & Klausner, J. S. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. Int. J. Appl. Res. Vet. Med. 4(2), 177 (2006).
    Google Scholar 
    German, A. J. The growing problem of obesity in dogs and cats. J. Nutr. 136(7), 1940S-1946S (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Courcier, E. A., Thomson, R. M., Mellor, D. J. & Yam, P. S. An epidemiological study of environmental factors associated with canine obesity. J. Small Anim. Pract. 51(7), 362–367 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mao, J., Xia, Z., Chen, J. & Yu, J. Prevalence and risk factors for canine obesity surveyed in veterinary practices in Beijing, China. Prev. Vet. Med. 112(3–4), 438–442 (2013).PubMed 
    Article 

    Google Scholar 
    Payan-Carreira, R., Sargo, T. & Nascimento, M. M. Canine obesity in Portugal: Perceptions on occurrence and treatment determinants. Acta Vet. Scand. 57(1), 1–1 (2015).Article 

    Google Scholar 
    Chandler, M. et al. Obesity and associated comorbidities in people and companion animals: A one health perspective. J. Comp. Pathol. 156(4), 296–309 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Montoya-Alonso, J. A. et al. Prevalence of canine obesity, obesity-related metabolic dysfunction, and relationship with owner obesity in an obesogenic region of Spain. Front. Vet. Sci. 4, 59 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Prieto, A. et al. European dog owner perceptions of obesity and factors associated with human and canine obesity. Sci. Rep. 8(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Marshall, W. G., Bockstahler, B. A., Hulse, D. A. & Carmichael, S. A review of osteoarthritis and obesity: Current understanding of the relationship and benefit of obesity treatment and prevention in the dog. Vet. Comp. Orthop. Traumatol. 22(05), 339–345 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zoran, D. L. Obesity in dogs and cats: A metabolic and endocrine disorder. Vet. Clin. N. Am. Small Anim. Pract. 40(2), 221–239 (2010).Article 

    Google Scholar 
    Tvarijonaviciute, A. et al. Obesity-related metabolic dysfunction in dogs: A comparison with human metabolic syndrome. BMC Vet. Res. 8(1), 147 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoenig, M. Comparative aspects of human, canine, and feline obesity and factors predicting progression to diabetes. Vet. Sci. 1(2), 121–135 (2014).Article 

    Google Scholar 
    Yam, P. S. et al. Impact of canine overweight and obesity on health-related quality of life. Prev. Vet. Med. 127, 64–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandøe, P., Palmer, C., Corr, S., Astrup, A. & Bjørnvad, C. R. Canine and feline obesity: A One Health perspective. Vet. Rec. 175(24), 610–616 (2014).PubMed 
    Article 

    Google Scholar 
    Salt, C., Morris, P. J., Wilson, D., Lund, E. M. & German, A. J. Association between life span and body condition in neutered client-owned dogs. J. Vet. Intern. Med. 33(1), 89–99 (2019).PubMed 

    Google Scholar 
    Switonski, M. & Mankowska, M. Dog obesity—The need for identifying predisposing genetic markers. Res. Vet. Sci. 95(3), 831–836 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankowska, M. et al. Sequence analysis of three canine adipokine genes revealed an association between TNF polymorphisms and obesity in Labrador dogs. Anim. Genet. 47(2), 245–249 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raffan, E. et al. A deletion in the canine POMC gene is associated with weight and appetite in obesity-prone Labrador retriever dogs. Cell Metab. 23(5), 893–900 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchodolski, J. S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Anim. Pract. 41(2), 261–272 (2011).
    Google Scholar 
    Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 32(1), 9–25 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006).PubMed 
    Article 
    ADS 

    Google Scholar 
    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 101(44), 15718–15723 (2004).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Ghazalpour, A., Cespedes, I., Bennett, B. J. & Allayee, H. Expanding role of gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27(2), 141 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losasso, C. et al. Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: A cross sectional study. Front. Microbiol. 9, 317 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pizarroso, N. A., Fuciños, P., Gonçalves, C., Pastrana, L. & Amado, I. R. A Review on the role of food-derived bioactive molecules and the microbiota—Gut–brain axis in satiety regulation. Nutrients 13(2), 632. https://doi.org/10.3390/nu13020632 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8(1), 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102(31), 11070–11075 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444(7122), 1022–1023 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhi, C. et al. Connection between gut microbiome and the development of obesity. Eur. J. Clin. Microbiol. Infect. Dis. 38(11), 1987–1998 (2019).PubMed 
    Article 

    Google Scholar 
    Huang, Z., Pan, Z., Yang, R., Bi, Y. & Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 11(4), 635–654 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Swanson, K. S. et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 5(4), 639–649 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6(1), 1–11 (2018).Article 

    Google Scholar 
    Hand, D., Wallis, C., Colyer, A. & Penn, C. W. Pyrosequencing the canine faecal microbiota: Breadth and depth of biodiversity. PLoS ONE 8(1), e53115 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Handl, S. et al. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 84(2), 332–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs. J. Vet. Intern. Med. 29(1), 43–50 (2015).PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Fecal microbiota analysis of obese dogs with underlying diseases: A pilot study. Korean J. Vet. Res. 55(3), 205–208 (2015).Article 

    Google Scholar 
    Beloshapka, A. N., Forster, G. M., Holscher, H. D., Swanson, K. S. & Ryan, E. P. Fecal microbial communities of overweight and obese client-owned dogs fed cooked bean powders as assessed by 454-pyrosequencing. J. Vet. Sci. Technol. 7(366), 2 (2016).
    Google Scholar 
    Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y. & Hannah, S. S. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. MBio 8(1), e01703-e1716 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kieler, I. N. et al. Gut microbiota composition may relate to weight loss rate in obese pet dogs. Vet. Med. Sci. 3(4), 252–262 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Forster, G. M. et al. A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top. Companion Anim. Med. 33(4), 126–135 (2018).PubMed 
    Article 

    Google Scholar 
    Salas-Mani, A. et al. Fecal microbiota composition changes after a BW loss diet in beagle dogs. J. Anim. Sci. 96(8), 3102–3111 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander, C. et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 120(6), 711–720 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herstad, K. M. et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res. 13(1), 147 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens Health 38(1), 48–60 (2020).PubMed 
    Article 

    Google Scholar 
    Xu, J. et al. The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Vet. Res. 13(1), 374 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Masuoka, H. et al. Transition of the intestinal microbiota of dogs with age. PLoS ONE 12, e0181739 (2016).Article 
    CAS 

    Google Scholar 
    Mizukami, K. et al. Age-related analysis of the gut microbiome in a purebred dog colony. FEMS Microbiol. Lett. 366(8), fnz095 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: Insights into taxonomic, metabolic and nutritional features. Environ. Microbiol. 21(4), 1331–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, H. et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota. Front. Immunol. 10, 666 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reddy, K. E. et al. Impact of breed on the fecal microbiome of dogs under the same dietary condition. J. Microbiol. Biotechnol. 29(12), 1947–1956 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C. & Brodbelt, D. C. Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS ONE 9(3), e90501 (2014).PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Vilson, Å. et al. Disentangling factors that shape the gut microbiota in German Shepherd dogs. PLoS ONE 13(3), e0193507 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2, e00458 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guard, B. C. et al. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE 12(4), e0175718 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Greer, K. A., Canterberry, S. C. & Murphy, K. E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 82(2), 208–214 (2007).PubMed 
    Article 

    Google Scholar 
    Fleming, J. M., Creevy, K. E. & Promislow, D. E. L. Mortality in North American dogs from 1984 to 2004: An investigation into age-, size-, and breed-related causes of death. J. Vet. Int. Med. 25(2), 187–198 (2011).CAS 
    Article 

    Google Scholar 
    Oberbauer, A. M., Belanger, J. & Famula, T. R. A review of the impact of neuter status on expression of inherited conditions in dogs. Front. Vet. Sci. 6, 397 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J. & Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5, e3019 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, J., An, J. U., Kim, W., Lee, S. & Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog. 9, 68–68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mori, A. et al. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J. Vet. Med. Sci. 81, 1783–1790 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Apper, E. et al. Relationships between gut microbiota, metabolome, body weight, and glucose homeostasis of obese dogs fed with diets differing in prebiotic and protein content. Microorganisms 8(4), 513 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Wernimont, S. M. et al. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01266 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauf, S. et al. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs. J. Anim. Sci. 96(9), 3684–3698 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bresciani, F. et al. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J. Vet. Intern. Med. 32(6), 1903–1910 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madsen, L., Myrmel, L. S., Fjære, E., Liaset, B. & Kristiansen, K. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 8, 1047 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    EU law and publications. Regulation (EC) No 767/2009 of the European parliament and of the council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and council regulation (EC) No 1831/2003 and repealing council directive 79/373/EEC, commission directive 80/511/EEC, council directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and commission decision 2004/217/EC. OJEC L229, 1–28 (2009).
    Google Scholar 
    Paßlack, N. et al. Impact of the dietary inclusion of dried food residues on the apparent nutrient digestibility and the intestinal microbiota of dogs. Arch. Anim. Nutr. 75(4), 311–327 (2021).PubMed 
    Article 

    Google Scholar 
    Macedo, H. T. et al. Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Anim. Microbiome 4(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8(8), e71108 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Remely, M. et al. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef. Microbes 5(1), 33–43 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tamanai-Shacoori, Z. et al. Roseburia spp.: A marker of health?. Future Microbiol. 12(2), 157–170 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. BioMed Res. Int. 5, 1. https://doi.org/10.1155/2017/1829685 (2017).CAS 
    Article 

    Google Scholar 
    Wang, J., Wang, P., Li, D., Hu, X. & Chen, F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur. J. Nutr. 59(2), 699–718 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Mazcorro, J. F., Ivanov, I., Mills, D. A. & Noratto, G. Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. PeerJ 4, e1702 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26(1), 222–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, T. R. et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 68(2), 248–262 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallè, F. et al. Exploring the association between physical activity and gut microbiota composition: a review of current evidence. Ann. Ig. Med. Prev. Comunita 31(6), 582–589 (2019).
    Google Scholar 
    Laflamme, D. R. P. C. Development and validation of a body condition score system for dogs. Canine Practice (Santa Barbara, Calif.: 1990, USA) (1997).FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs https://fediaf.org/self-regulation/nutrition.html#guidelines (2021).Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1), e1–e1 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Research 5, 2122 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. DrImpute: Imputing dropout events in single cell RNA sequencing data. BMC Bioinform. 19(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Finotello, F., Mastrorilli, E. & Di Camillo, B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief. Bioinform. 19(4), 679–692 (2018).PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012). More

  • in

    AnimalTraits – a curated animal trait database for body mass, metabolic rate and brain size

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Wolff, J. O., Wierucka, K., Uhl, G. & Herberstein, M. E. Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences 118, e2102693118 (2021).CAS 
    Article 

    Google Scholar 
    Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019 (2019).Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data 7, 170 (2020).CAS 
    Article 

    Google Scholar 
    Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. Towards establishment of a centralized spider traits database. The Journal of Arachnology (2020).Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    Article 

    Google Scholar 
    Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).ADS 
    Article 

    Google Scholar 
    De Meester, G. & Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).Article 

    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).ADS 
    Article 

    Google Scholar 
    Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences 105, 16994 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (2020).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).Pebesma, E., Mailund, T. & Hiebert, J. Measurement Units in R. R J. 8, 486–494 (2016).Article 

    Google Scholar 
    Hiebert, J. udunits-2 bindings for R. (2016).Iwaniuk, A. N. & Nelson, J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).Article 

    Google Scholar 
    Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).Christian, K. & Conley, K. Activity and Resting Metabolism of Varanid Lizards Compared With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).Article 

    Google Scholar 
    Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).CAS 
    Article 
    PubMed 

    Google Scholar 
    Haim, A. Adaptive variations in heat production within Gerbils (genus Gerbillus) from different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamel, S. & Gatten, R. E. J. Aerobic and Anaerobic Activity Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).Article 

    Google Scholar 
    Gatten, R. E. Jr. Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).Article 

    Google Scholar 
    Coelho, J. R. & Moore, A. J. Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).CAS 
    Article 

    Google Scholar 
    Lighton, J. & Garrigan, D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).CAS 
    Article 

    Google Scholar 
    Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic rate in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).Article 

    Google Scholar 
    Bozinovic, F. & Contreras, L. C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).ADS 
    Article 
    PubMed 

    Google Scholar 
    Morrison, P. & Middleton, E. H. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).Article 

    Google Scholar 
    Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).Article 

    Google Scholar 
    Leitner, P. & Nelson, J. E. Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Whittow, G. C., Gould, E. & Rand, D. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).Shelton, T. G. & Appel, A. G. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Changes in the Rate of CO2 Release following Feeding in the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).Article 
    PubMed 

    Google Scholar 
    Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).Article 

    Google Scholar 
    Arends, A. & McNab, B. K. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).CAS 
    Article 

    Google Scholar 
    McNab, B. K. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).Article 

    Google Scholar 
    Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).CAS 
    Article 

    Google Scholar 
    Haim, A. & Skinner, J. D. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).Article 

    Google Scholar 
    Else, P. L. & Hulbert, A. J. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).CAS 
    Article 

    Google Scholar 
    Duncan, F. D. & Crewe, R. M. A comparison of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).Article 

    Google Scholar 
    Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).ADS 
    Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Holter, P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).Article 
    PubMed 

    Google Scholar 
    Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).Article 

    Google Scholar 
    Rübsamen, U., Hume, I. D. & Rübsamen, K. Effect of ambient temperature on autonomic thermoregulation and activity patterns in the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).Article 

    Google Scholar 
    Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).Article 

    Google Scholar 
    Louw, G., Young, B. & Bligh, J. Effect of thyroxine and noradrenaline on thermoregulation, cardiac rate and oxygen consumption in the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).CAS 
    Article 

    Google Scholar 
    Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).CAS 
    Article 

    Google Scholar 
    Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).CAS 
    Article 

    Google Scholar 
    Thompson, G. G. & Withers, P. C. Effects of body mass and temperature on standard metabolic rates for two Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).Hack, M. A. The effects of mass and age on standard metabolic rate in house crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).ADS 
    Article 

    Google Scholar 
    Gatten, R. E. Jr. Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).Gleeson, T. T. The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. Endothermy and energy metabolism of a giant tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).Article 

    Google Scholar 
    Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, K. The energetic costs of calling in the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).Article 

    Google Scholar 
    Kotiaho, J. S. et al. Energetic costs of size and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).Article 

    Google Scholar 
    Chaplin, S. B. The energetic significance of huddling behavior in common bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).Article 

    Google Scholar 
    Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).Article 

    Google Scholar 
    Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).Article 

    Google Scholar 
    Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).Article 

    Google Scholar 
    Marhold, S. & Nagel, A. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).CAS 
    Article 

    Google Scholar 
    Pauls, R. W. Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).ADS 
    Article 

    Google Scholar 
    Brush, A. H. Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).Article 

    Google Scholar 
    Bailey, C. G. & Riegert, P. W. Energy dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).Article 

    Google Scholar 
    Prinzinger, R., Lübben, I. & Schuchmann, K.-L. Energy metabolism and body temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).Article 

    Google Scholar 
    Baudinette, R. V. Energy metabolism and evaporative water loss in the California ground squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).Article 

    Google Scholar 
    May, M. L. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).Article 

    Google Scholar 
    Baudinette, R. V., Churchill, S. K., Christian, K. A., Nelson, J. E. & Hudson, P. J. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).CAS 
    Article 

    Google Scholar 
    Withers, P. C. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).Article 

    Google Scholar 
    Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling in the Desert Cicada: Thermal Efficiency and Water/Metabolic Costs. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).Article 

    Google Scholar 
    Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).Article 

    Google Scholar 
    Wunder, B. A. Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).Article 

    Google Scholar 
    Maclean, G. S. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).Article 

    Google Scholar 
    Campbell, K. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).CAS 
    Article 

    Google Scholar 
    Weathers, W. W., Paton, D. C. & Seymour, R. S. Field Metabolic Rate and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).Article 

    Google Scholar 
    Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).ADS 
    Article 
    PubMed 

    Google Scholar 
    Greenstone, M. H. & Bennett, A. F. Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).Article 

    Google Scholar 
    Schmitz, A. Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).CAS 
    Article 

    Google Scholar 
    Marder, J. & Bernstein, R. Heat balance of the partridge Alectoris chukar exposed to moderate, high and extreme thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).CAS 
    Article 

    Google Scholar 
    Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).CAS 
    Article 

    Google Scholar 
    Zari, T. The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).Article 

    Google Scholar 
    Jensen, T. F. & Nielsen, M. G. The influence of body size and temperature on worker ant respiration. Nat. Jutl. 18, 21–25 (1975).
    Google Scholar 
    McNab, B. K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).Article 

    Google Scholar 
    Shillington, C. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).CAS 
    Article 

    Google Scholar 
    Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hailey, A. & Davies, P. M. C. Lifestyle, latitude and activity metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).Article 

    Google Scholar 
    Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).Article 

    Google Scholar 
    Putnam, R. W. & Murphy, R. W. Low metabolic rate in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).Article 

    Google Scholar 
    Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).Article 

    Google Scholar 
    Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular adaptations in the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).Article 

    Google Scholar 
    Casey, T. M., Withers, P. C. & Casey, K. K. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).Article 

    Google Scholar 
    Grant, G. S. & Whittow, G. C. Metabolic cost of incubation in the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).CAS 
    Article 

    Google Scholar 
    Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the cost of foraging in the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).Article 

    Google Scholar 
    Thurling, D. J. Metabolic rate and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vleck, C. M. & Vleck, D. Metabolic rate in five tropical bird species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).Article 

    Google Scholar 
    Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).Article 
    PubMed 

    Google Scholar 
    Worthen, G. L. & Kilgore, D. L. Metabolic rate of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).Article 

    Google Scholar 
    Hails, C. J. The metabolic rate of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmitz, A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).CAS 
    Article 

    Google Scholar 
    Anderson, J. F. Metabolic rates of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).Adams, N. J. & Brown, C. R. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).Article 

    Google Scholar 
    Morrison, P. & Ryser, F. A. Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).CAS 
    Article 

    Google Scholar 
    Bieńkowski, P. & Marszałek, U. Metabolism and energy budget in the snow vole. Acta Theriol. 19, 55–67 (1974).Article 

    Google Scholar 
    Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).Article 

    Google Scholar 
    Król, E. Metabolism and thermoregulation in the eastern hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).Article 

    Google Scholar 
    Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).Article 

    Google Scholar 
    Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).Article 

    Google Scholar 
    Hill, R. W. Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).Article 

    Google Scholar 
    Saarela, S. & Hissa, R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).CAS 
    Article 

    Google Scholar 
    MacMillen, R. E. Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).CAS 
    Article 

    Google Scholar 
    Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).ADS 
    Article 
    PubMed 

    Google Scholar 
    Farrell, D. J. & Wood, A. J. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).Article 

    Google Scholar 
    Hennemann, W. W. & Konecny, M. J. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).Article 

    Google Scholar 
    May, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths During Rest, Pre-Flight Warm-Up, and Flight In Relation to Body Size and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).Article 

    Google Scholar 
    MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 72–79 (1977).Francis, C. & Brooks, G. R. Oxygen consumption, rate of heart beat and ventilatory rate in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).Article 

    Google Scholar 
    Tucker, V. A. Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article 

    Google Scholar 
    Genoud, M., Bonaccorso, F. J. & Anends, A. Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).Article 

    Google Scholar 
    Genoud, M. & Ruedi, M. Rate of metabolism, temperature regulations, and evaporative water loss in the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).Article 

    Google Scholar 
    Ricklefs, R. E. & Matthew, K. K. Rates of oxygen consumption in four species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).CAS 
    Article 

    Google Scholar 
    Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).Article 

    Google Scholar 
    Goldstein, R. B. Relation of metabolism to ambient temperature in the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).Article 

    Google Scholar 
    Mispagel, M. E. Relation of oxygen consumption to size and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).Article 

    Google Scholar 
    Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical bird species. The Auk, 25–37 (1984).Holter, P. Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).Article 

    Google Scholar 
    Goldstein, D. L. & Nagy, K. A. Resource Utilization by Desert Quail: Time and Energy, Food and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).Article 

    Google Scholar 
    Louw, G. N., Nicolson, S. W. & Seely, M. K. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).Article 

    Google Scholar 
    Anderson, J. F. & Prestwich, K. N. Respiratory Gas Exchange in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).Article 

    Google Scholar 
    Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Nielsen, M. G. Respiratory rates of ants from different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).Article 

    Google Scholar 
    Calder, W. A. III & Dawson, T. J. Resting metabolic rates of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).Article 

    Google Scholar 
    Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic rates of two orbweb spiders: A first approach to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).CAS 
    Article 

    Google Scholar 
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. B. Short Communication: Ventilation and Oxygen Consumption During Rest and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).Article 

    Google Scholar 
    Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic rate in the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).Article 

    Google Scholar 
    Lighton, J. R. Slow Discontinuous Ventilation in the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).Article 

    Google Scholar 
    Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).CAS 
    Article 

    Google Scholar 
    Young, S. R. & Block, W. Some factors affecting metabolic rate in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).Wang, L. C.-H. & Hudson, J. W. Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bedford, G. S. & Christian, K. A. Standard metabolic rate and preferred body temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).Article 

    Google Scholar 
    Vogt, J. T. & Appel, A. G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, G., Heger, N., Heger, T. & Withers, P. Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).Article 

    Google Scholar 
    Vitali, S. D., Withers, P. C. & Richardson, K. C. Standard metabolic rates of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).Article 

    Google Scholar 
    Dawson, T. J., Grant, T. R. & Fanning, D. Standard Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).Article 

    Google Scholar 
    Al-Sadoon, M. K. & Abdo, N. M. Temperature effects on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).ADS 
    Article 

    Google Scholar 
    Roxburgh, L. & Perrin, M. R. Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).Article 

    Google Scholar 
    Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).CAS 
    Article 

    Google Scholar 
    Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).Article 

    Google Scholar 
    Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation in the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ebisu, R. J. & Whittow, G. C. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).CAS 
    Article 

    Google Scholar 
    Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation in the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).CAS 
    Article 

    Google Scholar 
    Fusari, M. H. Temperature responses of standard, aerobic metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).CAS 
    Article 

    Google Scholar 
    Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).Article 

    Google Scholar 
    Campbell, K. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)0812.0.CO;2 (2000).Hosken, D. J. Thermal Biology and Metabolism of the Greater Long-eared Bat. Nyctophilus major (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).Article 

    Google Scholar 
    Duxbury, K. J. & Perrin, M. Thermal biology and water turnover rate in the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).CAS 
    Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).Article 

    Google Scholar 
    Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).Article 

    Google Scholar 
    Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).Article 

    Google Scholar 
    Kamau, J. M., Johansen, K. & Maloiy, G. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).Article 

    Google Scholar 
    Knight, M. H. Thermoregulation in the largest African cricetid, the giant rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).CAS 
    Article 

    Google Scholar 
    Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Casey, T. M. & Casey, K. K. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).Article 

    Google Scholar 
    Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).CAS 
    Article 

    Google Scholar 
    Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).Article 

    Google Scholar 
    du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).Article 

    Google Scholar 
    Bradley, W. & Yousef, M. Thermoregulatory responses in the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).CAS 
    Article 

    Google Scholar 
    Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).CAS 
    Article 

    Google Scholar 
    El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama: effects of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).Article 

    Google Scholar 
    Krüger, K., Prinzinger, R. & Schuchmann, K.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).
    Google Scholar 
    Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gas Exchange, Body Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).Article 

    Google Scholar 
    Zachariassen, K. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).Article 

    Google Scholar 
    Bucher, T. L. Ventilation and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).ADS 
    Article 

    Google Scholar 
    Bickler, P. E. & Anderson, R. A. Ventilation, Gas Exchange, and Aerobic Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).Article 

    Google Scholar 
    Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).Article 
    PubMed 

    Google Scholar 
    Quesada, R. et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Mlikovsky, J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).
    Google Scholar 
    Mlikovsky, J. Brain size in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).
    Google Scholar 
    Bronson, R. T. Brain weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).Article 

    Google Scholar 
    Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).Article 

    Google Scholar 
    Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and brain size in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).Article 

    Google Scholar 
    Rosenzweig, M. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).Article 

    Google Scholar 
    Ashwell, K. W. S. Encephalization of Australian and New Guinean marsupials. Brain Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).Article 
    PubMed 

    Google Scholar 
    Pasquet, A., Toscani, C. & Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).Article 
    PubMed 

    Google Scholar 
    Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).
    Google Scholar 
    Naccarati, S. On the relation between the weight of the internal secretory glands and the body weight and brain weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).Article 

    Google Scholar 
    Crile, G. & Quiring, D. P. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. (1940).Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative brain size in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).Article 

    Google Scholar 
    Hrdlička, A. Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).Article 

    Google Scholar 
    Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).Article 
    PubMed 

    Google Scholar 
    Napiorkowska, T. & Kobak, J. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).Article 
    PubMed 

    Google Scholar 
    El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).Article 
    PubMed 

    Google Scholar 
    Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, B. J. & Leal, M. Brain Organization and Habitat Complexity in Anolis Lizards. Brain Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).Article 
    PubMed 

    Google Scholar 
    Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Academic Press, 1979).Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).Article 
    PubMed 

    Google Scholar 
    Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).Article 

    Google Scholar 
    Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of brain morphology and communication modalities in lizards. Current Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).Article 

    Google Scholar 
    Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).Montgomery, S. H. & Merrill, R. M. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Standard Brain. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, J.-M., Li, R.-D. & Gao, F.-Y. Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).CAS 
    Article 

    Google Scholar 
    Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).CAS 
    PubMed 

    Google Scholar 
    Makarova, A. A. & Polilov, A. A. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).Article 

    Google Scholar 
    Bininda‐Emonds, O. R. P. Pinniped brain sizes. Mar. Mamm. Sci. 16, 469–481 (2000).Article 

    Google Scholar 
    Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, K. Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).Article 

    Google Scholar 
    Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).Article 

    Google Scholar 
    Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).Article 
    PubMed 

    Google Scholar 
    O’Donnell, S. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).Article 

    Google Scholar 
    Weltzien, P. & Barth, F. G. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).Article 
    PubMed 

    Google Scholar  More

  • in

    Personalized microbiomes in social baboons

    Sarkar, A. et al. Nat. Ecol. Evol. 4, 1020–1035 (2020).Article 

    Google Scholar 
    Tung, J. et al. eLife 4, e05224 (2015).Article 

    Google Scholar 
    Bennett, G. et al. Am. J. Primatol. 78, 883–892 (2016).CAS 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Sci. Adv. 2, e1500997 (2016).Article 

    Google Scholar 
    Perofsky, A. C., Ancel Meyers, L., Abondano, L. A., Di Fiore, A. & Lewis, R. J. Mol. Ecol. 30, 6759–6775 (2021).Article 

    Google Scholar 
    Yarlagadda, K., Razik, I., Malhi, R. S. & Carter, G. G. Biol. Lett. 17, 20210389 (2021).Article 

    Google Scholar 
    Björk, J. R. et al. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01773-4 (2022).Blekhman, R. et al. Genome Biol. 16, 191 (2015).Article 

    Google Scholar 
    Grieneisen, L. et al. Science 186, 181–186 (2021).Article 

    Google Scholar 
    Lloyd-Price, J. et al. Nature 550, 61–66 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    The microbiome of cryospheric ecosystems

    The datasetWe curated and explored 695 published 16S rRNA gene samples from cryospheric ecosystems (Methods section and Supplementary Table 7), including polar ice sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal ocean under the influence of glacier runoff, and compared these to 3552 published 16S rRNA gene samples from non-cryospheric ecosystems, including temperate and tropical lakes and soils (Supplementary Table 7). This approach allowed us to identify and explore features specific to the cryospheric microbiome and compare it to other environmental microbiomes. However, we note a geographical bias towards polar regions in current publicly available repositories, and the paucity of alpine samples specifically highlights the need to further characterise these habitats given that they are among the most endangered cryospheric ecosystems globally. This bias is further compounded by the inconsistent methodologies applied across studies (e.g. primer pairs and sequencers used). To account for potential primer biases, we analysed two 16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r)12,13 commonly used in amplicon high-throughput sequencing. In total, this dataset contains 241,502,708 paired sequence reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into the functional space of the cryospheric microbiome, we compared 34 published metagenomes from cryospheric ecosystems with 56 metagenomes from similar but non-cryospheric ecosystems (Fig. 1A). Given the difficulty of obtaining high-quality metagenomes from cryospheric ecosystems, we restricted our analyses to glacier surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to samples where raw sequence data are available (Methods section), the breadth of habitats covered are representative of the most abundant cryospheric ecosystems, e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of permafrost may not entirely be represented due to data unavailability. We reanalysed all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue representing a snapshot of the functional diversity in the cryospheric microbiome, integrating across diverse habitats. This represents what we believe to be the first global overview of the functional repertoire of the Earth’s cryosphere compared to other ecosystems.Fig. 1: A unique cryospheric microbiome.A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs ( >0.5% relative abundance in at least one sample) in the PP1 dataset. The heatmap (inner rings) shows the presence (at a  > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.Full size imageA cryospheric microbiomeGiven the communal constraints imposed by the harsh environment of cryospheric ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a specific microbiome. Accordingly, machine-learning classification (logistic regression models, Methods) based on community composition was able to differentiate between cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy >0.96, Supplementary Table 1). Both primer pairs consistently yielded a high classification accuracy and especially a high precision. Interestingly, many of the discriminating cryospheric ASVs were spread widely across the bacterial tree of life (Fig. 1A and Supplementary Fig. 1).The notion that a part of the microbiome is specific to the cryosphere is also strongly supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we found higher pairwise phylogenetic overlap among cryospheric samples than among cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p  More

  • in

    A new functional ecological model reveals the nature of early plant management in southwest Asia

    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Fuller, D. Q., Willcox, G. & Allaby, R. G. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol. 43, 628–652 (2011).Article 

    Google Scholar 
    Ibáñez, J. J., Anderson, P. C., González-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81 (2016).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J. Archaeol. Sci. 31, 145–150 (2004).Article 

    Google Scholar 
    White, C. E. & Makarewicz, C. A. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. Veg. Hist. Archaeobot. 21, 85–94 (2012).Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: the archaeobotanical evidence from PPNA Dhra‘. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proc. Natl Acad. Sci. USA 106, 10966–10970 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Willcox, G. & Stordeur, D. Large-scale cereal processing before domestication during the tenth millennium cal bc in northern Syria. Antiquity 86, 99–114 (2012).Article 

    Google Scholar 
    Colledge, S. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 121–131 (ICARDA, 1998).Hillman, G. C., Hedges, R., Moore, A. M. T., Colledge, S. & Pettitt, P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 383–393 (2001).Article 

    Google Scholar 
    Willcox, G. Searching for the origins of arable weeds in the Near East. Veg. Hist. Archaeobot. 21, 163–167 (2012).Article 

    Google Scholar 
    Snir, A. et al. The origin of cultivation and proto-weeds, long before neolithic farming. PLoS ONE 10, e0131422 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harris, D. R. & Fuller, D. Q. in Encyclopedia of Global Archaeology (ed. Smith, C.) 104–113 (Springer, 2014).Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species (Springer, 2014).Harlan, J. R., de Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).PubMed 
    Article 

    Google Scholar 
    Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asouti, E. in Neolithic Corporate Identities. Studies in Early Near Eastern Production, Subsistence and Environment 20 (eds Benz, M. et al.) 21–53 (Ex oriente, 2017).Harris, D. R. in Foraging and Farming: the Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.) 11–26 (Unwin Hyman, 1989).Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).Article 

    Google Scholar 
    Rindos, D. The Origins of Agriculture: an Evolutionary Perspective (Academic, 1984).Weide, A. Towards a socio-economic model for southwest Asian cereal domestication. Agronomy 11, 2432 (2021).Article 

    Google Scholar 
    Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehist. 4, 157–222 (1990).Article 

    Google Scholar 
    Kislev, M. E., Hartmann, A. & Weiss, E. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weide, A. et al. The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the Levant. Environ. Archaeol. https://doi.org/10.1080/14614103.2021.1882715 (2021).Zohary, M. The segetal plant communities of Palestine. Vegetatio 2, 387–411 (1950).Article 

    Google Scholar 
    Abbo, S., Lev-Yadun, S. & Gopher, A. Plant domestication and crop evolution in the Near East: on events and processes. Crit. Rev. Plant Sci. 31, 241–257 (2012).Article 

    Google Scholar 
    Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. Lond. B 285, 20180277 (2018).
    Google Scholar 
    Bogaard, A., Palmer, C., Jones, G., Charles, M. & Hodgson, J. G. A FIBS approach to the use of weed ecology for the archaeobotanical recognition of crop rotation regimes. J. Archaeol. Sci. 26, 1211–1224 (1999).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Charles, M. & Hodgson, J. G. Distinguishing the effects of agricultural practices relating to fertility and disturbance: a functional ecological approach in archaeobotany. J. Archaeol. Sci. 27, 1073–1084 (2000).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, 2016).Bogaard, A. Neolithic Farming in Central Europe (Routledge, 2004).Bogaard, A. et al. From traditional farming in Morocco to early urban agroecology in northern Mesopotamia: combining present-day arable weed surveys and crop isotope analysis to reconstruct past agrosystems in (semi-)arid regions. Environ. Archaeol. 23, 303–322 (2018).Article 

    Google Scholar 
    Hamerow, H. et al. An integrated bioarchaeological approach to the medieval ‘agricultural revolution’: a case study from Stafford, England, c. ad 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).Article 

    Google Scholar 
    Green, L., Charles, M. & Bogaard, A. Exploring the agroecology of Neolithic Çatalhöyük, Central Anatolia: an archaeobotanical approach to agricultural intensity based on functional ecological analysis of arable weed flora. Paléorient 44, 29–44 (2018).
    Google Scholar 
    Green, L. Assessing the Nature of Early Farming in Neolithic Western Asia: A Functional Ecological Approach to Emerging Arable Weeds. Univ. of Oxford (2017).Atran, S. Hamula organisation and masha’a tenure in Palestine. Man 21, 271–295 (1986).Article 

    Google Scholar 
    Palmer, C. ‘Following the plough’: the agricultural environment of northern Jordan. Levant 30, 129–165 (1998).Article 

    Google Scholar 
    Håkansson, S. in Biology and Ecology of Weeds (eds Holzner, W. & Numata, M.) 123–135 (Springer Netherlands, 1982).Charles, M., Bogaard, A., Jones, G., Hodgson, J. & Halstead, P. Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg. Hist. Archaeobot. 11, 133–142 (2002).Article 

    Google Scholar 
    Hartmann-Shenkman, A., Kislev, M. E., Galili, E., Melamed, Y. & Weiss, E. Invading a new niche: obligatory weeds at Neolithic Atlit-Yam, Israel. Veg. Hist. Archaeobot. 24, 9–18 (2015).Article 

    Google Scholar 
    Kuijt, I. in The Neolithic Demographic Transition and its Consequences (eds Bocquet-Appel, J.-P. & Bar-Yosef, O.) 287–313 (Springer Netherlands, 2008).Bogaard, A. et al. Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. Antiquity 83, 649–668 (2009).Article 

    Google Scholar 
    Jones, G. et al. The origins of agriculture: intentions and consequences. J. Archaeol. Sci. 125, 105290 (2021).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D. & Tschauner, H. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. J. Archaeol. Sci. 35, 2400–2414 (2008).Article 

    Google Scholar 
    Kluyver, T. A., Charles, M., Jones, G., Rees, M. & Osborne, C. P. Did greater burial depth increase the seed size of domesticated legumes? J. Exp. Bot. 64, 4101–4108 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Preece, C., Jones, G., Rees, M. & Osborne, C. P. Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecol. Evol. 11, 3300–3312 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halstead, P. Two Oxen Ahead: Pre-mechanized Farming in the Mediterranean (Wiley, 2014).Anderson, P. C. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 145–159 (ICARDA, 1998).Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S. & di Lernia, S. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nat. Plants 4, 71–81 (2018).PubMed 
    Article 

    Google Scholar 
    Spengler, R. N. & Mueller, N. G. Grazing animals drove domestication of grain crops. Nat. Plants 5, 656–662 (2019).PubMed 
    Article 

    Google Scholar 
    Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. Lond. B 366, 836–848 (2011).Article 

    Google Scholar 
    Bogaard, A. et al. Reconsidering domestication from a process archaeology perspective. World Archaeol. https://doi.org/10.1080/00438243.2021.1954990 (2021).Coqueugniot, E. in Espace Naturel, Espace Habité En Syrie Du Nord (10e–2e millénaires av. J.-C.) (eds M. Fortin & O. Aurenche) 109–114 (Maison de l’Orient et de la Méditerranée, 1998).Douché, C. Émergence et développement des sociétés agricoles au Néolithique acéramique (Xe-VIIIe millénaires av. n. ère) étude archéobotanique de Dja’de El-Mughara et Tell Aswad, Syrie. PhD thesis (Archaeological Mission of Dja’de el Mughara, 2018).Noy, T. Gilgal I: a pre-pottery Neolithic site, Israel. The 1985–1987 seasons. Paléorient 15, 11–18 (1989).Article 

    Google Scholar 
    Bar-Yosef, O. & Gopher, A. in An Early Neolithic Village in the Jordan Valley (eds Bar-Yosef, O. & Gopher, A.) 41–69 (Harvard Univ., 1997).Wright, K. I. The social origins of cooking and dining in early villages of western Asia. Proc. Prehist. Soc. 66, 89–121 (2000).Article 

    Google Scholar 
    Finlayson, B. Egalitarian societies and the earliest Neolithic of southwest Asia. Prehist. Archaeol. J. Interdiscip. Stud. 3, 27–43 (2020).Article 

    Google Scholar 
    Bowles, S. & Choi, J.-K. The Neolithic agricultural revolution and the origins of private property. J. Polit. Econ. 127, 2186–2228 (2019).Article 

    Google Scholar 
    Kuijt, I. The Neolithic refrigerator on a Friday night: how many people are coming to dinner and just what should I do with the slimy veggies in the back of the fridge? Environ. Archaeol. 20, 321–336 (2015).Article 

    Google Scholar 
    Danin, A. Flora and vegetation of Israel and adjacent areas. Zoogeogr. Isr. 30, 251–276 (1988).
    Google Scholar 
    Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).Article 

    Google Scholar 
    Noy-Meir, I. The effect of grazing on the abundance of wild wheat, barley and oat in Israel. Biol. Conserv. 51, 299–310 (1990).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Halstead, P., Charles, M. & Smith, H. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu. Br. Sch. Athens 94, 167–189 (1999).Article 

    Google Scholar 
    Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D. & Kigel, J. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J. Appl. Ecol. 37, 224–237 (2000).Article 

    Google Scholar 
    Sternberg, M. et al. Testing the limits of resistance: a 19-year study of Mediterranean grassland response to grazing regimes. Glob. Change Biol. 21, 1939–1950 (2015).Article 

    Google Scholar 
    Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135, 551–563 (2016).Article 

    Google Scholar 
    Osem, Y., Perevolotsky, A. & Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 90, 936–946 (2002).Article 

    Google Scholar 
    Temper, L. Creating facts on the ground: agriculture in Israel and Palestine (1882–2000). Hist. Agrar. 48, 75–110 (2009).
    Google Scholar 
    Dan, J., Yaalon, D., Koyumdjisky, H. & Raz, Z. The soil association map of Israel (1:1,000,000). Isr. J. Earth Sci. 21, 29–49 (1970).
    Google Scholar 
    Sans, F. X. & Masalles, R. M. Phenological patterns in an arable land weed community related to disturbance. Weed Res. 35, 321–332 (1995).Article 

    Google Scholar 
    Zohary, M. & Feinbrun-Dothan, N. Flora Palaestina Vol. 1–4 (Israel Academy of Sciences and Humanities, 1966).Davis, P. Flora of Turkey and the East Aegean Islands Vol. 1–10 (Edinburgh Univ. Press, 1965).Mortimer, A. M. in Weed Control Handbook: Principles (eds Hance, R. J. & Holly, K.) 1–42 (Blackwell, 1990).Douché, C. & Willcox, G. New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): a comparison between the northern and the southern Levant. Paléorient 44, 45–58 (2018).
    Google Scholar 
    Jones, G. The application of present-day cereal processing studies to charred archaeobotanical remains. Circaea 6, 91–96 (1990).
    Google Scholar 
    Bogaard, A., Jones, G. & Charles, M. The impact of crop processing on the reconstruction of crop sowing time and cultivation intensity from archaeobotanical weed evidence. Veg. Hist. Archaeobot. 14, 505–509 (2005).Article 

    Google Scholar 
    Bogaard, A. et al. in Humans and Landscapes of Çatalhöyük: Reports from the 2000–2008 Seasons (ed. Hodder, I.) 93–128 (Cotsen Institute of Archaeology/British Institute at Ankara, 2013).Filipović, D. Early Farming in Central Anatolia: an Archaeobotanical Study of Crop Husbandry, Animal Diet and Land Use at Neolithic Çatalhöyük (British Archaeological Reports, 2014).Helmer, D. et al. in New Methods and the First Steps of Mammal Domestication (eds Vigne, J.-D. et al.) 86–95 (Oxbow Books, 2005).Charles, M. Fodder from dung: the recognition and interpretation of dung-derived plant material from archaeological sites. Environ. Archaeol. 1, 111–122 (1998).Article 

    Google Scholar 
    Kislev, M. E. in An Early Neolithic Village in the Jordan Valley (eds Ofer Bar-Yosef & Avi Gopher) 209–236 (Harvard Univ., 1997).Kislev, M. E. et al. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 251–257 (Oxbow Books, 2010).Snir, A., Nadel, D. & Weiss, E. Plant-food preparation on two consecutive floors at Upper Paleolithic Ohalo II, Israel. J. Archaeol. Sci. 53, 61–71 (2015).Article 

    Google Scholar 
    Jones, G., Charles, M., Bogaard, A. & Hodgson, J. Crops and weeds: the role of weed functional ecology in the identification of crop husbandry methods. J. Archaeol. Sci. 37, 70–77 (2010).Article 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge Univ. Press, 2014).Galili, E. et al. Atlit-Yam: a Prehistoric site on the sea floor off the Israeli coast. J. Field Archaeol. 20, 133–157 (1993).
    Google Scholar 
    Brenet, M., Sanchez-Priego, J. & Ibáñez-Estévez, J. J. in Préhistoire et Approche Expérimentale (eds Bourguignon, L. et al.) 121–164 (Monique Mergoil, 2001).Bar-Yosef, O., Gopher, A., Goring-Morris, A. N. & Kozlowski, S. K. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 11–26 (Oxbow Books, 2010). More

  • in

    Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm

    Experimental dataThe dataset used in this study is the global long-term air quality indicator data of 5577 regions from 2010 to 2014 extracted by Betancourt et al.14 based on the TOAR database (https://gitlab.jsc.fz-juelich.de/esde/machine-learning/aq-bench/-/blob/master/resources/AQbench_dataset.csv)29. As shown in Fig. 3, the monitoring sites include 15 regions, including EUR (Europe), NAM (North America), and EAS (East Asia), and are mainly distributed in NAM (North America), EUR (Europe) and EAS (East Asia). The dataset mainly includes the geographical location information of the monitoring site, such as longitude and latitude, the area to which it belongs, altitude, etc., and the site environment information, such as population density, night light intensity, and vegetation coverage. Since it is difficult to directly quantify factors such as the degree of industrial activity and the degree of human activity, environmental information such as the average light intensity at night and population density are used as proxy variables for the above factors. The ozone indicator records the hourly ozone concentration from air quality observation points in various regions and aggregates the collected ozone time series in units of one year into one indicator. Using a longer aggregation period can be used to average short-term weather fluctuations. The experimental data have a total of 35 input variables, including 4 categorical attributes and 31 continuous attributes. The predictor variable is the average ozone concentration in each region from 2010 to 2014. The specific variable names and descriptions14 are shown in the supplementary materials. A total of 4/5 of the total samples were used as the training set, and 1/5 were used as the test set.Figure 3Global distribution of monitoring sites.Full size imageResults of BO-XGBoost-RFEAccording to the XGBoost-RFE algorithm for feature selection, XGBoost-RFE combined with the cross-validation method is used to calculate the selected feature set in each RFE stage for fivefold cross-validation, and the mean absolute error (MAE) is used as the evaluation criterion to finally determine the number of features with the lowest mean absolute error (MAE). At the same time, the Bayesian optimization algorithm is used to adjust the hyper-parameters of XGBoost-RFE, and then the feature subset with the lowest cross-validation mean absolute error (MAE) is obtained. The main parameters of the XGBoost model in this article include the learning_rate, n_estimators, max_depth, gamma, reg_alpha, reg_lambda, colsample_bytree, and subsample. All parameters used in the model are shown in the supplementary material. Within the given parameter range, the Bayesian optimization algorithm is used, the mean absolute error (MAE) of the XGBoost-RFE fivefold cross-validation is used as the objective function, and the number of iterations is controlled to be 100. We obtained the hyperparameter combination corresponding to the lowest MAE and the corresponding optimal feature subset. The iterative process of Bayesian optimization is shown in Fig. 4.Figure 4Iterative process of Bayesian optimization.Full size imageThe parameter range and optimized value of XGBoost-RFE are shown in Table 1. The XGBoost-RFE feature selection results under the above optimized hyperparameters are shown in Fig. 5. The number of features in the feature subset with the lowest mean absolute error is 22, and the MAE is 2.410.Table 1 Main hyper-parameter range and optimized value.Full size tableFigure 5XGBoost-RFE feature selection results: Cross-validation MAE under optimal hyperparameter combination.Full size imageAdditionally, the XGBoost-RFE feature selection model without Bayesian optimization is compared with the algorithm in this study. The default parameters of the underlying model XGBoost are set to learning_rate as 0.3, max_depth as 6, gamma as 0, colsample_bytree as 1, subsample as 1, reg_alpha as 1, and reg_lambda as 0. The comparison results are shown in Table 2. The results show that the XGBoost-RFE cross-validation MAE without parameter tuning is larger than that of the algorithm in this study, and the dimension of the feature subset obtained is also higher than that of the algorithm in this study.Table 2 Comparison of MAE and feature num before and after BO.Full size tablePrediction resultsTo test the prediction accuracy of the prediction model with the optimal subset obtained by BO-XGBoost-RFE, three indexes, MAE, RMSE and R2, are used to evaluate the prediction results, and the expressions are as follows:$$begin{array}{*{20}c} {MAE = frac{1}{n}mathop sum limits_{i = 1}^{n} left| {left( {y_{i} – widehat{{y_{i} }}} right)} right|} \ end{array}$$
    (8)
    $$begin{array}{*{20}c} {RMSE = sqrt {frac{1}{n}mathop sum limits_{i = 1}^{n} left( {y_{i} – widehat{{y_{i} }}} right)^{2} } } \ end{array}$$
    (9)
    $$begin{array}{*{20}c} {R^{2} = 1 – frac{{mathop sum nolimits_{i = 1}^{n} left( {widehat{{y_{i} }} – y_{i} } right)^{2} }}{{mathop sum nolimits_{i = 1}^{n} left( {y_{i} – overline{{y_{i} }} } right)^{2} }}} \ end{array}$$
    (10)
    n indicates the number of samples, yi is the true value, (widehat{{y_{i} }}) is the predicted value and (overline{{y_{i} }}) indicates the mean value of the predicted value.The XGBoost-RFE feature selection algorithm based on Bayesian optimization in this study is compared with feature selection using full features and features selected by the Pearson correlation coefficient, which measures the correlation between two variables. In this study, the correlation with predictor variables was selected to be less than 0.1, and the variables with correlations greater than 0.9 were deleted to avoid multicollinearity.XGBoost, random forest, support vector regression machine, and KNN algorithms were used to predict ozone concentration with full features, features selected by Pearson’s correlation coefficient, and features based on BO-XGBoost-RFE. According to the evaluation indicators described above, the comparison of the prediction performance results of the three algorithms before and after dimensionality reduction can be obtained. The MAE, RMSE and R2 results of each prediction model are shown in Table 3.Table 3 MAE, RMSE and R2 of each prediction model.Full size tableAmong the four prediction models, random forest has the lowest MAE and RMSE and the highest R2 based on three different dimensions of data and therefore has the best prediction performance. The prediction accuracy of all four prediction models based on Pearson correlation is lower than that based on BO-XGBoost-RFE, indicating that only selecting features by correlation cannot accurately extract important variables. Although the RMSE of the support vector regression model based on BO-XGBoost-RFE is slightly lower than the RMSE based on full features, the prediction accuracy of XGBoost, RF, KNN after feature selection of BO-XGBoost-RFE is higher than that based on full features and Pearson correlation. Among the four prediction models, random forest has obtained the highest prediction accuracy. The MAE based on BO-XGBoost-RFE is 5.0% and 1.4% lower than that based on the Pearson correlation coefficient and the full-feature-based model, and the RMSE is reduced by 5.1%, 1.8%, R2 improved by 4.3%, 1.4%. Additionally, the XGBoost model achieved the greatest improvement in accuracy. The MAE was reduced by 5.9% and 1.7%, the RMSE was reduced by 5.2% and 1.7%, and the R2 was improved by 4.9% and 1.4% compared with the Pearson correlation coefficient-based and full-feature-based models, respectively. This indicates that feature selection based on BO-XGBoost-RFE effectively extracts important features, improves prediction accuracy based on multiple prediction models, and has better dimensionality reduction performance.Figure 6 shows the importance of each feature obtained by using the random forest prediction model, reflecting the degree of influence of each variable on the prediction results of the global multi-year average near-ground ozone concentration. The most important variables that affect the prediction results according to the ranking of feature importance are altitude, relative altitude, and latitude, followed by night light intensity within a radius of 5 km, population density and nitrogen dioxide concentration, while the proxy variables for vegetation cover have a relatively weak effect on the prediction of ozone concentration.Figure 6Feature importance in random forest.Full size image More

  • in

    Below ground efficiency of a parasitic wasp for Drosophila suzukii biocontrol in different soil types

    Di Giacomo, G., Hadrich, J., Hutchison, W. D., Peterson, H. & Rogers, M. Economic impact of spotted wing drosophila (Diptera: Drosophilidae) yield loss on minnesota raspberry farms: A grower survey. J. Integr. Pest Manag. https://doi.org/10.1093/jipm/pmz006 (2019).Article 

    Google Scholar 
    Farnsworth, D. et al. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest. Manag. Sci. 73, 1083–1090. https://doi.org/10.1002/ps.4497 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beers, E. H., Van Steenwyk, R. A., Shearer, P. W., Coates, W. W. & Grant, J. A. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag. Sci. 67, 1386–1395. https://doi.org/10.1002/ps.2279 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tait, G. et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Econ. Entomol. 114, 1950–1974. https://doi.org/10.1093/jee/toab158 (2021).Article 
    PubMed 

    Google Scholar 
    Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89, 823–835. https://doi.org/10.1007/s10340-016-0740-0 (2016).ADS 
    Article 

    Google Scholar 
    Abram, P. K. et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. J. Hymenoptera Res. 78, 1–17. https://doi.org/10.3897/jhr.78.55026 (2020).Article 

    Google Scholar 
    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).Article 

    Google Scholar 
    Gonzalez-Cabrera, J., Moreno-Carrillo, G., Sanchez-Gonzalez, J. A., Mendoza-Ceballos, M. Y. & Arredondo-Bernal, H. C. Single and Combined Release of Trichopria drosophilae (Hymenoptera: Diapriidae) to Control Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 48, 949–956. https://doi.org/10.1007/s13744-019-00707-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rossi Stacconi, M. V., Grassi, A., Ioriatti, C. & Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. Biocontrol 64, 9–19. https://doi.org/10.1007/s10526-018-09914-0 (2018).CAS 
    Article 

    Google Scholar 
    Poyet, M. et al. The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: The key of its invasion success in temperate Europe?. PLoS ONE 10, e0142785. https://doi.org/10.1371/journal.pone.0142785 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzetto, F. et al. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 89, 837–850. https://doi.org/10.1007/s10340-016-0746-7 (2016).Article 

    Google Scholar 
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71. https://doi.org/10.1016/j.biocontrol.2016.02.004 (2016).Article 

    Google Scholar 
    Rossi Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol. Control 117, 188–196. https://doi.org/10.1016/j.biocontrol.2017.11.013 (2018).Article 

    Google Scholar 
    Esteban-Santiago, J. M., Rodríguez-Leyva, E., Lomeli-Flores, J. R. & González-Cabrera, J. Demographic parameters of Trichopria drosophilae in three host species. Entomol. Exp. Appl. 169, 330–337. https://doi.org/10.1111/eea.13026 (2021).CAS 
    Article 

    Google Scholar 
    Häussling, B. J. M., Lienenluke, J. & Stokl, J. The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size. Sci. Rep. 11, 995. https://doi.org/10.1038/s41598-020-80355-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61, 387–397. https://doi.org/10.1007/s10526-016-9720-9 (2016).CAS 
    Article 

    Google Scholar 
    Woltz, J. M. & Lee, J. C. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol. Control 110, 62–69. https://doi.org/10.1016/j.biocontrol.2017.04.007 (2017).Article 

    Google Scholar 
    Ballman, E. S., Collins, J. A. & Drummond, F. A. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) Pupae in Maine wild blueberry fields. J. Econ. Entomol. 110, 2308–2317. https://doi.org/10.1093/jee/tox233 (2017).Article 
    PubMed 

    Google Scholar 
    Guillén, L., Aluja, M. N., Equihua, M. & Sivinski, J. Performance of two fruit fly (Diptera: Tephritidae) pupal parasitoids (Coptera haywardi [Hymenoptera: Diapriidae] and Pachycrepoideus vindemiae [Hymenoptera: Pteromalidae]) under different environmental soil conditions. Biol. Control 23, 219–227. https://doi.org/10.1006/bcon.2001.1011 (2002).Article 

    Google Scholar 
    Yi, C. et al. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 11, 103. https://doi.org/10.3390/insects11020103 (2020).Article 
    PubMed Central 

    Google Scholar 
    BoychevaWoltering, S., Romeis, J. & Collatz, J. Influence of the rearing host on biological parameters of Trichopria drosophilae, a potential biological control agent of Drosophila suzukii. Insects. https://doi.org/10.3390/insects10060183 (2019).Article 

    Google Scholar 
    Otto, M. & Mackauer, M. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri: Influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364. https://doi.org/10.1007/s004420050668 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (Vienna, Austria, 2008).Johnson, S. N. & Gregory, P. J. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31, 1–13. https://doi.org/10.1111/j.1365-3032.2005.00487.x (2006).CAS 
    Article 

    Google Scholar 
    Bezerra Da Silva, C. S., Park, K. R., Blood, R. A. & Walton, V. M. Intraspecific competition affects the pupation behavior of spotted-wing drosophila (Drosophila suzukii). Sci. Rep. 9, 7775. https://doi.org/10.1038/s41598-019-44248-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renkema, J. M. & Devkota, S. Pupation depth of spotted wing drosophila (Drosophila suzukii) and effects of field sanitation in Florida strawberries. Viii Int. Strawberry Symp. 1156, 849–855. https://doi.org/10.17660/ActaHortic.2017.1156.125 (2017).Article 

    Google Scholar 
    Tsitsipis, J. A. & Papanicolaou, E. P. Pupation depth in artificially reared olive fruits-flies Dacus-oleae (Diptera, Tephritidae), as affected by several physical characteristics of the substrates. Annales De Zoologie Ecologie Animale 11, 31–40 (1979).
    Google Scholar 
    Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. J. Appl. Entomol. 127, 12–17. https://doi.org/10.1046/j.1439-0418.2003.00686.x (2003).Article 

    Google Scholar 
    de Belle, J. S., Hilliker, A. J. & Sokolowski, M. B. Genetic localization of foraging (for): A major gene for larval behavior in Drosophila melanogaster. Genetics 123, 157–163. https://doi.org/10.1093/genetics/123.1.157 (1989).Article 
    PubMed 

    Google Scholar 
    Sokolowski, M. B. et al. Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Anim. Behav. 34, 403–408. https://doi.org/10.1016/S0003-3472(86)80109-9 (1986).Article 

    Google Scholar 
    Rodriguez, L., Sokolowski, M. B. & Shore, J. S. Habitat selection by Drosophila melanogaster larvae. J. Evol. Biol. 5, 61–70. https://doi.org/10.1046/j.1420-9101.1992.5010061.x (1992).Article 

    Google Scholar 
    McIntosh, H., Atucha, A., Townsend, P. A., Hills, W. B. & Guédot, C. Plastic mulches reduce adult and larval populations of Drosophila suzukii in fall-bearing raspberry. J. Pest. Sci. 95, 525–536. https://doi.org/10.1007/s10340-021-01456-2 (2021).Article 

    Google Scholar 
    Ballman, E. & Drummond, F. Larval movement of spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). J. Kansas Entomol. Soc. 92, 412–421. https://doi.org/10.2317/0022-8567-92.1.412 (2019).Article 

    Google Scholar  More