More stories

  • in

    Timbre in the timber: how I date ancient violins

    Stringed instruments can be worth millions of dollars, particularly those made in northern Italy in the seventeenth and eighteenth centuries. There are also many copies and forgeries.As a forest ecologist, I use dendrochronology — or tree-ring dating — to understand how trees grow, as well as to investigate historical environmental conditions. The widths of tree rings vary according to meteorological conditions, so samples can be dated by cross-referencing against databases of ring-width series.In 2010, I was an expert witness in a legal case about a viola supposedly made in the sixteenth century. I agreed with two laboratories that had independently concluded that it could not have been made before the late eighteenth century.Dendrochronology cannot precisely date when an instrument was made, but it can identify the most recent year that the wood it was made from was part of a growing tree. Tree rings give probabilities and levels of confidence in a date according to the availability of appropriate reference series.Dendrochronological analyses can produce conflicting dates, creating confusion about the method’s reliability. The most famous example is the ‘Messiah’ violin made by Antonio Stradivari in 1716. In 1999, doubts were raised about its authenticity when, among other reasons, tree-ring analysis found that the instrument could not have been made before 1738, a year after Stradivari’s death. The finding was based on examining a photograph of the instrument, and was later retracted. The controversy highlighted the limitations of the technique for verifying the authenticity of musical instruments.I also use dendrochronology to understand the impacts of droughts, and I’m fascinated by how trees grow, how water is transported in them and whether species differences are evolutionary adaptations. More

  • in

    Increasing the heat in an aging forest

    Boreal forests contain about half the carbon (C) of terrestrial forests worldwide, and as such, they play an immense role in the global C cycle. Therefore, accurately predicting the global C balance requires understanding of C fluxes in boreal trees and how they respond to climate change. While the relationships between climate and boreal tree growth are generally non-stationary, it remains unknown whether the same is true of the relationships between climate and C fluxes. More

  • in

    Ecological dynamics of the gut microbiome in response to dietary fiber

    Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:t9076.Article 
    CAS 

    Google Scholar 
    Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sitkin S, Vakhitov T, Pokrotnieks J. How to increase the butyrate-producing capacity of the gut microbiome: do IBD patients really need butyrate replacement and butyrogenic therapy? J Crohn’s Colitis. 2018;12:881–2.Article 

    Google Scholar 
    Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes. 2019;11:1–20.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68:1801–12.Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Brit J Nutr. 2018;119:176–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27:389–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome. 2020;8:118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6:1535–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014;5:4344.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut. 2020;69:1975–87.Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE. 2011;6:e25200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018;3:1274–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021;591:633–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koskella B, Hall LJ, Metcalf C. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 2021;15:2131–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to guide dietary interventions to improve human health. Nutr Res. 2020;82:1–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmed W, Rashid S. Functional and therapeutic potential of inulin: a comprehensive review. Crit Rev Food Sci Nutr. 2019;59:1–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol. 2019;28:95–108.PubMed 
    Article 
    CAS 

    Google Scholar 
    Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. 2018;9:1598.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE. 2015;10:e116704.Article 
    CAS 

    Google Scholar 
    Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4:e00016–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7:28.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Creswell R, Tan J, Leff JW, Brooks B, Mahowald MA, Thieroff-Ekerdt R, et al. High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Med. 2020;12:59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. Elife. 2019;8:e38471.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morjaria S, Schluter J, Taylor BP, Littmann ER, Carter RA, Fontana E, et al. Antibiotic-induced shifts in fecal microbiota density and composition during hematopoietic stem cell transplantation. Infect Immun. 2019;87:e00206.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol. 2013;9:e1003388.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533:255–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide K, Sakanashi C, et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome. 2020;8:5–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods. 2017;33:194–201.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med. 2021;13:22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell. 2019;179:59–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sze MA, Topçuoğlu BD, Lesniak NA, Ruffin MT, Schloss PD. Fecal short-chain fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial community structure. mBio. 2019;10:e1419–54.Article 

    Google Scholar 
    Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10:4146.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao Y, Angulo MT, Lao S, Weiss ST, Liu Y. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun. 2020;11:3329.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worthen WB, Moore JL. Higher-order interactions and indirect effects: a resolution using laboratory Drosophila communities. Am Nat. 1991;138:1092–104.Article 

    Google Scholar 
    Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100:577–88.PubMed 
    Article 

    Google Scholar 
    Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio. 2018;9:e00525.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4:e00528.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hiel S, Bindels LB, Pachikian BD, Kalala G, Broers V, Zamariola G, et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr. 2019;109:1683–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nordgaard I, Hove H, Clausen MR, Mortensen PB. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol. 1996;31:1011–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sakata T. Pitfalls in short-chain fatty acid research: a methodological review. Anim Sci J. 2019;90:3–13.PubMed 
    Article 

    Google Scholar 
    McNeil NI, Cummings JH, James WP. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19:819–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 2017;5:135.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurry T, Nguyen L, Yu X, Alm EJ. Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE. 2021;16:e254004.Article 
    CAS 

    Google Scholar 
    Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A guide to diet-microbiome study design. Front Nutr. 2020;7:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature. 2018;557:434–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4:1253–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gowda K, Ping D, Mani M, Kuehn S. Genomic structure predicts metabolite dynamics in microbial communities. Cell. 2022;185:530–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qian Y, Lan F, Venturelli OS. Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Curr Opin Microbiol. 2021;62:84–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17:742–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Zhang S, Wang H, Zhu M. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, et al. Orthogonal comparison of GC–MS and 1H NMR spectroscopy for short chain fatty acid quantitation. Anal Chem. 2017;89:7900–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE. 2020;15:e227285.Article 
    CAS 

    Google Scholar 
    Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, et al. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. Bmc Biol. 2019;17:106.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao Z, Baltar F, Herndl GJ. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci Adv. 2020;6:z4354.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. Bmc Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinform. 2012;28:3150–2.CAS 
    Article 

    Google Scholar 
    Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. Bmc Bioinform. 2018;19:307.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes using PULpy. 2018. https://www.biorxiv.org/content/10.1101/421024v1.full.Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems. 2018;3:e00069–18Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems. 2018;3:e00202.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald JH. Handbook of biological statistics, vol. Baltimore, MD: Sparky House Publishing; 2009.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. Grantee Submission. 2017;76:1–32.
    Google Scholar  More

  • in

    No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120(3), 321–326 (2011).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540(7632), 220–229. https://doi.org/10.1038/nature20588 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113(1), 146–151 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).Article 

    Google Scholar 
    Velthuis, H. H. W. & Van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37(4), 421–451 (2006).Article 

    Google Scholar 
    Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Royal Soc. B Biol. Sci. 285(1870), 20172140 (2018).Article 

    Google Scholar 
    Brown, M. J. F. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40(3), 410–416 (2009).Article 

    Google Scholar 
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259 (2013).Article 

    Google Scholar 
    David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48(1), 12–21 (2019).PubMed 
    Article 

    Google Scholar 
    Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Johnson, R. M. et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7(2), e31051. https://doi.org/10.1371/journal.pone.0031051 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108(2), 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25(4), 662–671. https://doi.org/10.1111/j.1523-1739.2011.01707.x (2011).Article 
    PubMed 

    Google Scholar 
    O’Neal, S. T., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article 
    PubMed 

    Google Scholar 
    Botías, C. et al. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90(2), 415–431 (2021).PubMed 
    Article 

    Google Scholar 
    Dance, C., Botías, C. & Goulson, D. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fauser-Misslin, A., Sadd, B. M., Neumann, P. & Sandrock, C. Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. J. Appl. Ecol. 51(2), 450–459 (2014).Article 

    Google Scholar 
    Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35(2), 420–434 (2021).Article 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Why bees are so vulnerable to environmental stressors. Trends Ecol. Evol. 32(4), 268–278 (2017).PubMed 
    Article 

    Google Scholar 
    Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. Bee reverse-learning behavior and intra-colony differences: simulations based on behavioral experiments reveal benefits of diversity. Ecol. Model. 277, 119–131 (2014).Article 

    Google Scholar 
    Raine, N. E. & Chittka, L. No trade-off between learning speed and associative flexibility in bumblebees: A reversal learning test with multiple colonies. PLoS ONE 7(9), e45096 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 55(6), 2812–2821 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119. https://doi.org/10.1037/0735-7036.97.2.107 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    Takeda, K. Classical conditioned response in the honey bee. J. Insect Physiol. 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9 (1961).CAS 
    Article 

    Google Scholar 
    Laloi, D. et al. Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exp. Appl. 90(2), 123–129 (1999).Article 

    Google Scholar 
    Gómez-Moracho, T., Heeb, P. & Lihoreau, M. Effects of parasites and pathogens on bee cognition. Ecol. Entomol. 42, 51–64 (2017).Article 

    Google Scholar 
    Garratt, M. P. D. et al. The identity of crop pollinators helps target conservation for improved ecosystem services. Biol. Cons. 169, 128–135 (2014).CAS 
    Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462–467 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H. et al. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 7, e7208 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sparks, T. C. et al. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 107(1), 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7(1), e29268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491(7422), 105–108 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53(5), 1440–1449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williamson, S. M. & Wright, G. A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216(10), 1799–1807 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101(6), 1743–1748 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, E., Chang, H., Wu, W. & Chen, Y. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE 7(11), e49472 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, G. B., Siebert, M. W., Wang, N. X., Loso, M. R. & Sparks, T. C. Sulfoxaflor–A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. Pestic. Biochem. Physiol. 178, 104924 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordes, N. et al. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 109(2), 209–216 (2012).PubMed 
    Article 

    Google Scholar 
    Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 35(6), 737–747 (2010).Article 

    Google Scholar 
    Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9(2), 169–173 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shykoff, J. A. & Schmid-Hempel, P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22(2), 117–125 (1991).Article 

    Google Scholar 
    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. Royal Soc. B Biol. Sci. 273(1590), 1073–1078 (2006).Article 

    Google Scholar 
    Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58(4), 383–389 (2005).Article 

    Google Scholar 
    Martin, C. D., Fountain, M. T. & Brown, M. J. F. Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Azpiazu, C. et al. Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci. Rep. 11(1), 1–9 (2021).Article 
    CAS 

    Google Scholar 
    European Food Safety Authority (EFSA) et al. Peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA J. 17(3), e05633 (2019).
    Google Scholar 
    Linguadoca, A., Rizzi, C., Villa, S. & Brown, M. J. F. Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Sci. Total Environ. 795, 148680 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandor, A., Sarospataki, M. & Farkas, S. The mode of action of neonicotinoids on insects. Növényvédelem 51(1), 14–24 (2015).
    Google Scholar 
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alghamdi, A., Dalton, L., Phillis, A., Rosato, E. & Mallon, E. B. Immune response impairs learning in free-flying bumble-bees. Biol. Lett. 4(5), 479–481 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. Immune response inhibits associative learning in insects. Proc. Royal Soc. London Series B Biol. Sci. 270(1532), 2471–2473 (2003).Article 

    Google Scholar 
    Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav. Immun. 20(2), 135–138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fries, I. et al. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 40(3–4), 91–96 (2001).CAS 
    Article 

    Google Scholar 
    Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 287(1932), 20200935 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charbonneau, L. R., Hillier, N. K., Rogers, R. E., Williams, G. R. & Shutler, D. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory. Sci. Rep. 6, 22626 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gage, S. L. et al. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera). J. Exp. Biol. 221(4), jeb161489. https://doi.org/10.1242/jeb.161489 (2018).Article 
    PubMed 

    Google Scholar 
    Piiroinen, S. & Goulson, D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. Royal Soc. B Biol. Sci. 283(1828), 20160246 (2016).Article 
    CAS 

    Google Scholar 
    Bell, H. C., Montgomery, C. N., Benavides, J. E. & Nieh, J. C. Effects of nosema ceranae (Dissociodihaplophasida: Nosematidae) and flupyradifurone on olfactory learning in honey bees, Apis mellifera (Hymenoptera: Apidae). J. Insect Sci. https://doi.org/10.1093/jisesa/ieaa130 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x (2000).Article 

    Google Scholar 
    Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561(7721), 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, B. D., Skemp, A. K. & Papaj, D. R. Learning in two contexts: The effects of interference and body size in bumblebees. J. Exp. Biol. 208(11), 2045–2053 (2005).PubMed 
    Article 

    Google Scholar 
    Riveros, A. J. & Gronenberg, W. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856. https://doi.org/10.1007/s00114-009-0532-y (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66(1), 50–61. https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Arce, A. N. et al. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc. Royal Soc. B Biol. Sci. 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655 (2018).CAS 
    Article 

    Google Scholar 
    Muth, F., Gaxiola, R. L. & Leonard, A. S. No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. Royal Soc. Open Sci. 7(5), 191883 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Rutrecht, S. T. & Brown, M. J. F. Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos 118(6), 941–949 (2009).Article 

    Google Scholar 
    Schmid-Hempel, P., Puhr, K., Krüger, N., Reber, C. & Schmid-Hempel, R. Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 53(2), 426–434 (1999).PubMed 
    Article 

    Google Scholar 
    Evans, L. J., Raine, N. E. & Leadbeater, E. Reproductive environment affects learning performance in bumble bees. Behav. Ecol. Sociobiol. 70(12), 2053–2060 (2016).Article 

    Google Scholar 
    Cole, R. J. The application of the “triangulation” method to the purification of nosema spores from insect tissues. J. Invertebr. Pathol. 15(2), 193–195. https://doi.org/10.1016/0022-2011(70)90233-8 (1970).Article 

    Google Scholar 
    Folly, A. J., Barton-Navarro, M. & Brown, M. J. F. Exposure to nectar-realistic sugar concentrations negatively impacts the ability of the trypanosome parasite (Crithidia bombi) to infect its bumblebee host. Ecol. Entomol. 45(6), 1495–1498 (2020).Article 

    Google Scholar 
    Schlüns, H., Sadd, B. M., Schmid-Hempel, P. & Crozier, R. H. Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. Dev. Comp. Immunol. 34(7), 705–709 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Yourth, C., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1 (2008).Article 

    Google Scholar 
    Fournier, A., Rollin, O., Le Féon, V., Decourtye, A. & Henry, M. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae). J. Econ. Entomol. 107(1), 38–46 (2014).PubMed 
    Article 

    Google Scholar 
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6(1), 1–11 (2016).Article 
    CAS 

    Google Scholar 
    R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Kassambara, A., Kosinski, M., Biecek, P., & Fabian, S. (2020). survminer: drawing survival curves using ‘ggplot2’. R package version 0.4. 8. 2019.Therneau, T. M. & Lumley, T. Package ‘survival’. R Top Doc 128(10), 28–33 (2020).
    Google Scholar 
    Bartoń, K. (2020). MuMIn: Multi-Model Inference. R package ver. 1.43. 17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multimodel inference, 2. More

  • in

    Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection

    Model overview and parametersOur mathematical model of the CF lung microbiome dynamics, originally developed in [20], is based on knowledge of the physiology and interactions among community members from experimental data and evidence in the literature. The model setting is a mucus-plugged tube, open to the air at the top and sealed at the bottom, mimicking a lung bronchiole. This setting is meant to pair with a previously established experimental microcosm called the WinCF system [21], which we use below for experiments. There is an important spatial component to the model, as oxygen penetration from the open top of the tube is constant and shapes the community structure. The consequences of these chemical gradients were first modelled in our initial study [20]. The community members are classified as either “pathogens”, representing classic CF pathogens, or “fermenters”, representing other anaerobic organisms commonly encountered in CF airways. These classifications are a significant simplification, but they can be considered as guilds, in that their individual members have similar inherent properties defined by their core metabolism, antibiotic resistance, and niche occupancy [20]. The definition of classic pathogens and anaerobic fermenters is also clinically relevant, as the former are those assayed in clinical labs for antibiotic resistance to inform treatment decisions, whereas anaerobic fermenters are not cultured or tested for susceptibility in most clinical labs. Classifications of each microbiome member into these guilds are available in Tables S2–S4. Fermenters reside in low oxygen areas and utilize sugars to produce acids [20] (Fig. 1). Pathogens, principally, but not exclusively, Pseudomonas aeruginosa, occupy high oxygen regions where they aerobically respire and utilize amino acids as a carbon source producing ammonium, which increases the surrounding pH [20] (Fig. 1). Pathogens can also respire anaerobically, with nitrate as an electron acceptor (Fig. 1). In addition to increasing the surrounding pH, they produce inhibitor molecules (such as phenazines and quinolones) that inhibit the growth of fermenters [20] (Fig. 1). This model is hereon referred to as the “mathematical model”.Fig. 1: Schematic of principles and interacations defining the mathematical model.All consitunents of the model are represented in illustrating basic assumptions and interactions. Fermenters (θf) metabolize (SG) as a carbon source, which produce acid (F) leading to an increase in hydrons (H+) (i.e. lowering the pH) under anaerobic conditions. This pH decrease inhibitis the growth of pathogens. Pathogens (θP) in the presence of oxygen (SO) (i.e., aerobic conditions) use amino acids (SA) as their primary carbon source. The byproduct of this metabolism is ammonium (P), which produces hydroxide (OH-) leading to an increase in pH, inhibiting fermenter growth. Under anaerobic conditions pathogens use nitrate (SN) as an electron acceptor. In addition to this pathogens produce a chemical inhibitor of fermenters (I).Full size imagePredicting and modelling outcomes of antibiotic therapyTo better conceputalize and compare our modeling and experimental results, we first theoretically predicted the outcomes of antimicrobial therapy against the two guilds using three theoretical drugs: one with fermenter coverage (denoted Tf), one with pathogen coverage (denoted Tp), and one with broad spectrum coverage (denoted Tw). This approach is hereon referred to as the “theoretical prediction”. To further enable comparison to experimental data we outline characteristics of the two guilds we expect to observe in the experiments. Firstly, the growth of anaerobic fermenters is positively correlated with an increase in gas production (bubble formation in the WinCF system) [21]. Second, an increase in P. aeruginosa positively correlates with an increase in its inhibitor molecule (e.g., Quinolone HHQ) and P. aeruginosa does not produce gas in the WinCF system [21]. Thirdly, based on Tables S1–S4 and the CF microbiome literature, fermenters are more diverse than pathogens [2, 43, 44]. These characteristics of our theoretical prediction enable direct comparison to microbiome measures of experimental results, such as alpha diversity, beta diversity, pathogen relative abundance, fermenter relative abundance and total bacterial load (TBL).With our theoretical prediction we expect the following outcomes when communities are exposed to antibiotics: (1) community resistance, (2) community death, (3) pathogen death, and (4) fermenter death (Fig. 2A–E). In both the complete absence of an antibiotic and community resistance, we expect TBL, pathogens, fermenters, HHQ, and gas production measures to increase until reaching carrying capacity (Fig. 2B). The opposite, community death (treatment with Tw) results in both microbial entities failing to grow (Fig. 2C). Tw treatment would not change alpha or beta diversity, as we would simply measure the initial inoculum due to total community death. Outcomes 1 and 2 have a degree of uncertainty due to the fact that it is difficult to assume the community would not change from the inoculum without an antibiotic present, but it is expected that Tw would have less impact on microbiome diversity than Tp or Tf (Fig. 1C). Treatment with Tp results in an anaerobic fermenter bloom, increasing alpha and beta diversity along with gas production and a decrease in HHQ production (Fig. 2D). Finally, in the case of Tf treatment, fermenter abundance and gas production would decrease while HHQ abundance would increase (Fig. 1E). Treatment with Tf will also result in a decrease in alpha diversity and an increase in beta diversity because of changes in community structure when the diverse anaerobic fermenters are killed (Fig. 2E).Fig. 2: Theoretical predictions and Model iteration 1.The initial microbiome is composed of both pathogens and fermenters and is illustrated in (A), but the proportions of these are unique to each patient. Under pressure of the various treatments (B) NT, (C) Tw, (D) Tp, and (E) Tf the predicted community response is illustrated. The response i.e., (expected change) in common microbiome measures as indicated in the legend (yellow = increase, red = decrease). The measures are the following: Alpha diversity (AD), Beta diversity (BD), gas production (GP), total bacterial load (TBL), pathogen abundance (P), fermenter abundance (F), and 2-heptyl-4quinolone abundance (HHQ). The model output treatment-to-NT log-ratio of (F) fermenter population and (G) pathogen population of patient 12 as an example with spatial variation at t = 50 h. Boxplots showing model outcomes of the (H) 16S rRNA gene copy ratio and (I) Pathogen to Fermenter log-ratio compared to the control. Each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). The dotted grey line denotes no change from treatment.Full size imageThe theoretical prediction was then tested with the mathematical model hereon referred to as “model iteration 1”. Importantly, our model parameters can use relative abundance data of the two guilds as input. Therefore, we used the sputum microbiome data of all 24 subjects as inputs for model interation 1 (Fig. 2F–H). The outputs were in line with our theoretical prediction and showed that the fermenter drug would reduce the fermenter load, with little effect on the pathogens, the pathogen drug vice versa, and the broad-spectrum antibiotic would kill both (Fig. 2F–H). However, model iteration 1 did produce some unexpected results. The TBL of the Tw decreased to similar levels as Tf and Tp, indicating similar levels of killing whether there was selection against a single guild or the whole community (Fig. 2H). In addition, the TBL and Pathogen/Fermenter log-ratio were variable, indicating the carrying capacity and community dynamics were predicated upon characteristics of this initial sputum inoculum (Fig. 2F–H). Our theoretical prediction (Fig. 2A–E), in tandem with model iteration 1 (Fig. 2F–H), provided a platform for comparison to the in vitro antibiotic experiments with the WinCF system described below.Experimental results of antibiotic therapy against the lung microbiomeWe examined the effects of antibiotics (n = 11) on the CF sputum microbiome cultured in a lung bronchiole microcosm (WinCF system, n = 24) using a combination of 16S rRNA gene amplicon sequencing, metabolomics, and qPCR analysis and compared to our theoretical prediction and model iteration 1. This is hereon referred to as the “antibiotic experiment”. The antibiotics were chosen to represent the main chemical classes commonly used in CF clinics and included: amoxicillin, azithromycin, aztreonam, ciprofloxacin, colistin, doxycycline, levofloxacin, meropenem, metronidazole, bactrim (a combination of sulfamethoxazole/trimethoprim), and tobramycin. Each of the 24 sputum samples were used as an incoculum in ASM treated with one of 11 different antibiotics cultured at 37 °C for 48 h (Table S1) and compared to a no-treatment control. WinCF tubes were also inoculated with this media/sputum/antibiotic mixture to quantify gas bubble production from fermentation (as described in [21]). The antibiotic concentration for each drug was variable and chosen to match the measured concentrations in the blood or sputum of pwCF in pharmacokinetic studies (Table S1). The most prominent genera across all samples after growth were Pseudomonas, Streptococcus, Veillonella, Haemophilus, Fusobacterium, Prevotella, Staphylococcus, Achromobacter, and Neisseria (Fig. S2). A principal component analysis (PCA) biplot, examining the top five factors by percent contribution, showed the primary genera driving community differentiation were Pseudomonas, Streptococcus, and Staphylococcus (Fig. S3). The effects of antibiotics and individual patients on the composition of the communities were compared via PERMANOVA (Table S7). Tested separately, both antibiotic and subject source had a highly significant effect on the community structure (p 40%), which occurred in 6.8% of samples. The microbiomes of outcome 6 were predominantly dominated by pathogens compared to the control samples (Fig. S7). We found this outcome to be especially interesting, with potential clinical relevance; we therefore performed follow up experiments to understand it further.Fig. 4: Characterizing outcomes in the antibiotic experiment.Weighted UniFrac distance compared to (A) rRNA gene copies, (B) Gas production, (C) Pathogen to fermenter log ratio, (D) Shannon index. Individual points are colored by antibiotic treatment (n = 11). Observed outcomes (Community resistance, community death, pathogen death, anaerobe death, niche replacement, and release of community level inhibition) are highlighted via large cogs on each of the panels colored by the outcome they represent. These highlighted regions are meant to aid in visualization of their presence in the overlying data. Cutoff values of for the outcomes are further described in Table S17.Full size imageOther interesting data relationships were found in these experiments (Fig. S8) though they were not defined as outcomes. For example, the changing UniFrac distance and change in alpha diversity were negatively correlated (Fig. S8a). A large increase in UniFrac distance (over 40% increase), was generally associated with takeover by a particular ASV, driving this phenomenon (Figs. S7 and S9). According to prevalence measures of theses samples the prominent genera in these instances were Pseudomonas and Streptococcus (Fig. S9). In the cases of meropenem and amoxicillin, UniFrac distances were increased while the Shannon indices were decreased, due to the killing of diverse anaerobic community, but there were fewer cases of an increase in alpha diversity and a significant microbiome change (observed in 3 samples only) indicating a kind of buffering of the microbiome by the diverse anaerobic community (Fig. S7a). The increase in TBL characterizing outcome 6 was rarely associated with an increase in alpha diversity (Table S17). Finally, similar to a phenomenon described in CF sputum [31], when the microbiome alpha diversity increases the metabolome diversity decreases, likely reflecting consumption of different metabolites by a more diverse microbiome (Fig. S7c).Model iteration 2 and experimental validation to explain increase in TBLBecause model iteration 1 did not predict the interesting outcome 6, we altered its parameters to determine if we could observe an increase in TBL in the presence of an antibiotic, hereon referred to as “model iteration 2”. In model iteration 1, parameter λ in the function g2(Z) was set to 0.1, which represents pH driven inhibition of fermenters on pathogen growth. Due to the inverse relationship of this parameter, reducing it to 0.05 increased the strength of inhibition, resulting in an increase in TBL for some subjects, akin to that observed in our experimental outcome 6 (Fig. 5A). This only occurred in Tf treatments in model iteration 2, corresponding to a bloom in pathogens after killing of anaerobes. Furthermore, this phenomenon was only present in modelled samples that initially contained much lower populations of the fermenter guild compared to pathogens and is dependent on the spatial structure driven by oxygen gradients that is an inherent property the modeled system (Figs. 1 and 5A). This finding suggests that outcome 6 in the antibiotic experiment may be driven by an antibiotic mediated release of community level inhibition driven by the effect of low pH from fermenters on pathogens and the inhibition of anaerobes by oxygen [20]. Thus, we set out to explore this phenomenon in more detail experimentally.Fig. 5: Model alteration and verification.(A) Model iteration 2 outcomes of 16S rRNA gene copy ratio of each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). Individual points are colored by antibiotic treatment (n = 11). The dotted grey line denotes no change from treatment. Subsequent experimental validation using two communities, P1 and P2 (n = 10), showing the (B) pH in relation to log rRNA gene copies, (C) Approximate pH, (D) Pathogen/Fermenter log ratio, (E) log rRNA gene copies, (F) Genera abundance, (G) Distribution based on genera-classification as classical pathogen or anaerobic fermenter. Asterisks denote p-value significance where ****p ≥ 0.0001, ***p ≥ 0.001, **p ≥ 0.01, *p ≥ 0.05.Full size imageA simple in vitro experiment was performed where three antibiotics, meropenem (Tw), tobramycin (Tp), and metronidazole (Tf), were added at 2.048 mg/L in ASM media inoculated with two representative communities obtained from pwCF: P1 and P2 (n = 10 replicates) (Fig. 5B–F). The three drugs were selected based on their common uses against CF infections based on pathogen and/or anaerobic coverage, but we acknowledge that their effects are not exclusive to these organisms. Community P1 did not contain P. aeruginosa via culturing on cetrimide agar, whereas the bacterium was isolated from the sputum of P2. This provided a unique opportunity to test the predictions from model iteration 2 on the outcomes of a community with or without P. aeruginosa. A lower concentration of antibiotics was chosen to avoid widespread killing of the communities. We examined the following: rRNA gene copies, approximate pH (based on RGB color values inferred from phenol red buffered media standards) and 16S rRNA gene amplicon sequencing (Fig. 5). This is hereon referred to as the validation experiment. The validation experiment reproduced outcome 6, where both the number of rRNA gene copies were higher when the antibiotic was present than in the no treatment control for both P1 and P2 (Fig. 5C). In contrast to model iteration 2, this only occurred in treatment Tw (paired t-test, p = 0.000831) (Fig. 5). Accordingly, this increase in TBL corresponded to an increase in pH of the cultures, validating the association of the anaerobe induced fermentation with an inhibition of the communities’ total carrying capacity (p = 1.69 × 10−9, Fig. 5B–E). In fact, there was a strong positive correlation between the TBL and media pH overall (Fig. 5B). Furthermore, P2 reached a higher bacterial load overall than P1 in the validation experiment, indicating that the pathogen’s presence drove the community to a higher carrying capacity (Fig. 5E). The lower growth in community P1 shows that a community of primarily anaerobic fermenters struggles without the aerobic pathogen present. Microbiome profiles of these follow up experiments validated the predictions of model iteration 2 and initial findings of outcome 6 (Fig. 5F, G). Meropenem killed the anaerobic community (primarily Streptococci) and the increase in TBL was driven by a bloom of Pseudomonas (P2 community) and Staphylococcus (P1 community) to a higher level than the communities’ inherent carrying capacity (Fig. 5F, G). This experiment was subsequently repeated (n = 5), with the same results observed (Fig. S10). It was interesting that a similar increase in TBL occurred from a community without a dominant pathogen (P1, Fig. 5G). We hypothesize that this result is due to the importance of both oxygen and pH in the governing dynamics. With very low levels of the pathogen guild, the community struggles to grow due to high oxygen penetration. When the anaerobes are inhibited by antibiotics, even low levels of an initial pathogen can begin to bloom, as they are not inhibited by oxygen or the antibiotic, and this leads to an increase in total carrying capacity.Antibiotic effects at the strain level in pwCFTo explore similar phenomena in outcomes 5 and 6 from pwCF treated with antibiotics we sequenced the metagenomes of sputum samples collected from subjects immediately prior to and during antibiotic treatment (n = 6) (Table S19). To minimize the effects of multiple therapies at once, a common occurrence in CF therapeutics, these samples were selected based on the treatment provided being the only known antibiotic prescribed to the subject at the time. Metagenomes were analyzed at the strain level and TBL was examined using qPCR. Overall, there was no significant decrease in TBL (Fig. 6A, Wilcoxon rank-sum test, p = 0.095), but alpha diversity significantly decreased (Fig. 6B, Wilcoxon rank-sum test, p = 0.045). Analysis of the rank abundance changes of the microbiome at the strain level showed that all six subjects had dynamic changes in their sputum microbiomes associated with antibiotic treatment despite little decrease in TBL (Fig. 6C). Thus, like outcome 5, and indicative of outcome 6, dynamic community changes occur in pwCF with minor changes in TBL.Fig. 6: In vivo changes across individuals.qPCR and shotgun metagenomics were performed on sputum samples from individuals (n = 6) before and after exacerbation. We examined the following: (A) rRNA gene copies (B) Shannon Index, and (C) Rank abundance. Each point on the rank abundance represents an individual strain. The color of lines on the rank abundance represents type of bacterium based on our model definitions where blue equates to Fermenters, red to Pathogens, and green to other.Full size image More

  • in

    Metabolome dynamics during wheat domestication

    Haas, M., Schreiber, M. & Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61(3), 204–225 (2019).PubMed 
    Article 

    Google Scholar 
    Hebelstrup, K. H. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci. 256, 1–4 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borisjuk, N. et al. Genetic modification for wheat improvement: From transgenesis to genome editing. Biomed. Res. Int. 2019, 6216304 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51(5), 885–895 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426), 705–710 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zimin, A. V. et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11), 1–7 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93–97 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681), 498–502 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443), 91–95 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J. et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. U. S. A. 100(5), 2489–2494 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Allen, A. M. et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11(3), 279–295 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merchuk-Ovnat, L., Fahima, T., Krugman, T. & Saranga, Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. Plant Sci. 251, 23–34 (2018).Article 
    CAS 

    Google Scholar 
    Bhalla, P. L., Sharma, A. & Singh, M. B. Enabling molecular technologies for trait improvement in wheat. Methods Mol. Biol. 1679, 3–24 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hong, J., Yang, L., Zhang, D., & Shi, J. Plant metabolomics: An indispensable system biology tool for plant science. Int. J. Mol. Sci. 17(6), 1–16 (2016).ADS 

    Google Scholar 
    Batyrshina, Z. S., Yaakov, B., Shavit, R., Singh, A. & Tzin, V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biol. 20(1), 19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zorb, C., Langenkamper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Matthews, S. B. et al. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7(8), e44179 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    de Leonardis, A. M. et al. Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int. J. Mol. Sci. 16(12), 30382–30404 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ullah, N., Yuce, M., Neslihan Ozturk Gokce, Z. & Budak, H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genom. 18(1), 969 (2017).Article 
    CAS 

    Google Scholar 
    Lannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front Plant Sci. 8, 2124 (2017).Article 

    Google Scholar 
    Beleggia, R. et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33(7), 1740–1753 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poudel, R., Bhinderwala, F., Morton, M., Powers, R. & Rose, D. J. Metabolic profiling of historical and modern wheat cultivars using proton nuclear magnetic resonance spectroscopy. Sci. Rep. 11(1), 3080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hanhineva, K. et al. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69(13), 2463–2481 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Abu, Y. & Itsko, M. “Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication. Sci. Rep. 11(1), 20340. https://doi.org/10.1038/s41598-021-98764-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3(6), 429–441. https://doi.org/10.1038/nrg817 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., Beiles, A., Flom, D. & Nevo, E. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE. 13(2), e0190424 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., et al., Durum wheat evolution—a genomic analysis. In Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, Vol. 110 29–44 (2014).Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155, 233–243 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Arbona, V. & Gomez-Cadenas, A. Metabolomics of Disease resistance in crops. Mol. Biol. 19, 13–30 (2016).
    Google Scholar 
    Okada, K., Abe, H. & Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56(1), 16–27 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Belz, R. G. Allelopathy in crop/weed interactions–an update. Pest. Manag. Sci. 63(4), 308–326 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mondal, S. et al. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 7, 991 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, L. et al. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu. Rev. Phytopathol. 54, 279–301 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-David, R., Dinoor, A., Peleg, Z. & Fahima, T. Reciprocal hosts’ responses to powdery mildew isolates originating from domesticated wheats and their wild progenitor. Front. Plant Sci. 9, 75 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yahiaoui, N., Brunner, S. & Keller, B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47(1), 85–98 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant—a review. Crit. Rev. Food Sci. Nutr. 56(1), 160–179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mou, Y., et al. Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L). Int. J. Mol. Sci. 20(8), 85–97 (2019).Article 
    CAS 

    Google Scholar 
    Kage, U., Karre, S., Kushalappa, A. C. & McCartney, C. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol. J. 15(4), 447–457 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dutartre, L., Hilliou, F. & Feyereisen, R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluster. BMC Evol. Biol. 12, 64 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE 11(5), e0155851 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kage, U., Yogendra, K. N. & Kushalappa, A. C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci. Rep. 7, 42596 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Masisi, K., Beta, T. & Moghadasian, M. H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 196, 90–97 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 12(8), 749–767 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Vizcaino, F. & Fraga, C. G. Research trends in flavonoids and health. Arch Biochem. Biophys. 646, 107–112 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kong, L., Guo, H. & Sun, M. Signal transduction during wheat grain development. Planta 241(4), 789–801 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nadolska-Orczyk, A., Rajchel, I. K., Orczyk, W. & Gasparis, S. Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6), 1081–1098 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Yang, B. Translational genomics of grain size regulation in wheat. Theor. Appl. Genet. 130(9), 1765–1771 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, P. F. et al. Transcriptional reference map of hormone responses in wheat spikes. BMC Genom. 20(1), 390 (2019).Article 
    CAS 

    Google Scholar 
    Hill, C. B. & Li, C. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front .Plant Sci. 7, 1906 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49(12), 1741–1746 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans

    Regional distribution of airborne and surface water bacterial phyla in the Pacific and Atlantic oceansThe two open ocean sailing transects examined in this study included the western Pacific path, sampled in May 2017 from Keelung, Taiwan, towards Fiji (Fig. 1a and Supplementary Data 1), and the Atlantic crossing, sampled in June 2016 from Lorient, France, to Miami, USA (Fig. 1b and Supplementary Data 1). In the water, we found a higher homogeneity in phyla distribution within each transect (significantly lower Euclidean distances between centered log-ratio (CLR)-converted phyla counts (betadispar): Atlantic: 0.3212 compared to 0.4229 in the air, ANOVA (with Tukey’s post hoc), p  More

  • in

    Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system

    Sabo, J. et al. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86, 56–62 (2005).Article 

    Google Scholar 
    Lind, L., Hasselquist, E. & Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage. 249, 109391–109391 (2019).PubMed 
    Article 

    Google Scholar 
    Merritt, D., Nilsson, C. & Jansson, R. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecol. Monogr. 80, 609–626 (2010).Article 

    Google Scholar 
    Jansson, R., Nilsson, C. & Renöfält, B. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81, 899–903 (2000).Article 

    Google Scholar 
    Mari, L. et al. Metapopulation persistence and species spread in river networks. Ecol. Lett. 17, 426–434 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768. https://doi.org/10.1038/s41598-020-70816-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wobus, C. et al. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211 (2017).ADS 
    Article 

    Google Scholar 
    Meyer, J. L. et al. The contribution of headwater streams to biodiversity in river networks1. J. Am. Water Resour. Assoc. 43, 86–103. https://doi.org/10.1111/j.1752-1688.2007.00008.x (2007).ADS 
    Article 

    Google Scholar 
    Van Looy, K. & Piffady, J. Metapopulation modelling of riparian tree species persistence in river networks under climate change. J. Environ. Manage. 202, 437–446 (2017).PubMed 
    Article 

    Google Scholar 
    Sochor, M. et al. Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet. Genomes 9, 1193–1205 (2013).Article 

    Google Scholar 
    Garssen, A. G. et al. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 23, 3052–3063. https://doi.org/10.1111/gcb.13687 (2017).ADS 
    Article 

    Google Scholar 
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und historischer Sicht. 6., vollst. neu bearb. und stark erw. Aufl edn, (Ulmer, 2010).Hanski, I. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, New York, 1997).MATH 

    Google Scholar 
    Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    Chen, F.-Q. & Xie, Z.-Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol. 191, 67–75 (2007).Article 

    Google Scholar 
    Bonn, S. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. (Quelle und Meyer Verlag, 1998).Müller-Schneider, P. Verbreitungsbiologie der Blütenpflanzen Graubündens: Diasporology of the Spermatophytes of the Grisons. Vol. 85. (Switzerland) (1986).Aradottir, A., Svavarsdottir, K. & Bau, A. Clonal variability of native willows (Salix pylicifofia and Salix lanata) in Iceland and implications for use in restoration. Icel. Agric. Sci. 20, 61–72 (2007).
    Google Scholar 
    Egelund, B., Pertoldi, C. & Barfod, A. S. Isolation and reduced gene flow among Faroese populations of tea-leaved willow (Salix phylicifolia, Salicaceae). N. J. Bot. J. Bot. Soc. B. Isles 2, 9–15 (2012).
    Google Scholar 
    Van Puyvelde, K. & Triest, L. ISSRs indicate isolation by distance and spatial structuring in Salix alba populations along Alpine upstream rivers (Alto Adige and Upper Rhine). Belg. J. Bot. 140, 100–108 (2007).
    Google Scholar 
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108. https://doi.org/10.1007/s10750-016-3021-2 (2017).Article 

    Google Scholar 
    Werth, S., Schoedl, M. & Scheidegger, C. Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshw. Biol. 59, 2502–2515 (2014).Article 

    Google Scholar 
    Pollux, B. J. A., Luteijn, A., Van-Groenendael, J. M., Ouborg, N. J. & Ouborg, N. J. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54, 64–76 (2009).Article 

    Google Scholar 
    Davis, C., Epps, C., Flitcroft, R. & Banks, M. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5, e1269 (2018).Article 

    Google Scholar 
    Vega-Retter, C. et al. Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquat. Conserv.Mar. Freshw. Ecosyst. 30, 2254–2268. https://doi.org/10.1002/aqc.3425 (2020).Article 

    Google Scholar 
    Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 23. https://doi.org/10.1186/s12898-016-0079-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. Lond. B: Biol. Sci. 285, 20172746. https://doi.org/10.1098/rspb.2017.2746 (2018).Article 

    Google Scholar 
    Sitzia, T., Kudrnovsky, H., Müller, N. & Michielon, B. Biological flora of Central Europe Myricaria germanica (L.) Desv. Perspect. Plant Ecol. Evol. Syst. 52, 125629. https://doi.org/10.1016/j.ppees.2021.125629 (2021).Article 

    Google Scholar 
    Egger, G., Steineder, R. & Angermann, K. Verbreitung und Erhaltungszustand des FFH-Lebensraumtyps 3230 “Alpine Flüsse mit Ufergehölzen von Myricaria germanica” an der Isel und deren Zubringern (Osttirol, Österreich). Carinthia II 204, 391–432 (2014).
    Google Scholar 
    Schletterer, M., Gewolf, S., Egger, G. & Fink, S. Forschungsprojekt Tamariske: Genetische Untersuchung von Populationen an der Isel – Dokumentation der Beprobungen 2018. 32 (Innbruck, 2019).Scheidegger, C. & Wiedmer, A. Genetische Untersuchung zur Deutschen Tamariske in Tirol. (Eidg. Forschungsanstalt WSL, Birmensdorf, 2014).Hedrick, P., Lacy, R., Allendorf, F. & Soule, M. Directions in conservation biology: Comments on caughley. Conserv. Biol. 10, 1312–1320 (1996).Article 

    Google Scholar 
    Sampson, J., Byrne, M., Gibson, N. & Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 6, 5867–5880 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kudrnovsky, H. & Stöhr, O. Myricaria germanica (L.) Desv. historisch und aktuell in Österreich: Ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA Rep. 99, 13–34 (2013).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Auffret, A. G., Plue, J. & Cousins, S. A. O. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, 51–59. https://doi.org/10.1007/s13280-014-0588-6 (2015).Article 
    PubMed Central 

    Google Scholar 
    Herrmann, J. et al. Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97, 1274–1282 (2016).PubMed 
    Article 

    Google Scholar 
    Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mosner, E., Liepelt, S., Ziegenhagen, B. & Leyer, I. Floodplain willows in fragmented river landscapes: Understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol. Conserv. 153, 211–218 (2012).Article 

    Google Scholar 
    Chambers, J., MacMahon, J. & Brown, R. Alpine seedling establishment: The influence of disturbance type. Ecology 71, 1323–1341 (1990).Article 

    Google Scholar 
    Bill, H.-C. Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse PhD thesis, Philipps-Universität Marburg, (2000).Lite, S. J., Bagstad, K. J. & Stromberg, J. C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid Environ. 63, 785–813. https://doi.org/10.1016/j.jaridenv.2005.03.026 (2005).ADS 
    Article 

    Google Scholar 
    Andersson, E., Nilsson, C. & Johansson, M. E. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27, 1095–1106 (2000).Article 

    Google Scholar 
    Aguiar, F. et al. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 55, 2227–2240 (2018).Article 

    Google Scholar 
    Leyer, I. Dispersal, diversity and distribution patterns in pioneer vegetation: The role of river-floodplain connectivity. J. Veg. Sci. 17, 407–416 (2006).Article 

    Google Scholar 
    Crookes, S. & Shaw, P. W. Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv. Genet. 17, 861–874. https://doi.org/10.1007/s10592-016-0828-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9, e99400 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity 96, 471–478. https://doi.org/10.1038/sj.hdy.6800825 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mayer, C., Schiegg, K. & Pasinelli, G. Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol. Ecol. 18, 2353–2364 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benda, L. E. E. et al. The network dynamics hypothesis: How Channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51. https://doi.org/10.1007/s10592-020-01317-y (2021).CAS 
    Article 

    Google Scholar 
    Fink, S., Lanz, T., Stecher, R. & Scheidegger, C. Colonization potential of an endangered riparian shrub species. Biodivers. Conserv. 26, 2099–2114. https://doi.org/10.1007/s10531-017-1347-3 (2017).Article 

    Google Scholar 
    Merritt, D. & Wohl, E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).Article 

    Google Scholar 
    Sitzia, T., Michielon, B., Iacopino, S. & Kotze, D. J. Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecol. Eng. 95, 828–838 (2016).Article 

    Google Scholar 
    Wöllner, R., Scheidegger, C. & Fink, S. Gene flow in a highly dynamic habitat and a single founder event: Proof from a plant population on a relocated river site. Glob. Ecol. Conserv. 28, e01686. https://doi.org/10.1016/j.gecco.2021.e01686 (2021).McLaughlin, B. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).ADS 
    Article 

    Google Scholar 
    Chiu, M. C. et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations. bioRxiv https://doi.org/10.1101/550194 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catford, J. & Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204, 19–36 (2014).PubMed 
    Article 

    Google Scholar 
    Schletterer, M. & Scheiber, T. Wiederansiedlung der deutschen tamariske (Myricaria germanica (L.) DESV.) an der Leutascher Ache (Nordtirol, Österreich). B. Naturwiss. Med. Ver. Innsbr. 95, 53–65 (2008).
    Google Scholar 
    Riehl, S. & Zehm, A. in ANLiegen Natur Vol. 40, 17–20 (ANL Bayern, Laufen, 2017).Egger, G., Angermann, K. & Gruber, A. Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 393–418 (2010).Kudrnovsky, H. Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: Proposing the Isel river system for the Natura 2000 network. Eco. Mont 5, 5–18 (2013).
    Google Scholar 
    Lener, F. P. Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten Master thesis (University of Vienna, Vienna, 2011).
    Google Scholar 
    Schiechtl, H. M. in Alpenländ. Bienenzeitung Vol. 4 125–131 (1957).Bill, H.-C., Poschlod, P., Reich, M. & Plachter, H. Experiments and observations on seed dispersal by running water in an Alpine floodplain. Bull. Geobot. Inst. ETH 65, 13–28 (1999).
    Google Scholar 
    Nilsson, C., Brown, R., Jansson, R. & Merritt, D. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).PubMed 

    Google Scholar 
    Lener, F. P., Egger, G. & Karrer, G. Sprossaufbau und entwicklung der deutschen tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II(203), 515–552 (2013).
    Google Scholar 
    Werth, S. & Scheidegger, C. Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conserv. Genet. Resour. 3, 445–448 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comp., (2016).Excoffier, L., Laval, G. & Schneider, S. Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247. https://doi.org/10.1093/jhered/89.3.238 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Smouse, P. E., Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rannala, B. (ed University of California Davis) 1–12 (2007).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in Bayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733. https://doi.org/10.1111/1755-0998.12216 (2014).Article 
    PubMed 

    Google Scholar 
    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More