More stories

  • in

    Correction: Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)?

    Author notesThese authors contributed equally: AM Carpenter, BA Graham.Authors and AffiliationsUniversity of Lethbridge, Lethbridge, AB, CanadaA. M. Carpenter, B. A. Graham & T. M. BurgBiological Sciences Department, Auburn University, Auburn, AL, USAA. M. CarpenterDenver Museum of Nature and Science, Denver, CO, USAG. M. SpellmanAuthorsA. M. CarpenterB. A. GrahamG. M. SpellmanT. M. BurgCorresponding authorCorrespondence to
    A. M. Carpenter. More

  • in

    From the archive: Jamaican coral reefs, and indispensable photography

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).ADS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a tropical western atlantic reef ecosystem. Ecosystems https://doi.org/10.1007/s10021-021-00691-z (2021).Article 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Mar. Policy 88, 295–302 (2018).Article 

    Google Scholar 
    Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441–456 (2018).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).ADS 
    Article 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    Bryan, D. R., Kilfoyle, K., Gilmore, R. G. Jr. & Spieler, R. E. Characterization of the mesophotic reef fish community in south Florida, USA. J. Appl. Ichthyol. 29, 108–117 (2013).Article 

    Google Scholar 
    Fukunaga, A., Kosaki, R. K., Wagner, D. & Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoS One 11, e0157861 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kahng, S., Copus, J. M. & Wagner, D. Mesophotic coral ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–22 (Springer International Publishing, Paris, 2016). https://doi.org/10.1007/978-3-319-17001-5_4-1.Chapter 

    Google Scholar 
    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosa, M. R. et al. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35, 113–123 (2016).ADS 
    Article 

    Google Scholar 
    Medeiros, A. P. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, D. G. SEFOS—Shelf edge fisheries and oceanography studies: An overview. Fish. Res. 50, 1–15 (2001).Article 

    Google Scholar 
    Heyman, W. D. & Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull. Mar. Sci. 83, 531–551 (2008).
    Google Scholar 
    Paxton, A. B. et al. Four decades of reef observations illuminate deep-water grouper hotspots. Fish Fish. 22, 749–761. https://doi.org/10.1111/faf.12548 (2021).Article 

    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48, 787–800 (2005).Article 

    Google Scholar 
    Longhurst, A. R. & Pauly, D. Ecologia dos oceanos tropicais (Edusp, 2007).
    Google Scholar 
    Olavo, G., Costa, P. A., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Silva, M. B., Rosa, R. S., Menezes, R. & Francini-Filho, R. B. Changes in reef fish assemblages in a cross-shelf euphotic-mesophotic gradient in tropical SW Atlantic. Estuar. Coast. Shelf Sci. 259, 107465 (2021).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Letessier, T. B. et al. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol. 17, e3000366 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heywood, K. J., Barton, E. D. & Simpson, J. H. The effects of flow disturbance by an oceanic island. J. Mar. Res. 48, 55–73 (1990).Article 

    Google Scholar 
    Signorini, S. R., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).ADS 
    Article 

    Google Scholar 
    Henry, G. W. & Lyle, J. M. National recreational and indigenous fishing survey (2003).Coutis, P. F. & Middleton, J. H. Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 1633–1652 (1999).ADS 
    Article 

    Google Scholar 
    Cardoso, C., Caldeira, R. M. A., Relvas, P. & Stegner, A. Islands as eddy transformation and generation hotspots: Cabo Verde case study. Prog. Oceanogr. 184, 102271 (2020).Article 

    Google Scholar 
    Tchamabi, C. C., Araujo, M., Silva, M. & Bourlès, B. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Model 111, 9–18 (2017).ADS 
    Article 

    Google Scholar 
    Motta, F. S. et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg. Stud. Mar. Sci. 47, 101951 (2021).Article 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Shucksmith, R. J. & Kelly, C. Data collection and mapping—Principles, processes and application in marine spatial planning. Mar. Policy 50, 27–33 (2014).Article 

    Google Scholar 
    Queffelec, B. et al. Marine spatial planning and the risk of ocean grabbing in the tropical Atlantic. ICES J. Mar. Sci. 78, 1196–1208 (2021).Article 

    Google Scholar 
    Rubio-Cisneros, N. T. et al. Poor fisheries data, many fishers, and increasing tourism development: Interdisciplinary views on past and current small-scale fisheries exploitation on Holbox Island. Mar. Policy 100, 8–20 (2019).Article 

    Google Scholar 
    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Hewitt, J. E., Anderson, M. J. & Thrush, S. F. Assessing and monitoring ecological community health in marine systems. Ecol. Appl. 15, 942–953 (2005).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Díaz-Pérez, L. et al. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea. PLoS One 11, e0161812 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Pennino, M. G. et al. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302–2310 (2016).Article 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer Science and Business Media, 2013).
    Google Scholar 
    Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (1986).Jones, R. S. & Thompson, M. J. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28, 159–172 (1978).
    Google Scholar 
    Kimmel, J. J. A new species-time method for visual assessment of fishes and its comparison with established methods. Environ. Biol. Fishes 12, 23–32 (1985).Article 

    Google Scholar 
    Michalopoulos, C., Auster, P. J. & Malatesta, R. J. A comparison of transect and species-time counts for assessing faunal abundance from video surveys. Mar. Technol. Soc. J. 26, 27–31 (1992).
    Google Scholar 
    Gray, J. S., Ugland, K. I. & Lambshead, J. Species accumulation and species area curves: A comment on Scheiner (2003). Glob. Ecol. Biogeogr. 13, 473–476 (2004).Article 

    Google Scholar 
    Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014).Article 

    Google Scholar 
    Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155–168 (2010).Article 

    Google Scholar 
    Logan, J. M., Young, M. A., Harvey, E. S., Schimel, A. C. G. & Ierodiaconou, D. Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Mar. Ecol. Prog. Ser. 582, 181–200 (2017).ADS 
    Article 

    Google Scholar 
    Koslow, J. A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66, 966–973 (2009).Article 

    Google Scholar 
    Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).ADS 
    Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83, 1508–1527 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fish. Res. 47, 173–191 (2000).Article 

    Google Scholar 
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).Article 

    Google Scholar 
    Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245–254 (2007).ADS 
    Article 

    Google Scholar 
    Fitzpatrick, B. M., Harvey, E. S., Heyward, A. J., Twiggs, E. J. & Colquhoun, J. Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS One 7, e39634 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooper, C. N., Hoff, G. R. & De Robertis, A. Assessing habitat utilization and rockfish (Sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis. Can. J. Fish. Aquat. Sci. 67, 1658–1670 (2010).Article 

    Google Scholar 
    Jones, D. et al. Evaluation of rockfish abundance in untrawlable habitat: Combining acoustic and complementary sampling tools (2012).O’Driscoll, R. L. et al. Species identification in seamount fish aggregations using moored underwater video. ICES J. Mar. Sci. 69, 648–659 (2012).Article 

    Google Scholar 
    Fernandes, P. G., Copland, P., Garcia, R., Nicosevici, T. & Scoulding, B. Additional evidence for fisheries acoustics: Small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. 73, 2009–2019 (2016).Article 

    Google Scholar 
    Gastauer, S., Scoulding, B. & Parsons, M. An unsupervised acoustic description of fish schools and the seabed in three fishing regions within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust. Aust. 45, 363–380 (2017).Article 

    Google Scholar 
    Blanluet, A. et al. Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoS One 14, e0223618 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campanella, F. & Taylor, J. C. Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016).Article 

    Google Scholar 
    Domokos, R. On the development of acoustic descriptors for semi-demersal fish identification to support monitoring stocks. ICES J. Mar. Sci. 78, 1117–1130 (2021).Article 

    Google Scholar 
    Villalobos, H. et al. A practical approach to monitoring marine protected areas: An application to El Bajo Espíritu Santo Seamount near La Paz, Mexico. Oceanography 34, 32–43 (2021).Article 

    Google Scholar 
    Hazin, F. H., Zagaglia, J. R., Broadhurst, M. K., Travassos, P. E. P. & Bezerra, T. R. Q. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1–8 (1998).
    Google Scholar 
    Lessa, R. P. et al. Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Arch. Fish. Mar. Res. 47, 239–252 (1999).
    Google Scholar 
    Dominguez, P. S., Zeineddine, G. C., Rotundo, M. M., Barrella, W. & Ramires, M. A pesca artesanal no arquipélago de Fernando de Noronha (PE). Bol. Inst. Pesca 42, 241–251 (2014).Article 

    Google Scholar 
    Lopes, P. F. M., Mendes, L., Fonseca, V. & Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 200, 123–134 (2017).CAS 
    Article 

    Google Scholar 
    Outeiro, L., Rodrigues, J. G., Damásio, L. M. A. & Lopes, P. F. M. Is it just about the money? A spatial-economic approach to assess ecosystem service tradeoffs in a marine protected area in Brazil. Ecosyst. Serv. 38, 100959 (2019).Article 

    Google Scholar 
    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: The potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).Article 

    Google Scholar 
    Bertrand, A. FAROFA 1 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001399 (2017).Article 

    Google Scholar 
    Bertrand, A. FAROFA 2 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001411 (2018).Article 

    Google Scholar 
    Bertrand, A. FAROFA 3 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001381 (2019).Article 

    Google Scholar 
    Bertrand, A. et al. Acoustic data from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/71024 (2020).Salvetat, J. et al. Underwater video observations from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/76019 (2020).Pawlowicz, R. M_Map: A mapping package for MATLAB, version 1.4 m (computer software) (2020).Péter, A. Solomon Coder: The Concept of Behavioral Elements, Categories and the Representation of Data in Solomon Coder (2019).Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).Article 

    Google Scholar 
    McQuinn, I. H. et al. Description of the ICES HAC standard data exchange format, version 1.60 (Conseil international pour l’exploration de la mer, 2005).
    Google Scholar 
    Trenkel, V. M. et al. Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 433–445 (2009).Article 

    Google Scholar 
    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).Article 

    Google Scholar 
    Salvetat, J. et al. In situ target strength measurement of the black triggerfish Melichthys niger and the ocean triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 71, 1118–1127 (2020).Article 

    Google Scholar 
    Lavery, A. C. et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122, 3304–3326 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Barros, M. J. G. Analises da Ictiofauna marinha e habitats associados atraves de videos subaquatica. (Universidade Federal de Pernambuco, 2020).
    Google Scholar 
    Sazima, C., Bonaldo, R. M., Krajewski, J. P. & Sazima, I. The Noronha wrasse: A jack-of-all-trades follower. Aqua J. Ichthyol. Aquat. Biol. 9, 97–108 (2005).
    Google Scholar 
    Soto, J. M. R. Peixes do arquipélago Fernando de Noronha. Mare Magnum 1, 147–169 (2001).
    Google Scholar 
    Krajewski, J. P. & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): The influence of exposure and benthic composition. Environ. Biol. Fishes 92, 25 (2011).Article 

    Google Scholar 
    Sazima, I., Sazima, C. & da Silva-Jr, J. M. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: An update and overview. Neotropical Ichthyol. 4, 451–455 (2006).Article 

    Google Scholar 
    Petitgas, P. Use of a disjunctive kriging to model areas of high pelagic fish density in acoustic fisheries surveys. Aquat. Living Resour. 6, 201–209 (1993).Article 

    Google Scholar 
    Chiles, J.-P. & Delfiner, P. Geostatistics: Modeling Spatial Uncertainty Vol. 497 (Wiley, 2009).MATH 

    Google Scholar 
    Bez, N. & Braham, C.-B. Indicator variables for a robust estimation of an acoustic index of abundance. Can. J. Fish. Aquat. Sci. 71, 709–718 (2014).Article 

    Google Scholar 
    Switzer, P. Min/max autocorrelation factors for multivariate spatial imagery. Comput. Sci. Stat. (1985).Bez, N. Global estimation based on indicators factorization (2021).Assunção, R. V., Silva, A. C., Martins, J. & Montes, M. F. Spatial-temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. J. Coast. Res. 75, 512–517 (2016).Article 

    Google Scholar 
    da Silva, A. C. et al. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha archipelago and Rocas atoll during spring 2015 and fall 2017. Front. Mar. Sci. 8, 598101 (2021).Article 

    Google Scholar 
    Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees. Wadsworth Int. Group 37, 237–251 (1984).MATH 

    Google Scholar 
    Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. Package ‘rpart’. Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016 (2015).Kuhnert, P. M., Duffy, L. M., Young, J. W. & Olson, R. J. Predicting fish diet composition using a bagged classification tree approach: A case study using yellowfin tuna (Thunnus albacares). Mar. Biol. 159, 87–100 (2012).CAS 
    Article 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Kuhnert, P. M., Henderson, A.-K., Bartley, R. & Herr, A. Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21, 493–509 (2010).MathSciNet 

    Google Scholar 
    Kuhnert, P. M. & Mengersen, K. Reliability measures for local nodes assessment in classification trees. J. Comput. Graph. Stat. 12, 398–416 (2003).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2020).ParisTech, M. ARMINES: RGeostats: The Geostatistical R Package (2020).Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5, 144 (2013).Article 

    Google Scholar 
    Pimentel, C. R. et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotropical Ichthyol. 18 (2020).Ilarri, M. I., Souza, A. T. & Rosa, R. S. Community structure of reef fishes in shallow waters of the Fernando de Noronha archipelago: Effects of different levels of environmental protection. Mar. Freshw. Res. 68, 1303–1316 (2017).Article 

    Google Scholar 
    Schmid, K. et al. First fish fauna assessment in the Fernando de Noronha Archipelago with BRUVS: Species catalog with underwater imagery. Biota Neotropica 20 (2020).de Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krajewski, J. P., Floeter, S. R., Jones, G. P. & Leite, F. P. Patterns of variation in behaviour within and among reef fish species on an isolated tropical island: Influence of exposure and substratum. J. Mar. Biol. Assoc. U. K. 91, 1359–1368 (2011).Article 

    Google Scholar 
    Mendes, T. C., Quimbayo, J. P., Bouth, H. F., Silva, L. P. & Ferreira, C. E. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish Biol. 95, 812–819 (2019).PubMed 

    Google Scholar 
    Petitgas, P. & Levenez, J. J. Spatial organization of pelagic fish: Echogram structure, spatio-temporal condition, and biomass in Senegalese waters. ICES J. Mar. Sci. 53, 147–153 (1996).Article 

    Google Scholar 
    Burgos, J. M. & Horne, J. K. Characterization and classification of acoustically detected fish spatial distributions. ICES J. Mar. Sci. 65, 1235–1247 (2008).Article 

    Google Scholar 
    Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22, 63–67 (2003).Article 

    Google Scholar 
    Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).Article 

    Google Scholar 
    Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105–116 (2002).ADS 
    Article 

    Google Scholar 
    Martins, K. et al. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 99, 1576–1590 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, B., Taylor, J. C., Kracker, L., Battista, T. & Pittman, S. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PLoS One 9, e85555 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kavanagh, K. D. & Olney, J. E. Ecological correlates of population density and behavior in the circumtropical black triggerfish Melichthys niger (Balistidae). Environ. Biol. Fishes 76, 387–398 (2006).Article 

    Google Scholar 
    Lubbock, R. The shore fishes of Ascension Island. J. Fish Biol. 17, 283–303 (1980).Article 

    Google Scholar 
    Price, J. H. & John, D. M. Ascension Island, South Atlantic: A survey of inshore benthic macroorganisms, communities and interactions. Aquat. Bot. 9, 251–278 (1980).Article 

    Google Scholar 
    Robertson, D. R. & Allen, G. R. Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15, 121–131 (1996).ADS 
    Article 

    Google Scholar 
    Gasparini, J. L. & Floeter, S. R. The shore fishes of Trindade Island, western south Atlantic. J. Nat. Hist. 35, 1639–1656 (2001).Article 

    Google Scholar 
    Lubbock, R. & Edwards, A. The fishes of Saint Paul’s rocks. J. Fish Biol. 18, 135–157 (1981).Article 

    Google Scholar 
    Feitoza, B. M., Rocha, L. A., Luiz-Júnior, O. J., Floeter, S. R. & Gasparini, J. L. Reef fishes of St. Paul’s Rocks: New records and notes on biology and zoogeography. Aqua 7, 61–82 (2003).
    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106 (2004).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fishes 18, 257–276 (1987).Article 

    Google Scholar 
    Walsh, W. J. Aspects of Nocturnal Shelter, Habitat Space, and Juvenile Recruitment in Hawaiian Coral Reef Fishes (University of Hawaii, 1984).
    Google Scholar 
    Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D. & Nezlin, N. P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 80, 336–360 (2002).ADS 
    Article 

    Google Scholar 
    Martinez, E. & Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 31, 18 (2004).Article 

    Google Scholar 
    Messié, M. et al. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).ADS 
    Article 

    Google Scholar 
    de Souza, C. S., da Luz, J. A. G., Macedo, S., de Montes, M. J. F. & Mafalda, P. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Mar. Freshw. Res. 64, 168–184 (2013).Article 
    CAS 

    Google Scholar 
    Travassos, P., Hazin, F. H., Zagaglia, J. R., Advíncula, R. & Schober, J. Thermohaline structure around seamounts and islands off North-Eastern Brazil. Arch. Fish. Mar. Res. 47, 211–222 (1999).
    Google Scholar 
    Bakun, A. Ocean triads and radical interdecadal variation: Bane and boon to scientific fisheries management. in Reinventing fisheries management 331–358 (Springer, 1998).Agostini, V. N. & Bakun, A. ‘Ocean triads’ in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).Article 

    Google Scholar 
    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    Valenzuela, J., Bellwood, D. & Morais, R. Ontogenetic habitat shifts in fusiliers (Lutjanidae): Evidence from Caesio cuning at Lizard Island, Great Barrier Reef. Coral Reefs 40, 1687–1696 (2021).Article 

    Google Scholar 
    Curley, B. G., Kingsford, M. J. & Gillanders, B. M. Spatial and habitat-related patterns of temperate reef fish assemblages: Implications for the design of Marine Protected Areas. Mar. Freshw. Res. 53, 1197–1210 (2002).Article 

    Google Scholar 
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2018).Article 

    Google Scholar 
    Maida, M. & Ferreira, B. P. Coral reefs of Brazil: An overview. in Proceedings of the 8th International Coral Reef Symposium Vol. 1 74 (Smithsonian Tropical Research Institute Panamá, 1997).Pittman, S. J., Costa, B. M. & Battista, T. A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009, 27–38 (2009).Article 

    Google Scholar 
    Costa, T. Análise comportamental e distribuição da atividade pesqueira no Arquipelágo de Fernando de Noronha (Nordeste, BR) baseada em dados de GPS. (Universidade Federal Rural de Pernambuco, 2019).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Claudet, J., Pelletier, D., Jouvenel, J.-Y., Bachet, F. & Galzin, R. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130, 349–369 (2006).Article 

    Google Scholar 
    Caveen, A. J., Gray, T. S., Stead, S. M. & Polunin, N. V. C. MPA policy: What lies behind the science?. Mar. Policy 37, 3–10 (2013).Article 

    Google Scholar 
    Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).
    Google Scholar  More

  • in

    Sustainability for Chile’s mountains — a united approach

    In this International Year of Sustainable Mountain Development, we call for transdisciplinary research by Chilean scientists and for concerted action among all stakeholders to address the complex factors responsible for the degradation of Chile’s mountains. Mountains cover 64% of Chile’s surface and are a crucial source of water, food, energy, minerals and biodiversity.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards

    Ethics statementThe data collection and experiments were conducted in accordance with the collecting permits (SGPA/DGVS/07946/08, 03369/12, 00228/13, 07587/13, 01629/16, 01205/17, 02490/17, 06768/17, 000998/18, 002463/18, 002490/18, 002491/18, 003209/18, and 02523/19) approved by Dirección General de Vida Silvestre, México.Phylogeny and divergence time estimationTo estimate the phylogeny and divergence time among phrynosomatid species we used sequences of five mitochondrial and eight nuclear genes available in GenBank for 149 taxa (Supplementary Data 2). Accession numbers were the same as those used in Martínez-Méndez et al.58 for the Sceloporus torquatus, S. poinsettii and S. megalepidurus groups and the same as those in Wiens et al.59 for other phrynosomatid species. For taxa not included in the previous references, we searched GenBank for available sequences. We then performed alignments for each gene using MAFFT (ver. 7)60 and concatenation and manual refinement using Mesquite (ver. 3.6);61 obtaining a concatenated matrix of 9837 bp for 149 taxa (Supplementary Data 3). For the relaxed clock analyses, three nodes were calibrated using lognormal distributions based on two previous studies59,62. The first calibration was set for the Sceloporus clade (offset 15.97 million years ago (MYA)) based on a fossil Sceloporus specimen63). The second calibration point was set for the Phrynosoma clade (offset 33.3 MYA) based on the fossil Paraphrynosoma greeni64, and the last calibration point was for the Holbrookia-Cophosaurus stem group (offset 15.97 MYA) given the fossil Holbrookia antiqua63. We conducted dating analysis with the concatenated sequences matrix, partitioned the mitochondrial and nuclear information, each gene under GTR + I + Γ model, and allowed independent parameter estimation. We performed Bayesian age estimation with the uncorrelated lognormal relaxed clock (UCLN) model in BEAST (ver. 2.5.2)65,66 and run on CIPRES67. Tree prior (evolutionary model) was under the Birth-Death model, and we ran two MCMC analyses for 100 million generations each and stored every 20,000 generations. We assessed the convergence and stationarity of chains from the posterior distribution using Tracer (ver. 1.7)68. We combined independent runs using LogCombiner (ver. 2.5.2; BEAST distribution)69 and discarded 30% of samples as burn-in, obtaining values of effective sample size (ESS) greater than 200. We estimated the maximum clade credibility tree from all post-burnin trees using TreeAnnotator (ver. 1.8.4)69. The ultrametric tree is available as Supplementary Data 4. As we describe below, we accounted for phylogenetic uncertainty in our models by reperforming analyses using 500 trees that we randomly sampled from our posterior distribution. The 500 sampled trees are available as Supplementary Data 5.Data collectionParity modeWe categorized each species as either oviparous or viviparous based on previously published databases21,37,51,70, published references, and unpublished data (Supplementary Data 1). Our assignations align with other studies, except for one species, Sceloporus goldmani, which has been previously considered a viviparous species21,71,72,73. The only available sequence in GenBank (U88290) for that species is from a male (MZFC-05458) collected in Coahuila, Mexico72. However, in that same locality, one of us (F. R. Méndez-de la Cruz; unpubl. data) collected two females of the same species, and both laid eggs. Thus, the population of S. goldmani herein included is considered oviparous. Considering S. goldmani viviparous increases the number of originations of viviparity to 6 (from 5) in this lineage (Supplementary Fig. 4), but does not alter the outcome of our model-fitting analyses of trait evolution (Supplementary Table 7).Thermal physiologyWe compiled a database of four thermal physiological traits that influence the performance and fitness of ectotherms74 for 104 phrynosomatid species. These data were gathered from both published sources and from our own field and laboratory work (Supplementary Data 1). The thermal physiological traits we examined were the field body temperature (Tb) of active lizards, the preferred body temperature (Tpref) in a laboratory thermal gradient75, cold tolerance (critical thermal minimum, CTmin), and heat tolerance (critical thermal maximum, CTmax). These latter two traits (CTmin and CTmax) describe the thermal limits of locomotion; specifically, they describe the lower and upper temperatures, respectively, at which lizards fail to right themselves when flipped onto their backs55,76. To minimize the confounding effects of experimental design, we limited our data selection to species that were measured with similar methods. Correspondingly, our new data collection approach mirrored that of the published studies from which we extracted data. To obtain mean values for each thermal physiological trait (CTmin, Tb, Tpref, and CTmax) we did not mix data measured from different locations (instead, we used data from the population with the highest sample size).For species that we newly measured thermal physiological traits, we obtained the data as we describe below, and we based our methodology on the previous work55,56,75,76. We captured active (perching) adult lizards by lasso or by hand, and immediately ( More

  • in

    Sustainable seas: overdue SDG target could be met this year

    None of the 21 targets of the United Nations’ Sustainable Development Goals (SDGs) set for 2020 was achieved. But, by our calculations, the target to protect 10% of the global ocean area (SDG14, target 5) could become a reality this year.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Policy responses to the Ukraine crisis threaten European biodiversity

    J.G. was funded by The Danish Independent Research council (grant 0165-00018B). N.S. and J.W.B were funded by EU Horizon 2020 SUPERB (grant agreement 101036849). N.D.B. was funded by UK Research and Innovation’s Global Challenges Research Fund (UKRI GCRF) through the Trade, Development and the Environment Hub project (project number ES/S008160/1). More

  • in

    Increasing the heat in an aging forest

    Boreal forests contain about half the carbon (C) of terrestrial forests worldwide, and as such, they play an immense role in the global C cycle. Therefore, accurately predicting the global C balance requires understanding of C fluxes in boreal trees and how they respond to climate change. While the relationships between climate and boreal tree growth are generally non-stationary, it remains unknown whether the same is true of the relationships between climate and C fluxes. More