Cover crop-driven shifts in soil microbial communities could modulate early tomato biomass via plant-soil feedbacks
Mariotte, P. et al. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed
Article
Google Scholar
Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A. & Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 185, 357–373 (2018).ADS
CAS
Article
Google Scholar
Shackelford, G. E., Kelsey, R. & Dicks, L. V. Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean. Land Use Policy 88, 104204 (2019).Article
Google Scholar
McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).CAS
PubMed
Article
Google Scholar
Wittwer, R. A., Dorn, B., Jossi, W. & van der Heijden, M. G. A. A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 7, 41911 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Chahal, I. & Van Eerd, L. L. Cover crops increase tomato productivity and reduce nitrogen losses in a temperate humid climate. Nutr. Cycl. Agroecosyst. 119, 195–211 (2021).CAS
Article
Google Scholar
Belfry, K. D., Trueman, C., Vyn, R. J., Loewen, S. A. & Van Eerd, L. L. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. PLoS ONE 12, 1–17 (2017).Article
CAS
Google Scholar
Wall, L. G. et al. Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Oecologica 95, 68–73 (2019).ADS
Article
Google Scholar
Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J. & Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE 13, 1–19 (2018).
Google Scholar
Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS
Article
Google Scholar
Ali, A. et al. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of Northern China. Int. J. Mol. Sci. 20, 2619 (2019).CAS
PubMed Central
Article
Google Scholar
Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).CAS
Article
Google Scholar
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 1–14 (2016).CAS
Article
Google Scholar
Nevins, C. J., Nakatsu, C. & Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 127, 39–49 (2018).CAS
Article
Google Scholar
Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article
Google Scholar
Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 1–15 (2020).Article
CAS
Google Scholar
Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article
Google Scholar
Calderón, F. J., Nielsen, D., Acosta-Martínez, V., Vigil, M. F. & Lyon, D. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central great plains of North America. Pedosphere 26, 192–205 (2016).Article
CAS
Google Scholar
Romdhane, S. et al. Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol. 10, 1–11 (2019).Article
Google Scholar
Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. CRC. Crit. Rev. Plant Sci. 28, 139–163 (2009).CAS
Article
Google Scholar
Turmel, M. S., Speratti, A., Baudron, F., Verhulst, N. & Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 134, 6–16 (2015).Article
Google Scholar
Yang, Q., Wang, X. & Shen, Y. Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162013005000017 (2013).Article
Google Scholar
Tang, H. et al. Tillage and crop residue incorporation effects on soil bacterial diversity in the double-cropping paddy field of southern China. Arch. Agron. Soil Sci. 67, 435–446 (2021).CAS
Article
Google Scholar
Zhang, Y. et al. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microb. Ecol. 76, 771–781 (2018).CAS
PubMed
Article
Google Scholar
Zhang, C. et al. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 21, 52 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Chahal, I. & Van Eerd, L. L. Cover crop and crop residue removal effects on temporal dynamics of soil carbon and nitrogen in a temperate, humid climate. PLoS ONE 15, e0235665 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Chahal, I. & Van Eerd, L. L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil 427, 351–367 (2018).CAS
Article
Google Scholar
Ruis, S. J. & Blanco-Canqui, H. Cover crops could offset crop residue removal effects on soil carbon and other properties: A review. Agron. J. 109, 1785–1805 (2017).CAS
Article
Google Scholar
Zhao, M. et al. Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Appl. Soil Ecol. 119, 260–266 (2017).ADS
Article
Google Scholar
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science (80-). 304, 1629–1633 (2004).ADS
CAS
Article
Google Scholar
Xiong, C. et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229, 1091–1104 (2021).CAS
PubMed
Article
Google Scholar
McDaniel, M. D., Grandy, A. S., Tiemann, L. K. & Weintraub, M. N. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil. Ecosphere 7, e01426 (2016).Article
Google Scholar
Buyer, J. S., Teasdale, J. R., Roberts, D. P., Zasada, I. A. & Maul, J. E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol. Biochem. 42, 831–841 (2010).CAS
Article
Google Scholar
Fernandez-Gnecco, G. et al. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiol. Ecol. 97, 1–14 (2021).Article
CAS
Google Scholar
Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. H. C. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 154, 103641 (2020).Article
Google Scholar
White, C. M. & Weil, R. R. Forage radish cover crops increase soil test phosphorus surrounding radish taproot holes. Soil Sci. Soc. Am. J. 75, 121–130 (2011).ADS
CAS
Article
Google Scholar
Schulz, M., Marocco, A., Tabaglio, V., Macias, F. A. & Molinillo, J. M. G. Benzoxazinoids in rye allelopathy—From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39, 154–174 (2013).CAS
PubMed
Article
Google Scholar
Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed
PubMed Central
Google Scholar
Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).Article
Google Scholar
Drost, S. M., Rutgers, M., Wouterse, M., de Boer, W. & Bodelier, P. L. E. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).ADS
CAS
Article
Google Scholar
Di Rauso Simeone, G., Müller, M., Felgentreu, C. & Glaser, B. Soil microbial biomass and community composition as affected by cover crop diversity in a short-term field experiment on a podzolized Stagnosol-Cambisol. J. Plant Nutr. Soil Sci. 183, 539–549 (2020).Article
CAS
Google Scholar
Maul, J. E. et al. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Appl. Soil Ecol. 77, 42–50 (2014).Article
Google Scholar
Huang, J. et al. Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biol. Biochem. 150, 107973 (2020).CAS
Article
Google Scholar
Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS
Article
Google Scholar
Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12, 1794–1805 (2018).PubMed
PubMed Central
Article
Google Scholar
Milcu, A. et al. Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94, 1878–1885 (2013).PubMed
Article
Google Scholar
Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Lay, C.-Y., Hamel, C. & St-Arnaud, M. Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol. 122, 837–846 (2018).PubMed
Article
Google Scholar
Liu, L., Zhu, K., Wurzburger, N. & Zhang, J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11, e02999 (2020).
Google Scholar
Hartwright, L. M., Hunter, P. J. & Walsh, J. A. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol. 114, 26–33 (2010).CAS
PubMed
Article
Google Scholar
Barel, J. M. et al. Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. J. Appl. Ecol. 56, 132–143 (2019).CAS
Article
Google Scholar
Austin, E. E., Wickings, K., McDaniel, M. D., Robertson, G. P. & Grandy, A. S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9, 1252–1263 (2017).CAS
Article
Google Scholar
Bai, Z., Liang, C., Bodé, S., Huygens, D. & Boeckx, P. Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl. Soil Ecol. 98, 65–74 (2016).Article
Google Scholar
Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article
Google Scholar
Pepe, A., Giovannetti, M. & Sbrana, C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci. Rep. 8, 1–10 (2018).
Google Scholar
Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).Article
Google Scholar
Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article
Google Scholar
Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).
Google Scholar
Ozimek, E. & Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 11, 7 (2020).Article
CAS
Google Scholar
Li, F. et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. L. Degrad. Dev. 29, 1642–1651 (2018).Article
Google Scholar
Sansinenea, E. Bacillus spp.: As plant growth-promoting bacteria. in Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications 225–237 (Springer, 2019). https://doi.org/10.1007/978-981-13-5862-3_11.Palaniyandi, S. A., Yang, S. H., Zhang, L. & Suh, J.-W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636 (2013).CAS
PubMed
Article
Google Scholar
Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).CAS
PubMed
Article
Google Scholar
Zhong, Y. et al. Microbial community assembly and metabolic function during wheat straw decomposition under different nitrogen fertilization treatments. Biol. Fertil. Soils 56, 697–710 (2020).CAS
Article
Google Scholar
Liu, X. et al. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biol. Biochem. 160, 108343 (2021).CAS
Article
Google Scholar
Larkin, R. P., Griffin, T. S. & Honeycutt, C. W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 94, 1491–1502 (2010).PubMed
Article
Google Scholar
van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article
Google Scholar
Menalled, U. D., Seipel, T. & Menalled, F. D. Farming system effects on biologically mediated plant–soil feedbacks. Renew. Agric. Food Syst. 36, 1–7 (2021).Article
Google Scholar
Fierer, N. & Jackson, J. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936 (2000).CAS
Article
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS
CAS
PubMed
Article
Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed
PubMed Central
Article
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
Google Scholar
Abarenkov, K. et al. UNITE QIIME release for Fungi. https://doi.org/10.15156/bio/786385 (2020).R Core Team. R: A Language and Environment for Statistical Computing. (2020).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (PRIMER-E, 2008).Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).Article
Google Scholar
Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed
Article
Google Scholar
Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed
PubMed Central
Article
Google Scholar More