More stories

  • in

    Policy responses to the Ukraine crisis threaten European biodiversity

    J.G. was funded by The Danish Independent Research council (grant 0165-00018B). N.S. and J.W.B were funded by EU Horizon 2020 SUPERB (grant agreement 101036849). N.D.B. was funded by UK Research and Innovation’s Global Challenges Research Fund (UKRI GCRF) through the Trade, Development and the Environment Hub project (project number ES/S008160/1). More

  • in

    Increasing the heat in an aging forest

    Boreal forests contain about half the carbon (C) of terrestrial forests worldwide, and as such, they play an immense role in the global C cycle. Therefore, accurately predicting the global C balance requires understanding of C fluxes in boreal trees and how they respond to climate change. While the relationships between climate and boreal tree growth are generally non-stationary, it remains unknown whether the same is true of the relationships between climate and C fluxes. More

  • in

    Timbre in the timber: how I date ancient violins

    Stringed instruments can be worth millions of dollars, particularly those made in northern Italy in the seventeenth and eighteenth centuries. There are also many copies and forgeries.As a forest ecologist, I use dendrochronology — or tree-ring dating — to understand how trees grow, as well as to investigate historical environmental conditions. The widths of tree rings vary according to meteorological conditions, so samples can be dated by cross-referencing against databases of ring-width series.In 2010, I was an expert witness in a legal case about a viola supposedly made in the sixteenth century. I agreed with two laboratories that had independently concluded that it could not have been made before the late eighteenth century.Dendrochronology cannot precisely date when an instrument was made, but it can identify the most recent year that the wood it was made from was part of a growing tree. Tree rings give probabilities and levels of confidence in a date according to the availability of appropriate reference series.Dendrochronological analyses can produce conflicting dates, creating confusion about the method’s reliability. The most famous example is the ‘Messiah’ violin made by Antonio Stradivari in 1716. In 1999, doubts were raised about its authenticity when, among other reasons, tree-ring analysis found that the instrument could not have been made before 1738, a year after Stradivari’s death. The finding was based on examining a photograph of the instrument, and was later retracted. The controversy highlighted the limitations of the technique for verifying the authenticity of musical instruments.I also use dendrochronology to understand the impacts of droughts, and I’m fascinated by how trees grow, how water is transported in them and whether species differences are evolutionary adaptations. More

  • in

    Ecological dynamics of the gut microbiome in response to dietary fiber

    Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:t9076.Article 
    CAS 

    Google Scholar 
    Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sitkin S, Vakhitov T, Pokrotnieks J. How to increase the butyrate-producing capacity of the gut microbiome: do IBD patients really need butyrate replacement and butyrogenic therapy? J Crohn’s Colitis. 2018;12:881–2.Article 

    Google Scholar 
    Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes. 2019;11:1–20.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68:1801–12.Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Brit J Nutr. 2018;119:176–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27:389–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome. 2020;8:118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6:1535–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014;5:4344.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut. 2020;69:1975–87.Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE. 2011;6:e25200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018;3:1274–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021;591:633–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koskella B, Hall LJ, Metcalf C. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 2021;15:2131–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to guide dietary interventions to improve human health. Nutr Res. 2020;82:1–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmed W, Rashid S. Functional and therapeutic potential of inulin: a comprehensive review. Crit Rev Food Sci Nutr. 2019;59:1–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol. 2019;28:95–108.PubMed 
    Article 
    CAS 

    Google Scholar 
    Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. 2018;9:1598.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE. 2015;10:e116704.Article 
    CAS 

    Google Scholar 
    Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4:e00016–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7:28.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Creswell R, Tan J, Leff JW, Brooks B, Mahowald MA, Thieroff-Ekerdt R, et al. High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Med. 2020;12:59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. Elife. 2019;8:e38471.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morjaria S, Schluter J, Taylor BP, Littmann ER, Carter RA, Fontana E, et al. Antibiotic-induced shifts in fecal microbiota density and composition during hematopoietic stem cell transplantation. Infect Immun. 2019;87:e00206.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol. 2013;9:e1003388.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533:255–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide K, Sakanashi C, et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome. 2020;8:5–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods. 2017;33:194–201.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med. 2021;13:22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell. 2019;179:59–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sze MA, Topçuoğlu BD, Lesniak NA, Ruffin MT, Schloss PD. Fecal short-chain fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial community structure. mBio. 2019;10:e1419–54.Article 

    Google Scholar 
    Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10:4146.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao Y, Angulo MT, Lao S, Weiss ST, Liu Y. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun. 2020;11:3329.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worthen WB, Moore JL. Higher-order interactions and indirect effects: a resolution using laboratory Drosophila communities. Am Nat. 1991;138:1092–104.Article 

    Google Scholar 
    Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100:577–88.PubMed 
    Article 

    Google Scholar 
    Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio. 2018;9:e00525.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4:e00528.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hiel S, Bindels LB, Pachikian BD, Kalala G, Broers V, Zamariola G, et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr. 2019;109:1683–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nordgaard I, Hove H, Clausen MR, Mortensen PB. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol. 1996;31:1011–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sakata T. Pitfalls in short-chain fatty acid research: a methodological review. Anim Sci J. 2019;90:3–13.PubMed 
    Article 

    Google Scholar 
    McNeil NI, Cummings JH, James WP. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19:819–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 2017;5:135.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurry T, Nguyen L, Yu X, Alm EJ. Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE. 2021;16:e254004.Article 
    CAS 

    Google Scholar 
    Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A guide to diet-microbiome study design. Front Nutr. 2020;7:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature. 2018;557:434–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4:1253–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gowda K, Ping D, Mani M, Kuehn S. Genomic structure predicts metabolite dynamics in microbial communities. Cell. 2022;185:530–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qian Y, Lan F, Venturelli OS. Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Curr Opin Microbiol. 2021;62:84–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17:742–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Zhang S, Wang H, Zhu M. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, et al. Orthogonal comparison of GC–MS and 1H NMR spectroscopy for short chain fatty acid quantitation. Anal Chem. 2017;89:7900–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE. 2020;15:e227285.Article 
    CAS 

    Google Scholar 
    Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, et al. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. Bmc Biol. 2019;17:106.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao Z, Baltar F, Herndl GJ. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci Adv. 2020;6:z4354.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. Bmc Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinform. 2012;28:3150–2.CAS 
    Article 

    Google Scholar 
    Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. Bmc Bioinform. 2018;19:307.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes using PULpy. 2018. https://www.biorxiv.org/content/10.1101/421024v1.full.Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems. 2018;3:e00069–18Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems. 2018;3:e00202.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald JH. Handbook of biological statistics, vol. Baltimore, MD: Sparky House Publishing; 2009.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. Grantee Submission. 2017;76:1–32.
    Google Scholar  More

  • in

    No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120(3), 321–326 (2011).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540(7632), 220–229. https://doi.org/10.1038/nature20588 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113(1), 146–151 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).Article 

    Google Scholar 
    Velthuis, H. H. W. & Van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37(4), 421–451 (2006).Article 

    Google Scholar 
    Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Royal Soc. B Biol. Sci. 285(1870), 20172140 (2018).Article 

    Google Scholar 
    Brown, M. J. F. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40(3), 410–416 (2009).Article 

    Google Scholar 
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259 (2013).Article 

    Google Scholar 
    David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48(1), 12–21 (2019).PubMed 
    Article 

    Google Scholar 
    Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Johnson, R. M. et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7(2), e31051. https://doi.org/10.1371/journal.pone.0031051 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108(2), 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25(4), 662–671. https://doi.org/10.1111/j.1523-1739.2011.01707.x (2011).Article 
    PubMed 

    Google Scholar 
    O’Neal, S. T., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article 
    PubMed 

    Google Scholar 
    Botías, C. et al. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90(2), 415–431 (2021).PubMed 
    Article 

    Google Scholar 
    Dance, C., Botías, C. & Goulson, D. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fauser-Misslin, A., Sadd, B. M., Neumann, P. & Sandrock, C. Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. J. Appl. Ecol. 51(2), 450–459 (2014).Article 

    Google Scholar 
    Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35(2), 420–434 (2021).Article 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Why bees are so vulnerable to environmental stressors. Trends Ecol. Evol. 32(4), 268–278 (2017).PubMed 
    Article 

    Google Scholar 
    Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. Bee reverse-learning behavior and intra-colony differences: simulations based on behavioral experiments reveal benefits of diversity. Ecol. Model. 277, 119–131 (2014).Article 

    Google Scholar 
    Raine, N. E. & Chittka, L. No trade-off between learning speed and associative flexibility in bumblebees: A reversal learning test with multiple colonies. PLoS ONE 7(9), e45096 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 55(6), 2812–2821 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119. https://doi.org/10.1037/0735-7036.97.2.107 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    Takeda, K. Classical conditioned response in the honey bee. J. Insect Physiol. 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9 (1961).CAS 
    Article 

    Google Scholar 
    Laloi, D. et al. Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exp. Appl. 90(2), 123–129 (1999).Article 

    Google Scholar 
    Gómez-Moracho, T., Heeb, P. & Lihoreau, M. Effects of parasites and pathogens on bee cognition. Ecol. Entomol. 42, 51–64 (2017).Article 

    Google Scholar 
    Garratt, M. P. D. et al. The identity of crop pollinators helps target conservation for improved ecosystem services. Biol. Cons. 169, 128–135 (2014).CAS 
    Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462–467 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H. et al. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 7, e7208 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sparks, T. C. et al. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 107(1), 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7(1), e29268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491(7422), 105–108 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53(5), 1440–1449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williamson, S. M. & Wright, G. A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216(10), 1799–1807 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101(6), 1743–1748 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, E., Chang, H., Wu, W. & Chen, Y. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE 7(11), e49472 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, G. B., Siebert, M. W., Wang, N. X., Loso, M. R. & Sparks, T. C. Sulfoxaflor–A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. Pestic. Biochem. Physiol. 178, 104924 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordes, N. et al. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 109(2), 209–216 (2012).PubMed 
    Article 

    Google Scholar 
    Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 35(6), 737–747 (2010).Article 

    Google Scholar 
    Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9(2), 169–173 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shykoff, J. A. & Schmid-Hempel, P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22(2), 117–125 (1991).Article 

    Google Scholar 
    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. Royal Soc. B Biol. Sci. 273(1590), 1073–1078 (2006).Article 

    Google Scholar 
    Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58(4), 383–389 (2005).Article 

    Google Scholar 
    Martin, C. D., Fountain, M. T. & Brown, M. J. F. Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Azpiazu, C. et al. Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci. Rep. 11(1), 1–9 (2021).Article 
    CAS 

    Google Scholar 
    European Food Safety Authority (EFSA) et al. Peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA J. 17(3), e05633 (2019).
    Google Scholar 
    Linguadoca, A., Rizzi, C., Villa, S. & Brown, M. J. F. Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Sci. Total Environ. 795, 148680 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandor, A., Sarospataki, M. & Farkas, S. The mode of action of neonicotinoids on insects. Növényvédelem 51(1), 14–24 (2015).
    Google Scholar 
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alghamdi, A., Dalton, L., Phillis, A., Rosato, E. & Mallon, E. B. Immune response impairs learning in free-flying bumble-bees. Biol. Lett. 4(5), 479–481 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. Immune response inhibits associative learning in insects. Proc. Royal Soc. London Series B Biol. Sci. 270(1532), 2471–2473 (2003).Article 

    Google Scholar 
    Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav. Immun. 20(2), 135–138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fries, I. et al. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 40(3–4), 91–96 (2001).CAS 
    Article 

    Google Scholar 
    Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 287(1932), 20200935 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charbonneau, L. R., Hillier, N. K., Rogers, R. E., Williams, G. R. & Shutler, D. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory. Sci. Rep. 6, 22626 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gage, S. L. et al. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera). J. Exp. Biol. 221(4), jeb161489. https://doi.org/10.1242/jeb.161489 (2018).Article 
    PubMed 

    Google Scholar 
    Piiroinen, S. & Goulson, D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. Royal Soc. B Biol. Sci. 283(1828), 20160246 (2016).Article 
    CAS 

    Google Scholar 
    Bell, H. C., Montgomery, C. N., Benavides, J. E. & Nieh, J. C. Effects of nosema ceranae (Dissociodihaplophasida: Nosematidae) and flupyradifurone on olfactory learning in honey bees, Apis mellifera (Hymenoptera: Apidae). J. Insect Sci. https://doi.org/10.1093/jisesa/ieaa130 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x (2000).Article 

    Google Scholar 
    Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561(7721), 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, B. D., Skemp, A. K. & Papaj, D. R. Learning in two contexts: The effects of interference and body size in bumblebees. J. Exp. Biol. 208(11), 2045–2053 (2005).PubMed 
    Article 

    Google Scholar 
    Riveros, A. J. & Gronenberg, W. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856. https://doi.org/10.1007/s00114-009-0532-y (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66(1), 50–61. https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Arce, A. N. et al. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc. Royal Soc. B Biol. Sci. 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655 (2018).CAS 
    Article 

    Google Scholar 
    Muth, F., Gaxiola, R. L. & Leonard, A. S. No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. Royal Soc. Open Sci. 7(5), 191883 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Rutrecht, S. T. & Brown, M. J. F. Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos 118(6), 941–949 (2009).Article 

    Google Scholar 
    Schmid-Hempel, P., Puhr, K., Krüger, N., Reber, C. & Schmid-Hempel, R. Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 53(2), 426–434 (1999).PubMed 
    Article 

    Google Scholar 
    Evans, L. J., Raine, N. E. & Leadbeater, E. Reproductive environment affects learning performance in bumble bees. Behav. Ecol. Sociobiol. 70(12), 2053–2060 (2016).Article 

    Google Scholar 
    Cole, R. J. The application of the “triangulation” method to the purification of nosema spores from insect tissues. J. Invertebr. Pathol. 15(2), 193–195. https://doi.org/10.1016/0022-2011(70)90233-8 (1970).Article 

    Google Scholar 
    Folly, A. J., Barton-Navarro, M. & Brown, M. J. F. Exposure to nectar-realistic sugar concentrations negatively impacts the ability of the trypanosome parasite (Crithidia bombi) to infect its bumblebee host. Ecol. Entomol. 45(6), 1495–1498 (2020).Article 

    Google Scholar 
    Schlüns, H., Sadd, B. M., Schmid-Hempel, P. & Crozier, R. H. Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. Dev. Comp. Immunol. 34(7), 705–709 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Yourth, C., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1 (2008).Article 

    Google Scholar 
    Fournier, A., Rollin, O., Le Féon, V., Decourtye, A. & Henry, M. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae). J. Econ. Entomol. 107(1), 38–46 (2014).PubMed 
    Article 

    Google Scholar 
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6(1), 1–11 (2016).Article 
    CAS 

    Google Scholar 
    R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Kassambara, A., Kosinski, M., Biecek, P., & Fabian, S. (2020). survminer: drawing survival curves using ‘ggplot2’. R package version 0.4. 8. 2019.Therneau, T. M. & Lumley, T. Package ‘survival’. R Top Doc 128(10), 28–33 (2020).
    Google Scholar 
    Bartoń, K. (2020). MuMIn: Multi-Model Inference. R package ver. 1.43. 17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multimodel inference, 2. More

  • in

    Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection

    Model overview and parametersOur mathematical model of the CF lung microbiome dynamics, originally developed in [20], is based on knowledge of the physiology and interactions among community members from experimental data and evidence in the literature. The model setting is a mucus-plugged tube, open to the air at the top and sealed at the bottom, mimicking a lung bronchiole. This setting is meant to pair with a previously established experimental microcosm called the WinCF system [21], which we use below for experiments. There is an important spatial component to the model, as oxygen penetration from the open top of the tube is constant and shapes the community structure. The consequences of these chemical gradients were first modelled in our initial study [20]. The community members are classified as either “pathogens”, representing classic CF pathogens, or “fermenters”, representing other anaerobic organisms commonly encountered in CF airways. These classifications are a significant simplification, but they can be considered as guilds, in that their individual members have similar inherent properties defined by their core metabolism, antibiotic resistance, and niche occupancy [20]. The definition of classic pathogens and anaerobic fermenters is also clinically relevant, as the former are those assayed in clinical labs for antibiotic resistance to inform treatment decisions, whereas anaerobic fermenters are not cultured or tested for susceptibility in most clinical labs. Classifications of each microbiome member into these guilds are available in Tables S2–S4. Fermenters reside in low oxygen areas and utilize sugars to produce acids [20] (Fig. 1). Pathogens, principally, but not exclusively, Pseudomonas aeruginosa, occupy high oxygen regions where they aerobically respire and utilize amino acids as a carbon source producing ammonium, which increases the surrounding pH [20] (Fig. 1). Pathogens can also respire anaerobically, with nitrate as an electron acceptor (Fig. 1). In addition to increasing the surrounding pH, they produce inhibitor molecules (such as phenazines and quinolones) that inhibit the growth of fermenters [20] (Fig. 1). This model is hereon referred to as the “mathematical model”.Fig. 1: Schematic of principles and interacations defining the mathematical model.All consitunents of the model are represented in illustrating basic assumptions and interactions. Fermenters (θf) metabolize (SG) as a carbon source, which produce acid (F) leading to an increase in hydrons (H+) (i.e. lowering the pH) under anaerobic conditions. This pH decrease inhibitis the growth of pathogens. Pathogens (θP) in the presence of oxygen (SO) (i.e., aerobic conditions) use amino acids (SA) as their primary carbon source. The byproduct of this metabolism is ammonium (P), which produces hydroxide (OH-) leading to an increase in pH, inhibiting fermenter growth. Under anaerobic conditions pathogens use nitrate (SN) as an electron acceptor. In addition to this pathogens produce a chemical inhibitor of fermenters (I).Full size imagePredicting and modelling outcomes of antibiotic therapyTo better conceputalize and compare our modeling and experimental results, we first theoretically predicted the outcomes of antimicrobial therapy against the two guilds using three theoretical drugs: one with fermenter coverage (denoted Tf), one with pathogen coverage (denoted Tp), and one with broad spectrum coverage (denoted Tw). This approach is hereon referred to as the “theoretical prediction”. To further enable comparison to experimental data we outline characteristics of the two guilds we expect to observe in the experiments. Firstly, the growth of anaerobic fermenters is positively correlated with an increase in gas production (bubble formation in the WinCF system) [21]. Second, an increase in P. aeruginosa positively correlates with an increase in its inhibitor molecule (e.g., Quinolone HHQ) and P. aeruginosa does not produce gas in the WinCF system [21]. Thirdly, based on Tables S1–S4 and the CF microbiome literature, fermenters are more diverse than pathogens [2, 43, 44]. These characteristics of our theoretical prediction enable direct comparison to microbiome measures of experimental results, such as alpha diversity, beta diversity, pathogen relative abundance, fermenter relative abundance and total bacterial load (TBL).With our theoretical prediction we expect the following outcomes when communities are exposed to antibiotics: (1) community resistance, (2) community death, (3) pathogen death, and (4) fermenter death (Fig. 2A–E). In both the complete absence of an antibiotic and community resistance, we expect TBL, pathogens, fermenters, HHQ, and gas production measures to increase until reaching carrying capacity (Fig. 2B). The opposite, community death (treatment with Tw) results in both microbial entities failing to grow (Fig. 2C). Tw treatment would not change alpha or beta diversity, as we would simply measure the initial inoculum due to total community death. Outcomes 1 and 2 have a degree of uncertainty due to the fact that it is difficult to assume the community would not change from the inoculum without an antibiotic present, but it is expected that Tw would have less impact on microbiome diversity than Tp or Tf (Fig. 1C). Treatment with Tp results in an anaerobic fermenter bloom, increasing alpha and beta diversity along with gas production and a decrease in HHQ production (Fig. 2D). Finally, in the case of Tf treatment, fermenter abundance and gas production would decrease while HHQ abundance would increase (Fig. 1E). Treatment with Tf will also result in a decrease in alpha diversity and an increase in beta diversity because of changes in community structure when the diverse anaerobic fermenters are killed (Fig. 2E).Fig. 2: Theoretical predictions and Model iteration 1.The initial microbiome is composed of both pathogens and fermenters and is illustrated in (A), but the proportions of these are unique to each patient. Under pressure of the various treatments (B) NT, (C) Tw, (D) Tp, and (E) Tf the predicted community response is illustrated. The response i.e., (expected change) in common microbiome measures as indicated in the legend (yellow = increase, red = decrease). The measures are the following: Alpha diversity (AD), Beta diversity (BD), gas production (GP), total bacterial load (TBL), pathogen abundance (P), fermenter abundance (F), and 2-heptyl-4quinolone abundance (HHQ). The model output treatment-to-NT log-ratio of (F) fermenter population and (G) pathogen population of patient 12 as an example with spatial variation at t = 50 h. Boxplots showing model outcomes of the (H) 16S rRNA gene copy ratio and (I) Pathogen to Fermenter log-ratio compared to the control. Each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). The dotted grey line denotes no change from treatment.Full size imageThe theoretical prediction was then tested with the mathematical model hereon referred to as “model iteration 1”. Importantly, our model parameters can use relative abundance data of the two guilds as input. Therefore, we used the sputum microbiome data of all 24 subjects as inputs for model interation 1 (Fig. 2F–H). The outputs were in line with our theoretical prediction and showed that the fermenter drug would reduce the fermenter load, with little effect on the pathogens, the pathogen drug vice versa, and the broad-spectrum antibiotic would kill both (Fig. 2F–H). However, model iteration 1 did produce some unexpected results. The TBL of the Tw decreased to similar levels as Tf and Tp, indicating similar levels of killing whether there was selection against a single guild or the whole community (Fig. 2H). In addition, the TBL and Pathogen/Fermenter log-ratio were variable, indicating the carrying capacity and community dynamics were predicated upon characteristics of this initial sputum inoculum (Fig. 2F–H). Our theoretical prediction (Fig. 2A–E), in tandem with model iteration 1 (Fig. 2F–H), provided a platform for comparison to the in vitro antibiotic experiments with the WinCF system described below.Experimental results of antibiotic therapy against the lung microbiomeWe examined the effects of antibiotics (n = 11) on the CF sputum microbiome cultured in a lung bronchiole microcosm (WinCF system, n = 24) using a combination of 16S rRNA gene amplicon sequencing, metabolomics, and qPCR analysis and compared to our theoretical prediction and model iteration 1. This is hereon referred to as the “antibiotic experiment”. The antibiotics were chosen to represent the main chemical classes commonly used in CF clinics and included: amoxicillin, azithromycin, aztreonam, ciprofloxacin, colistin, doxycycline, levofloxacin, meropenem, metronidazole, bactrim (a combination of sulfamethoxazole/trimethoprim), and tobramycin. Each of the 24 sputum samples were used as an incoculum in ASM treated with one of 11 different antibiotics cultured at 37 °C for 48 h (Table S1) and compared to a no-treatment control. WinCF tubes were also inoculated with this media/sputum/antibiotic mixture to quantify gas bubble production from fermentation (as described in [21]). The antibiotic concentration for each drug was variable and chosen to match the measured concentrations in the blood or sputum of pwCF in pharmacokinetic studies (Table S1). The most prominent genera across all samples after growth were Pseudomonas, Streptococcus, Veillonella, Haemophilus, Fusobacterium, Prevotella, Staphylococcus, Achromobacter, and Neisseria (Fig. S2). A principal component analysis (PCA) biplot, examining the top five factors by percent contribution, showed the primary genera driving community differentiation were Pseudomonas, Streptococcus, and Staphylococcus (Fig. S3). The effects of antibiotics and individual patients on the composition of the communities were compared via PERMANOVA (Table S7). Tested separately, both antibiotic and subject source had a highly significant effect on the community structure (p 40%), which occurred in 6.8% of samples. The microbiomes of outcome 6 were predominantly dominated by pathogens compared to the control samples (Fig. S7). We found this outcome to be especially interesting, with potential clinical relevance; we therefore performed follow up experiments to understand it further.Fig. 4: Characterizing outcomes in the antibiotic experiment.Weighted UniFrac distance compared to (A) rRNA gene copies, (B) Gas production, (C) Pathogen to fermenter log ratio, (D) Shannon index. Individual points are colored by antibiotic treatment (n = 11). Observed outcomes (Community resistance, community death, pathogen death, anaerobe death, niche replacement, and release of community level inhibition) are highlighted via large cogs on each of the panels colored by the outcome they represent. These highlighted regions are meant to aid in visualization of their presence in the overlying data. Cutoff values of for the outcomes are further described in Table S17.Full size imageOther interesting data relationships were found in these experiments (Fig. S8) though they were not defined as outcomes. For example, the changing UniFrac distance and change in alpha diversity were negatively correlated (Fig. S8a). A large increase in UniFrac distance (over 40% increase), was generally associated with takeover by a particular ASV, driving this phenomenon (Figs. S7 and S9). According to prevalence measures of theses samples the prominent genera in these instances were Pseudomonas and Streptococcus (Fig. S9). In the cases of meropenem and amoxicillin, UniFrac distances were increased while the Shannon indices were decreased, due to the killing of diverse anaerobic community, but there were fewer cases of an increase in alpha diversity and a significant microbiome change (observed in 3 samples only) indicating a kind of buffering of the microbiome by the diverse anaerobic community (Fig. S7a). The increase in TBL characterizing outcome 6 was rarely associated with an increase in alpha diversity (Table S17). Finally, similar to a phenomenon described in CF sputum [31], when the microbiome alpha diversity increases the metabolome diversity decreases, likely reflecting consumption of different metabolites by a more diverse microbiome (Fig. S7c).Model iteration 2 and experimental validation to explain increase in TBLBecause model iteration 1 did not predict the interesting outcome 6, we altered its parameters to determine if we could observe an increase in TBL in the presence of an antibiotic, hereon referred to as “model iteration 2”. In model iteration 1, parameter λ in the function g2(Z) was set to 0.1, which represents pH driven inhibition of fermenters on pathogen growth. Due to the inverse relationship of this parameter, reducing it to 0.05 increased the strength of inhibition, resulting in an increase in TBL for some subjects, akin to that observed in our experimental outcome 6 (Fig. 5A). This only occurred in Tf treatments in model iteration 2, corresponding to a bloom in pathogens after killing of anaerobes. Furthermore, this phenomenon was only present in modelled samples that initially contained much lower populations of the fermenter guild compared to pathogens and is dependent on the spatial structure driven by oxygen gradients that is an inherent property the modeled system (Figs. 1 and 5A). This finding suggests that outcome 6 in the antibiotic experiment may be driven by an antibiotic mediated release of community level inhibition driven by the effect of low pH from fermenters on pathogens and the inhibition of anaerobes by oxygen [20]. Thus, we set out to explore this phenomenon in more detail experimentally.Fig. 5: Model alteration and verification.(A) Model iteration 2 outcomes of 16S rRNA gene copy ratio of each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). Individual points are colored by antibiotic treatment (n = 11). The dotted grey line denotes no change from treatment. Subsequent experimental validation using two communities, P1 and P2 (n = 10), showing the (B) pH in relation to log rRNA gene copies, (C) Approximate pH, (D) Pathogen/Fermenter log ratio, (E) log rRNA gene copies, (F) Genera abundance, (G) Distribution based on genera-classification as classical pathogen or anaerobic fermenter. Asterisks denote p-value significance where ****p ≥ 0.0001, ***p ≥ 0.001, **p ≥ 0.01, *p ≥ 0.05.Full size imageA simple in vitro experiment was performed where three antibiotics, meropenem (Tw), tobramycin (Tp), and metronidazole (Tf), were added at 2.048 mg/L in ASM media inoculated with two representative communities obtained from pwCF: P1 and P2 (n = 10 replicates) (Fig. 5B–F). The three drugs were selected based on their common uses against CF infections based on pathogen and/or anaerobic coverage, but we acknowledge that their effects are not exclusive to these organisms. Community P1 did not contain P. aeruginosa via culturing on cetrimide agar, whereas the bacterium was isolated from the sputum of P2. This provided a unique opportunity to test the predictions from model iteration 2 on the outcomes of a community with or without P. aeruginosa. A lower concentration of antibiotics was chosen to avoid widespread killing of the communities. We examined the following: rRNA gene copies, approximate pH (based on RGB color values inferred from phenol red buffered media standards) and 16S rRNA gene amplicon sequencing (Fig. 5). This is hereon referred to as the validation experiment. The validation experiment reproduced outcome 6, where both the number of rRNA gene copies were higher when the antibiotic was present than in the no treatment control for both P1 and P2 (Fig. 5C). In contrast to model iteration 2, this only occurred in treatment Tw (paired t-test, p = 0.000831) (Fig. 5). Accordingly, this increase in TBL corresponded to an increase in pH of the cultures, validating the association of the anaerobe induced fermentation with an inhibition of the communities’ total carrying capacity (p = 1.69 × 10−9, Fig. 5B–E). In fact, there was a strong positive correlation between the TBL and media pH overall (Fig. 5B). Furthermore, P2 reached a higher bacterial load overall than P1 in the validation experiment, indicating that the pathogen’s presence drove the community to a higher carrying capacity (Fig. 5E). The lower growth in community P1 shows that a community of primarily anaerobic fermenters struggles without the aerobic pathogen present. Microbiome profiles of these follow up experiments validated the predictions of model iteration 2 and initial findings of outcome 6 (Fig. 5F, G). Meropenem killed the anaerobic community (primarily Streptococci) and the increase in TBL was driven by a bloom of Pseudomonas (P2 community) and Staphylococcus (P1 community) to a higher level than the communities’ inherent carrying capacity (Fig. 5F, G). This experiment was subsequently repeated (n = 5), with the same results observed (Fig. S10). It was interesting that a similar increase in TBL occurred from a community without a dominant pathogen (P1, Fig. 5G). We hypothesize that this result is due to the importance of both oxygen and pH in the governing dynamics. With very low levels of the pathogen guild, the community struggles to grow due to high oxygen penetration. When the anaerobes are inhibited by antibiotics, even low levels of an initial pathogen can begin to bloom, as they are not inhibited by oxygen or the antibiotic, and this leads to an increase in total carrying capacity.Antibiotic effects at the strain level in pwCFTo explore similar phenomena in outcomes 5 and 6 from pwCF treated with antibiotics we sequenced the metagenomes of sputum samples collected from subjects immediately prior to and during antibiotic treatment (n = 6) (Table S19). To minimize the effects of multiple therapies at once, a common occurrence in CF therapeutics, these samples were selected based on the treatment provided being the only known antibiotic prescribed to the subject at the time. Metagenomes were analyzed at the strain level and TBL was examined using qPCR. Overall, there was no significant decrease in TBL (Fig. 6A, Wilcoxon rank-sum test, p = 0.095), but alpha diversity significantly decreased (Fig. 6B, Wilcoxon rank-sum test, p = 0.045). Analysis of the rank abundance changes of the microbiome at the strain level showed that all six subjects had dynamic changes in their sputum microbiomes associated with antibiotic treatment despite little decrease in TBL (Fig. 6C). Thus, like outcome 5, and indicative of outcome 6, dynamic community changes occur in pwCF with minor changes in TBL.Fig. 6: In vivo changes across individuals.qPCR and shotgun metagenomics were performed on sputum samples from individuals (n = 6) before and after exacerbation. We examined the following: (A) rRNA gene copies (B) Shannon Index, and (C) Rank abundance. Each point on the rank abundance represents an individual strain. The color of lines on the rank abundance represents type of bacterium based on our model definitions where blue equates to Fermenters, red to Pathogens, and green to other.Full size image More

  • in

    Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ

    Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & McPhail, J. D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 140, 85–108 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).ADS 
    Article 

    Google Scholar 
    Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).PubMed 
    Article 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    Day, T. & Young, K. A. Competitive and facilitative evolutionary diversification. Bioscience 54, 101–109 (2004).Article 

    Google Scholar 
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).Article 

    Google Scholar 
    Stuart, Y. E., Inkpen, S. A., Hopkins, R. & Bolnick, D. I. Character displacement is a pattern: so, what causes it? Biol. J. Linn. Soc. 121, 711–715 (2017).Article 

    Google Scholar 
    Brockhurst, M. A., Hochberg, M. E., Bell, T. & Buckling, A. Character displacement promotes cooperation in bacterial biofilms. Curr. Biol. 16, 2030–2034 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, C. N., Traverse, C. C., Mayo-Smith, L., Buskirk, S. W. & Cooper, V. S. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution 69, 283–293 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rainey, P. B., Buckling, A., Kassen, R. & Travisano, M. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15, 243–247 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, P. E., Souza, V. & Lenski, R. E. Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996).Article 

    Google Scholar 
    Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104, 876–881 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Westeberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Evol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Development and evolution of character displacement. Ann NY Acad Sci. 1256, 89–107 (2012).ADS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas Gonzalez, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leveau, J. H. & Lindow, S. E. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Natl. Acad. Sci. USA 98, 3446–3453 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13, 238–243 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106, 16428–16433 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlstrom, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 22, 142–155 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Roman-Reyna, V. et al. Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice (NY) 13, 72 (2020).Article 

    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio. 6, e02527–14 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Laforest-Lapointe, I. & Whitaker, B. K. Decrypting the phyllosphere microbiota: progress and challenges. Am. J. Bot. 106, 171–173 (2019).PubMed 

    Google Scholar 
    Baldotto, L. E. B. & Olivares, F. L. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can. J. Microbiol. 54, 918–931 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl. Acad. Sci. USA 100, 15977–15982 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70, 346–355 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, C. E., Monier, J. M. & Jacques, M. A. A technique To quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 64, 4789–4795 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218, 1327–1333 (2018).PubMed 
    Article 

    Google Scholar 
    Gourion, B., Rossignol, M. & Vorholt, J. A. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl. Acad. Sci. USA 103, 13186–13191 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, J. L., Carroll, T. L. & Sundin, G. W. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb. Ecol. 49, 104–113 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15, 3256–3269 (2016).Article 
    CAS 

    Google Scholar 
    Ochsner, A. M. et al. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Mol. Microbiol. 111, 1152–1166 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helmann, T. C., Deutschbauer, A. M. & Lindow, S. E. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc. Natl. Acad. Sci. USA 116, 18900–18910 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl. Acad. Sci. USA 115, E3055–E3064 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pulawska, J. et al. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci. Rep. 10, 20582 (2020).Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vogel, C., Innerebner, G., Zingg, J., Guder, J. & Vorholt, J. A. Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp Strain Fr1 against Pseudomonas syringae DC3000. Appl. Environ. Microbiol. 78, 5529–5535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier, B. A. et al. A general non-self response as part of plant immunity. Nat. Plants 7, 696–705 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29r–37r (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tao, F., Swarup, S. & Zhang, L. H. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159–3170 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, M. X., Zhu, F., Dong, S. L., Pritchard, D. G. & Wu, H. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 285, 12140–12148 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, A. et al. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 4, 187–190 (2002).CAS 
    PubMed 

    Google Scholar 
    Halder, U., Banerjee, A. & Bandopadhyay, R. Structural and functional properties, biosynthesis, and patenting trends of bacterial succinoglycan: a review. Indian J. Microbiol. 57, 278–284 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehaus, K. & Becker, A. The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Sub-Cell. Biochem. 29, 73–116 (1998).CAS 
    Article 

    Google Scholar 
    Ellis, H. R. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39, 178–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marco, M. L., Legac, J. & Lindow, S. E. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ. Microbiol. 7, 1379–1391 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, X. L. et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. USA 110, E425–E434 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, S. J. & Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 277, 24155–24161 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, B. C. et al. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J. Bacteriol. 195, 4742–4752 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheublin, T. R. et al. Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 16, 2212–2225 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hopsu-Havu, V. K. & Glenner, G. G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7, 197–201 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. & Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6, 544 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chipperfield, J. R. & Ratledge, C. Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13, 165–168 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visca, P., Ciervo, A., Sanfilippo, V. & Orsi, N. Iron-regulated salicylate synthesis by Pseudomonas Spp. J. Gen. Microbiol. 139, 1995–2001 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seifert, G. J., Barber, C., Wells, B., Dolan, L. & Roberts, K. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablackis, E., Huang, J., Muller, B., Darvill, A. G. & Albersheim, P. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Beneit, F. The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol. 6, 402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mortimer, J. C. et al. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J. 83, 413–426 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J. Bacteriol. 176, 3474–3483 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077–7081 (1989).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jameson, G. N., Cosper, M. M., Hernandez, H. L., Johnson, M. K. & Huynh, B. H. Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43, 2022–2031 (2004).Sirithanakorn, C. & Cronan, J. E. Biotin, a universal and essential cofactor: synthesis, ligation and regulation. FEMS Microbiol. Rev. 45, fuab003 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Choi-Rhee, E. & Cronan, J. E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilmes, P. et al. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2, 853–864 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 9, 1141–1151 (2015).PubMed 
    Article 

    Google Scholar 
    Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).Article 

    Google Scholar 
    Singh, P., Santoni, S., Weber, A., This, P. & Peros, J. P. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures. Sci. Rep. 9, 14294 (2019).Kosma, D. K. et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 1918–1929 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piffeteau, A. & Gaudry, M. Biotin uptake: influx, efflux and countertransport in Escherichia coli K12. Biochim. Biophys. Acta 816, 77–82 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hassani, M. A., Duran, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P. Beyond the black queen hypothesis. ISME J. 10, 2085–2091 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pacheco, A. R., Moel, M. & Segre, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Joyner, D. C. & Lindow, S. E. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiol. 146, 2435–2445 (2000).CAS 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N., de Oliveira, S., Schreiber, L. & Leveau, J. H. Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles. Front. Microbiol. 2, 197 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Remus-Emsermann, M. N. P., Tecon, R., Kowalchuk, G. A. & Leveau, J. H. J. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 6, 756–765 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peredo, E. L. & Simmons, S. L. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front. Microbiol. 8, 2669 (2018).Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ledermann, R., Strebel, S., Kampik, C. & Fischer, H. M. Versatile vectors for efficient mutagenesis of Bradyrhizobium diazoefficiens and other alphaproteobacteria. Appl. Environ. Microbiol. 82, 2791–2799 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staswick, P. E., Tiryaki, I. & Rowe, M. L. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. & Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlesier, B., Breton, F. & Mock, H. P. A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Mol. Biol. Rep. 21, 449–456 (2003).CAS 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemmerle, L., Ochsner, A. M., Vonderach, T., Hattendorf, B. & Vorholt, J. A. Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol. 650, 215–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uhrig, R. G. et al. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant Cell Environ. 44, 821–841 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, J. J. et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48, D606–D612 (2020).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Synthesis of palaeoecological data from the Polish Lowlands suggests heterogeneous patterns of old-growth forest loss after the Migration Period

    Giesecke, T. et al. Towards mapping the late Quaternary vegetation change of Europe. Veg. Hist. Archaeobot. 23, 75–86. https://doi.org/10.1007/s00334-012-0390-y (2013).Article 

    Google Scholar 
    Fyfe, R. M., Woodbridge, J. & Roberts, N. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Glob. Chang. Biol. 21, 1197–1212. https://doi.org/10.1111/gcb.12776 (2015).Article 
    PubMed 

    Google Scholar 
    Gilliam, F. S. Forest ecosystems of temperate climatic regions: From ancient use to climate change. New Phytol. 212, 871–887. https://doi.org/10.1111/nph.14255 (2016).Article 
    PubMed 

    Google Scholar 
    Jamrichová, E. et al. Human impact on open temperate woodlands during the middle Holocene in Central Europe. Rev. Palaeobot. Palynol. 245, 55–68. https://doi.org/10.1016/j.revpalbo.2017.06.002 (2017).Article 

    Google Scholar 
    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028 (2009).Article 

    Google Scholar 
    Kalis, A. J., Merkt, J. & Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—human impact and natural causes. Quatern. Sci. Rev. 22, 33–79. https://doi.org/10.1016/S0277-3791(02)00181-6 (2003).Article 

    Google Scholar 
    Molinari, C. et al. Exploring potential drivers of European biomass burning over the Holocene: A data-model analysis. Glob. Ecol. Biogeogr. 22, 1248–1260. https://doi.org/10.1111/geb.12090 (2013).Article 

    Google Scholar 
    Roberts, N. et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 8, 716. https://doi.org/10.1038/s41598-017-18646-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118. https://doi.org/10.1073/pnas.2023483118 (2021).Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035. https://doi.org/10.1098/rsta.2010.0331 (2011).Article 
    PubMed 

    Google Scholar 
    Drake, B. L. Changes in North Atlantic Oscillation drove Population Migrations and the Collapse of the Western Roman Empire. Sci. Rep. 7, 1227. https://doi.org/10.1038/s41598-017-01289-z (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enters, D., Dörfler, W. & Zolitschka, B. Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. The Holocene 18, 243–254. https://doi.org/10.1177/0959683607086762 (2008).Article 

    Google Scholar 
    Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA 115, 3210–3218. https://doi.org/10.1073/pnas.1716912115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yeloff, D. & van Geel, B. Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of ad 1347?52. J. Biogeogr. 34, 575–582. https://doi.org/10.1111/j.1365-2699.2006.01674.x (2007).Article 

    Google Scholar 
    Alt, K. W. et al. Lombards on the Move—An Integrative Study of the Migration Period Cemetery at Szólád Hungary. PLoS ONE 9, e110793. https://doi.org/10.1371/journal.pone.0110793 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pohl, W. in Ethnicity as a Political Resource Conceptualizations across Disciplines, Regions, and Periods (ed Resource« University of Cologne Forum »Ethnicity as a Political) 201–208 (Transcript Verlag, 2015).Dreibrodt, S. & Wiethold, J. Lake Belau and its catchment (northern Germany): A key archive of environmental history in northern central Europe since the onset of agriculture. The Holocene 25, 296–322. https://doi.org/10.1177/0959683614558648 (2014).Article 

    Google Scholar 
    Dreßler, M. et al. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen. Quatern. Res. 66, 25–37. https://doi.org/10.1016/j.yqres.2006.02.007 (2017).CAS 
    Article 

    Google Scholar 
    Leuschner, C. & Ellenberg, H. in Ecology of Central European Forests: Vegetation Ecology of Central Europe, Volume I (eds Christoph Leuschner & Heinz Ellenberg) 31–116 (Springer International Publishing, 2017).Pędziszewska, A. et al. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 137–198 (Brill, 2020).Mączyńska, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 201–224 (Brill, 2020).Lamentowicz, M. et al. Reconstructing climate change and ombrotrophic bog development during the last 4000years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418, 261–277. https://doi.org/10.1016/j.palaeo.2014.11.015 (2015).Article 

    Google Scholar 
    Makohonienko, M. in Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (eds M. Ralska-Jasiewiczowa et al.) 411–416 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/ Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article 

    Google Scholar 
    Moździoch, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 123–167 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Wołoszyn, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 84–136 (Brill, 2020).Karczewski, M. Archeologia środowiska zachodniobałtyjskiego kręgu kulturowego na pojezierzach. (Bogucki Wydawnictwo Naukowe, 2011).Nowakiewicz, T. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages (eds P. Urbańczyk & M. Trzeciecki) 170–217 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Okulicz-Kozaryn, Ł. Dzieje Prusów (Wydawnictwo Monografie FNP, 1997).Okulicz, J. Osadnictwo ziem pruskich od czasów najdawniejszych do XIII wieku. Dzieje Warmii i Mazur w zarysie (Polskie Wydawnictwo Naukowe, 1981).Ralska-Jasiewiczowa, M. Correlation between the Holocene history of the Carpinus betulus and prehistoric settlement in North Poland. Acta Soc. Bot. Pol. 33, 461–468 (1964).Article 

    Google Scholar 
    Noryśkiewicz, A. M. Historia roślinności i osadnictwa ziemi chełmińskiej w późnym holocenie. Studium palinologiczne. (Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2013).Ralska-Jasiewiczowa, M. L., M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Brown, A., Poska, A. & Pluskowski, A. The environmental impact of cultural change: Palynological and quantitative land cover reconstructions for the last two millennia in northern Poland. Quatern. Int. 522, 38–54. https://doi.org/10.1016/j.quaint.2019.05.014 (2019).Article 

    Google Scholar 
    Wacnik, A., Goslar, T. & Czernik, J. Vegetation changes caused by agricultural societies in the Great Mazurian Lake District. Acta Palaeobotanica 52, 59–104 (2012).
    Google Scholar 
    Pędziszewska, A. et al. Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Rev. Palaeobot. Palynol. 216, 55–75. https://doi.org/10.1016/j.revpalbo.2015.01.008 (2015).Article 

    Google Scholar 
    Słowiński, M. et al. The role of Medieval road operation on cultural landscape transformation. Sci. Rep. 11, 20876. https://doi.org/10.1038/s41598-021-00090-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gałka, M., Tobolski, K., Zawisza, E. & Goslar, T. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veg. Hist. Archaeobotany 23, 123–152. https://doi.org/10.1007/s00334-013-0401-7 (2013).Article 

    Google Scholar 
    Marks, L. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quatern. Sci. Rev. 44, 81–88. https://doi.org/10.1016/j.quascirev.2010.08.008 (2012).Article 

    Google Scholar 
    Woś, A. Klimat Polski. (Wydawnictwo Naukowe PWN, 1999).Matuszkiewicz, W. et al. Potential natural vegetation of Poland. General map 1:300 000. (IGiPZ PAN, 1995).Zając, A. & Zając, M. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution Atlas of Vascular Plants in Poland. (Nakładem Pracowni Chorologii Komputerowej Instytutu Botaniki UJ, 2001).Matuszkiewicz, J. M. & Solon, J. Przestrzenne zróżnicowanie i cechy charakterystyczne krajobrazów Polski w ujęciu geobotanicznym. Problemy Ekologii Krajobrazu XL, 85–101 (2015).Broda, J. Historia leśnictwa w Polsce. (Wydaw. Akademii Rolniczej im. Augusta Cieszkowskiego, 2000).Rozkrut, D. et al. Statistical Yearbook of Forestry. (Główny Urząd Statystyczny, 2020).Lamentowicz, M. et al. Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38, 214–229. https://doi.org/10.1111/j.1502-3885.2008.00047.x (2009).Article 

    Google Scholar 
    Lamentowicz, M. et al. How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe. Sci. Rep. 10, 18775. https://doi.org/10.1038/s41598-020-75692-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czerwiński, S. et al. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data. Quatern. Sci. Rev. 259. https://doi.org/10.1016/j.quascirev.2021.106902 (2021).Ralska-Jasiewiczowa, M., van Geel, B. & Demsk, D. in Lake Gościąż, central Poland: a monographic study. Part 1 (eds M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska, & L. Starkel) (W. Szafer Institute of Botany, Polish Academy of Sciences, 1998).Lamentowicz, M. et al. Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland. Hydrobiologia 631, 213–230. https://doi.org/10.1007/s10750-009-9812-y (2009).Article 

    Google Scholar 
    Pędziszewska, A. & Latałowa, M. Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Veget. History Archaeobot. 25, 239–254. https://doi.org/10.1007/s00334-015-0546-7 (2016).Lamentowicz, M., Gałka, M., Pawlyta, J., Lamentowicz, Ł. G., Tomasz & Miotk-Szpiganowicz, G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Studia Quaternaria 28, 3–16 (2011).Cywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobotany 27, 111–136. https://doi.org/10.1007/s00334-017-0644-9 (2018).Article 

    Google Scholar 
    Dzieduszycki, W. Wykorzystywanie surowca drzewnego we wczesnośredniowiecznej i średniowiecznej Kruszwicy. Kwartalnik Historii Kultury Materialnej, 35–54 (1976).Kara, M. & Przybył, M. Wczesnośredniowieczne grodzisko wklęsłe w Bninie koło Poznania w świetle dotychczasowych ustaleń dendrochronologicznych. Folia Prahistorica Posnaniensia 10, 255–268 (2003).Article 

    Google Scholar 
    Gałka, M. et al. Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quatern. Sci. Rev. 156, 90–106. https://doi.org/10.1016/j.quascirev.2016.11.034 (2017).Article 

    Google Scholar 
    Kinder, M. et al. Holocene history of human impacts inferred from annually laminated sediments in Lake Szurpiły, northeast Poland. J. Paleolimnol. 61, 419–435. https://doi.org/10.1007/s10933-019-00068-2 (2019).Article 

    Google Scholar 
    Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180. https://doi.org/10.1016/j.quascirev.2020.106180 (2020).Article 

    Google Scholar 
    Wacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: Combined pollen, geochemical and historical data. Veg. Hist. Archaeobotany 25, 479–498. https://doi.org/10.1007/s00334-016-0565-z (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Tylmann, W. & Piotrowska, N. Was it ‘terra desolata’? Conquering and colonizing the medieval Prussian wilderness in the context of climate change. The Holocene 27, 465–480. https://doi.org/10.1177/0959683616660167 (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Wyczółkowski, M. & Tylmann, W. The Iron Age in the Mrągowo Lake District, Masuria, NE Poland: the Salęt settlement microregion as an example of long-lasting human impact on vegetation. Veg. Hist. Archaeobotany 23, 419–437. https://doi.org/10.1007/s00334-014-0465-z (2014).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: Combined Palynological and geochemical analysis of lake sediments from Radzyń Chełminski Northern Poland. Geoarchaeology 30, 511–527. https://doi.org/10.1002/gea.21525 (2015).Article 

    Google Scholar 
    Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quatern. Res. 89, 156–177. https://doi.org/10.1017/qua.2017.105 (2018).Article 

    Google Scholar 
    Marcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152. https://doi.org/10.1016/j.quascirev.2015.01.019 (2015).Article 

    Google Scholar 
    Milecka, K., Gałka, M. & Lamentowicz, M. Regionalna i lokalna sukcesja roślinności w Dolinie Stążki na podstawie analizy pyłkowej. Stud. Limnol. Telmatol. 6, 61–69 (2012).
    Google Scholar 
    Lamentowicz, M. et al. A 1300-year multi-proxy, high-resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change. J. Quat. Sci. 28, 582–594. https://doi.org/10.1002/jqs.2650 (2013).Article 

    Google Scholar 
    Lamentowicz, M. et al. Always on the tipping point—A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quat. Sci. Rev. 225. https://doi.org/10.1016/j.quascirev.2019.105954 (2019).Wacnik, A., Kupryjanowicz, M., Mueller-Bieniek, A., Karczewski, M. & Cywa, K. The environmental and cultural contexts of the late Iron Age and medieval settlement in the Mazurian Lake District, NE Poland: combined palaeobotanical and archaeological data. Veg. Hist. Archaeobotany 23, 439–459. https://doi.org/10.1007/s00334-014-0458-y (2014).Article 

    Google Scholar 
    Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive. The Holocene 25, 421–434. https://doi.org/10.1177/0959683614561887 (2014).Article 

    Google Scholar 
    Latałowa, M., Zimny, M., Jędrzejewska, B. & Samojlik, T. in Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds K.J. Kirby & C. Watkins) Ch. 17, 243–263 (CAB International, 2015).Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manage. 236, 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002 (2019).Article 
    PubMed 

    Google Scholar 
    Żarczyński, M., Wacnik, A. & Tylmann, W. Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland). Sci. Total Environ. 657, 585–596. https://doi.org/10.1016/j.scitotenv.2018.12.078 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. Old-Growth Forest Definitions: a Pragmatic View. 11–33 (Springer Berlin Heidelberg, 2009).Kołaczek, P. M., K. et al. in 20th Congress of the International Union for Quaternary Research (INQUA) (Dublin, Ireland, 2019).Szmoniewski, B. S. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 21–74 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Moździoch, M., Chudziak, W. & Poleski, J. Atlas grodzisk wczesnośredniowiecznych z obszaru Polski, 2015).Trzeciecki, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 277–341 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Faliński, J. B. & Pawlaczyk, P. in Grab zwyczajny – Carpinus betulus L. Nasze drzewa leśne, monografie popularnonaukowe Vol. 9 (ed W. Bugała) 157–264 (Polska Akademia Nauk, Instytut Dendrologii, „Sorus”,, 1993).Sikkema, R., Caudullo, G. & de Rigo, D. in European Atlas of Forest Tree Species (eds J. San-Miguel-Ayanz et al.) (Publ. Off. EU, 2016).Hensel, W. Słowiańszczyzna Wczesnośredniowieczna. Zarys kultury materialnej. (Państwowe Wydawnictwo Naukowe, 1987).Jørgensen, D. Pigs and Pollards: Medieval insights for UK wood pasture restoration. Sustainability 5, 387–399. https://doi.org/10.3390/su5020387 (2013).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Watkins, A. Cattle grazing in the forest of arden in the later middle ages. Agric. Hist. Rev. 37, 12–25 (1989).
    Google Scholar 
    Ładowski, S. Dykcyonarz służący do poznania historyi naturalney y rożnych osobliwszych starożytności, ktore ciekawi w gabinetach znayduią Vol. 2 (1783).Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Litt, T. & Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (1991).Makohonienko, M. Przyrodnicza historia Gniezna. (Homini, 2000).Makohonienko, M. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Filbrandt, A. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Pidek, I. A. Carpinus betulus pollen accumulation rates in Roztocze (SE Poland) in relation to presence of Carpinus in Ferdynandovian pollen diagrams. Ecol. Quest. 26, 95–101 (2017).
    Google Scholar 
    Wiśniewski, J. in Studia I Materiały Do Dziejów Suwalszczyzny (ed J. Antoniewicz) 51–138 (Prace Białostockiego Towarzystwa Naukowego Nr 4, Białostockie Towarzystwo Naukowe,, 1965).Biskup, M. et al. Państwo zakonu krzyżackiego w Prusach. Władza i społeczeństwo. (Państwowe Wydawnictwo Naukowe PWN, 2008).Pluskowski, A. The archaeology of the Prussian Crusade: Holy War and colonisation. (2012).Marcisz, K. et al. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J. Protistol. 50, 445–455. https://doi.org/10.1016/j.ejop.2014.07.001 (2014).Article 
    PubMed 

    Google Scholar 
    Marcisz, K. et al. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland. Quatern. Sci. Rev. 177, 145–157. https://doi.org/10.1016/j.quascirev.2017.10.018 (2017).Article 

    Google Scholar 
    Boratyńska, K. in Biology and Ecology of Norway Spruce (eds Mark G. Tjoelker, Adam Boratyński, & Władysław Bugała) 23–36 (Springer Netherlands, 2007).Jaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European forests. Forests 10, 849. https://doi.org/10.3390/f10100849 (2019).Article 

    Google Scholar 
    Zimny, M., Latałowa, M. & Pędziszewska, A. The Late-Holocene history of forests in the Strict Reserve of Białowieża National Park. 29–59 (Białowieski Park Narodowy, 2017).Blaauw, M., Christen, J. A., Bennett, K. D. & Reimer, P. J. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quatern. Sci. Rev. 188, 58–66. https://doi.org/10.1016/j.quascirev.2018.03.032 (2018).Article 

    Google Scholar 
    Lisitsyna, O. V., Giesecke, T. & Hicks, S. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev. Palaeobot. Palynol. 166, 311–324. https://doi.org/10.1016/j.revpalbo.2011.06.004 (2011).Article 

    Google Scholar 
    Huntley, B. & Birks, H. J. B. An Atlas of past and present pollen maps for Europe: 0–13000 years ago. (Cambridge University Press, 1983). More