More stories

  • in

    Increased abundance of a common scavenger affects allocation of carrion but not efficiency of carcass removal in the Fukushima Exclusion Zone

    Lim, N., Kelt, D. A., Lim, K. K. & Bernard, H. Vertebrate scavengers control abundance of diarrheal-causing bacteria in tropical plantations. Zool. Stud. 59, 1–10 (2020).
    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In: Carrion Ecology, Evolution and their Applications. (eds Benbow, E.M., Tomberlin, J. & Tarone, A.) 107–127 (CRC Press, 2015).
    Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. 1249, 57–71 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment (Island Press, 2005).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 
    Article 

    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054. https://doi.org/10.1111/brv.12097 (2014).Article 
    PubMed 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364. https://doi.org/10.1111/brv.12004 (2013).Article 
    PubMed 

    Google Scholar 
    Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buechley, E. R. & Şekercioğlu, Ç. H. The Avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Cons. 198, 220–228 (2016).Article 

    Google Scholar 
    Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals increases with the human footprint. Front. Ecol. Environ. 18, 13–18. https://doi.org/10.1002/fee.2127 (2019).Article 

    Google Scholar 
    Sebastián-González, E. et al. Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale. Glob. Change Biol. 25, 3005–3017 (2019).ADS 
    Article 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography 43, 1–13. https://doi.org/10.1111/ecog.05083 (2020).Article 

    Google Scholar 
    Marneweck, C. J., Katzner, T. E. & Jachowski, D. S. Predicted climate-induced reductions in scavenging in eastern North America. Glob. Change Biol. 27, 3383–3394. https://doi.org/10.1111/gcb.15653 (2021).Article 

    Google Scholar 
    Mokany, K., Ash, J. & Roxburgh, S. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J. Ecol. 96, 884–893. https://doi.org/10.1111/j.1365-2745.2008.01395.x (2008).Article 

    Google Scholar 
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620 (2015).Article 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Selva, N. & Sánchez-Zapata, J. A. Species and individual replacements contribute more than nestedness to shape vertebrate scavenger metacommunities. Ecography 42, 365–375 (2019).Article 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology https://doi.org/10.1002/ecy.3519 (2021).Article 
    PubMed 

    Google Scholar 
    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).Article 

    Google Scholar 
    Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. The comparative effects of large carnivores on the acquisition of carrion by scavengers. Am. Nat. 185, 822–833 (2015).PubMed 
    Article 

    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).Article 

    Google Scholar 
    Gutiérrez-Cánovas, C. et al. Large home range scavengers support higher rates of carcass removal. Funct. Ecol. 34, 1921–1932 (2020).Article 

    Google Scholar 
    Walker, M. A. et al. Factors influencing scavenger guilds and scavenging efficiency in Southwestern Montana. Sci. Rep. https://doi.org/10.1038/s41598-021-83426-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winfree, R., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635. https://doi.org/10.1111/ele.12424 (2015).Article 
    PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470. https://doi.org/10.1111/geb.12673 (2017).Article 

    Google Scholar 
    Butler, J. R. A. & du Toit, J. T. Diet of free-ranging domestic dogs (Canis familiaris) in rural Zimbabwe: Implications for wild scavengers on the periphery of wildlife reserves. Anim. Conserv. 5, 29–37. https://doi.org/10.1017/s136794300200104x (2002).Article 

    Google Scholar 
    DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl. Ecol. 12, 268–274 (2011).Article 

    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460. https://doi.org/10.1111/j.1523-1739.2012.01827.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88. https://doi.org/10.1016/j.actao.2016.12.012 (2017).ADS 
    Article 

    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blazquez, M., Sanchez-Zapata, J. A., Botella, F., Carrete, M. & Eguía, S. Spatio-temporal segregation of facultative avian scavengers at ungulate carcasses. Acta Oecol. 35, 645–650 (2009).ADS 
    Article 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023. https://doi.org/10.1002/ece3.2414 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. Jr. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evol. 8, 2518–2526. https://doi.org/10.1002/ece3.3840 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olson, Z., Beasley, J., DeVault, T. L. & Rhodes, O. E. Jr. Scavenger community response to the removal of a dominant scavenger. Oikos 121, 77–84 (2012).Article 

    Google Scholar 
    Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139. https://doi.org/10.1016/j.baae.2018.08.005 (2019).Article 

    Google Scholar 
    Turner, K. L., Conner, L. M. & Beasley, J. C. Effect of mammalian mesopredator exclusion on vertebrate scavenging communities. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Ohashi, H. et al. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177. https://doi.org/10.1007/s10344-012-0661-z (2013).Article 

    Google Scholar 
    Saito, M. & Koike, F. Distribution of wild mammal assemblages along an urban–rural–forest landscape gradient in warm-temperate East Asia. PLoS ONE 8, e65464. https://doi.org/10.1371/journal.pone.0065464 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/10.1126/science.aar7121 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tsunoda, M. et al. Human disturbance affects latrine-use patterns of raccoon dogs. J. Wildl. Manag. 83, 728–736. https://doi.org/10.1002/jwmg.21610 (2019).Article 

    Google Scholar 
    Watabe, R. & Saito, M. U. Effects of vehicle-passing frequency on forest roads on the activity patterns of carnivores. Landsc. Ecol. Eng. 17, 225–231. https://doi.org/10.1007/s11355-020-00434-7 (2021).Article 

    Google Scholar 
    Luna, Á., Romero-Vidal, P. & Arrondo, E. Predation and scavenging in the city: A review of spatio-temporal trends in research. Diversity 13, 46. https://doi.org/10.3390/d13020046 (2021).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Fukushima Prefectural Government. Transition of evacuation designated zones. https://www.pref.fukushima.lg.jp/site/portal-english/en03-08.html. (2019). Accessed 20 Apr 2022.Steinhauser, G., Brandl, A. & Johnson, T. E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 470, 800–817 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Center for International Earth Science Information Network (CIESIN)—Columbia University. (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2018).Lyons, P. C., Okuda, K., Hamilton, M. J., Hinton, T. G. & Beasley, J. C. Rewilding of Fukushima’s human evacuation zone in the presence of radioactive stressors. Front. Ecol. Environ. 18, 127–134 (2020).Article 

    Google Scholar 
    Deryabina, T. G. et al. Long-term census data reveal abundant wildlife populations at Chernobyl. Curr. Biol. 25, R824–R826. https://doi.org/10.1016/j.cub.2015.08.017 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Webster, S. C. et al. Where the wild things are: Influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone. Front. Ecol. Environ. 14, 185–190. https://doi.org/10.1002/fee.1227 (2016).Article 

    Google Scholar 
    Schlichting, P. E., Love, C. N., Webster, S. C. & Beasley, J. C. Efficiency and composition of vertebrate scavengers at the land–water interface in the Chernobyl Exclusion Zone. Food Webs 18, e00107. https://doi.org/10.1016/j.fooweb.2018.e00107 (2019).Article 

    Google Scholar 
    Newsome, T. M. et al. Monitoring the dead as an ecosystem indicator. Ecol. Evol. 11, 5844–5856. https://doi.org/10.1002/ece3.7542 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Mike Conner, L., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ruzicka, R. E. & Conover, M. R. Does weather or site characteristics influence the ability of scavengers to locate food?. Ethology 118, 187–196 (2012).Article 

    Google Scholar 
    Paula, J. J. S. et al. Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildl. Res. 41, 717–725. https://doi.org/10.1071/WR14063 (2015).Article 

    Google Scholar 
    Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).Article 

    Google Scholar 
    Nakama, S., Yoshimura, K., Fujiwara, K., Ishikawa, H. & Iijima, K. Temporal decrease in air dose rate in the sub-urban area affected by the Fukushima Dai-ichi Nuclear Power Plant accident during four years after decontamination works. J. Environ. Radioact. 208–209, 106013. https://doi.org/10.1016/j.jenvrad.2019.106013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ministry of the Environment of Japan. Off-Site Environmental Remediation in Affected Areas in Japan. http://josen.env.go.jp/en/decontamination/ (2020). Accessed 20 Apr 2022.Japan Meteorological Agency. Climate in Namie in 2018: Monthly Overview Data. http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_a1.php?prec_no=36&block_no=0295&year=2018&month=7&day=&view=p1 (2018). Accessed 1 Apr 2019.De Vault, T. L., Brisbin, J., Lehr, I., Rhodes, J. & Olin, E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).Article 

    Google Scholar 
    Kane, A., Healy, K., Guillerme, T., Ruxton, G. D. & Jackson, A. L. A recipe for scavenging in vertebrates—The natural history of a behaviour. Ecography 40, 11. https://doi.org/10.1111/ecog.02817 (2017).Article 

    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. How do predators and scavengers locate resource hotspots within a tropical forest?. Aust. Ecol. 42, 742–749. https://doi.org/10.1111/aec.12492 (2017).Article 

    Google Scholar 
    Japan Aerospace Exploration Agency. High-resolution land use land cover map of Japan (ver.16.09). https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm (2011). Accessed 1 Apr 2019.Newkirk, E. S. CPW Photo Warehouse. http://cpw.state.co.us/learn/Pages/ResearchMammalsSoftware.aspx (2016). Accessed 1 Apr 2019.Therneau, T. M. A Package for Survival Analysis in R. R package version 3.3-1 (2022).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Anderson, D. et al. Introgression dynamics from invasive pigs into wild boar following the March 2011 natural and anthropogenic disasters at Fukushima. Proc. R. Soc. B Biol. Sci. 288, 20210874. https://doi.org/10.1098/rspb.2021.0874 (2021).CAS 
    Article 

    Google Scholar 
    Ishiniwa, H., Onuma, M. & Tamaoki, M. Behavior of Radionuclides in the Environment III 463–472 (Springer, 2022).Book 

    Google Scholar 
    Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342. https://doi.org/10.1016/j.jenvrad.2020.106342 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere. https://doi.org/10.1002/ecs2.1994 (2017).Article 

    Google Scholar 
    Sugiura, S., Tanaka, R., Taki, H. & Kanzaki, N. Differential responses of scavenging arthropods and vertebrates to forest loss maintain ecosystem function in a heterogeneous landscape. Biol. Cons. 159, 206–213 (2013).Article 

    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428. https://doi.org/10.1007/s42991-020-00097-9 (2021).Article 

    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza primeval forest (eastern Poland). Ecoscience 10, 303–311 (2003).Article 

    Google Scholar 
    Jojola-Elverum, S. M., Shivik, J. A. & Clark, L. Importance of bacterial decomposition and carrion substrate to foraging brown treesnakes. J. Chem. Ecol. 27, 1315–1331. https://doi.org/10.1023/a:1010357024140 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abernethy, E. F., Turner, K. L., Beasley, J. C. & Rhodes, O. E. Jr. Scavenging along an ecological interface: Utilization of amphibian and reptile carcasses around isolated wetlands. Ecosphere 8, e01989. https://doi.org/10.1002/ecs2.1989 (2017).Article 

    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography 41, 1173–1183 (2018).Article 

    Google Scholar 
    Matsuo, R. & Ochiai, K. Dietary overlap among two introduced and one native sympatric carnivore species, the raccoon, the masked palm civet, and the raccoon dog, in Chiba Prefecture, Japan. Mammal Study 34, 187–194 (2009).Article 

    Google Scholar 
    Drygala, F. & Zoller, H. Diet composition of the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) in north-east Germany. Hystrix Italian J. Mammal. 24, 190–194 (2014).
    Google Scholar 
    Elmeros, M. et al. The diet of feral raccoon dog (Nyctereutes procyonoides) and native badger (Meles meles) and red fox (Vulpes vulpes) in Denmark. Mammal Res. 63, 405–413. https://doi.org/10.1007/s13364-018-0372-2 (2018).Article 

    Google Scholar 
    Sekizawa, R., Ichii, K. & Kondo, M. Satellite-based detection of evacuation-induced land cover changes following the Fukushima Daiichi nuclear disaster. Remote Sensing Lett. 6, 824–833 (2015).Article 

    Google Scholar 
    Ishihara, M. & Tadono, T. Land cover changes induced by the great east Japan earthquake in 2011. Sci. Rep. 7, 45769–45769. https://doi.org/10.1038/srep45769 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Focardi, S., Materassi, M., Innocenti, G. & Berzi, D. Kleptoparasitism and scavenging can stabilize ecosystem dynamics. Am. Nat. 190, 398–409 (2017).PubMed 
    Article 

    Google Scholar 
    Osugi, S., Trentin, B. E. & Koike, S. Impact of wild boars on the feeding behavior of smaller frugivorous mammals. Mamm. Biol. 97, 22–27 (2019).Article 

    Google Scholar 
    Duľa, M. & Krofel, M. A cat in paradise: Hunting and feeding behaviour of Eurasian lynx among abundant naive prey. Mamm. Biol. 100, 685–690. https://doi.org/10.1007/s42991-020-00070-6 (2020).Article 

    Google Scholar 
    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 10250. https://doi.org/10.1038/s41598-017-10046-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Olea, P.P., Mateo-Tomás, P. & Sánchez-Zapata, J.A.) 23–44 (Springer International Publishing, 2019).
    DeVault, T. L. & Rhodes, O. E. Jr. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).Article 

    Google Scholar 
    Bumann, G. B. & Stauffer, D. F. Scavenging of ruffed grouse in the Appalachians: Influences and implications. Wildl. Soc. Bull. 1973–2006(30), 853–860 (2002).
    Google Scholar 
    Young, A., Stillman, R., Smith, M. J. & Korstjens, A. H. An experimental study of vertebrate scavenging behavior in a Northwest European woodland context. J. Forensic Sci. 59, 1333–1342. https://doi.org/10.1111/1556-4029.12468 (2014).Article 
    PubMed 

    Google Scholar 
    Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7 (2016).DeVault, T. L. & Krochmal, A. R. Scavenging by snakes: An examination of the literature. Herpetologica 58, 429–436 (2002).Article 

    Google Scholar 
    Shivik, J. A. & Clark, L. Ontogenetic shifts in carrion attractiveness to brown tree snakes (Boiga irregularis). J. Herpetol. 33, 334–336. https://doi.org/10.2307/1565737 (1999).Article 

    Google Scholar 
    Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 120, 18–27 (2001).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Determinants of variability in signature whistles of the Mediterranean common bottlenose dolphin

    Wilkins, M. R., Seddon, N. R. & Safran, R. J. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28, 156–166 (2013).PubMed 
    Article 

    Google Scholar 
    Wei, C. Sound production and propagation in cetacean. In Neuroendocrine Regulation of Animal Vocalization (eds Rosenfeld, C. S. & Hoffmann, F.) 267–291 (Academic Press, 2021).Chapter 

    Google Scholar 
    Nakakara, F. Social functions of cetacean acoustic communication. Fish. Sci. 68, 298–301 (2002).Article 

    Google Scholar 
    Caldwell, M. C. & Caldwell, D. K. Vocalization of naive captive dolphins in small groups. Science 159, 1121–1123 (1968).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell, M. C., Caldwell, D. K. & Tyack, P. L. Review of the signature-whistle-hypothesis for the Atlantic bottlenose dolphin. In The bottlenose dolphin (eds Leatherwood, S. & Reeves, R. R.) 199–234 (Academic Press, 1990).Chapter 

    Google Scholar 
    Ford, J. B. Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Can. J. Zool. 69, 1454–1483 (1991).Article 

    Google Scholar 
    Weilgart, L. & Whitehead, H. Group-specific dialects and geographical variation in coda repertoire in South Pacific sperm whales. Behav. Ecol. Sociobiol. 40, 277–285 (1997).Article 

    Google Scholar 
    Deeck, V. B., Ford, J. K. B. & Spong, P. Dialect change in resident killer whales: implications for vocal learning and cultural transmission. Anim. Behav. 60, 629–638 (2000).Article 

    Google Scholar 
    Chen, Z. & Wiens, J. J. The origins of acoustic communication in vertebrates. Nat. Commun. 11, 369 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morton, E. S. Sources of selection on avian sounds. Am. Nat. 109, 17–34 (1975).ADS 
    Article 

    Google Scholar 
    Irwin, D. E., Thimgan, M. P. & Irwin, J. H. Call divergence is correlated with geographic and genetic distance in greenish warblers (Phylloscopus trochiloides): A strong role for stochasticity in signal evolution?. J. Evol. Biol. 21, 435–448 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, P. et al. Geographic variation in the songs of Neotropical singing mice: Testing the relative importance of drift and local adaptation. Evol. 64, 1955–1972 (2010).
    Google Scholar 
    Connor, R. C., Wells, R. S., Mann, J. & Read, A. J. The bottlenose dolphin: Social relationships in a fission-fusion society. In Cetacean societies: Field studies of dolphins and whales (eds Mann, J. et al.) 91–126 (University of Chicago Press, Chicago, 2000).
    Google Scholar 
    Janik, V. M. & Sayigh, L. S. Communication in bottlenose dolphins: 50 years of signature whistle research. J. Comp. Physiol. A https://doi.org/10.1007/s00359-013-0817-7 (2013).Article 

    Google Scholar 
    MacFarlane, N. et al. Signature whistles facilitate reunions and/or advertise identity in Bottlenose Dolphins. JASA 141, 3543 (2017).Article 

    Google Scholar 
    Buckstaff, K. C. Effects of watercraft noise on the acoustic behaviour of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mam. Sci. 20, 709–725 (2004).Article 

    Google Scholar 
    Cook, M. L. H., Sayigh, L. S., Blum, J. E. & Wells, R. S. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus). Proc. R. Soc. Lond. B. 271, 1043–1049 (2004).Article 

    Google Scholar 
    Watwood, S. L., Owen, E. C. G., Tyack, P. L. & Wells, R. S. Signature whistle use by temporarily restrained and free-swimming bottlenose dolphins, Tursiops truncatus. Anim. Behav. 69, 1373–1386 (2005).Article 

    Google Scholar 
    Sayigh, L. S., Tyack, P. L., Wells, R. S., Scott, M. D. & Irvine, A. B. Sex difference in signature whistle production of free-ranging bottle-nosed dolphins, Tursiops-truncatus. Beh. Ecol. Soc. 36, 171–177 (1995).Article 

    Google Scholar 
    Tyack, P. L. & Sayigh, L. S. Vocal learning in cetaceans. In Social influences on vocal development (eds Snowdon, C. T. & Hausberger, M.) 208–233 (Cambridge University Press, 1997).Chapter 

    Google Scholar 
    Miksis, J. L., Tyack, P. & Buck, J. R. Captive dolphins, Tursiops truncatus, develop signature whistles that match acoustic features of human-made model sounds. JASA 112, 728–739 (2002).Article 

    Google Scholar 
    Fripp, D. et al. Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim. Cogn. 8, 17–26 (2005).PubMed 
    Article 

    Google Scholar 
    Janik, V. M. & Slater, P. J. B. Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls. Anim. Behav. 56, 829–838 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayigh, L. S., Tyack, P. L., Wells, R. S. & Scott, M. D. Signature whistles of free-ranging bottlenose dolphins, Tursiops truncatus: mother offspring comparisons. Behav. Ecol. Sociobiol. 26, 247–260 (1990).Article 

    Google Scholar 
    Watwood, S. L., Tyack, P. L. & Wells, R. S. Whistle sharing in paired male bottlenose dolphins, Tursiops truncatus. Behav. Ecol. Sociobiol. 55, 531–543 (2004).Article 

    Google Scholar 
    Janik, V. M., Dehnhardt, G. & Todt, D. Signature whistle variations in a bottlenosed dolphin, Tursiops truncatus. Behav. Ecol. Sociobiol. 35, 243–248 (1994).Article 

    Google Scholar 
    Esch, H. C., Sayigh, L. S. & Wells, R. S. Quantifying parameters of bottlenose dolphin signature whistles. Mar. Mam. Sci. 24, 976–986 (2009).Article 

    Google Scholar 
    Gridley, T. Geographic and species variation in bottlenose dolphin (Tursiops spp.) signature whistle types. PhD Thesis Biology. University of St Andrews (2011).King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc Natl Acad Sci USA 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kriesell, H., Elwen, S. H., Nastasi, A. & Gridley, T. Identification and characteristics of signature whistles in wild bottlenose dolphins (Tursiops truncatus) from Namibia. PLoS ONE 9, e106317 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luis, A. R., Couchinho, M. N. & dos Santos, M. E. Signature whistles in wild bottlenose dolphins: Long term stability and emission rates. Acta Ethol. https://doi.org/10.1007/s10211-015-0230-z (2015).Article 

    Google Scholar 
    Wang, D. W., Würsig, B. & Evans, W. E. Whistles of bottlenose dolphins: Comparisons among populations. Aquatic Mam. 21, 65–77 (1995).
    Google Scholar 
    May-Collado, L. J. & Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: Factors promoting whistle variation. J. Mammal. 89, 1229–1240 (2008).Article 

    Google Scholar 
    Papale, E. et al. Acoustic divergence between bottlenose dolphin whistles from the Central-Eastern North Atlantic and Mediterranean Sea. Acta Ethol. 17, 155–165 (2014).Article 

    Google Scholar 
    La Manna, G., Rako-Gospić, N., Manghi, M., Picciulin, M. & Sarà, G. Assessing geographical variation on whistle acoustic structure of three Mediterranean populations of common bottlenose dolphin (Tursiops truncatus). Beh. 154, 583–607 (2017).Article 

    Google Scholar 
    La Manna, G. et al. Whistle variation in Mediterranean common bottlenose dolphin: The role of geographical, anthropogenic, social, and behavioral factors. Ecol. Evol. 00, 1–7 (2020).
    Google Scholar 
    Natoli, A., Birkun, A., Aguilar, A., Lopez, A. & Rus Hoelzel, A. Habitat structure and the dispersal of male and female bottlenose dolphins (Tursiops truncatus) based on microsatellite and mitochon-drial DNA analyses. Proc. R. Soc. Lond. B. 272, 1217–2122 (2005).CAS 

    Google Scholar 
    Richardson, W. J., Greene, C. R., Malme, C. I. & Thomson, D. H. Marine mammals and noise (Academic Press, London, 1995).
    Google Scholar 
    Gnone, G., et al. TursioMed: An international project to assess the conservation status of the bottlenose dolphin in the Mediterranean Sea. Final Report (2019).La Manna, G. & Ronchetti, F. Relazione sul monitoraggio della presenza e distribuzione del tursiope Tursiops truncatus nell’area del nord Sardegna comprendente l’Area Marina Protetta Capo Caccia – Isola Piana. Report AMP, 42 (2018).La Manna, G., Ronchetti, F., Sarà, G., Ruiu, A. & Ceccherelli, G. Common bottlenose dolphin protection and sustainable boating: species distribution modeling for effective coastal planning. Front. Mar. Sci. 7, 542648 (2020).Article 

    Google Scholar 
    Pace, D. S. et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat. Conserv. 29, 1302–1323 (2019).Article 

    Google Scholar 
    Pace, D. S. et al. Capitoline Dolphins: Residency patterns and abundance estimate of Tursiops truncatus at the Tiber River Estuary (Mediterranean Sea). Biology 10, 275 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pulcini, M., Pace, D. S., La Manna, G., Triossi, F. & Fortuna, C. M. Distribution and abundance estimates of bottlenose dolphins (Tursiops truncatus) around Lampedusa Island (Sicily Channel, Italy). Implications for their management. J. Mar. Biol. Assoc. UK 6, 1175–1184 (2013).
    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Santostasi, N. L., Bonizzoni, S., Bearzi, G., Eddy, L. & Gimenez, O. A robust design capture-recapture analysis of abundance, survival and temporary emigration of three odontocete species in the Gulf of Corinth, Greece. PLoS ONE 11, e0166650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol 29, 369–374 (2011).Article 

    Google Scholar 
    Bearzi, G. et al. Dolphins in a scaled-down Mediterranean: The Gulf of Corinth’s odontocetes. In Adv. Mar. Biol. Vol. 75 (eds NotarbartolodiSciara, G. et al.) 297–331 (Academic Press, 2016).
    Google Scholar 
    Pleslić, G. et al. The abundance of common bottlenose dolphins (Tursiops truncatus) in the former special marine reserve of the Cres-Lošinj Archipelago, Croatia. Aquat. Conserv. 25, 125–137 (2015).Article 

    Google Scholar 
    Rako-Gospić, N. et al. Factor associated variations in the home range of a resident Adriatic common bottlenose dolphin population. Mar. Pol. Bul. 124, 234–244 (2017).Article 
    CAS 

    Google Scholar 
    Janik, V. M., King, S. L., Sayigh, L. S. & Wells, R. S. Identifying signature whistles from recordings of groups of unrestrained bottlenose dolphins (Tursiops truncatus). Mar Mam. Sci 29, 1–14 (2013).Article 

    Google Scholar 
    La Manna, G., Manghi, M., Pavan, G., Lo Mascolo, F. & Sarà, G. Behavioural strategy of common bottlenose dolphins (Tursiops truncatus) in response to different kinds of boats in the waters of Lampedusa Island (Italy). Aquat. Conserv. 23, 745–757 (2013).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. H. Mixed effects models and extensions in ecology with R, 579 (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Garamszegi, L. Z. A simple statistical guide for the analysis of behaviour when data are constrained due to practical or ethical reasons. Anim. Beh. 120, 223–234 (2015).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137 (2018).Janik, V. M. Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth, Scotland. J. Comp. Physiol. A Sens. Neural Behav. Physiol 186, 673–680 (2000).CAS 
    Article 

    Google Scholar 
    Quintana-Rizzo, E., Mann, D. A. & Wells, R. S. Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus). JASA 120, 1671–1683 (2006).Article 

    Google Scholar 
    Sayigh, L. S. Development and function of signature whistles of free ranging bottlenose dolphins, Tursiops truncatus. MIT/WHOI joint program (1992).Janik, V. M., Sayigh, L. S. & Wells, R. S. Signature whistle shape conveys identity information to bottlenose dolphins. PNAS 103, 8293–8297 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS ONE 10, e0121711 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    La Manna, G., Rako-Gospić, N., Manghi, M. & Ceccherelli, G. Influence of environmental, social and behavioural variables on the whistling of the common bottlenose dolphin (Tursiops truncatus). Behav. Ecol. Sociobiol. 73, 12 (2019).Article 

    Google Scholar 
    Ballard, S. M. & Lee, K. M. The acoustics of marine sediments. JASA 13, 18–18 (2017).
    Google Scholar 
    Smolker, R. & Pepper, J. W. Whistle convergence among allied male bottlenose dolphins (Delphinidae, Tursiops sp). Ethology 105, 595–617 (1999).Article 

    Google Scholar 
    Sayigh, L. S., Esch, H. C., Wells, R. S. & Janik, V. M. Facts about signature whistles of bottlenose dolphins (Tursiops truncatus). Anim. Behav. 74, 1631–1642 (2007).Article 

    Google Scholar 
    Jourdan J., et al. Distribution and abundance of bottlenose dolphin (Tursiops truncatus) along French Provençal coast. In Proceeding of the 30th European Cetacean Society Conference, Madeira (2016).Labach, H. et al. Distribution and abundance of common bottlenose dolphin (Tursiops truncatus) over the French Mediterranean continental shelf. Mar. Mam. Sci. 2021, 1–11 (2021).
    Google Scholar 
    Terranova, F. et al. Signature whistles of the demographic unit of bottlenose dolphins (Tursiops truncatus) inhabiting the Eastern Ligurian Sea: characterisation and comparison with the literature. Eur. Zool. J. 88, 771–781 (2021).Article 

    Google Scholar  More

  • in

    Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis

    Gilbert, S. F., Sapp, J. & Tauber, A. I. A symbiotic view of life: we have never been individuals. Q. Rev. Biol. 87, 325–341 (2012).PubMed 
    Article 

    Google Scholar 
    Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B. & Tyler, C. R. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 34, 996–1008 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Husnik, F. & Keeling, P. J. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr. Opin. Genet. Dev. 58-59, 1–8 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Nat Acad. Sci. USA 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holt, C. C., van der Giezen, M., Daniels, C. L., Stentiford, G. D. & Bass, D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). ISME J. 14, 531–543 (2020).PubMed 
    Article 

    Google Scholar 
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14, 1100–1110 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallot, E. K. & Amato, K. R. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19, 639–653 (2021).Article 
    CAS 

    Google Scholar 
    Colston, T. J. & Jackson, C. R. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25, 3776–3800 (2016).PubMed 
    Article 

    Google Scholar 
    Levin, D. et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science 372, eabb5352 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2013).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, https://doi.org/10.1128/mSystems.00097-18 (2018).Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mBio 4, 6 (2019).
    Google Scholar 
    Grond, K. et al. No evidence for phylosymbiosis in Western chipmunk species. FEMS Microbiol. Ecol. 96, fiz182 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11, 1 (2020).Article 

    Google Scholar 
    Trevelline, B. K., Sosa, J., Hartup, B. K. & Kohl, K. D. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc. R. Soc. B 287, 20192988 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eckert, E. M., Anicic, N. & Fontaneto, D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol. Ecol. 30, 1545–1558 (2021).PubMed 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–228 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bik, H. M. Microbial metazoa are microbes too. mSystems 4, e00109–e00119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).PubMed 
    Article 

    Google Scholar 
    Guidetti, R. et al. Further insights in the Tardigrada microbiome: phylogenetic position and prevalence of infection of four new Alphaproteobacteria putative endosymbionts. Zool. J. Linn. Soc. 188, 925–937 (2020).Article 

    Google Scholar 
    Giere, O. Meiobenthology (Springer-Verlag, 2009).Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286, 20190831 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alejandre-Colomo, C. et al. Cultivable Winogradskyella species are genomically distinct from the sympatric abundant candidate species. ISME Commun. 1, 51 (2021).Article 

    Google Scholar 
    Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 19, 375–390 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weiland-Bräuer, N. et al. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl. Environ. Microbiol. 81, 6038–6052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruehland, C. & Dubilier, N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ. Microbiol. 12, 2312–2326 (2010).CAS 
    PubMed 

    Google Scholar 
    Gruber-Vodicka, H. R. et al. Two intracellular and cell-type specific bacterial symbionts in the placozoan Trichoplax H2. Nat. Microbiol. 4, 1465–1474 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schockaert, E. R. in Methods for the Examination of Organismal Diversity in Soils and Sediments (ed. Hall, G. S.) 211–225 (CABI, 1996).Higgins, R. P. in Introduction to the Study of Meiofauna (eds. Higgins, R. P. and Thiel, H.) 328–331 (SIP, 1988).Schram, M. D. & Davison, P. G. Irwin Loops—a history and method of constructing homemade loops. Trans. Kans. Acad. Sci. 115, 35–40 (1903).Article 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bower, S. M. et al. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J. Eukaryot. Microbiol. 51, 325–332 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J.-E., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R.-Y. et al. Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea. BMC Microbiol. 20, 25 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M) 115–175 (Wiley, 1991).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Callahan, B. J. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Love, M. I., Huber, W. & Anders, S. Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Kurtz, Z. D. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph Software Package for Complex Network Research (InterJournal, 2006).Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Kolde, R. pheatmap: pretty heatmaps. R package version 1.0.12 https://CRAN.R-project.org/package=pheatmap (2015).Lin, H. & Das Peddada, S. Analysis of composition of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. vegan: Community Ecology Package. R package version 2.5.7 https://CRAN.R-project.org/package=vegan (2020).Rouse, G., Pleijel, F. & Tilic, E. Annelida (Oxford Univ. Press, 2022).Ahmed, M. & Holovachov, O. Twenty years after De Ley and Blaxter—How far did we progress in understanding the phylogeny of the phylum Nematoda? Animals 11, 3479 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Steenkiste, N. W. L., Herbert, E. R. & Leander, B. S. Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean. Mol. Phylogenet. Evol. 120, 259–273 (2018). More

  • in

    Reply to: Assessing the efficiency of Verily’s automated process for production and release of male Wolbachia-infected mosquitoes

    Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).CAS 
    Article 

    Google Scholar 
    Xi, Z., Khoo, C. C. H. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).CAS 
    Article 

    Google Scholar 
    Phuc, H. K. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).Article 

    Google Scholar 
    Kandul, N. P. et al. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. 10, 84 (2019).CAS 
    Article 

    Google Scholar 
    Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).CAS 
    Article 

    Google Scholar 
    Kittayapong, P. et al. Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 13, e0007771 (2019).Article 

    Google Scholar 
    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).CAS 
    Article 

    Google Scholar 
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).Article 

    Google Scholar 
    Indriani, C. et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 4, 50 (2020).Velez, I. D. et al. The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Res. 8, 1327 (2020).Article 

    Google Scholar 
    Durovni, B. et al. The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Res. 8, 1328 (2020).Article 

    Google Scholar 
    O’Connor, L. et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6, e1797 (2012).Article 

    Google Scholar 
    Nazni, W. A. et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr. Biol. 29, 4241–4248 (2019).CAS 
    Article 

    Google Scholar 
    Klassen, W. & Curtis, C. F. In: Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer-Verlag, 2005).Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol. 64, 869–872 (1971).Article 

    Google Scholar 
    Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).Article 

    Google Scholar 
    Krafsur, E. S., Whitten, C. J. & Novy, J. E. Screwworm eradication in North and Central America. Parasitol. Today 3, 131–137 (1987).CAS 
    Article 

    Google Scholar 
    Hendrichs, J., Ortiz, G., Liedo, P. & Schwarz, A. Six years of successful medfly program in Mexico and Guatemala. In: Fruit Flies of Economic Importance (ed Cavalloro, R.) 353–365 (A. A. Balkema, 1983).Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar. J. 5, 41 (2006).Article 

    Google Scholar 
    Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation biology of mosquitoes. Malar. J. 8 Suppl 2, S6 (2009).Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 19, 349–355 (2003).Article 

    Google Scholar 
    Culbert, N. J. et al. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasit. Vectors 11, 603 (2018).CAS 
    Article 

    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 16179 (2018).Article 

    Google Scholar 
    Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).CAS 
    Article 

    Google Scholar 
    Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203–214 (2003).Article 

    Google Scholar 
    The Wolbachia Project–Singapore Consortium & Ching, N. L. Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics. Preprint at https://www.medrxiv.org/content/10.1101/2021.06.16.21257922v1 (2021).Soh, S. et al. Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions. PLoS Global Public Health https://doi.org/10.1371/journal.pgph.0000024 (2021). More

  • in

    A trait database and updated checklist for European subterranean spiders

    Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Fraser, L. H. TRY—A plant trait database of databases. Glob. Chang. Biol. 26, 189–190 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lecocq, T. et al. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 6, 301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).Article 

    Google Scholar 
    Lowe, E. C. et al. Towards establishment of a centralized spider traits database. J. Arachnol. 48 (2020).Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 

    Google Scholar 
    de Bello, F. et al. Handbook of trait-based ecology: from theory to R tools. (Cambridge University Press, 2021).Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111, 13690–13696 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R. & Scheiner, S. M. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165 (2019).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872 (2020).PubMed 
    Article 

    Google Scholar 
    Cardoso, P. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94 (2012).Article 

    Google Scholar 
    Fernandes, C. S., Batalha, M. A. & Bichuette, M. E. Does the cave environment reduce functional diversity? PLoS One 11, e0151958 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Saccò, M. et al. New light in the dark – a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. Sci. Total Environ. 662, 963–977 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Mammola, S. & Isaia, M. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences 284, 20170193 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parimuchová, A. et al. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. 11, 4994 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bloom, T. et al. Discovery of two new species of eyeless spiders within a single Hispaniola cave. J. Arachnol. 42, 148–154 (2014).Article 

    Google Scholar 
    Mammola, S., Cardoso, P., Ribera, C., Pavlek, M. & Isaia, M. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316 (2018).Article 

    Google Scholar 
    Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers. Data J. 7, e38492 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milano, F. et al. Spider conservation in Europe: a review. Biol. Conserv. 256, 109020 (2021).Article 

    Google Scholar 
    Pekár, S. et al. The World Spider Trait database (WST): a centralised global open repository for curated data on spider traits. Database 2021, baab064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ledesma, E., Jiménez-Valverde, A., de Castro, A., Aguado-Aranda, P. & Ortuño, V. M. The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. Zookeys 841, 39–59 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Spider Catalog. World Spider Catalog. Version 23.0. Natural History Museum Bern 10.24436/2 (2022).Nentwig, W. et al. Araneae – Spider of Europe. 10.24436/1 (2021).Malumbres-Olarte, J. et al. Habitat filtering and inferred dispersal ability condition across-scale species turnover and rarity in Macaronesian island spider assemblages. J. Biogeogr. 48, 3131–3144 (2021).Article 

    Google Scholar 
    Nentwig, W., Gloor, D. & Kropf, C. Spider taxonomists catch data on web. Nature 528, 479 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct. Ecol. 34, 1064–1077 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr. Syst. 32, 1069–1082 (2018).Article 

    Google Scholar 
    Huber, B. A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterr. Biol. 26, 1–18 (2018).ADS 
    Article 

    Google Scholar 
    Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. & Ribera, C. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae:Dysderidae) in the Canary Islands. Invertebr. Syst. 21, 623–660 (2007).Article 

    Google Scholar 
    Ubick, D., Paquin, P., Cushing, P. E. & Duperre, N. Spiders of North America: An Identification Manual. (Amer Arachnological Society, 2007).Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition and functional diversity of spiders. PLoS One 6, e21710 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smithers, P. The early life history and dispersal of the cave spider Meta menardi (Latreille, 1804) (Araneae: Tetragnathidae). Bull. Br. arachnol. Soc 13, 213–216 (2005).
    Google Scholar 
    Mammola, S., Hormiga, G., Arnedo, M. A. & Isaia, M. Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae:Pimoidae). Invertebr. Syst. 30, 566–587 (2016).Article 

    Google Scholar 
    Sket, B. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist. 42, 1549–1563 (2008).Article 

    Google Scholar 
    Trajano, E. & de Carvalho, M. R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the schiner-racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26 (2017).Article 

    Google Scholar 
    Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).Article 

    Google Scholar 
    Mammola, S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).Article 

    Google Scholar 
    Mammola, S. et al. Quantifying troglomorphism in hyperspace. Arpha Conf. Abstr. 5, e82941 (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).Palacio, F. X. et al. A protocol for reproducible functional diversity analyses. EcoEvoRxiv https://doi.org/10.32942/osf.io/yt9sb (2022).Article 

    Google Scholar 
    Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    de Bello, F., Botta-Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. R Package vegan: community ecology package. R package version 2.5-3 (2018).R Core Team. R: A language and environment for statistical computing. (2021).Mammola, S. A trait database for European subterranean spiders, Figshare, https://doi.org/10.6084/m9.figshare.16574255 (2022).Cardoso, P. & Pekar, S. arakno – An R package for effective spider nomenclature, distribution, and trait data retrieval from online resources. J. Arachnol. 50, 30–32 (2022).Article 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    Podani, J., Kalapos, T., Barta, B. & Schmera, D. Principal component analysis of incomplete data – A simple solution to an old problem. Ecol. Inform. 61, 101235 (2021).Article 

    Google Scholar 
    Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. C. BAT: Biodiversity Assessment Tools. R package version 2.6.0 (2021).Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).Article 

    Google Scholar 
    De Bello, F. et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol. Evol. 2, 163–174 (2011).Article 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    Article 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2020).Article 

    Google Scholar 
    Wong, M. K. L. & Carmona, C. P. Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods Ecol. Evol. 12, 946–957 (2021).Article 

    Google Scholar 
    Mammola, S., Piano, E., Malard, F., Vernon, P. & Isaia, M. Extending Janzen’s hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650 (2019).Article 

    Google Scholar 
    Kratochvíl, J. Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akad. Věd v Brně 12, 1–59 (1978).
    Google Scholar 
    Denny, M. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. J. Exp. Biol. 220, 139–146 (2017).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Cave_dwelling_spiders_Europe. Figshare https://doi.org/10.6084/m9.figshare.8224025.v1 (2019).Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. (John Murray, 1859).Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).PubMed 
    Article 

    Google Scholar 
    Lučić, I. Interview with Boris Sket: nothing has a sense in speleobiology, without a comparison of cave animals with the ‘normal’ epigean ones. Acta Carsologica 50, 5–9 (2021).Article 

    Google Scholar 
    McGill, B. J. The what, how and why of doing macroecology. Glob. Ecol. Biogeogr. 28, 6–17 (2019).Article 

    Google Scholar 
    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci. 283, 20152434 (2016).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B Biol. Sci. 286, 20191579 (2019).Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr, in press (available at https://doi.org/10.1101/2021.03.17.435827) (2022).Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).ADS 
    Article 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Chichorro, F. et al. Species traits predict extinction risk across the Tree of Life. bioRxiv 2020.07.01.183053 (2020).Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).ADS 
    Article 

    Google Scholar 
    Borges, P. A. V. et al. Volcanic caves: Priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).Article 

    Google Scholar 
    Rabelo, L. M., Souza-Silva, M. & Ferreira, R. L. Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers. Conserv. 27, 2097–2129 (2018).Article 

    Google Scholar 
    Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).Article 

    Google Scholar 
    Pipan, T., Deharveng, L. & Culver, D. C. Hotspots of subterranean biodiversity. Diversity 12, 209 (2020).Article 

    Google Scholar 
    Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1483–1504 (2020).Article 

    Google Scholar 
    Iannella, M. et al. Getting the ‘most out of the hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. e01844 (2021).Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).Article 

    Google Scholar 
    Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev., early view at https://doi.org/10.1111/brv.12851 (2022).Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. (Oxford University Press, USA, 2014).Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Convervation. (Oxford University Press, USA, 2014).Sobral, M. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26, 674–676 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).Article 

    Google Scholar 
    Elgar, M. A., Ghaffar, N. & Read, A. F. Sexual dimorphism in leg length among orb-weaving spiders: a possible role for sexual cannibalism. J. Zool. 222, 455–470 (1990).Article 

    Google Scholar 
    Deeleman-Reinhold, C. L. Revision of the cave-dwelling and related spiders of the genus Troglohyphantes Joseph (Linyphiidae), with special reference to the Yugoslav species. Opera Acad. Sci. Artium Slov. 23 (1978).Isaia, M. & Pantini, P. New data on the spider genus Troglohyphantes (Araneae, Linyphiidae) in the Italian Alps, with the description of a new species and a new synonymy. Zootaxa 2690, 1–18 (2010).Article 

    Google Scholar 
    Hagstrum, D. W. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann. Entomol. Soc. Am. 64, 757–760 (1971).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2020).Article 

    Google Scholar 
    Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats – The case of meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 46, 427–437 (2017).Article 

    Google Scholar 
    Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecologica 36, 522–529 (2010).ADS 
    Article 

    Google Scholar 
    Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 49, 119–124 (2020).Article 

    Google Scholar 
    Isaia, M. & Chiarle, A. Taxonomic notes on Cybaeus vignai Brignoli, 1977 (Araneae, Cybaeidae) and Dysdera cribrata Simon, 1882 (Araneae, Dysderidae) from the Italian Maritime Alps. Zoosystema 37, 45–56 (2015).Article 

    Google Scholar 
    Ledford, J. et al. Phylogenomics and biogeography of leptonetid spiders (Araneae: Leptonetidae). Invertebr. Syst. 35, 332–349 (2021).
    Google Scholar 
    Isaia, M., Mammola, S., Mazzuca, P., Arnedo, M. A. & Pantini, P. Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae). Syst. Biodivers. 15, 307–326 (2017).Article 

    Google Scholar 
    Hajer, J. & Řeháková, D. Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106, 223–231 (2003).PubMed 
    Article 

    Google Scholar 
    Huber, B. A., Pavlek, M. & Komnenov, M. Revision of the spider genus Stygopholcus (Araneae, Pholcidae), endemic to the Balkan Peninsula. Eur. J. Taxon. 752, 1–60 (2021).
    Google Scholar 
    Huber, B. A. Revision of the spider genus Hoplopholcus Kulczyński (Araneae, Pholcidae). Zootaxa 4726, 1–94 (2020).Article 

    Google Scholar 
    Cardoso, P. & Scharff, N. First record of the spider family symphytognathidae in Europe and description of Anapistula ataecina sp. n. (araneae). Zootaxa 2246, 45–57 (2009).Article 

    Google Scholar 
    Wang, C., Ribera, C. & Li, S. On the identity of the type species of the genus Telema (Araneae, Telemidae). Zookeys 251, 11–19 (2012).Article 

    Google Scholar 
    Hesselberg, T., Simonsen, D. & Juan, C. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour 1–28 (2019). More

  • in

    Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014

    Literature reviewWe conducted a comprehensive review of relevant literature published since 1995. Studies were extracted from the China National Knowledge Infrastructure and Web of Science using the following keywords: “N (nitrogen) loss OR NO (nitric oxide) emission OR N2O (nitrous oxide) emission OR NH3 (ammonia volatilization) emission OR NO3− (nitric leaching) OR N (nitrogen) runoff AND wheat AND China”. We excluded the following types of experiment: experiments not covering the entire wheat growing season, experiments conducted in greenhouses or laboratories, experiments without zero-N control, and experiments including manure, controlled release fertilizer, or inhibitors. In total, we extracted 941 observations from 138 articles, consisting of 121 observations of NO emission, 383 of N2O emission, 185 of NH3 emission, 188 of NO3− leaching, and 64 of Nr runoff. We also extracted data on N application rates, and climate and soil variables (Fig. 1). Missing climate data were obtained from China Meteorological Data Network (https://data.cma.cn/), miss values of soil organic carbon (SOC) and total N content were obtained from the National Scientific Fertilizer Network (http://kxsf.soilbd.com/), and missing soil silt, clay, sand content, bulk density, cation exchange capacity (CEC), and pH data were obtained from the Harmonized World Soil Database (HWSD) v. 1.2 (http://www.fao.org/soils-portal/soil-survey/soilmaps-and-databases/harmonized-world-soildatabase-v12/en). Based on this dataset, the EFs of Nr loss pathways were calculated by the following equation:$$E{F}_{i}=left({E}_{treatment}{rm{-}}{E}_{control}right){rm{/}}N;applied$$
    (1)
    where i = 1–5, represented NO, N2O, NH3, NO3− leaching and Nr runoff, respectively. Etreatment is the loss rate of experimental treatments with applied N fertilizer, Econtrol is the loss rate of experimental control without applied N fertilizer, and N applied is the N application rate corresponding to Etreatment. The resulting data was used to develop RF models to predict EFs of the five Nr loss pathways.Fig. 1The generate framework of the Nr loss from Chinese wheat system (Nr-Wheat) 1.0 database.Full size imageRF modelsRF models outperformed empirical models in previous studies15,18,19. We employed RF models to predict the EFs of NO, N2O, NH3, NO3− leaching, and Nr runoff. Environmental factors were selected via redundancy analysis20. Redundancy analysis, a basic ordination technique for gradients analysis, produces an ordination summarizing the variation in several response variables that can be best explained by a matrix of explanatory variables based on multiple linear regression. We conducted redundancy analysis using Canoco 5 to further analyze the effects of 10 environmental factors, including 4 soil physical factors (bulk density, silt, clay, and sand content), 4 soil chemical factors (pH, SOC, CEC and total N content), and 2 weather factors (total rainfall and mean temperature during the wheat growing period) of different EFs. Ultimately, the dataset of each pathway contained an ensemble of different environmental factors (Table 1).Table 1 Environmental factors were employed to build RF model for each pathway and total explanatory rates.Full size tableWhen establishing the RF model, the first step was to select k features from a total of m (k  More

  • in

    VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae)

    The custom code used to clean occurrence records and construct SDMs is available at (github.com/RhettRautsaw/ VenomMaps). We used the following R16 packages for data cleaning, manipulation, species distribution modeling, and Shiny app creation: tidyverse17 readxl18, data.table19, sf20, sp21,22, rgdal23, raster24, smoothr25, ape26, phytools27, argparse28, parallel16, memuse29, dismo30, rJava31, concaveman32, spThin33, usdm34, ENMeval35, kuenm36, shiny37, leaflet38, leaflet.extras39, leaflet.extras240, RColorBrewer41, ggpubr42, ggtext43, and patchwork44.Updating occurrence record taxonomyOur goal was to update and reconstruct the distributions of New World pitvipers. We used the Reptile Database45 (May 2021) as our primary source for current taxonomy which included the following genera: Agkistrodon, Atropoides, Bothriechis, Bothrocophias, Bothrops, Cerrophidion, Crotalus, Lachesis, Metlapilcoatlus, Mixcoatlus, Ophryacus, Porthidium, and Sistrurus. However, to ensure we captured all New World pitvipers records, we incorporated all members of the family Viperidae (all vipers and pitvipers) into our pipeline for updating occurrence record taxonomy (i.e., to account for errors in the recorded latitude, longitude, or if subfamily was not recorded).First, we collected global occurrence records for “Viperidae” from GBIF (downloaded 2021-08-19)46, Bison (downloaded 2021-08-19)47, HerpMapper (only New World taxa; downloaded 2021-08-19)48, Brazilian Snake Atlas49, BioWeb (downloaded 2021-07-07)50, unpublished data/databases from RMR, GJV, EPH, LRVA, MM, and CLP, and georeferenced literature records totaling 373,673 species-level records, 292,425 of which are New World pitvipers. Given the fluidity of taxonomy, records were often associated with outdated names. For example, Crotalus mitchelli pyrrhus was elevated to Crotalus pyrrhus51, but may still be recorded as the former in a given repository (e.g., GBIF). To correct taxonomy in our database, we checked records against a list of synonyms found on the Reptile Database and compared them to current taxonomy. If species and subspecies columns matched the same taxon (or no subspecies was recorded), then species IDs were not altered. If species and subspecies IDs did not match the same taxon, we updated taxonomy by minimizing the number of changes required to a given character string. We then manually checked all changes.Constructing distribution mapsNext, we collected preliminary distribution maps from the International Union for Conservation of Nature (IUCN; downloaded 2018-11-27)52, Global Assessment of Reptile Distributions (GARD) v1.153, Heimes54, Campbell and Lamar55, and unpublished maps. We manually curated distribution maps for all New World pitvipers in QGIS using the occurrence records, previous distribution maps, and recent publications for each taxon (note that distributions for Old World Viperidae have not yet been updated). We used a digital relief map (maps-for-free.com) and The Nature Conservancy Terrestrial Ecoregions (TNG.org)56 to identify clear distribution boundaries (e.g., mountains). We then clipped the final distributions to a land boundary (GADM v3.6)57 and smoothed the distribution using the the “chaikin” method in the R package smoothr25.Occurrence-distribution overlapOur initial taxonomy check was only concerned with records for which a subspecies was recorded and had since been elevated to species status. Therefore, many records with no assigned subspecies likely remained associated with an incorrect or outdated generic and/or specific identification. Fortunately, taxonomic changes are typically associated with changes in the species’ expected distribution. For example, when Crotalus simus was resurrected from C. durissus, the distribution of C. durissus was split: the northern portion of its range in Central America now represented the resurrected species (C. simus) and the southern portion of its range remained C. durissus55. Yet, occurrence records in Central America often remain labelled as C. durissus in data repositories. Therefore, we spatially joined records with the newly reconstructed species distribution maps to determine if they overlapped with their expected distribution (Old World taxa were joined with the GARD 1.1 distributions53).Briefly, we developed a custom function (occ_cleaner.R) to perform the spatial join and update taxonomy. First, we calculated the distance for each record to the 20 nearest distributions within 50 km (full overlap resulted in a distance of 0 m). Next, we calculated the phylogenetic distance between the recorded species ID and each species with which that record overlapped using the tree from Zaher et al.58 and adding taxa based on recent clade-specific publications (bind.tip2.R; see github.com/RhettRautsaw/VenomMaps for full list of references and details). If records overlapped with their expected species, no changes were made. If records fell outside of their expected distribution, we filtered the potential overlapping and nearby species (within 50 km) to minimize phylogenetic distance. If multiple species were equally distant (i.e., share the same common ancestor), we attempted to minimize geographic distance. If multiple species remained equally distant in both phylogenetic and geographic distance, we flagged the record to be manually checked. We also flagged records if a species’ taxonomy had changed and records were additionally flagged as potentially dubious if the taxonomic change had a phylogenetic divergence greater than 5 million years. We manually checked all flagged records and returned records to their original species ID if species identity remained uncertain. We flagged these records as potentially dubious, along with records that fell outside of their expected distribution (within 50 km), and removed all flagged records for species distribution modeling. Our final cleaned database contained 344,998 global records, of which 275,087 were New World pitvipers.Species distribution modelingWe attempted to infer SDMs for the 158 species of New World pitvipers currently recognized by the Reptile Database (May 2021) and additionally modeled the three subspecies of Crotalus ravus separately based on recommendations for species status elevation by Blair et al.59 for a total of 160 species. We developed a unix-executable R script (autokuenm.R) designed to take occurrence records, distribution maps, and environmental data and prepare these data for species distribution modeling with kuenm36. We chose to use kuenm – and MaxEnt v3.4.460 – because it has been shown to have good predictive power61 and fine-tuning of this algorithm has performance comparable to more computationally intensive ensembles62,63. Additionally, MaxEnt allows for flexibility in parameter selection64 and can function entirely with presence data14.Prior to autokuenm, to account for sampling/spatial bias during SDM, we created a bias file by using the pooled New World pitviper occurrence records as representative background data65,66,67,68. Specifically, we converted occurrence records to a raster and performed two-dimensional kernel density estimation (kde2d) with the MASS package with default settings69 and rescaled the kernel density by a factor of 1000 and rounded to three decimal places. This was then used as input to factor out sampling bias by MaxEnt. We then ran autokuenm, which is designed to subset/partition the cleaned occurrence records for a given species and prepare additional files for SDM. We first defined M-areas – or areas accessible to a given species – using the World Wildlife Fund Terrestrial Ecoregions70. Biogeographic regions represent distributional limits for many species and are reasonable hypotheses for the areas accessible to a given species71,72. To do this, we created alpha hulls from the subset of occurrence records for a given species using concaveman32 with default settings. We then identified regions with at least 20% of the region covered by the alpha hull and merged these regions together to form our final M-area. All environmental layers and the bias file were cropped to this M-area which was used as the geographic extent for modeling. We then randomly selected 5% of records to function as an independent test set for final model evaluation. Next, we generated 2000 random background points across the cropped environmental layers and used ENMeval to partition occurrence records into four sets using the checkerboard2 pattern35. Note that the background points here were not used in MaxEnt. One of the four partitions was selected at random to be used as the testing set; the remaining three partitions were used for training the MaxEnt models. If the number of occurrence records in the independent test set was less than five, then we used the training partition for final model creation and used the testing partition for final model evaluation.We tested the top-contributing variables from three sets of environmental layers: (1) bioclimatic variables, (2) EarthEnv topographic variables73, and (3) a combination of these variables. To select the top-contributing variables in each set, we wrote a custom function (SelectVariables) which used a combination of MaxEnt permutation importance and Variable Inflation Factors (VIF) to remove collinearity while keeping the variables that contributed the most to the model. Compared with variable selection via principal component analysis loadings, the permutation importance and VIF methodology demonstrated significant improvement in MaxEnt model fit. First, we designed SelectVariables to run MaxEnt using dismo::maxent with default settings and then extracted the permutation importance. We removed variables if they had 0% permutation importance. Next, we calculated VIF with usdm::vif and then iteratively removed variables by selecting the variables with two highest VIF values and removing whichever variable had the lowest permutation importance. We then recalculated VIF and repeated the process until the maximum VIF value was less than 10. Finally, we recalculated permutation importance with the remaining variables using dismo::maxent with default settings and removed variables with less than 1% permutation importance to create the final variable sets. This process was done for each species independently.With the final environmental variable, testing, and training sets, we generated SDMs using kuenm. First, we created candidate calibration models with multiple combinations of regularization multipliers (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 8, 10), feature classes (l, q, h, lq, lp, lt, lh, qp, qt, qh, pt, ph, th, lqp, lqt, lqh, lpt, lph, lth, qpt, qph, qth, pth, lqpt, lqph, lqth, lpth, qpth, lqpth), and sets of environmental predictors (bioclimatic, topographic, combination) totaling 2,958 candidate models per species. We then ran each model in parallel using GNU Parallel74. Next, we evaluated the candidate models and selected the best models using statistical significance (partial ROC), prediction ability (omission rates; OR), and model complexity (AICc) with the “kuenm_ceval” function with default settings. Specifically, models were only considered if they were statistically significant and had an OR less than 5%. If no models passed the OR criteria, the models with the minimal OR were considered. Finally, any remaining models were filtered to those within 2 AICc of the top model (Supplementary Table 1). In addition to evaluating and comparing all models together, we evaluated bioclimatic-only and combination-only models separately since these two sets of environmental variables were expected to be the best performing models given the ubiquity of bioclimatic variables in species distribution modeling (Supplementary Table 1).We generated 10 bootstrap replicates for each of the “best” calibration models using the “kuenm_mod” function. We also performed jackknifing to assess variable importance and models were output in raw format. We evaluated the final models using “kuenm_feval” with default settings. To select the best model for each comparative set (i.e., all, bioclimatic-only, and combination-only sets), we filtered the final evaluation results to minimize the OR and maximize the AUC ratio (Supplementary Table 2). If multiple models remained and were considered equally competitive, we averaged these models together (Supplementary Table 3). Because we performed three different set of comparisons, there were three “best” models per species, so we again aimed to minimize the OR and maximize the AUC ratio to select a final model for each species (Supplementary Table 4). We then converted our final models into cloglog format for visualization and threshold the models using a 10th percentile training presence cutoff (Fig. S2). Both conversion and thresholding functions are provided as R functions (raw2log, raw2clog, raster_threshold in functions.R; github.com/RhettRautsaw/VenomMaps). More

  • in

    Dark matter-free galaxies, alarming tree deaths and the dawn of farming

    This Hubble image captures a set of galaxies that are unusual because they seem not to have dark matter.Credit: NASA/ESA/P. van Dokkum, Yale Univ.

    Galaxies without dark matter baffle astronomersScientists have long thought that galaxies cannot form without the gravitational pull of the mysterious material known as dark matter. But one group of astronomers thinks it might have observed a line of 11 galaxies that don’t contain any of the substance, and could all have been created in an ancient collision (P. van Dokkum et al. Nature 605, 435–439; 2022).This kind of system could be used to learn about how galaxies form, and about the nature of dark matter itself. However, some researchers are not convinced that the claim is much more than a hypothesis.The finding centres on two galaxies, called DF2 and DF4, that were described in 2018 and 2019. Their stars moved so slowly that the pull of dark matter was not needed to explain their orbits, so the team concluded that the galaxies contained no dark matter.In the latest research, scientists identified between three and seven new candidates for dark-matter-free galaxies in a line between DF2 and DF4, as well as strange, faint galaxies at either end.“If proven right, this could certainly be exciting for galaxy formation. However, the jury is still out,” says Chervin Laporte, an astronomer at the University of Barcelona in Spain.Northern Australian tree deaths double in 35 yearsThe rate at which trees are dying in the old-growth tropical forests of northern Australia each year has doubled since the 1980s, and researchers say climate change is probably to blame.The findings, published in Nature on 18 May, come from an extraordinary record of tree deaths catalogued at 24 sites in the tropical forests of northern Queensland over the past 49 years (D. Bauman et al. Nature https://doi.org/hv67; 2022).The research team recorded that 2,305 trees across 81 key species had died since 1971. But from the mid-1980s, tree mortality risk increased from an average of 1% a year to 2% a year (see ‘Increasing death rate’). Of the 81 tree species that the team studied, 70% showed an increase in mortality risk over the study period.The study found that the rise in death rate occurred at the same time as a long-term trend of increases in the atmospheric vapour pressure deficit, which is the difference between the amount of water vapour that the atmosphere can hold and the amount of water it does hold at a given time. The higher the deficit, the more water trees lose through their leaves, which can lead to sustained stress and eventually tree death.

    Europe’s first farming populations descend mostly from farmers in the Anatolian peninsula, in what is now Turkey.Credit: Fatih Kurt/Anadolu Agency/Getty

    Ancient DNA maps ‘dawn of farming’Sometime before 12,000 years ago, nomadic hunter-gatherers in the Middle East made one of the most important transitions in human history: they began staying put and took to farming.Two ancient-DNA studies have now homed in on the identity of the hunter-gatherers who settled down.Researchers sequenced the genomes of 15 hunter-gatherers and early farmers who lived in southwest Asia and Europe, along a key migration routes into Europe — the Danube River (N. Marchi et al. Cell https://doi.org/gp49rr; 2022).The team found that ancient farmers in Anatolia — now Turkey — descended from repeated mixing between distinct hunter-gatherer groups from Europe and the Middle East. These groups first split at the height of the last Ice Age, some 25,000 years ago. Modelling suggests that the western groups nearly died out, before rebounding as the climate warmed.Once established in Anatolia, the researchers found, early farmers moved west into Europe in a stepping-stone-like way, beginning around 8,000 years ago. They mixed occasionally — but not extensively — with local hunter-gatherers.The findings chime with those of a similar ancient-genomics study posted on the bioRxiv preprint server this month (M. E. Allentoft. et al. Preprint at bioRxiv https://doi.org/hv7g; 2022). More