Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed
Article
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed
Article
Google Scholar
Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bradley, B. A. et al. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 10, 20–28 (2012).Article
Google Scholar
Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, Berlin, 2007).Chapter
Google Scholar
Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed
Article
Google Scholar
Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article
Google Scholar
Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: Ecological drivers of biogeographic patterns. New Phytol. 196, 383–396 (2012).PubMed
Article
Google Scholar
Moravcová, L., Pyšek, P., Jarošík, V. & Pergl, J. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10, e0123634 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Thompson, K., Bakker, J. P. & Bekker, R. M. Soil Seed Banks of NW Europe: Methodology, Density and Longevity (Cambridge University Press, Cambridge, 1997).
Google Scholar
Walck, J. L., Baskin, J. M., Baskin, C. C. & Hidayati, S. N. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15, 189–196 (2005).Article
Google Scholar
Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article
Google Scholar
Gioria, M. et al. Persistent soil seed banks promote naturalization and invasiveness in flowering plants. Ecol. Lett. 24, 1655–1667 (2021).PubMed
PubMed Central
Article
Google Scholar
Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
Google Scholar
Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).PubMed
Article
Google Scholar
Venable, D. L. & Brown, J. S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131, 360–384 (1988).Article
Google Scholar
Adams, V. M., Marsh, D. M. & Knox, J. S. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol. Conserv. 124, 425–436 (2005).Article
Google Scholar
Harper, J. The Population Biology of Plants (Academic Press, London, 1977).
Google Scholar
Warr, S. J., Thompson, K. & Kent, M. Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progr. Phys. Geogr. 17, 329–347 (1993).Article
Google Scholar
Thompson, K., Bakker, J. P., Bekker, R. M. & Hodgson, J. Ecological correlates of seed persistence in soil in the north-west European flora. J. Ecol. 86, 163–169 (1998).Article
Google Scholar
Gioria, M., Pyšek, P., Baskin, C. & Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 108, 2121–2131 (2020).Article
Google Scholar
Pyšek, P. et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).Article
Google Scholar
Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29, 360–369 (2015).CAS
PubMed
Article
Google Scholar
Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).MathSciNet
Article
Google Scholar
Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2017).Article
Google Scholar
Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11, 4–16 (2018).
Google Scholar
Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 1–21 (2014).Article
Google Scholar
D’Antonio, C. M., Dudley, T. L. & Mack, M. C. Disturbance and biological invasions: Direct effects and feedbacks. In Ecosystems of Disturbed Ground (ed. Walker, L.) 413–452 (Elsevier, Oxford, 1999).
Google Scholar
Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88, 528–534 (2000).Article
Google Scholar
Hierro, J. L., Villarreal, D., Eren, Ö., Graham, J. M. & Callaway, R. M. Disturbance facilitates invasion: The effects are stronger abroad than at home. Am. Nat. 168, 144–156 (2006).PubMed
Article
Google Scholar
Chytrý, M. et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).Article
Google Scholar
Templeton, A. & Levin, D. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).Article
Google Scholar
Honnay, O., Bossuyt, B., Jacquemyn, H., Shimono, A. & Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population?. Oikos 117, 1–5 (2008).Article
Google Scholar
Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, post-germination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article
Google Scholar
Gioria, M., Osborne, B. & Pyšek, P. Soil seed banks under a warming climate. In Plant Regeneration from Seeds: A global Warming Perspective (eds Baskin, C. & Baskin, J.) 285–298 (Academic Press, London, 2022).Chapter
Google Scholar
Blossey, B., Nuzzo, V. & Davalos, A. Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. J. Ecol. 105, 1485–1495 (2017).Article
Google Scholar
Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).Article
Google Scholar
Richardson, D. M. & Kluge, R. L. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Persp. Plant Ecol. Evol. Syst. 10, 161–177 (2008).Article
Google Scholar
Hartzler, R. G., Buhler, D. D. & Stoltenberg, D. E. Emergence characteristics of four annual weed species. Weed Sci. 47, 578–584 (1999).CAS
Article
Google Scholar
Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota 50, 75–95 (2019).Article
Google Scholar
Moravcová, L. et al. Seed germination, dispersal and seed bank in Heracleum mantegazzianum. In Ecology and Management of Giant Hogweed (Heracleum mantegazzianum) (eds Pyšek, P. et al.) 74–91 (CAB International, Wallingford, 2007).Chapter
Google Scholar
Gioria, M. & Osborne, B. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556 (2009).Article
Google Scholar
Long, R. L. et al. Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci. 56, 523–528 (2008).ADS
CAS
Article
Google Scholar
Carta, A., Bottega, S. & Spanò, C. Aerobic environment ensures viability and antioxidant capacity when seeds are wet with negative effect when moist: Implications for persistence in the soil. Seed Sci. Res. 28, 16–23 (2018).CAS
Article
Google Scholar
Pyšek, P. et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155–255 (2012).
Google Scholar
Thompson, K., Band, S. & Hodgson, J. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236–241 (1993).Article
Google Scholar
Moles, A. T., Hodson, D. W. & Webb, C. J. Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89, 541–545 (2000).Article
Google Scholar
Leon, R. G. & Owen, M. D. K. Artificial and natural seed banks differ in seedling emergence patterns. Weed Sci. 52, 531–537 (2004).CAS
Article
Google Scholar
Thompson, K. & Grime, P. J. Seasonal variation in seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921 (1979).Article
Google Scholar
Lambrinos, J. G. Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147, 327–334 (2006).ADS
PubMed
Article
Google Scholar
Wainwright, C. E., Wolkovich, E. M. & Cleland, E. E. Seasonal priority effects: Implications for invasion and restoration in a semi-arid system. J. Appl. Ecol. 49, 234–241 (2012).Article
Google Scholar
Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390 (2010).
Google Scholar
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties 2nd edn. (John Wiley & Sons, Oxford, 2001).
Google Scholar
Mihulka, S., Pyšek, P. & Pyšek, A. Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after two centuries. Preslia 75, 263–270 (2003).
Google Scholar
Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge University Press, Cambridge, 2005).Book
Google Scholar
Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species 2nd edn. (Castlepoint Press, Colvend, Dalbeattie, Kirkcudrightshire, Scotland, 2007).
Google Scholar
Gioria, M. & Osborne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683 (2010).Article
Google Scholar
Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).Article
Google Scholar
Carta, A., Hanson, S. & Müller, J. V. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol. Evol. 6, 4166–4178 (2016).PubMed
PubMed Central
Article
Google Scholar
Arène, F., Affre, L., Doxa, A. & Saatkamp, A. Temperature but not moisture response of germination shows phylogenetic constraints while both interact with seed mass and lifespan. Seed Sci. Res. 27, 110–120 (2017).Article
Google Scholar
Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).Article
Google Scholar
Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Thompson, K., Ceriani, R. M., Bakker, J. P. & Bekker, R. M. Are seed dormancy and persistence in soil related?. Seed Sci. Res. 13, 97–100 (2003).Article
Google Scholar
Long, R. L. et al. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 90, 31–59 (2015).PubMed
Article
Google Scholar
Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Pyšek, P., Sádlo, J. & Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 74, 97–186 (2002).
Google Scholar
Pyšek, P. et al. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon 53, 131–143 (2004).Article
Google Scholar
WFO World Flora Online. http://www.worldfloraonline.org (2021).Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS
PubMed
Article
Google Scholar
Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30 (1980).Article
Google Scholar
Butler, L. H., Hay, F. R., Ellis, R. H., Smith, R. D. & Murray, T. B. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot. 103, 1261–1270 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article
Google Scholar
Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?. Plant Divers. 43, 255–263 (2021).PubMed
Article
Google Scholar
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed
Article
Google Scholar
de Villemereuil, P. & Nakagawa, S. General quantitative genetic methods for comparative biology. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–303 (Springer-Verlag, Berlin, 2014).Chapter
Google Scholar
Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed
Article
Google Scholar
Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).PubMed
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022). Available online at: https://www.R-project.org More