More stories

  • in

    The plant rhizosheath–root niche is an edaphic “mini-oasis” in hyperarid deserts with enhanced microbial competition

    Laity JJ. Deserts and desert environments. John Wiley & Sons; UK, 2009.Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2015;6:166–71.Article 

    Google Scholar 
    Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, et al. Global ecosystem thresholds driven by aridity. Science. 2020;367:787–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Danin A. Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F, editors. Adaptations of desert organisms. Plant of desert dunes. Springer; Verlag Berlin Heidelberg, 1996.Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N, Leff JWJ, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronca S, Ramond J-BB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noy-Meir I. Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst. 1974;5:195–214.Article 

    Google Scholar 
    Danin A. Plants of desert dunes. In: Cloudsley-Thompson J, editor. Adaptations of desert organisms. Springer; Verlag Berlin Heidelberg, 2000.Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, et al. Leaf surface structures enable the endemic Namib Desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface. 2012;9:1965–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J Arid Environ. 2011;75:524–31.Article 

    Google Scholar 
    Cartwright J. Ecological islands: conserving biodiversity hotspots in a changing climate. Front Ecol Environ. 2019;17:fee.2058.Article 

    Google Scholar 
    André HM, Noti MI, Jacobson KM. The soil microarthropods of the Namib Desert: a patchy mosaic. J African Zool. 1997;111:499–517.
    Google Scholar 
    Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown LK, George TS, Neugebauer K, White PJ. The rhizosheath—a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 
    Article 

    Google Scholar 
    Pang J, Ryan MH, Siddique KHMM, Simpson RJ. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 
    Article 

    Google Scholar 
    Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, et al. Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome. 2022;17:14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.Article 
    CAS 

    Google Scholar 
    Wullstein LHH, Pratt SAA. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot. 1981;68:408–19.Article 

    Google Scholar 
    Young IM. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 1995;130:135–9.Article 

    Google Scholar 
    Ashraf M, Hasnain S, Berge O, Campus Q. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol. 2006;3:45–53.Article 

    Google Scholar 
    George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol. 2014;203:195–205.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 
    Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA. Biodiversity of diazotrophs associated to the plant cover of north sinai deserts. Arch Agron Soil Sci. 2003;49:683–705.Article 

    Google Scholar 
    Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat. 2009;69:105–14.Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol. 2016;7:1–11.Article 

    Google Scholar 
    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 
    Article 

    Google Scholar 
    Alsharif W, Saad MM, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 2020;11:1666.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016;405:357–70.CAS 
    Article 

    Google Scholar 
    Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. Competition-colonization dynamics in experimental bacterial metacommunities. Nat Commun. 2012;3:1–8.Article 
    CAS 

    Google Scholar 
    Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seely MK. The Namib dune desert: an unusual ecosystem. J Arid Environ. 1978;1:117–28.Article 

    Google Scholar 
    Klaassen E, Craven P. Checklist of grasses in Namibia. SABONET; Pretoria & Windhoek, 2014. (Produced by National Botanical Research Institute Private Bag 13184).Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems. 2017;2:1–15.Article 

    Google Scholar 
    Darwin C. On the origin of species. London: Routledge; 1859.Gunnigle E, Frossard A, Ramond J-B, Guerrero L, Seely M, Cowan DA. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep. 2017;7:40189.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. Media. Springer; New York, NY 2016.RC-Team. R: A language and environment for statistical computing (Version 3.5. 2, R foundation for statistical computing, Vienna, Austria, 2018). R Foundation for Statistical Computing; 2019.Anderson MMJJ, Gorley RNRN, Clarke KRR. PERMANOVA + for PRIMER: guide to software and statistical methods; PRIMER-E. Plymouth, UK: PRIMER-E Ltd.; 2008.Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep. 2015;7:668–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Craig Cary S, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo dry valleys of Antarctica. Front Microbiol. 2018;9:1–12.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2014;22:5271–7.Article 
    CAS 

    Google Scholar 
    Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: user manual/tutorial. Plymouth, UK: PRIMER-E; 2015.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, et al. The vegan R package: community ecology. 2013:0–291Wang Y, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–4.Article 

    Google Scholar 
    Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.Article 

    Google Scholar 
    Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Package ‘adespatial’. R package version. 2018.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. 2009;8:361–2.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.Article 

    Google Scholar 
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:1–9.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2019;21:3212–28.CAS 
    Article 

    Google Scholar 
    Al-Hosni K, Shahzad R, Khan AL, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact. 2018;13:112–8.CAS 
    Article 

    Google Scholar 
    Sen D, Paul K, Saha C, Mukherjee G, Nag M, Ghosh S, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26:131–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae–induced disease development in roots. Mol Plant-Microbe Interact. 2019;32:351–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–65.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zeng Y, Charkowski AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology®. 2021;111:600–10.Article 

    Google Scholar 
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 

    Google Scholar 
    Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329:1653–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith VH. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002;81:99–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    Albalasmeh AA, Ghezzehei TA. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil. 2014;374:739–51.CAS 
    Article 

    Google Scholar 
    Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ. 2002;50:99–108.Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Hegazi NA. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 
    Article 

    Google Scholar 
    Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 2018;58:1009–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGAA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-TT, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez BR, Bacilio M. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils. 2020;56:447–59.CAS 
    Article 

    Google Scholar 
    Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11:343–8.Article 

    Google Scholar 
    Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol. 2017;67:94–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiménez-Gómez A, Saati-Santamaría Z, Igual J, Rivas R, Mateos P, García-Fraile P. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms. 2019;7:354.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu T, Ye N, Wang X, Das D, Tan Y, You X, et al. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol. 2021;63:1753–74.Blouin M. Chemical communication: an evidence for co-evolution between plants and soil organisms. Appl Soil Ecol. 2018;123:409–15.Article 

    Google Scholar 
    Sarrocco S, Diquattro S, Baroncelli R, Cimmino A, Evidente A, Vannacci G, et al. A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycol Prog. 2015;14:112.Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15.Zhang K, Bonito G, Hsu C, Hameed K, Vilgalys R, Liao H-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020;10:754.Article 

    Google Scholar 
    Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 2016;7:1–15.Article 

    Google Scholar 
    Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43:760–5.CAS 
    Article 

    Google Scholar 
    Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep. 2019;9:7537.Article 
    CAS 

    Google Scholar 
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol. 2017;93:fiw217.PubMed 
    Article 
    CAS 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82:770–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287–19.Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.CAS 
    Article 

    Google Scholar 
    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlatter DC, Kinkel LL. Antibiotics: conflict and communication in microbial communities. Microbe Mag. 2014;9:282–8.Article 

    Google Scholar  More

  • in

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler

    Considering the actual and predicted values, the model generated through the different inputted parameters should be diagnosed satisfactorily. It is pretty understanding that agreement between the actual and predicted values given the effectiveness and accuracy of the generated model, as shown in Fig. 2. The following polynomial regression model equations were obtained:$$begin{aligned} COD;removal , % , & = 76.63 – 0.019*A , + , 0.064*B , – 0.511*C , – 0.405*AB , – 0.153*AC , \ &quad – 0.099*BC , + , 0.263*A^{2} + , 0.479*B^{2} – 0.303*C^{2} \ end{aligned}$$
    (1)
    $$begin{aligned} Nitrate;Removal , % , & = 72.04 , – 1.881*A – 0.142* , B , + , 2.384*C , + , 2.623*AB , + , 8.579*AC , \ &quad – 2.626*BC , – 10.783*A^{2} + , 0.223*B^{2} + , 0.963*C^{2 } hfill \ end{aligned}$$
    (2)
    $$begin{aligned} & Phosphate , Removal , % , = \ & 67.179 – 1.215*A , + , 3.539*B , – 1.068*C , + , 1.610*AB , – 2.559*AC , + , 0.392*BC , + , 0.788*A^{2} – 2.943*B^{2} + , 0.564*C^{2} \ end{aligned}$$
    (3)
    where A is initial pH, B is current time (min), C is MLSS concentration (mg L−1) at which the study was carried out.Figure 2Normal probability versus studentized residuals and predicted versus actual plots for (i) COD removal, (ii) nitrate removal, and (iii) phosphate removal.Full size imageIt has been observed that statistics for the model having low values represent well for the system and its predictions.Statistical analysis of COD, nitrate and phosphate removalIt was seen that 3D surface plots could provide a better understanding of the interactive effects of the parameters. The 3D surface plots are illustrated in Figs. 3, 4, and 5, respectively. It was observed that the maximum removal efficiency for COD, nitrate, and phosphate is in the range of 59% to 74%.Figure 3Model generated surface plot of % COD removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 4Model generated surface plot of %nitrate removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 5Model generated surface plot of %phosphate removal (i) pH versus current time (ii) pH versus MLSS (iii) MLSS versus current time.Full size imageTable 4 (i) shows the statistics for COD removal. Adeq Precision is desirable, which measures the signal-to-noise ratio and a ratio greater than 4. For the COD removal, Adeq Precision was 19.255, indicating an adequate signal. It was also observed that the adjusted R2 is 0.9118 (difference less than 0.2), and the predicted R2 of 0.8601 was significant, implying that the predictions are in good agreement with experimental values.Table 4 Fit statistics for (i) COD removal, (ii) Nitrate removal, (iii) Phosphate removal.Full size tableFigure 3 illustrates the effect of current flow time and pH concerning the percentage removal of COD. The model predicted values observed were seen to lie in the range of 73.1% at MLSS values of 2500 mg L−1, keeping initial COD values as 200 mg L−1. As the COD load increases, it seems to be predicted that the overloading of bacteria occurs, thereby slowing down the consumption of organics. In Fig. 4, the expected removal efficacy shows upward trends with an increase in the values of MLSS, which also coincided with previous studies. As the value of MLSS increases, the contact time of biomass in the system increases, hence producing more effective results than others.Table 4 (ii) shows the statistics for nitrate removal. The predicted R2 of 0.9164 was in reasonable agreement with the adjusted R2 of 0.9730. For the nitrate removal, Adeq Precision was 29.608, indicating an adequate signal. This model can be used to navigate the design space.Table 4 (iii) shows the statistics for phosphate removal. The predicted R2 of 0.9165 was in reasonable agreement with the adjusted R2 of 0.9720. For the phosphate removal, Adeq Precision was 34.945, indicating an adequate signal. This model can be used to navigate the design space.Figure 5 illustrates that as we reduce the cycle time from 24 to 18 h, the system efficacy, i.e., COD removal effectiveness shows a downward trend due to less contact time with biomass. Meanwhile, if we increase the cycle time, we observe higher efficacy in the system. The model generated surface plot in Fig. 5 illustrated that increasing MLSS values by 3000 mg L−1 will enhance the COD removal by 73.1%, keeping the initial pH constant. This may be due to many microbes that can break down organic matter. In aerobic reactors, pH is an essential factor in the growth of the microbial population. To create granules, the pH of the reactor has a direct impact. Studies have shown that granule formation occurs when bacteria grow at the ideal pH level, whereas mass proliferation of fungus occurs in an acidic environment.COD removal in EBR and tubesettlerThe Influence, effluent, and removal of COD in EBR & tubesettler are illustrated in Fig. 6a,b. Results demonstrate that the COD concentration is consistent and better COD removal efficacy rate. The average removal rate values observed in the EBR were between 74 and 79%, with the initial COD concentration kept around 360–396 mg L−1. It was also observed that tubesettler resulted in approximately 25–36% efficacy when the initial concentration was between 75 and 97 mg L−1. The results of EBR are promising and can be attributed to the fact that electrocoagulation takes place along with the oxidation and biodegradation process. It was also observed that the percentage removal of COD shows downward trends due to electrochemical oxidation and adsorption, thereby resulting in physical entrapment and electrostatic attraction30. It has also been reported in many other studies that COD removal of around 85–90% was observed using composite cathode membrane using MRB/MFC system19 for the specialized treatment of landfill leachate. It was seen with the electrooxidation process having COD removal of around 80–84% and 84–96% with submerged membrane bioreactors, using Iron electrode6. For the Coal industry, it was found to be around 85% using membrane electro bioreactors31.Figure 6(a) Influent, effluent and removal of COD in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of COD in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn the current study, results seemed to be lower than the values reported in the previous studies. The main reason might be the employment of a modified EBR system and the production of biomass species. When the overall COD removal with tubesettler is considered, up to 83.58% removal efficiency is observed. The overall COD removal efficiency is significant and is at par with other studies3,4,5. This signifies that EBR performed better than tubesettler in COD removal. The tubesettler’s lower removal efficiency can be attributed to lower influent concentration from already reduced wastewater from EBR.Nitrate removal in EBR and tubesettlerIt was observed in many studies that nitrifying is the leading cause of nitrification, i.e., conversion of NH3-N to nitrate NO3-N10. The indirect method of system nitrification process claudication was to be ascertained using measurements concerning ammonia values32,33. In the current study, the nitrification process was considered using the nitrate concentration measurement from the influent and effluent in both systems, i.e., EBR and tubesettler34,35,36. The nitrate concentration of influent and effluent was observed and illustrated in Fig. 7a,b. The system stabilized and produced enhanced results up to 70% of nitrate removal, and it was seen to be in the range of 40–45% for the tubesettler. It has been observed that EBR produced better results than the tubesettler. The results variation in both the systems were reasonably attributed mainly to two primary reasons (1) low influent concentration in the influent compared to the EBR system and (2) inhibition effect due to the applied DC field, which was absent in tubesettlers.Figure 7(a) Influent, effluent, and removal of nitrate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of nitrate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageThe removal efficiency of around 70% was achieved, lower than the values in submerged membrane bioreactors, i.e., 82%6. However, including a membrane would have enhanced the removal efficiency and considered a hybrid EBR system. The results of the current study are close enough to many other studies with a similar system and different operating parameters. Hence, a combined approach can be used for better efficacy. During the weekly analysis, the nitrate concentration during the 1st to 3rd week is lower than in the following weeks. As the concentration of nitrifying bacteria decreased, they had less to work with. Thus, the substrate concentration grew, and so did the removal rate. Nitrate concentrations rose by more than twice the previous week during Week 7. They slowed the bacterial activity, resulting in an efficiency decline to 47% from 70% during the last week’s study period and weeks 6 and 8. A similar pattern emerged for the seventh week in a row in tubesettler. On the other hand, microorganisms overcame differences in engagement because the nitrate content was low in other weeks.Phosphate removal in EBR and tubesettlerMany researchers have looked at nitrate content, but none have looked at phosphate concentration. Eutrophication in receiving water bodies, on the other hand, is predominantly caused by phosphate and nitrate. Additionally, there is a lack of information available on hospital wastewater. The influent and effluent phosphate concentrations in the Electro bioreactor and the tubesettler is shown in Fig. 8a,b. A 75% reduction in the effluent phosphate content in EBR was achieved tubesettler had a 67% effectiveness in phosphate removal but a lower efficiency in nitrate reduction. A previous similar study that used a Submerged Membrane Electro bioreactor claimed a clearance rate of 76% to 95%, which is lower than this study’s results6. Phosphate removal was reported at 50–70% using the electrocoagulation process for different Ph and current6.Figure 8(a) Influent, effluent, and removal of phosphate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of phosphate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn week 6 and week 8, the EBR’s phosphate removal efficiency fluctuated dependent on the weekly average concentration in EBR. This volatility can be linked to a shift in the composition of hospital wastewater. tubesettler had a modest variation ranging from 5 to 6%. Although phosphate concentrations rose in week two, tubesettler removal efficiency improved. As demonstrated in Fig. 8a,b, the arriving wastewater ingredient exhibited a strong affinity in terms of phosphate reduction.Excess effluent concentration and standard deviation from EBR and tubesettler are shown in Table 5. EBR performed better than tubesettler in COD reduction when nitrate and phosphate were compared. Because tubesettler solely employs a physical process to remove contaminants, this is to be anticipated. Effluent from the secondary treatment facility is sent to a tubesettler, which acts as a polishing unit. EBR eliminated COD by 91%, nitrate by 85%, and Phosphate reduction by 81% compared to tubesettler’ s total efficiency. At the same time, tubesettler reduced COD by 37%, nitrate by 51%, and phosphate by 53%. Hence, EBR primarily removed pollutants from wastewater while tubesettler acted as a polishing unit. Table 5 illustrates the effluent wastewater characteristics of EBR and tubesettler.Table 5 Effluent wastewater characteristics of EBR and tubesettler.Full size tableKinetic models post optimizationFirst-order modelA first-order linear model was analyzed on the experimental data by plotting (So − Se)/Se against hydraulic retention time (HRT), providing K1 and R2. For COD, R2 values were 0.761 with a constant value of 1.213, as shown in Table 6. Henceforth based on the results, the obtained model did not seem to fit well for either of the cases.Table 6 Analyzed kinetic models.Full size tableGrau second-order modelA Grau second-order model was analyzed on the experimental data by plotting HRT/((So − Se)/So) versus HRT. The COD constant obtained was Ks = 10–5, as shown in Table 6. The R2 value of 0.99 suggests a good correlation coefficient. Therefore, the obtained results fit well for AOX and COD.Modified Stover–Kincannon modelSubstrate utilization rate expressed as organic loading in this model is widely used in biological reactor kinetic modelling of wastewater. The developed model can evaluate the performance of the biological system and estimate its efficiency based on the input parameters. The kinetic constant KB and Umax for COD were 0.35 and 1.73 g L−1 d−1, respectively. The R2 was 0.98 for the substrate removal, as presented in Table 6.Monod modelCOD utilization rate was obtained by plotting VX/Q (So − Se) against 1/Se. The value of 1/K (0.421) was obtained from the intercept, while the Ks/K value (1.235) was the slope of the line. COD removal half-saturation values were 0.045 and 0.056 g L−1. These values infer a high affinity of bacteria for the substrate. The R2 value of 0.95 depicted an excellent correlation coefficient in the case of COD. The Monod model fits well for COD, resulting in R2 = 0.98, as shown in Table 6. More

  • in

    Coral fluorescence: a prey-lure in deep habitats

    Alieva, N. O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dove, S., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).Article 

    Google Scholar 
    Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Physiol. 59, 223–239 (1962).CAS 
    Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawaguti, S. Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5, 121 (1969).
    Google Scholar 
    Gittins, J. R., D’Angelo, C., Oswald, F., Edwards, R. J. & Wiedenmann, J. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol. Ecol. 24, 453–465 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roth, M. S., Latz, M. I., Goericke, R. & Deheyn, D. D. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J. Exp. Biol. 213, 3644–3655 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quick, C., D’Angelo, C. & Wiedenmann, J. Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front. Mar. Sci. 5, 11 (2018).Article 

    Google Scholar 
    Schlichter, D., Fricke, H. W. & Weber, W. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91, 403–407 (1986).Article 

    Google Scholar 
    Bollati, E., Plimmer, D., D’Angelo, C. & Wiedenmann, J. FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int. J. Mol. Sci. 18, 1174 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS ONE 4, e7298 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bou-Abdallah, F., Chasteen, N. D. & Lesser, M. P. Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Biochim. Biophys. Acta Gen. Subj. 1760, 1690–1695 (2006).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful? Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aihara, Y. et al. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl Acad. Sci. USA 116, 2118–2123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamashita, H., Koike, K., Shinzato, C., Jimbo, M. & Suzuki, G. Can Acropora tenuis larvae attract native Symbiodiniaceae cells by green fluorescence at the initial establishment of symbiosis? PLoS ONE 16, e0252514 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2014).Article 

    Google Scholar 
    Muscatine, L., Porter, J. & Kaplan, I. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Smith, E. G., D’Angelo, C., Sharon, Y., Tchernov, D. & Wiedenmann, J. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 284, 20170320 (2017).Schlichter, D., Meier, U. & Fricke, H. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124–131 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515–523 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mazel, C. H. et al. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48, 402–411 (2003).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Falkowski, P. Light as a Source of Information and Energy in Zooxanthellate Corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 107–118 (Springer Science & Business Media, 2011).Kahng, S. E. et al. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystemsin. In Mesophotic Coral Ecosystems. Ch. 42 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 801–828 (Springer International publishing, 2019).Loya, Y., Poglise, K. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer International Publishing, 2019).Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, e0128697 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roth, M. S. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Wangpraseurt, D., Bronstein, O., Eyal, G. & Loya, Y. Photosynthesis and bio-optical properties of fluorescent mesophotic corals. Front. Mar. Sci. 8, 651601 (2021).Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 5245 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).PubMed 
    Article 

    Google Scholar 
    Goreau, T. F., Goreau, N. I. & Yonge, C. M. Reef corals: autotrophs or heterotrophs? Biol. Bull. 141, 247–260 (1971).Article 

    Google Scholar 
    Price, J. T., McLachlan, R. H., Jury, C. P., Toonen, R. J. & Grottoli, A. G. Isotopic approaches to estimating the contribution of heterotrophic sources to Hawaiian corals. Limnol. Oceanogr. 66, 2393–2407 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Biol. Ecol. 232, 85–106 (1999).Article 

    Google Scholar 
    Ferrier-Pagès, C., Rottier, C., Beraud, E. & Levy, O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J. Exp. Mar. Biol. Ecol. 390, 118–124 (2010).Article 

    Google Scholar 
    Palardy, E. J., Grottoli, G. A. & Matthews, A. K. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300, 79–89 (2005).Article 

    Google Scholar 
    Mies, M. et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37, 677–689 (2018).Article 

    Google Scholar 
    Jerlov, N. G. Optical Oceanography Vol. 5 (Elsevier, 1968).Crandall, J. B., Teece, M. A., Estes, B. A., Manfrino, C. & Ciesla, J. H. Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J. Exp. Mar. Biol. Ecol. 474, 133–141 (2016).CAS 
    Article 

    Google Scholar 
    Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 566663 (2020).Article 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).Article 

    Google Scholar 
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003 (2010).PubMed 
    Article 

    Google Scholar 
    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).CAS 
    Article 

    Google Scholar 
    Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L. & Denis, V. Trophic plasticity of mixotrophic corals under contrasting environments. Funct. Ecol. 35, 2841–2855 (2021).Article 

    Google Scholar 
    Lewis, J. B. & Price, W. S. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).Article 

    Google Scholar 
    Levy, O., Mizrahi, L., Chadwick-Furman, N. E. & Achituv, Y. Factors controlling the expansion behavior of Favia favus (Cnidaria: Scleractinia): Effects of light, flow, and planktonic prey. Biol. Bull. 200, 118–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turak, E. & DeVantier, L. Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacificin. In Mesophotic Coral Ecosystems. Ch. 34 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 621–651 (Springer International Publishing, 2019).Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).Article 

    Google Scholar 
    Cronin, T. W. Invertebrate Vision in the Water. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 6, 211–249 (Cambridge University Press, 2006).Bradley, D. J. & Forward, R. B. Jr. Phototaxis of adult brine shrimp Artemia salina. Can. J. Zool. 62, 2357–2359 (1984).Article 

    Google Scholar 
    Audzijonytė, A., Pahlberg, J., Väinölä, R. & Lindström, M. Spectral sensitivity differences in two Mysis sibling species (Crustacea, Mysida): adaptation or phylogenetic constraints? J. Exp. Mar. Biol. Ecol. 325, 228–239 (2005).Article 

    Google Scholar 
    Beeton, A. M. Photoreception in the opossum shrimp, Mysis relicta Loven. Biol. Bull. 116, 204–216 (1959).Article 

    Google Scholar 
    Lindström, M. Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J. Exp. Mar. Biol. Ecol. 246, 85–101 (2000).PubMed 
    Article 

    Google Scholar 
    Marshall, N. J. & Vorobyev, M. The Design of Color Signals and Color Vision in Fishes. In Sensory Processing in Aquatic Environments. Ch. 10 (eds Collin, S. P. & Marshall, N. J.) 10, 194–222 (Springer, 2003).Denton, E. J. & Warren, F. J. The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol. Assoc. UK 36, 651–662 (1957).CAS 
    Article 

    Google Scholar 
    Kelber, A. Invertebrate Colour Vision. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 250–290 (Cambridge University Press, 2006).Kim, H. J., Araki, T., Suematsu, Y. & Satuito, C. G. Ontogenic phototactic behaviors of larval stages in intertidal barnacles. Hydrobiologia 849, 747–761 (2021).Cohen, J. H. & Forward, R. B. Jr. Spectral sensitivity of vertically migrating marine copepods. Biol. Bull. 203, 307–314 (2002).PubMed 
    Article 

    Google Scholar 
    Su, Z., Huang, L., Yan, Y. & Li, H. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture 271, 377–383 (2007).Article 

    Google Scholar 
    Marangoni, R., Puntoni, S., Favati, L. & Colombetti, G. Phototaxis in Fabrea salina I. Action spectrum determination. J. Photochem. Photobiol. B: Biol. 23, 149–154 (1994).CAS 
    Article 

    Google Scholar 
    Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. C. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523–523 (2005).Article 

    Google Scholar 
    Smith, F. E. & Taylor, E. R. B. Color responses in the Cladocera and their ecological significance. Am. Nat. 87, 49–55 (1953).Article 

    Google Scholar 
    Feller, K. D. & Cronin, T. W. Spectral absorption of visual pigments in stomatopod larval photoreceptors. J. Comp. Physiol. A 202, 215–223 (2016).CAS 
    Article 

    Google Scholar 
    Pietsch, T. W. Bioluminescence and Luring. In Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea (ed. Pietsch, T. W.) 6, 229–252 (Berkeley: University of California Press, 2009).Johnsen, S., Balser, E. J., Fisher, E. C. & Widder, E. A. Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). Biol. Bull. 197, 26–39 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hastings, J. & Nealson, K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549–595 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarubin, M., Belkin, S., Ionescu, M. & Genin, A. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl Acad. Sci. USA 109, 853–857 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakaema, S. & Hidaka, M. Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea 17, 1–11 (2015).Article 

    Google Scholar 
    Vermeij, M. J. A., Delvoye, L., Nieuwland, G. & Bak, R. P. M. Patterns in fluorescence over a Caribbean reef slope: the coral genus. Madracis. Photosynthetica 40, 423–429 (2002).CAS 
    Article 

    Google Scholar 
    Kahng, S. & Salih, A. Localization of fluorescent pigments in a nonbioluminescent, azooxanthellate octocoral suggests a photoprotective function. Coral Reefs 24, 435–435 (2005).Article 

    Google Scholar 
    Glynn, P. W. Ecology of a Caribbean coral reef. The Porites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22, 1–21 (1973).Article 

    Google Scholar 
    Holzman, R., Reidenbach, M. A., Monismith, S. G., Koseff, J. R. & Genin, A. Near-bottom depletion of zooplankton over a coral reef II: relationships with zooplankton swimming ability. Coral Reefs 24, 87–94 (2005).Article 

    Google Scholar 
    Mazel, C. H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 120, 185–191 (1995).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 1 1–48 (2015).Kleiman, E. EMAtools: data management tools for real-time monitoring/ecological momentary assessment data. R package version 0.1.4 (2021). More

  • in

    Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion

    Von Humboldt, A. Cosmos: A Sketch of a Physical Description of the Universe Vol. 5 (H.G. Bohn Press, 1895).Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits (Springer, 2012).Peñuelas, J., Ogaya, R., Boada, M. & Jump, A. S. Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography 30, 829–837 (2007).Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2021).Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Körner, C. The cold range limit of trees. Trends Ecol. Evol. 36, 979–989 (2021).PubMed 
    Article 

    Google Scholar 
    Körner, C. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732 (2004).Article 

    Google Scholar 
    Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).Article 

    Google Scholar 
    Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl Acad. Sci. USA 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenoir, J. et al. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Macias Fauria, M. & Johnson, E. A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl Acad. Sci. USA 110, 8117–8122 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morueta Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).Article 

    Google Scholar 
    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383 (2021).Article 

    Google Scholar 
    Miehe, G. et al. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, F. et al. Add Himalayas’ Grand Canyon to China’s first national parks. Nature 592, 353–353 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).Article 

    Google Scholar 
    Dirnböeck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).Article 

    Google Scholar 
    Schickhoff, U. et al. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dynam. 6, 245–265 (2015).Article 

    Google Scholar 
    Singh, S., Sharma, S. & Dhyani, P. Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers. Conserv. 28, 1997–2016 (2019).Article 

    Google Scholar 
    Schickhoff, U. The Upper Timberline in the Himalayas, Hindu Kush and Karakorum: A Review of Geographical and Ecological Aspects (Springer, 2005).Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, X. et al. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30, 305–315 (2021).Article 

    Google Scholar 
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan, Z. & Li, Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sigdel, S. R. et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24, 5549–5559 (2018).Article 

    Google Scholar 
    Dolezal, J. et al. Sink limitation of plant growth determines tree line in the arid Himalayas. Funct. Ecol. 33, 553–565 (2019).Article 

    Google Scholar 
    Dolezal, J. et al. Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya. Trees 30, 761–773 (2016).Article 

    Google Scholar 
    Malcolm, J. R. et al. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).PubMed 
    Article 

    Google Scholar 
    Ding, W., Ree, R. H., Spicer, R. A. & Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pirnat, J. Conservation and management of forest patches and corridors in suburban landscapes. Landsc. Urban Plan. 52, 135–143 (2000).Article 

    Google Scholar 
    Potapov, P. V. et al. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM plus data. Remote Sens. Environ. 122, 106–116 (2012).Article 

    Google Scholar 
    Paulsen, J. & Körner, C. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 12, 817–824 (2001).Article 

    Google Scholar 
    FAO. FRA 2000: On Definitions of Forest and Forest Change. Forest Resource Assessment Programme Working Paper, Rome (Food and Agriculture Organization, 2000).Luedeling, E., Siebert, S. & Buerkert, A. Filling the voids in the SRTM elevation model—a TIN-based delta surface approach. ISPRS-J. Photogramm. Remote Sens. 62, 283–294 (2007).Article 

    Google Scholar 
    Canny, J. Collision detection for moving polyhedra. IEEE Trans. Pattern Anal. Mach. Intell. 8, 200–209 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    More, J. J. & Sorensen, D. C. Computing a trust region step. SIAM J. Sci. Comput. 4, 553–572 (1983).Article 

    Google Scholar 
    Theobald, D. M., Harrison-Atlas, D., Monahan, W. B. & Albano, C. M. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS ONE 10, e0143619 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).Article 

    Google Scholar 
    Liang, E., Wang, Y., Eckstein, D. & Luo, T. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 190, 760–769 (2011).PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).CAS 
    Article 

    Google Scholar 
    Abatzoglou, J. T. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Case, B. S. & Buckley, H. L. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines. PeerJ 3, e1334 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bush, M. B. et al. Fire and climate: contrasting pressures on tropical Andean timberline species. J. Biogeogr. 42, 938–950 (2015).Article 

    Google Scholar 
    Herrero, A., Zamora, R., Castro, J. & Hodar, J. A. Limits of pine forest distribution at the treeline: herbivory matters. Plant Ecol. 213, 459–469 (2012).Article 

    Google Scholar 
    Wang, Y. et al. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. For. Ecol. Manag. 442, 34–45 (2019).Article 

    Google Scholar 
    Wei, Y. et al. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 755, 142548 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miehe, G. et al. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat. Sci. Rev. 86, 190–209 (2014).Article 

    Google Scholar 
    Willemann, R. J. & Storchak, D. A. Data collection at the international seismological centre. Seismol. Res. Lett. 72, 440–453 (2001).Article 

    Google Scholar 
    Chen, A., Huang, L., Liu, Q. & Piao, S. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol. 27, 1942–1951 (2021).Article 

    Google Scholar 
    Lehmkuhl, F. & Owen, L. A. Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34, 87–100 (2005).Article 

    Google Scholar 
    Owen, L. A. & Dortch, J. M. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat. Sci. Rev. 88, 14–54 (2014).Article 

    Google Scholar 
    Strobl, C. et al. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).Article 
    CAS 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Vassallo, D., Krishnamurthy, R. & Fernando, H. J. S. Decreasing wind speed extrapolation error via domain-specific feature extraction and selection. Wind Energy Sci. 5, 959–975 (2020).Article 

    Google Scholar 
    Ramirez-Villegas, J. & Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1 (CIAT, 2010).Wu, Z. & Raven, P. Flora of China (Science Press and Missouri Botanical Garden Press, 1994–2006).Wu, Z. Flora of Tibet (Science Press, 1987).Maclean, I. M. D. et al. Microclimates buffer the responses of plant communities to climate change. Glob. Ecol. Biogeogr. 24, 1340–1350 (2015).Article 

    Google Scholar 
    Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).Article 

    Google Scholar 
    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article 

    Google Scholar  More

  • in

    Synchrony and idiosyncrasy in the gut microbiome of wild baboons

    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finnicum, C. T. et al. Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol. 19, 230 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, E. T., Svanback, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).PubMed 

    Google Scholar 
    Bjork, J., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tredennick, A. T., de Mazancourt, C., Loreau, M. & Adler, P. B. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology 98, 971–981 (2017).PubMed 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).PubMed 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 

    Google Scholar 
    Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).CAS 
    PubMed 

    Google Scholar 
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).PubMed 

    Google Scholar 
    Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).PubMed 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. B 375, 20190248 (2020).CAS 

    Google Scholar 
    Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).PubMed 

    Google Scholar 
    Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).CAS 
    PubMed 

    Google Scholar 
    Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12, 6017 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019).CAS 
    PubMed 

    Google Scholar 
    Smits, S. A., Marcobal, A., Higginbottom, S., Sonnenburg, J. L. & Kashyap, P. C. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems 1, e00098 (2016).Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).CAS 
    PubMed 

    Google Scholar 
    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).CAS 
    PubMed 

    Google Scholar 
    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberts S. C. & Altmann, J. in Long-Term Field Studies of Primates (eds Kappeler, P. & Watts, D. P.) 261–287 (Springer, 2012).Ren, T., Grieneisen, L., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet, and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 

    Google Scholar 
    Grieneisen, L. et al. Genes, geology, and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 

    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 26 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mellard, J. P., Audoye, P. & Loreau, M. Seasonal patterns in species diversity across biomes. Ecology 100, e02627 (2019).PubMed 

    Google Scholar 
    Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).PubMed 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017).PubMed 

    Google Scholar 
    Amato, K. R. et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthropol. 155, 652–664 (2014).PubMed 

    Google Scholar 
    Perofsky, A. C., Leriw, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Silk, J. B. Activities and feeding behavior of free-ranging pregnant baboons. Int. J. Primatol. 8, 593–613 (1987).
    Google Scholar 
    Altmann, S. A. Foraging for Survival: Yearling Baboons in Africa (Univ. Chicago Press, 1998).Bronikowski, A. M. & Altmann, J. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39, 11–25 (1996).
    Google Scholar 
    Muruthi, P., Altmann, J. & Altmann, S. Resource base, parity and reproductive condition affect females’ feeding time and nutrient intake within and between groups of a baboon population. Oecologia 87, 467–472 (1991).PubMed 

    Google Scholar 
    Shopland, J. M. Food quality, spatial deployment, and the intensity of feeding interference in yellow baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 21, 149–156 (1987).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    Sprockett D. tyRa: Build Models for Microbiome Data. R package version 0.1.0 https://danielsprockett.github.io/tyRa/articles/tyRa.html (2020).Oksanen J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).CAS 
    PubMed 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The microbiome of cryospheric ecosystems

    The datasetWe curated and explored 695 published 16S rRNA gene samples from cryospheric ecosystems (Methods section and Supplementary Table 7), including polar ice sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal ocean under the influence of glacier runoff, and compared these to 3552 published 16S rRNA gene samples from non-cryospheric ecosystems, including temperate and tropical lakes and soils (Supplementary Table 7). This approach allowed us to identify and explore features specific to the cryospheric microbiome and compare it to other environmental microbiomes. However, we note a geographical bias towards polar regions in current publicly available repositories, and the paucity of alpine samples specifically highlights the need to further characterise these habitats given that they are among the most endangered cryospheric ecosystems globally. This bias is further compounded by the inconsistent methodologies applied across studies (e.g. primer pairs and sequencers used). To account for potential primer biases, we analysed two 16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r)12,13 commonly used in amplicon high-throughput sequencing. In total, this dataset contains 241,502,708 paired sequence reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into the functional space of the cryospheric microbiome, we compared 34 published metagenomes from cryospheric ecosystems with 56 metagenomes from similar but non-cryospheric ecosystems (Fig. 1A). Given the difficulty of obtaining high-quality metagenomes from cryospheric ecosystems, we restricted our analyses to glacier surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to samples where raw sequence data are available (Methods section), the breadth of habitats covered are representative of the most abundant cryospheric ecosystems, e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of permafrost may not entirely be represented due to data unavailability. We reanalysed all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue representing a snapshot of the functional diversity in the cryospheric microbiome, integrating across diverse habitats. This represents what we believe to be the first global overview of the functional repertoire of the Earth’s cryosphere compared to other ecosystems.Fig. 1: A unique cryospheric microbiome.A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs ( >0.5% relative abundance in at least one sample) in the PP1 dataset. The heatmap (inner rings) shows the presence (at a  > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.Full size imageA cryospheric microbiomeGiven the communal constraints imposed by the harsh environment of cryospheric ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a specific microbiome. Accordingly, machine-learning classification (logistic regression models, Methods) based on community composition was able to differentiate between cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy >0.96, Supplementary Table 1). Both primer pairs consistently yielded a high classification accuracy and especially a high precision. Interestingly, many of the discriminating cryospheric ASVs were spread widely across the bacterial tree of life (Fig. 1A and Supplementary Fig. 1).The notion that a part of the microbiome is specific to the cryosphere is also strongly supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we found higher pairwise phylogenetic overlap among cryospheric samples than among cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p  More

  • in

    Metagenomic assembled plasmids of the human microbiome vary across disease cohorts

    Dollive, S. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13, 60 (2012).Article 

    Google Scholar 
    Pausan, M. R. Exploring the archaeome: Detection of archaeal signatures in the human body. Front. Microbiol 10, 2796 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, D. P., Pazdernik, N. J. & McGehee, M. R. Plasmids. in Molecular Biology, 712–748 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-813288-3.00023-9.Meinhardt, F., Schaffrath, R. & Larsen, M. Microbial linear plasmids. Appl. Microbiol. Biotechnol 47, 329–336 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. MBio 7, 00863–16 (2016).Article 

    Google Scholar 
    Łobocka, M. B. Genome of bacteriophage P1. J. Bacteriol. 186, 7032–7068 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spaziante, M., Oliva, A., Ceccarelli, G. & Venditti, M. What are the treatment options for resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria?. Expert Opin. Pharmacother. 21, 1781–1787 (2020).PubMed 
    Article 

    Google Scholar 
    Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 1457, 61–91 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ogilvie, L. A., Firouzmand, S. & Jones, B. V. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered 3, 13–31 (2012).Article 

    Google Scholar 
    Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9, 87924 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kav, A. B. Insights into the bovine rumen plasmidome. Proc. Natl. Acad. Sci. 109, 5452–5457 (2012).CAS 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Brown Kav, A. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ. Microbiol. 22, 32–44 (2020).PubMed 
    Article 

    Google Scholar 
    Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host. Microbe 26, 764-778.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sutton, T. D. S., Clooney, A. G. & Hill, C. Giant oversights in the human gut virome. Gut 69, 1357–1358 (2020).PubMed 
    Article 

    Google Scholar 
    Zuo, T. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662.e20 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamminen, M., Virta, M., Fani, R. & Fondi, M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29, 1225–1240 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angelakis, E. et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 27, 14–21 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackie, R. I. et al. Ecology of uncultivated oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69, 6808–6815 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Konikoff, T. & Gophna, U. Oscillospira: A central, enigmatic component of the human gut microbiota. Trends Microbiol. 24, 523–524 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, Y. et al. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 10, (2020).Bushman, F. D. Multi-omic analysis of the interaction between clostridioides difficile infection and pediatric inflammatory bowel disease. Cell Host Microbe 28, 422–433 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).PubMed 
    Article 

    Google Scholar 
    Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE 9, e90981 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halfvarson, J. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pascal, V. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nitzan, O., Elias, M., Chazan, B., Raz, R. & Saliba, W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 19, 7577–7585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton, E. M. et al. The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am. J. Gastroenterol. 104, 1162–1169 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Tariq, R. et al. Efficacy of fecal microbiota transplantation for recurrent C.Marcella, C. Systematic review: The global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. https://doi.org/10.1111/apt.16148 (2020).Article 
    PubMed 

    Google Scholar 
    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fraser-Liggett, C. Metagenomic analysis of the structure and function of the human gut microbiota in Crohn’s disease. Nat. Preced. [Internet] (2010).Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut (2017).Mira-Pascual, L. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50, 167–179 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Rampelli, S. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, (2020).Monaghan, T. M. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 12, 1752605 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chu, D. M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MD, D. G., K, F., C, C. & EL, C. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Hum. Microbiome J. 12, (2019).Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain J. Neurol. 143, 2474–2489 (2020).Article 

    Google Scholar 
    Kao, D. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA 318, 1985–1993 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. (2018). https://doi.org/10.1101/295642.Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinform. 8, 18 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (2019). Accessed Aug 2021–Mar 2022.Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Jari Oksanen et al. vegan: Community Ecology Package. (2019).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flor M. chorddiag: Interactive Chord Diagrams [Internet]. (2020).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hulsen, T., Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, (2008).Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinform. Oxf. Engl. 21, 537–539 (2005).CAS 
    Article 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinform. Oxf. Engl. 30, 2068–2069 (2014).CAS 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Dental macrowear reveals ecological diversity of Gorilla spp.

    Fossey, D. & Harcourt, D. H. Feeding ecology of free-ranging mountain gorilla (Gorilla gorilla beringei). In Primate ecology (ed. Clutton-Brock, T. H.) 415–447 (Academy Press, New York, 1977).Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Watts, D. Comparative socio-ecology of gorillas. In Great Ape Societies (eds. McGrew, W. C., Marchant, L. F. & Nishida, T.) 16–28 (Cambridge University Press, Cambridge, 1986).Doran, D. M. & McNeilage, A. Gorilla ecology and behavior. Evol. Anthropol. 6, 120–131 (1988).Article 

    Google Scholar 
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the mammals of the world. Primates Vol. 3 (Lynx Edicions, 2013).
    Google Scholar 
    Groves, C. Primate Taxonomy (Smithsonian Institution Press, 2001).
    Google Scholar 
    Cooksey, K. E. & Morgan, D. B. Gorilla (Gorilla). In The International encyclopedia of primatology, Vol. 1 (ed. Fuentes, A.) 472–477 (Wiley, Hoboken, 2017).McFarland, K. L. Ecology of cross river gorillas (Gorilla gorilla diehli) on Afi mountain, Cross River State, Nigeria. Ph.D. Dissertation. City University of New York, USA (2007).Rogers, M. E., Maisels, F., Wiliamson, E. A., Fernandez, M. & Tutin, C. E. G. Gorilla diet in the Lopé Reserve, Gabon: a nutritional analysis. Oecologia 84, 326–339 (1990).ADS 
    Article 

    Google Scholar 
    van Casteren, A., Wright, E., Kupczik, K. & Robbins, M. M. Unexpected hard-object feeding in Western lowland gorillas. Am. J. Phys. Anthropol. 170, 433–438 (2019).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Yamagiwa, J., Basabose, A. K., Kaleme, K. & Yumoto, T. Diet of grauer’s gorillas in montane forest of Kahuzi, Democratic Republic of Congo. Int. J. Primatol. 26, 1345–1373 (2005).Article 

    Google Scholar 
    Grueter, C. C. et al. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda. Am. J. Primatol. 75, 267–280 (2013).PubMed 
    Article 

    Google Scholar 
    Ostrofsky, K. R. & Robbins, M. M. Fruit-feeding and activity patterns of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Am. J. Phys. Anthropol. 173, 3–20 (2020).PubMed 
    Article 

    Google Scholar 
    Berthaume, M. A. Tooth cusp sharpness as a dietary correlate in great apes. Am. J. Phys. Anthropol. 153, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    King, S. J. et al. Dental senescence in a long-lived primate links infant survival to rainfall. Proc. Natl. Acad. Sci. USA 102, 16579–16583 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berthaume, M. A. & Schroer, K. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. J. Hum. Evol. 112, 15–29 (2017).PubMed 
    Article 

    Google Scholar 
    Sheine, W. S. & Kay, R. F. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47, 15–20 (1977).Article 

    Google Scholar 
    Galbany, J., Estebaranz, F., Martínez, L. M. & Pérez-Pérez, A. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates 50, 221–230 (2009).PubMed 
    Article 

    Google Scholar 
    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).PubMed 
    Article 

    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anhtropol. 80, 447–460 (1989).CAS 
    Article 

    Google Scholar 
    Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgart, A. A. Dental wear, wear rate, and dental disease in the African apes. Am. J. Primatol. 72, 481–491 (2010).PubMed 

    Google Scholar 
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anhtropol. 159, 79–104 (2016).Article 

    Google Scholar 
    Galbany, J. et al. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. Am. J. Phys. Anhtropol. 159, 457–465 (2016).Article 

    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species, in Evolutionary paleobiology of behavior and coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).Knight-Sadler, J. & Fiorenza, L. Tooth wear inclination in great ape molars. Folia Primatol. 88, 223–236 (2017).Article 

    Google Scholar 
    Kullmer, O. et al. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. et al. Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE 6, e14769 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Oxilia, G. & Kullmer, O. Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations. Int. J. Osteoarchaeol. 28, 153–161 (2018).Article 

    Google Scholar 
    Fiorenza, L. et al. The functional role of the Carabelli trait in early and late hominins. J. Hum. Evol. 145, 102816 (2020).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. & Kullmer, O. Occlusion in an adult male gorilla with a supernumerary maxillary premolar. Int. J. Primatol. 37, 762–777 (2016).Article 

    Google Scholar 
    Kullmer, O., Menz, U., & Fiorenza, L. Occlusal fingerprint analysis (OFA) reveal dental occlusal behaviour in primate teeth. In T. Martin & W. von Koenigswald (Eds.), T Martin, W von Koenigswald, K-H Südekum), Mammalian teeth: form and function. (pp. 25–43). Munich, Germany: Dr. F. Pfeil (2020)Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Estalrrich, A., & Kullmer, O. Diet and cultural diversity in Neanderthals and modern humans from dental macrowear analyses. In C. Schmidt & J. T. Watson (Eds.), Dental wear in evolutionary and biocultural contexts (pp. 39–72). London, UK: Academic Press (2020).M’Kirera, F. & Ungar, P. S. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am. J. Primatol. 60, 31–41 (2003).PubMed 
    Article 

    Google Scholar 
    Galbany, J. et al. Age-related tooth wear differs between forest and savanna primates. PLoS ONE 9, e94938 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, S. R. & Shea, B. T. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36, 37–60 (1995).PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Zanolli, C. et al. Evidence of increased hominid diversity in the Early and Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).PubMed 
    Article 

    Google Scholar 
    Krueger, K. L., Scott, J. R., Kay, R. F. & Ungar, P. S. Dental microwear textures of “phase I” and “phase II” facets. Am. J. Phys. Anthropol. 137, 485–490 (2008).PubMed 
    Article 

    Google Scholar 
    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H. & Hylander, W. L. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am. J. Phys. Anthropol. 129, 215–224 (2006).PubMed 
    Article 

    Google Scholar 
    Glowacka, H. et al. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient. Am. J. Primatol. 79, e22661 (2017).Article 

    Google Scholar 
    Cooper, J. E. & Hull, G. Gorilla pathology and health (Academic Press, 2017).
    Google Scholar 
    Hammerton, R., Hunt, K. A. & Riley, L. M. An investigation into keeper opinions of great apes diet and abnormal behaviour. J. Zoo Aquar. Res. 7, 170–178 (2019).
    Google Scholar 
    Kay, R. F. Mastication, molar tooth structure and diet in primates. Ph.D. thesis, Yale University, New Haven, CT (1973).Smith, B. H. Patterns of molar wear in hunter-gatherers and agriculturalists. Am. J. Phys. Anhtropol. 63, 39–56 (1984).CAS 
    Article 

    Google Scholar 
    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O. & Schrenk, F. Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis. Am. J. Phys. Anthropol. 143, 306–312 (2010).PubMed 
    Article 

    Google Scholar 
    Kullmer, O., Huck, M., Engel, K., Schrenk, F. & Bromage, T. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In Three-dimensional imaging in paleoanthropology and prehistoric archaeology (eds. Mafart, B. & Delingette, H.) 71–82 (Acts of the XIVth UISPP Congress, BAR Int. Ser.1049, 2002).Hammer, Ø. & Harper, D. Paleontological data analysis (Blackwell Publishing, 2006).
    Google Scholar 
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).MATH 
    Article 

    Google Scholar 
    Noguchi, K. & Gel, Y. R. Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparam. Stat. 22, 897–913 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gastwirth, J. L., et al. Lawstat: tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021)Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4 (2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More