More stories

  • in

    Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia

    Study areaThe study was conducted on two rivers in north-eastern Amazonia sensu lato, including the Guiana Shield and the Amazon River drainage (Fig. 2). The climate of the entire study area is homogeneous and the region is covered by dense, uniform lowland primary rainforest51. The altitude is in the range of 0–860 m a.s.l. The regional climate is equatorial, and the annual rainfall ranges from 3600 mm in the northeast to 2000 mm in the southwest. The Maroni River is 612 km long from its source to its estuary, and its watershed covers a surface of >68,000 km2 in Suriname and French Guiana. The Oyapock River (length, 404 km; area, 26,800 km2) is located in the state of Amapa in Brazil and in French Guiana.The foregoing river basins host nearly 400 freshwater fish species and more than 180 mammal species52,53. Most of the mammal species have a large distribution range, covering the entire study area53. The fish species have a less homogeneous distribution and a distinct upstream-downstream composition gradient54,55. Here, only large rivers were considered and most fish species were widespread over the whole study area. As habitat availability increases with river size, species richness is expected to increase upstream to dowsntream31,32. The Oyapock and Maroni river basins are among the last remaining wilderness areas on Earth17. Nevertheless, ecological disturbances are increasing there because of a growing human population and the development of small-scale gold mining activity. These disturbances have caused limited but diffuse deforestation23,56. The deforested areas currently comprise 0.67% of all Maroni and Oyapock catchments.SamplingEnvironmental DNA (eDNA) was collected from water samples at 74 locations (hereafter, sites) along the main channel and the large tributaries of the Maroni and Oyapock rivers (Fig. 2). Thirty-seven sites were sampled at each river basin. The minimum and maximum distances between adjacent sites were 1.07 and 50.20 km, respectively. The mean and median distances between adjacent sites were 10.18 and 9.14 km, respectively, and the standard deviation (SD) was 7.79 km. The sites were located from sea level to 157 m a.s.l. At all sites, the river was wider than 20 m and deeper than 1 m (Strahler orders 4–8; Supplementary Fig. 5). The physicochemical properties of the water slightly varied among sites. The temperature, pH, and conductivity were in the ranges of 28.4–33.2 °C, 6.5–7.6, and 16.9–54.6 µS/cm, respectively, at all sites except two estuarine locations where the conductivity was relatively high because of seawater incursion (Supplementary Data 2).The eDNA samples were collected during the dry seasons (October–November) of 2017 and 2018 for Maroni and Oyapock, respectively. At both rivers, the sites were sequentially sampled from downstream to upstream at a rate of 1–4 sites per day depending on the distance and travel time between sites. Following the protocol of ref. 45, we collected the eDNA by filtering two replicates of 34 L of water per site. A peristaltic pump (Vampire Sampler; Buerkle GmbH, Bad Bellingen, Germany) and single-use tubing were used to pump the water into a single-use filtration capsule (VigiDNA, pore size 0.45 μm; filtration surface 500 cm2, SPYGEN, Bourget-du-Lac, France). The tubing input was placed a few centimetres below the water surface in zones with high water flow as recommended by Cilleros et al.43. Sampling was performed in turbulent areas with rapid hydromorphologic units to ensure optimal eDNA homogeneity throughout the water column. To avoid eDNA cross-contamination among sites, the operator remained on emerging rocks downstream from the filtration area. At the end of filtration, the capsule was voided, filled with 80 mL CL1 preservation buffer (SPYGEN), and stored in the dark up to one month before the DNA extraction. No permits were required for the eDNA sampling and the access to all sites was legally permitted. The study complies with access and benefit permits ABSCH-IRCC-FR-246820-1 and ABSCH-IRCC-FR-245902-1, authorizing collection, transport and analysis of all environmental DNA samples used in this study.Laboratory procedures and bioinformatic analysesFor the DNA extraction, each filtration capsule was agitated on an S50 shaker (Ingenieurbüro CAT M. Zipperer GmbH, Ballrechten-Dottingen, Germany) at 800 rpm for 15 min, decanted into a 50 mL tube, and centrifuged at 15,000 × g and 6 °C for 15 min. The supernatant was removed with a sterile pipette, leaving 15 mL of liquid at the bottom of the tube. Subsequently, 33 mL of ethanol and 1.5 mL of 3 M sodium acetate were added to each 50 mL tube, and the mixtures were stored at −20 °C for at least one night. The tubes were then centrifuged at 15,000 × g and 6 °C for 15 min, and the supernatants were discarded. Then, 720 µL of ATL buffer from a DNeasy Blood & Tissue Extraction Kit (Qiagen, Hilden, Germany) was added. The tubes were vortexed, and the supernatants were transferred to 2 mL tubes containing 20 µL proteinase K. The tubes were then incubated at 56 °C for 2 h. DNA extraction was performed using a NucleoSpin Soil kit (Macherey-Nagel GmbH, Düren, Germany) starting from step six of the manufacturer’s instructions. Elution was performed by adding 100 µL of SE buffer twice. After the DNA extraction, the samples were tested for inhibition by qPCR following the protocol in ref. 57. Briefly, quantitative PCR was performed in duplicate for each sample. If at least one of the replicates showed a different Ct (Cycle threshold) than expected (at least 2 Cts), the sample was considered inhibited and diluted 5-fold before the amplification.For the fish, the “teleo” primers58 (forward: 3ʹ-ACACCGCCCGTCACTCT-5ʹ; reverse: 3ʹ-CTTCCGGTACACTTACCATG-5ʹ) were used as they efficiently discriminated local fish species43,45. For the mammals, the 12S-V5 vertebrate marker59 (forward: 3ʹ-TAGAACAGGCTCCTCTAG-5ʹ; reverse: 3ʹ-TTAGATACCCCACTATGC-5ʹ) was used as it also effectively distinguishes local mammal species44,60. The DNA amplifications were performed in a final volume of 25 μL containing 1 U AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA, USA), 0.2 μM of each primer, 10 mM Tris-HCl, 50 mM KCl, 2.5 mM MgCl2, 0.2 mM of each dNTP, and 3 μL DNA template. Human blocking primer was added to the mixture for the “teleo”58 (5′-ACCCTCCTCAAGTATACTTCAAAGGAC-C3-3′) and the “12S-V5” primers61 (5′-CTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCT-C3-3′) at final concentrations of 4 μM and 0.2 μg/μL bovine serum albumin (BSA; Roche Diagnostics, Basel, Switzerland). Twelve PCR replicates were performed per field sample. The forward and reverse primer tags were identical within each PCR replicate. The PCR mixture was denatured at 95 °C for 10 min, followed by 50 cycles of 30 s at 95 °C, 30 s at 55 °C for the “teleo” primers and 50 °C for the 12S-V5 primers, 1 min at 72 °C, and a final elongation step at 72 °C for 7 min. This step was conducted in a dedicated room for DNA amplification that is kept under negative air pressure and is physically separated from the DNA extraction rooms maintained under positive air pressure. The purified PCR products were pooled in equal volumes to achieve an expected sequencing depth of 500,000 reads per sample before DNA library preparation.For the fish analyses, 10 libraries were prepared using a PCR-free library protocol (https://www.fasteris.com/metafast) at Fasteris, Geneva, Switzerland. Four libraries were sequenced on an Illumina HiSeq 2500 (2 × 125 bp) (Illumina, San Diego, CA, USA) with a HiSeq SBS Kit v4 (Illumina), three were sequenced on a MiSeq (2 × 125 bp) (Illumina) with a MiSeq Flow Cell Kit Version3 (Illumina), and three libraries were sequenced on a NextSeq (2 × 150 bp + 8) (Illumina) with a NextSeq Mid kit (Illumina). The libraries run on the NextSeq were equally distributed in four lanes. Sequencing was performed according to the manufacturer’s instructions at Fasteris. For the mammal analyses, eight libraries were prepared using a PCR-free library protocol (https://www.fasteris.com/metafast) at Fasteris. Two libraries were sequenced on an Illumina HiSeq 2500 (2 × 125 bp) (Illumina) using a HiSeq Rapid Flow Cell v2 and a HiSeq Rapid SBS Kit v2 (Illumina), three libraries were prepared on a MiSeq (2 × 125 bp) (Illumina) with a MiSeq Flow Cell Kit Version3 (Illumina), and three libraries were prepared using a NextSeq (2 × 150 bp + 8) (Illumina) and a NextSeq Mid kit (Illumina). The libraries run on the NextSeq were equally distributed in four lanes. As different sequencing platforms were used (MiSeq and NextSeq for the Maroni and HiSeq 2500 and MiSeq for the Oyapock; Supplementary Fig. 6 and Supplementary Data 3), the possible influences of the platforms on the sequencing results were verified. To this end, we compared the differences in species numbers between the sample replicates assigned to the same platform (accounting for replicate effect only) against those of the sample replicates assigned to different platforms (accounting for replicate and platform effects). As there were more sites with their two replicates sequenced with the same platform than sites with their replicates sequenced with different platforms (see Supplementary Fig. 6), sites with replicates on the same platform were randomly selected for the comparisons. We repeated this procedure 50 times. The number of species between replicates sequenced on the same platform and those sequenced on different platforms did not differ for >98.5% of all fish and mammal samples (Supplementary Fig. 7 and Supplementary Note 2). Similar to these results, a previous study on 16 S rRNA amplicon has shown that the samples were not influenced by the Illumina sequencing platform used62.To monitor for contaminants, 13 negative extraction controls were performed for each of the primers (“teleo” and “12S-V5”); one control was amplified twice. All of them were amplified and sequenced by the same methods as the samples and in parallel to them. Therefore, for the negative extraction controls, 168 amplifications were prepared with the “teleo” primers (13 negative controls; one amplified and sequenced twice) and 156 amplifications with the “12S-V5” primers (13 negative controls). Fourteen negative PCR controls (ultrapure water; 12 replicates) were amplified and sequenced in parallel to the samples. Eight were amplified with the “teleo” primers and six were amplified with the “12S-V05” primers. Thus, for the PCR negative controls, there were 96 amplifications with the “teleo” primers and 72 amplifications with the Vert01 primers. Sequencing information for the controls is shown in Supplementary Data 3c.An updated version of the reference database from ref. 43 was used. There were 265 Guianese species for the fish analyses (ref. 47). The GenBank nucleotide database was consulted, but it contained little information on the Guianese fish species. Most of the sequences were derived from ref. 43. For the mammal analyses, the vertebrate database was built using ecoPCR software63 from the releases 134 and 138 of the European Nucleotide Archive (ENA), for the Maroni and Oyapock river samples, respectively. The two releases were compared, and it was established that the new mammal species added to each version did not originate from French Guiana. Hence, the results were not influenced by the EMBL release number. The relevant metabarcoding fragment was extracted from this database with ecoPCR63 and OBITools64. Therefore, the reference database comprised the local database of French Guianese mammals60, which references 576 specimens from 164 species as well as all available vertebrate species in EMBL.The sequence reads were analyzed with the OBITools package according to the protocol described by Valentini et al.58. Briefly, the forward and reverse reads were assembled with the illuminapairedend programme. The ngsfilter programme was then used to assign the sequences to each sample. A separate dataset was created for each sample by splitting the original dataset into several files with obisplit. Sequences shorter than 20 bp or occurring less than 10 times per sample were discarded. The obiclean program was used to identify amplicon sequence variants (ASVs) that have likely arisen due to PCR or sequencing errors. It uses the information of sequence counts and sequence similarities to classify whether a sequence is a variant (“internal”) of a more abundant (“head”) ASV64. After this step, we matched the ASV with the reference database to obtain the taxonomic assignation for each ASV. Sequences labelled by the obiclean programme as ‘internal’’ and probably corresponding to PCR errors were discarded. The ecotag programme was then used for taxonomic assignment of molecular operational taxonomic units (MOTUs). The taxonomic assignments from ecotag were corrected to avoid overconfidence in assignments. Species-level assignments were validated only for ≥98% sequence identity with the reference database. Sequences below this threshold were discarded.Measuring disturbance intensity using GIS dataIn riverine systems, the disturbances may accumulate because of hydrologic connectivity, which is the downstream transfer of matter and pollutants4. Hence, the upstream sub-basin drainage network was considered to determine the size of the upstream sub-basin affecting local biodiversity (Fig. 1). The sub-basins were delineated by applying a flow accumulation algorithm to the SRTM global 30 m digital elevation model65. Deforestation was measured over 14 upstream spatial extents with radii of 0.5, 1.5, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and 90 km for each sampling site. Then, these 14 upstream spatial extents were intersected with the sub-basin drainage network. In addition, mammals and fish can also be affected by disturbances other than those mediated by hydrologic connectivity. Thus, deforestation was also measured upstream and downstream from the eDNA sampling sites using the same foregoing 14 radii.At each sampling site, deforestation intensity was quantified for each of the 14 spatial extents. We summed upstream (only accounting for disturbances mediated by river hydrologic connectivity) or upstream and downstream (not only considering disturbances mediated by hydrologic connectivity) deforested surfaces from Landsat satellite image datasets. Forest loss surfaces were obtained from the Global Forest Change dataset66. The Global Forest Change dataset identifies areas deforested between 2001 and 2017 on a 30 m spatial scale. To incorporate deforested areas prior to 2000, tree canopy cover data for that year were also used. Except for river courses, all pixels with More

  • in

    Original karst tiankeng with underground virgin forest as an inaccessible refugia originated from a degraded surface flora in Yunnan, China

    Zhu, X. China’s karst tiankeng and its value for science and tourism. Sci. Technol. Rev. 19, 60–63 (2001).
    Google Scholar 
    Zhu, X. et al. A brift study on karst tiankeng. Carsol. Sin. 22, 51–65 (2003).
    Google Scholar 
    Zhu, X. & Waltham, T. Tiankeng: Definition and description. Cave Karst Sci. 32, 75–79 (2005).
    Google Scholar 
    Zhu, X. & Chen, W. Tiankengs in the karst of China. Cave Karst Sci. 32, 55–56 (2005).
    Google Scholar 
    Shui, W., Chen, Y., Wang, Y., Su, Z. & Zhang, S. Origination, study progress and prospect of karst tiankeng research in China. Acta Geogr. Sin. 70, 431–446 (2015).
    Google Scholar 
    Alexander, K. Cave un-roofing as a large-scale geomorphic process. Carsol. Sin. 4, 1–11 (2006).
    Google Scholar 
    Palmer, A. & Palmer, M. Hydraulic processes in the origin of tiankengs. Speleogenesis Evol. Karst Aquifers 4, 8 (2006).
    Google Scholar 
    Waltham, T. Collapse processes at the tiankengs of Xingwen. Cave Karst Sci. 32, 107–110 (2005).
    Google Scholar 
    White, W. & White, E. Size scales for closed depression landforms: The place of tiankengs. Cave Karst Sci. 32, 111–118 (2005).
    Google Scholar 
    Chen, W., Zhu, X., Zhu, D. & Ma, Z. Karst geological relics and development of Xiaozhai Tiankeng and Tianjinxia Fissure Gorge, Fengjie, Chongqing. J. Mountain Sci. 22, 22–29 (2004).CAS 

    Google Scholar 
    Yue, Y., Wang, K., Zhang, W., Chen, H. & Wang, M. Relationships between soil and environment in Peak-Cluster Depression areas of karst region based on canonical correspondence analysis. Environ. Sci. 29, 1400–1405 (2008).
    Google Scholar 
    Huang, B., Cai, W., Xue, Y. & Zhu, X. Research on tourism resource characteristics of tiankeng group in Dashiwei, Guangxi. Geogr. Geo-Inf. Sci. 20, 109–112 (2004).CAS 

    Google Scholar 
    Zhu, X. Discovery of erosional tiankeng in Houping, Wulong and its value of science and tourism. Carsol. Sin. 2, 93–98 (2006).
    Google Scholar 
    Yuan, D. The development of modern karstology in China. Geol. Rev. 52, 733–736 (2006).CAS 

    Google Scholar 
    Gunn, J. Turloughs and tiankengs: Distinctive doline forms. Cave Karst Sci. 32, 83–84 (2005).
    Google Scholar 
    Klimchou, A. Cave un-roofing as a large-scale geomorphic process. Cave Karst Sci. 32, 93–98 (2005).
    Google Scholar 
    Zhu, X., Chen, W. & Erin, L. Wulong karst systems and as an indicator of local tectonic uplift. Carsol. Sin. 26, 119–125 (2007).
    Google Scholar 
    Shui, W. & Wang, X. Geological expedition and analysis on formation and evolvement of erosive Karst Tiankeng: A case study of Xingwen World Geopark. Adv. Mater. Res. 250–253, 2002–2006 (2011).Article 

    Google Scholar 
    Su, S., Huang, K. & Ma, B. Diversity study on pteridophyte flora in the area of Dashiwei Tiankeng group of Leye County. Hubei Agric. Sci. 51, 948–950 (2012).
    Google Scholar 
    Huang, K. & Su, S. Resource investigation and application research of pteridophyte flora resource in the area of Dashiwei Tiankeng Group. Anhui Agric. Sci. Bull. 21, 74–80 (2015).CAS 

    Google Scholar 
    Su, Y., Xue, Y., Fan, B., Mo, F. & Feng, H. Plant community structure and species diversity in Liuxing tiankeng of Guangxi. Acta Botan. Boreali-Occiden. Sin. 36, 2300–2306 (2016).
    Google Scholar 
    Li, W., Xiang, Y., Du, Y. & Wu, X. Underground forest communities in Zhanyi, Yunnan Province. For. Sci. Technol. 20–25 (2001).Jian, X. et al. Interspecific relationships of grassland plant community’s dominant species in moderate-degraded tiankeng of Yunnan, China. Chin. J. Appl. Ecol. 29, 1–14. https://doi.org/10.13287/j.1001 (2018).Article 

    Google Scholar 
    Chen, W., Zhu, D. & Zhu, X. Characteristics and evaluation of karst landscape in tiankeng-difeng scenery site, Fengjie, Chongqing. Geogr. Geo-Inf. Sci. 20, 80–83 (2004).CAS 

    Google Scholar 
    Wang, J. & Guo, C. Comparison between the positive and negative topographic ecosystem in karst mountainous areas and its bearing capability. Guizhou Agric. Sci. 35, 85–87 (2007).MathSciNet 

    Google Scholar 
    Tony, W. Tiankengs of the world, outside China. Speleogenesis Evol. Karst Aquifers 4, 1–12 (2006).
    Google Scholar 
    Su, Y., Tang, Q., Mo, F. & Xue, Y. Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. A comparison of the vegetation of forested and non-forested solution dolines in Hungary: A preliminary study. Biologia 69, 1339–1348 (2014).Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: Refugia and climate change. Int. J. Speleol. 43, 15–26 (2014).Article 

    Google Scholar 
    Bátori, Z. et al. Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: A case study from southern Hungary. J. Cave Karst Stud. Natl. Speleol. Soc. Bull. 74, 127–134 (2012).Article 

    Google Scholar 
    Bátori, Z. et al. Large-and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann. Bot. 119, 301–309 (2017).PubMed 
    Article 

    Google Scholar 
    Vilisics, F. et al. Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66, 499–505 (2011).Article 

    Google Scholar 
    Dolinar, B. & Vreš, B. Pregled flore Mišje doline in zgornjega porečja Rašice (Dolenjska, Slovenija). Hladnikia 30, 3–37 (2012).
    Google Scholar 
    Raschmanová, N., Miklisová, D., Ľubomír, K. & Šustr, V. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70, 802–811 (2016).Article 

    Google Scholar 
    Macarthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, F. & Yu, S. Study on the plant diversity of island-like habitats in Karst Mountain Areas. Guizhou For. Sci. Technol. 40, 18–22 (2012).CAS 

    Google Scholar 
    Hu, F., Lou, Q. & Sun, Y. Community composition and species diversity of different island habitat on Karst Mountainous in Central Guizhou. Guizhou Sci. 29, 23–28 (2011).
    Google Scholar 
    Culver, D. Karst environment. Z. Geomorphol. Suppl. 60, 103–117 (2016).Article 

    Google Scholar 
    Daily, G. Restoring value to the world’s degraded lands. Science 269, 350–354 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bartgis, R. The endangered sedge Scirpus ancistrochaetus and the flora of sinkhole ponds in Maryland and West Virginia. Castanea 57, 46–51 (1992).
    Google Scholar 
    Yu, X., Li, Y. & Ma, Z. A preliminary study on flora diversity of karst microhabitat in Shilin Park, Yunnan, China. J. Mountain Sci. 25, 438–447 (2007).
    Google Scholar 
    Dang, G., Feng, H., Tang, Q., Mo, F. & Xue, Y. New recorded species in Guangxi, China. J. Guangxi Normal Univ. (Nat. Sci. Edit.) 34, 147–150 (2016).
    Google Scholar 
    Eigenbrod, F., Gonzalez, P., Dash, J. & Steyl, I. Vulnerability of ecosystems to climate change moderated by habitat intactness. Glob. Change Biol. 21, 275–286 (2015).ADS 
    Article 

    Google Scholar 
    Cornell, H. & Lawton, J. Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).Article 

    Google Scholar 
    Helmus, M., Mahler, D. & Losos, J. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, T., Zhang, H., Ou, Z. & Tan, Y. Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China. Chin. J. Appl. Ecol. 25, 2803–2810 (2014).
    Google Scholar 
    Wen, L. et al. The succession characteristics and its driving mechanisms of plant community in karst region, Southwest China. Acta Ecol. Sin. 35, 5822–5833 (2015).Article 

    Google Scholar 
    Zhang, Z., Hu, G. & Ni, J. Erratum to: Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical Karst forests, Southwestern China. J. Mt. Sci. 10, 337–338 (2013).Article 

    Google Scholar 
    Du, H. et al. Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China. Chin. J. Plant Ecol. 37, 197–208 (2013).Article 

    Google Scholar 
    Liu, S., Zhang, B., Yang, Q., Hu, C. & Su, C. Species composition and diversity of plant communities in Xiaoyanwan Garden of Xingwen Karst National Geopark, Sichuan Province. Subtrop. Plant Sci. 38, 37–40 (2009).
    Google Scholar 
    Tan, C. The preliminary discussion about Haifeng’s wetland ecosystem. For. Sci. Technol. 1–8 (2002).Ma, K. & Liu, Y. Measurement of biodiversity: The measurement of α diversity. Chin. Biodivers. 2, 231–239 (1995).
    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    Simpson, E. Measurement of diversity. Nature 163, 688 (1949).ADS 
    MATH 
    Article 

    Google Scholar  More

  • in

    Asymmetric host movement reshapes local disease dynamics in metapopulations

    Ritchie, H. & Roser, M. Urbanization. Our World in Data (2018). https://ourworldindata.org/urbanization.Chen, H., Weersink, A., Beaulieu, M., Lee, Y. N. & Nagelschmitz, K. A historical review of changes in farm size in canada. Tech. Rep., University of Guelph, Institute for the Advanced Study of Food and and Agricultural Policy (2019).Gudelj, I. & White, K. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 66, 139–149 (2004).CAS 
    MATH 
    Article 

    Google Scholar 
    Augustin, N., Mugglestone, M. A. & Buckland, S. T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 339–347 (1996).Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genetics 15, 379–393 (2014).CAS 
    Article 

    Google Scholar 
    Fornaciari, A. Environmental microbial forensics and archaeology of past pandemics. Microbiol. Spect. 5, 5–1 (2017).Article 

    Google Scholar 
    Thèves, C., Crubézy, E. & Biagini, P. History of smallpox and its spread in human populations. Microbiol. Spect. 4, 4–4 (2016).Article 

    Google Scholar 
    Coltart, C. E., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160297 (2017).Article 

    Google Scholar 
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007).Article 

    Google Scholar 
    Lüthy, I. A., Ritacco, V. & Kantor, I. N. One hundred years after the “Spanish” flu. Medicina 78, 113–118 (2018).
    Google Scholar 
    Zhang, Y., Zhang, A. & Wang, J. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China. Transport Policy 94, 34–42 (2020).Article 

    Google Scholar 
    Coelho, M. T. P. et al. Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ 8, e9708 (2020).Article 

    Google Scholar 
    Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: A critical perspective. Trends Parasitol. 31, 149–159 (2015).Article 

    Google Scholar 
    Soulsbury, C. D. & White, P. C. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541–553 (2015).Article 

    Google Scholar 
    VanderWaal, K. L. et al. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control. Prevent. Vet. Med. 123, 12–22 (2016).Article 

    Google Scholar 
    Rossi, G. et al. The potential role of direct and indirect contacts on infection spread in dairy farm networks. PLOS Comput. Biol. 13, e1005301 (2017).Article 

    Google Scholar 
    Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLOS Neg. Trop. Dis. 3, e481 (2009).Article 

    Google Scholar 
    Cosner, C. Models for the effects of host movement in vector-borne disease systems. Math. Biosci. 270, 192–197 (2015).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Scherer, P.C. Infection on the move: individual host movement drives disease persistence in spatially structured landscapes. Dr. rer. nat. thesis, Universität Potsdam (2019).Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298–1301 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: Incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).Article 

    Google Scholar 
    Daversa, D., Fenton, A., Dell, A., Garner, T. & Manica, A. Infections on the move: How transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).Article 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Kobayashi, K. & Okumura, M. The growth of city systems with high-speed railway systems. Ann. Region. Sci. 31, 39–56 (1997).Article 

    Google Scholar 
    VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M. & Craft, M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics 24, 67–75 (2018).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wang, L. & Li, X. Spatial epidemiology of networked metapopulation: An overview. Chin. Sci. Bull. 59, 3511–3522 (2014).Article 

    Google Scholar 
    Ruxton, G. D. Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proc. R. Soc. Lond. Seri. B Biol. Sci. 256, 189–193 (1994).ADS 
    Article 

    Google Scholar 
    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. Seri. B Biol. Sci. 265, 7–10 (1998).CAS 
    Article 

    Google Scholar 
    Rosenzweig, M. L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    Philipson, T. Economic epidemiology and infectious diseases. Handb. Health Econ. 1, 1761–1799 (2000).Article 

    Google Scholar 
    Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resource Dynamics, Monographs in Population Biology Vol. 36 (Princeton University Press, 2003).
    Google Scholar 
    Murdoch, W. W. & Oaten, A. Predation and population stability. In Advances in Ecological Research, vol. 9, 1–131 (Elsevier, 1975).Bolker, B. & Grenfell, B. T. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 348, 309–320 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002).Article 

    Google Scholar 
    Arino, J. Spatio-temporal spread of infectious pathogens of humans. Infect. Dis. Model. 2, 218–228 (2017).
    Google Scholar 
    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011).MATH 
    Book 

    Google Scholar 
    Wilson, E. B. & Worcester, J. The spread of an epidemic. Proc. Nat. Acad. Sci. 31, 327 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Rushton, S. & Mautner, A. The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126–132 (1955).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLOS Comput. Biol. 9, e1003308 (2013).ADS 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl. Acad. Sci. 111, 10767–10772 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiao, Y., Zhou, Y. & Tang, S. Modelling disease spread in dispersal networks at two levels. Math. Med. Biol. J. IMA 28, 227–244 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Arino, J., Ducrot, A. & Zongo, P. A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol. 64, 423–448 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    De Roos, A. M., Mccauley, E. & Wilson, W. G. Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 246, 117–122 (1991).ADS 
    Article 

    Google Scholar 
    Dey, S., Goswami, B. & Joshi, A. Effects of symmetric and asymmetric dispersal on the dynamics of heterogeneous metapopulations: Two-patch systems revisited. J. Theor. Biol. 345, 52–60 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Gupta, S., Ferguson, N. & Anderson, R. Chaos persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Holland, M. D. & Hastings, A. Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792–794 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Singh, A. & Gakkhar, S. Synchronization of chaos in a food web in ecological systems. World Acad. Sci. Eng. Technol. 70, 94–98 (2010).
    Google Scholar 
    Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138, 768–776 (1991).Article 

    Google Scholar 
    Heino, M., Kaitala, V., Ranta, E. & Lindström, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 264, 481–486 (1997).ADS 
    Article 

    Google Scholar 
    Molofsky, J. & Ferdy, J.-B. Extinction dynamics in experimental metapopulations. Proc. Natl. Acad. Sci. 102, 3726–3731 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012).ADS 
    Article 

    Google Scholar 
    Majhi, S. & Ghosh, D. Amplitude death and resurgence of oscillation in networks of mobile oscillators. Europhys. Lett. 118, 40002 (2017).ADS 
    Article 

    Google Scholar 
    Shen, C., Chen, H. & Hou, Z. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators. Chaos 24, 043125 (2014).MATH 
    Article 

    Google Scholar 
    Karnatak, R., Ramaswamy, R. & Feudel, U. Conjugate coupling in ecosystems: Cross-predation stabilizes food webs. Chaos Solitons Fractals 68, 48–57 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bolker, B. M. & Grenfell, B. T. Chaos and biological complexity in measles dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 75–81 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Olsen, L. F., Truty, G. L. & Schaffer, W. M. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Lundberg, P., Ranta, E., Ripa, J. & Kaitala, V. Population variability in space and time. Trends Ecol. Evolut. 15, 460–464 (2000).CAS 
    Article 

    Google Scholar 
    Dekker, A. Realistic social networks for simulation using network rewiring. In International Congress on Modelling and Simulation, 677–683 (2007).Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).
    Google Scholar 
    Sallaberry, A., Zaidi, F. & Melançon, G. Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 3, 597–609 (2013).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).Article 

    Google Scholar 
    Pastor-Satorras, R. & Vespignani, A. Epidemics and immunization in scale-free networks. In Handbook of Graphs and Networks, 111–130 (Wiley Online Library, 2002).Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Shirley, M. D. & Rushton, S. P. The impacts of network topology on disease spread. Ecol. Complex. 2, 287–299 (2005).Article 

    Google Scholar 
    Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005).Article 

    Google Scholar 
    Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Hooper, S., Buckle, K. & McCowan, B. Network structure and prevalence of Cryptosporidium in Belding’s ground squirrels. Behav. Ecol. Sociobiol. 67, 1951–1959 (2013).Article 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evolut. 20, 345–353 (2005).Article 

    Google Scholar 
    Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, (2011).Bajardi, P. et al. Human mobility networks, travel restrictions, and the global spread of 2009 h1n1 pandemic. PloS one 6, e16591 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gog, J. R. et al. Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics 10, 45–48 (2015).Article 

    Google Scholar 
    Cen, X., Feng, Z. & Zhao, Y. Emerging disease dynamics in a model coupling within-host and between-host systems. J. Theor. Biol. 361, 141–151 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Meakin, S. R. & Keeling, M. J. Correlations between stochastic epidemics in two interacting populations. Epidemics 26, 58–67 (2019).Article 

    Google Scholar 
    Machado, G. et al. Identifying outbreaks of porcine epidemic diarrhea virus through animal movements and spatial neighborhoods. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biol. 63, 141–163 (2018).Article 

    Google Scholar 
    Pedersen, T. L. tidygraph: a tidy API for graph manipulation (2019). R package version 1.1.2.Rackauckas, C. & Nie, Q. Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017).Rackauckas, C. & Nie, Q. Confederated modular differential equation APIS for accelerated algorithm development and benchmarking. Adv. Eng. Softw. 132, 1–6 (2019).Article 

    Google Scholar 
    Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). More

  • in

    Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns

    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science (80-). 2006;313:1072–7.Article 

    Google Scholar 
    Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.Article 

    Google Scholar 
    Wang M, Cernava T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ Sci Ecotechnol. 2020;4:100061.Article 

    Google Scholar 
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41.Article 

    Google Scholar 
    Wang Z, Zhang XH, Huang Y, Wang H. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ Pollut. 2015;204:223–32.Article 

    Google Scholar 
    Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol. 2014;48:7683–9.Article 

    Google Scholar 
    Vila-Costa M, Cerro-Gálvez E, Martínez-Varela A, Casas G, Dachs J. Anthropogenic dissolved organic carbon and marine microbiomes. ISME J. 2020;14:2646–8.Article 

    Google Scholar 
    da Silva GCX, Medeiros de Abreu CH, Ward ND, Belúcio LP, Brito DC, Cunha HFA, et al. Environmental impacts of dam reservoir filling in the East Amazon. Front Water. 2020;2:11.Article 

    Google Scholar 
    Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol. 2012;46:1455–64.Article 

    Google Scholar 
    Liu WR, Zhao JL, Liu YS, Chen ZF, Yang YY, Zhang QQ, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environ Pollut. 2015;200:53–63.Article 

    Google Scholar 
    Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, et al. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci Total Environ. 2016;541:1625–37.Article 

    Google Scholar 
    Rodea-Palomares I, Gonzalez-Pleiter M, Gonzalo S, Rosal R, Leganes F, Sabater S, et al. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. Sci Adv. 2016;2:1–12.Article 

    Google Scholar 
    Yang X, Chen F, Meng F, Xie Y, Chen H, Young K, et al. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res. 2013;20:5864–75.Article 

    Google Scholar 
    Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of coastal marine microbiomes exposed to anthropogenic dissolved organic carbon. Environ Sci Technol. 2021;55:9609–21.Article 

    Google Scholar 
    Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, et al. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol. 2021;23:4532–46.Article 

    Google Scholar 
    Bob A, Shen D, Li S, Zhang L, Rashid A, Sun Q, et al. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Sci Total Environ. 2020;721:137767.Article 

    Google Scholar 
    Tlili A, Corcoll N, Arrhenius Å, Backhaus T, Hollender J, Creusot N, et al. Tolerance patterns in stream biofilms link complex chemical pollution to ecological impacts. Environ Sci Technol. 2020;54:10745–53.Article 

    Google Scholar 
    Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc. 2009;45:4–13.Article 

    Google Scholar 
    Zhang W, Yin K, Chen L. Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol. 2013;97:5681–9.Article 

    Google Scholar 
    Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36:2149–73.Article 

    Google Scholar 
    Choi YJ, Lee LS. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol. 2017;51:13698–704.Article 

    Google Scholar 
    McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis [4]. Nature. 1998;394:531–2.Article 

    Google Scholar 
    Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, et al. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere. 2007;67:770–8.Article 

    Google Scholar 
    Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.Article 

    Google Scholar 
    Boyd TJ, Smith DC, Apple JK, Hamdan LJ, Osburn CL, Montgomery MT. Evaluating PAH biodegradation relative to total bacterial carbon demand in coastal ecosystems: Are PAHs truly recalcitrant? In: Van Dijk T. (ed). Microbial Ecology Research Trends. Nova Science Publishers, 2008. pp 1–38.Okere UV, Cabrerizo A, Dachs J, Ogbonnaya UO, Jones KC, Semple KT. Effects of pre-exposure on the indigenous biodegradation of 14C-phenanthrene in Antarctic soils. Int Biodeterior Biodegrad. 2017;125:189–99.Article 

    Google Scholar 
    Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between aquatic micropollutant dissipation and river sediment bacterial communities. Environ Sci Technol. 2020;54:14380–92.Article 

    Google Scholar 
    Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: Theory and practice. Ecology. 1984;65:1–13.Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:1–19.Article 

    Google Scholar 
    Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol. 2012;78:3221–8.Article 

    Google Scholar 
    Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 2017;11:1447–59.Article 

    Google Scholar 
    Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun. 2021;12:1–16.Article 

    Google Scholar 
    Philippot L, Griffiths BS, Langenheder S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol Mol Biol Rev. 2021;85:e00026–20.Article 

    Google Scholar 
    Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, et al. Prokaryotic footprints in urban water ecosystems: a case study of urban landscape ponds in a coastal city, China. Environ Pollut. 2018;242:1729–39.Article 

    Google Scholar 
    Im J, Löffler FE. Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol. 2016;50:8403–16.Article 

    Google Scholar 
    Sun Q, Li M, Ma C, Chen X, Xie X, Yu CP. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ Pollut. 2016;208:371–81.Article 

    Google Scholar 
    Sun Q, Wang Y, Li Y, Ashfaq M, Dai L, Xie X, et al. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ Pollut. 2017;225:542–9.Article 

    Google Scholar 
    Sun Q, Li Y, Chou PH, Peng PY, Yu CP. Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration. Environ Sci Technol. 2012;46:4442–8.Article 

    Google Scholar 
    Zaayman M, Siggins A, Horne D, Lowe H, Horswell J. Investigation of triclosan contamination on microbial biomass and other soil health indicators. FEMS Microbiol Lett. 2017;364:1–6.Article 

    Google Scholar 
    Xie J, Zhao N, Zhang Y, Hu H, Zhao M, Jin H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere. 2022;287:132218.Article 

    Google Scholar 
    Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PKS, Moon HB, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf. 2015;122:565–72.Article 

    Google Scholar 
    Kalyuzhny M, Shnerb NM. Dissimilarity-overlap analysis of community dynamics: opportunities and pitfalls. Methods Ecol Evol. 2017;8:1764–73.Article 

    Google Scholar 
    Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Hildebrand F, Tito RY, Voigt AY, Bork P, Raes J. Correction to: LotuS: an efficient and user-friendly OTU processing pipeline [Microbiome, 2, (2014), 30]. Microbiome. 2014;2:1–7.Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Methods. 2010;7:335–6.Article 

    Google Scholar 
    Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–4.Article 

    Google Scholar 
    Wu L, Yang Y, Chen S, Zhao M, Zhu Z, Yang S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:1–15.Article 

    Google Scholar 
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:2–5.Article 

    Google Scholar 
    Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001;58:626–39.Article 

    Google Scholar 
    Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. Encyclopedia of Food and Agricultural Ethics. 2019; 2395–6.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.Article 

    Google Scholar 
    Vila JCC, Liu YY, Sanchez A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 2020;14:2505–13.Article 

    Google Scholar 
    Ahlmann-Eltze C, Patil I. ggsignif: significance Brackets for ‘ggplot2’. R package version 0.6.1. 2021.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact. mSphere. 2018;3:e00148–18.Article 

    Google Scholar 
    Lindström ES, Östman Ö. The importance of dispersal for bacterial community composition and functioning. PLoS One. 2011;6:e25883.Article 

    Google Scholar 
    Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.Article 

    Google Scholar 
    Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation. 2013;24:813–27.Article 

    Google Scholar 
    Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci Total Environ. 2019;657:1138–49.Article 

    Google Scholar 
    Danzl E, Sei K, Soda S, Ike M, Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health. 2009;6:1472–84.Article 

    Google Scholar 
    Zaborowska M, Wyszkowska J, Borowik A. Soil microbiome response to contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci. 2020;21:3529.Article 

    Google Scholar 
    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:587–9.Article 

    Google Scholar 
    Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Oh S, Choi D, Cha C-J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 2019;9:4598.Article 

    Google Scholar 
    Hagberg A, Gupta S, Rzhepishevska O, Fick J, Burmølle M, Ramstedt M. Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. Sci Total Environ. 2021;763:142991.Article 

    Google Scholar 
    Gao H, LaVergne JM, Carpenter CMG, Desai R, Zhang X, Gray K, et al. Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Environ Sci Process Impacts. 2019;21:867–80.Article 

    Google Scholar 
    Wolff D, Krah D, Dötsch A, Ghattas AK, Wick A, Ternes TA. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res. 2018;143:313–24.Article 

    Google Scholar 
    Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci USA. 2018;115:11286–91.Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and Processes of Microbial Community Assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.Article 

    Google Scholar 
    Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Bernstein HC. Reconciling ecological and engineering design principles for building microbiomes. mSystems. 2019;4:1–5.Article 

    Google Scholar 
    Borchert E, Hammerschmidt K, Hentschel U, Deines P. Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol. 2021;29:908–18.Article 

    Google Scholar 
    Rocca JD, Muscarella ME, Peralta AL, Izabel-Shen D, Simonin M. Guided by microbes: applying community coalescence principles for predictive microbiome engineering. mSystems. 2021;6:e00538–21.Article 

    Google Scholar 
    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.Article 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A, Edmonton A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Ullastres A, Merenciano M, Guio L, Gonz J. Transposable elements: a toolkit for stress and environmental adaptation in bacteria. Stress Environ Regul Gene Expr Adapt Bact. 2016;1:137–45.
    Google Scholar 
    Chang CY, Vila JCC, Bender M, Li R, Mankowski MC, Bassette M, et al. Engineering complex communities by directed evolution. Nat Ecol Evol. 2021;5:1011–23.Article 

    Google Scholar  More

  • in

    Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes

    We express our gratitude to Lukáš Falteisek, Richard Dorrell, Jan Petrášek, Stanislav Volsobě, Kateřina Schwarzerová and Jana Krtková for constructive discussions. English has been kindly corrected by William Bourland. Furthermore, we thank to Dovilė Barcytė, William Bourland, Antonio Calado, Dora Čertnerová, Yana Eglit, Ivan Fiala, Martina Hálová, Miroslav Hyliš, Dagmar Jirsová, Petr Kaštánek, Viktorie Kolátková, Alena Kubátová, Alexander Kudryavtsev, Frederik Leliaert, Julius Lukeš, Jan Mach, Joost Mansour, Jan Mourek, Yvonne Němcová, Fabrice Not, Vladimír Scholtz, Alastair Simpson, Pavel Škaloud, Jan Šťastný, Róbert Šuťák, Daria Tashyreva, Dana Savická, Jan Šobotník, Zdeněk Verner, Jan Votýpka for kindly providing cultures and taxonomic identifications. More

  • in

    Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa

    West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).Article 

    Google Scholar 
    Diggle, S. P., Griffin, A. S., Campell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl Acad. Sci. USA 116, 23309–23316 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan, J., Monaco, H. & Xavier, J. B. The ultimate guide to bacterial swarming: An experimental model to study the evolution of cooperative behavior. Annu. Rev. Microbiol. 73, 293–312 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, A., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nadal Jimenez, P. et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Gillespie, A. & Kümmerli, R. Collective decision-making in microbes. Front. Microbiol. 5, 54 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avery, A. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visca, P., Imperi, F. & Lamont, I. L. Pyoverdine siderophores: From biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Youard, Z. A., Wenner, N. & Reimmann, C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24, 513–522 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schalk, I. J. & Cunrath, O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ. Microbiol. 18, 3227–3246 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schalk, I. J., Rigouin, C. & Godet, J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ. Microbiol. 22, 1447–1466 (2020).PubMed 
    Article 

    Google Scholar 
    Ochsner, U. A. & Vasil, M. L. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: Cycle selection of iron-regulated genes. Proc. Natl Acad. Sci. USA 93, 4409–4414 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leoni, L., Ciervo, A., Orsi, N. & Visca, P. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J. Bacteriol. 178, 2299–2313 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escolar, L., Pérez-Martín, J. & de Lorenzo, V. Opening the iron box: Transcriptional metalloregulation by the fur protein. J. Bacteriol. 181, 6223–6229 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dumas, Z., Ross-Gillespie, A. & Kümmerli, R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc. R. Soc. B 280, 20131055 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lamont, I. L., Beare, P., Ochsner, U., Vasil, A. I. & Vasil, M. L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 99, 7072–7077 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. J. et al. Interactions between an anti-sigma protein and two sigma factors that regulate the pyoverdine signaling pathway in Pseudomonas aeruginosa. BMC Microbiol. 14, 287 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Heinrichs, D. E. & Poole, K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 5882–5889 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Michel, L., Gonzalez, N., Jagdeep, S., Nguyen-Ngoc, T. & Reimmann, C. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Microbiology 58, 495–509 (2005).CAS 

    Google Scholar 
    Michel, L., Bachelard, A. & Reimmann, C. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153, 1508–1518 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3, 75 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brandel, J. et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41, 2820–2834 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perraud, Q. et al. Phenotypic adaptation of Pseudomonas aeruginosa in the presence of siderophore-antibiotic conjugates during epithelial cell infection. Microorganisms 8, 1820 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mossialos, D. et al. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which Is repressed by the cognate pyoverdine. Appl. Environ. Microbiol. 66, 487–492 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tyrrell, J. et al. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. BioMetals 28, 367–380 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, Q. et al. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res. 40, 4320–4333 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frangipani, E. et al. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol. 16, 676–688 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, S. et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog. 11, e1004744 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cunrath, O. et al. The pathogen Pseudomonas aeruginosa optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics 12, 2108–2120 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, T. et al. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. eLife 10, e61885 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiburzi, F., Imperi, F. & Visca, P. Intracellular levels and activity of PvdS, the major iron starvation sigma factor of Pseudomonas aeruginosa. Mol. Microbiol. 67, 213–227 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).PubMed 
    Article 

    Google Scholar 
    Harrison, F. Dynamic social behaviour in a bacterium: Pseudomonas aeruginosa partially compensates for siderophore loss to cheats. J. Evol. Biol. 26, 1370–1378 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunrath, O. et al. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ. Microbiol. 17, 171–185 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leinweber, A., Weigert, M. & Kümmerli, R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 72, 1515–1528 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Julou, T. et al. Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc. Natl Acad. Sci. USA 110, 12577–12582 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weigert, M. & Kümmerli, R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc. R. Soc. B 284, 20170631 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaraman, P., Sakharkar, M. K., Lim, C. S., Hock Tang, T. & Sakharkar, K. R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 6, 556–568 (2010).Kapoor, G., Saigal, S. & Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33, 300–305 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wrobel, A., Arciszewska, K., Maliszewski, D. & Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. 73, 5–27 (2020).CAS 
    Article 

    Google Scholar 
    van der Veen, D. R. et al. Flexible clock systems: Adjusting the temporal programme. Phil. Trans. R. Soc. B 372, 20160254 (2017).Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Phil. Trans. R. Soc. B 372, 0246 (2017).Rivera, M. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Acc. Chem. Res. 50, 331–340 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soldano, A., Yao, H., Chandler, J. R. & Rivera, M. Inhibiting iron mobilization from bacterioferritin in Pseudomonas aeruginosa impairs biofilm formation irrespective of environmental iron availability. ACS Infectious Dis. 6, 447–458 (2020).Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alqarni, B., Colley, B., Klebensberger, J., McDougald, D. & Rice, S. A. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J. Microbiol. Methods 127, 182–187 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratcliff, W. C. & Denison, R. F. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr. Biol. 20, 1740–1744 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber, F. et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat. Microbiol. 1, 16055 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).PubMed 
    Article 

    Google Scholar 
    Sumpter, D. J. T. The principles of collective animal behaviour. Philos. Trans. R. Soc. B 361, 5–22 (2006).CAS 
    Article 

    Google Scholar 
    Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).PubMed 
    Article 

    Google Scholar 
    Bose, T., Reina, A. & Marshall, J. A. R. Collective decision-making. Curr. Opin. Behav. Sci. 16, 30–34 (2017).Article 

    Google Scholar 
    Dussutour, A., Ma, Q. & Sumpter, D. Phenotypic variability predicts decision accuracy in unicellular organisms. Proc. R. Soc. B 286, 20182825 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Gillespie, A., Dumas, Z. & Kümmerli, R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J. Evol. Biol. 28, 29–39 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, K.-H. & Schweizer, H. P. mini-Tn7 insertion in bacteria with single attTn7 sites: Example Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rezzoagli, C., Granato, E. T. & Kümmerli, R. In-vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J. 13, 2403–2414 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minoia, M. et al. Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. Proc. Natl Acad. Sci. USA 105, 20792–20797 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellini, M. et al. Generation of genetic tools for gauging multiple-gene expression at the single-cell level. Appl. Environ. Microbiol. 87, e02956–02920 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S., Crooks, P. A., Wei, X. & de Leon, J. Toxicity of dipyridyl compounds and related compounds. Crit. Rev. Toxicol. 34, 447–460 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y., Yang, L. & Molin, S. Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa growth and biofilm formation. Antimicrob. Agents Chemother. 54, 3960–3963 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henriquez, T., Stein, N. V. & Jung, H. Resistance to bipyridyls mediated by the TtgABC efflux system in Pseudomonas putida KT2440. Front. Microbiol. 11, 1974 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, J.-M., Neely, A., Stintzi, A., Georges, C. & Holder, I. A. Pyoverdin is essential for viruence of Pseudomonas aeruginosa. Infect. Immun. 64, 518–523 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Jong, I. G., Beilharz, K., Kuipers, O. P. & Veening, J. W. Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J. Vis. Exp. 53, e3145 (2011).
    Google Scholar 
    Berg, S. et al. ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Mridha, S. and Kuemmerli, R. Mridha_Kummerli_2022_CommsBiol_raw_data_figshare.xlsx. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19681962.v1 (2022) More

  • in

    The expansion of tree plantations across tropical biomes

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    Article 

    Google Scholar 
    Payn, T. et al. Changes in planted forests and future global implications. Ecol. Manag. 352, 57–67 (2015).Article 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).Article 

    Google Scholar 
    Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).Article 

    Google Scholar 
    Vijay, V. et al. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).Article 

    Google Scholar 
    le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R. A. & Hakamada, R. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014).Article 

    Google Scholar 
    Wang, M. M. H., Carrasco, L. R. & Edwards, D. P. Reconciling rubber expansion with biodiversity conservation. Curr. Biol. 30, 3825–3832 (2020).CAS 
    Article 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019).Sloan, S., Meyfroidt, P., Rudel, T. K., Bongers, F. & Chazdon, R. The forest transformation: planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).Article 

    Google Scholar 
    Petersen, R. et al. Mapping Tree Plantations with Multispectral Imagery: Preliminary Results for Seven Tropical Countries (WRI, 2016).Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).Article 

    Google Scholar 
    Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar 
    Miettinen, J. et al. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 4, 908–918 (2012).Article 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Puyravaud, J.-P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).Article 

    Google Scholar 
    Fagan, M. E. et al. Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sens. Environ. 216, 415–426 (2018).Article 

    Google Scholar 
    Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).CAS 
    Article 

    Google Scholar 
    Global Forest Resources Assessment 2020 (FAO, 2020).FAOSTAT Agricultural Statistics Database (FAO, 2019); http://faostat.fao.org/site/291/default.aspxCook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    Hurni, K., Schneider, A., Heinimann, A., Nong, D. H. & Fox, J. Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat data. Remote Sens. 9, 320 (2017).Article 

    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article 

    Google Scholar 
    Torbick, N., Ledoux, L., Salas, W. & M. Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 8, 236 (2016).Azizan, F. A., Kiloes, A. M., Astuti, I. S. & Abdul Aziz, A. Application of optical remote sensing in rubber plantations: a systematic review. Remote Sens. 13, 429 (2021).Article 

    Google Scholar 
    Bégué, A. et al. Remote sensing and cropping practices: a review. Remote Sens. 10, 99 (2018).Article 

    Google Scholar 
    Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. 3, 115009 (2021).Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).Article 

    Google Scholar 
    Féret, J.-B. & Asner, G. P. Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens. Environ. 115, 2415–2422 (2011).Article 

    Google Scholar 
    Poortinga, A. et al. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 11, 831 (2019).Article 

    Google Scholar 
    Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).Article 

    Google Scholar 
    Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data. 13, 1211–1231 (2021).Article 

    Google Scholar 
    Ordway, E. M., Naylor, R. L., Nkongho, R. N. & Lambin, E. F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 10, 114 (2019).CAS 
    Article 

    Google Scholar 
    Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).Article 

    Google Scholar 
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    Article 

    Google Scholar 
    Fagan, M. E., Reid, J. L., Holland, M. B., Drew, J. G. & Zahawi, R. A. How feasible are global forest restoration commitments? Conserv. Lett. 13, e12700 (2020).Article 

    Google Scholar 
    Malkamäki, A. et al. A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Change 53, 90–103 (2018).Article 

    Google Scholar 
    Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).Article 

    Google Scholar 
    Noojipady, P. et al. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth Syst. Dynam. 8, 749–771 (2017).Bullock, E. L., Woodcock, C. E., Souza, C. Jr. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article 

    Google Scholar 
    Sloan, S. & Sayer, J. A. Forest Ecology and Management Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).CAS 
    Article 

    Google Scholar 
    Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).CAS 
    Article 

    Google Scholar 
    Li, W., Goodchild, M. F. & Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 27, 1227–1250 (2013).Article 

    Google Scholar 
    Asner, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22, 3855–3862 (2001).Article 

    Google Scholar 
    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).Article 
    CAS 

    Google Scholar 
    Gutiérrez-Vélez, V. H. & DeFries, R. Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon. Remote Sens. Environ. 129, 154–167 (2013).Article 

    Google Scholar 
    Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).Article 

    Google Scholar 
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).Article 

    Google Scholar 
    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).Article 

    Google Scholar 
    Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    World Database on Protected Areas User Manual 1.4 (UNEP-WCMC, 2016).AutoML: Automatic Machine Learning (H2O.ai, 2020); https://h2o-release.s3.amazonaws.com/h2o/rel-yau/5/docs-website/h2o-docs/automl.htmlHealey, S. P. et al. Mapping forest change using stacked generalization: an ensemble approach. Remote Sens. Environ. 204, 717–728 (2018).Article 

    Google Scholar 
    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 25002 (2019).Article 

    Google Scholar 
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).Article 

    Google Scholar 
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 

    Google Scholar 
    Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).Article 

    Google Scholar 
    Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).Article 

    Google Scholar 
    Database of Global Administrative Areas (GADM) v.3.6 (GADM, 2018); https://gadm.org/download_country_v3.htmlHijmans, R. J., Williams, E., Vennes, C. M. & Hijmans, M. R. J. Package ‘geosphere’ version 1.5-10. Spherical trigonometry (2017).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017). More

  • in

    Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).Article 

    Google Scholar 
    Ptacnik, R. et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl.Acad. Sci. USA 105, 5134–5138 (2008).Article 

    Google Scholar 
    Corcoran, A. A. & Boeing, W. J. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE 7, e49397 (2012).Article 

    Google Scholar 
    Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).Article 

    Google Scholar 
    Lewis, M., Hebert, D., Harrison, W. G., Platt, T. & Oakey, N. S. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).Article 

    Google Scholar 
    McGillicuddy, D. J. J. et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316, 1021–1026 (2007).Article 

    Google Scholar 
    Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).Article 

    Google Scholar 
    Tang, W. et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat. Commun. 10, 831 (2019).Article 

    Google Scholar 
    Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 

    Google Scholar 
    Lévy, M., Franks, P. J. S. & Smith, K. S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).Article 

    Google Scholar 
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Bakker, D. C., Nielsdóttir, M. C., Morris, P. J., Venables, H. J. & Watson, A. J. The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res. Pt II 54, 2174–2190 (2007).Article 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Pt I 43, 555–578 (1996).Article 

    Google Scholar 
    Palacios, D. M. Factors influencing the island-mass effect of the Galapagos archipelago. Geophys. Res. Lett. 29, 2134 (2002).Article 

    Google Scholar 
    Gilmartin, M. & Revelante, N. The ‘island mass’ effect on the phytoplankton and primary production of the Hawaiian Islands. J. Exp. Mar. Biol. Ecol. 16, 181–204 (1974).Article 

    Google Scholar 
    Signorini, S. C., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).Article 

    Google Scholar 
    Messié, M., Radenac, M.-H., Lefèvre, J. & Marchesiello, P. Chlorophyll bloom in the western Pacific at the end of the 1997-98 El Niño: the role of the Kiribati Islands. Geophys. Res. Lett. 33, L14601 (2006).Article 

    Google Scholar 
    Messié, M. & Radenac, M.-H. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep Sea Res. Pt I 53, 1581–1600 (2006).Article 

    Google Scholar 
    Le Borgne, R., Dandonneau, Y. & Lemasson, L. The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare (Loyalty Islands) and New Caledonia. Bull. Mar. Sci. 37, 450–459 (1985).
    Google Scholar 
    Messié, M. et al. The delayed island mass effect: how islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).Article 

    Google Scholar 
    Dandonneau, Y. & Charpy, L. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations. Deep Sea Res. Pt A 32, 707–721 (1985).Article 

    Google Scholar 
    Shiozaki, T., Kodama, T. & Furuya, K. Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean. Geophys. Res. Lett. 41, 2907–2913 (2014).Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33, 391–419 (2019).Article 

    Google Scholar 
    Martinez, E., Rodier, M., Pagano, M. & Sauzède, R. Plankton spatial variability within the Marquesas archipelago, South Pacific. J. Mar. Syst. 212, 103432 (2020).Article 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).Article 

    Google Scholar 
    Laws, E. A., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. A global analysis of ENSO synchrony: the oceans’ biological response to physical forcing. J. Geophys. Res. 117, C09001 (2012).
    Google Scholar 
    Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A. & Doney, S. C. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences 11, 691–708 (2014).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18 (2015).Article 

    Google Scholar 
    Mouw, C. B. et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4, 41 (2017).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Bréon, F. M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Pt I 52, 1989–2004 (2005).Article 

    Google Scholar 
    Rêve-Lamarche, A.-H. et al. Ocean color radiance anomalies in the North Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00408 (2017).Alvain, S., Loisel, H. & Dessailly, D. Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. Opt. Express 20, 1070–1083 (2012).Article 

    Google Scholar 
    Mackey, D. J., Blanchot, J., Higgins, H. W. & Neveux, J. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Res. Pt II 49, 2561–2582 (2002).Article 

    Google Scholar 
    Johnson, Z. I. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).Article 

    Google Scholar 
    Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. USA 106, 10787–10792 (2009).Article 

    Google Scholar 
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).Article 

    Google Scholar 
    Dai, S. et al. The seamount effect on phytoplankton in the tropical western Pacific. Mar. Environ. Res. 162, 105094 (2020).Article 

    Google Scholar 
    Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).Article 

    Google Scholar 
    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).Article 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).Article 

    Google Scholar 
    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).Article 

    Google Scholar 
    Harrison, A.-L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).Article 

    Google Scholar 
    Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605 (2011).Article 

    Google Scholar 
    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741––8743 (1996).Article 

    Google Scholar 
    Nunn, P. D., Kumar, L., Eliot, I. & McLean, R. F. Classifying Pacific islands. Geosci. Lett 3, 7 (2016).Article 

    Google Scholar 
    Hasegawa, D., Lewis, M. R. & Gangopadhyay, A. How islands cause phytoplankton to bloom in their wakes. Geophys. Res. Lett. 36, L20605 (2009).Article 

    Google Scholar 
    Platt, T. & Sathyendranath, S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241, 1613–1620 (1988).Article 

    Google Scholar 
    Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima, H. & Koike, Y. Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst. 69, 238–246 (2008).Article 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).Article 

    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, GB3001 (2008).Article 

    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).Article 

    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727 (2004).Article 

    Google Scholar 
    De Monte, S., Soccodato, A., Alvain, S. & d’Ovidio, F. Can we detect oceanic biodiversity hotspots from space? ISME J. 7, 2054–2056 (2013).Article 

    Google Scholar 
    Soccodato, A. et al. Estimating planktonic diversity through spatial dominance patterns in a model ocean. Mar. Geonom. 29, 9–17 (2016).Article 

    Google Scholar 
    Messié, M., Petrenko, A., Doglioli, A., Martinez, E. & Alvain, S. Data from: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6416130 (2022).Messié, M. Code for: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6494328 (2022). More