More stories

  • in

    Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism

    SubjectsThe study comprised 34 men (19–26 years, mean 23 years; body mass index 19–31 kg/m2, mean 24 kg/m2) with no physical disabilities or mental disorders, including color blindness and claustrophobia30,31. All subjects were informed of the aims, the study procedure, and the financial compensation for participation, and were asked to follow the rules of the study. Prior to each experiment, subjects underwent short-term starvation31,54 (18–20 h; no food except pure water after lunch (12–1 pm) or dinner (6–7 pm), no later than 1 pm or 7 pm, respectively, one the day before the test), no medical treatments, and normal sleep (at least 6 h, between 10 pm the day before the test day to 8 am on the test day)31. Prior to starting each experiment, subjects were stabilized on a chair for ~ 10 min in a room next to the testing room. Based on an assessment with a pre-experiment questionnaire and the first blood glucose level, measured before starting the experiment (see “Geomagnetic orientation assay” section below), subjects who had not followed these rules were not allowed to take the test on the day and the test was postponed. The study was approved by the Institutional Review Board of Kyungpook National University and all the procedures followed the regulations for human subject research. Informed consent was obtained from all subjects.Modulation of GMFThe ambient GMF in the testing room had a total intensity 45.0 μT, inclination 53°, and declination − 7° (Daegu city, Republic of Korea); the total intensity of 50.0 μT in our previous study31 was changed due to a reconstruction of the building; 45.0 μT was maintained throughout the period of this study. To provide the subjects with various GMF-like magnetic fields (i.e., by modulating of total intensity, inclination, or direction of magnetic north), the coil system from our previous studies6,7,31 was used. It comprised three double-wrapped, orthogonal, rectangular Helmholtz coils (1.890 × 1.890 m, 1.890 × 1.800 m, and 1.980 × 1.980 m for the north–south, east–west, and vertical axes, respectively), electrically-grounded with copper mesh shielding. The subject was seated on a rotatable plastic chair with no metal components, at the center of the three-dimensional coils with his head positioned in the middle space of the vertical axis of the coils. To modulate the geomagnetic north, each pair of coils was supplied with direct current from a power supply (MK3003P; MKPOWER, Republic of Korea). The magnetic field was measured using a 3-axis magnetometer (MGM 3AXIS; ALPHALAB, USA); the field homogeneity at the position of the subject’s head was found to be 95%. The testing room was shielded by a six-sided Faraday cage comprising 10 mm thick aluminum plates, and was grounded during the entire experiment40. Background electromagnetic noise was measured inside the coils at the start and the end of each experimental day. It was attenuated by the Faraday cage more than 200-fold over the range from 500 Hz to 100 MHz as described in detail in our previous study31. The 60 Hz power frequency magnetic field was no more than 2 nT (3D NF Analyzer NFA 1000; Gigahertz Solutions, Germany). All electronic devices were placed outside the Faraday cage during the experiments, with the exception of the switch button module for GMF modulation and the antenna for generating the oscillating magnetic fields. The temperature experienced by the subjects was maintained at 25 ± 0.5 °C (Data logger 98,581; MIC Meter Industrial, Taiwan) by air circulation through the honeycomb on the ceiling of the Faraday cage31.Geomagnetic orientation assayAdopting a two-alternative forced choice (2-AFC) paradigm33,34, a geomagnetic orientation assay was conducted similar to our previous study31. Experiments were performed at 09:30–11:30 am or 1:00–5:00 pm (local time, UTC + 09:00) (each experiment: 50 min–1 h 10 min; mean ≈ 1 h, which was shorter by approximately 30 min than that in the previous study: 1 h 20 min–1 h 40 min; mean ≈ 1 h 30 min). Depending on the experiment, starved or unstarved subjects were tested individually. Prior to each experiment, the subjects were asked to remain with their heads facing the front, with eyes closed and earmuffs on during the experiment. In particular, they were asked to concentrate on sensing, if they could, the ambient geomagnetic north during the association phase, and to use the sensed information, depending on the experiment, to orient toward one of the two modulated magnetic norths (0°/180° for magnetic north–south axis or 90°/270° for magnetic east–west axis, rotated clockwise with respect to the ambient geomagnetic north) during the test phase. Subjects were instructed to avoid distracting thoughts and to think immediately “which direction is modulated magnetic north?” whenever they were distracted during the test phase, or felt they were being biased by experiences from earlier experiments. While seated on the rotatable chair, the subject’s blood glucose level was measured shortly before the first session and immediately after each session with eyes open except in the ‘dark’ experiment (Accu-Chek Guide; Roche, Germany)31. If the determined value before the first session varied by more than 15% relative to the mean (Table S2)31, the experiment was postponed and repeated at a later date (approximately 2% of experiments). The subjects were stabilized with eyes closed for 2 min before the first trial in the absence of visual, auditory, olfactory, and haptic sensory cues. For the ‘dark’ experiment (light intensity ≈ 0 lx), subjects wore home-made ‘blind’ goggles and were stabilized with eyes closed for 5 min55,56, and then asked whether they could see any light. If they could, the goggles were adjusted to prevent leakage of light, and the subject then had another 5 min of stabilization with eyes closed before starting the experiment. The subjects were illuminated with light from a filtered/non-filtered diffused light-emitting diode, depending on the experiment (Table S1). The home-made filter goggles were worn throughout the experiment, including the association and test phase, when required. The goggles contained glass filters (Tae Young Optics, Republic of Korea) to provide the eyes with particular wavelengths of light (Spectrometer USB4000-UV-VIS, Ocean Optics, USA) (Fig. S1). Each experiment consisted of 16 sequential trials for ‘no-association’ and ‘food-association’. For the food-association, a subject facing toward the ambient geomagnetic north was gently provided with a chocolate chip31 on his right palm by an experimenter, and given 30 s to eat it, while during no-association trials, food was not provided during the association phase. After a subsequent 5 s interval, the experimenter gently touched the subject’s right thenar area using a paper rod, as the cue to start the test. One of the two modulated magnetic north directions, depending on the experiment, was randomly provided 3 s before the cue for the test. Each of the modulated magnetic north directions was provided eight times for the no-association and food-association sessions. Subjects were informed of the nearly equal probability for each of the modulated magnetic north directions before each experiment. With the touch cue, subjects were asked to rotate freely toward any direction (clockwise or counterclockwise) by themselves (1–4 cycles of two-thirds rotation) and try to sense the direction of the modulated magnetic north during a 1 min period. Rotation was allowed within the rotation angle (− 30° to 210° for the magnetic north–south axis or − 120° to 120° for the east–west axis, depending on experiments, with respect to the ambient magnetic north), which was confined by the plastic stool (Fig. 1A) touching the left or right ankle of the subjects. When subjects determined the direction of the magnetic north, they stopped rotating to face toward the direction and lifted their right hand to indicate the direction to the experimenter. The direction was measured by the experimenter at 10° intervals using the scale on the walls of the Faraday cage31. A prerequisite for correct orientation was that the subject indicated the direction within the range of 30° to the both sides with respect to the magnetic cardinal directions, which was instructed to the subjects before each experiment. When the direction the subjects indicated was out of the 30° range, the trial was not included in the data and was repeated (approximately 0.63% of trials). Before the subsequent trial, the subject was gently rotated to face toward the ambient geomagnetic north and then rested for 5 s. For the ‘dark’ experiment, subjects were asked whether they could see any leaked light immediately after the last measurement of blood glucose level at the end of experiment. If the subject could see leaked light, the experiment was nullified and repeated later on (approximately 3% of experiments; 2/68). All experiments were performed in a double-blind fashion. The experimenter who conducted the orientation assay knew whether a subject was starved or not, wearing filter goggles, and food-associated or not, but did not know the random magnetic north sequences that were controlled by the personal computer (PC) system. Another experimenter responsible for analyzing the data did not know whether the subject was starved or not, the experimental conditions, including light wavelengths, or whether an oscillating magnetic field had been provided to the subjects. Thus, none of the experimenters were aware of all the subject information and data during the experiments and data analysis. The correct orientation rate was calculated by (the number of correct orientation trials/total number of trials) (raw data, Appendix S3). All the subjects participated in all the experiments performed in random order with an interval of at least 3 days between experiments. After each experiment, the subjects were asked to answer a post-experiment questionnaire about whether they closed their eyes when required during the entire period of the experiment. In cases when a subject did not maintain closed eyes, the experiment was repeated (approximately 1% of experiments). For each subject, a preliminary experiment on the “magnetic north–south axis” was conducted twice (unstarved and starved for each) with no goggles for adaption to the experimental procedure. These data were not included in the results.Experiments with oscillating magnetic fieldsExperiments with oscillating magnetic fields were performed using the standard geomagnetic orientation assay described above. To produce the oscillating magnetic fields, oscillating currents from a function generator (AFG3021; Tektronix, USA. For each magnetic field, sweep of 500 ms; interval of 1 ms. See Fig. S6A) were amplified (ENI 2100L RF power amplifier; Bell Electronics, USA) and fed into a calibrated coil antenna (30 cm diameter, 6509 loop antenna; ETS-LINDGREN, USA) mounted on a wooden frame, comprised of a single winding of coaxial cable. The oscillating magnetic fields were measured daily, before the first and after the last experiment of the day, using a spectrum analyzer (SPA-921TG; Com-Power, USA) with a calibrated loop antenna (48 cm diameter, AL-130R; Com-Power, USA) and a calibrated magnetometer (Probe HF 3061, NBM-550; Narda, Germany). Magnetic field intensities were measured on the glabella of the subjects; variations in intensity between subjects due to different seating heights were less than 10% of the average values (Table S3). The function generator and amplifier were placed outside the Faraday cage, and switched on during the dummy load control experiments with no signal from the PC system. The band widths of the monochromatic magnetic fields, i.e., 1.260 and 1.890 MHz were 0.020 and 0.019 MHz (“average”, √3 kHz), respectively, at the bottoms of the peaks. During the test phase, the maximum values of magnetic noise on the glabella of subjects including the dummy load did not exceed the following values: (1) 5 Hz–9 kHz; 2 nT/√ 2 kHz of “average” and 8 nT/√ 9 kHz of “max-hold” (0.05 nT/√ 2 kHz of “average” and 5 nT/√ 9 kHz of “max-hold” in the dummy load) (3D NF Analyzer NFA 1000; Gigahertz Solutions, Germany); (2) 9 kHz–500 kHz; 5 nT/√ 3 kHz of “average” and 8 nT/√ 3 kHz of “max-hold” (≈ 0 nT/√ 3 kHz of “average” and ≈ 1 nT/√ 3 kHz of “max-hold” in the dummy load) (the AL-130R antenna) (Fig. S6C); and (3) 500 kHz–30 MHz; 0.006 nT of 3.780 MHz harmonic in the 1.260 MHz, 0.03 nT of 5.670 MHz harmonic in the 1.890 MHz, and ≈ 0 nT in the dummy load (/√ 10 kHz of “average”) (Fig. S6B), and 0.15 nT/√ 10 kHz of “max-hold” at the same frequencies above and ≈ 0 nT in the dummy load (the AL-130R antenna).Statistical analysisTo determine the significance of orientation data from the 2-AFC paradigm, a one-sample t-test (test mean: 0.5), paired sample t-test, or two-sample t-test was performed using Origin software 11 (Origin, USA). To verify the reasonability of the t-tests, all data sets were checked using the Anderson–Darling test if the data follow a normal distribution (Appendix S4). To evaluate the difference between the means of two data sets when at least one of them did not show a normal distribution, the percentile bootstrap method57 was used (95% confidence interval, see Fig. S2, Appendices S1 and S2 for raw data). To analyze the blood glucose data, a paired sample t-test was used. Based on the results of previous study31, to describe different response groups of magnetic orientation in the 2-AFC paradigm, a principal component analysis36,37 was conducted on correct orientation rates by starved subjects, with no association/food-association under the full wavelength or  > 400 nm light conditions using SPSS 23 (IBM, USA). Following the principal component analysis calculation, the k-means clustering algorithm—one of the unsupervised learning methods—was used to objectively classify the groups58. The number of groups was two, and the distance between the center of the cluster and all points was Euclidean distance. The classification boundary was marked with the perpendicular bisector from the centers of the two groups. The first two principal components accounted for a significant portion of the total variance (73.1%; PC1 = 40.8%, PC2 = 32.3%). Statistical values are presented as mean ± SEM. More

  • in

    A bottom-up view of antimicrobial resistance transmission in developing countries

    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).CAS 
    Article 

    Google Scholar 
    Nelson, R. E. et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin. Infect. Dis. 72, S17–S26 (2021).PubMed 
    Article 

    Google Scholar 
    Ludden, C. et al. One Health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 10, e02693-18 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gouliouris, T. et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio 9, e01780-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labar, A. S. et al. Regional dissemination of a trimethoprim-resistance gene cassette via a successful transposable element. PLoS ONE 7, e38142 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamikanra, A. et al. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use. BMC Infect. Dis. 11, 312 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunhikannan, S. et al. Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen 10, e1197 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sulis, G., Sayood, S. & Gandra, S. Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev. Anti Infect. Ther. 20, 147–160 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okeke, I. N. & Nwoko, E. in Urban Crisis and Management in Africa: A Festschrift (eds Albert, I. O. & Mabogunje, A.) 125–148 (Pan-African Univ. Press, 2019).Doron, A. & Jeffrey, R. Waste of a Nation: Garbage and Growth in India (Harvard Univ. Press, 2018).Nadimpalli, M. L. et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 5, 787–795 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okeke, I. & Lamikanra, A. A study of the effect of the urban/rural divide on the incidence of antibiotic resistance in Escherichia coli. Biomed. Lett. 55, 91–97 (1997).
    Google Scholar 
    Aijuka, M., Charimba, G., Hugo, C. J. & Buys, E. M. Characterization of bacterial pathogens in rural and urban irrigation water. J. Water Health 13, 103–117 (2015).PubMed 
    Article 

    Google Scholar 
    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mahmud, Z. H. et al. Presence of virulence factors and antibiotic resistance among Escherichia coli strains isolated from human pit sludge. J. Infect. Dev. Ctries 13, 195–203 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beukes, L. S., King, T. L. B. & Schmidt, S. Assessment of pit latrines in a peri-urban community in KwaZulu-Natal (South Africa) as a source of antibiotic resistant E. coli strains. Int. J. Hyg. Environ. Health 220, 1279–1284 (2017).PubMed 
    Article 

    Google Scholar 
    Zhang, H., Gao, Y. & Chang, W. Comparison of extended-spectrum β-lactamase-producing Escherichia coli isolates from drinking well water and pit latrine wastewater in a rural area of China. Biomed. Res. Int. 2016, 4343564 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nji, E. et al. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 11, 3372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramblière, L., Guillemot, D., Delarocque-Astagneau, E. & Huynh, B. T. Impact of mass and systematic antibiotic administration on antibiotic resistance in low- and middle-income countries? A systematic review. Int. J. Antimicrob. Agents 58, 106396 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hlashwayo, D. F. et al. A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE 16, e0245951 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365, eaaw1944 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Argudín, M. A. et al. Genotypes, exotoxin gene content, and antimicrobial resistance of Staphylococcus aureus strains recovered from foods and food handlers. Appl. Environ. Microbiol. 78, 2930–2935 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sivagami, K., Vignesh, V. J., Srinivasan, R., Divyapriya, G. & Nambi, I. M. Antibiotic usage, residues and resistance genes from food animals to human and environment: an Indian scenario. J. Environ. Chem. Eng. 8, 102221 (2020).CAS 
    Article 

    Google Scholar 
    Wall, B. A. et al. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production (FAO, 2016).Hassani, A. & Khan, G. Human–animal interaction and the emergence of SARS-CoV-2. JMIR Public Health Surveill. 6, e22117 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madoshi, B. P. et al. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania. PLoS ONE 11, e0168160 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guetiya Wadoum, R. E. et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 57, 483–493 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousham, E. K., Unicomb, L. & Islam, M. A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Proc. Biol. Sci. 285, 20180332 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jibril, A. H., Okeke, I. N., Dalsgaard, A. & Olsen, J. E. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet. Res. 17, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 918 (2020).PubMed Central 
    Article 

    Google Scholar 
    Schar, D., Sommanustweechai, A., Laxminarayan, R. & Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: optimizing use and addressing antimicrobial resistance. PLoS Med. 15, e1002521 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sun, J., Zhang, H., Liu, Y. H. & Feng, Y. Towards understanding MCR-like colistin resistance. Trends Microbiol. 26, 794–808 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, C. et al. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 9, 508–516 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, T. et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 4, 1450–1456 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sun, C. et al. Plasmid-mediated tigecycline-resistant gene tet(X4) in Escherichia coli from food-producing animals, China, 2008–2018. Emerg. Microbes Infect. 8, 1524–1527 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lowder, B. V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 19545–19550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bachiri, T. et al. First report of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli ST405 isolated from wildlife in Bejaia, Algeria. Microb. Drug Resist. 24, 890–895 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, M. C. et al. The human clone ST22 SCCmec IV methicillin-resistant Staphylococcus aureus isolated from swine herds and wild primates in Nepal: is man the common source? FEMS Microbiol. Ecol. 94, fiy052 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aliyu, A. B., Saleha, A. A., Jalila, A. & Zunita, Z. Risk factors and spatial distribution of extended spectrum β-lactamase-producing-Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study. BMC Public Health 16, 699 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alam, M. U. et al. Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. Int. J. Hyg. Environ. Health 222, 1068–1076 (2019).PubMed 
    Article 

    Google Scholar 
    Donado-Godoy, P. et al. Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. J. Food Prot. 75, 874–883 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moser, K. A. et al. The role of mobile genetic elements in the spread of antimicrobial-resistant Escherichia coli from chickens to humans in small-scale production poultry operations in rural Ecuador. Am. J. Epidemiol. 187, 558–567 (2018).PubMed 
    Article 

    Google Scholar 
    Songe, M. M., Hang’ombe, B. M., Knight-Jones, T. J. D. & Grace, D. Antimicrobial resistant enteropathogenic Escherichia coli and Salmonella spp. in houseflies infesting fish in food markets in Zambia. Int. J. Environ. Res. Public Health 14, (2017).Alves, T. S., Lara, G. H. B., Maluta, R. P., Ribeiro, M. G. & Leite, D. S. Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. Sci. Total Environ. 633, 1345–1351 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hasan, B. et al. Antimicrobial drug–resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg. Infect. Dis. 18, 2055–2058 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanco, G. Supplementary feeding as a source of multiresistant Salmonella in endangered Egyptian vultures. Transbound. Emerg. Dis. 65, 806–816 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matias, C. A. R. et al. Frequency of zoonotic bacteria among illegally traded wild birds in Rio de Janeiro. Braz. J. Microbiol. 47, 882–888 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brealey, J. C., Leitão, H. G., Hofstede, T., Kalthoff, D. C. & Guschanski, K. The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans. Curr. Biol. 31, 4650–4658.e6 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, C. M. et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 9, e00470-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Randad, P. R. et al. Transmission of antimicrobial-resistant Staphylococcus aureus clonal complex 9 between pigs and humans, United States. Emerg. Infect. Dis. 27, 740–748 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jørgensen, S. L. et al. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 4, e00333-18 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ludden, C. et al. A One Health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the east of England. Clin. Infect. Dis. 70, 219–226 (2020).PubMed 
    Article 

    Google Scholar 
    Thorpe, H. et al. One Health or Three? Transmission modelling of Klebsiella isolates reveals ecological barriers to transmission between humans, animals and the environment. Preprint at bioRxiv https://doi.org/10.1101/2021.08.05.455249 (2021).Ingham, A. C. et al. Dynamics of the human nasal microbiota and Staphylococcus aureus cc398 carriage in pig truck drivers across one workweek. Appl. Environ. Microbiol. 87, e0122521 (2021).PubMed 
    Article 

    Google Scholar 
    Hickman, R. A. et al. Exploring the antibiotic resistance burden in livestock, livestock handlers and their non-livestock handling contacts: a One Health perspective. Front. Microbiol. 12, 65161 (2021).Article 

    Google Scholar 
    Okeke, I. N. African biomedical scientists and the promises of ‘big science’. Can J. Afr. Stud. https://doi.org/10.1080/00083968.2016.1266677 (2017).Nadimpalli, M. L. & Pickering, A. J. A call for global monitoring of WASH in wet markets. Lancet Planet. Health 4, e439–e440 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grace, D. & Little, P. Informal trade in livestock and livestock products. Rev. Sci. Tech. 39, 183–192 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caudell, M. A. et al. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: a knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 15, e0220274 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adekanye, U. O. et al. Knowledge, attitudes and practices of veterinarians towards antimicrobial resistance and stewardship in Nigeria. Antibiotics 9, 453 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mangesho, P. E. et al. ‘We are doctors’: drivers of animal health practices among Maasai pastoralists and implications for antimicrobial use and antimicrobial resistance. Prev. Vet. Med. 188, 105266 (2021).PubMed 
    Article 

    Google Scholar 
    Essack, S. Water, sanitation and hygiene in national action plans for antimicrobial resistance. Bull. World Health Organ. 99, 606–608 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funtowicz, S. & Ravetz, J. in Handbook of Transdisciplinary Research (eds Hadorn, G. H. et al.) 361–368 (Springer, 2008); https://doi.org/10.1007/978-1-4020-6699-3Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 185, 275–285 (2019).
    Google Scholar 
    Lacotte, Y., Årdal, C. & Ploy, M. C. Infection prevention and control research priorities: what do we need to combat healthcare-associated infections and antimicrobial resistance? Results of a narrative literature review and survey analysis. Antimicrob. Resist. Infect. Control 9, 142 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, D. A. & Read, A. F. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc. Natl Acad. Sci. USA 115, 12878 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vekemans, J. et al. Leveraging vaccines to reduce antibiotic use and prevent antimicrobial resistance: a World Health Organization action framework. Clin. Infect. Dis. 73, E1011–E1017 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 195, 287–302 (2021).Article 
    CAS 

    Google Scholar 
    Massella, E. et al. Antimicrobial resistance profile and ExPEC virulence potential in commensal Escherichia coli of multiple sources. Antibiotics 10, 351 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frenck, R. W. et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): a phase 2 randomised controlled trial. Lancet Infect. Dis. 19, 631–640 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patel, R. & Fang, F. C. Diagnostic stewardship: opportunity for a laboratory-infectious diseases partnership. Clin. Infect. Dis. 67, 799–801 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Okeke, I. N. Divining Without Seeds: The Case for Strengthening Laboratory Medicine in Africa (Cornell Univ. Press, 2011).Loosli, K., Davis, A., Muwonge, A. & Lembo, T. Addressing antimicrobial resistance by improving access and quality of care—a review of the literature from East Africa. PLoS Negl. Trop. Dis. 15, e0009529 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chokshi, A., Sifri, Z., Cennimo, D. & Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 11, 36–42 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adedapo, A. D. & Akunne, O. O. Patterns of antimicrobials prescribed to patients admitted to a tertiary care hospital: a prescription quality audit. Cureus 13, e15896 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 14, 298–310 (2017).Article 

    Google Scholar 
    van Dongen, J. E. et al. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens. Bioelectron. 166, 112445 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nielsen, T. B. et al. Monoclonal antibody therapy against Acinetobacter baumannii. Infect. Immun. 89, e0016221 (2021).PubMed 
    Article 

    Google Scholar 
    Dwivedi, P., Narvi, S. S. & Tewari, R. P. Application of polymer nanocomposites in the nanomedicine landscape: envisaging strategies to combat implant associated infections. J. Appl. Biomater. Funct. Mater. 11, 129–142 (2013).
    Google Scholar 
    Song, M., Wu, D., Hu, Y., Luo, H. & Li, G. Characterization of an Enterococcus faecalis bacteriophage vB_EfaM_LG1 and its synergistic effect with antibiotic. Front. Cell. Infect. Microbiol. 11, 636 (2021).
    Google Scholar 
    Dhama, K. et al. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances—a review. Int. J. Pharmacol. 10, 129–159 (2014).CAS 
    Article 

    Google Scholar 
    Vieco-Saiz, N. et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ng, W. K. & Koh, C. B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac. 9, 342–368 (2017).Article 

    Google Scholar 
    Mattioli, G. A. et al. Effects of parenteral supplementation with minerals and vitamins on oxidative stress and humoral immune response of weaning calves. Animals 10, 1298 (2020).PubMed Central 
    Article 

    Google Scholar 
    Mwangi, S., Timmons, J., Fitz-Coy, S. & Parveen, S. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis. Poult. Sci. 98, 128–135 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prendergast, A. J. et al. Putting the ‘A’ into WaSH: a call for integrated management of water, animals, sanitation, and hygiene. Lancet Planet. Health 3, e336–e337 (2019).PubMed 
    Article 

    Google Scholar 
    Martinelli, M. et al. Probiotics’ efficacy in paediatric diseases: which is the evidence? A critical review on behalf of the Italian Society of Pediatrics. Ital. J. Pediatr. 46, 104 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9, 117–128 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR–Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casu, B., Arya, T., Bessette, B. & Baron, C. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. Sci. Rep. 7, 14907 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Denyer Willis, L. & Chandler, C. Quick fix for care, productivity, hygiene and inequality: reframing the entrenched problem of antibiotic overuse. BMJ Glob. Health 4, e001590 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson, A., Ebata, A. & Macgregor, H. Interventions to reduce antibiotic prescribing in LMICs: a scoping review of evidence from human and animal health systems. Antibiotics 8, 2 (2018).Torres, N. F., Chibi, B., Middleton, L. E., Solomon, V. P. & Mashamba-Thompson, T. P. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: a systematic scoping review. Public Health 168, 92–101 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potgieter, N., Banda, N. T., Becker, P. J. & Traore-Hoffman, A. N. WASH infrastructure and practices in primary health care clinics in the rural Vhembe District municipality in South Africa. BMC Fam. Pract. 22, 8 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphreys, G. Reinventing the toilet for 2.5 billion in need. Bull. World Health Organ. 92, 470–471 (2014).PubMed 
    Article 

    Google Scholar 
    Yam, P., Fales, D., Jemison, J., Gillum, M. & Bernstein, M. Implementation of an antimicrobial stewardship program in a rural hospital. Am. J. Health Syst. Pharm. 69, 1142–1148 (2012).PubMed 
    Article 

    Google Scholar 
    Sartelli, M. et al. Antibiotic use in low and middle-income countries and the challenges of antimicrobial resistance in surgery. Antibiotics 9, 497 (2020).PubMed Central 
    Article 

    Google Scholar 
    Büdel, T. et al. On the island of Zanzibar people in the community are frequently colonized with the same MDR Enterobacterales found in poultry and retailed chicken meat. J. Antimicrob. Chemother. 75, 2432–2441 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Finch, M. J., Morris, J. G., Kaviti, J., Kagwanja, W. & Levine, M. M. Epidemiology of antimicrobial resistant cholera in Kenya and East Africa. Am. J. Trop. Med. Hyg. 39, 484–490 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Opintan, J. A., Newman, M. J., Nsiah-Poodoh, O. A. & Okeke, I. N. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J. Antimicrob. Chemother. 62, 929–933 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garbern, S. C. et al. Clinical and socio-environmental determinants of multidrug-resistant Vibrio cholerae 01 in older children and adults in Bangladesh. Int. J. Infect. Dis. 105, 436–441 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mintz, E. D. & Guerrant, R. L. A lion in our village—the unconscionable tragedy of cholera in Africa. N. Engl. J. Med. https://doi.org/10.1056/NEJMp0810559 (2009).Gibani, M. M. et al. The impact of vaccination and prior exposure on stool shedding of Salmonella typhi and Salmonella paratyphi in 6 controlled human infection studies. Clin. Infect. Dis. 68, 1265–1273 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Switches, stability and reversals in the evolutionary history of sexual systems in fish

    Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl Acad. Sci. 112, 8827–8834 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ah-King, M. & Nylin, S. Sex in an evolutionary perspective: just another reaction norm. Evolut. Biol. 37, 234–246 (2010).Article 

    Google Scholar 
    Leonard, J. L. The evolution of sexual systems in animals. In: Leonard, J.L. (ed.). Transitions between sexual systems: understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems, 1–58 Springer (2019).Weeks, S. C., Benvenuto, C. & Reed, S. K. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).PubMed 
    Article 

    Google Scholar 
    Goldberg, E. E. et al. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71, 898–912 (2017).PubMed 
    Article 

    Google Scholar 
    Waples, R. S., Mariani, S. & Benvenuto, C. Consequences of sex change for effective population size. Proc. R. Soc. B: Biol. Sci. 285, 20181702 (2018).Article 

    Google Scholar 
    Benvenuto, C. & Weeks, S. C. Hermaphroditism and gonochorism. The Natural History of the Crustacea: Reproductive Biology VI, 197–241 (2020).
    Google Scholar 
    Mariani, S., Sala-Bozano, M., Chopelet, J. & Benvenuto, C. Spatial and temporal patterns of size-at-sex-change in two exploited coastal fish. Environ. Biol. Fishes 96, 535–541 (2013).Article 

    Google Scholar 
    Käfer, J., Marais, G. A. & Pannell, J. R. On the rarity of dioecy in flowering plants. Mol. Ecol. 26, 1225–1241 (2017).PubMed 
    Article 

    Google Scholar 
    Atz, J. Intersexuality in Fishes. In C.N. Amstrong and A.J. Marshall (eds). Intersexuality in vertebrates including man, 145–232 Academic Press, London (1964).Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).PubMed 
    Article 

    Google Scholar 
    Leonard, J. L. Williams’ paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53, 671–688 (2013).PubMed 
    Article 

    Google Scholar 
    Weeks, S. C. The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66, 3670–3686 (2012).PubMed 
    Article 

    Google Scholar 
    Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).PubMed 
    Article 

    Google Scholar 
    Bawa, K. S. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).Article 

    Google Scholar 
    Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).Article 

    Google Scholar 
    Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn. Soc. 22, 333–348 (1984).Article 

    Google Scholar 
    Pannell, J. R. The evolution and maintenance of androdioecy. In: Annual Review of Ecology and Systematics 397–425 (2002).Bull, J. & Charnov, E. On irreversible evolution. Evolution 39, 1149–1155 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrett, S. C. The evolution of plant reproductive systems: how often are transitions irreversible? Proc. R. Soc. B: Biol. Sci. 280, 20130913 (2013).Article 

    Google Scholar 
    Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. Trioecy in the marine mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).Article 

    Google Scholar 
    Dani, K. & Kodandaramaiah, U. Plant and animal reproductive strategies: lessons from offspring size and number tradeoffs. Front. Ecol. Evol. 5, 38 (2017).Article 

    Google Scholar 
    Avise, J. & Mank, J. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152–163 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dornburg, A. & Near, T. J. The Emerging phylogenetic perspective on the evolution of Actinopterygian fishes. Annu. Rev. Ecol. Evol. Syst. 52, 427–452 (2021).Article 

    Google Scholar 
    Costa, W. J., Lima, S. M. & Bartolette, R. Androdioecy in Kryptolebias killifish and the evolution of self-fertilizing hermaphroditism. Biol. J. Linn. Soc. 99, 344–349 (2010).Article 

    Google Scholar 
    Costa, W. Colouration, taxonomy and geographical distribution of mangrove killifishes, the Kryptolebias marmoratus species group, in southern Atlantic coastal plains of Brazil (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 27, 183–192 (2016).
    Google Scholar 
    Powell, M. L., Kavanaugh, S. I. & Sower, S. A. Seasonal concentrations of reproductive steroids in the gonads of the Atlantic hagfish, Myxine glutinosa. J. Exp. Zool. Part A Comp. Exp. Biol. 301, 352–360 (2004).Article 
    CAS 

    Google Scholar 
    Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ghiselin, M. T. The evolution of hermaphroditism among animals. Q. Rev. Biol. 44, 189–208 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eppley, S. M. & Jesson, L. K. Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J. Evol. Biol. 21, 727–736 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Warner, R. R. The adaptive significance of sequential hermaphroditism in animals. Am. Nat. 109, 61–82 (1975).Article 

    Google Scholar 
    Warner, R. R., Robertson, D. R. & Leigh, E. G. Sex change and sexual selection. Science 190, 633–638 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Charnov, E. L. The Theory of Sex Allocation. Princeton University Press, USA (1982).Policansky, D. Sex change in plants and animals. Annu. Rev. Ecol. Syst. 13, 471–495 (1982).Article 

    Google Scholar 
    Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M. & Mariani, S. Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci. Rep. 7, 9084 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charnov, E. L. Natural selection and sex change in pandalid shrimp: test of a life-history theory. Am. Nat. 113, 715–734 (1979).MathSciNet 
    Article 

    Google Scholar 
    Broquet, T. et al. The size advantage model of sex allocation in the protandrous sex-changer Crepidula fornicata: role of the mating system, sperm storage, and male mobility. Am. Nat. 186, 404–420 (2015).PubMed 
    Article 

    Google Scholar 
    Erisman, B. E., Craig, M. T. & Hastings, P. A. A phylogenetic test of the size-advantage model: evolutionary changes in mating behavior influence the loss of sex change in a fish lineage. Am. Nat. 174, E83–E99 (2009).PubMed 
    Article 

    Google Scholar 
    Buxton, C. D. & Garratt, P. A. Alternative reproductive styles in seabreams (Pisces: Sparidae). Environ. Biol. Fishes 28, 113–124 (1990).Article 

    Google Scholar 
    Shapiro, D. Y. Social behavior, group structure, and the control of sex reversal in hermaphroditic fish. Adv. Study Behav. 10, 43–102 (1979).Article 

    Google Scholar 
    Stearns, S. C. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. Lond. B: Biol. Sci. 280, 20131339 (2013).
    Google Scholar 
    Martinez, A. S., Willoughby, J. R. & Christie, M. R. Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecol. Evolution 8, 12022–12031 (2018).Article 

    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. (Oxford University Press, USA, 1991).Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. & Bellwood, D. R. Pair-formation in coral reef fishes: an ecological perspective. Oceanogr. Mar. Biol.: Annu. Rev. 52, 1–80 (2014).
    Google Scholar 
    Fitzpatrick, J. L. Sperm competition and fertilization mode in fishes. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200074 (2020).Article 

    Google Scholar 
    Parker, G. A. Conceptual developments in sperm competition: a very brief synopsis. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200061 (2020).Article 

    Google Scholar 
    Warner, R. R. Sex change in fishes: hypotheses, evidence, and objections. Environ. Biol. Fishes 22, 81–90 (1988).Article 

    Google Scholar 
    Molloy, P. P., Goodwin, N. B., Côté, I. M., Reynolds, J. D. & Gage, M. J. Sperm competition and sex change: a comparative analysis across fishes. Evolution 61, 640–652 (2007).PubMed 
    Article 

    Google Scholar 
    Erisman, B. E., Petersen, C. W., Hastings, P. A. & Warner, R. R. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr. Comp. Biol. 53, 736–754 (2013).PubMed 
    Article 

    Google Scholar 
    Sadovy, Y., Colin, P. & Domeier, M. Aggregation and spawning in the tiger grouper, Mycteroperca tigris (Pisces: Serranidae). Copeia 1994, 511–516 (1994).Article 

    Google Scholar 
    Muñoz, R. C. & Warner, R. R. A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am. Nat. 161, 749–761 (2003).PubMed 
    Article 

    Google Scholar 
    Horne, C. R., Hirst, A. G. & Atkinson, D. Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proc. R. Soc. B: Biol. Sci. 287, 20192640 (2020).Article 

    Google Scholar 
    Parker, G. The evolution of expenditure on testes. J. Zool. 298, 3–19 (2016).Article 

    Google Scholar 
    Stockley, P., Gage, M., Parker, G. & Møller, A. Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am. Nat. 149, 933–954 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pla, S., Benvenuto, C., Capellini, I. & Piferrer, F. A phylogenetic comparative analysis on the evolution of sequential hermaphroditism in seabreams (Teleostei: Sparidae). Sci. Rep. 10, 3606 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).Article 

    Google Scholar 
    Sadovy de Mitcheson, Y. & Liu, M. Functional hermaphroditism in teleosts. Fish. Fish. 9, 1–43 (2008).Article 

    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Froese, R., Pauly, D. & Editors. FishBase. World Wide Web electronic publication. www.fishbase.org (2018).Moore, W. S. Evolutionary ecology of unisexual fishes. In: Evolutionary genetics of fishes, 329–398 (Springer, 1984).Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).PubMed 
    Article 

    Google Scholar 
    Domes, K., Norton, R. A., Maraun, M. & Scheu, S. Re-evolution of sexuality breaks Dollo’s law. Proc. Natl Acad. Sci. 104, 7139–7144 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dollo, L. Les lois de l’évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7, 164–166 (1893).
    Google Scholar 
    King, B. & Lee, M. S. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Syst. Biol. 64, 532–544 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uller, T. & Helanterä, H. From the origin of sex-determining factors to the evolution of sex-determining systems. Q. Rev. Biol. 86, 163–180 (2011).PubMed 
    Article 

    Google Scholar 
    Devlin, R. H. & Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364 (2002).CAS 
    Article 

    Google Scholar 
    Volff, J.-N., Nanda, I., Schmid, M. & Schartl, M. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex. Dev. 1, 85–99 (2007).PubMed 
    Article 

    Google Scholar 
    Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K. & Nakamura, M. Sex determination, gonadal sex differentiation and plasticity in vertebrate species. Physiol. Rev. 101, 1237–1308 (2020).PubMed 
    Article 

    Google Scholar 
    Penman, D. J. & Piferrer, F. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev. Fish. Sci. 16(S1), 16–34 (2008).CAS 
    Article 

    Google Scholar 
    Mank, J. E., Promislow, D. E. L. & Avise, J. C. Evolution of alternative sex-determining mechanisms in teleost fishes. Biol. J. Linn. Soc. 87, 83–93 (2006).Article 

    Google Scholar 
    Galetti, P. M., Aguilar, C. T. & Molina, W. F. An overview of marine fish cytogenetics. Hydrobiologia 420, 55–62 (2000).Article 

    Google Scholar 
    Yoshida, K. et al. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet. 10, e1004223 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ross, J. A., Urton, J. R., Boland, J., Shapiro, M. D. & Peichel, C. L. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution 1–10 (2019).Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pokorná, M. & Kratochvíl, L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168–183 (2009).Article 

    Google Scholar 
    Furman, B. L. et al. Sex chromosome evolution: sso many exceptions to the rules. Genome Biol. Evol. 12, 750–763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carvalho, N. D. M. et al. Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon. Genetica 140, 149–158 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piferrer, F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200110 (2021).Article 
    CAS 

    Google Scholar 
    Grant, S. et al. Genetics of sex determination in flowering plants. Dev. Genet. 15, 214–230 (1994).Article 

    Google Scholar 
    Harrington Jr, R. W. How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia 389–432 (1971).Adolfi, M. C., Nakajima, R. T., Nóbrega, R. H. & Schartl, M. Intersex, Hermaphroditism, and gonadal plasticity in vertebrates: Evolution of the Müllerian duct and Amh/Amhr2 signalling. Annual Review of Animal Biosciences (2018).Adkins-Regan, E. Early organizational effects of hormones: an evolutionary perspective. In Adler, N.T. (ed.) Neuroendocrinology of reproduction: physiology and behavior, 159–228 (Springer, USA, 1981).Navara, K. J. The truth about Nemo’s dad: sex-changing behaviors in fishes. In Choosing Sexes 183–212 (Springer, Cham, 2018).Orban, L., Sreenivasan, R. & Olsson, P. E. Long and winding roads: testis differentiation in zebrafish. Mol. Cell. Endocrinol. 312, 35–41 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohar, Y., Abraham, M. & Gordin, H. The gonadal cycle of the captivity-reared hermaphroditic teleost Sparus aurata (L.) during the first two years of life. Annales de. Biologie Anim. Biochim. Biophys. 18, 877–882 (1978).Article 

    Google Scholar 
    Chang, C.-F. & Yueh, W.-S. Annual cycle of gonadal histology and steroid profiles in the juvenile males and adult females of the protandrous black porgy, Acanthopagrus schlegelii. Aquaculture 91, 179–196 (1990).CAS 
    Article 

    Google Scholar 
    Miura, S., Nakamura, S., Kobayashi, Y., Piferrer, F. & Nakamura, M. Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkii. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 149, 29–37 (2008).Article 
    CAS 

    Google Scholar 
    Yamaguchi, S. & Iwasa, Y. Advantage for the sex changer who retains the gonad of the nonfunctional sex. Behav. Ecol. Sociobiol. 71, 39 (2017).Article 

    Google Scholar 
    Munday, P. L., Kuwamura, T. & Kroon, F. J. Bi-directional sex change in marine fishes. In: Cole, K.S. (ed.) Reproduction and sexuality in marine fishes: Patterns and processes. 241–271 (University of California Press, Berkeley, USA, 2010).Uller, T., Feiner, N., Radersma, R., Jackson, I. S. & Rago, A. Developmental plasticity and evolutionary explanations. Evol. Dev. 22, 47–55 (2020).PubMed 
    Article 

    Google Scholar 
    Pla, S., Maynou, F. & Piferrer, F. Hermaphroditism in fish: incidence, distribution and associations with abiotic environmental factors. Rev. Fish. Biol. Fish. 31, 935–955 (2021).Article 

    Google Scholar 
    Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed 
    Article 

    Google Scholar 
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed 
    Article 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete. Proc. R. Soc. B: Biol. Sci. 255, 37–45 (1994).ADS 
    Article 

    Google Scholar 
    Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology, 263–286 (Springer, 2014).Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348 (1997).Article 

    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R. https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).Schiettekatte, N., Brandl, S. & Casey, J. Fishualize: Color palettes based on fish species. R package v0.2.2 (2021). More

  • in

    Increasing salinity stress decreases the thermal tolerance of amphibian tadpoles in coastal areas of Taiwan

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. et al. How much more global warming and sea level rise?. Science 307, 1769–1772 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stocker, T. F. et al. (Cambridge University Press, 2013).Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).ADS 
    Article 

    Google Scholar 
    Church, J. A. & White, N. J. A 20th century acceleration in global sea‐level rise. Geophys. Res. Lett. 33 (2006).Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).ADS 
    Article 

    Google Scholar 
    Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106, 21527–21532 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Horton, B. P., Rahmstorf, S., Engelhart, S. E. & Kemp, A. C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quatern. Sci. Rev. 84, 1–6 (2014).ADS 
    Article 

    Google Scholar 
    Day, J. W., Pont, D., Hensel, P. F. & Ibañez, C. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: The importance of pulsing events to sustainability. Estuaries 18, 636–647 (1995).CAS 
    Article 

    Google Scholar 
    Feagin, R. A., Sherman, D. J. & Grant, W. E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 3, 359–364 (2005).Article 

    Google Scholar 
    Nicholls, R. J. Planning for the impacts of sea level rise. Oceanography 24, 144–157 (2011).Article 

    Google Scholar 
    Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. 111, 3292–3297 (2014).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Duarte, H. et al. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Change Biol. 18, 412–421 (2012).ADS 
    Article 

    Google Scholar 
    Licht, P. & Brown, A. G. Behavioral thermoregulation and its role in the ecolgy of the red-bellied newt, Taricha rivularis. Ecology 48, 598–611 (1967).Article 

    Google Scholar 
    Feder, M. E. & Pough, F. H. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comp. Biochem. Physiol. Part A Physiol. 50, 91–98 (1975).CAS 
    Article 

    Google Scholar 
    Keen, W. H. & Schroeder, E. E. Temperature selection and tolerance in three species of Ambystoma larvae. Copeia 1975, 523–530 (1975).Article 

    Google Scholar 
    Hoppe, D. M. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica. 318–321 (1978).Cupp Jr, P. V. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica. 234–244 (1980).Howard, J. H., Wallace, R. L. & Stauffer, J. R. Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400–402 (1983).Article 

    Google Scholar 
    Floyd, R. B. Ontogenetic change in the temperature tolerance of larval Bufo marinus (Anura: Bufonidae). Comp. Biochem. Physiol. A Physiol. 75, 267–271 (1983).Article 

    Google Scholar 
    Floyd, R. B. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 1985, 625–631 (1985).MathSciNet 
    Article 

    Google Scholar 
    Manis, M. L. & Claussen, D. L. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol 11, 31–36 (1986).Article 

    Google Scholar 
    Layne, J., Claussen, D. & Manis, M. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J. Therm. Biol 12, 183–187 (1987).Article 

    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).Article 

    Google Scholar 
    Simon, M. N., Ribeiro, P. L. & Navas, C. A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol 48, 36–44 (2015).Article 
    PubMed 

    Google Scholar 
    Boutilier, R., Donohoe, P., Tattersall, G. & West, T. Hypometabolic homeostasis in overwintering aquatic amphibians. J. Exp. Biol. 200, 387–400 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shoemaker, V. & Nagy, K. A. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39, 449–471 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    Viertel, B. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptilia 20, 161–171 (1999).Article 

    Google Scholar 
    Wu, C.-S. & Kam, Y.-C. Thermal tolerance and thermoregulation by Taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35–46 (2005).Article 

    Google Scholar 
    Gomez-Mestre, I. & Tejedo, M. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57, 1889–1899 (2003).Article 
    PubMed 

    Google Scholar 
    Christy, M. T. & Dickman, C. R. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea). Amphibia-Reptilia 23, 1–11 (2002).Article 

    Google Scholar 
    Wu, C.-S. & Kam, Y.-C. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool. Sci. 26, 476–482 (2009).Article 

    Google Scholar 
    Wu, C. S., Yang, W. K., Lee, T. H., Gomez-Mestre, I. & Kam, Y. C. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na+, K+-ATPase expression. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 57–64 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alexander, L. G., Lailvaux, S. P., Pechmann, J. H. & DeVries, P. J. Effects of salinity on early life stages of the Gulf Coast toad, Incilius nebulifer (Anura: Bufonidae). Copeia 2012, 106–114 (2012).Article 

    Google Scholar 
    Bernabò, I., Bonacci, A., Coscarelli, F., Tripepi, M. & Brunelli, E. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquat. Toxicol. 132, 119–133 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kearney, B. D., Pell, R. J., Byrne, P. G. & Reina, R. D. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 541–549 (2014).Article 
    PubMed 

    Google Scholar 
    Hsu, W. T., Wu, C. S., Hatch, K., Chang, Y. M. & Kam, Y. C. Full compensation of growth in salt-tolerant tadpoles after release from salinity stress. J. Zool. 304, 141–149 (2018).Article 

    Google Scholar 
    Hsu, W.-T. et al. Salinity acclimation affects survival and metamorphosis of crab-eating frog tadpoles. Herpetologica 68, 14–21 (2012).Article 

    Google Scholar 
    Lai, J.-C., Kam, Y.-C., Lin, H.-C. & Wu, C.-S. Enhanced salt tolerance of euryhaline tadpoles depends on increased Na+, K+-ATPase expression after salinity acclimation. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 227, 84–91 (2019).CAS 
    Article 

    Google Scholar 
    Brown, M. E. & Walls, S. C. Variation in salinity tolerance among larval anurans: Implications for community composition and the spread of an invasive, non-native species. Copeia 2013, 543–551 (2013).Article 

    Google Scholar 
    Balinsky, J. B. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J. Exp. Zool. A Ecol. Genet. Physiol. 215, 335–350 (1981).CAS 

    Google Scholar 
    Duellman, W. & Trueb, L. Biology of Amphibians (John Hopkins University Press, 1994).
    Google Scholar 
    Alcala, A. C. Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 1962, 679–726 (1962).Article 

    Google Scholar 
    Gordon, M. S. & Tucker, V. A. Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). J. Exp. Biol. 42, 437–445 (1965).CAS 
    Article 

    Google Scholar 
    Dunson, W. A. Tolerance to high temperature and salinity by tadpoles of the Philippine frog, Rana cancrivora. Copeia 1977, 375–378 (1977).Article 

    Google Scholar 
    Uchiyama, M., Murakami, T., Wakasugi, C. & Yoshizawa, H. Structure of the kidney in the crab-eating frog, Rana cancrivora. J. Morphol. 204, 147–156 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Heo, K., Kim, Y. I., Bae, Y., Jang, Y. & Borzée, A. First report of Dryophytes japonicus tadpoles in saline environment. Russ. J. Herpetol. 26, 87–90 (2019).Article 

    Google Scholar 
    Jian, C. Y., Cheng, S. Y. & Chen, J. C. Temperature and salinity tolerances of yellowfin sea bream, Acanthopagrus latus, at different salinity and temperature levels. Aquac. Res. 34, 175–185 (2003).Article 

    Google Scholar 
    Sardella, B. A., Sanmarti, E. & Kültz, D. The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. J. Exp. Zool. A Ecol. Genet. Physiol. 309, 477–483 (2008).Article 
    PubMed 

    Google Scholar 
    Everatt, M. J., Worland, M. R., Convey, P., Bale, J. S. & Hayward, S. A. The impact of salinity exposure on survival and temperature tolerance of the Antarctic collembolan Cryptopygus antarcticus. Physiol. Entomol. 38, 202–210 (2013).Article 

    Google Scholar 
    Kerby, J. L., Richards-Hrdlicka, K. L., Storfer, A. & Skelly, D. K. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecol. Lett. 13, 60–67 (2010).Article 
    PubMed 

    Google Scholar 
    Chang, Y. M., Wu, C. S., Huang, Y. S., Sung, S. M. & Hwang, W. Occurrence and reproduction of anurans in brackish water in a coastal forest in Taiwan. Herpetol. Notes 9, 291–295 (2016).
    Google Scholar 
    Peng, T. R., Hsieh, Y. H. & Liu, T. S. Hydro chemical characteristics and salinization of groundwater in Yunlin area. J. Chin. Soil Water Conserv. 32, 173–189 (2005).
    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Groff, L. A., Marks, S. B. & Hayes, M. P. Using ecological niche models to direct rare amphibian surveys: A case study using the Oregon Spotted Frog (Rana pretiosa). Herpetol. Conserv. Biol. 9, 354–368 (2014).
    Google Scholar 
    Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers. Conserv. 21, 1251–1266 (2012).Article 

    Google Scholar 
    Pineda, E. & Lobo, J. M. Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J. Anim. Ecol. 78, 182–190 (2009).Article 
    PubMed 

    Google Scholar 
    Yuan, H.-S., Wei, Y.-L. & Wang, X.-G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 17, 140–145 (2015).Article 

    Google Scholar 
    Chinathamby, K., Reina, R. D., Bailey, P. C. & Lees, B. K. Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Aust. J. Zool. 54, 97–105 (2006).Article 

    Google Scholar 
    Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. 16, 254–260 (2001).Article 
    PubMed 

    Google Scholar 
    Metzger, D. C., Healy, T. M. & Schulte, P. M. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus). J. Comp. Physiol. B. 186, 879–889 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sanabria, E. et al. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean Toads (Rhinella spinulosa) from Monte Desert, Argentina. J. Therm. Biol. 74, 195–200 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).Article 
    PubMed 

    Google Scholar 
    Kikawada, T. et al. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem. Biophys. Res. Commun. 348, 56–61 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sanzo, D. & Hecnar, S. J. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ. Pollut. 140, 247–256 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wood, L. & Welch, A. M. Assessment of interactive effects of elevated salinity and three pesticides on life history and behavior of southern toad (Anaxyrus terrestris) tadpoles. Environ. Toxicol. Chem. 34, 667–676 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gomez-Mestre, I., Tejedo, M., Ramayo, E. & Estepa, J. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiol. Biochem. Zool. 77, 267–274 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dent, J. N. Hormonal interaction in amphibian metamorphosis 1 2. Am. Zool. 28, 297–308 (1988).CAS 
    Article 

    Google Scholar 
    Bodensteiner, B. L. et al. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians?. J. Exp. Zool. Part A Ecol. Integr. Physiol. 335, 173–194 (2021).Article 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).Article 

    Google Scholar 
    Mitchell, J. D., Hewitt, P. & Van Der Linde, T. D. K. Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen). J. Insect Physiol. 39, 523–528 (1993).Article 

    Google Scholar 
    Plummer, M. V., Williams, B. K., Skiver, M. M. & Carlyle, J. C. Effects of dehydration on the critical thermal maximum of the desert box turtle (Terrapene ornata luteola). J. Herpetol. 37, 747–751 (2003).Article 

    Google Scholar 
    Lee, S. et al. Effects of feed restriction on the upper temperature tolerance and heat shock response in juvenile green and white sturgeon. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 198, 87–95 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blaustein, A. R. & Wake, D. B. Declining amphibian populations: A global phenomenon?. Trends Ecol. Evol. 5, 203–204 (1990).Article 

    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl. Acad. Sci. 107, 8269–8274 (2010).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Skelly, D. & Freidenburg, L. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).Article 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    A noble extended stochastic logistic model for cell proliferation with density-dependent parameters

    Stability analysis of the deterministic modelSolving (left( x(t) times left( r_{p}x(t)^{(alpha )}left( 1-big (frac{x(t)}{K}big )^{beta }right) – nx(t)^{(delta )} right) right) =0), we obtain two stable and one unstable equilibrium points for the model. One stable equilibrium is trivial, i.e., (x(t)=0), another stable equilibrium point being the non-zero satisfying (left( r_{p}x(t)^{(alpha )}left( 1-big (frac{x(t)}{K}big )^{beta }right) – nx(t)^{(delta )} right) =0). Figure 1a shows three different equilibrium points of the model. In addition to the equilibrium, the model has two inflection points (Fig. 1a). At these inflection points the absolute growth rates are minimum and maximum. The density vs relative proliferation rate (RPR) profile of the model shows that the model can attain negative RPR for a positive cell density, suggesting that the model can portray the Allee phenomenon (Fig. 1b). Figure 1c,d portray the proliferation and decay phases, respectively through the model.Figure 1Growth dynamics of the proposed model: (a) Absolute proliferation rate (APR) profile considering (r_{p}=0.13), (K=1.43), (n=0.0095), (alpha =1.15), (beta =0.99) and (delta =0.2); (b) RPR profiles for different n and other same constant model parameters; (c) Cell population survive for (r_{p}=0.13), (K=1.43), (n=0.0095), (alpha =1.15), (beta =0.99) and (delta =0.2) with the initial cell density 0.1; (d) The population goes to extinction for the initial cell density 0.06 with the same constant parameters.Full size imageThe solution of the deterministic model finally provides two theorems.
    Theorem 1

    (x^{*}approx K -Kleft( frac{Big (beta r_{p}K^{alpha }+n delta K^{delta }Big )-sqrt{Big (beta r_{p}K^{alpha }+n delta K^{delta }Big )^{2}-2 left( 2 alpha beta r_{p}K^{alpha } +beta (beta -1)r_{p}K^{alpha }+delta (delta -1)nK^{delta } right) nK^{delta }}}{left( 2 alpha beta r_{p}K^{alpha } +beta (beta -1)r_{p}K^{alpha }+delta (delta -1)nK^{delta } right) }right)) is the conditional MSSCD for the intercellular-interaction-induced proliferative cells. The conditional threshold density for cell-proliferation upon interaction is (x^{*}=K -Kleft( frac{Big (beta r_{p}K^{alpha }+n delta K^{delta }Big )+sqrt{Big (beta r_{p}K^{alpha }+n delta K^{delta }Big )^{2}-2 left( 2 alpha beta r_{p}K^{alpha } +beta (beta -1)r_{p}K^{alpha }+delta (delta -1)nK^{delta } right) nK^{delta }}}{left( 2 alpha beta r_{p}K^{alpha } +beta (beta -1)r_{p}K^{alpha }+delta (delta -1)nK^{delta } right) }right)) (proof is in the supplementary information).
    Allee and cooperation models are the only extended logistic law other than our model to provide a threshold population size for growth or proliferation. Our proposed model is superior to the Allee and cooperation model as it can detect the conditional threshold cell density for proliferation and regulate the density by its different parameters. For example, One may reduce the conditional threshold density by either regulating the interaction between growth-inhibiting molecules and cells ((delta)) or reducing the inhibiting molecule concentration (n).The conditional MSSCD from Theorem 1 is lower than the carrying capacity of the conventional logistic model due to growth-inhibiting molecules; it provides the expected cell density during culture in a given environment. Theorem 1 also states the set of parameters to control the cell proliferation and get the desired density during such cell cultures. A further question arises knowing this set of parameters: which one of the parameters in the expression is crucial in terms of application purpose? Since the (r_{p}) is the constant proliferation rate for a given cell line, controlling the conditional MSSCD is not possible through (r_{p}). We simulate the distribution of conditional MSSCD for other parametric planes to answer this question. For this, we use the parameter values obtained from the data.

    Theorem 2

    The RPR is maximum at the cell density (x^{*}= K-Kleft( frac{r_{p}beta K^{alpha -1}+ndelta K^{delta -1}}{2r_{p}alpha beta K^{alpha -1}+r_{p}beta (beta -1)K^{alpha -1}+ndelta (delta -1)K^{delta -1}}right)) for the concave downward profile under the condition (r_{p}alpha (alpha -1){x^{*}}{}^{(alpha -2)}-frac{r_{p}}{K^{beta }}(alpha +beta )(alpha +beta -1){x^{*}}{}^{(alpha +beta -2)}-ndelta (delta -1){x^{*}}{}^{(delta -2)}n) (see the supplementary information). The cell population sustain with any positive initial cell density x(t) and try to stabilize at (x(t)= K(1-frac{n}{r_{p}})^frac{1}{beta }). Therefore, bimodality vanishes and unimodality is observed for the case (alpha =delta) (r_{p} >n). The RPR profile will be concave downward always with the maximum RPR value is at the inflection point (x(t)= K(frac{(r_{p}-n)alpha }{r_{p}(alpha +beta )})^frac{1}{beta }). The deterministic potential function in this case is (U(x)=-Big [(r_{p}-n)frac{x^{(alpha +2)}}{(alpha +2)}-frac{r_{p}}{K^{beta }}frac{x^{(alpha +beta +2)}}{(alpha +beta +2)} Big ]). The minima of this effective potential function will be at (x(t)= K(1-frac{n}{r_{p}})^frac{1}{beta }) which is the maximum stable cell density for (r_{p} >n).
    Parameter estimationThe density-RPR and time-density fitting to the scratch assay datasets show a lower RSS for our model than the logistic one for each of the three seeding conditions. The estimated parameters from the RPR fitting through the grid-search are in Table 2. Although the RSS for the RPR fitting of the seeding 2 is very low, the data itself is too scattered in both the upper and lower range for the small cell density. Therefore, there is a chance that regardless of the low RSS value, the fitting for seeding 2 may not reflect the actual estimates of the parameters with the bias in the data set (Fig. 2b). Nevertheless, the density-RPR fittings to the other two seeding density datasets do not suffer from bias (Fig. 2a,c).Table 2 Estimated model parameters from density-RPR fitting of our model.Full size table
    Figure 2Our proposed model best fitted the cell density-RPR datasets for all of the seeding conditions generated through the grid-search method.Full size image
    Jin et al.1 suggested that their two phase logistic model may share similarities with the Allee effect. However, they did not fit the Allee model stating seeding 2 and 3 were large enough seeding densities. We calculated the conditional threshold density, conditional MSSCD, density at the minimum and maximum RPR for the model from our estimated parameters (Table 3). The conditional threshold cell density calculated from our estimated parameters confirms that the smallest initial seeding density of the dataset was greater than the conditional threshold cell density.Table 3 Calculated cell densities from estimated parameters from our model fitting.Full size tableFigure 3 compares the portrayal of the data through our model with the fitting by Jin et al.1. The blue dashed line is the time-series fitting of the proposed model, and the red-colored line is the time-series fitting of the logistic model to the scratch assay data sets in the Fig. 3. The carrying capacity values are unexpectedly very high in the logistic fit, keeping the model near the exponential phase for the entire dataset. Thus the overall and two phase logistic fits are unrealistic compared to the highest cell density observed in the assay. Also, logistic fitting of the RPR profiles to the data after 18 h does not capture the whole scenario. The green solid and the violet dashed line represent the logistic time-density fit after and before 18 h density profiles respectively. The orange-colored lines in the Fig. 3 are the expected population density as per estimated parameters from the RPR fitting after 18 h data sets. Table 4 enlists all parameters for a comparison between logistic and our model fitting.Figure 3Time series solution of the proposed model and logistic law with comparative RSS for all three seeding conditions.Full size imageTable 4 Logistic model fitting with the Jin et al.1 estimates used in Fig. 3 with the specific colors.Full size tableTrends in cell densities under deterministic set upThe (r_{p}) is fixed for a cell line among all the determining parameters of the conditional MSSCD. n and K vary together with the culture media, flask, and environmental setup. On the other hand, the (alpha), (beta), and (delta) vary together with intercellular-interactions and cellular-interaction with growth-inhibitory molecules, which depend on the medium’s initial cell density per well and fluidity. We observe that the distribution of the conditional MSSCD depends more on the K than the n. There is a chance of overproliferation in the deterministic setup under low n but high K. The cells may die under high n. The cell density at maximum RPR also depends more on K than n (Fig. 4). So the cells should be cultured in the larger flask to achieve maximum proliferativeness.Figure 4The distribution of conditional MSSCD and cell density at maximum RPR in n-K parametric plane.Full size imageThe conditional MSSCD depends more on (beta) than (alpha) (Fig. 5a). The cells may tend to overproliferate under both high (alpha) and (beta). The conditional MSSCD does not exist for a high (delta) and low (beta) depending more on (delta) than (beta). The cells may overproliferate only under a high (beta) and low (delta) (Fig. 5b). The conditional MSSCD also depends more on (delta) than (alpha) showing mostly underproliferation of cells in the (delta ~-alpha) parametric plane. Therefore, the proliferation can be controlled via regulating the interaction between the growth-inhibitory molecules and cells followed by density-regulation through contact-inhibition and cell-cell cooperation (Fig. 5c).Figure 5The distribution of the conditional MSSCD in parametric plane of regulators in the growth law: (a) dependence of the conditional MSSCD on (alpha) and (beta) parameters; (b) dependence of the conditional MSSCD on (delta) and (beta) parameters; (c) dependence of the conditional MSSCD on (alpha) and (delta) parameters.Full size imageThe new cell fitness measure, i.e. cell density at maximum RPR depends more on the (alpha) than the (beta) (Fig. 6a). The cells achieve maximum RPR at a great cell density under the high value of these two parameters. Figure 6b,c suggest that cell density depends only a little on the (delta) under high (alpha) and (beta). Under the low value of these two regulators, a high (delta) always reduces the cell density attaining the maximum RPR, resulting a poor cell-fitness.Figure 6The distribution of cell density at maximum RPR in parametric plane of regulators in the growth law: (a) dependence on (alpha) and (beta) parameters; (b) dependence on (alpha) and (delta) parameters; (c) dependence on (delta) and (beta) parameters.Full size imageStochastic model analysisOur proposed stochastic model (3) can be compared with the general stratonovich stochastic differential equation (frac{dx}{dt}=f(x)+g_{1}(x)epsilon (t)+g_{2}(x)Gamma (t)). Comparing it with our proposed stochastic model we obtain (g_{1}(x)=-x^{delta +1}) and (g_{2}(x)=1). Using the help of47, we get noise induced drift (A(x)=r_{p}x^{alpha +1}left( 1-Big (frac{x}{K}Big )^{beta } right) -nx^{(delta +1)}+D(delta +1)x^{(2delta +1)}-lambda sqrt{DQ}(delta +1)x^{delta }) and noise induced diffusion coefficient (B(x)=Dx^{(2delta +2)}-2lambda sqrt{DQ}x^{(delta +1)}+Q). The cell density at long run can be obtained from the steady state probability density function (SSPDF). The analytical expression of the SSPDF is obtained from the Fokker-Planck equation. The Fokker-Planck equation is (frac{partial P(x, t)}{partial t} =- frac{partial big [ A(x) P(x, t)big ]}{partial x}+ frac{partial ^{2} big [B(x) P(x, t)big ]}{partial x^{2}}), where P(x,t) is the probability density function of the cell population at the time point t. Solving the Fokker-Planck equation we get the SSPDF as (P_{st} (x)= frac{N^{prime }}{B(x)} exp left( int _{x} frac{A(x^{prime })}{B(x^{prime })} dx^{prime }right)) with the normalizing constant (N^{prime }). The value of (N^{prime }) can be obtained from (int _{0}^{infty } P_{st} (x)dx=1).This SSPDF (P_{st} (x)) helps to understand the validity of the proposed stochastic model. Since the number of the data points is too low to fit the stochastic model to the data directly, validation of the stochastic model is challenging in this case. The dataset we used is a time series with 15 data points with three replicates only. An experiment must have many replicates to have a sample with a large sample size so that the SSPDF of cell densities obtained from theoretical findings can be validated with the real observation of cell densities at the steady state. Such datasets with many replicates are rare.So, we generate 2000 sample paths with the help of numerical simulation based on stochastic model 3. We use the parameter values estimated from the fittings of the deterministic model to the seeding condition 1, and we consider some particular values for the two noise intensities and correlation strength ((lambda)) to get a simulated dataset. To achieve the stationary state, we consider sufficiently large time points, and the cell densities at the final time point are used as the data set for the stationary state. We compare the frequency density of cell densities at steady-state of a simulated dataset of 2000 sample paths with the SSPDF obtained from the analytical solution. This comparison shows that the cell density distribution at the steady state matches the steady state probability density function obtained analytically (Fig. 7).In addition, we illustrated the time series generated with the help of stochastic model 3 through numerical technique (Fig. 8). We have plotted the time series data thus obtained for each of the three seeding conditions and in the same figure we also plotted the observed cell densities. The red dots (o) represent the original/experimental dataset of Jin et al.1. The blue dots ((*)) represent the simulated dataset obtained from the stochastic model. This Fig. 8 clarifies our claim that the proposed stochastic model is in good agreement with the actual observation.Figure 7The histogram shows the distribution of cell densities at steady state under additive and multiplicative noises. The blue curve is the SSPDF. The function SSPDF and the distribution of cell densities matches to each other.Full size imageFigure 8The red dots (o) in each sub-figures represent the experimental data of Jin et al.1. The blue dots ((*)) are obtained from the stochastic model (3) considering: (a) The seeding 1 estimated model parameters with (D= 0.002), (Q= 0.06) and (lambda = 0.4). (b) The seeding 2 estimated model parameters with (D= 0.01), (Q= 0.15) and (lambda = 0.6). (c) The seeding 3 estimated model parameters with (D= 0.002), (Q= 0.2) and (lambda = 0.4).Full size imageFigures 7 and 8 suggest that the stochastic model is valid. So the model can be further analyzed to meet the first objective. Differentiating (P_{st} (x)), we obtain (frac{dP_{st} (x)}{dx}=frac{N^{prime }}{[B(x)]^2} exp left( int frac{A(x)}{B(x)}dx right) left( A(x)-frac{dB(x)}{dx} right)) and (frac{d^{2}P_{st} (x)}{dx^{2}}= frac{N^{prime }}{[B(x)]^{2}}exp left( int frac{A(x)}{B(x)}dx right) left( frac{dA(x)}{dx}-frac{d^{2}B(x)}{dx^{2}} right) +frac{N^{prime }}{[B(x)]^{2}} left( A(x)-frac{dB(x)}{dx} right) exp left( int frac{A(x)}{B(x)}dx right) frac{A(x)}{B(x)}-frac{2}{[B(x)]^3}N^{prime } exp left( int frac{A(x)}{B(x)}dx right) left( A(x)-frac{dB(x)}{dx} right) frac{dB(x)}{dx}). At the extrema of the SSPDF, we must have (frac{dP_{st} (x)}{dx}=0) i.e. (left( A(x)-frac{dB(x)}{dx} right) =0).

    Theorem 3

    (x^{*}approx K-K left( frac{nK^{delta +1}+D(delta +1) K^{2delta +1}-lambda sqrt{DQ}(delta +1)K^{delta }}{beta r K^{alpha +1}+n(delta +1) K^{(delta +1)}+D(delta +1) (2delta +1)K^{(2delta +1)}-lambda sqrt{DQ}delta (delta +1)K^{delta }} right)) is the conditional MSSCD due to the correlated additive and multiplicative noises under the condition (r_{p}(alpha +1)x^{*}{}^{alpha }-frac{r_{p}}{K^{beta }}(alpha +beta +1)x^{*}{}^{(alpha +beta )} -n(delta +1)x^{*}{}^{delta }-D(delta +1)(2delta +1)x^{*}{}^{(2delta )}+lambda sqrt{Dalpha }delta (delta +1)x^{*}{}^{(delta -1)} < 0) (proof is in the supplementary information). Figure 9 visualizes the effect of noise strength and correlation strength on the conditional MSSCD. The conditional MSSCD increases with the additive noise strength (Q) and decreases with the multiplicative noise strength (D) when the other model parameters are fixed (Fig. 9a). There is a high chance of overproliferation for a low D and a high Q (Fig. 9a). Again, there is a high chance of extinction for the low Q and high D. The conditional MSSCD depends more on D than (lambda) (Fig. 9b), and more on (lambda) than Q (Fig. 9c). The conditional MSSCD increases with (lambda) and Q; there is a high chance of overproliferation for high (lambda) and Q. The extinction risk of cells from the culture increases with low (lambda) and Q.Figure 9The change in the conditional MSSCD value for different noise strengths and correlation strength using the parameters estimated for seeding 1: (a) the conditional MSSCD values in (D-Q) noise strength plane with highest correlation ((lambda =1)); (b) the conditional MSSCD values in (D-lambda) noise plane with (Q=0.01); (c) the conditional MSSCD values in (Q-lambda) noise plane with (D=0.01).Full size imageDue to the difficulty and complicated expression of the analytical expression of the SSPDF, we use numerical simulation to study the steady-state behavior in the long run under correlated noises. We draw a histogram of the cell densities based on 500 normal sample paths at the final time points. We use seeding 1 fitting estimates as the initial parameter values for this simulation. The cell population is stable and steady at either 0 cell density or at the conditional MSSCD. The distribution is symmetric around the conditional MSSCD for (lambda =1) (Fig. 10a). There is a loss in the symmetry for the decreasing (lambda). For (lambda =0.5), there is a mode at the zero states with another mode at conditional MSSCD (Fig. 10b). The histogram shows a bi-modality for low values of (lambda). The mode at the zero state is highest for (lambda =0) (Fig. 10c). Therefore, the extinction chance increases for zero noise correlation between the additive and the multiplicative noises.Figure 10Distribution of cell density for (r_{p}=0.13), (K=1.43), (n=0.0095), (alpha =1.15), (beta =0.99), (delta =0.2), (D=0.01), (Q=0.01), and variable correlation between additive and multiplicative noises: (a) (lambda =1), (b) (lambda =0.5) and (c) (lambda =0).Full size imageThe sustainability of the cell population depends on the strength of the two noises, like the correlation strength between them. For the zero strength multiplicative noise, the population has the mode at around the conditional MSSCD value (Fig. 11). Therefore, the population sustains in this case and tries to stabilize at the conditional MSSCD value. For (D=0.02), there is a bimodality, where the highest mode is at the zero cell density. For (D=0.05), we observe only one mode at (x=0). Therefore, with the increasing values of the multiplicative noise strengths (D), the chance of extinction increases for (lambda =0.5), (Q=0.01), and other constant model parameters for the seeding condition 1. Similar things happen for increasing Q values considering (D=0.01), (lambda =0.5), and other constant model parameters (Fig. 12).Figure 11Distribution of cell density for (r_{p}=0.13), (K=1.43), (n=0.0095), (alpha =1.15), (beta =0.99), (delta =0.2), (lambda =0.5), (Q=0.01), and variable strength of multiplicative noise: (a) (D=0.05), (b) (D=0.02) and (c) (D=0).Full size imageFigure 12Distribution of cell density for (r_{p}=0.13), (K=1.43), (n=0.0095), (alpha =1.15), (beta =0.99), (delta =0.2), (lambda =0.5), (D=0.01), and variable correlation between multiplicative noise: (a) (Q=0.05), (b) (Q=0.02) and (c) (Q=0).Full size image Remark 5 We have previously discussed the scenario for (alpha =delta) for deterministic case in Remark 4. It is important to understand the scenario under stochastic case too. For (alpha =delta) the proposed stochastic model 3 becomes (frac{dx(t)}{dt}=r_{p}x(t)^{(alpha +1)}left( 1-big (frac{x(t)}{K}big )^{beta }right) - nx(t)^{(alpha +1)}-x(t)^{(alpha +1)} epsilon (t)+ Gamma (t)). For this stochastic model (g_{1}(x)=-x^{alpha +1}) and (g_{2}(x)=1). We get, (A(x)=r_{p}x^{alpha +1}left( 1-Big (frac{x}{K}Big )^{beta } right) -nx^{(alpha +1)}+D(alpha +1)x^{(2alpha +1)}-lambda sqrt{DQ}(alpha +1)x^{alpha }) and (B(x)=Dx^{(2alpha +2)}-2lambda sqrt{DQ}x^{(alpha +1)}+Q). The extrema of the SPDF (big (x(t)=x^{*}big )) must satisfy the growth equation (r_{p}{x^{*}}^{alpha +1}-frac{r_{p}}{K^{beta }}(x^{*})^{alpha +beta +1}-n(x^{*})^{alpha +1}-D(alpha +1)(x^{*})^{2alpha +1}+lambda sqrt{D~Q}(alpha +1)(x^{*})^{alpha }=0). Therefore, for (alpha =delta) the conditional MSSCD is (x^{*}= K-Kfrac{nK^{(alpha +1)}+D(alpha +1)K^{(2alpha +1)}-lambda sqrt{DQ}(alpha +1)K^{alpha }}{beta r_{p}K^{(alpha +1)}+nK^{(alpha +1)}(alpha +1)+D(alpha +1)(2alpha +1)K^{(2alpha +1)}-alpha lambda sqrt{DQ}(alpha +1)K^{alpha }}) under the condition ((r_{p}-n)(alpha +1)(x^{*})^{alpha }-frac{r_{p}}{K^{beta }}(alpha +beta +1)(x^{*})^{(alpha + beta )}-(alpha +1)(2alpha +1)D(x^{*})^{2alpha }+lambda sqrt{DQ}(alpha +1)alpha (x^{*})^{(alpha -1)} More

  • in

    Changes in plant biodiversity facets of rocky outcrops and their surrounding rangelands across precipitation and soil gradients

    Larson, D. W., Matthes, U. & Kelly, P. E. Cliff Ecology (Cambridge University Press, 2000).Book 

    Google Scholar 
    Cooper, A. Plant species coexistence in cliff habitats. J. Biogeogr. 24, 483–494 (1997).Article 

    Google Scholar 
    Davis, P. H. Cliff vegetation in the eastern Mediterranean. J. Ecol. 39, 63–93 (1951).Article 

    Google Scholar 
    Snogerup, S. Evolutionary and plant geographical aspects of chasmophytic communities. In Plant life of South-West Asia (eds Davis, P. H. et al.) 157–170 (Bot. Soc. Edinb, 1971).
    Google Scholar 
    Baskin, J. M. & Baskin, C. C. Endemism in rock outcrop plant communities of unglaciated eastern United States: An evaluation of the roles of the edaphic, genetic and light factors. J. Biogeogr. 15, 829–840 (1988).Article 

    Google Scholar 
    Medina, B. M. O. & Fernandes, G. W. The potential of natural regeneration of rocky outcrop vegetation on rupestrian field soils in Serra do Cipo, Brazil. Braz. J. Bot. 30, 665–678 (2007).Article 

    Google Scholar 
    Alves, R. J. V., Cardin, L. & Kropf, M. S. Angiosperm disjunction “Campos Rupestres-Restingas”: Are-evaluation. Acta Bot. Bras. 2, 675–685 (2007).Article 

    Google Scholar 
    Harley, R. M. Introduction. In Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil (eds Stannard, B. L., Harvey, Y. B. & Harley, R. M) 1–42 (Royal Botanic Gardens, 1995).Hubbell, S. P. Neutral theory in ecology and the evolution of ecological equivalence. Ecology 87, 1387–1398 (2006).PubMed 
    Article 

    Google Scholar 
    Conceição, A. A., Pirani, J. R. & Meirelles, S. T. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Rev. Bras. Bot. 30, 641–656 (2007).Article 

    Google Scholar 
    Le Stradic, S., Buisson, E. & Wilson, F. G. Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mt Sci 12:864–77. An. Acad. Bras. Ciênc. 87(4), 2097–2110 (2015).Article 
    CAS 

    Google Scholar 
    Nunes, J. A. et al. Soil–vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. An. Acad. Bras. Cienc. 87(4), 2097–2110 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, W. A. Gradiente vegetacional e pedológico em complexo rupestre de quartzito no Quadrilátero Ferrífero, Minas Gerais, Brasil. MSc Thesis. (Universidade Federal de Viçosa, 2013).Vincent, R. C. & Meguro, M. Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Braz. J. Bot. 31, 377–388 (2008).Article 

    Google Scholar 
    Porembski, S. Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Rev. Bras. de Bot. 30, 579–586 (2007).Article 

    Google Scholar 
    De Paula, L. F. A., Forzza, R. C., Neri, A. V., Bueno, M. L. & Porembski, S. Sugar Loaf Land in south-eastern Brazil: A center of diversity for mat-forming bromeliads on inselbergs. Bot. J. Linn. Soc. 181, 459–476 (2016).Article 

    Google Scholar 
    Rezende, M. G., Elias, R. C. L., Salimena, F. R. G. & Neto, L. M. Flora vascular da Serra da Pedra Branca, Caldas, Minas Gerais e relações florísticas com áreas de altitude da Região Sudeste do Brasil. Biota Neotrop. 13, 201–224 (2013).Article 

    Google Scholar 
    Sarthou, C., Villiers, J. F. & Ponge, J. F. Shrub vegetation on tropical granitic inselbergs in French Guiana. J. Veg. Sci. 14, 645–652 (2003).Article 

    Google Scholar 
    Tinti, B. V. et al. Plant diversity on granite/gneiss rock outcrop at Pedra do Pato, Serra do Brigadeiro State Park, Brazil. Check List 11, 1780 (2015).Article 

    Google Scholar 
    Barbara, T., Martinelli, G., Fay, M. F., Mayo, S. J. & Lexer, C. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude “inselbergs”, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol. Ecol. 16, 1981–1992 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boisselier-Dubayle, M. C., Leblois, R., Samadi, S., Lambourdière, J. & Sarthou, C. Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana—A test of the forest refuge hypothesis. Ecography 33, 175–184 (2010).Article 

    Google Scholar 
    Domingues, R. et al. Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest. Genet. Mol. Res. 10, 2482–2491 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hmeljevski, K. V. et al. Conservation assessment of an extremely restricted bromeliad highlights the need for population-based conservation on granitic inselbergs of the Brazilian Atlantic Forest. Flora Morpho. Distribut. Funct. Ecolo. Plants. 209, 250–259 (2014).Article 

    Google Scholar 
    Palma-Silva, C. et al. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol. Ecol. 20, 3185–3201 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, P. & Alves, M. Floristic diversity of two crystalline rocky outcrops in the Brazilian northeast semi-arid region. Rev. Bras. Bot. 33(4), 661–676 (2010).Article 

    Google Scholar 
    Nunes, J. A., Villa, P. M., Neri, A. V., Silva, W. A. & Schaefer, C. E. G. R. Seasonality drives herbaceous community beta diversity in lithologically different rocky outcrops in Brazil. Plant. Ecol. Evol. 153(2), 208–218 (2020).Article 

    Google Scholar 
    Speziale, K. L. & Ezcurra, C. The role of outcrops in the diversity of Patagonian vegetation: Relicts of glacial palaeofloras?. Flora Morphol. Distrib. Funct. Ecol. Plant. 207, 141–149 (2012).
    Google Scholar 
    Speziale, K. L., Ruggiero, A. & Ezcurra, C. Plant species richness–environment relationships across the Subantarctic-Patagonian transition zone. J. Biogeogr. 37, 449–464 (2010).Article 

    Google Scholar 
    Yates, C. J. et al. High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecol. Evol. 9, 7660–7675 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B Biol. Sci. 276, 1395–1406 (2009).Article 

    Google Scholar 
    McGann, T. D. How insular are ecological ‘islands’? An example from the granitic outcrops of the New England Batholith of Australia. Proc. R. Soc. Queensland. 110, 1–13 (2002).
    Google Scholar 
    Parmentier, I., Stévart, T. & Hardy, O. J. The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. J. Biogeogr. 32, 685–696 (2005).Article 

    Google Scholar 
    Changwe, K. & Balkwill, K. Floristics of the Dunbar Valley serpentinite site, Songimvelo Game Reserve, South Africa. Bot. J. Linn. Soc. 143, 271–285 (2003).Article 

    Google Scholar 
    Clarke, P. J. Habitat islands in fire-prone vegetation: Do landscape features influence community composition?. J. Biogeogr. 29, 677–684 (2002).Article 

    Google Scholar 
    De Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29(6), 801–810 (2006).Article 

    Google Scholar 
    Porembski, S., Martinelli, G., Ohlemüller, R. & Barthlott, W. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers. Distrib. 4, 107–119 (1998).Article 

    Google Scholar 
    Porembski, S., Szarzynski, J., Mund, J. P. & Barthlott, W. Biodiversity and vegetation of small-sized inselbergs in a West African rain forest (Taï, Ivory Coast). J. Biogeogr. 23, 47–55 (1996).Article 

    Google Scholar 
    Rahmanian, S. et al. Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecol. Evol. 9, 8225–8237 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Speziale, K. L. & Ezcurra, C. Patterns of alien plant invasions in northwestern Patagonia, Argentina. J. Arid Environ. 75, 890–897 (2011).ADS 
    Article 

    Google Scholar 
    Qian, H., Chen, S. H. & Zhang, J. L. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci. Rep. 7, 5864 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Farzam, M. & Ejtehadi, H. Effects of drought and canopy facilitation on plant diversity and abundance in a semiarid mountainous rangeland. J. Plant. Ecol. 10(4), 626–633 (2016).
    Google Scholar 
    Heino, J. & Tolonen, K. T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 62, 2431–2444. https://doi.org/10.1002/lno.10577 (2017).ADS 
    Article 

    Google Scholar 
    Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).ADS 
    Article 

    Google Scholar 
    Pashirzad, M., Ejtehadi, H., Vaezi, J. & Shefferson, R. P. Multiple processes at different spatial scales determine beta diversity patterns in a mountainous semi-arid rangeland of Khorassan-Kopet Dagh floristic province, NE Iran. Plant. Ecol. 220(9), 829–844 (2019).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 4152 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Deil, U. Rock communities in tropical Arabia. Flora et Vegetation Mundi 9, 175–187 (1991).
    Google Scholar 
    Dimopoulos, P., Sýkora, K. V., Mucina, L. & Georgiadis, T. The high-rank syntaxa of the rock-cliff and scree vegetation of the mainland Greece and Crete. Folia Geobot. 32, 313–334 (1997).Article 

    Google Scholar 
    Hein, P., Kürschner, H. & Parolly, G. Phytosociological studies on high mountain plant communities of the Taurus Mountains (Turkey) 2. Rock communities. Phytocoenologia 28, 465–563 (1998).Article 

    Google Scholar 
    Nowak, A., Nowak, S., Nobis, M. & Nobis, A. Vegetation of rock clefts and ledges in the Pamir Alai Mts, Tajikistan (Middle Asia). Cent. Eur. J. Biol. 9, 444–460 (2014).
    Google Scholar 
    Urbis, A. & Blazyca, B. Rock vascular plant species of the Kraków-Częstochowa, Uplands. Thaiszia J. Bot. 21, 207–214 (2011).
    Google Scholar 
    Wiser, S. K., Peet, R. K. & White, P. S. High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. J. Veg. Sci. 7, 703–722 (1996).Article 

    Google Scholar 
    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. PNAS 110(22), 8996–9000 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swenson, G.N. Functional and Phylogenetic Ecology in R (Use R!) Kindle Edition (2014).Cadotte, M. W. & Davies, P. R. Why phylogenies do not always predict ecological differences. Ecol. Monogr. 87(4), 535–551 (2016).Article 

    Google Scholar 
    De Bello, F., LepŠ, J. A. N. & Sebastià, M. T. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J. Appl. Ecol. 42(5), 824–833 (2005).Article 

    Google Scholar 
    Funk, J. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecologica processes. Biol. Rev. 92(2), 1156–1173 (2017).PubMed 
    Article 

    Google Scholar 
    Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556 (2002).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Zheng, S., Li, W., Lan, Z., Ren, H. & Wang, K. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity. Sci. Rep. 5, 18163 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gillison, A. N. Plant functional types and traits at the community, ecosystem and world level. In Vegetation Ecology (eds van der Maarel, E. & Franklin, J.) 347–386 (Wiley, 2013).Chapter 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91, 3–17 (2000).Article 

    Google Scholar 
    Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, paleoecology and conservation. Pak. J. Bot. 42, 231–258 (2010).
    Google Scholar 
    Hamzehee, B. et al. Phytosociological survey of remnant Alnus glutinosa ssp. barbata communities in the lowland Caspian forests of northern Iran. Pytocoenologia. 38, 117–132 (2008).Article 

    Google Scholar 
    Moradi, H. et al. Elevational gradient and vegetation-environmental relationships in the central Hyrcanian forests of northern Iran. Nord. J. Bot. 34, 1–14 (2016).Article 

    Google Scholar 
    Naqinezhad, A., Esmailpoor, A. & Jafari, N. A new record of Pyrola minor (Pyrolaceae) for the flora of Iran as well as a description of its surrounding habitats. Taxon. Biosyst. 22, 71–80 (2015).
    Google Scholar 
    Naqinezhad, A., Zare-Maivan, H. & Gholizadeh, H. A floristic survey of the Hyrcanian forests in Northern Iran, using two lowland-mountain transects. J. For. Res. 26, 187–199 (2015).CAS 
    Article 

    Google Scholar 
    Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forests of Iran (Springer Sci, 2014).Book 

    Google Scholar 
    Siadati, S. et al. Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa 7, 1–18 (2010).Article 

    Google Scholar 
    Akhani, H. & Ziegler, H. Photosynthetic pathways and habitats of grasses in Golestan National Park (NE Iran), with an emphasis on the C 4-grass dominated rock communities. Phytocoenologia 32, 455–501 (2002).Article 

    Google Scholar 
    Akhani, H., Mahdavi, P., Noroozi, J. & Zarrinpour, V. Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot. 48, 229–255 (2013).Article 

    Google Scholar 
    Klein, J. C. The altitudinal vegetation Alborez The Central (Iran) between the Iranian-Turanian and Euro-Siberian regions (French) (Institut Français de Recherche en Iran, 2001).
    Google Scholar 
    Noroozi, J. Case study: High Mountain Regions in Iran 255–260. of Chapter 7 (Endemism in mainland regions-case studies). In Endemism in Vascular plants. Plant. Veg. (ed Hobohm, C.) 9. (Springer, 2014).Noroozi, J., Akhani, H. & Willner, W. Phytosociological and ecological study of the high alpine vegetation of Tuchal Mountains (Central Alborz, Iran). Phytocoenologia 40, 293–321 (2010).Article 

    Google Scholar 
    Do Carmo, F. F. & Jacobi, C. M. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant Soil. 403, 7–20 (2015).Article 
    CAS 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. The merging of community ecology and phylogenetic biology. Ecol Lett. 12, 693–715 (2009).PubMed 
    Article 

    Google Scholar 
    Heydari, M., Poorbabaei, H., Esmailzadeh, O., Salehi, A. & EshaghiRad, J. Indicator plant species in monitoring forest soil conditions using logistic regression model in Zagros Oak (Quercus brantii var. persica) forest ecosystems. Ilam city. J. Plant Res. 27(5), 811–828 (2014).
    Google Scholar 
    Speziale, K. L. & Ezcurra, C. Rock outcrops as potential biodiversity refugia under climate change in North Patagonia. Plant Ecol. Diver. 8, 353–361 (2014).Article 

    Google Scholar 
    Rahmanian, S. et al. Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Appl. Veg. Sci. 23, 551–561 (2020).Article 

    Google Scholar 
    Huston, M. A. Biological Diversity: The Coexistence of Species in Changing Landscape (Cambridge University, 1994).
    Google Scholar 
    Mason, N. W., Mouillot, D. & Lee, W. G. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557567 (2004).Article 

    Google Scholar 
    Stanisci, A. et al. Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines. Ann. Bot. Comp. plants. 12, plaa004 (2020).CAS 

    Google Scholar 
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korner, C. Alpine Treelines: Functional Ecology of the Global High Elevation tree Limits (Springer Sci. & Business Media, 2012).Book 

    Google Scholar 
    Reich, P. B. et al. Generality of leaf trait relationships: A test across six biomes. Ecology 80, 1955–1969 (1999).Article 

    Google Scholar 
    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Ann. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).Article 

    Google Scholar 
    Korner, C., Neumayer, M., Menendez-Riedl, S. P. & Smeets-Scheel, A. Functional morphology of mountain plants. Flora 182, 353–383 (1989).Article 

    Google Scholar 
    Rosbakh, S., Römermann, C. & Poschlod, P. Specific leaf area correlates with temperature new evidence of trait variation at the population, species and community levels. Alp. Bot. 125, 79–86 (2015).Article 

    Google Scholar 
    Ordonez, J. C. et al. Global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).Article 

    Google Scholar 
    Li, W. et al. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. Solid Earth. 8, 137–147 (2017).ADS 
    Article 

    Google Scholar 
    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).PubMed 
    Article 

    Google Scholar 
    Lane, D. R., Coffin, D. P. & Lauenroth, W. K. Effects of soil texture and precipitation on above-ground net primary productivity and vegetation structure across the Central Grassland region of the United States. J. Veg. Sci. 9, 239–250 (1998).Article 

    Google Scholar 
    Noy-Meir, I. Multivariate analysis of the semi-arid vegetation of southern Australia. II. Vegetation catenae an environmental gradients. Aust. J. Bot. 22, 40–115 (1973).
    Google Scholar 
    Moura, M. R., Villalobos, F., Costa, G. C. & Garcia, P. C. A. Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS ONE 11(3), 0152468 (2016).Article 
    CAS 

    Google Scholar 
    Neri, A. V. et al. Soil and altitude drives diversity and functioning of Brazilian Páramos (Campo de Altitude). J. plant. Ecol. 10(5), 771–779 (2016).
    Google Scholar 
    Benites, V. M., Schaefer, C. E. G. R., Simas, F. N. B., Santos, H. G. & Mendonca, B. A. F. Soils associated to rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev. Bras. Bot. 30, 569–577 (2007).Article 

    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 

    Google Scholar 
    Zuo, X. A. et al. Testing associations of plant functional diversity with along a restoration gradient of sandy grassland. Front. Plant. Sci. 7, 1–11 (2016).ADS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).ADS 
    Article 

    Google Scholar 
    Vankoughnett, M. R. & Grogan, P. Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: A 2-year test of the snow–shrub hypothesis. Biogeochemistry 118, 291–306 (2014).CAS 
    Article 

    Google Scholar 
    Pescador, D. S., de Bello, F., Valladares, F. & Escudero, A. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE 10, e0118876 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pescador, D. S., Sierra-Almeida, A., Torres, P. J. & Escudero, A. Summer freezing resistance: A critical filter for plant community assemblies in Mediterranean high mountains. Front. Plant. Sci. 7, 194 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heydarnejad, S. & Ranjbar, A. Investigation of the effect of salinity stress on growth characteristic and ion accumulation in plants. J. Desert Ecos. Eng. 3(4), 1–10 (2013).
    Google Scholar 
    Perez-Harguindeguy, N. et al. New handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography (Oxford University Press, 1934).
    Google Scholar 
    Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1, 2nd ed. (ed Klute, A.) Agronomy Monographs, Vol. 9, 383–409 (Am. Soc. Agr., 1986).Bremner, J. M. In Nitrogen-Total Methods of Soil Analysis. (eds Sparks, D. L.) Soil Sci Soc Am J. 1085–1122 (Am Soc Agr. Inc, 1996).Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. W. & Sommers, L. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbi‐ological properties, (methodsofsoilan2), 539–579 (1982).Miller, R. H. & Keeney, D. R. Methods of soil analysis, 2nd ed. In Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 1–129 (ASA, SSSA, 1982).
    Google Scholar 
    Food and Agriculture Organization-FAO. Management of gypsiferous soils. Soil Bulletin, 62, (FAO, 1990).Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Shipley, B., Vile, D. & Garnier, É. from plant traits to plant communities: A statistica mechanistic approach to biodiversity. Science 314(5800), 812–814 (2006).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. A review of: an R companion to applied regression, second edition. J. Biopharm. Stat. 22, 418–419 (2011).
    Google Scholar 
    Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). (2011) http://R-Forge.R-project.org/projects/sedar (Accessed 7 Nov 2016).Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2017).Wickham, H. et al. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer International Publishing, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).Article 

    Google Scholar 
    van Diepen, C. A., Wolf, J., van Keulen, H. & Rappoldt, C. WOFOST: a simulation model of crop production. Soil Use Manag. 5, 16–24 (1989).Article 

    Google Scholar 
    Cao, J. et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. For. Meteorol. 297, 108275 (2021).ADS 
    Article 

    Google Scholar 
    Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S. & Ozkan, E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12, 3783 (2020).ADS 
    Article 

    Google Scholar 
    Maas, S. J. Parameterised model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 85, 354–358 (1993).Article 

    Google Scholar 
    Nguyen, V., Jeong, S., Ko, J., Ng, C. & Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 11, 2131 (2019).Article 

    Google Scholar 
    Huang, J. et al. Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. For. Meteorol. 276–277, 107609 (2019).ADS 
    Article 

    Google Scholar 
    Jin, X. et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141–152 (2018).Article 

    Google Scholar 
    Shawon, A. R. et al. Assessment of a proximal sensing-integrated crop model for simulation of soybean growth and yield. Remote Sens. 12, 410 (2020).ADS 
    Article 

    Google Scholar 
    Shawon, A. R. et al. Two-dimensional simulation of barley growth and yield using a model integrated with remote-controlled aerial imagery. Remote Sens. 12, 3766 (2020).ADS 
    Article 

    Google Scholar 
    Shin, T. et al. Simulation of wheat productivity using a model integrated with proximal and remotely controlled aerial sensing information. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.649660 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, J. et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 216, 188–202 (2016).ADS 
    Article 

    Google Scholar 
    Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, N. et al. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl. Sci. 10, 3785 (2020).CAS 
    Article 

    Google Scholar 
    Kumar, P. et al. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 34, 1022–1041 (2019).Article 

    Google Scholar 
    Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 27 (2016).Article 

    Google Scholar 
    Feng, P., Wang, B., Li Liu, D., Waters, C. & Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 275, 100–113 (2019).ADS 
    Article 

    Google Scholar 
    Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, Y. et al. Detecting in-season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 5153–5166 (2019).ADS 
    Article 

    Google Scholar 
    van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).Article 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Liem, N. V. & Trinh, P. T. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188, 104426 (2020).Article 

    Google Scholar 
    Sahoo, A. K., Pradhan, C. & Das, H. Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In Nature Inspired Computing for Data Science (eds Rout, M. et al.) (Springer International Publishing, 2020).
    Google Scholar 
    Jeong, S. et al. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 115, 83–91 (2012).Article 

    Google Scholar 
    Peng, D., Huete, A. R., Huang, J., Wang, F. & Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 13, 13–23 (2011).ADS 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery: a case study in South Korea. Remote Sens. 10, 1665 (2018).ADS 
    Article 

    Google Scholar 
    Xiao, X. et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100, 95–113 (2006).ADS 
    Article 

    Google Scholar 
    Ozdogan, M. & Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 112, 3520–3537 (2008).ADS 
    Article 

    Google Scholar 
    Yeom, J.-M., Jeong, S., Deo, R. C. & Ko, J. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite. GISci. Remote Sens. 58, 1–27 (2021).Article 

    Google Scholar 
    Yeom, J.-M. et al. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 8, 16121 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jeong, S., Ko, J., Choi, J., Xue, W. & Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 39, 2441–2462 (2018).Article 

    Google Scholar 
    Jeong, S. et al. Geographical variations in gross primary production and evapotranspiration of paddy rice in the Korean Peninsula. Sci. Total Environ. 714, 136632 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger, P., Vermote, E. & Ray, J. MODIS Surface Reflectance User’s Guide. Collection 6 (2015).Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pede, T. & Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 142, 137–150 (2018).ADS 
    Article 

    Google Scholar 
    Kilibarda, M. et al. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119, 2294–2313 (2014).ADS 
    Article 

    Google Scholar 
    Nunez, M. The development of a satellite-based insolation model for the tropical western Pacific Ocean. Int. J. Climatol. 13, 607–627 (1993).Article 

    Google Scholar 
    Otkin, J. A., Anderson, M. C., Mecikalski, J. R. & Diak, G. R. Validation of GOES-based insolation estimates using data from the U.S. Climate reference network. J. Hydrometeorol. 6, 460–475 (2005).ADS 
    Article 

    Google Scholar 
    Pinker, R. & Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 31, 194–211 (1992).ADS 
    Article 

    Google Scholar 
    Kawamura, H., Tanahashi, S. & Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku coast. J. Oceanogr. 54, 457–464 (1998).Article 

    Google Scholar 
    Yeom, J.-M., Seo, Y.-K., Kim, D.-S. & Han, K.-S. Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. J. Sens. 2016, 1–15 (2016).Article 

    Google Scholar 
    Yeom, J.-M., Han, K.-S. & Kim, J.-J. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pac. J. Atmos. Sci. 48, 115–123 (2012).ADS 
    Article 

    Google Scholar 
    Kawai, Y. & Kawamura, H. Validation and improvement of satellite-derived surface solar radiation over the Northwestern Pacific Ocean. J. Oceanogr. 61, 79–89 (2005).Article 

    Google Scholar 
    Tanahashi, S., Kawamura, H., Matsuura, T., Takahashi, T. & Yusa, H. A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ. 75, 412–422 (2001).ADS 
    Article 

    Google Scholar 
    Elbern, H., Schmidt, H., Talagrand, O. & Ebel, A. 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000).Article 

    Google Scholar 
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1992).MATH 

    Google Scholar 
    Ko, J. et al. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 9, 096067 (2015).Article 

    Google Scholar 
    Emami Javanmard, M., Ghaderi, S. F. & Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 238, 114153 (2021).CAS 
    Article 

    Google Scholar 
    Diebold, F. X. & Shin, M. Machine learning for regularized survey forecast combination: partially-egalitarian LASSO and its derivatives. Int. J. Forecast. 35, 1679–1691 (2019).Article 

    Google Scholar 
    Khosla, E., Dharavath, R. & Priya, R. Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environ. Dev. Sustain. 22, 5687–5708 (2020).Article 

    Google Scholar 
    Wang, S., Azzari, G. & Lobell, D. B. Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 222, 303–317 (2019).ADS 
    Article 

    Google Scholar 
    Ustuner, M. & Balik, S. F. Polarimetric target decompositions and light gradient boosting machine for crop classification: a comparative evaluation. ISPRS Int. J. Geo Inf. 8, 97 (2019).Article 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 802, 149726 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 
    Article 

    Google Scholar  More

  • in

    The skilled ecosystem engineers with big teeth and paddle tails

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More