Shen, S.-Z. et al. A sudden end-Permian mass extinction in South China. GSA Bull. 131(1–2), 205–223. https://doi.org/10.1130/B31909.1 (2019).CAS
Article
Google Scholar
Rampino, M. R. & Caldeira, K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17, 554–559. https://doi.org/10.1111/j.1365-3121.2005.00648.x (2005).ADS
CAS
Article
Google Scholar
Cascales-Miñana, B. & Cleal, C. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200. https://doi.org/10.1111/ter.12086 (2014).ADS
Article
Google Scholar
Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385. https://doi.org/10.1038/s41467-018-07934-z (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384. https://doi.org/10.1038/s41467-018-07945-w (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. 134, 691–721. https://doi.org/10.1130/B35830.1 (2021).Article
Google Scholar
Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary?. Paleobiology 37(1), 157–167 (2011).Article
Google Scholar
Feng, Z. et al. From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction. Earth Sci. Rev. 204, 103153 (2020).ADS
Article
Google Scholar
McLoughlin, S. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
Google Scholar
Rigby, J. F. The Gondwana palaeobotanical province at the end of the Palaeozoic. In 24th International Geological Congress (Montreal, 1972). Proceedings, Section 7, 324–330 (International Geological Congress, 1972).Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article
Google Scholar
Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. PNAS 96, 13857–13862 (1999).ADS
CAS
Article
Google Scholar
Gabites, H. I. Triassic paleoecology of the Lashly Formation, Transantarctic Mountains, Antarctica. M.Sc. Thesis, 1–148 (Victoria University of Wellington, New Zealand, 1985).Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513. https://doi.org/10.1130/B35355.1 (2020).CAS
Article
Google Scholar
Escapa, I. H. et al. Triassic floras of Antarctica: Plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–544 (2011).ADS
Article
Google Scholar
Retallack, G. J. & Krull, E. S. Landscape ecological shift at the Permian–Triassic boundary in Antarctica. Aust. J. Earth Sci. 46, 785–812 (1999).ADS
CAS
Article
Google Scholar
Gulbranson, E. L., Cornamusini, G., Ryberg, P. E. & Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109544. https://doi.org/10.1016/j.palaeo.2019.109544 (2020).Article
Google Scholar
Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).Article
Google Scholar
Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology https://doi.org/10.1130/G48795.1 (2021).Article
Google Scholar
Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian–Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118, 747–763 (2006).Article
Google Scholar
Elliot, D. H., Fanning, C. M., Isbell, J. L. & Hulett, S. R. W. The Permo–Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).ADS
Article
Google Scholar
Barbolini, N., Bamford, M. K. & Rubidge, B. Radiometric dating demonstrates that Permian spore-pollen zones of Australia and South Africa are diachronous. Gondwana Res. 37, 241–251 (2016).ADS
Article
Google Scholar
Sidor, C. A., Smith, R. M. H., Huttenlocker, A. K. & Peecook, B. R. New Middle Triassic tetrapods from the Upper Fremouw Formation of Antarctica and their depositional setting. J. Vertebr. Paleontol. 34, 793–801 (2014).Article
Google Scholar
Hancox, P. J., Neveling, J. & Rubidge, B. S. Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. S. Afr. J. Geol. 123, 217–238. https://doi.org/10.25131/sajg.123.0016 (2020).Article
Google Scholar
Askin, R. A. Permian palynomorphs from southern Victoria Land, Antarctica. Antarct. J. US. 30, 47–48 (1995).
Google Scholar
Kyle, R. A. & Schopf, J. M. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains. In Antarctic Geosciences (ed. Craddock, C.) 649–659 (University of Wisconsin Press, 1982).
Google Scholar
Fritts, H. C. Tree Rings and Climate (Academic Press, 1976).
Google Scholar
Lu, J., Zhang, P., Yang, M., Shao, L. & Hilton, J. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chem. Geol. 558, 119764 (2020).ADS
CAS
Article
Google Scholar
Yang, J., Cawood, P. A., Du, Y., Feng, B. & Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: correlating high- and low-paleolatitude sedimentary records. Geology 42, 835–838 (2014).ADS
Article
Google Scholar
Panahi, A., Young, G. M. & Rainbird, R. H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 64, 2199–2220 (2000).ADS
CAS
Article
Google Scholar
Gulbranson, E. L., Montañez, I. P. & Tabor, N. J. A proxy for humidity and floral province from paleosols. J. Geol. 119, 559–573 (2011).ADS
Article
Google Scholar
Sheldon, N. D., Retallack, G. J. & Tenaka, S. Geochemical climofunctions from North American soils and application to paleosols across the eocene–oligocene boundary in Oregon. J. Geol. 110, 687–696 (2002).ADS
CAS
Article
Google Scholar
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bul. Am. Meteorol. Soc. 79, 61–78 (1998).ADS
Article
Google Scholar
Fielding, C. R. et al. Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2022.110936 (2022).Article
Google Scholar
Gulbranson, E. L. et al. Leaf habit of Late Permian Glossopteris trees from high palaeolatitude forests. J. Geol. Soc. 171, 493–507 (2014).ADS
Article
Google Scholar
Ryberg, P. E. Reproductive diversity of Antarctic glossopterid seed ferns. Rev. Palaeobot. Palynol. 158, 167–179 (2009).Article
Google Scholar
Mays, C. et al. Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nat. Commun. 12, 5511. https://doi.org/10.1038/s41467-021-25711-3 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Decombeix, A. L., Bomfleur, B., Taylor, E. L. & Taylor, T. N. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Rev. Palaeobot. Palynol. 203, 22–34 (2014).Article
Google Scholar
Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175. https://doi.org/10.1002/gj.4123 (2021).Article
Google Scholar
Yu, Y., Chu, D., Song, H., Guo, W. & Tong, J. Latest Permian–Early Triassic paleoclimatic reconstruction by sedimentary and isotopic analyses of paleosols from the Schichuanhe section in central North China Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 585, 110726 (2022).Article
Google Scholar
Rees, P. M. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827–830 (2002).ADS
Article
Google Scholar
Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350. https://doi.org/10.1016/j.gsf.2014.01.002 (2014).Article
Google Scholar
Jasper, A. et al. The burning of Gondwana: Permian fires on the southern continent–a palaeobotanical approach. Gondwana Res. 24, 148–160. https://doi.org/10.1016/j.gr.2012.08.017 (2013).ADS
Article
Google Scholar
Taylor, G. H., Liu, S. Y. & Diessel, C. F. K. The cold climate origin of inertinite-rich Gondwana coals. Int. J. Coal Geol. 11, 1–22 (1989).CAS
Article
Google Scholar
Mays, C. & McLoughlin, S. End-Permian burnout: The role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios https://doi.org/10.2110/palo.2021.051 (2022).Article
Google Scholar
Corti, V. Palynology and paleobotany of Permo–Triassic Beacon Supergroup at Allan Hills, South Victoria Land, Antarctica: Stratigraphical and paleoenvironmental change implications. Ph.D. Dissertation, 1–186 (Università di Siena, Italy, 2021).Sheldon, N. D., Chakrabarti, R., Retallack, G. J. & Smith, R. M. H. Contrasting geochemical signatures on land from the Middle to Late Permian extinction events. Sedimentology 61, 1812–1829 (2014).CAS
Article
Google Scholar
Cúneo, N. R., Taylor, E. L., Taylor, T. N. & Krings, M. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: Paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 239–261 (2003).Article
Google Scholar
Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—An ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS
Article
Google Scholar
Francis, J. E., Woolfe, K. J., Arnott, M. J. & Barrett, P. J. Permian climates of the southern margin of Pangea: Evidence from fossil wood of Antarctica. In Pangea: Global Environments and Resources (eds Embry, A. F. et al.) 275–282 (AAPG Memoir 17, 1994).
Google Scholar
Wright, W. E., Baisan, C., Streck, M., Wright, W. W. & Szejner, P. Dendrochronology and middle Miocene petrified oak: Modern counterparts and interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 445, 38–49 (2016).Article
Google Scholar
Luthardt, L. & Rößler, R. Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279–282 (2017).ADS
Article
Google Scholar
St. George, S. & Telford, R. J. Fossil forest reveals sunspot activity in the Early Permian: COMMENT. Geology 45, 427 (2017).ADS
Article
Google Scholar
Baillie, M. G. L. & Pilcher, J. R. A simple cross-dating program for tree-ring research. Tree Ring Bull. 33, 7–14 (1973).
Google Scholar
Hollstein, E. Mitteleuropäische Eichenchronologie, Trierer Grabungen und Forschungen XI, Philip von Zabern (1980).Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. https://doi.org/10.1016/j.dendro.2009.12.001 (2010).Article
Google Scholar
Buras, A. A comment on the expressed population signal. Dendrochronologia 44, 130–132 (2017).Article
Google Scholar
Roesch, A. & Schmidbauer, H. WaveletComp Computational Wavelet Analysis https://CRAN.R-project.org/package=WaveletComp. R package version 1.1 (2018). More