More stories

  • in

    Mulching impact of Jatropha curcas L. leaves on soil fertility and yield of wheat under water stress

    Khamraev, Sh. R. & Bezborodov, Yu. G. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World 2(33), 86–93 (2016).
    Google Scholar 
    Khan, A. U. et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13(1), 1–19 (2021).CAS 

    Google Scholar 
    Patil Shirish, S., Kelkar Tushar, S. & Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 1(3), 26–29 (2013).
    Google Scholar 
    Matkovic, A. et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine 35, 37–51 (2015).Article 

    Google Scholar 
    Nawaz, A., Lal, R., Shrestha, R. K. & Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 28(2), 673–681 (2016).Article 

    Google Scholar 
    Brant, V. et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 12(2), 106–116 (2017).CAS 
    Article 

    Google Scholar 
    Kumar, R. et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 8(3), 311–334 (2014).ADS 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204, 514–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193, 538–546 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chakraborty, D. et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 95(12), 1323–1334 (2008).Article 

    Google Scholar 
    Ahmad, Z. I., Ansar, M., Iqbal, M. & Minhas, N. M. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 39(4), 1189–1195 (2007).
    Google Scholar 
    Teame, G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 12(38), 2836–2843 (2017).Article 

    Google Scholar 
    Lehar, L., Wardiyati, T., Moch Dawam, M. & Suryanto, A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 24(3), 1338–1344 (2017).CAS 

    Google Scholar 
    Arash, K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2(3), 60–64 (2013).
    Google Scholar 
    Artyszak, A., Gozdowski, D. & Kucińska, K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 60(10), 464–469 (2014).Article 

    Google Scholar 
    Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.orgElbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).King, A. J. et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 60(10), 2897–2905 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).Ullah, F., Bano, A. & Nosheen, A. Sustainable measures for biodiesel. Effects 36(23), 2621–2628 (2014).CAS 

    Google Scholar 
    Irshad, M. et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Dieye, T. et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal). J. Soil Sci. Environ Manag. 7(3), 32–44 (2016).CAS 
    Article 

    Google Scholar 
    Kafi, M. & Salehi, M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 44, 257–262 (2012).
    Google Scholar 
    Yang, Y. M., Liu, X. J., Li, W. Q. & Li, C. Z. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 7(11), 858–867 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, Z. K., Wang, Y. J. & Li, F. M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 75(1), 71–83 (2005).Article 

    Google Scholar 
    Khan, R. H., Anwar-ul-Haq, K. & Sajjad, M. R. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 4(12), 85–91 (2014).
    Google Scholar 
    Weidhuner, A., Afshar, R. K., Luo, Y., Battaglia, M. & Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 111(6), 3398–3402 (2019).CAS 
    Article 

    Google Scholar 
    Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Rummana, S., Amin, A. K. M. R., Islam, M. S. & Faruk, G. M. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 21(1), 71–76 (2018).Article 

    Google Scholar 
    Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).CAS 
    Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 595–624 (Soil Sci. Society America, 1982).
    Google Scholar 
    Steel, R. G. D., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach 3rd edn, 246 (McGraw-Hill, 1997).
    Google Scholar 
    Brady, N. C. & Weil, R. R. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils 5(13), 311–358 (2008).
    Google Scholar 
    Scharenbroch, B. C. & Lloyd, J. E. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 32(4), 180–191 (2006).Article 

    Google Scholar 
    Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25(4), 239–249 (2007).Article 

    Google Scholar 
    Liu, Z., Fu, B., Zheng, X. & Liu, G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 42(3), 445–450 (2010).CAS 
    Article 

    Google Scholar 
    Bai, S. H., Blumfield, T. J. & Reverchon, F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils 50(1), 37–44 (2014).Article 

    Google Scholar 
    Yang, H. et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 197, 104485 (2020).Article 

    Google Scholar 
    Li, X. J. et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1804(4), 929–940 (2010).CAS 
    Article 

    Google Scholar 
    Fang, S., Xie, B., Liu, D. & Liu, J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 41(2), 147–162 (2011).Article 

    Google Scholar 
    Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).Johnson, D. et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 54(4), 671–678 (2003).Article 

    Google Scholar 
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).ADS 
    Article 

    Google Scholar 
    Nielsen, N. M., Winding, A. & Binnerup, S. Microorganisms as Indicators of Soil Health 15–16 (Ministry of the Environment, National Environ. Res. Inst., 2002).
    Google Scholar 
    Wilkinson, S. C. et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 34(2), 189–200 (2002).CAS 
    Article 

    Google Scholar 
    Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48(3), 424–430 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y. Y., Yao, H. Y. & Huang, C. Y. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 43, 828–834 (2006).
    Google Scholar 
    Jensen, K. D., Beier, C., Michelsen, A. & Emmett, B. A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 24(2), 165–176 (2003).Article 

    Google Scholar 
    Stoklosa, A., Hura, T., Stupnicka-Rodzynkiewicz, E., Dabkowska, T. & Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 61(2), 205–219 (2008).
    Google Scholar 
    Ohno, T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30(5), 1631–1635 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farooq, S., Shahid, M., Khan, M. B., Hussain, M. & Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 201(3), 173–188 (2015).Article 

    Google Scholar 
    Madani, A., Rad, A. S., Pazoki, A., Nourmohammadi, G. & Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 32, 145–151 (2010).CAS 
    Article 

    Google Scholar 
    Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 80(1–3), 23–40 (2006).Article 

    Google Scholar 
    Athar, H. R., Khan, A. & Ashraf, M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32, 1799–1817 (2009).CAS 
    Article 

    Google Scholar 
    Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 41(1), 1–12 (2021).Article 
    CAS 

    Google Scholar  More

  • in

    Cash and action are needed to avert a biodiversity crisis

    Ambitious new targets are needed to conserve nature by protecting parks and species.Credit: Tang Dehong/VCG/Getty

    It will take ample time and money to slow the world’s catastrophic loss of plant and animal species — and right now, both are running dangerously low. This year, nations are due to agree to an action plan to protect global biodiversity at the 15th Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity. But the meeting is already two years late because of the pandemic, and China, which will host the conference in Kunming, has yet to set a new date.Now, conflicts over financing are adding to the tension. Conservation groups and advocates suggest that rich nations must donate at least US$60 billion annually to help less-affluent ones to fund projects such as protecting areas where wildlife can thrive and tackling the illegal wildlife trade that is driving hundreds of species to extinction. This is much more than the $4 billion to $10 billion that they are estimated to be spending today, and well below the amount they are giving low- and middle-income countries (LMICs) to fight climate change, which reached around $50 billion in 2019 according to one estimate. Yet limited overseas development funds are spread ever thinner as donors deal with the pandemic and now the fallout from Russia’s invasion of Ukraine. This is where COP15 is meant to deliver: as well as agreeing to the action plan, called the Global Biodiversity Framework, nations will be encouraged to pledge more money.A mix of public and private money has started to trickle in. Currently, biodiversity funding on the table ahead of COP15 amounts to roughly $5.2 billion per year, according to estimates by a group of five leading conservation organizations. Most comes from six governments, including France, the United Kingdom and Japan, and the European Union. In April, the Global Environment Facility (GEF) — a multilateral fund to support international environmental agreements — announced that, over the next four years, around $1.9 billion will go to projects dedicated to biodiversity. However, it’s unclear how much of this will come from the coffers that donor countries have already pledged.Some cash for conservation is coming from private philanthropic donors — such as $2 billion committed by entrepreneur Jeff Bezos last year. And starting in 2020, a group of financial institutions (now 89 of them) promised to annually report their financing activities and investments that affect biodiversity, and to move away from those that do harm — a form of ecological accounting that could help to shrink the budget needed to protect biodiversity. Donors will need to reach much deeper into their pockets to meet the demands of LMICs, the custodians of much of the world’s biodiversity. In March, a group of LMICs, led by Gabon, asked for $100 billion per year in new funding when officials met in Geneva, Switzerland, to discuss progress on the Global Biodiversity Framework. The LMICs want the money placed in a new multilateral fund for biodiversity, separate from, but complementary to, the GEF.Aside from cash, the fund will need to find a new home and structure — and there are a few options. A proposal from Brazil, circulated at the Geneva meeting, suggests the fund be governed by a board of 24 members, with an equal number from rich and lower-income nations. The board would be responsible for funding decisions and would prioritize projects that help to achieve the biodiversity convention’s goals. The pitch generated interest among some countries, but also concerns that it’s an attempt by Brazil to divert attention from its failure over the past few years to protect the Amazon rainforest and prevent other environmental harm.Another option is the Kunming Biodiversity Fund, which China announced in October last year to help LMICs to safeguard their ecosystems. It allocated 1.5 billion yuan (US$223 million) to seed the fund and invited other countries to contribute, but so far none has. Sources knowledgeable about the fund say that donor countries are reluctant to pitch in because China is holding on too tightly to the reins and is not involving others in its deliberations. Details of how the fund will operate are scarce, but Nature has learnt that China is floating the idea of housing it at the Asian Infrastructure Investment Bank (AIIB), based in Beijing. Set up in 2016, the AIIB has $100 billion in total capital and 105 members, including Germany, France and the United Kingdom. The AIIB has big green plans. By 2025, it wants half of all infrastructure projects it finances to focus on climate issues. With rigorous oversight and transparency, the AIIB would make a good home for the Kunming fund.As countries prepare to meet in Nairobi on 20–26 June in a last-ditch attempt to push the biodiversity framework forwards before COP15, China, as the host, must urgently provide stronger leadership on financing, including more transparency and engagement. Progress will require quick, generous contributions from donor nations — which should prioritize grants, not loans, for biodiversity projects.Holding the COP15 meeting must be a priority, too. As China tightens restrictions in the face of a COVID-19 surge, some researchers fear that delays will stretch on, stalling conservation work and leaving less time to meet biodiversity targets. China must either commit to holding the meeting this year or let it proceed elsewhere. One option being quietly discussed is moving the meeting to Canada — home of the United Nations biodiversity convention’s secretariat — and this deserves consideration. The world needs an ambitious biodiversity plan now — nature cannot wait. More

  • in

    Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards

    Ethics statementThe data collection and experiments were conducted in accordance with the collecting permits (SGPA/DGVS/07946/08, 03369/12, 00228/13, 07587/13, 01629/16, 01205/17, 02490/17, 06768/17, 000998/18, 002463/18, 002490/18, 002491/18, 003209/18, and 02523/19) approved by Dirección General de Vida Silvestre, México.Phylogeny and divergence time estimationTo estimate the phylogeny and divergence time among phrynosomatid species we used sequences of five mitochondrial and eight nuclear genes available in GenBank for 149 taxa (Supplementary Data 2). Accession numbers were the same as those used in Martínez-Méndez et al.58 for the Sceloporus torquatus, S. poinsettii and S. megalepidurus groups and the same as those in Wiens et al.59 for other phrynosomatid species. For taxa not included in the previous references, we searched GenBank for available sequences. We then performed alignments for each gene using MAFFT (ver. 7)60 and concatenation and manual refinement using Mesquite (ver. 3.6);61 obtaining a concatenated matrix of 9837 bp for 149 taxa (Supplementary Data 3). For the relaxed clock analyses, three nodes were calibrated using lognormal distributions based on two previous studies59,62. The first calibration was set for the Sceloporus clade (offset 15.97 million years ago (MYA)) based on a fossil Sceloporus specimen63). The second calibration point was set for the Phrynosoma clade (offset 33.3 MYA) based on the fossil Paraphrynosoma greeni64, and the last calibration point was for the Holbrookia-Cophosaurus stem group (offset 15.97 MYA) given the fossil Holbrookia antiqua63. We conducted dating analysis with the concatenated sequences matrix, partitioned the mitochondrial and nuclear information, each gene under GTR + I + Γ model, and allowed independent parameter estimation. We performed Bayesian age estimation with the uncorrelated lognormal relaxed clock (UCLN) model in BEAST (ver. 2.5.2)65,66 and run on CIPRES67. Tree prior (evolutionary model) was under the Birth-Death model, and we ran two MCMC analyses for 100 million generations each and stored every 20,000 generations. We assessed the convergence and stationarity of chains from the posterior distribution using Tracer (ver. 1.7)68. We combined independent runs using LogCombiner (ver. 2.5.2; BEAST distribution)69 and discarded 30% of samples as burn-in, obtaining values of effective sample size (ESS) greater than 200. We estimated the maximum clade credibility tree from all post-burnin trees using TreeAnnotator (ver. 1.8.4)69. The ultrametric tree is available as Supplementary Data 4. As we describe below, we accounted for phylogenetic uncertainty in our models by reperforming analyses using 500 trees that we randomly sampled from our posterior distribution. The 500 sampled trees are available as Supplementary Data 5.Data collectionParity modeWe categorized each species as either oviparous or viviparous based on previously published databases21,37,51,70, published references, and unpublished data (Supplementary Data 1). Our assignations align with other studies, except for one species, Sceloporus goldmani, which has been previously considered a viviparous species21,71,72,73. The only available sequence in GenBank (U88290) for that species is from a male (MZFC-05458) collected in Coahuila, Mexico72. However, in that same locality, one of us (F. R. Méndez-de la Cruz; unpubl. data) collected two females of the same species, and both laid eggs. Thus, the population of S. goldmani herein included is considered oviparous. Considering S. goldmani viviparous increases the number of originations of viviparity to 6 (from 5) in this lineage (Supplementary Fig. 4), but does not alter the outcome of our model-fitting analyses of trait evolution (Supplementary Table 7).Thermal physiologyWe compiled a database of four thermal physiological traits that influence the performance and fitness of ectotherms74 for 104 phrynosomatid species. These data were gathered from both published sources and from our own field and laboratory work (Supplementary Data 1). The thermal physiological traits we examined were the field body temperature (Tb) of active lizards, the preferred body temperature (Tpref) in a laboratory thermal gradient75, cold tolerance (critical thermal minimum, CTmin), and heat tolerance (critical thermal maximum, CTmax). These latter two traits (CTmin and CTmax) describe the thermal limits of locomotion; specifically, they describe the lower and upper temperatures, respectively, at which lizards fail to right themselves when flipped onto their backs55,76. To minimize the confounding effects of experimental design, we limited our data selection to species that were measured with similar methods. Correspondingly, our new data collection approach mirrored that of the published studies from which we extracted data. To obtain mean values for each thermal physiological trait (CTmin, Tb, Tpref, and CTmax) we did not mix data measured from different locations (instead, we used data from the population with the highest sample size).For species that we newly measured thermal physiological traits, we obtained the data as we describe below, and we based our methodology on the previous work55,56,75,76. We captured active (perching) adult lizards by lasso or by hand, and immediately ( More

  • in

    Energy and economic efficiency of climate-smart agriculture practices in a rice–wheat cropping system of India

    Source and operation-wise energy utilization patternField operations/seedbed preparationEnergy used in different field operations under various crop management activities was significantly affected by the rice establishment methods and was ranged from 422 to 436 MJ ha−1 (Table 1 and Fig. 1, S2). Business as usual (Sc1) with high energy intensive practices consumed the highest (4336 MJ ha−1) energy in seed bed preparation, whereas in Sc5 and Sc6 no energy was required for seed bed preparation (Fig. 1). CSAP (mean of Sc4, Sc5 and Sc6) consumed 57% less energy in crop establishment (transplanting/sowing) operations compared Sc1 (978 MJ ha−1). Irrespective of field operations, tillage consumed highest input energy in conventional management practice of RW system. This was due to repeated (5–6 passes) dry and wet tillage to prepare a seedbed for nursery raising and puddling consumed more diesel in machinery in Sc1. In addition to this, Sc1 and Sc2 required 15–20 additional manual labour for transplanting rice seedlings.Table 1 Energy (MJ ha−1) utilization pattern under different management practices in rice and wheat (mean of 3-years).Full size tableFigure 1Operation-wise input energy-use pattern (%)under different management practices in rice. Where; Sc1, business as usual-conventional tillage (CT) without residue; Sc2, CT with residue; Sc3, reduce tillage (RT) with residue + recommended dose of fertilizer (RDF); Sc4, RT/Zero tillage (ZT) with residue + RDF; Sc5, ZT with residue + RDF + GreenSeeker + Tensiometer; Sc6, Sc5 + Nutrient expert.Full size imageIn wheat, energy used under different management practices for seedbed preparations ranged from 892 to 3078 MJ ha−1 and were significantly affected by crop establishment method (Table 1). In seedbed preparation, Sc1 and Sc2 consumed highest energy (2228 MJ ha−1) followed by Sc3 (1382 MJ ha−1), whereas in Sc5 and Sc6 no energy was required for seed bed preparation. Sc3-Sc6 consumed ~ 53% less energy in seedbed preparation and in sowing compared to Sc1 (Fig. 2). Business as usual (Sc1) consumed more energy because of it required more tillage operations in seedbed preparation1,4. However, in CSAP, tillage is not required for seeded preparation and energy is used only for seed sowing.Figure 2Operation-wise input energy-use pattern (%) under different management practices in wheat. Where; Sc1, business as usual or conventional tillage (CT) without residue; Sc2, CT with residue; Sc3, reduce tillage (RT) with residue + recommended dose of fertilizer (RDF); Sc4, RT/Zero tillage (ZT) with residue + RDF; Sc5, ZT with residue + RDF + GreenSeeker + Tensiometer; Sc6, Sc5 + Nutrient expert.Full size imageOn the system basis, CSAP consumed 76% less energy in seed bed preparation compared to Sc1 (7416 MJ ha−1) (Fig. 3). The higher energy consumption in tillage could be due to fewer usages of modern agricultural machineries and higher use of human & animal power in conventional RW production (Fig. 3). These findings are in support of many other researchers they revealed that diesel consumption (15–20 L ha−1) can be reduced by minimizing numbers of tillage operations5,6. Gathala et al.9 and Laik et al.11 have also described that more tillage operations are the biggest energy consumer (~ 40% of the total energy) compared to best agronomic management practices.Figure 3Operation-wise input energy-use (%) of RW system under different management practices. Where; SFPI are seed, fertilizer, pesticides and irrigation. Sc1, business as usual-conventional tillage (CT) without residue; Sc2, CT with residue; Sc3, REDUCE tillage (RT) with residue + recommended dose of fertilizer (RDF); Sc4, RT/Zero tillage (ZT) with residue + RDF; Sc5, ZT with residue + RDF + GreenSeeker + Tensiometer; Sc6, Sc5 + Nutrient expert. Vertical bars indicate ± S.E. of mean of the observed values.Full size imageSeed, fertilizers, pesticides and irrigation (SFPI)In rice production, agronomic energy inputs (SFPI) consumed ~ 84% of the total energy inputs, of which irrigation alone consumed about 46% (mean of six scenarios’ total energy input 3,8483 MJ ha−1) (Table 1 and Fig. 1, S2). Sc1 (puddled transplanted rice; PTR) consumed 29% higher energy in irrigation compared to CSAP (direct seeded rice; DSR) (Fig. 1). This was due to more electricity consumption in lifting of irrigation water from borewell for nursery raising, puddling operations and continuous flooding of water to complete the life cycle of crops. Furthermore, inorganic fertilizers were the second most important input that accounted for ~ 36% of total energy. Chaudhary et al.4and Pathak et al.15 stated that out of the total energy, about 43% energy is required for irrigation and fertilizers in rice production. The CSAP consumed 76, 22 and 11% less energy in pesticides, irrigation and fertilizer, respectively compared to Sc1 (Fig. 1). However, the seed energy was lower in Sc1 (transplanting methods) of rice production than CSAP (DSR), since the seed rate was used lower in PTR; these results were in accordance with Chaudhary et al.4 and Yuan et al.12. Similarly, CSAP (DSR) recorded 87% more energy for weed control and inter-cultivations than Sc1 (PTR), due to use of higher amount of herbicides in DSR (Sc3–Sc6). While in PTR (Sc1 and Sc2), submergence of water minimized the weed problem, which contributed to lesser use of herbicides. Nevertheless, the energy savings in various interculture operations and weed management practices under PTR weren’t enough to compensate its more energy consumption in nursery raising, puddling for rice seedling transplantation and irrigation. Overall, Sc6, Sc5, Sc4 and Sc3 consumed 23, 20, 18 and 15% less energy in SFPI compared to Sc1 (37,212 MJ ha−1) (Fig. 1). Laik et al.11 and Nassiri et al.16 results are validated by those who reported the highest energy consumption in conventional RW production system compared to CA based RW system.Like rice, in wheat production also, agronomic energy inputs/SFPI were the major energy consumers that contributed nearly 84% energy out of the total energy (21,660 MJ ha−1) (Table 1). Among the agronomic inputs (SFPI), fertilizer (F) was the foremost energy input requiring about 70% energy (18,208 MJha−1) of the total energy. Furthermore, irrigation is the second major energy consumer that contributed around 16% of the total agronomic energy inputs (Table 1 and Fig. 2). Overall, CSAP consumed 18.2 and 17.6% lesser energy in fertilizer and irrigation respectively, compared to Sc1 (14,328 and 3928 MJ ha−1) (Fig. 2). Less fertilizer and irrigation requirement under CSAP was due to precision agronomic input management, whereas, in Sc1 more use of N fertilizer and irrigation was made it more energy intensive. However, CSAPs consumed 26% higher energy in pesticides than to Sc1 (364 MJ ha−1). Sc6, Sc5, Sc4 and Sc3 consumed 20, 17, 11 and 8% less energy under SFPI compared to Sc1 (20,090 MJ ha−1). The findings of the present study are in accordance with some researchers12. On the system basis, CSAP consumed 19% lower energy under agronomic inputs/SFPI compared to Sc1 (57,485 MJ ha−1) (Fig. 3).Crop managements, harvesting and threshingThe energy utilization pattern for rice production in different crop management operations (intercultural, weeding and inputs application) are presented in Table 1 and Fig. S2. In 3-years, CSAP consumed 23% less energy under various crop management activities compared to Sc1 (2394 MJ ha−1). Among the crop management practices, CSAP consumed 33% higher energy in weeding operation compared to Sc1 in rice production (Fig. 1). Likewise, in wheat production, Sc6 and Sc5 computed 19% less energy in crop management activities compared to Sc1 (487 MJ ha−1). Sc1, Sc2 and Sc3 consumed 15.6 MJ ha−1 higher energy in weeding operations whereas, no energy required in weeding under CSAP (mean of Sc4, Sc5 and Sc6) (Table 1). The similar energy use pattern was recorded under all scenarios for harvesting and threshing operations in both the crops (Fig. 2). In RW system, CSAP and Sc3 consumed 23 and 13% less energy in input application compared to Sc1 (2264 MJ ha−1), respectively (Fig. 3). The highest energy use in various crop management practices under Sc1 was due to more energy required for the application of fertilizers, pesticides, hand weeding and inter-culture operations compared to CSAP. Findings of current study are in accordance who also recorded that smart crop management practices required less energy compared to conventional practices4,5,12,17.Direct–indirect and renewable–non-renewable energyIn rice production, direct and non-renewable energy consumption was more than indirect and renewable energy (Table 2). Direct energy in different cultivation methods of rice was in the range of 57–63%, whereas indirect energy was 37–43% of total energy consumed. Among the direct energy sources, application of irrigation water in all scenarios of rice cultivation consumed the highest direct energy, which showed that irrigation methods in rice cultivation should be standardized with low water use for its future sustainability. The findings of past researchers highlighted that more tillage operation before planting needed around 1/3rd of the total field operational energy, and that can be saved without affecting the crop yields with the adoption of zero tillage based rice cultivation practices6,9,15,18. CSAP (mean of Sc4, Sc5 and Sc6) recorded 43 and 17% less consumption of direct energy & indirect energy in rice cultivation compared to Sc1 (19,264 and 5735 MJ ha−1), respectively. The Sc3 also recorded 20 and 17% less consumption of direct & indirect energy compared to Sc1, respectively (Table 2). The contrast effects (BAU vs CSAP and I-BAU vs CSAP) were significant for direct and indirect energy (Table S2). However, BAU versus I-BAU was not-significant for direct energy but significant for indirect energy.Table 2 Total energy input (MJ ha−1) in the form of direct, indirect, renewable and non-renewable energy for different management practices under the rice, wheat and RW system.Full size tableThe contribution of renewable energy was very low in rice cultivation methods and it highlighted that the cultivation of rice is mainly based on non-renewable sources4,5,11,15. In our study, higher percent of electricitical energy consumed for water pumping from tube-wells, could be owing to less charges of electricity in Haryana, India19,20,21. In the study`s area, electric energy consumed in crop production is generated mostly from non-renewable sources, particularly fossil fuels. Furthermore, non-renewable sources are still the main fuel in power plants. The contrast effect (BAU vs CSAP) was significant for renewable and non-renewable energy (Table S2).In wheat cultivation methods, indirect & non-renewable energy consumption was greater than the direct & renewable energy. Less renewable energy uses in wheat cultivation showed that wheat production is mainly based on non-renewable resources. CSAP recorded 52 and 19% less direct and indirect energy in wheat cultivation compared to Sc1, respectively (Table 2).In RW system, direct and indirect energy consumption varied from 24,999 to 37,452 MJ ha−1 and 26,068 to 33,087 MJ ha−1, respectively (Table 2). Business as usual required more direct energy (diesel in field operations, electricity in irrigation and labour in crop management) than indirect energy in the CT-based RW system. However, CSAP required less direct energy compared to indirect energy, which showed that less number of field operations are required under CSA-based RW production system. The contrast effect (BAU vs CSAP) were significant to direct and indirect energy (Table S2).In RW system, higher renewable & non-renewable input energy was recorded under Sc1 and Sc2 (4582 and 65,957 MJ ha−1) followed by Sc3 (4306 and 54,906 MJ ha−1) as compared to CSAP (3985 and 47,082 MJ ha−1) (Table 2). The contrast effects were significant to renewable & non-renewable energy (Table S2). Present study indicated that conventional RW production system in the IGP plains are mostly dependent on non-renewable energysources4,15,20,22. Overall, non-renewable energy through fuel, electricity for ground water, inorganic fertilizers, pesticides and farm machineries shared maximum energy inputs followed by renewable resources viz.,labour, tractor, seed, etc.11,15,18. Dependence on non-renewable energy impacted the sustainability of the RW system15. Noteworthy, renewable energy is eco-friendly as well as reliable source of energy; hence, the use of renewable energy highlighted huge benefits, counting lesser contributions to greenhouse gasses emissions and enhanced environmental quality5. The present findings highlighted that more focus should be kept to improve, renewable energy use, technical innovation and optimized investment in rice and wheat production.Energy balance sheet (input–output and net energy)The total energy used for various rice production methods varied from 32,606 to 45,685 MJ ha−1 and was significantly affected by different crop management practices (Table 3). Our study results are in track with those of other similar research studies conducted in the IGP region for RW system4,5,11. Among the different rice production methods, PTR cultivation method (Sc1) of rice noted higher energy input than the CSAP (DSR method). Sc1 (32,606 MJ ha−1) recorded 40, 35, 27 and 23% higher energy use in rice production over Sc6, Sc5, Sc4 and Sc3, respectively (Table 3). Similarly, Sc1 (32,606 MJ ha−1) recorded 35, 29, 22 and 13% higher energy use in wheat production over Sc6, Sc5, Sc4 and Sc3, respectively. The CSAP and Sc3 used 24 and 16% less energy under RW system compared to Sc1 (70,538 MJ ha−1), respectively. However, CSAP recorded higher energy output from rice, wheat and RW system compared to Sc1. Compared to Sc1, the CSAP produced 1, 14 and 6% higher grain output energy under rice, wheat and system, respectively. The minimum input and maximum output energy under Sc6 were due to gained more net energy for both the crops during the respective years (Table 3). Linear contrast effects were significant to total energy input in rice, wheat and RW production systems. However, contrast effects were not significant to energy input in rice and RW system but significant to wheat production system.Table 3 Energy (MJ ha−1) balance under different management practices in rice, wheat and RW system (mean of 3 years).Full size tableIn rice production, the energy saving under CSAP was due to less energy inputs used in electricity that was associated with less irrigation water use in cultivation4,5,11. Efficient water management practice had a positive effect on energy consumption5,11and diverse energy sources across water regimens in India1,12,16. Our study showed that the energy input in existing rice and wheat production can be further minimized with precision water management techniques and, optimization of irrigation water management based on the precision land-levelling, frequent irrigation in rice, tensiometer based irrigation and zero tillage can efficiently decrease the total energy consumption in the IGP of India2,11.On an average, fertilizer was the first and second largest source of energy consumption in rice and wheat in all scenarios (Figs. 1 and 2), respectively. Aggregate proof from the current study and other similar studies highlighted that fertilizer consumption created the major share of the total energy input in crop production10,11,12. Among different fertilizers, N-fertilizers consumed the most energy input and constituted 94% in Sc1 and 87% in CSAP of the energy from fertilizers in RW system. From several past evidences, it is crystal clear that fertilizer application is exceeded to the highest demand for crop growth & development in this region, that further encouraged low resource use efficiency (RUE) and higher environmental footprints23,24. Thus, it is necessary to use fertilizers efficiently to reduce energy use and to prevent environmental degradation. Overall, the higher energy input was allied with more tillage, labour, irrigation and higher use of N-fertilizers in Sc1 compared to CSAP. Erenstein et al.6, Gathala et al.9and Ladha et al.3 also described that more tillage for seed bed preparation, more number of irrigation, higher labour and higher fertilizer inputs are the main interventions for higher energy usage under traditional farming. The higher output energy of rice, wheat and RW system with CSAP might be due to the multiple effects of applied nutrients1, zero tillage5, residue management, improved soil health2, good water regimes5,11and improved nutrient use efficiency (NUE) relative to Sc1. The CSAP recorded greater crop yields that ultimately reflected to greater net energy, EUE, human energy profitability, EP, over conventional methods of RW system.Energy use efficiency (EUE) and productivityEnergy use efficiency is an index used to measure the amount of energy that is effectively used in different farm activities. The highest input and the lowest output energy under Sc1 resulted into the lowest EUE and energy productivity (EP). Contrarily, the lowest energy input and the highest energy output under CSAP (mean of Sc4, Sc5 and Sc6) resulted into the maximum EUE and EP in both the crops in all the study’s years (Table 3). The average energy use efficiency was 52, 53 and 54% higher under Sc6 in rice, wheat and RW system compared to Sc1 (Table 3), respectively. CSAP recorded 44% (7.57 MJ MJ−1) higher EUE compared to Sc1 (5.28 MJ MJ−1) in the RW system. Linear contrast effects were also significant to EUE in rice, wheat and RW production systems. The large gap among the two values was due to tillage, irrigation and fertilizers which highlighted that EUE can be enhanced with reduced tillage, precision use of irrigation water and nutrient. Remarkably, the values observed in the current finding fall around the range described by other researchers11 who revealed that the EUE of RW production in IGP ranged 3.94 ± 1.31 MJ MJ−1. Overall, the results of the current study showed that those existing production methods of the RW system in IGP are not too efficient. Besides, RW system is damaging to agro-ecosystems because of imbalance and excess use of inputs. Hence, efficient use of production inputs would be helpful in optimizing energy consumption in RW system in the IGP region of South Asia.Energy productivity (EP) was statistically higher in the Sc6 in rice (0.15 kg MJ−1), wheat (0.21 kg MJ−1) and RW system (0.17 kg MJ−1) than in the Sc1 (Table 3). These findings revealed that an additional ~ 27% of RW system yield was gained per unit energy input in the Sc6 compared with the other scenarios (0.20 kg MJ−1). CSAP recorded 40% higher EP compared to Sc1 (0.17 kg MJ−1) in RW system. Linear contrast effects were significant to EP in rice, wheat and RW production systems (Table S2). The EP indices can be used for assessing the crop production associated environmental effects25. About agro-ecosystem sustainability, earlier research findings have highlighted that EP indicator could be used to judge optimal land and crop management intensities11,14. This study suggests there is an enormous potential for enhancing the energy productivity and efficiency of RW system in the IGP. CSA scenarios (Sc4, Sc5 and Sc6) improved EUE and EP in rice, wheat as well as RW system, was due to lower energy input and higher energy output relative to Sc1. The findings of our research are in line with those who has described that CA-based management practices can reduce energy input and increase output4,5,11,14.Yields, farm profitability and economic efficiency (Eco-efficiency)The rice yields were not much influenced by different crop management. However, in wheat, CSAP (mean of Sc4, Sc5 and Sc6) produced 11–16% and 10–13% higher grain and biomass yield, respectively compared to BAU. The grain and biomass yield of RW system was improved by 4–8 and 6–9% under CSAP, respectively relative to Sc1 (3-years’ mean) (Fig. 4).The CSAP improved the net income of rice, wheat and RW system by 15, 21 and 23% (3-years’ mean), respectively relative to Sc1 (US$ 824 and 1009 and 1833 ha−1, respectively) (Fig. 4). Linear contrast effects were significant to the net income in rice, wheat and RW production systems (Table S2). Higher net income was associated with CSAP due to less cultivation cost in various crop production activities such as tillage, crop establishment and irrigation9. Researcher observed that escaping field operations particularly tillage puddling and manual transplanting in rice and adoption of ZTDSR minimized tillage and establishment costs by 79–85%. CSAP improved crop yields while reducing production costs resulting in greater profitability of the RW system.Figure 4Effect of management practices portfolios on net return and eco-efficiency in rice, wheat and RW system (Mean of 3 years). Where; Sc1, business as usual-conventional tillage (CT) without residue; Sc2, CT with residue; Sc3, reduce tillage (RT) with residue + recommended dose of fertilizer (RDF); Sc4, RT/Zero tillage (ZT) with residue + RDF; Sc5, ZT with residue + RDF + GreenSeeker + Tensiometer; Sc6, Sc5 + Nutrient expert. Values with different lower case (a–e) letters are significantly different between each scenarios at p  More

  • in

    Correction: Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)?

    Author notesThese authors contributed equally: AM Carpenter, BA Graham.Authors and AffiliationsUniversity of Lethbridge, Lethbridge, AB, CanadaA. M. Carpenter, B. A. Graham & T. M. BurgBiological Sciences Department, Auburn University, Auburn, AL, USAA. M. CarpenterDenver Museum of Nature and Science, Denver, CO, USAG. M. SpellmanAuthorsA. M. CarpenterB. A. GrahamG. M. SpellmanT. M. BurgCorresponding authorCorrespondence to
    A. M. Carpenter. More

  • in

    Sustainability for Chile’s mountains — a united approach

    In this International Year of Sustainable Mountain Development, we call for transdisciplinary research by Chilean scientists and for concerted action among all stakeholders to address the complex factors responsible for the degradation of Chile’s mountains. Mountains cover 64% of Chile’s surface and are a crucial source of water, food, energy, minerals and biodiversity.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Sustainable seas: overdue SDG target could be met this year

    None of the 21 targets of the United Nations’ Sustainable Development Goals (SDGs) set for 2020 was achieved. But, by our calculations, the target to protect 10% of the global ocean area (SDG14, target 5) could become a reality this year.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).ADS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a tropical western atlantic reef ecosystem. Ecosystems https://doi.org/10.1007/s10021-021-00691-z (2021).Article 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Mar. Policy 88, 295–302 (2018).Article 

    Google Scholar 
    Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441–456 (2018).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).ADS 
    Article 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    Bryan, D. R., Kilfoyle, K., Gilmore, R. G. Jr. & Spieler, R. E. Characterization of the mesophotic reef fish community in south Florida, USA. J. Appl. Ichthyol. 29, 108–117 (2013).Article 

    Google Scholar 
    Fukunaga, A., Kosaki, R. K., Wagner, D. & Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoS One 11, e0157861 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kahng, S., Copus, J. M. & Wagner, D. Mesophotic coral ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–22 (Springer International Publishing, Paris, 2016). https://doi.org/10.1007/978-3-319-17001-5_4-1.Chapter 

    Google Scholar 
    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosa, M. R. et al. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35, 113–123 (2016).ADS 
    Article 

    Google Scholar 
    Medeiros, A. P. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, D. G. SEFOS—Shelf edge fisheries and oceanography studies: An overview. Fish. Res. 50, 1–15 (2001).Article 

    Google Scholar 
    Heyman, W. D. & Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull. Mar. Sci. 83, 531–551 (2008).
    Google Scholar 
    Paxton, A. B. et al. Four decades of reef observations illuminate deep-water grouper hotspots. Fish Fish. 22, 749–761. https://doi.org/10.1111/faf.12548 (2021).Article 

    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48, 787–800 (2005).Article 

    Google Scholar 
    Longhurst, A. R. & Pauly, D. Ecologia dos oceanos tropicais (Edusp, 2007).
    Google Scholar 
    Olavo, G., Costa, P. A., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Silva, M. B., Rosa, R. S., Menezes, R. & Francini-Filho, R. B. Changes in reef fish assemblages in a cross-shelf euphotic-mesophotic gradient in tropical SW Atlantic. Estuar. Coast. Shelf Sci. 259, 107465 (2021).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Letessier, T. B. et al. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol. 17, e3000366 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heywood, K. J., Barton, E. D. & Simpson, J. H. The effects of flow disturbance by an oceanic island. J. Mar. Res. 48, 55–73 (1990).Article 

    Google Scholar 
    Signorini, S. R., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).ADS 
    Article 

    Google Scholar 
    Henry, G. W. & Lyle, J. M. National recreational and indigenous fishing survey (2003).Coutis, P. F. & Middleton, J. H. Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 1633–1652 (1999).ADS 
    Article 

    Google Scholar 
    Cardoso, C., Caldeira, R. M. A., Relvas, P. & Stegner, A. Islands as eddy transformation and generation hotspots: Cabo Verde case study. Prog. Oceanogr. 184, 102271 (2020).Article 

    Google Scholar 
    Tchamabi, C. C., Araujo, M., Silva, M. & Bourlès, B. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Model 111, 9–18 (2017).ADS 
    Article 

    Google Scholar 
    Motta, F. S. et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg. Stud. Mar. Sci. 47, 101951 (2021).Article 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Shucksmith, R. J. & Kelly, C. Data collection and mapping—Principles, processes and application in marine spatial planning. Mar. Policy 50, 27–33 (2014).Article 

    Google Scholar 
    Queffelec, B. et al. Marine spatial planning and the risk of ocean grabbing in the tropical Atlantic. ICES J. Mar. Sci. 78, 1196–1208 (2021).Article 

    Google Scholar 
    Rubio-Cisneros, N. T. et al. Poor fisheries data, many fishers, and increasing tourism development: Interdisciplinary views on past and current small-scale fisheries exploitation on Holbox Island. Mar. Policy 100, 8–20 (2019).Article 

    Google Scholar 
    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Hewitt, J. E., Anderson, M. J. & Thrush, S. F. Assessing and monitoring ecological community health in marine systems. Ecol. Appl. 15, 942–953 (2005).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Díaz-Pérez, L. et al. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea. PLoS One 11, e0161812 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Pennino, M. G. et al. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302–2310 (2016).Article 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer Science and Business Media, 2013).
    Google Scholar 
    Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (1986).Jones, R. S. & Thompson, M. J. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28, 159–172 (1978).
    Google Scholar 
    Kimmel, J. J. A new species-time method for visual assessment of fishes and its comparison with established methods. Environ. Biol. Fishes 12, 23–32 (1985).Article 

    Google Scholar 
    Michalopoulos, C., Auster, P. J. & Malatesta, R. J. A comparison of transect and species-time counts for assessing faunal abundance from video surveys. Mar. Technol. Soc. J. 26, 27–31 (1992).
    Google Scholar 
    Gray, J. S., Ugland, K. I. & Lambshead, J. Species accumulation and species area curves: A comment on Scheiner (2003). Glob. Ecol. Biogeogr. 13, 473–476 (2004).Article 

    Google Scholar 
    Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014).Article 

    Google Scholar 
    Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155–168 (2010).Article 

    Google Scholar 
    Logan, J. M., Young, M. A., Harvey, E. S., Schimel, A. C. G. & Ierodiaconou, D. Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Mar. Ecol. Prog. Ser. 582, 181–200 (2017).ADS 
    Article 

    Google Scholar 
    Koslow, J. A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66, 966–973 (2009).Article 

    Google Scholar 
    Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).ADS 
    Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83, 1508–1527 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fish. Res. 47, 173–191 (2000).Article 

    Google Scholar 
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).Article 

    Google Scholar 
    Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245–254 (2007).ADS 
    Article 

    Google Scholar 
    Fitzpatrick, B. M., Harvey, E. S., Heyward, A. J., Twiggs, E. J. & Colquhoun, J. Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS One 7, e39634 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooper, C. N., Hoff, G. R. & De Robertis, A. Assessing habitat utilization and rockfish (Sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis. Can. J. Fish. Aquat. Sci. 67, 1658–1670 (2010).Article 

    Google Scholar 
    Jones, D. et al. Evaluation of rockfish abundance in untrawlable habitat: Combining acoustic and complementary sampling tools (2012).O’Driscoll, R. L. et al. Species identification in seamount fish aggregations using moored underwater video. ICES J. Mar. Sci. 69, 648–659 (2012).Article 

    Google Scholar 
    Fernandes, P. G., Copland, P., Garcia, R., Nicosevici, T. & Scoulding, B. Additional evidence for fisheries acoustics: Small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. 73, 2009–2019 (2016).Article 

    Google Scholar 
    Gastauer, S., Scoulding, B. & Parsons, M. An unsupervised acoustic description of fish schools and the seabed in three fishing regions within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust. Aust. 45, 363–380 (2017).Article 

    Google Scholar 
    Blanluet, A. et al. Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoS One 14, e0223618 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campanella, F. & Taylor, J. C. Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016).Article 

    Google Scholar 
    Domokos, R. On the development of acoustic descriptors for semi-demersal fish identification to support monitoring stocks. ICES J. Mar. Sci. 78, 1117–1130 (2021).Article 

    Google Scholar 
    Villalobos, H. et al. A practical approach to monitoring marine protected areas: An application to El Bajo Espíritu Santo Seamount near La Paz, Mexico. Oceanography 34, 32–43 (2021).Article 

    Google Scholar 
    Hazin, F. H., Zagaglia, J. R., Broadhurst, M. K., Travassos, P. E. P. & Bezerra, T. R. Q. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1–8 (1998).
    Google Scholar 
    Lessa, R. P. et al. Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Arch. Fish. Mar. Res. 47, 239–252 (1999).
    Google Scholar 
    Dominguez, P. S., Zeineddine, G. C., Rotundo, M. M., Barrella, W. & Ramires, M. A pesca artesanal no arquipélago de Fernando de Noronha (PE). Bol. Inst. Pesca 42, 241–251 (2014).Article 

    Google Scholar 
    Lopes, P. F. M., Mendes, L., Fonseca, V. & Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 200, 123–134 (2017).CAS 
    Article 

    Google Scholar 
    Outeiro, L., Rodrigues, J. G., Damásio, L. M. A. & Lopes, P. F. M. Is it just about the money? A spatial-economic approach to assess ecosystem service tradeoffs in a marine protected area in Brazil. Ecosyst. Serv. 38, 100959 (2019).Article 

    Google Scholar 
    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: The potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).Article 

    Google Scholar 
    Bertrand, A. FAROFA 1 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001399 (2017).Article 

    Google Scholar 
    Bertrand, A. FAROFA 2 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001411 (2018).Article 

    Google Scholar 
    Bertrand, A. FAROFA 3 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001381 (2019).Article 

    Google Scholar 
    Bertrand, A. et al. Acoustic data from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/71024 (2020).Salvetat, J. et al. Underwater video observations from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/76019 (2020).Pawlowicz, R. M_Map: A mapping package for MATLAB, version 1.4 m (computer software) (2020).Péter, A. Solomon Coder: The Concept of Behavioral Elements, Categories and the Representation of Data in Solomon Coder (2019).Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).Article 

    Google Scholar 
    McQuinn, I. H. et al. Description of the ICES HAC standard data exchange format, version 1.60 (Conseil international pour l’exploration de la mer, 2005).
    Google Scholar 
    Trenkel, V. M. et al. Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 433–445 (2009).Article 

    Google Scholar 
    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).Article 

    Google Scholar 
    Salvetat, J. et al. In situ target strength measurement of the black triggerfish Melichthys niger and the ocean triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 71, 1118–1127 (2020).Article 

    Google Scholar 
    Lavery, A. C. et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122, 3304–3326 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Barros, M. J. G. Analises da Ictiofauna marinha e habitats associados atraves de videos subaquatica. (Universidade Federal de Pernambuco, 2020).
    Google Scholar 
    Sazima, C., Bonaldo, R. M., Krajewski, J. P. & Sazima, I. The Noronha wrasse: A jack-of-all-trades follower. Aqua J. Ichthyol. Aquat. Biol. 9, 97–108 (2005).
    Google Scholar 
    Soto, J. M. R. Peixes do arquipélago Fernando de Noronha. Mare Magnum 1, 147–169 (2001).
    Google Scholar 
    Krajewski, J. P. & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): The influence of exposure and benthic composition. Environ. Biol. Fishes 92, 25 (2011).Article 

    Google Scholar 
    Sazima, I., Sazima, C. & da Silva-Jr, J. M. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: An update and overview. Neotropical Ichthyol. 4, 451–455 (2006).Article 

    Google Scholar 
    Petitgas, P. Use of a disjunctive kriging to model areas of high pelagic fish density in acoustic fisheries surveys. Aquat. Living Resour. 6, 201–209 (1993).Article 

    Google Scholar 
    Chiles, J.-P. & Delfiner, P. Geostatistics: Modeling Spatial Uncertainty Vol. 497 (Wiley, 2009).MATH 

    Google Scholar 
    Bez, N. & Braham, C.-B. Indicator variables for a robust estimation of an acoustic index of abundance. Can. J. Fish. Aquat. Sci. 71, 709–718 (2014).Article 

    Google Scholar 
    Switzer, P. Min/max autocorrelation factors for multivariate spatial imagery. Comput. Sci. Stat. (1985).Bez, N. Global estimation based on indicators factorization (2021).Assunção, R. V., Silva, A. C., Martins, J. & Montes, M. F. Spatial-temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. J. Coast. Res. 75, 512–517 (2016).Article 

    Google Scholar 
    da Silva, A. C. et al. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha archipelago and Rocas atoll during spring 2015 and fall 2017. Front. Mar. Sci. 8, 598101 (2021).Article 

    Google Scholar 
    Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees. Wadsworth Int. Group 37, 237–251 (1984).MATH 

    Google Scholar 
    Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. Package ‘rpart’. Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016 (2015).Kuhnert, P. M., Duffy, L. M., Young, J. W. & Olson, R. J. Predicting fish diet composition using a bagged classification tree approach: A case study using yellowfin tuna (Thunnus albacares). Mar. Biol. 159, 87–100 (2012).CAS 
    Article 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Kuhnert, P. M., Henderson, A.-K., Bartley, R. & Herr, A. Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21, 493–509 (2010).MathSciNet 

    Google Scholar 
    Kuhnert, P. M. & Mengersen, K. Reliability measures for local nodes assessment in classification trees. J. Comput. Graph. Stat. 12, 398–416 (2003).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2020).ParisTech, M. ARMINES: RGeostats: The Geostatistical R Package (2020).Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5, 144 (2013).Article 

    Google Scholar 
    Pimentel, C. R. et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotropical Ichthyol. 18 (2020).Ilarri, M. I., Souza, A. T. & Rosa, R. S. Community structure of reef fishes in shallow waters of the Fernando de Noronha archipelago: Effects of different levels of environmental protection. Mar. Freshw. Res. 68, 1303–1316 (2017).Article 

    Google Scholar 
    Schmid, K. et al. First fish fauna assessment in the Fernando de Noronha Archipelago with BRUVS: Species catalog with underwater imagery. Biota Neotropica 20 (2020).de Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krajewski, J. P., Floeter, S. R., Jones, G. P. & Leite, F. P. Patterns of variation in behaviour within and among reef fish species on an isolated tropical island: Influence of exposure and substratum. J. Mar. Biol. Assoc. U. K. 91, 1359–1368 (2011).Article 

    Google Scholar 
    Mendes, T. C., Quimbayo, J. P., Bouth, H. F., Silva, L. P. & Ferreira, C. E. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish Biol. 95, 812–819 (2019).PubMed 

    Google Scholar 
    Petitgas, P. & Levenez, J. J. Spatial organization of pelagic fish: Echogram structure, spatio-temporal condition, and biomass in Senegalese waters. ICES J. Mar. Sci. 53, 147–153 (1996).Article 

    Google Scholar 
    Burgos, J. M. & Horne, J. K. Characterization and classification of acoustically detected fish spatial distributions. ICES J. Mar. Sci. 65, 1235–1247 (2008).Article 

    Google Scholar 
    Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22, 63–67 (2003).Article 

    Google Scholar 
    Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).Article 

    Google Scholar 
    Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105–116 (2002).ADS 
    Article 

    Google Scholar 
    Martins, K. et al. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 99, 1576–1590 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, B., Taylor, J. C., Kracker, L., Battista, T. & Pittman, S. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PLoS One 9, e85555 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kavanagh, K. D. & Olney, J. E. Ecological correlates of population density and behavior in the circumtropical black triggerfish Melichthys niger (Balistidae). Environ. Biol. Fishes 76, 387–398 (2006).Article 

    Google Scholar 
    Lubbock, R. The shore fishes of Ascension Island. J. Fish Biol. 17, 283–303 (1980).Article 

    Google Scholar 
    Price, J. H. & John, D. M. Ascension Island, South Atlantic: A survey of inshore benthic macroorganisms, communities and interactions. Aquat. Bot. 9, 251–278 (1980).Article 

    Google Scholar 
    Robertson, D. R. & Allen, G. R. Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15, 121–131 (1996).ADS 
    Article 

    Google Scholar 
    Gasparini, J. L. & Floeter, S. R. The shore fishes of Trindade Island, western south Atlantic. J. Nat. Hist. 35, 1639–1656 (2001).Article 

    Google Scholar 
    Lubbock, R. & Edwards, A. The fishes of Saint Paul’s rocks. J. Fish Biol. 18, 135–157 (1981).Article 

    Google Scholar 
    Feitoza, B. M., Rocha, L. A., Luiz-Júnior, O. J., Floeter, S. R. & Gasparini, J. L. Reef fishes of St. Paul’s Rocks: New records and notes on biology and zoogeography. Aqua 7, 61–82 (2003).
    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106 (2004).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fishes 18, 257–276 (1987).Article 

    Google Scholar 
    Walsh, W. J. Aspects of Nocturnal Shelter, Habitat Space, and Juvenile Recruitment in Hawaiian Coral Reef Fishes (University of Hawaii, 1984).
    Google Scholar 
    Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D. & Nezlin, N. P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 80, 336–360 (2002).ADS 
    Article 

    Google Scholar 
    Martinez, E. & Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 31, 18 (2004).Article 

    Google Scholar 
    Messié, M. et al. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).ADS 
    Article 

    Google Scholar 
    de Souza, C. S., da Luz, J. A. G., Macedo, S., de Montes, M. J. F. & Mafalda, P. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Mar. Freshw. Res. 64, 168–184 (2013).Article 
    CAS 

    Google Scholar 
    Travassos, P., Hazin, F. H., Zagaglia, J. R., Advíncula, R. & Schober, J. Thermohaline structure around seamounts and islands off North-Eastern Brazil. Arch. Fish. Mar. Res. 47, 211–222 (1999).
    Google Scholar 
    Bakun, A. Ocean triads and radical interdecadal variation: Bane and boon to scientific fisheries management. in Reinventing fisheries management 331–358 (Springer, 1998).Agostini, V. N. & Bakun, A. ‘Ocean triads’ in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).Article 

    Google Scholar 
    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    Valenzuela, J., Bellwood, D. & Morais, R. Ontogenetic habitat shifts in fusiliers (Lutjanidae): Evidence from Caesio cuning at Lizard Island, Great Barrier Reef. Coral Reefs 40, 1687–1696 (2021).Article 

    Google Scholar 
    Curley, B. G., Kingsford, M. J. & Gillanders, B. M. Spatial and habitat-related patterns of temperate reef fish assemblages: Implications for the design of Marine Protected Areas. Mar. Freshw. Res. 53, 1197–1210 (2002).Article 

    Google Scholar 
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2018).Article 

    Google Scholar 
    Maida, M. & Ferreira, B. P. Coral reefs of Brazil: An overview. in Proceedings of the 8th International Coral Reef Symposium Vol. 1 74 (Smithsonian Tropical Research Institute Panamá, 1997).Pittman, S. J., Costa, B. M. & Battista, T. A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009, 27–38 (2009).Article 

    Google Scholar 
    Costa, T. Análise comportamental e distribuição da atividade pesqueira no Arquipelágo de Fernando de Noronha (Nordeste, BR) baseada em dados de GPS. (Universidade Federal Rural de Pernambuco, 2019).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Claudet, J., Pelletier, D., Jouvenel, J.-Y., Bachet, F. & Galzin, R. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130, 349–369 (2006).Article 

    Google Scholar 
    Caveen, A. J., Gray, T. S., Stead, S. M. & Polunin, N. V. C. MPA policy: What lies behind the science?. Mar. Policy 37, 3–10 (2013).Article 

    Google Scholar 
    Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).
    Google Scholar  More