More stories

  • in

    Group differences in feeding and diet composition of wild western gorillas

    Wallace, R. B. & Painter, R. L. Phenological patterns in a southern Amazonian tropical forest: Implications for sustainable management. For. Ecol. Manag. 160, 19–33 (2002).Article 

    Google Scholar 
    Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. PTRBAE 359, 311–329 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50(3), 418–430 (2018).Article 

    Google Scholar 
    Brockman, D. K., Van Schaik, C. P., & Schaik, C. P. (Eds.) (2005) Seasonality in primates: Studies of living and extinct human and non-human primates (Vol. 44). Cambridge University Press.Morellato, L. P. C. et al. Phenology of Atlantic rain forest trees: A comparative study. Biotropica 32, 811–823 (2000).Article 

    Google Scholar 
    Brugiere, D., Gautier, J. P., Moungazi, A. & Gautier-Hion, A. Primate diet and biomass in relation to vegetation composition and fruiting phenology in a rain forest in Gabon. Int J Primatol 23, 999–1024 (2002).Article 

    Google Scholar 
    Bollen, A. & Donati, G. Phenology of the littoral forest of Sainte Luce, Southeastern Madagascar. Biotropica 37, 32–43 (2005).Article 

    Google Scholar 
    Chapman, C. A., Wrangham, R. W., Chapman, L. J., Kennard, D. K. & Zanne, A. E. Fruit and flower phenology at two sites in Kibale National Park, Uganda. J. Trop. Ecol. 15, 189–211 (1999).Article 

    Google Scholar 
    Van Schaik, C. P. & Pfannes, K. R. Tropical climates and phenology: A primate perspective. Camb. Stud. Biol. Evol. Anthropol. 44, 23–54 (2005).
    Google Scholar 
    Birkhofer, K. & Wolters, V. The global relationship between climate, net primary production and the diet of spiders. Glob. Ecol. Biogeogr. 21, 100–108 (2012).Article 

    Google Scholar 
    Creel, S. et al. Changes in African large carnivore diets over the past half-century reveal the loss of large prey. J. Appl. Ecol. 55, 2908–2916 (2018).Article 

    Google Scholar 
    Hemingway, C. A. & Bynum, N. The influence of seasonality on primate diet and ranging. Camb. Stud. Biol. Evol. Anthropol. 44, 57–104 (2005).
    Google Scholar 
    Trapanese, C., Meunier, H. & Masi, S. What, where and when: spatial foraging decisions in primates. Biol. Rev. 94, 483–502 (2019).PubMed 
    Article 

    Google Scholar 
    Jahn, A. E., Levey, D. J., Hostetler, J. A. & Mamani, A. M. Determinants of partial bird migration in the Amazon Basin. J. Anim. Ecol. 79, 983–992 (2010).PubMed 
    Article 

    Google Scholar 
    Catterall, C. P., Kingston, M. B., Park, K. & Sewell, S. Deforestation, urbanisation and seasonality: Interacting effects on a regional bird assemblage. Biol. Conserv. 84, 65–81 (1998).Article 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 
    Article 

    Google Scholar 
    Monteith, K. L. et al. Timing of seasonal migration in mule deer: Effects of climate, plant phenology, and life-history characteristics. Ecosphere. 2, 1–34 (2011).Article 

    Google Scholar 
    Levey, D. J. & Karasov, W. H. Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius). Am. J. Physiol.-Gastr. L 262, 711–718 (1992).
    Google Scholar 
    Seri, H. et al. Effects of seasonal variation, group size and sex on the activity budget and diet composition of the addax antelope. Afr. J. Range Forage Sci. 35, 89–100 (2018).Article 

    Google Scholar 
    Pavelka, M. S. & Knopff, K. H. Diet and activity in black howler monkeys (Alouatta pigra) in southern Belize: Does degree of frugivory influence activity level?. Primates 45, 105–111 (2004).PubMed 
    Article 

    Google Scholar 
    Joshi, R. & Singh, R. Feeding behaviour of wild Asian elephants (Elephas maximus) in the Rajaji National Park. J. Am. Sci. 4, 34–48 (2008).
    Google Scholar 
    Remis, M. J., Dierenfeld, E. S., Mowry, C. B. & Carroll, R. W. Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22, 807–836 (2001).Article 

    Google Scholar 
    Doran-Sheehy, D. M., Greer, D., Mongo, P. & Schwindt, D. Impact of ecological and social factors on ranging in western gorillas. Am. J. Primatol. 64, 207–222 (2004).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western Lowland Gorillas (Gorilla gorilla gorilla) change their activity patterns in response to Frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Masi, S. et al. The influence of seasonal frugivory on nutrient and energy intake in wild western gorillas. PLoS ONE 10(7), e0129254 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kuntz, R., Kubalek, C., Ruf, T., Tataruch, F. & Arnold, W. Seasonal adjustments of energy budgets in free ranging Przewalski horses (Equus ferus przewalskii). I. Energy intake. J. Exp. Biol 209, 4557–4565 (2006).PubMed 
    Article 

    Google Scholar 
    Arnold, W., Ruf, T. & Kuntz, R. Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii). II Energy expenditure. J. Experim. Biol. 209, 4566–4573 (2006).Article 

    Google Scholar 
    Campera, M. et al. Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. Int. J. Primatol. 35, 957–975 (2014).Article 

    Google Scholar 
    Irwin, M. T. Diademed sifaka (Propithecus diadema) ranging and habitat use in continuous and fragmented forest: Higher density but lower viability in fragments?. Biotropica 40, 231–240 (2008).Article 

    Google Scholar 
    Volampeno, M. S., Masters, J. C. & Downs, C. T. Home range size in the blue-eyed black lemur (Eulemur flavifrons): A comparison between dry and wet seasons. Mamm. Biol. 76, 157–164 (2011).Article 

    Google Scholar 
    Boyle, S. A., Lourenço, W. A., da Silva, L. R. & Smith, A. T. Travel and spatial patterns change when Chiropotes satanas chiropotes inhabit forest fragments. Int. J. Primatol. 30, 515–531 (2009).Article 

    Google Scholar 
    Snaith, T. V. & Chapman, C. A. Red colobus monkeys display alternative behavioral responses to the costs of scramble competition. Behav. Ecol. 19, 1289–1296 (2008).Article 

    Google Scholar 
    Conklin-Brittain, N. L., Wrangham, R. W. & Hunt, K. D. Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. Int. J. Primatol. 19, 971–998 (1998).Article 

    Google Scholar 
    Wrangham, R. W., Conklin-Brittain, N. L. & Hunt, K. D. Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. Int. J. Primatol. 19, 949–970 (1998).Article 

    Google Scholar 
    Knott, C. D. Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating fruit availability. Int. J. Primatol. 19, 1061–1079 (1998).Article 

    Google Scholar 
    Campbell-Smith, G., Campbell-Smith, M., Singleton, I. & Linkie, M. Raiders of the lost bark: Orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962. https://doi.org/10.1371/journal.pone.0020962 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    N’guessan, A. K., Ortmann, S. & Boesch C.,. Daily energy balance and protein gain among Pan troglodytes verus in the Taï National Park, Côte d’Ivoire. Int. J. Primatol. 30, 481 (2009).Article 

    Google Scholar 
    Yamakoshi, G. Food seasonality and socioecology in Pan: Are West African chimpanzees another bonobo?. Afr. Study Monogr. 25, 45–60 (2004).
    Google Scholar 
    Ganas, J. & Robbins, M. M. Ranging behavior of the mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda: a test of the ecological constraints model. Behav. Ecol. Sociobiol. 58, 277–288 (2005).Article 

    Google Scholar 
    Rothman, J. M., Dierenfeld, E. S., Hintz, H. F. & Pell, A. N. Nutritional quality of gorilla diets: Consequences of age, sex, and season. Oecologia 155, 111–122. https://doi.org/10.1007/s00442-007-0901-1 (2008) (PMID: 17999090).ADS 
    Article 
    PubMed 

    Google Scholar 
    Grueter, C. C., Deschner, T., Behringer, V., Fawcett, K. & Robbins, M. M. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas. Physiol. Behav. 127, 13–19 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H. & Harvey, P. H. Species differences in feeding and ranging behaviour in Primates, Primate ecology: Studies on feeding and ranging behaviour in lemurs, monkeys and apes p l-631 (1977).Chapman, C. A. & Chapman, L. J. Constraints on group size in red colobus and red-tailed guenons: Examining the generality of the ecological constraints model. Int. J. Primatol. 21, 565–585 (2000).Article 

    Google Scholar 
    Markham, A. C., Gesquiere, L. R., Alberts, S. C. & Altmann, J. Optimal group size in a highly social mammal. PNAS 112, 14882–14887 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Janson, C. H. Food competition in brown capuchin monkey (Cebus apella)—Quantitative effects of group-size and tree productivity. Behaviour 105, 53–73 (1988).Article 

    Google Scholar 
    Aureli, F., Schaffner, C. M., Verpooten, J., Slater, K. & Ramos-Fernandez, G. Raiding parties of male spider monkeys: Insights into human warfare?. Am J Phys Anthropol 131, 486–497 (2006).PubMed 
    Article 

    Google Scholar 
    Donati, G. et al. Better few than hungry: flexible feeding ecology of collared lemurs Eulemur collaris in littoral forest fragments. PLoS ONE 6(5), e19807 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milton, K. Habitat, diet, and activity patterns of free-ranging woolly spider monkeys (Brachyteles arachnoides E. Geoffroy 1806). Int. J. Primatol. 5, 491–514 (1984).Article 

    Google Scholar 
    Wrangham, R. W., Gittleman, J. & Chapman, C. A. Constraints on group size in primates and carnivores: Population density and day-range as assays of exploitation competition. Behav. Ecol. Sociobiol. 32, 199–209. https://doi.org/10.1007/BF00173778 (1993).Article 

    Google Scholar 
    Chapman, C. A., Wrangham, R. W. & Chapman, L. J. Ecological constraints on group-size—An analysis of spider monkey and chimpanzee subgroups. Behav. Ecol. Sociobiol. 36, 59–70 (1995).Article 

    Google Scholar 
    Janson, C. H. & Goldsmith, M. L. Predicting group size in primates: Foraging costs and predation risks. Behav. Ecol. 6, 326–336 (1995).Article 

    Google Scholar 
    Chapman, C. A. & Pavelka, M. S. Group size in folivorous primates: Ecological constraints and the possible influence of social factors. Primates 46, 1–9 (2005).PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool. 183, 1–39 (1977).Article 

    Google Scholar 
    Isbell, L. A. Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behav. Ecol. 2, 143–155 (1991).Article 

    Google Scholar 
    Fimbel, C., Vedder, A., Dierenfeld, E. & Mulindahabi, F. An ecological basis for large group size in Colobus angolensis in the Nyungwe Forest, Rwanda. Afric. J. Ecol. 39, 83–92 (2001).
    Google Scholar 
    Snaith, T. V. & Chapman, C. A. Primate group size and socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16(3), 94–106 (2007).Article 

    Google Scholar 
    Gogarten, J. F. et al. Increasing group size alters behavior of a folivorous primate. Int. J. Primatol. 35, 590–608 (2014).Article 

    Google Scholar 
    Grueter, C. C. & van Schaik, C. P. Evolutionary determinants of modular societies in colobines. Behav. Ecol. 21, 63–71 (2010).Article 

    Google Scholar 
    Zhang, K., Zhou, Q., Xu, H. & Huang, Z. Effect of group size on time budgets and ranging behavior of white-headed Langurs in Limestone Forest, Southwest China. Folia Primatol. 91, 188–201. https://doi.org/10.1159/000502812 (2020).Article 

    Google Scholar 
    Lukas, D. & Huchard, E. The evolution of infanticide by males in mammalian societies. Science 346, 841–844 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Chapmam, C. A. Conspecific threat, predation avoidance, and resource defense: Implications for grouping in langurs. Behav. Ecol. Sociobiol. 39, 43–53 (1996).Article 

    Google Scholar 
    Crockett, C. M. & Janson, C. H. Infanticide in red howlers: female group size, male membership, and a possible link to folivory. In Infanticide by Males and Its Implications (eds van Schaik, C. P. & Janson, C. H.) 75–98 (Cambridge University Press, 2000).Chapter 

    Google Scholar 
    Gillespie, T. R. & Chapman, C. A. Determinants of group size in the red colobus monkey (Procolobus badius): An evaluation of the generality of the ecological-constraints model. Behav. Ecol. Sociobiol. 50, 329–338 (2001).Article 

    Google Scholar 
    Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32, 523–559 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harcourt, A. H. & Stewart, K. J. Gorilla Society: Conflict, Compromise, and Cooperation Between the Sexes (University of Chicago Press, 2007).Book 

    Google Scholar 
    Masi, S. & Bouret, S. Odor signals in wild western lowland gorillas: An involuntary and extra-group communication hypothesis. Physiol. Behav. 145, 123–126 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klailova, M. et al. Non-human predator interactions with wild great apes in Africa and the use of camera traps to study their dynamics. Folia Primatol. 83, 312–328 (2012).Article 

    Google Scholar 
    Remis, M. J. Ranging and grouping patterns of a western lowland gorilla group at Bai Hokou, Central African Republic. Am. J. Primatol. 43, 111–133 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remis, M. J. Western lowland gorillas (Gorilla gorilla gorilla) as seasonal frugivores: Use of variable resources. Am. J. Primatol. 43, 87–109 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tutin, C. E. G. Ranging and Social Structure of Lowland Gorillas in the Lope Reserve, Gabon. In McGrew WC 58–70 (Nishida TE Great ape societies. Cambridge University Press, 1996).
    Google Scholar 
    Goldsmith, M. L. Ecological constraints on the foraging effort of western gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Int. J. Primatol. 20, 1–23 (1999).Article 

    Google Scholar 
    Cipolletta, C. Effects of group dynamics and diet on the ranging patterns of a western gorilla group (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Am. J. Primatol. 64, 193–205 (2004).PubMed 
    Article 

    Google Scholar 
    Masi, S. et al. Unusual feeding behavior in wild great apes, a window to understand origins of self-medication in humans: Role of sociality and physiology on learning process. Physiol. Behav. 105, 337–349 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez, A. et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Molecul. Ecol. 24, 2551–2565 (2015).CAS 
    Article 

    Google Scholar 
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1–8 (2018).CAS 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Cipolletta, C. Ranging patterns of a western gorilla group during habituation to humans in the Dzanga-Ndoki National Park, Central African Republic. Int. J. Primatol. 24, 1207–1226 (2003).Article 

    Google Scholar 
    Rogers, M. E. et al. Western gorilla diet: A synthesis from six sites. Am. J. Primatol. 64, 173–192 (2004).PubMed 
    Article 

    Google Scholar 
    Doran-Sheehy, D., Mongo, P., Lodwick, J. & Conklin-Brittain, N. L. Male and Female Western Gorilla Diet: Preferred foods, use of fallback resources, and implications for ape versus Old World Monkey Foraging Strategies. Am. J. Phys. Anthropol. 140, 727–738 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Fossey, D. Gorillas in the Mist (Houghton Mifflin Company, 1983).
    Google Scholar 
    Granjon, A. C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. 23, 455–465 (2020).Article 

    Google Scholar 
    Parnell, R. J. Group size and structure in western lowland gorillas (Gorilla gorilla gorilla) at Mbeli Bai, Republic of Congo. Am. J. Primatol. 56, 193–206 (2002).PubMed 
    Article 

    Google Scholar 
    Vecellio, V. Rapid decline in the largest group of mountain gorillas. Gorilla J. 37, 6–7 (2008).
    Google Scholar 
    Bermejo, M. Home-range use and intergroup encounters in western gorillas (Gorilla g. gorilla) at Lossi forest, North Congo. Am. J. Primatol. 64, 223–232 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Breuer, T., Hockemba, M. B. N., Olejniczak, C., Parnell, R. J. & Stokes, E. J. Physical maturation, life-history classes and age estimates of free-ranging Western Gorillas-Insights from Mbeli Bai, Republic of Congo. Am. J. Primatol. 71, 106–119 (2009).PubMed 
    Article 

    Google Scholar 
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–266 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental-influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trend. Ecol. Evol. 24(3), 127–135 (2009).Article 

    Google Scholar 
    Focardi, S. & Pecchioli, E. Social cohesion and foraging decrease with group size in fallow deer (Dama dama). Behav. Ecol. Sociobiol. 59, 84–91 (2005).Article 

    Google Scholar 
    Lagory, K. E. Habitat, group size, and the behaviour of white-tailed deer. Behaviour 98, 68–179 (1986).Article 

    Google Scholar 
    White, F. J. Seasonality and socioecology: The importance of variation in fruit abundance to bonobo sociality. Int. J. Primatol. 19, 1013–1027 (1998).Article 

    Google Scholar 
    Brockman, D. K. & Van Schaik, C. P. Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates (Cambridge University Press, 2005).Book 

    Google Scholar 
    Donati, G., Bollen, A., Borgognini-Tarli, S. M. & Ganzhorn, J. U. Feeding over the 24-h cycle: dietary flexibility of cathemeral collared lemurs (Eulemur collaris). Behav. Ecol. Sociobiol. 61, 1237–1251 (2007).Article 

    Google Scholar 
    Simmen, B. et al. Total energy expenditure and body composition in two free-living sympatric lemurs. PLoS ONE 5, e9860 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harrison, M. E., Morrogh-Bernard, H. C. & Chivers, D. J. Orangutan energetics and the influence of fruit availability in the nonmasting peat-swamp forest of Sabangau, Indonesian Borneo. Int. J. Primatol. 31, 585–607 (2010).Article 

    Google Scholar 
    Seiler, N. & Robbins, M. M. Using long-term ranging patterns to assess within-group and between-group competition in wild mountain gorillas. BMC Ecol. 20(1), 1–13 (2020).Article 

    Google Scholar 
    Dias, P. A. D., Rangel-Negrín, A., Coyohua-Fuentes, A. & Canales-Espinosa, D. Variation in dietary breadth among groups of black howler monkeys is not associated with the vegetation attributes of forest fragments. Am. J. Primatol. 76, 1151–1162 (2014).PubMed 
    Article 

    Google Scholar 
    Parker, K. L., Barboza, P. S. & Stephenson, T. R. Protein conservation in female caribou (Rangifer tarandus): Effects of decreasing diet quality during winter. J. Mammal 86, 610–622. https://doi.org/10.1644/1545-1542 (2005).Article 

    Google Scholar 
    Bean, A. Ecology of sex differences in great ape foraging. Comparat. Primate Socioecol. 19, 22–339 (2001).
    Google Scholar 
    Grueter, C. C. et al. Fallback foods of temperate-living primates: A case study on snub-nosed monkeys. Am. J. Phys. Anthrop. 40(4), 700–715 (2009).Article 

    Google Scholar 
    Milton, K. Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. Am. Anthropol. 83, 534–548 (1981).Article 

    Google Scholar 
    Koenig, A., Beise, J., Chalise, M. K. & Ganzhorn, J. U. When females should contest for food—Testing hypotheses about resource density, distribution, size, and quality with Hanuman langurs (Presbytis entellus). Behav. Ecol. Sociobiol. 42, 225–237 (1998).Article 

    Google Scholar 
    Van Soest, P. J. Nutritional Ecology of the Ruminant (Cornell University Press, 2018).
    Google Scholar 
    Chivers, D. J. & Hladik, C. M. Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. J. Morphol. 166, 337–386 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remis, M. J. & Dierenfeld, E. S. Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. Int. J. Primatol. 25, 825–845 (2004).Article 

    Google Scholar 
    Redford, K. H. & Dorea, J. G. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203, 385–395 (1984).CAS 
    Article 

    Google Scholar 
    McGrew, W. C. The ‘other faunivory’revisited: insectivory in human and non-human primates and the evolution of human diet. J. Hum. Evol. 71, 4–11 (2014).PubMed 
    Article 

    Google Scholar 
    Isbell, L. A. & Young, T. P. Interspecific and temporal variation of ant species within Acacia drepanolobium ant domatia, a staple food of patas monkeys (Erythrocebus patas) in Laikipia, Kenya. Am. J. Primatol. 69, 1387–1398 (2007).PubMed 
    Article 

    Google Scholar 
    Deblauwe, I., Dupain, J., Nguenang, G. M., Werdenich, D. & Van Elsacker, L. Insectivory by Gorilla gorilla gorilla in Southeast Cameroon. Int. J. Primatol. 24, 493–502 (2003).Article 

    Google Scholar 
    Cipolletta, C. et al. Termite feeding by Gorilla gorilla gorilla at Bai Hokou, Central African Republic. Int. J. Primatol. 28, 457–476 (2007).Article 

    Google Scholar 
    Janson, C. H. Evolutionary ecology of primate social structure. Evol. Ecol. Hum. Behav. 95–130 (1992).Chapman, C. Ecological constraints on group size in three species of neotropical primates. Folia Primatol. 55, 1–9. https://doi.org/10.1159/000156492 (1990).CAS 
    Article 

    Google Scholar 
    Doran, D. M. & McNeilage, A. Subspecific Variation in Gorilla Behavior: The Influence of Ecological and Social Factors. In Mountain gorillas: three decades of research at Karisoke (eds Robbins, M. M. et al.) 123–149 (Cambridge University Press, 2001).Chapter 

    Google Scholar 
    Thouless, C. R. Feeding competition between grazing red deer hinds. Anim. Behav. 40, 105–111 (1990).Article 

    Google Scholar 
    Baudouin, A. et al. Disease avoidance, and breeding group age and size condition the dispersal patterns of western lowland gorilla females. Ecology 100, e02786. https://doi.org/10.1002/ecy.2786 (2019).Article 
    PubMed 

    Google Scholar 
    Breuer, T., Robbins, A. M., Boesch, C. & Robbins, M. M. Phenotypic correlates of male reproductive success in western gorillas. J. Hum. Evol. 62, 466–472 (2012).PubMed 
    Article 

    Google Scholar 
    Stokes, E. J., Parnell, R. J. & Olejniczak, C. Female dispersal and reproductive success in wild western lowland gorillas (Gorilla gorilla gorilla). Behav. Ecol. Sociobiol. 54, 329–339. https://doi.org/10.1007/s00265-003-0630- (2003).Article 

    Google Scholar 
    Manguette, M. L., Breuer, T., Robeyst, J., Kandza, V. H. & Robbins, M. M. Infant survival in western lowland gorillas after voluntary dispersal by pregnant females. Primates https://doi.org/10.1007/s10329-020-00844-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification

    The data reported in this study expands upon the present knowledge concerning the mineralogy of coralline algae species worldwide, encompassing for the first time coralline algae species data from the Southwest Atlantic Ocean, where this group is the main frame-builders in coral reefs and the major inner component in rhodoliths16,26.Mineralogical analysis revealed that coralline algae species of the Brazilian Shelf were mainly formed of high-Mg calcite. Six coralline algae species in this study had the same range of high-Mg calcite, between 80 and 100%, than the same species from different regions of the world: Lithophyllum corallinae, Lithophyllum kaiseri (as Lithophyllum congestum), Lithophyllum stictaeforme, Lithothamnion crispatum, Melyvonnea erubecens (as Lithothamnion erubecens) and Sporolithon episporum (Table S2). This result confirms that species from different families, such as Corallinaceae, Hapalidiaceae and Sporolithaceae have a CaCO3 skeleton formed mainly of high-Mg calcite.In agreement with earlier studies, the average high-Mg calcite content in Corallinaceae was very similar to the results compiled by Smith et al.11 (96.7 wt.% and 96.2 wt.%, respectively). This pattern was also observed for Hapalidiaceae, which presented a mean value of 88.9 ± 3.6 wt.% in our study and 90.2 wt.%. However, Smith et al.11 registered a high-Mg calcite content of 98 wt.% for Sporolithaceae, while in our study this polymorph had a mean occurrence of 86.2 ± 6.5 wt.%. This percentage can be attributed mainly to the lower content of high-Mg calcite found in Sporolithon yoneshigueae, which is an endemic species of the Brazilian Shelf27.The high similarity between the mineralogy (% high-Mg calcite, % aragonite and % dolomite) of the species belonging to three encrusting algae families, revealed by the cluster analysis, emphasizes the lack of CaCO3 disparities over skeleton mineralogy of coralline algae at family level. This aspect was also evidenced by several studies concerning coralline algae mineralogy11,21,22,23,24,25. This fact was confirmed in the cluster analysis between the mineralogy of the studied coralline species, in which samples from different families were grouped. Considering these findings, the mineralogical pattern exhibited by the crustose algae may not be driven by taxonomic classification, as was first proposed by Chave28. Therefore, the skeletal mineralogy from Brazilian coralline algae species can not be used as a taxonomic character, not even for higher taxonomic levels.In this sense, the mineralogical analysis from L. crispatum, the most common rhodolith-forming species on the Brazilian Shelf16, revealed that samples from the Abrolhos Bank presented higher high-Mg calcite in their composition, and the highest % of Mg substitution in the calcite lattice than the species from the other four regions studied. One of the possible explanations is that the Abrolhos Bank has the highest seawater temperature compared to the other four sites, which influences CCA mineralogy. This result corroborates the hypothesis that coralline algae species do not have a strict control over Mg precipitation as stated by Stanley et al.29. In addition to seawater temperature, Mg/Ca ratio in seawater can also affect the incorporation of magnesium into coralline algae skeletons11,29.In relation to other CaCO3 polymorphs, previous studies have registered some species with up to 20% aragonite11,12. Meanwhile, in this study, S. yoneshigueae presented CaCO3 skeletons formed of more than 30% of aragonite, which expands the range found in coralline algae for this polymorph. The high percentage of aragonite found in S. yoneshigueae could be related to the fact that this species presents larger overgrown calcified empty tetrasporangial compartments, in comparison with other Sporolithaceae species27, which could be filled with aragonite. This feature has mainly been described in the overgrown conceptacles of Lithothamnion sp.30 and in cell infills of Porolithon onkodes31. The presence of aragonite could be also attributed to the use of aragonite granules in the sediment to repair any damage in the alga-substrate attachment32.Raman mapping showed the presence of high-Mg calcite in the bulk of the cell wall with little aragonite in its inner part, which seems to form an inner “shell”, closer to the cell membrane. To date, this is the first study that has utilized Raman maps to show the localization of aragonite in cell walls of coralline algae. The maps consisted of the cellular living layer from the coralline algae crust, right beneath the epithelial cells, which indicates that the mineralization of aragonite occurred in live cells and it was probably not a remineralization process.Aragonite inside cell bodies was first seen by Nash et al.12 using Backscattered Scanning Electron Microscopy. They also reported the presence of dolomite or protodolomite, which were not observed herein by Raman spectroscopy, probably because of the low amount of this polymorph.Previous studies considered that the inclusion of dolomite into carbonate skeletons is a microbial-mediated process after cell death upon the discovery of microbial-associated dolomite formation in anoxic marine33 and freshwater environments34. The presence of several calcium carbonate polymorphs found in coralline algae raises the question of whether all these polymorphs are in fact synthesized by the algae.Indeed, the role of coralline algae in the different forms of calcium carbonate crystal precipitation is a crucial issue that should be addressed. Nowadays, studies calculate the production of CaCO3 by coralline algae based on CCA coverage35, without considering that not all CaCO3 produced in that structure is related to coralline algae biomineralization processes (e.g. secondary calcification processes such as infilling of the older skeleton and skeletal dissolution vs newly deposited carbonate). Therefore, it would be misleading to presume the net CaCO3 accretion of coralline algae structures without knowing the origin of the CaCO3 processes. This is also valid in relation to studies on the influences of atmospheric [CO2] rise on coralline algae, based on weight changes36,37,38 and its impacts on the mineralogy of the existing crust21.Concerning Mg2+ substitution in the high-Mg calcite lattice, we found that Brazilian encrusting algae possess a higher Mg-substitution (46.3% more Mg2+ than the global average) in calcite than specimens collected worldwide. A possible explanation for the higher mean Mg2+ content might be related to the high seawater temperatures39, as this was also observed along the tropical Brazilian Continental Shelf. This can be exemplified by the high Mg2+ content found in fourteen species that occur in warmer waters of the Brazilian Shelf, where the mean surface seawater temperature (SST) ranged between 26.4 and 29.8 °C (from 2008 to 2016), between 17°S and 3°N. The lower Mg2+ amounts presented in L. margaritae and L. attlanticum could also be explained by the temperature, as these species were collected at the southernmost site (27°S) in the temperate zone, where the mean SST (from 2008 to 2016) varied between 22.5 and 25 °C (NOAA Comprehensive Large Array-Data Stewardship System-CLASS: SST50). A relationship between the Mg2+ content and temperature has already been proposed in previous works39 and is widely accepted. Nash and Adey40, when plotting the data collected using XRD, found a very strong correlation coefficient (R2 = 0.975) between mol% MgCO3 in coralline algae and temperature. Moreover, the Mg/Ca rate in coralline algae is used as a proxy archive41 and to generate multicentury-scale climate records from extratropical oceans42.Although seawater temperature is loosely associated with latitude, the New Zealand species, for example, are subjected to lower temperatures (2012 annual maximum and minimum surface seawater temperatures: 21 and 18.7 °C, respectively), while Caribbean and Cocos Island algae grow at higher temperatures (2008–2016 annual maximum and minimum surface seawater temperatures: 29.5 and 23.4 °C, respectively) (NOAA Comprehensive Large Array-Data Stewardship System – CLASS: SST50). If we consider the differences in temperature (≅ 6 °C) and Mg2+ content difference (7.67 wt.%) between the sampling sites along the Brazilian Shelf, we can infer that there is an average increase of 1.27 wt.% of Mg2+ per °C. This value is in the range from 0.4 to 2 wt.% Mg per °C reported previously, both in experimentally and in situ studies39.This relationship between Mg substitution and temperature is also critical in face of the temperature risen episodes that we are seeing all over the world43, including the Brazilian Shelf44. If coralline algae produces High Mg calcite with more Mg substitution in higher seawater temperatures, these thermal anomalies could force the production of a highly soluble polymorph, making coralline algae skeleton even more prone to dissolution.It is well known that high-Mg calcite is the most soluble CaCO3 crystalline polymorph under acidified conditions and that this dissolution is more evident when Mg substitution in the calcite lattice is higher45. In our study 70% of the coralline algae species presented a Mg substitution in the range of 12 to 24% and the mean Mg substitution was 21.1%, which reinforces the susceptibility of Southwestern Atlantic coralline algae to future high [CO2] scenarios.Even though previous experiments using synthetic calcium carbonate showed that the rise of seawater temperature increases Mg substitution, making high-Mg calcite more stable46 and other studies claiming that coralline algae with higher Mg substitution (more than 24% in average) presented less dissolution when exposed to high [CO2]13, Southwestern Ocean coralline algae are already living in a limit situation, where seawater can reach temperatures up to 28 ºC. Since we have a correlation between Mg substitution and temperature around 1.27% Mg per 1 ºC, it would take 2.4 to 6.2 ºC rise so the alga starts to produce a more stable calcite polymorph. Such a temperature rise could be lethal to these algae, also promoting a surface microbial shift that could be crucial to sucectional processes (e.g. settlement) involving other marine organisms, such as corals, which is critical for reef regeneration and recovery from climate-related mortality events47. The comparisons of results obtained through assays with synthetic calcium carbonate must be done with caution, because it should be take into account that the complex calcium carbonate biomineralization processes performed by marine organisms are highly dependent of a narrow range of environmental conditions.In face of the dependency of these environmental conditions, the broad range of Mg content in temperate coralline algae25, a high inter species variability in the % Mg in this study (Abrolhos Bank; 14.5 to 28.8% Mg), as well as an anatomical difference in Mg content in coralline algae40, suggest that other environmental parameters (e.g. Mg/Ca in seawater, light, salinity, etc.) could also drive Mg substitution in coralline algae. Furthemore, coralline algae biological processes might exert some kind of control over Mg-calcite calcification which make them more resilient under rising CO239.Long-term projections of ocean acidification and the CaCO3 saturation state indicated that high-latitude seawater will be undersaturated with respect to high-Mg calcite in the second half of this century45. Early results with coralline algae Sonderophycus capensis and Lithothamnion crispatum in a subtropical mesocosm in Brazil showed that an increase in seawater pCO2 (1000 ppm) enabled both species to continue photosynthesizing but did cause carbonate dissolution48.However, coralline algae from the North Atlantic Ocean, where the temperatures are lower, presented the lowest Mg substitution mean (11.91%), with some algae presenting only 8% of Mg substitution. This fact confers a more stable calcite skeleton to face ocean acidification then individuals from tropical environments. In addition, coralline algae from the Southwestern Atlantic Ocean are already living at temperatures that can be considered a limit for their survival. In fact, for cold water species, a subtle temperature increase could be beneficial in terms of their metabolism, photosynthesis and biomineralization.By the year 2100, surface seawater in all climatic zones could be undersaturated or at metastable equilibrium, with a high-Mg calcite phase containing ≥ 12 mol% Mg45. This could be catastrophic to coralline algae from the Southwest Atlantic Ocean, which produce CaCO3 crystals with more than 20% of Mg substitution in average as shown by the present study and for all the carbonate structures (e.g. rhodolith beds, coralline reefs, etc.) that depends on these skeletons to maintain and grow.It is worth to mention that coralline algae are present since the Mesozoic, in particular Sporolithaceans, which were already abundant in Cretaceous shallow waters49 and have already been submitted to bigger climate change events in the past, such as the Paleocene-Eocene Thermal Maximum (PETM), in which the deep-water temperature increased ∼5 ºC and a massive carbon cycle change took place with a large amount of CO2 absorbed by the oceans50. One of the possible explanations for the survival of coralline algae is that their biomineralogical control is limited to polymorph specification and would be ineffectual in the regulation of skeletal Mg incorporation51. In this sense, in past geological eras, such as the Cretaceous and Paleogene, the Mg/Ca ratio of the oceans favors the precitation of low Mg calcite29,52, which are more stable to dissolution. In a parallel to present day, other fundamental aspect we should take into account is the speed of progression of these changes. Actually, we know that the fast evolution of temperature and acidification present scenarios may result in significant impact on marine biodiversity and in marine calcium carbonate cycle players, as reef organisms and CCA.Carvalho et al.53 proposed that there would be a suitable area for rhodolith occurrence around 230,000 km2, providing a new magnitude to Brazilian Continental Shelf relevance as a major world biofactory of carbonate. In fact, this work confirms the estimation from previous studies, which indicated that this area would correspond to a 2 × 1011 tons of carbonate deposit of the Brazilian coast53. Among the most critical regions in the Brazilian coast, the Abrolhos Bank encompasses the largest continuous latitudinal rhodolith beds registered to date6, which is responsible for the production of approximately 0.025 Gt−1 year−1 of calcium carbonate, similar to those values reported for major tropical reef environments54,55. Another recently described important reef area on the Brazilian Shelf is an extensive carbonate system (≅ 9500 km2) off the Amazon River mouth56, which is composed of mesophotic carbonate reefs and rhodolith beds. These huge carbonate reservoirs and biodiversity hotspots may undergo a major decline if global ocean acidification and temperature rise take place in the near future. More

  • in

    Deciphering waste bound nitrogen by employing psychrophillic Aporrectodea caliginosa and priming of coprolites by associated heterotrophic nitrifiers under high altitude Himalayas

    Blume-Werry, G. et al. Invasive earthworms unlock arctic plant nitrogen limitation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Marhan, S. & Scheu, S. Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biol. Fertil. Soils 42, 308 (2006).Article 

    Google Scholar 
    Sanchez-Hernandez, J. C. Vermiremediation of Pharmaceutical-Contaminated Soils and Organic Amendments (Springer, Berlin, 2020).Book 

    Google Scholar 
    Gómez-Brandón, M., Aira, M., Lores, M. & Domínguez, J. Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresour. Technol. 102, 4171–4178. https://doi.org/10.1016/j.biortech.2010.12.057 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aira, M. & Domínguez, J. Earthworm effects without earthworms: Inoculation of raw organic matter with worm-worked substrates alters microbial community functioning. PLoS ONE 6, e16354. https://doi.org/10.1371/journal.pone.0016354 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blair, J., Parmelee, R. W., Allen, M. F., McCartney, D. & Stinner, B. R. Changes in soil N pools in response to earthworm population manipulations in agroecosystem with different N sources. Soil Biol. Biochem. 29, 361–367. https://doi.org/10.1016/S0038-0717(96)00098-3 (1997).CAS 
    Article 

    Google Scholar 
    Abail, Z. & Whalen, J. K. Earthworm contributions to soil nitrogen supply in corn-soybean agroecosystems in Quebec. Canada. Pedosphere 31, 405–412. https://doi.org/10.1016/S1002-0160(20)60086-8 (2021).Article 

    Google Scholar 
    Frelich, L. E. et al. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 8, 1235–1245. https://doi.org/10.1007/s10530-006-9019-3 (2006).Article 

    Google Scholar 
    Ding, W. et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Sci. Total Environ. 781, 146884 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Treder, K., Jastrzębska, M., Kostrzewska, M. K. & Makowski, P. Do long-term continuous cropping and pesticides affect earthworm communities?. Agronomy 10, 586 (2020).CAS 
    Article 

    Google Scholar 
    Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022. https://doi.org/10.1016/j.soilbio.2006.11.011 (2007).CAS 
    Article 

    Google Scholar 
    Scheu, S., Schlitt, N., Tiunov, A. V., Newington, J. E. & Jones, H. T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133, 254–260. https://doi.org/10.1007/s00442-002-1023-4 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Sheikh, T. et al. Unveiling the efficiency of psychrophillic aporrectodea caliginosa in deciphering the nutrients from dalweed and cow manure with bio-optimization of coprolites. Sustainability 13, 5338 (2021).CAS 
    Article 

    Google Scholar 
    Lavelle, P. & Spain, A. V. Soil Ecology (Springer, Dordrecht, 2001).Book 

    Google Scholar 
    Aubert, L., Konradova, D., Barris, S. & Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. https://doi.org/10.1111/ppl.13248 (2020).Article 
    PubMed 

    Google Scholar 
    Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84. https://doi.org/10.1016/j.soilbio.2012.06.010 (2012).CAS 
    Article 

    Google Scholar 
    Chkrebtii, O. A., Cameron, E. K., Campbell, D. A. & Bayne, E. M. Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension. Comput. Stat. Data Anal. 86, 97–110. https://doi.org/10.1016/j.csda.2015.01.002 (2015).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Szlavecz, K. et al. Invasive earthworm species and nitrogen cycling in remnant forest patches. Appl. Soil. Ecol. 32, 54–62. https://doi.org/10.1016/j.apsoil.2005.01.006 (2006).Article 

    Google Scholar 
    Liu, M., Cao, J. & Wang, C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol. Environ. Saf. 189, 109996 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194. https://doi.org/10.1038/nclimate1692 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Z., Chen, Z., Niu, Y., Ren, P. & Hao, M. Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicol. Environ. Saf. 214, 111994 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elyamine, A. M. & Hu, C. Earthworms and rice straw enhanced soil bacterial diversity and promoted the degradation of phenanthrene. Environ. Sci. Eur. 32, 124. https://doi.org/10.1186/s12302-020-00400-y (2020).CAS 
    Article 

    Google Scholar 
    Sun, M. et al. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140008 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turp, G. A., Turp, S. M., Ozdemir, S. & Yetilmezsoy, K. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2021.101691 (2021).Article 

    Google Scholar 
    Lv, B., Zhang, D., Chen, Q. & Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 287, 121428. https://doi.org/10.1016/j.biortech.2019.121428 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sharma, K. & Garg, V. K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Castillo Diaz, J. M., Martin-Laurent, F., Beguet, J., Nogales, R. & Romero, E. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Sci. Total Environ. 579, 1111–1119. https://doi.org/10.1016/j.scitotenv.2016.11.082 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samal, K., Raj Mohan, A., Chaudhary, N. & Moulick, S. Application of vermitechnology in waste management: A review on mechanism and performance. J. Environ. Chem. Eng. 7, 103392. https://doi.org/10.1016/j.jece.2019.103392 (2019).CAS 
    Article 

    Google Scholar 
    Katakula, A. A. N., Handura, B., Gawanab, W., Itanna, F. & Mupambwa, H. A. Optimized vermicomposting of a goat manure-vegetable food waste mixture for enhanced nutrient release. Sci. Afr. 12, e00727 (2021).
    Google Scholar 
    Cáceres, R., Malińska, K. & Marfà, O. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lv, B., Cui, Y., Wei, H., Chen, Q. & Zhang, D. Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J. Hazard. Mater. 400, 123215 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, L. et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung. Environ. Sci. Pollut. Res. 28, 19412–19423 (2021).CAS 
    Article 

    Google Scholar 
    Chen, C., Whalen, J. K. & Guo, X. Earthworms reduce soil nitrous oxide emissions during drying and rewetting cycles. Soil Biol. Biochem. 68, 117–124. https://doi.org/10.1016/j.soilbio.2013.09.020 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X. et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res. 77, 191–200. https://doi.org/10.1016/j.watres.2015.03.019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, Z., Sun, H. & Wu, W. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods. Environ. Sci. Pollut. Res. 27, 21560–21569. https://doi.org/10.1007/s11356-020-08290-6 (2020).CAS 
    Article 

    Google Scholar 
    Pan, Z. et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 301, 122726. https://doi.org/10.1016/j.biortech.2019.122726 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia, L., Li, X., Fan, W. & Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp .ND7 isolated from municipal activated sludge. Bioresour. Technol. 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dad, J. M. & Khan, A. B. Threatened medicinal plants of Gurez Valley, Kashmir Himalayas. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 20–26. https://doi.org/10.1080/21513732.2011.602646 (2011).Article 

    Google Scholar 
    Cameira, M. D. & Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae https://doi.org/10.3390/horticulturae3010025 (2017).Article 

    Google Scholar 
    Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W. & Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5 (2000).CAS 
    Article 

    Google Scholar 
    Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).CAS 
    Article 

    Google Scholar 
    Makoto, K., Bryanin, S. V. & Takagi, K. The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. Appl. Soil. Ecol. 144, 1–7. https://doi.org/10.1016/j.apsoil.2019.06.019 (2019).Article 

    Google Scholar 
    Huang, K. et al. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes. Environ. Sci. Pollut. Res. Int. 23, 13569–13575. https://doi.org/10.1007/s11356-016-6848-1 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Makoto, K., Minamiya, Y. & Kaneko, N. Differences in soil type drive the intraspecific variation in the responses of an earthworm species and consequently, tree growth to warming. Plant Soil 404, 209–218. https://doi.org/10.1007/s11104-016-2827-z (2016).CAS 
    Article 

    Google Scholar 
    Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474. https://doi.org/10.1016/j.soilbio.2004.04.021 (2004).CAS 
    Article 

    Google Scholar 
    Zhang, H., Li, J., Zhang, Y. & Huang, K. Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Env. Res. Public Health 17, 1748 (2020).CAS 
    Article 

    Google Scholar 
    Velasco-Velasco, J., Parkinson, R. & Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 102, 10959–10964 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dan, X. et al. Effects of changing temperature on gross N transformation rates in acidic subtropical forest soils. Forests 10, 894 (2019).Article 

    Google Scholar 
    Gusain, R. & Suthar, S. Vermicomposting of invasive weed Ageratum conyzoids: Assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresour. Technol. 312, 123537 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klaasen, H. L., Koopman, J. P., Poelma, F. G. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8, 165–180. https://doi.org/10.1111/j.1574-6968.1992.tb04986.x (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fischer, K., Hahn, D., Daniel, O., Zeyer, J. & Amann, R. I. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can. J. Microbiol. 41, 666–673. https://doi.org/10.1139/m95-092 (1995).CAS 
    Article 

    Google Scholar 
    Karsten, G. R. & Drake, H. L. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl. Environ. Microbiol. 61, 1039–1044. https://doi.org/10.1128/AEM.61.3.1039-1044.1995 (1995).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobson, A. M., Frederickson, J. & Dise, N. B. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag. 25, 345–352. https://doi.org/10.1016/j.wasman.2005.02.015 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Singh, A. et al. Earthworms and vermicompost: An eco-friendly approach for repaying nature’s debt. Environ. Geochem. Health 42, 1617–1642 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zedelius, J. et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol. Rep. 3, 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, R., Suter, H. C., He, J.-Z., Hayden, H. & Chen, D. Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J. Soils Sed. https://doi.org/10.1007/s11368-015-1170-y (2015).Article 

    Google Scholar 
    Zhang, Y. et al. Composition of soil recalcitrant C regulates nitrification rates in acidic soils. Geoderma 337, 965–972. https://doi.org/10.1016/j.geoderma.2018.11.014 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, J., Sun, W., Zhong, W. & Cai, Z. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol. Biochem. 76, 143–148. https://doi.org/10.1016/j.soilbio.2014.05.001 (2014).CAS 
    Article 

    Google Scholar 
    Abail, Z., Sampedro, L. & Whalen, J. K. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Appl. Soil. Ecol. 116, 79–86 (2017).Article 

    Google Scholar 
    Coq, S., Barthès, B. G., Oliver, R., Rabary, B. & Blanchart, E. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues—an experimental study (Madagascar). Soil Biol. Biochem. 39, 2119–2128 (2007).CAS 
    Article 

    Google Scholar 
    Medina-Sauza, R. M. et al. Earthworms building up soil microbiota, a review. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00081 (2019).Article 

    Google Scholar 
    Aira, M., Monroy, F. & Domínguez, J. Ageing effects on nitrogen dynamics and enzyme activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49, 467–473 (2005).CAS 
    Article 

    Google Scholar 
    Clause, J., Barot, S., Richard, B., Decaëns, T. & Forey, E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Appl. Soil. Ecol. 83, 149–158 (2014).Article 

    Google Scholar 
    McDaniel, J. P., Stromberger, M. E., Barbarick, K. A. & Cranshaw, W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl. Soil. Ecol. 71, 1–6 (2013).Article 

    Google Scholar 
    Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubbers, I., Brussaard, L., Otten, W. & Van Groenigen, J. Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. Eur. J. Soil Sci. 62, 152–161 (2011).CAS 
    Article 

    Google Scholar 
    Peter, S. D. J., George, G. B., Siu, M. T., Marcus, A. H. & Harold, L. D. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa. FEMS Microbiol. Ecol. 83, 375–391. https://doi.org/10.1111/j.1574-6941.2012.01476.x (2013).CAS 
    Article 

    Google Scholar 
    Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases terr. Ecosyst. Atmos. 47, 7–21 (1989).CAS 

    Google Scholar 
    Zhu, X. et al. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China. Soil Biol. Biochem. 103, 106–116 (2016).CAS 
    Article 

    Google Scholar 
    Yu, D.-S. et al. Simultaneous nitrogen and phosphorus removal characteristics of an anaerobic/aerobic operated spndpr system treating low C/N urban sewage. Huan Jing ke Xue Huanjing Kexue 39, 5065–5073 (2018).PubMed 

    Google Scholar 
    Wang, F., Zhao, Y., Xie, S. & Li, J. Implication of nitrifying and denitrifying bacteria for nitrogen removal in a shallow lake. Clean: Soil, Air, Water 45, 1500319 (2017).
    Google Scholar 
    Wang, J. et al. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 34, 1546–1552. https://doi.org/10.1016/j.wasman.2014.04.010 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nigussie, A., Kuyper, T. W., Bruun, S. & de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 139, 429–439. https://doi.org/10.1016/j.jclepro.2016.08.058 (2016).CAS 
    Article 

    Google Scholar 
    Yang, F., Li, G., Zang, B. & Zhang, Z. The maturity and CH4, N2O, NH3 emissions from vermicomposting with agricultural waste. Compost Sci. Util. 25, 262–271. https://doi.org/10.1080/1065657X.2017.1329037 (2017).CAS 
    Article 

    Google Scholar 
    Ma, L. et al. Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degrad. Dev. 31, 1792–1802 (2020).Article 

    Google Scholar 
    Xu, X. et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour. Technol. 297, 122467 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, X., Xing, M., Wang, Y., Xu, Z. & Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manag. 170, 207–214. https://doi.org/10.1016/j.jenvman.2016.01.022 (2016).CAS 
    Article 

    Google Scholar 
    Kremen, A., Bear, J., Shavit, U. & Shaviv, A. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environ. Sci. Technol. 39, 4180–4188. https://doi.org/10.1021/es048304z (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y., Song, C., Zhou, Z., Cao, X. & Zhou, Y. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese Shallow Lakes. Water 11, 1809 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Das, D. & Deka, H. Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: Changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28, 35717–35727 (2021).CAS 
    Article 

    Google Scholar 
    Fernández-Gómez, M. J., Romero, E. & Nogales, R. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour. Technol. 101, 9654–9660. https://doi.org/10.1016/j.biortech.2010.07.109 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Biruntha, M. et al. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 297, 122398 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Devi, C. & Khwairakpam, M. Feasibility of vermicomposting for the management of terrestrial weed Ageratum conyzoides using earthworm species Eisenia fetida. Environ. Technol. Innov. 18, 100696. https://doi.org/10.1016/j.eti.2020.100696 (2020).Article 

    Google Scholar 
    Garg, P., Gupta, A. & Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 97, 391–395. https://doi.org/10.1016/j.biortech.2005.03.009 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, K., Li, F., Wei, Y., Fu, X. & Chen, X. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 170, 45–52. https://doi.org/10.1016/j.biortech.2014.07.058 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gusain, R. & Suthar, S. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: Changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour. Technol. 311, 123585 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karmegam, N. et al. Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresour. Technol. 319, 124136. https://doi.org/10.1016/j.biortech.2020.124136 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhattacharya, S. S. & Chattopadhyay, G. N. Transformation of nitrogen during vermicomposting of fly ash. Waste Manag. Res. 22, 488–491. https://doi.org/10.1177/0734242X04048625 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hussain, N., Abbasi, T. & Abbasi, S. Transformation of the pernicious and toxic weed parthenium into an organic fertilizer by vermicomposting. Int. J. Environ. Stud. 73, 731–745 (2016).CAS 
    Article 

    Google Scholar 
    Rai, R. & Suthar, S. Composting of toxic weed Parthenium hysterophorus: Nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresour. Technol. 311, 123523 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whalen, J. K., Parmelee, R. W. & Subler, S. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. Biol. Fertil. Soils 32, 347–352. https://doi.org/10.1007/s003740000259 (2000).CAS 
    Article 

    Google Scholar 
    Esmaeili, A., Khoram, M. R., Gholami, M. & Eslami, H. Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J. Clean. Prod. 242, 118523 (2020).CAS 
    Article 

    Google Scholar 
    Karmegam, N., Vijayan, P., Prakash, M. & Paul, J. A. J. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 228, 718–728 (2019).CAS 
    Article 

    Google Scholar 
    Paul, J. A., Karmegam, N. & Daniel, T. Municipal solid waste (MSW) vermicomposting with an epigeic earthworm Perionyx ceylanensis Mich. Bioresour. Technol. 102, 6769–6773. https://doi.org/10.1016/j.biortech.2011.03.089 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, K., Xia, H., Cui, G. & Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 578, 337–345. https://doi.org/10.1016/j.scitotenv.2016.10.172 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mokgophi, M. M., Manyevere, A., Ayisi, K. K. & Munjonji, L. Characterisation of chamaecytisus tagasaste, moringa oleifera and vachellia karroo vermicomposts and their potential to improve soil fertility. Sustainability 12, 9305 (2020).CAS 
    Article 

    Google Scholar 
    Pathma, J. & Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 26–26. https://doi.org/10.1186/2193-1801-1-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villar, I., Alves, D., Pérez-Díaz, D. & Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 48, 409–417 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Y. et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 245, 411–418 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, B. H., Boström, U. & Klemedtson, L. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biol. Fertil. Soils 2, 147–149. https://doi.org/10.1007/BF00257593 (1986).Article 

    Google Scholar 
    Syers, J. K. & Springett, J. A. Earthworms and Soil Fertility. In Biological Processes and Soil Fertility (eds Tinsley, J. & Darbyshire, J. F.) 93–104 (Springer Netherlands, Dordrecht, 1984).Chapter 

    Google Scholar 
    Mohanty, S. R. et al. nitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, G. et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Sci. Total Environ. 644, 494–502 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Paliwal, R. & Julka, J. Checklist of earthworms of western Himalaya, India. Zoos’ Print J. 20, 1972–1976 (2005).Article 

    Google Scholar 
    Gal, C., Frenzel, W. & Möller, J. Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim. Acta 146, 155–164. https://doi.org/10.1007/s00604-004-0193-7 (2004).CAS 
    Article 

    Google Scholar 
    Schmidt, L. W. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed A.L. Page) 1027–1042 (1982).Yoshinari, T., Hynes, R. & Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183. https://doi.org/10.1016/0038-0717(77)90072-4 (1977).CAS 
    Article 

    Google Scholar 
    Parkin, T. B. Automated analysis of nitrous oxide. Soil Sci. Soc. Am. J. 49, 273 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Hussain, M. et al. Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. https://doi.org/10.21162/PAKJAS/16.4901 (2016).Article 

    Google Scholar 
    Gislin, D., Sudarsanam, D., Antony Raj, G. & Baskar, K. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J Genet. Eng. Biotechnol. 16, 287–294. https://doi.org/10.1016/j.jgeb.2018.05.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rashid, K. M. H., Mohiuddin, M. & Rahman, M. Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J. Fac. Environ. Sci. Technol. 13, 97 (2008).
    Google Scholar 
    Williams, S. & Association of Official Analytical, C. Official methods of analysis of the Association of official analytical chemists. (Association of official analytical chemists, 1984). More

  • in

    Viral infection changes the expression of personality traits in an insect species reared for consumption

    Koski, S. E. Broader horizons for animal personality research. Front. Ecol. Evol. 2, 70 (2014).Article 

    Google Scholar 
    Careere, C. & Eens, M. Unravelling animal personalities: How and why individuals consistently differ. Behaviour 142, 1149–1157 (2005).Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).Article 

    Google Scholar 
    Bell, A. M. & Sih, A. Exposure to predation generates personality in three-spined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).PubMed 
    Article 

    Google Scholar 
    Cavigelli, S. A. Animal personality and health. Behaviour 142, 1223–1244 (2005).Article 

    Google Scholar 
    Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Proc. R. Soc. Lond. B 365, 4077–4088 (2010).
    Google Scholar 
    Koprivnikar, J., Gibson, C. H. & Redfern, J. C. Infectious personalities: Behavioural syndromes and disease risk in larval amphibians. Proc. R. Soc. Lond. B 279, 1544–1550 (2012).
    Google Scholar 
    Turner, J. & Hughes, W. O. H. The effect of parasitism on personality in a social insect. Behav. Proc. 157, 532–539 (2018).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. Proc. Biol. Sci. 274, 333–339 (2007).PubMed 

    Google Scholar 
    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B 365, 3947–3958 (2010).Article 

    Google Scholar 
    Müller, T. & Müller, C. Phenotype of a leaf beetle larva depends on host plant quality and previous test experience. Behav. Proc. 142, 40–45 (2017).Article 

    Google Scholar 
    Hart, B. L. Biological basis of behaviour in sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnson, R. W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 87, 443–450 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, N., Reale, D., Marmet, J., Pisanu, B. & Chapuis, L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tanias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).PubMed 
    Article 

    Google Scholar 
    Ezenwa, V. O. Host social behavior and parasitic infection: A multifactorial approach. Behav. Ecol. 15, 446–454 (2004).Article 

    Google Scholar 
    Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).PubMed 
    Article 

    Google Scholar 
    Dochtermann, N. A. & Nelson, A. B. Multiple facets of exploratory behavior in house crickets (Acheta domesticus): Split personalities or simply different behaviors?. Ethology 120, 1110–1117 (2014).Article 

    Google Scholar 
    van Huis, A. & Tomberlin, J. K. Future prospects. In Insects as Food Feed: From Production to Consumption (eds van Huis, A. & Tomberlin, J. K.) 430–445 (Wageningen Academic Publishers, 2017).Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invert. Pathol 106, 394–399 (2011).CAS 
    Article 

    Google Scholar 
    Eilenberg, J., Vlak, J. M., Nielsen-LeRoux, C., Cappellozza, S. & Jensen, A. B. Diseases in insects produced for food and feed. J. Insects Food Feed 1, 87–102 (2015).Article 

    Google Scholar 
    Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallory, H. S., Howard, A. F. & Weiss, M. R. Timing of environmental enrichment affects memory in the house cricket, Acheta domesticus. PLoS One 11, e0152245 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 
    Article 

    Google Scholar 
    Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Houte, S., Ros, V. I. D. & Van Oers, M. M. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22, 3458–3475 (2013).PubMed 
    Article 

    Google Scholar 
    Vale, P. F., Siva-Jothy, J. A., Morrill, A. & Forbes, M. R. The influence of parasites. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A., González-Tokman, D. & González-Santoyo, I) (Oxford University Press, 2018).de Roode, J. C. & Lefèvre, T. Behavioral Immunity in Insects. Insects 3, 789–820 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the face of parasites: A review of host tolerance. Zoology 119, 281–289 (2016).PubMed 
    Article 

    Google Scholar 
    Vossen, L. E., Roman, E. & Jansson, A. Fasting increases shelter use in house crickets (Acheta domestica). J. Insects Food Feed 8, 5–8 (2021).Article 

    Google Scholar 
    Schutgens, M., Cook, B., Gilbert, F. & Behnke, J. M. Behavioural changes in the flour beetle Tribolium confusum infected with the spirurid nematode Protospirura muricola. J. Helminthol. 89, 68–79 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazlauskas, N., Klappenbach, M., Depino, A. M. & Locatelli, F. F. Sickness behavior in honey bees. Front. Physiol. 7, 261 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stahlschmidt, Z. R. & Adamo, S. A. Context dependency and generality of fever in insects. Naturwissenschaften 100, 691–696 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, S. Y. S., Tattersall, G. J. & Koprivnikar, J. Trematode parasite infection affects temperature selection in aquatic host snails. Physiol. Biochem. Zool. 92, 71–79 (2019).PubMed 
    Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Using current systems to inform rearing facility design in the insects-as-food industry. J. Insects Food Feed. 4, 167–170 (2018).Article 

    Google Scholar 
    Marshall, J. A. & Haes, E. C. M. Grasshoppers and Allied Insects of Great Britain and Ireland (Harley Books, Essex) (1988).GBIF Secretariat. Acheta domesticus (Linnaeus, 1758). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 12 Jan 2022 (2021).Holst, K. T. The Saltatoria (Bush-crickets, Crickets and Grasshoppers) of Northern Europe (E J Brill, 1986).Ingrisch, S. & Köhler, G. Die heuschrecken mitteleuropas. (Westarp Wissenschaften, 1998).Booth, D. T. & Kiddell, K. Temperature and the energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol. 53, 950–953 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghouri, A. S. K. & McFarlane, J. E. Observations on the development of crickets. Can. Entomol. 90, 158–165 (1958).Article 

    Google Scholar 
    Semberg, E. et al. Diagnostic protocols for the detection of Acheta domesticus densovirus (AdDV) in cricket frass. J. Virol. Methods 264, 61–64 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bergoin, M. & Tijssen, P. Parvoviruses of arthropods. In Encyclopedia of Virology. 76–85 (2008).Cotmore, S. F. et al. The family Parvoviridae. Arch. Virol. 159, 1239–1247 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Styer, E. L. & Hamm, J. J. Report of a densovirus in a commercial cricket operation in the southeastern United States. J. Invert. Pathol. 58, 283–285 (1991).Article 

    Google Scholar 
    Weissman, D. B., Gray, D. A., Pham, H. T. & Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial crickets farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa 3504, 67–88 (2012).Article 

    Google Scholar 
    Maciel-Vergara, G. & Ros, V. I. D. Viruses of insects reared for food and feed. J. Invert. Pathol. 147, 60–75 (2017).Article 

    Google Scholar 
    Liu, K. et al. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses. J. Virol. 85, 10069–10078 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. et al. Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function. J. Virol. 87, 12380–12391 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R. et al. Virus diversity and loads in crickets reared for feed: Implications for husbandry. Front. Vet. Sci. 8, 642085 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R., Granberg, F., Onorati, P., Jansson, A. & Berggren, Å. Virus prospecting in crickets: discovery and strain divergence of a novel Iflavirus in wild and cultivated Acheta domesticus. Viruses 13, 364 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niemelä, P., Vainikka, A., Hedrick, A. & Kortet, R. Integrating behaviour with life history: Boldness of the field cricket, Gryllus integer, during ontogeny. Funct. Ecol. 26, 450–456 (2012).Article 

    Google Scholar 
    Hedrick, A. V. Crickets with extravagant mating songs compensate for predation risk with extra caution. Proc. R. Soc. Lond. B 267, 671–675 (2000).CAS 
    Article 

    Google Scholar 
    Hedrick, A. V. & Kortet, R. Hiding behaviour in two cricket populations that differ in predation pressure. Anim. Behav. 72, 1111–1118 (2006).Article 

    Google Scholar 
    Kortet, R. & Hedrick, A. V. A behavioural syndrome in the field cricket Gryllus integer: Intrasexual aggression is correlated with activity in a novel environment. Biol. J. Linnean Soc. 91, 475–482 (2007).Article 

    Google Scholar 
    Fisher, D. N., David, M., Rodríguez-Muñoz, R. & Tregenza, T. Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets. Ethology 124, 338–346 (2018).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria (2003).Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).Article 

    Google Scholar 
    Roche, D. G., Careau, V. & Binning, S. A. Demystifying animal ‘personality’ (or not): Why individual variation matters to experimental biologists. J. Exp. Biol. 219, 3832–3843 (2016).PubMed 

    Google Scholar 
    Low, M. et al. The importance of accounting for larval detectability in mosquito habitat-association studies. Malar. J. 15, 1–9 (2016).Article 

    Google Scholar  More

  • in

    A global database of woody tissue carbon concentrations

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993, https://doi.org/10.1126/science.1201609 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences 116, 4382–4387, https://doi.org/10.1073/pnas.1810512116 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances 2, e1501639, https://doi.org/10.1126/sciadv.1501639 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214, https://doi.org/10.1038/nature16512 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006, https://doi.org/10.1038/nature07771 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3, 792–796, https://doi.org/10.1038/nclimate1853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Köhl, M. et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management 352, 21–34, https://doi.org/10.1016/j.foreco.2015.05.036 (2015).Article 

    Google Scholar 
    Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107 (2010).ADS 
    Article 

    Google Scholar 
    Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters 4, https://doi.org/10.1088/1748-9326/4/3/034009 (2009).Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Science Advances 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Aalde, U. et al. in IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 4 (IPPC, 2006).Brown, S. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372, https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2011).Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108 (2011).ADS 
    Article 

    Google Scholar 
    Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).CAS 
    Article 

    Google Scholar 
    Van Der Werf, G. R. et al. CO2 emissions from forest loss. Nature Geoscience 2, 737–738, https://doi.org/10.1038/ngeo671 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience 11, 915–920, https://doi.org/10.1038/s41561-018-0246-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean Basin plants. Scientific Data 5, 180135, https://doi.org/10.1038/sdata.2018.135 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nature Communications 12, https://doi.org/10.1038/s41467-021-21149-9 (2021).Martin, A. R. & Thomas, S. C. A Reassessment of carbon content in tropical trees. PLoS ONE 6, e23533, https://doi.org/10.1371/journal.pone.0023533 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Canadian Journal of Forest Research 45, 744–757, https://doi.org/10.1139/cjfr-2015-0024 (2015).CAS 
    Article 

    Google Scholar 
    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352, https://doi.org/10.3390/f3020332 (2012).Article 

    Google Scholar 
    Doraisami, M. et al. GLOWCAD: A global database of woody tissue carbon concentrations fractions. Dryad https://doi.org/10.5061/dryad.18931zcxk (2022)Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).ADS 
    Article 

    Google Scholar 
    Guerrero‐Ramírez, N. R. et al. Global root traits (GRooT) database. Global Ecology and Biogeography 30, 25–37, https://doi.org/10.1111/geb.13179 (2021).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist 215, 15–26, https://doi.org/10.1111/nph.14486 (2017).Article 
    PubMed 

    Google Scholar 
    Isaac, M. E. et al. Intraspecific trait variation and coordination: Root and Leaf Economics Spectra in coffee across environmental gradients. Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.01196 (2017).Liu, C. et al. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil 436, 347–364, https://doi.org/10.1007/s11104-019-03934-0 (2019).CAS 
    Article 

    Google Scholar 
    Wang, R. et al. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Functional Ecology 32, 29–39, https://doi.org/10.1111/1365-2435.12983 (2018).Article 

    Google Scholar 
    Minden, V. & Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biology 16, 897–907, https://doi.org/10.1111/plb.12155 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alameda, D. & Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany 79, 49–57, https://doi.org/10.1016/j.envexpbot.2012.01.004 (2012).Article 

    Google Scholar 
    Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews 24, 164–186, https://doi.org/10.1139/er-2015-0072 (2016).Article 

    Google Scholar 
    Fernández-García, N. et al. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology 171, 64–75, https://doi.org/10.1016/j.jplph.2013.11.004 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59, 139–149, https://doi.org/10.1016/j.envexpbot.2005.11.002 (2007).CAS 
    Article 

    Google Scholar 
    Ineson, P., Cotrufo, M. F., Bol, R., Harkness, D. D. & Blum, H. Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil 187, 345–350, https://doi.org/10.1007/bf00017099 (1995).Article 

    Google Scholar 
    Pregitzer, K. S. et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129, 579–585, https://doi.org/10.1111/j.1469-8137.1995.tb03025.x (1995).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer: Version 4.5. https://automeris.io/WebPlotDigitizer (2021).Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291, 259–267, https://doi.org/10.1016/j.foreco.2012.11.046 (2013).Article 

    Google Scholar 
    Boyle, B. H. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 1-15, https://tnrs.biendata.org/ (2021).Krankina, O. N., Harmon, M. E. & Griazkin, A. V. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Canadian Journal of Forest Research 29, 20–32, https://doi.org/10.1139/x98-162 (1999).Article 

    Google Scholar 
    Whittaker, R. H. Classification of natural communities. Botanical Review 28, 1–239, https://doi.org/10.1007/BF02860872 (1962).Article 

    Google Scholar 
    Maiti, R. & Rodriguez, H. G. Wood carbon and nitrogen of 37 woody shrubs and trees in Tamaulipan thorn scrub, northeastern Mexico. Pakistan Journal of Botany 51, 979–984 (2019).CAS 
    Article 

    Google Scholar 
    Durkaya, A. B. D., E. Makineci, I. Orhan Aboveground biomass and carbon storage relationship of Turkish Pines. Fresenius Environmental Bulletin 24, 3573–3583 (2015).CAS 

    Google Scholar 
    Tesfaye, M. A., Bravo-Oviedo, A., Bravo, F., Pando, V. & De Aza, C. H. Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest. Journal of Sustainable Forestry 38, 769–790, https://doi.org/10.1080/10549811.2019.1607754 (2019).Article 

    Google Scholar 
    Abdallah, M. A. B., Mata-González, R., Noller, J. S. & Ochoa, C. G. Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agriculture, Ecosystems & Environment 290, 106762, https://doi.org/10.1016/j.agee.2019.106762 (2020).CAS 
    Article 

    Google Scholar 
    Arias, D., Calvo-Alvarado, J., Richter, D. D. B. & Dohrenbusch, A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass and Bioenergy 35, 1779–1788, https://doi.org/10.1016/j.biombioe.2011.01.009 (2011).CAS 
    Article 

    Google Scholar 
    Assefa, D., Godbold, D. L., Belay, B., Abiyu, A. & Rewald, B. Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest. Ecosystems 21, 482–494, https://doi.org/10.1007/s10021-017-0163-7 (2018).CAS 
    Article 

    Google Scholar 
    Atkin, O. K., Schortemeyer, M., Mcfarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bardulis, A., Jansons, A., Bardule, A., Zeps, M. & LAzdins, A. Assessment of carbon content in root biomass in Scots Pine and silver birch young stands of Latvia. Baltic Forestry 23, 482–489 (2017).
    Google Scholar 
    Becker, G. S., Braun, D., Gliniars, R. & Dalitz, H. Relations between wood variables and how they relate to tree size variables of tropical African tree species. Trees 26, 1101–1112, https://doi.org/10.1007/s00468-012-0687-6 (2012).Article 

    Google Scholar 
    Bembenek, M. et al. Carbon content in Juvenile and mature wood of Scots Pine (Pinus sylyestris L.). Baltic Forestry 21, 279–284 (2015).
    Google Scholar 
    Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279–295, https://doi.org/10.1016/j.foreco.2005.10.030 (2006).Article 

    Google Scholar 
    Borden, K. A., Anglaaere, L. C. N., Adu-Bredu, S. & Isaac, M. E. Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems. Agroforestry Systems 93, 369–381, https://doi.org/10.1007/s10457-017-0122-5 (2019).Article 

    Google Scholar 
    Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M. & Thomas, S. C. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry Systems 88, 657–669, https://doi.org/10.1007/s10457-014-9722-5 (2014).Article 

    Google Scholar 
    Bueno-López, S. W., García-Lucas, E. & Caraballo-Rojas, L. R. Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees. Madera y Bosques 25, https://doi.org/10.21829/myb.2019.2531868 (2019).Bulmer, R. H., Schwendenmann, L. & Lundquist, C. J. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. Wetlands 36, 841–848, https://doi.org/10.1007/s13157-016-0793-0 (2016).Article 

    Google Scholar 
    Bütler, R., Patty, L., Le Bayon, R.-C., Guenat, C. & Schlaepfer, R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management 242, 791–799, https://doi.org/10.1016/j.foreco.2007.02.017 (2007).Article 

    Google Scholar 
    Cao, Y. & Chen, Y. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering 105, 125–132, https://doi.org/10.1016/j.ecoleng.2017.04.024 (2017).Article 

    Google Scholar 
    Castaño-Santamaría, J. & Bravo, F. Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals of Forest Science 69, 663–672, https://doi.org/10.1007/s13595-012-0183-6 (2012).Article 

    Google Scholar 
    Chao, K.-J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management 391, 75–85, https://doi.org/10.1016/j.foreco.2017.01.020 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology 30, 295–304, https://doi.org/10.1111/1365-2435.12471 (2016).Article 

    Google Scholar 
    Correia, A. C. et al. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19, 418, https://doi.org/10.5424/fs/2010193-9082 (2010).Article 

    Google Scholar 
    Cousins, S. J. M., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Forest Ecology and Management 353, 136–147, https://doi.org/10.1016/j.foreco.2015.05.030 (2015).Article 

    Google Scholar 
    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).Article 

    Google Scholar 
    Cruz, P., Bascuñan, A., Velozo, J. & Rodriguez, M. Funciones alométricas de contenido de carbono para quillay, peumo, espino y litre. Bosque (Valdivia) 36, 375–381, https://doi.org/10.4067/s0717-92002015000300005 (2015).Article 

    Google Scholar 
    Currie, W. S. & Nadelhoffer, K. J. The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5, 446–460, https://doi.org/10.1007/s10021-002-1153-x (2002).CAS 
    Article 

    Google Scholar 
    Dong, L., Zhang, X. & Li Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China. Forests 10, 928, https://doi.org/10.3390/f10100928 (2019).Article 

    Google Scholar 
    Dossa, G. G. O., Paudel, E., Cao, K., Schaefer, D. & Harrison, R. D. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Scientific Reports 6, 34153, https://doi.org/10.1038/srep34153 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durkaya, B., Durkaya, A., Makineci, E. & Ülküdür, M. Estimation of above-ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest – Biogeosciences and Forestry 6, 278–284, https://doi.org/10.3832/ifor0899-006 (2013).Article 

    Google Scholar 
    Elias, M. & Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research 33, 1039–1045, https://doi.org/10.1139/x03-018 (2003).Article 

    Google Scholar 
    Fang, S., Xue, J. & Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management 85, 672–679, https://doi.org/10.1016/j.jenvman.2006.09.014 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests 43, 197–211, https://doi.org/10.1007/s11056-011-9273-9 (2012).Article 

    Google Scholar 
    Frangi, J. L., Richter, L. L., Barrera, M. D. & Aloggia, M. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Canadian Journal of Forest Research 27, 1095–1102, https://doi.org/10.1139/x97-060 (1997).Article 

    Google Scholar 
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).Article 

    Google Scholar 
    Fukatsu, E., Fukuda, Y., Takahashi, M. & Nakada, R. Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). Journal of Wood Science 54, 247–251, https://doi.org/10.1007/s10086-007-0939-z (2008).CAS 
    Article 

    Google Scholar 
    Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I. & Thiombiano, A. Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon 6, e03805, https://doi.org/10.1016/j.heliyon.2020.e03805 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187, 197–211, https://doi.org/10.1016/s0378-1127(03)00332-3 (2004).Article 

    Google Scholar 
    Gao, B., Taylor, A. R., Chen, H. Y. H. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management 375, 191–199, https://doi.org/10.1016/j.foreco.2016.05.041 (2016).Article 

    Google Scholar 
    Gillerot, L. et al. Inter- and intraspecific variation in mangrove carbon fraction and wood specific gravity in Gazi Bay, Kenya. Ecosphere 9, e02306, https://doi.org/10.1002/ecs2.2306 (2018).Article 

    Google Scholar 
    Gómez-Brandón, M. et al. Physico-chemical and microbiological evidence of exposure effects on Picea abies – coarse woody debris at different stages of decay. Forest Ecology and Management 391, 376–389, https://doi.org/10.1016/j.foreco.2017.02.033 (2017).Article 

    Google Scholar 
    Guner, S. T. & Comez, A. Biomass equations and changes in carbon stock in afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26, 2368–2379 (2017).CAS 

    Google Scholar 
    Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Annals of Forest Science 71, 585–594, https://doi.org/10.1007/s13595-014-0366-4 (2014).Article 

    Google Scholar 
    Hanpattanakit, P., Chidthaisong, A., Sanwangsri, M. & Lichaikul, N. Improving allometric equations to estimate biomass and carbon in secondary dry dipterocarp forest. Singapore SG 18, 208–211 (2016).
    Google Scholar 
    Herrero De Aza, C., Turrión, M. B., Pando, V. & Bravo, F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68, 1067–1076, https://doi.org/10.1007/s13595-011-0122-y (2011).Article 

    Google Scholar 
    Huet, S., Forgeard, F. O. & Nys, C. Above- and belowground distribution of dry matter and carbon biomass of Atlantic beech (Fagus sylvatica L.) in a time sequence. Annals of Forest Science 61, 683–694, https://doi.org/10.1051/forest:2004063 (2004).CAS 
    Article 

    Google Scholar 
    Jacobs, D. F., Selig, M. F. & Severeid, L. R. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. Forest Ecology and Management 258, 288–294, https://doi.org/10.1016/j.foreco.2009.04.014 (2009).Article 

    Google Scholar 
    Janssens, I. A. et al. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of forest science 56, 81–90, https://doi.org/10.1051/forest:19990201 (1999).Article 

    Google Scholar 
    Jiménez Pérez, J., Treviño Garza, E. J. & Yerena Yamallel, J. I. Concentración de carbono en especies del bosque de pino-encino en la Sierra Madre Oriental. Revista mexicana de ciencias forestales 4, 50–61 (2013).Article 

    Google Scholar 
    Jomura, M. et al. Biotic and abiotic factors controlling respiration rates of above- and belowground woody debris of Fagus crenata and Quercus crispula in Japan. PLOS ONE 10, e0145113, https://doi.org/10.1371/journal.pone.0145113 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, D. & O’Hara, K. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430, https://doi.org/10.3390/f9070430 (2018).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110, https://doi.org/10.1093/forestry/cpr063 (2012).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiology 36, 1177–1189, https://doi.org/10.1093/treephys/tpw051 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Joosten, R. & Schulte, A. Possible effects of altered growth behaviour of Norway Spruce (Picea abies) on carbon accounting. Climatic Change 55, 115–129, https://doi.org/10.1023/a:1020227806137 (2002).CAS 
    Article 

    Google Scholar 
    Joosten, R., Schumacher, J., Wirth, C. & Schulte, A. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189, 87–96, https://doi.org/10.1016/j.foreco.2003.07.037 (2004).Article 

    Google Scholar 
    Kim, C., Yoo, B., Jung, S. & Lee, K. Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea. iForest – Biogeosciences and Forestry 10, 483–490, https://doi.org/10.3832/ifor2164-010 (2017).Article 

    Google Scholar 
    Kort, J. & Turnock, R. Carbon reservoirs and biomass in Canadian prairie shelterbelts. Agroforestry Systems 44, 175-186, https://doi.org/10.1023/a:1006226006785 (1998).Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Forest Ecology and Management 354, 35–42, https://doi.org/10.1016/j.foreco.2015.06.039 (2015).Article 

    Google Scholar 
    Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. Forest Ecology and Management 173, 213–225, https://doi.org/10.1016/s0378-1127(02)00002-6 (2003).Article 

    Google Scholar 
    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management 93, 161–169, https://doi.org/10.1016/s0378-1127(96)03916-3 (1997).Article 

    Google Scholar 
    Laiho, R. & Prescott, C. E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research 29, 1592–1603, https://doi.org/10.1139/x99-132 (1999).Article 

    Google Scholar 
    Lambert, R. L., Lang, G. E. & Reiners, W. A. Loss of mass and chemical change in decaying boles of a subalpine Balsam Fir forest. Ecology 61, 1460–1473, https://doi.org/10.2307/1939054 (1980).Article 

    Google Scholar 
    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2010).Article 

    Google Scholar 
    Li, X. et al. Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54, 33–42, https://doi.org/10.1007/s12374-010-9140-9 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lombardi, F. et al. Investigating biochemical processes to assess deadwood decay of Beech and Silver Fir in Mediterranean mountain forests. Annals of Forest Science 70, 101–111, https://doi.org/10.1007/s13595-012-0230-3 (2013).Article 

    Google Scholar 
    Lutter, R., Tullus, A., Kanal, A., Tullus, T. & Tullus, H. The impact of former land-use type to above- and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. Forest Ecology and Management 378, 79–90, https://doi.org/10.1016/j.foreco.2016.07.021 (2016).Article 

    Google Scholar 
    Mahmood, H. et al. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill Zone of Bangladesh. Journal of Forestry Research 31, 1235–1245, https://doi.org/10.1007/s11676-019-00881-5 (2020).CAS 
    Article 

    Google Scholar 
    Maiti, R., Gonzalez Rodriguez, H. & Kumari, A. Wood density of ten native trees and shrubs and its possible relation with a few wood chemical compositions. American Journal of Plant Sciences 07, 1192–1197, https://doi.org/10.4236/ajps.2016.78114 (2016).CAS 
    Article 

    Google Scholar 
    Mäkinen, H., Hynynen, J., Siitonen, J. & Sievänen, R. Predicting The decomposition of Scots Pine, Norway Spruce, and Birch stems in Finland. Ecological Applications 16, 1865–1879, https://doi.org/10.1890/1051-0761(2006)016[1865:ptdosp]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    Manuella, S. et al. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research 43, 785–798, https://doi.org/10.1139/cjfr-2013-0086 (2013).CAS 
    Article 

    Google Scholar 
    Martin, A. R. & Thomas, S. C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology 33, 1338–1353, https://doi.org/10.1093/treephys/tpt085 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Thomas, S. C. & Zhao, Y. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees. AoB PLANTS 5, plt039–plt039, https://doi.org/10.1093/aobpla/plt039 (2013).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).CAS 
    Article 

    Google Scholar 
    Moreira, A. B., Gregoire, T. G. & Do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests, Brazil. Forest Ecosystems 6, https://doi.org/10.1186/s40663-019-0177-z (2019).Morhart, C., Sheppard, J. P., Schuler, J. K. & Spiecker, H. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study. Forest Ecosystems 3, https://doi.org/10.1186/s40663-016-0063-x (2016).Northup, B. K., Zitzer, S. F., Archer, S., Mcmurtry, C. R. & Boutton, T. W. Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. Journal of Arid Environments 62, 23–43, https://doi.org/10.1016/j.jaridenv.2004.09.019 (2005).ADS 
    Article 

    Google Scholar 
    Palviainen, M. & Finér, L. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management 358, 1–11, https://doi.org/10.1016/j.foreco.2015.08.036 (2015).Article 

    Google Scholar 
    Peri, P. L., Gargaglione, V., Martínez Pastur, G. & Lencinas, M. V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest Ecology and Management 260, 229–237, https://doi.org/10.1016/j.foreco.2010.04.027 (2010).Article 

    Google Scholar 
    Pompa-García, M. & Jurado, E. Carbon concentration in structures of Arctostaphylos pungens HBK: an alternative CO2 sink in forests. Phyton 84, 385-389 (2016).Pompa-García, M., Sigala-Rodríguez, J., Jurado, E. & Flores, J. Tissue carbon concentration of 175 Mexican forest species. iForest – Biogeosciences and Forestry 10, 754–758, https://doi.org/10.3832/ifor2421-010 (2017).Article 

    Google Scholar 
    Pompa-García, M. & Yerena-Yamalliel, J. I. Concentration of carbon in Pinus cembroides Zucc: potential source of global warming mitigation. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20, 169–175, https://doi.org/10.5154/r.rchscfa.2014.04.014 (2014).Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Flanagan, L. B. Decomposition, δ13C, and the “lignin paradox”. Canadian Journal of Soil Science 86, 235–245, https://doi.org/10.4141/s05-090 (2006).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Nault, J. R. Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Canadian Journal of Forest Research 42, 1153-1167 (2012).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A., Niu, J. & Fyfe, C. A. PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111, 51–68, https://doi.org/10.1016/s0378-1127(98)00307-7 (1998).Article 

    Google Scholar 
    Rana, R., Langenfeld-Heyser, R., Finkeldey, R. & Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology 44, 225–242, https://doi.org/10.1007/s00226-009-0281-2 (2010).CAS 
    Article 

    Google Scholar 
    Ray, R., Majumder, N., Chowdhury, C. & Jana, T. K. Wood chemistry and density: an analog for response to the change of carbon sequestration in mangroves. Carbohydrate Polymers 90, 102–108, https://doi.org/10.1016/j.carbpol.2012.05.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodrigues, D. P., Hamacher, C., Estrada, G. C. D. & Soares, M. L. G. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany 120, 346–351, https://doi.org/10.1016/j.aquabot.2014.10.004 (2015).CAS 
    Article 

    Google Scholar 
    Sakai, Y., Ugawa, S., Ishizuka, S., Takahashi, M. & Takenaka, C. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition 58, 526–537, https://doi.org/10.1080/00380768.2012.710526 (2012).CAS 
    Article 

    Google Scholar 
    Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management 243, 19–27, https://doi.org/10.1016/j.foreco.2007.01.081 (2007).Article 

    Google Scholar 
    Sanquetta, M. N. I., Sanquetta, C. R., Mognon, F., Corte, A. P. D. & Maas, G. C. B. Wood density and carbon content in young teak individuals from Pará, Brazil. Científica 44, 608, https://doi.org/10.15361/1984-5529.2016v44n4p608-614 (2016).Article 

    Google Scholar 
    Schwendenmann, L. & Mitchell, N. Carbon accumulation by native trees and soils in an urban park, Auckland. New Zealand Journal of Ecology 38(20), 213–220 (2014).Setälä, H., Marshall, V. G. & Trofymow, J. A. Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology 2, 227–242, https://doi.org/10.1016/0929-1393(95)00053-9 (1995).Article 

    Google Scholar 
    Sohrabi, H., Bakhtiarvand-Bakhtiari, S. & Ahmadi, K. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran. Journal of Arid Land 8, 138–145, https://doi.org/10.1007/s40333-015-0087-z (2016).Article 

    Google Scholar 
    Telmo, C., Lousada, J. & Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology 101, 3808–3815, https://doi.org/10.1016/j.biortech.2010.01.021 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thomas, A. L. et al. Carbon and nitrogen accumulation within four black walnut alley cropping sites across Missouri and Arkansas, USA. Agroforestry Systems 94, 1625–1638, https://doi.org/10.1007/s10457-019-00471-8 (2020).Article 

    Google Scholar 
    Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. Journal of Environmental Management 85, 659–662, https://doi.org/10.1016/j.jenvman.2006.04.022 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tolunay, D. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24, 394–402, https://doi.org/10.1080/02827580903164471 (2009).Article 

    Google Scholar 
    Tramoy, R., Sebilo, M., Nguyen Tu, T. T. & Schnyder, J. Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications. Environmental Chemistry 14, 9, https://doi.org/10.1071/en16049 (2017).CAS 
    Article 

    Google Scholar 
    Van Geffen, K. G., Poorter, L., Sass-Klaassen, U., Van Logtestijn, R. S. P. & Cornelissen, J. H. C. The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91, 3686–3697, https://doi.org/10.1890/09-2224.1 (2010).Article 
    PubMed 

    Google Scholar 
    Wang, G. et al. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management 329, 255–263, https://doi.org/10.1016/j.foreco.2014.06.023 (2014).Article 

    Google Scholar 
    Wang, X. W., Weng, Y. H., Liu, G. F., Krasowski, M. J. & Yang, C. P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest Ecology and Management 358, 344–352, https://doi.org/10.1016/j.foreco.2015.08.029 (2015).Article 

    Google Scholar 
    Watzlawick, L. F. et al. Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico. Cerne 20, 613–620, https://doi.org/10.1590/01047760201420041492 (2014).Article 

    Google Scholar 
    Weber, J. C. et al. Variation in growth, wood density and carbon concentration in five tree and shrub species in Niger. New Forests 49, 35–51, https://doi.org/10.1007/s11056-017-9603-7 (2018).Article 

    Google Scholar 
    Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. European Journal of Forest Research 131, 1423–1438, https://doi.org/10.1007/s10342-012-0610-0 (2012).Article 

    Google Scholar 
    Widagdo, F. R. A., Xie, L., Dong, L. & Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Global Ecology and Conservation 23, e01111, https://doi.org/10.1016/j.gecco.2020.e01111 (2020).Article 

    Google Scholar 
    Wu, H. et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area. Scientific Reports 7, https://doi.org/10.1038/s41598-017-05306-z (2017).Xing, Z. et al. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiology 25, 1207–1217, https://doi.org/10.1093/treephys/25.9.1207 (2005).Article 
    PubMed 

    Google Scholar 
    Yang, F.-F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management 259, 1666–1672, https://doi.org/10.1016/j.foreco.2010.01.046 (2010).Article 

    Google Scholar 
    Yeboah, D., Burton, A. J., Storer, A. J. & Opuni-Frimpong, E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52, https://doi.org/10.1007/s11056-013-9390-8 (2014).Article 

    Google Scholar 
    Ying, J., Weng, Y., Oswald, B. P. & Zhang, H. Variation in carbon concentrations and allocations among Larix olgensis populations growing in three field environments. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0877-0 (2019).Yuan, J., Cheng, F., Zhu, X., Li, J. & Zhang, S. Respiration of downed logs in pine and oak forests in the Qinling Mountains, China. Soil Biology and Biochemistry 127, 1–9, https://doi.org/10.1016/j.soilbio.2018.09.012 (2018).CAS 
    Article 

    Google Scholar 
    Zabek, L. M. & Prescott, C. E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. Forest Ecology and Management 223, 291–302, https://doi.org/10.1016/j.foreco.2005.11.009 (2006).Article 

    Google Scholar 
    Zhang, H., Jiang, Y., Song, M., He, J. & Guan, D. Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Scientific Reports 10, https://doi.org/10.1038/s41598-020-61476-3 (2020).Zhang, Q., Wang, C., Wang, X. & Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management 258, 722–727, https://doi.org/10.1016/j.foreco.2009.05.009 (2009).Article 

    Google Scholar 
    Zheng, H. et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255, 1113–1121, https://doi.org/10.1016/j.foreco.2007.10.015 (2008).Article 

    Google Scholar 
    Zhou, L. et al. Tissue-specific carbon concentration, carbon stock, and distribution in Cunninghamia lanceolata (Lamb.) Hook plantations at various developmental stages in subtropical China. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0851-x (2019).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92, https://doi.org/10.1038/nature12872 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Muscarella, R. et al. The global abundance of tree palms. Global Ecology and Biogeography 29, 1495–1514, https://doi.org/10.1111/geb.13123 (2020).Article 

    Google Scholar 
    Du, H. et al. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 1458–1471 (2018).ADS 
    Article 

    Google Scholar 
    Iwashita, D. K., Litton, C. M. & Giardina, C. P. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest. Forest Ecology and Management 291, 336–343, https://doi.org/10.1016/j.foreco.2012.11.043 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 2211–2220, https://doi.org/10.1098/rspb.2001.1782 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gastauer, M. & Meira Neto, J. A. A. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Botanica Brasilica 31, 191–198, https://doi.org/10.1590/0102-33062016abb0306 (2017).Article 

    Google Scholar  More

  • in

    Drought-exposure history increases complementarity between plant species in response to a subsequent drought

    Experimental designTo test whether an 8-year treatment of recurrent summer droughts would change biodiversity effects and species interactions of grassland plants when facing a subsequent drought event, we grew ambient- vs. drought-selected plants of 12 species in a glasshouse. The plants were grown from seeds collected from 40 plots (Supplementary Data 2) under 8-year treatments of yearly summer droughts vs. ambient precipitation in a biodiversity field experiment in Jena, Germany11,41.The Jena Experiment was established in 2002 using a common seed pool of 60 grassland species, with 80 (20times 20,{{{{{rm{m}}}}}}) large plots of species richness levels of 1, 2, 4, 8, 16, and 60 species40. Most of the species are perennial and capable of outcrossing (Supplementary Table 1). The Jena Drought Experiment11,41 was initiated in 2008. Two (1times 1,{{{{{rm{m}}}}}}) subplots were set within each large plot, designated as either drought treatment or ambient control. For the drought treatment, rainout shelters were set up to exclude natural rainfall in mid-summer for 6 weeks. The ambient control treatment got the same shelter construction but rain water was reapplied to not confound the results with artifacts from the shelter60. We repeatedly harvested the aboveground biomass per year, once before and once after the summer drought treatment11,41. The design of the Jena (Drought) Experiment did not allow the exclusion of cross pollination or gene flow between subplots or large plots in the field. Such gene flow may have reduced the possibility for genetic differentiation and for the observed effect sizes of the selection treatment23. We collected seeds from drought and control subplots throughout the 2016 growing season (Fig. 1). We obtained seeds of 17 species, but only used 12 of them, because the other five species had either few seeds or low germination rates. Seeds per species per selection treatment were collected from 4 to 23 (interquartile range: [8.50, 17.00]) maternal plants distributed across 2–10 (interquartile range: [4.75, 9.00]) large plots in Jena Experiment, in which the functional group richness ranged from 1 to 4 (Supplementary Data 2). The 12 plant species represented four functional groups (grass, small herb, tall herb, and legume) (Supplementary Table 1). The detailed classifications of the functional grouping can be found in the design of the Jena Experiment40. Eleven of the 12 species were perennial, and one was annual (Trifolium dubium). The average longevity of the perennial species in the Jena Experiment has been estimated at 3–4 years61, so that multiple generations and sexual reproduction cycles could occur during the 8-year drought treatment. Although each subplot was small, population sizes of each species were estimated to range from 100 to 1000 individuals m−2 in ambient and drought subplots at the beginning of the drought treatment in the field62.We germinated the seeds in Petri dishes and transplanted the seedlings into pots in February 2017 in a glasshouse (day temperature range 20–25 °C, night temperature range 15–21 °C, and humidity range 60–80%) at the University of Zurich, Switzerland. Seedlings were planted individually, in monocultures, or in 2-species mixtures in the glasshouse (Fig. 1). In the glasshouse experiment, both monocultures and mixtures contained four plants within a pot. The pots were (11times 11times 11.5) cm in size and filled with soil composed of 50% collected from a sugar-beet field, 25% sand and 25% perlite. We randomly assigned the pots into four blocks in the glasshouse. To test the effects of drought-induced selection on plant traits, we planted individual seedlings of the 12 species in a fifth block. Within the first 2 weeks, dead individuals were replaced, thereafter dead individuals were not replaced anymore. In total, we established 958 pots: 257 pots of mixtures, 217 pots of monocultures, and 484 pots of individual plants (244 pots of individuals in blocks 1–4, and 240 pots of individuals in block 5; Supplementary Methods). For mixtures, there were 21 species pairs (Supplementary Table 1). Species pairs composed of Crepis biennis or Lotus corniculatus had low numbers of replicates (Supplementary Table 1). However, including or excluding these communities produced qualitatively similar results. Thus, we present the results including these two species in this paper. We provide detailed explanations on the choices of species pairs and regarding the biodiversity treatment history in the Jena Experiment in Supplementary Methods.During a first phase of 3 months in the glasshouse (Fig. 1), pots were watered regularly (“before drought”). After 14–16 weeks, when most of the species had reached peak aboveground biomass, we harvested all individuals in each pot by cutting them 3 cm above the ground, allowing regrowth from the left plant bases (first harvest, “before drought”). The time span for the first harvest included both the time for trait measurements (section “Plant traits” below) and for the immediately following biomass harvest. We completed the biomass harvest of each block within 1–2 days. This allowed us to account for the larger time differences between blocks by fitting block effects in the statistical analyses. After the first harvest of each block, plants were watered regularly and allowed to regrow until the 18th week from planting. This was followed by a second phase of 2 weeks without watering. Soil moisture decreased from more than 40% to less than 10% after 10 days since drought initiation. At the end of the second phase, that is after 20 weeks from planting, we made a second aboveground harvest at 3 cm above the ground (second harvest, “during drought”). During a third phase of 7 weeks, pots were watered regularly again for recovery until most plants reached a new aboveground biomass peak again. At the end of the third phase, that is after 27 weeks from planting, we harvested both above- and belowground plant biomass (third harvest, “after drought”). We checked and confirmed that most plants had reached the full-grown state and peak biomass before each harvest by monitoring their flowering. After each harvest, we cleaned and dried the harvested plant material at 70 °C for 48 h to obtain the dry biomass. We used the aboveground biomass as a proxy for productivity. Although clipping may affect plant responses to the experimental drought in the glasshouse, clipping had the advantage that all plants were “standardized” in height before the experimental drought, thus reducing carry-over effects of differential growth before the experimental drought.Additive partitioningWe used the additive partitioning approach (Eq. 1)17 to decompose the net biodiversity effect (NE) on aboveground biomass into the complementarity effect (CE) and the sampling effect (SE):$$triangle Y={Y}_{O}-{Y}_{E}=N,overline{triangle {RY}},{bar{M}}+N,{{{{{{rm{cov}}}}}}}left({{triangle }}{{{{{bf{RY}}}}}},,{{{{{bf{M}}}}}}right),$$
    (1)
    where (triangle Y) is the NE; ({Y}_{O}) is the observed yield (productivity) in a mixture; ({Y}_{E}) is the expected yield in the mixture, calculated from the observed yield in monocultures and their corresponding species proportions planted in the mixture, here 0.5; the two additive terms at the right side of the equation represent CE and SE, respectively; N is the number of species in the mixture, here 2. The partitioning is based on the observed and expected relative yield (RY) of species in the mixture. The expected RY of species in the mixture is the proportion planted. ∆({{{{{bf{RY}}}}}}) is the difference between observed and expected RY of species in the mixture; (overline{triangle {RY}}) is the average of ∆({{{{{bf{RY}}}}}}). A positive (overline{triangle {RY}}) indicates a positive CE; a positive covariation between monoculture yield (M), and ∆({{{{{bf{RY}}}}}}) indicates a positive SE. More details about the calculation can be found in Loreau and Hector17. We conducted the partitioning separately for each harvest, selection treatment, and block. We did not perform the partitioning for mixtures with zero biomass63. For monocultures with zero biomass in the second or third harvest, we kept the ones which had positive biomass in the previous harvest but excluded the ones which had zero biomass in the previous harvest. For example, when performing the partitioning for the second harvest, we kept the monocultures that had zero biomass in the second harvest but non-zero biomass in the first harvest; we excluded the monocultures that had zero biomass already in the first harvest. This was to assure that communities that died before the drought could not reappear during or after the drought, and communities that had died during the drought could not reappear after the drought.We used mixed-effects models to assess the influences of drought vs. ambient-selection treatments on biodiversity effects (NEs, CEs, and SEs) separately for each harvest (Fig. 2; Table 1). Block and selection treatment were set as fixed-effects terms, while species composition (identity of species pair) and its interaction with selection treatment were set as random-effects terms. This conservative approach was used to allow for generalizations across all possible species compositions, although a more liberal approach with species composition and its interactions as fixed-effects terms could also have been applied (see Schmid et al.64 for a discussion of defining terms as fixed- vs. random-effects terms, including a justification of preference for treating block as a fixed-effects term). We square-root transformed the CEs and SEs with sign reconstruction (({{{{{{rm{sign}}}}}}}(y)sqrt{y})) prior to analysis to improve the normality of residuals17. The mixed-effects model did not converge in the analysis with CE after the drought event. In this case, we used a general linear model, in which we fitted block, species composition, selection treatment, and species composition by selection treatment interaction in this order. Then we tested the significance of selection treatment using its interaction with species composition as an error term. This procedure is an alternative to mixed-effects models that estimate variance components for random-effects terms with maximum likelihood64.To test whether biodiversity effects on productivity differed from zero, we additionally tested the significance of NEs, CEs, and SEs separately for each selection treatment and harvest (Supplementary Table 3). We set block and species composition as fixed- and random-effects terms, respectively. The model corresponding to CE for ambient-selected plants during the drought event did not converge so that we fitted it with a general linear model, in which we tested the significance of the overall mean (intercept) using species composition as an error term. All statistical analyses were conducted in R 3.6.365. The mixed-effects models were conducted with asreml-R package 4.1.0.11066.Finally, we also tested whether the effects of drought selection on biodiversity effects (NEs, CEs, and SEs) in the glasshouse depended on the history of biodiversity treatment in the Jena Experiment. Most plants in the 2-species communities in the glasshouse originated from mixtures in the Jena Experiment (Supplementary Data 2; whether mixtures in the glasshouse composed of plants originating from monoculture field plots did not affect the effects of drought-selection on biodiversity effects on productivity (Supplementary Data 3)). To increase statistical power, we used functional group richness, ranging from 1 to 4, instead of species richness of the field plots as explanatory variable (Supplementary Methods). We fitted functional group richness either in linear (Supplementary Data 4) or log-linear (Supplementary Data 5) form. We did not detect significant effects of field treatment of functional group richness nor significant interactions between field treatment of functional group richness and the drought-selection history. Therefore, we excluded the history of biodiversity treatments in the field from further analyses.Biomass stability to the drought event in the glasshouseTo assess the temporal responses of community aboveground biomass to the drought event, we calculated three indices representing different facets of stability: biomass resistance, recovery, and resilience (see van Moorsel et al.43 for an example). We calculated resistance as the biomass ratio during vs. before the drought, recovery as the ratio after vs. during the drought and resilience as the ratio after vs. before the drought (see also Isbell et al.9). We log-transformed the indices (plus a half of the minimum positive value to allow taking logs of indices that were originally zero) prior to statistical analyses to improve the normality of residuals. Excluding index values that were originally zero produced qualitatively similar results.To assess the effects of drought-selection on biomass stability, we fitted mixed-effects models with block and selection treatment as fixed-effects terms, and species composition and its interaction with selection treatment as random-effects terms (Supplementary Fig. 3; Supplementary Table 4). We fitted the models separately for mixtures and monocultures. We included the log-transformed biomass at the first harvest as a covariate because biomass stability in response to droughts often depends on plant performance under ambient conditions.In the same way as net biodiversity effects on productivity were calculated for additive partitioning, we calculated biodiversity effects on biomass stability as the difference between each mixture and its corresponding monocultures. Then, we tested the influence of selection treatment on the biodiversity effects on biomass stability. Block and selection treatment were set as fixed-effects terms; species composition and its interaction with selection treatment were set as random-effects terms (Fig. 3; Supplementary Table 5). The log-transformed biomass at the first harvest was also included as a covariate43. To assess the significance of biodiversity effects on biomass stability for each selection treatment, we fitted another set of simplified models, with block and log-transformed biomass as fixed-effects terms, and species composition as random-effects term (Fig. 3).Neighbor interactionsWe assessed interactions between neighboring plants within pots using the metrics of neighbor interaction intensity with multiplicative symmetry (NIntM)44:$${NIn}{t}_{M}=2frac{triangle P}{{P}_{-N}+{P}_{+N}+left|triangle Pright|},$$
    (2)
    where ({P}_{-N}) and ({P}_{+N}) are the productivities without (individual plant) and with neighbors (monocultures or mixtures), respectively; (triangle P={P}_{+N}-{P}_{-N}). Negative values of NIntM indicate competition and positive values indicate facilitation. NIntM is bounded between –1 (competitive exclusion) and 1 (“obligate” facilitation). For monocultures, we first calculated the per-plant biomass as the ratio between total biomass and planting density, and then used the per-plant value to compare with the corresponding individuals (without neighbor) of the same species with the same selection treatment in the same block. Note that under the reciprocal yield law45, an individual grown alone in a pot should be four times larger than an individual grown with three others in a pot, resulting in a NIntM of –0.75. For 2-species mixtures, we calculated the per-plant biomass separately for each species and took the average NIntM of the two species to measure the interaction intensity of the mixture. We set zero biomass for dead plants in the calculation. Again, if mixtures would also follow the reciprocal yield law independent of species identity, then NIntM = –0.75 would be expected. Values greater than –0.75 indicate some sort of overyielding due to higher density or higher density and higher diversity.To assess how selection treatment modified interactions between plants, we tested the effects of selection treatment on neighbor interaction intensity separately for monocultures and mixtures. We included block and selection treatment as fixed-effects terms, species composition and its interaction with selection treatment as random-effects terms (Supplementary Fig. 4; Supplementary Table 6).We calculated the difference between the heterospecific interaction in a mixture and the conspecific interactions in its two corresponding monocultures. A positive value of this difference indicates a weaker heterospecific than conspecific competition (i.e., niche differentiation) or stronger heterospecific than conspecific facilitation, which may lead to a positive complementarity effect. We tested the effects of selection treatment on interaction difference for each harvest by fitting block and selection treatment as fixed-effects terms, and species composition and its interaction with selection treatment as random-effects terms (Fig. 4; Supplementary Table 8). We also tested the significance of the interaction difference for each selection treatment by fitting block and species composition as fixed- and random-effects term, respectively (Fig. 4; Supplementary Table 7).Plant traitsTo assess whether drought selection would change plant traits, we measured six traits (Supplementary Table 9) closely related to plant usages of water or carbon on plants in pots with one individual from blocks 1–5. We focused on the traits on individual plants without neighbor to evaluate the influence of selection treatment on traits without the impacts of plasticity induced by plant interactions. We measured leaf relative chlorophyll content, leaf area (LA), leaf mass per area (LMA) and leaf osmometric pressure before the drought; leaf stomatal conductance both before and during the drought; and dry biomass ratio between root and shoot after the drought (in the third harvest). Leaf relative chlorophyll content was measured for three mature, fully expanded leaves per plant by using a SPAD-502 Plus chlorophyll meter from Konica Minolta. LA was obtained by scanning 3–4 mature, fully expanded leaves per plant with a LI-3100C Area Meter from LI-COR. LMA was calculated as the ratio between leaf dry mass (oven-dried at 70 °C for 48 h, using the same leaves that for LA) and LA. Leaf osmotic potential at full hydration was considered as an important trait associated with plant tolerance to drought30. We measured leaf osmotic potential with freeze-thaw leaf pieces cut from 1 to 2 mature, fully expanded leaves per plant by using a Wescor vapor pressure osmometer VAPRO (Model 5520) according to the method by Bartlett, et al.30. Plants were fully hydrated 1 day before the leaf sampling for osmotic potential measurement. Leaf stomatal conductance is a measure of exchange rate of carbon dioxide and water vapor through the stomata67. It was measured for 3–5 healthy mature leaves per plant by using a SC-1 Leaf Porometer from Decagon Devices. For grass species, 3 blades were placed adjacent to each other to have a large enough area for the measurement of stomatal conductance. For stomatal conductance during the drought event, we measured the individual plants from block 5 only due to limited time during the drought phase. We harvested aboveground and belowground plant biomass separately for alive individuals at the end of the experiment (after the complete recovery from the drought). The oven-dried (70 °C for 48 h) aboveground and belowground biomass were used to calculate the biomass ratio between root and shoot. We took the average value of each trait of each plant for statistical analyses. Each trait was measured for each block in turn.We used linear mixed-effects models to assess the influence (generalized across species) of selection treatment on trait values (red lines in Supplementary Figs. 5–7). Block and selection treatment were set as fixed-effects terms; species and its interaction with selection treatment were set as random-effects terms. Alternatively, we set species, selection treatment and their interaction as fixed-effects terms to assess whether species responded differently to the selection treatment (Supplementary Table 9). To test whether effects of selection treatment on traits differed between the five trait groups (leaf relative chlorophyll content, leaf area, leaf mass per area, leaf osmometric pressure, and leaf stomatal conductance) measured before the drought event in the glasshouse, we conducted two alternative analyses. First, we performed a principal component analysis with all traits and retained the first two principal axes (PC1 and PC2), which accounted for 39.06% and 22.3% of the total variation, respectively. Then we used PC1 and PC2 as response variables in mixed-effect models, separately. We fitted the models with the same fixed- and random-effects terms as those using each separate trait as the response variable. Effects of selection treatment on PC1 or PC2 were not significant. Second, we pooled the five traits as a single response variable in a mixed-effect model (corresponding to multivariate analysis of variance). Block, trait group (a factor with five levels), selection treatment, and the interaction between trait group and selection treatment were set as fixed-effects terms; species and its interactions with trait group and selection treatment and their three-way interaction were set as random-effects terms. We did not detect significant effects of selection treatment nor its interaction with trait group. Therefore, we did not present the results associated with these multivariate analyses in this paper. LMA, LA, leaf osmotic potential, leaf stomatal conductance, and root-shoot biomass ratio were log-transformed to improve normality of residuals.We also measured leaf relative chlorophyll content, LA and LMA in mixtures before the drought event (Supplementary Table 10) to evaluate the influence of selection treatment on trait dissimilarity between interacting species within communities. We calculated the absolute trait distance between two species in each mixture both separately for each trait and jointly with the three traits. For multi-trait-based dissimilarity, we standardized each trait to mean zero and unit standard deviation and calculated the Euclidean trait distance in standardized three-dimensional trait space.We used linear mixed-effects models to assess the effects of selection treatment on trait dissimilarity in mixtures (Supplementary Table 10). Block and selection treatment were set as fixed-effects terms; species composition and its interaction with selection treatment were set as random-effects terms. The model for LA dissimilarity did not converge so that we fit it with a general linear model, in which we tested the significance of selection treatment using its interaction with species composition as an error term. For the models with LA, LMA, and the joint three traits as dependent variables, we removed one pot (B1P674) because the LA value of Alopecurus pratensis in this pot was extremely small (about 1/3 of the second minimum value of the same species in mixtures). However, including or excluding this pot produced qualitatively similar results.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climate and hydraulic traits interact to set thresholds for liana viability

    TRY meta-­analysisWe used the TRY plant trait database27 to identify traits that show systematic differences between the tree and liana growth forms, as a way to narrow the scope of the rest of the analysis. We chose traits to represent major trade­offs within the “economic spectrum” framework, which places plants along a spectrum of strategies from acquisitive, fast return on investment to conservative, slow return on investment according to key functional trait values30. We narrowed traits to those that had observations for at least four tree and liana species. We then compiled our dataset using the following steps during November and December 2019. For each trait, we downloaded the dataset for all species available globally and averaged the observations of the trait to the species level to avoid statistical biases introduced in our growth form comparison due to a high density of observations in a few commercially valuable species. We matched the species ID number with the most frequently used growth form identifier using the TRY “growth form” trait and kept the species with the most frequent identifier of “tree,” “liana,” or “woody vine.” We subsetted the data to keep only species with a majority of observations ascribed to the tree and liana growth forms (i.e., no herbaceous species, ferns, etc.), resulting in observations for 44,222 total species. Finally, we filtered the dataset of 44,222 species by hand to remove species misclassified as trees or lianas; species occurring entirely in temperate to boreal biomes; species from all gymnosperm lineages except the order Gnetales; and entries for taxonomic classifications broader than the genus level (e.g., taxonomic families). We found that hydraulic functional traits in the TRY database (i.e., Ks,max and P50) show systematic differences between growth forms (Supplementary Fig. 1; Supplementary Tables 3 and 4), while there is mixed evidence for differences in the acquisitiveness of trees and lianas in terms of stem anatomical traits (Supplementary Fig. 1; Supplementary Tables 3 and 4) and leaf functional traits (Supplementary Fig. 6; Supplementary Tables 3 and 4), and no evidence of differences between tropical trees and lianas with respect to root functional traits (Supplementary Fig. 7; Supplementary Tables 3 and 4).Extended meta­-analysisWe conducted an additional literature search to supplement the hydraulic trait observations from the TRY database. The additional literature search served two purposes: (1) to fill a major gap identified during our TRY analysis in terms of liana trait observations, and (2) to address the methodological inconsistency of measuring Ks,max and P50 on liana branches shorter than the longest vessel, which incorrectly measures Ks,max and P50 without accounting for end wall resistivity59,60.We conducted a literature search using Web of Science and Google Scholar. We searched the following phrases in combination with “liana:” “hydraulic conductivity,” “hydraulic trait,” “hydraulic efficiency,” and “hydraulic K.” Of the literature we found, we kept only the studies that met the following criteria: (1) reported Ks,max measurements for lianas, (2) measured Ks,max instead of computing Ks,max from xylem conduit dimensions, (3) measured Ks,max on sunlit, terminal branches of mature individuals or saplings, and (4) measured Ks,max on a branch longer than the longest vessel. We considered the authors to have used a branch length longer than maximum vessel length if the authors measured or reported maximum vessel length for the species and a longer branch was used. Because the best methodological practice for measuring P50, especially in species with long vessels, is currently a matter of debate, we additionally removed all observations of P50  > ­0.75. This filtering was performed to reduce the probability that falsely high (i.e., less negative) P50 values were retained in our analysis because of improper measurement technique and is consistent with the P50 filtering performed by Trugman et al.61. Improper measurement technique is a particular concern for lianas, whose wide and long vessels require cautious implementation of the traditional measurement techniques developed for trees. We note that retaining all liana P50 observations (i.e., not filtering out observations  > −0.75) results in a significant difference between trees and lianas (Mann­–Whitney test statistic = 1029, ntree = 61, nliana = 46, p  More

  • in

    Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA

    Chloroplast and repetitive nuclear DNA enrichment in the sedaDNA extractsTo the best of our knowledge, we generated the first large-scale target enriched dataset using sedaDNA extracted from sediments of multiple lakes. Sequencing of two datasets produced 325.5 million (M) quality-filtered paired-end DNA sequences. The first target enriched dataset, targeting both the chloroplast and a set of nuclear genes of Larix on 64 sedaDNA extracts and 19 negative controls from seven lake sediment records resulted in 324 M quality-filtered paired-end sequences. The second target enriched dataset, targeting only the set of nuclear genes of Larix on four samples and two negative controls from an additional lake (Lake CH12) resulted in 1.5 M sequences. Quality-filtering of an additional published target enriched dataset29, targeting the Larix chloroplast genome on the same CH12 samples as applied for the second dataset, added another 54 M sequences.For the chloroplast enrichment, 390 thousand (K) sequences (1%) were classified as Larix at the genus or species level. The average coverage of bait regions was 19% at a mean sequence depth of 0.8. Sequencing of 19 library and extraction blank (negative control) samples resulted in 597 K paired-end sequences, of which 58% quality-filtered and deduplicated sequences remained. Of these, 38% were classified, with 0.03% of them (463 sequences) corresponding to the genus Larix. Negative controls from library preparation resulted in no to very few (0 to 5) sequences mapping to the Larix chloroplast reference genome. Negative controls from DNA extractions, which were in several cases pooled to one library, showed a low number of sequences mapped to Larix (0 to 94 sequences, except 237 sequences in one case). Excluding all sequences in negative controls from the sample analysis had no impact on the patterns resulting from the analysis of sample data. Detailed results and evaluation of negative controls are included in the Supplementary Information (Fig. S5) and Supplementary Data 1 and 2. Samples of all lake records with sufficient sequence coverage showed damage patterns typical of ancient DNA (see Supplementary Data 3).These results are comparable to the results obtained by Schulte et al.29, where 36% of quality-filtered sequences were classified as Viridiplantae with 9% assigned to Larix. In contrast to29, we raised the confidence threshold of taxonomic classification (a parameter defining the number of k-mers needed to produce a match against a taxon in the database), which drastically reduced the number of classified sequences, but increased the confidence in the analysis36.To analyze the enrichment obtained by the nuclear gene bait set, taxonomic classification was repeated using a plant genome database including available Pinaceae genomes. The classification resulted in 716 K sequences assigned to Larix, increasing the previous results by 325 K sequences. However, almost no sequences were mapped against the targeting baits (a maximum of five sequences for some samples). A closer inspection of unmapped sequences assigned to Larix revealed a high content of repetitive DNAs. More specifically, taxonomically classified Larix sequences could be assembled to EulaSat1, the most abundant satellite repeat in the nuclear genome of Larix32,37. This short repeat with a 173 bp long motif is arranged in large arrays of tandemly repeated motifs and is exclusively present in larches32. Analysis of modern L. sibirica, and L. gmelinii (western and eastern range) genomes reveals that EulaSat1 occurs in all species, contributing to 0.62% (L. sibirica), 2.52% (western range L. gmelinii), and 2.39% (eastern range L. gmelinii), of the genomes, respectively (Fig. S2). A comparison of the sequence proportions mapping to the repeat motif in the different datasets of Lake CH12 showed a specific enrichment of the repeat motif by the nuclear gene hybridization probe set (Fig. S3).In total, 17 K sequences mapped to the repeat motif of EulaSat1. The abundance of all sequences mapped per sample is in agreement with the abundance of sequences mapped to the chloroplast genome, confirming the general history of forest development (Fig. 2). Analysis of the nucleotide frequencies in the repeat motif showed a high constancy over all samples (Fig. S4). This suggests high conservation of the EulaSat1 motif in Siberian larches over time and space. Although satellite repeats are reported to have a high sequence turnover, for larches it has been shown that repeat profiles between two geographically well-separated species—the European larch (L. decidua) and the Japanese larch (L. kaempferi)—are very similar32. The main satellite in all larches, EulaSat1, is believed to have greatly multiplied after the split of Larix from Pseudotsuga32. Given the ongoing hybridization between the three Siberian larch species, it is not surprising to find a consistent pattern of nucleotide frequencies in all samples.Fig. 2: Comparison of target enrichment with available DNA metabarcoding and pollen datasets.From left to right: Larix-classified sequence counts mapping to (1) the Larix chloroplast and (2) the EulaSat1 satellite repeat motif, (3) percentage of Larix counts in metabarcoding data, (4) percentage of Larix pollen in pollen assemblages. All data from this study, except metabarcoding data from lakes CH1213 and Bolshoye Shchuchye55 and all pollen data except for several samples of Lake Kyutyunda which were produced in this study56,57,71. Pollen data of Lake Lama and the Holocene part of Lake Kyutyunda are based on parallel sediment cores PG1111 and PG2022, respectively. No available data are marked with crosses, asterisk marks a single Larix pollen grain found in the Bolshoye Shchuchye sediments.Full size imageOff-target sequences in target enriched datasets have already been demonstrated to be useful for the analysis of high-copy DNA such as ribosomal DNA or plastomes34,38,39. A recent study on five modern sedges showed that target enriched sequencing data originally targeting a set of gene exons can also be used to study the repetitive sequence fraction and even infer phylogenetic relationships based on repetitive sequence abundance35. Another study showed that also sequence similarities between homologous repeat motifs can be used to reconstruct phylogenetic relationships among closely related taxa40,41. In the case of Larix satellite EuLaSat1 in our study, no change in nucleotide frequencies, neither related to locations nor in time, could be detected. However, our results show that the off-target fraction in target enriched sedaDNA datasets can hold valuable information and that repeat motifs in more diverse taxon groups could even be a target for enrichment. Specifically enriching for repeat motifs in sedaDNA extracts could enable the study of satellite repeat evolution as well as giving additional information on species abundance and phylogeography.In the two target enriched datasets, sequences taxonomically classified to the genus Larix and mapping to the chloroplast and to the repeat sequence, respectively, show similar patterns of abundance (see Fig. 2). Compared with published metabarcoding and pollen data from the same locations, the Larix abundance patterns can be globally reproduced, underpinning the notion that sequence abundances in target enriched data can be used as good estimates of plant abundances. For older parts of the lake records, target enriched data show Larix where metabarcoding data were unable to detect a clear signal (see Fig. 2, lakes Billyakh, Bolshoye Shchuchye, Kyutyunda, and Lama). This shows that target enrichment is superior to metabarcoding when analyzing one taxonomic group in-depth, as it is less prone to errors by DNA degradation, which can impede primer binding if the molecule becomes too short. Also, independent of age, rare taxa mostly need multiple PCR replicates to be detected by metabarcoding42,43. Target enrichment, however, is more sensitive in identifying one focal taxon group, as the total target length can be much larger (e.g., a complete organellar genome) than for metabarcoding, and the DNA damage patterns are put to use to authenticate ancient DNA. Also, it is limited by molecule length only by the applied threshold in the bioinformatic analysis, for which we used 30 base pairs (bp) as opposed to a minimum of 85 bp molecule length for the Larix metabarcoding marker (for the plant-specific trnL g/h marker44). Similarly, compared to traditional pollen analysis, target enrichment is more accurate at tracing a specific target group, as it is not dependent on pollen productivity. Especially in the case of Larix, pollen productivity is low and preservation poor, resulting in rare findings of its pollen in the sediments22,45. This could explain why for Lake Bolshoye Shchuchye, only a single Larix pollen grain was retrieved throughout the core, whereas target enrichment and metabarcoding show a strong signal in the Holocene sediments (last ~12 ka BP). Target-enriched data also records signals in MIS 2 sediments, however, sequence counts are extremely low, and as it is the only record, where both of the other proxies fail to report a signal, it should be interpreted with caution.A wider pre-glacial distribution of L. sibirica
    Chloroplast genomes of L. gmelinii and L. sibirica differ at 157 positions, which can be used to differentiate species in target enriched sedaDNA29. Here, we applied this approach to lake sediment records, which are distributed across Siberia (Fig. 1) and have time ranges back to MIS3, and thereby were able to track species composition in space and time for wide parts of the species ranges.In lakes Billyakh and Kyutyunda, ca. 1500 km east of L. sibirica current range (Fig. 1), we found evidence for a wider distribution of L. sibirica around 32 and 34 ka BP in MIS3 (Fig. 3). Billyakh is situated in the western part of the Verkhoyansk Mountains, and Kyutyunda on the Central Siberian Plateau. Both lakes have low counts of Larix DNA sequences in their oldest samples dated to 51 ka BP (Billyakh) and 38 ka BP (Kyutyunda) with variants of L. gmelinii, but there is a sudden rise in variants attributed to L. sibirica at 34 ka BP (Billyakh) and 32 ka BP (Kyutyunda), which persists in the following samples, but strongly decreases in younger samples (Fig. 3). The rise in the L. sibirica DNA sequence variants coincides with a peak in sequence counts for Lake Kyutyunda. These signals suggest a rapid invasion of L. sibirica into the ranges of L. gmelinii in climatically favorable times and a local depletion or extinction of L. sibirica during the following harsher climates. Lake Billyakh pollen data suggest a moister and warmer climate around 50–30 ka BP than in the latter part of the Last Glacial associated with the MIS3 Interstadial in Siberia46.Fig. 3: Percentage and sequence counts at variable positions along Larix chloroplast genome assigned to species.Left: Alignment of Larix-classified DNA sequences against the chloroplast genome at the 157 variable positions between the species. For each position, the percentage of sequences assigned to a single species is displayed. Each row represents one sample named according to the calibrated age before present. Gray background indicates no coverage at the respective position. Right: Total number of sequences assigned to each of the species per sample.Full size imageStrong support for a wider pre-glacial distribution of L. sibirica comes from genetic analyses which show that it is genetically close to L. olgensis, today occurring on the Korean Peninsula and adjacent areas of China and Russia27,47. It is assumed that the L. sibirica-L. olgensis complex used to share a common range, which was disrupted and displaced when the better cold-adapted L. gmelinii expanded south and southwest during the more continental climatic conditions of the Pleistocene47,48. Furthermore, modern and ancient genetic studies suggest that the L. sibirica zone was recently invaded by L. gmelinii from the east in the hybridization zone of the species, as the climate cooled after the mid-Holocene thermal maximum13,23. Today, pure stands of L. sibirica do not form a continuous habitat, but occur in netted islands5 and morphological features of L. sibirica can be found in populations of L. gmelinii located at least a hundred kilometers east of the closest L. sibirica populations49. Macrofossil findings of L. sibirica in Scandinavia dated to the early Holocene, point to the capability of rapid long-distance jump dispersal of this species50. Fossil L. sibirica cones dated to the end of the Pliocene and in the Pleistocene have also been found far east of its current range in several river valleys including Kolyma, Aldan, and Omolon, and even in the basin of the Sea of Okhotsk9. These indicate long-distance seed dispersal by rivers which may also have assisted in successful establishment since the active-layer depth is deeper close to rivers51,52. As mentioned earlier, L. sibirica is sensitive to permafrost and waterlogged soils. A warmer phase with a deeper thawed layer above the permafrost could have enabled L. sibirica to spread and establish in regions that today are part of the geographic range of L. gmelinii, as L. sibirica is reported to have higher growth rates than L. gmelinii13.
    Larix gmelinii formed northern LGM refugia across SiberiaThe possible survival of Larix in high latitude glacial refugia during the LGM is still under discussion4,53 although more and more evidence is reported in favor of the existence of such refugia17,20,21. The question of which of the Larix species formed these populations has hitherto been unanswered, as both pollen and established metabarcoding markers are not able to distinguish between species in the genus Larix, and findings of fossilized cones identifiable to species are rare. By enriching sedaDNA extracts for chloroplast genome sequences, we are, to the best of our knowledge, for the first time, able to distinguish between L. sibirica and L. gmelinii in glacial refugial populations.From Lake Lama, located at the western margin of the Putorana Plateau (Taymyr Peninsula), we obtained a continuous record extending from 23 ka BP to today with varying sequence counts with minima around 18–17 ka BP and 13 ka BP. All samples prior to the Holocene show variations predominantly assigned to L. gmelinii (Fig. 3). Our results suggest a local survival of L. gmelinii in the vicinity of Lake Lama throughout the LGM, which is supported by low numbers of Larix pollen detected through this period. Both target enriched sequence data and pollen indicate an increase from ca. 11 ka BP54. Sparse Larix pollen in the bottom part of the record could be an indication of a possible refugial population (Fig. 2; ref. 54).In Bolshoye Shchuchye, the westernmost lake of the study, situated in the Polar Ural Mountains, all Pleistocene samples show similarly a dominance of L. gmelinii sequence variations (Fig. 3). However, sequence counts for some samples are extremely low and samples from 18 and 10 ka BP had so low counts of mapped DNA sequences that none of the variable positions between the species was covered. Although sequences mapped to the satellite repeat of Larix also showed a Pleistocene signal, this was not repeated in pollen or metabarcoding (Fig. 2) which instead indicates a treeless arctic-alpine flora for the late Pleistocene55,56. Especially for the sample of 20.4 ka, Larix sequence counts are extremely low and new investigations would be needed to confirm a local presence of Larix during the LGM.The record of Lake Billyakh situated in the western Verkhoyansk Mountain Range, likewise shows extremely low counts of sequences mapped to the reference for a range of samples with no sequences covering the studied variable sites (45, 42, and 15 ka BP, 11–56 sequences mapped to non-variable sites). However, the pollen record for the same core shows a quasi-continuous record of Larix with a gap only occurring during the early LGM46 (25–22 ka BP, Fig. 2). Considering the known short-distance dispersal ability and poor preservation of Larix pollen, this strongly supports the presumed existence of a local glacial refugium at Lake Billyakh during that time20. Our samples also show a low but steady presence of Larix throughout the rest of the record, thus making glacial survival probable. The sample closest to the LGM (24 ka BP) indicates a clear dominance of L. gmelinii type variations.The only exception to this general pattern is the record from Lake Kyutyunda, which is located on the Central Siberian Plateau west of the Verkhoyansk Mountain Range. In this record, LGM samples have extremely low counts but show variations assigned to L. sibirica and not to L. gmelinii as in the other lakes. In addition, the preceding sample dated to the MIS3 interstadial shows L. sibirica variation. A possible explanation is that relics of L. sibirica survived during the LGM, but were unable to spread after climate warming, possibly due to genetic depletion or later local extinction. The presence of reworked sediment material can also not be excluded, as suggested by reworked pollen in the record57.In conclusion, our data show almost exclusively L. gmelinii variation for samples covering the most severe LGM climate conditions. This is in agreement with the ecological characteristics describing the species as adapted to extreme cold. In contrast to L. sibirica, it can grow in dwarf forms and propagate clonally and potentially survive thousands of years of adverse climatic conditions58.Postglacial colonization history—differences among larch speciesOf great interest in the Larix history is not only the location and extent of possible high latitude glacial refugia but also if and to what extent these refugia contributed to the recolonization of Siberia after the LGM. Northern refugial populations could have functioned as kernels of postglacial population spread and recolonization, or spreading could have been driven by populations that survived in southern refugia. There are only a few studies on modern populations that report evidence for possible recolonization scenarios of Larix23,27,28. Here, we show that patterns differ between L. sibirica and L. gmelinii.In the western part of our study region, two lakes are situated in the current distribution range of L. sibirica (Figs. 1, 4): Lake Bolshoye Shchuchye in the Polar Ural Mountains and Lake Lama on the Taymyr Peninsula. Despite this, both lakes show L. gmelinii for all Pleistocene samples, and a strong signal of L. sibirica variants only in the Holocene samples, with ages of 5.1 ka BP in Lake Bolshoye Shchuchye and 9.7 ka BP in Lake Lama (Fig. 3). The peak in L. sibirica also coincides with a peak of sequence counts in the respective sample, with a Larix pollen peak in Lake Lama sediments54, and metabarcoding for Lake Bolshoye Shchuchye55. This points to a migration of L. sibirica in its current northern area of northern distribution in the course of climate warming during the early Holocene, whereas glacial refugial populations were consisting of L. gmelinii. Although the local survival of L. gmelinii around Lake Bolshoye Shchuchye remains uncertain due to extremely low sequence counts, it is clear that L. sibirica did not form a refugial population at this site.Fig. 4: Percentage of DNA sequences assigned to references displayed on the geographical locations of the lakes investigated.Samples in the same time frame are averaged. Lake names and current species ranges are annotated in the middle plots. Colors indicate current species distribution (adapted from Semerikov and Lascoux72). The base map is done with ggmap73, map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.Full size imageA range-wide genetic study of L. sibirica analyzing chlorotypes and mitotypes of individuals23 found strong indications for rapid colonization of the West Siberian Plains from populations originating from the foothills of the Sayan Mountains in the south, close to the border of Mongolia, with only limited contribution from local populations. According to our results, the local populations could have been L. gmelinii populations, while the rapid invasion could have been L. sibirica.In the eastern range of the study region, in the current range of L. gmelinii, namely at lakes Emanda, Satagay, and Malaya Chabyda, genetic variations throughout the records are less pronounced. Of the three lake records, only that from Lake Emanda reaches back beyond the LGM, but with a sampling gap for the time of the LGM. Therefore, it remains uncertain whether populations survived the LGM locally, or whether they were invaded or replaced by populations coming from the south with Holocene warming. The restricted variations throughout the record, however, hint at stable populations, which is supported by scarce pollen findings (Fig. 2).Our data suggest that postglacial recolonization of L. sibirica was not started from high latitude glacial refugia, but from southern populations. In contrast, northern glacial populations of L. gmelinii could have potentially enhanced rapid dispersal after the LGM in their current area of distribution.Environment likely plays a more important role than historical factorsThe current boundaries of boreal Larix species arranged from west to east suggest a possible strong influence of the historical species distribution on the current distribution, whereas the gradient of increasing continental climate towards the east assumes a strong influence on the environment. By tracking species distribution in the past, spanning the time of the strongly adverse climate of the LGM, we can give hitherto unprecedented insights into species distribution history.Several lines of evidence suggest a strong influence of the environment on species distribution: (1) Signals for L. sibirica appeared in its current area of distribution as late as the Holocene warming, whereas cold Pleistocene samples are dominated by L. gmelinii type variation; (2) in lakes far east of its modern range, signals of variation typical for L. sibirica coincide with peaks in sequence counts (29 ka BP, Lake Billyakh; 32 ka BP Lake Kyutyunda), which point to more forested vegetation around the lakes and consequently a more favorable climate at that time; and (3) samples dated to the severely cold LGM are dominated by variations of the L. gmelinii type.This is in accordance with the different ecological characteristics described for the species. L. sibirica is sensitive to permafrost and only occurs outside of the zone of continuous permafrost5. In addition, L. sibirica achieves substantially higher growth rates and longer growth periods than L. gmelinii9,13 and can also produce more than twice as many seeds5. This potentially gives L. sibirica the ability to quickly react to climate change and outcompete the other species when the climate becomes more favorable.In contrast, L. gmelinii is adapted to extremely low soil and air temperatures and is able to grow on permafrost with very shallow thaw depths. It’s distribution almost completely coincides with continuous permafrost5, and even a restriction to permafrost areas is discussed as it does not grow well in field trials on warmer soils or where there is a small temperature gradient between air and soil9. Due to this ecology, L. gmelinii is more likely to survive in a high latitude refugium, even during the severe continental climate of the LGM, which was most probably connected to continuous permafrost of low active-layer depths.A study combining mitochondrial barcoding on sedaDNA and a modeling approach on Larix distribution in the Taymyr region around Lake CH12 concluded that the distributions of L. gmelinii and L. sibirica are most strongly influenced by stand density and thus by competition between the species, with L. gmelinii outcompeting L. sibirica at high stand densities13. As our study includes sediment cores reaching further back in time, we see a different trend. Instead of L. gmelinii, it was L. sibirica, which dominated samples with high sequence counts, suggesting high stand density and a more favorable climate. A possible explanation for the different outcomes is the use of different organelle genomes. Epp et al.13 used a marker representing the mitochondrial genome, which is known to introgress more rapidly and as a consequence might show a long past species history59,60.Our findings have potentially important implications for the projections of vegetation-climate feedback. A warming climate in conjunction with a greater permafrost thaw depth could enable the replacement of L. gmelinii by L. sibirica. In contrast to L. gmelinii, L. sibirica is not known to stabilize permafrost thus potentially further promoting permafrost thaw and with it the release of greenhouse gases, creating positive feedback on global warming11. On the other hand, the substantially higher growth rates of L. sibirica in comparison to L. gmelinii would increase carbon sequestration, thus mitigating global warming13. This shows the importance of understanding species-specific reactions to climate change, which can result in great shifts in distribution. Target enrichment applied on sedaDNA is able to reveal the impact of past climate change on populations and the increasing availability of modern reference genomes will further enhance its value of information. More