More stories

  • in

    Mulching impact of Jatropha curcas L. leaves on soil fertility and yield of wheat under water stress

    Khamraev, Sh. R. & Bezborodov, Yu. G. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World 2(33), 86–93 (2016).
    Google Scholar 
    Khan, A. U. et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13(1), 1–19 (2021).CAS 

    Google Scholar 
    Patil Shirish, S., Kelkar Tushar, S. & Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 1(3), 26–29 (2013).
    Google Scholar 
    Matkovic, A. et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine 35, 37–51 (2015).Article 

    Google Scholar 
    Nawaz, A., Lal, R., Shrestha, R. K. & Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 28(2), 673–681 (2016).Article 

    Google Scholar 
    Brant, V. et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 12(2), 106–116 (2017).CAS 
    Article 

    Google Scholar 
    Kumar, R. et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 8(3), 311–334 (2014).ADS 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204, 514–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193, 538–546 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chakraborty, D. et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 95(12), 1323–1334 (2008).Article 

    Google Scholar 
    Ahmad, Z. I., Ansar, M., Iqbal, M. & Minhas, N. M. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 39(4), 1189–1195 (2007).
    Google Scholar 
    Teame, G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 12(38), 2836–2843 (2017).Article 

    Google Scholar 
    Lehar, L., Wardiyati, T., Moch Dawam, M. & Suryanto, A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 24(3), 1338–1344 (2017).CAS 

    Google Scholar 
    Arash, K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2(3), 60–64 (2013).
    Google Scholar 
    Artyszak, A., Gozdowski, D. & Kucińska, K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 60(10), 464–469 (2014).Article 

    Google Scholar 
    Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.orgElbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).King, A. J. et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 60(10), 2897–2905 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).Ullah, F., Bano, A. & Nosheen, A. Sustainable measures for biodiesel. Effects 36(23), 2621–2628 (2014).CAS 

    Google Scholar 
    Irshad, M. et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Dieye, T. et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal). J. Soil Sci. Environ Manag. 7(3), 32–44 (2016).CAS 
    Article 

    Google Scholar 
    Kafi, M. & Salehi, M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 44, 257–262 (2012).
    Google Scholar 
    Yang, Y. M., Liu, X. J., Li, W. Q. & Li, C. Z. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 7(11), 858–867 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, Z. K., Wang, Y. J. & Li, F. M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 75(1), 71–83 (2005).Article 

    Google Scholar 
    Khan, R. H., Anwar-ul-Haq, K. & Sajjad, M. R. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 4(12), 85–91 (2014).
    Google Scholar 
    Weidhuner, A., Afshar, R. K., Luo, Y., Battaglia, M. & Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 111(6), 3398–3402 (2019).CAS 
    Article 

    Google Scholar 
    Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Rummana, S., Amin, A. K. M. R., Islam, M. S. & Faruk, G. M. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 21(1), 71–76 (2018).Article 

    Google Scholar 
    Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).CAS 
    Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 595–624 (Soil Sci. Society America, 1982).
    Google Scholar 
    Steel, R. G. D., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach 3rd edn, 246 (McGraw-Hill, 1997).
    Google Scholar 
    Brady, N. C. & Weil, R. R. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils 5(13), 311–358 (2008).
    Google Scholar 
    Scharenbroch, B. C. & Lloyd, J. E. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 32(4), 180–191 (2006).Article 

    Google Scholar 
    Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25(4), 239–249 (2007).Article 

    Google Scholar 
    Liu, Z., Fu, B., Zheng, X. & Liu, G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 42(3), 445–450 (2010).CAS 
    Article 

    Google Scholar 
    Bai, S. H., Blumfield, T. J. & Reverchon, F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils 50(1), 37–44 (2014).Article 

    Google Scholar 
    Yang, H. et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 197, 104485 (2020).Article 

    Google Scholar 
    Li, X. J. et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1804(4), 929–940 (2010).CAS 
    Article 

    Google Scholar 
    Fang, S., Xie, B., Liu, D. & Liu, J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 41(2), 147–162 (2011).Article 

    Google Scholar 
    Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).Johnson, D. et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 54(4), 671–678 (2003).Article 

    Google Scholar 
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).ADS 
    Article 

    Google Scholar 
    Nielsen, N. M., Winding, A. & Binnerup, S. Microorganisms as Indicators of Soil Health 15–16 (Ministry of the Environment, National Environ. Res. Inst., 2002).
    Google Scholar 
    Wilkinson, S. C. et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 34(2), 189–200 (2002).CAS 
    Article 

    Google Scholar 
    Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48(3), 424–430 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y. Y., Yao, H. Y. & Huang, C. Y. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 43, 828–834 (2006).
    Google Scholar 
    Jensen, K. D., Beier, C., Michelsen, A. & Emmett, B. A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 24(2), 165–176 (2003).Article 

    Google Scholar 
    Stoklosa, A., Hura, T., Stupnicka-Rodzynkiewicz, E., Dabkowska, T. & Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 61(2), 205–219 (2008).
    Google Scholar 
    Ohno, T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30(5), 1631–1635 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farooq, S., Shahid, M., Khan, M. B., Hussain, M. & Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 201(3), 173–188 (2015).Article 

    Google Scholar 
    Madani, A., Rad, A. S., Pazoki, A., Nourmohammadi, G. & Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 32, 145–151 (2010).CAS 
    Article 

    Google Scholar 
    Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 80(1–3), 23–40 (2006).Article 

    Google Scholar 
    Athar, H. R., Khan, A. & Ashraf, M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32, 1799–1817 (2009).CAS 
    Article 

    Google Scholar 
    Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 41(1), 1–12 (2021).Article 
    CAS 

    Google Scholar  More

  • in

    Enhanced silica export in a future ocean triggers global diatom decline

    Mesocosm experimentsSi:Nexport measurementsBetween 2010 and 2014, we conducted five in situ mesocosm experiments to assess impacts of OA on natural plankton communities. Study sites covered a large latitudinal gradient (28 °N–79 °N) and diverse oceanic environments/ecosystems (Extended Data Fig. 1 and Extended Data Table 1). Sample collection and processing was conducted every 1 or 2 days throughout the experiments. Sinking particulate matter was obtained from sediment traps attached to the bottom of each mesocosm, thereby collecting the entire material sinking down in the enclosed water column36. Processing of sediment trap samples followed a previous protocol37. Samples for particulate matter suspended in the water column were collected with depth-integrating water samplers (HYDRO-BIOS) and filtered following standard procedures. Biogenic silica was leached from the sediment trap samples and filters by alkaline pulping (0.1 M NaOH at 85 °C). After 135 min the leaching process was terminated with 0.05 M H2SO4 and dissolved silica was measured spectrophotometrically38. Carbon and nitrogen content were determined using an elemental CN analyser (EuroEA)39.Analysis of OA impactsTo test for a systemic influence of OA on Si:Nexport, we synthesized the datasets from the different experiments and (i) conducted a meta-analysis to quantify effect sizes, and (ii) computed probability density estimates. Because the experimental design, the range of CO2 treatments, and the time periods for our analysis of Si:Nexport varied to some extent among experiments (Extended Data Table 1), we pooled mesocosms for ambient conditions and in the ({{p}}_{{{rm{CO}}}_{2}}) range of ~700–1,000 μatm (‘OA treatment’), corresponding to end-of-century values according to RCP 6.0 and 8.5 emission scenarios15. Effect sizes were calculated as log-transformed response ratios lnRR, an approach commonly used in meta-analysis40:$${rm{l}}{rm{n}}{rm{R}}{rm{R}}={rm{l}}{rm{n}}{X}_{{rm{O}}{rm{A}}}-{rm{l}}{rm{n}}{X}_{{rm{c}}{rm{o}}{rm{n}}{rm{t}}{rm{r}}{rm{o}}{rm{l}}},$$where X is the arithmetic mean of Si:Nexport ratios under OA and ambient conditions (Extended Data Table 1). Effect sizes 0 indicate that the effect was positive. Effects are considered statistically significant when 95% confidence intervals (calculated from pooled standard deviations) do not overlap with zero. The overall effect size across all studies was computed by weighing individual effect sizes according to their variance, following the common methodology for meta-analyses40. In addition, we computed probability densities of Si:Nexport based on kernel density estimation, which better accounts for data with skewed or multimodal distributions41. Another advantage of this approach is that it does not require the calculation of temporal means. Instead, the entire data timeseries can be incorporated into the analysis, thus retaining information about temporal variability. Confidence intervals of the density estimates were calculated with a bootstrapping approach using data resampling (1,000 permutations)41. The resulting probability density plots can be interpreted analogously to histograms. Differences among ambient and OA conditions are considered statistically significant when confidence intervals of the probability density distributions do not overlap. Numbers for suspended and sinking Si, C and N (and their respective ratios) for the analysis period are given in Extended Data Table 2.Analysis of pH effects on Si:N in global sediment trap dataWe analysed a recent compilation of global sediment trap data (674 locations collected between 1976 and 2012)35. The aim of this analysis was to assess the influence of pH on opal dissolution in the world ocean. In contrast to the mesocosm experiments, where export fluxes were measured only at one depth, the global dataset provides depth-resolved information, enabling us to examine the vertical change in the Si:N ratio of sinking particulate matter and how this correlates with pH. It has long been known that the silica content of sinking particles increases with depth, as opal dissolution is less efficient than organic matter remineralization25,42. The resulting accumulation of Si relative to N can be quantified as the change in Si:N with increasing depth, that is, the slope of the relationship of depth versus Si:N (ΔSi:N, in units of m−1). Our approach is analogous to previous studies, which used vertical profiles of Si:C as a proxy for differential dissolution/remineralization of opal and organic matter, and its regional variability in the ocean24,42. We extracted all data that (I) included simultaneous measurements of Si and N, and (II) contained vertical profiles with at least three depth levels (so that ΔSi:N [m−1] can be calculated). We then calculated linear regressions for individual Si:N profiles and subsequently extracted those for which Si:N displayed a statistically significant relationship with depth (p  More

  • in

    Cash and action are needed to avert a biodiversity crisis

    Ambitious new targets are needed to conserve nature by protecting parks and species.Credit: Tang Dehong/VCG/Getty

    It will take ample time and money to slow the world’s catastrophic loss of plant and animal species — and right now, both are running dangerously low. This year, nations are due to agree to an action plan to protect global biodiversity at the 15th Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity. But the meeting is already two years late because of the pandemic, and China, which will host the conference in Kunming, has yet to set a new date.Now, conflicts over financing are adding to the tension. Conservation groups and advocates suggest that rich nations must donate at least US$60 billion annually to help less-affluent ones to fund projects such as protecting areas where wildlife can thrive and tackling the illegal wildlife trade that is driving hundreds of species to extinction. This is much more than the $4 billion to $10 billion that they are estimated to be spending today, and well below the amount they are giving low- and middle-income countries (LMICs) to fight climate change, which reached around $50 billion in 2019 according to one estimate. Yet limited overseas development funds are spread ever thinner as donors deal with the pandemic and now the fallout from Russia’s invasion of Ukraine. This is where COP15 is meant to deliver: as well as agreeing to the action plan, called the Global Biodiversity Framework, nations will be encouraged to pledge more money.A mix of public and private money has started to trickle in. Currently, biodiversity funding on the table ahead of COP15 amounts to roughly $5.2 billion per year, according to estimates by a group of five leading conservation organizations. Most comes from six governments, including France, the United Kingdom and Japan, and the European Union. In April, the Global Environment Facility (GEF) — a multilateral fund to support international environmental agreements — announced that, over the next four years, around $1.9 billion will go to projects dedicated to biodiversity. However, it’s unclear how much of this will come from the coffers that donor countries have already pledged.Some cash for conservation is coming from private philanthropic donors — such as $2 billion committed by entrepreneur Jeff Bezos last year. And starting in 2020, a group of financial institutions (now 89 of them) promised to annually report their financing activities and investments that affect biodiversity, and to move away from those that do harm — a form of ecological accounting that could help to shrink the budget needed to protect biodiversity. Donors will need to reach much deeper into their pockets to meet the demands of LMICs, the custodians of much of the world’s biodiversity. In March, a group of LMICs, led by Gabon, asked for $100 billion per year in new funding when officials met in Geneva, Switzerland, to discuss progress on the Global Biodiversity Framework. The LMICs want the money placed in a new multilateral fund for biodiversity, separate from, but complementary to, the GEF.Aside from cash, the fund will need to find a new home and structure — and there are a few options. A proposal from Brazil, circulated at the Geneva meeting, suggests the fund be governed by a board of 24 members, with an equal number from rich and lower-income nations. The board would be responsible for funding decisions and would prioritize projects that help to achieve the biodiversity convention’s goals. The pitch generated interest among some countries, but also concerns that it’s an attempt by Brazil to divert attention from its failure over the past few years to protect the Amazon rainforest and prevent other environmental harm.Another option is the Kunming Biodiversity Fund, which China announced in October last year to help LMICs to safeguard their ecosystems. It allocated 1.5 billion yuan (US$223 million) to seed the fund and invited other countries to contribute, but so far none has. Sources knowledgeable about the fund say that donor countries are reluctant to pitch in because China is holding on too tightly to the reins and is not involving others in its deliberations. Details of how the fund will operate are scarce, but Nature has learnt that China is floating the idea of housing it at the Asian Infrastructure Investment Bank (AIIB), based in Beijing. Set up in 2016, the AIIB has $100 billion in total capital and 105 members, including Germany, France and the United Kingdom. The AIIB has big green plans. By 2025, it wants half of all infrastructure projects it finances to focus on climate issues. With rigorous oversight and transparency, the AIIB would make a good home for the Kunming fund.As countries prepare to meet in Nairobi on 20–26 June in a last-ditch attempt to push the biodiversity framework forwards before COP15, China, as the host, must urgently provide stronger leadership on financing, including more transparency and engagement. Progress will require quick, generous contributions from donor nations — which should prioritize grants, not loans, for biodiversity projects.Holding the COP15 meeting must be a priority, too. As China tightens restrictions in the face of a COVID-19 surge, some researchers fear that delays will stretch on, stalling conservation work and leaving less time to meet biodiversity targets. China must either commit to holding the meeting this year or let it proceed elsewhere. One option being quietly discussed is moving the meeting to Canada — home of the United Nations biodiversity convention’s secretariat — and this deserves consideration. The world needs an ambitious biodiversity plan now — nature cannot wait. More

  • in

    Paleoclimate-induced stress on polar forested ecosystems prior to the Permian–Triassic mass extinction

    Shen, S.-Z. et al. A sudden end-Permian mass extinction in South China. GSA Bull. 131(1–2), 205–223. https://doi.org/10.1130/B31909.1 (2019).CAS 
    Article 

    Google Scholar 
    Rampino, M. R. & Caldeira, K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17, 554–559. https://doi.org/10.1111/j.1365-3121.2005.00648.x (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Cascales-Miñana, B. & Cleal, C. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200. https://doi.org/10.1111/ter.12086 (2014).ADS 
    Article 

    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385. https://doi.org/10.1038/s41467-018-07934-z (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384. https://doi.org/10.1038/s41467-018-07945-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. 134, 691–721. https://doi.org/10.1130/B35830.1 (2021).Article 

    Google Scholar 
    Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary?. Paleobiology 37(1), 157–167 (2011).Article 

    Google Scholar 
    Feng, Z. et al. From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction. Earth Sci. Rev. 204, 103153 (2020).ADS 
    Article 

    Google Scholar 
    McLoughlin, S. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
    Google Scholar 
    Rigby, J. F. The Gondwana palaeobotanical province at the end of the Palaeozoic. In 24th International Geological Congress (Montreal, 1972). Proceedings, Section 7, 324–330 (International Geological Congress, 1972).Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article 

    Google Scholar 
    Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. PNAS 96, 13857–13862 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Gabites, H. I. Triassic paleoecology of the Lashly Formation, Transantarctic Mountains, Antarctica. M.Sc. Thesis, 1–148 (Victoria University of Wellington, New Zealand, 1985).Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513. https://doi.org/10.1130/B35355.1 (2020).CAS 
    Article 

    Google Scholar 
    Escapa, I. H. et al. Triassic floras of Antarctica: Plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–544 (2011).ADS 
    Article 

    Google Scholar 
    Retallack, G. J. & Krull, E. S. Landscape ecological shift at the Permian–Triassic boundary in Antarctica. Aust. J. Earth Sci. 46, 785–812 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Gulbranson, E. L., Cornamusini, G., Ryberg, P. E. & Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109544. https://doi.org/10.1016/j.palaeo.2019.109544 (2020).Article 

    Google Scholar 
    Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).Article 

    Google Scholar 
    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology https://doi.org/10.1130/G48795.1 (2021).Article 

    Google Scholar 
    Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian–Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118, 747–763 (2006).Article 

    Google Scholar 
    Elliot, D. H., Fanning, C. M., Isbell, J. L. & Hulett, S. R. W. The Permo–Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).ADS 
    Article 

    Google Scholar 
    Barbolini, N., Bamford, M. K. & Rubidge, B. Radiometric dating demonstrates that Permian spore-pollen zones of Australia and South Africa are diachronous. Gondwana Res. 37, 241–251 (2016).ADS 
    Article 

    Google Scholar 
    Sidor, C. A., Smith, R. M. H., Huttenlocker, A. K. & Peecook, B. R. New Middle Triassic tetrapods from the Upper Fremouw Formation of Antarctica and their depositional setting. J. Vertebr. Paleontol. 34, 793–801 (2014).Article 

    Google Scholar 
    Hancox, P. J., Neveling, J. & Rubidge, B. S. Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. S. Afr. J. Geol. 123, 217–238. https://doi.org/10.25131/sajg.123.0016 (2020).Article 

    Google Scholar 
    Askin, R. A. Permian palynomorphs from southern Victoria Land, Antarctica. Antarct. J. US. 30, 47–48 (1995).
    Google Scholar 
    Kyle, R. A. & Schopf, J. M. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains. In Antarctic Geosciences (ed. Craddock, C.) 649–659 (University of Wisconsin Press, 1982).
    Google Scholar 
    Fritts, H. C. Tree Rings and Climate (Academic Press, 1976).
    Google Scholar 
    Lu, J., Zhang, P., Yang, M., Shao, L. & Hilton, J. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chem. Geol. 558, 119764 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, J., Cawood, P. A., Du, Y., Feng, B. & Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: correlating high- and low-paleolatitude sedimentary records. Geology 42, 835–838 (2014).ADS 
    Article 

    Google Scholar 
    Panahi, A., Young, G. M. & Rainbird, R. H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 64, 2199–2220 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Gulbranson, E. L., Montañez, I. P. & Tabor, N. J. A proxy for humidity and floral province from paleosols. J. Geol. 119, 559–573 (2011).ADS 
    Article 

    Google Scholar 
    Sheldon, N. D., Retallack, G. J. & Tenaka, S. Geochemical climofunctions from North American soils and application to paleosols across the eocene–oligocene boundary in Oregon. J. Geol. 110, 687–696 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bul. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar 
    Fielding, C. R. et al. Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2022.110936 (2022).Article 

    Google Scholar 
    Gulbranson, E. L. et al. Leaf habit of Late Permian Glossopteris trees from high palaeolatitude forests. J. Geol. Soc. 171, 493–507 (2014).ADS 
    Article 

    Google Scholar 
    Ryberg, P. E. Reproductive diversity of Antarctic glossopterid seed ferns. Rev. Palaeobot. Palynol. 158, 167–179 (2009).Article 

    Google Scholar 
    Mays, C. et al. Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nat. Commun. 12, 5511. https://doi.org/10.1038/s41467-021-25711-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decombeix, A. L., Bomfleur, B., Taylor, E. L. & Taylor, T. N. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Rev. Palaeobot. Palynol. 203, 22–34 (2014).Article 

    Google Scholar 
    Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175. https://doi.org/10.1002/gj.4123 (2021).Article 

    Google Scholar 
    Yu, Y., Chu, D., Song, H., Guo, W. & Tong, J. Latest Permian–Early Triassic paleoclimatic reconstruction by sedimentary and isotopic analyses of paleosols from the Schichuanhe section in central North China Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 585, 110726 (2022).Article 

    Google Scholar 
    Rees, P. M. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827–830 (2002).ADS 
    Article 

    Google Scholar 
    Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350. https://doi.org/10.1016/j.gsf.2014.01.002 (2014).Article 

    Google Scholar 
    Jasper, A. et al. The burning of Gondwana: Permian fires on the southern continent–a palaeobotanical approach. Gondwana Res. 24, 148–160. https://doi.org/10.1016/j.gr.2012.08.017 (2013).ADS 
    Article 

    Google Scholar 
    Taylor, G. H., Liu, S. Y. & Diessel, C. F. K. The cold climate origin of inertinite-rich Gondwana coals. Int. J. Coal Geol. 11, 1–22 (1989).CAS 
    Article 

    Google Scholar 
    Mays, C. & McLoughlin, S. End-Permian burnout: The role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios https://doi.org/10.2110/palo.2021.051 (2022).Article 

    Google Scholar 
    Corti, V. Palynology and paleobotany of Permo–Triassic Beacon Supergroup at Allan Hills, South Victoria Land, Antarctica: Stratigraphical and paleoenvironmental change implications. Ph.D. Dissertation, 1–186 (Università di Siena, Italy, 2021).Sheldon, N. D., Chakrabarti, R., Retallack, G. J. & Smith, R. M. H. Contrasting geochemical signatures on land from the Middle to Late Permian extinction events. Sedimentology 61, 1812–1829 (2014).CAS 
    Article 

    Google Scholar 
    Cúneo, N. R., Taylor, E. L., Taylor, T. N. & Krings, M. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: Paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 239–261 (2003).Article 

    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—An ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    Francis, J. E., Woolfe, K. J., Arnott, M. J. & Barrett, P. J. Permian climates of the southern margin of Pangea: Evidence from fossil wood of Antarctica. In Pangea: Global Environments and Resources (eds Embry, A. F. et al.) 275–282 (AAPG Memoir 17, 1994).
    Google Scholar 
    Wright, W. E., Baisan, C., Streck, M., Wright, W. W. & Szejner, P. Dendrochronology and middle Miocene petrified oak: Modern counterparts and interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 445, 38–49 (2016).Article 

    Google Scholar 
    Luthardt, L. & Rößler, R. Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279–282 (2017).ADS 
    Article 

    Google Scholar 
    St. George, S. & Telford, R. J. Fossil forest reveals sunspot activity in the Early Permian: COMMENT. Geology 45, 427 (2017).ADS 
    Article 

    Google Scholar 
    Baillie, M. G. L. & Pilcher, J. R. A simple cross-dating program for tree-ring research. Tree Ring Bull. 33, 7–14 (1973).
    Google Scholar 
    Hollstein, E. Mitteleuropäische Eichenchronologie, Trierer Grabungen und Forschungen XI, Philip von Zabern (1980).Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. https://doi.org/10.1016/j.dendro.2009.12.001 (2010).Article 

    Google Scholar 
    Buras, A. A comment on the expressed population signal. Dendrochronologia 44, 130–132 (2017).Article 

    Google Scholar 
    Roesch, A. & Schmidbauer, H. WaveletComp Computational Wavelet Analysis https://CRAN.R-project.org/package=WaveletComp. R package version 1.1 (2018). More

  • in

    Correction: Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)?

    Author notesThese authors contributed equally: AM Carpenter, BA Graham.Authors and AffiliationsUniversity of Lethbridge, Lethbridge, AB, CanadaA. M. Carpenter, B. A. Graham & T. M. BurgBiological Sciences Department, Auburn University, Auburn, AL, USAA. M. CarpenterDenver Museum of Nature and Science, Denver, CO, USAG. M. SpellmanAuthorsA. M. CarpenterB. A. GrahamG. M. SpellmanT. M. BurgCorresponding authorCorrespondence to
    A. M. Carpenter. More

  • in

    Multi-storm analysis reveals distinct zooplankton communities following freshening of the Gulf of Mexico shelf by Hurricane Harvey

    In this study, we aimed to determine if tropical cyclones in the northwestern GOM differentially affected mesozooplankton community structure. We found that multivariate community structure varied between storm and non-storm years. However, among the three hurricanes, only the post-Harvey mesozooplankton communities were distinct from years where no storms occurred. Multivariate dispersion, a measure of variance within community structure, did not differ between storm and non-storm years. This result refutes our hypothesis that variability in zooplankton community structure would be higher during storm years opposed to non-storm years. Our prediction that post-storm mesozooplankton communities would differ from non-storm communities was supported, as was our expectation that mesozooplankton community structure varied among storms. We hypothesized that due to the major flooding and rainfall of Harvey, reduced salinity would likely be the main driver of mesozooplankton community differences relative to non-storm years. This expectation was partially met; differences in mesozooplankton community structure between Harvey and years with no storms were driven by salinity, stratification, and ‘distance-from-shore’ rather than solely salinity. This indicates that NWGOM zooplankton community structure varies holistically with biophysical conditions rather than being primarily driven by one or two dominating factors24. Moreover, we found that the presence of Hurricane Harvey, rather than temperature, explained the second greatest amount of variance in zooplankton community structure reflecting the importance of considering how complex disturbance mechanisms might compound and result in a unique ecological responses following a tropical cyclone. The overall PSEM showed that high salinity was directly associated with reduced fluorescence and depressed zooplankton abundance. Higher abundances were found to result in higher community dominance (i.e., lower evenness). Conversely, high salinities indirectly reduced zooplankton evenness via greater water column stratification. Lower fluorescence at higher salinities supports the spatial patterns in NWGOM phytoplankton identified by Kurtay et al.20 following Hurricane Harvey. Those authors observed declines in overall phytoplankton abundance and communities increasingly dominated by cells  More

  • in

    A population genetic analysis of the Critically Endangered Madagascar big-headed turtle, Erymnochelys madagascariensis across captive and wild populations

    Storey, M. et al. Timing of hot spot—Related volcanism and the breakup of Madagascar and India. Science (80-) 267, 852–855 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Wilmé, L., Goodman, S. M. & Ganzhorn, J. U. Biogeographic evolution of Madagascar’s microendemic biota. Science (80-) 312, 1063–1065 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed 
    Article 

    Google Scholar 
    Rakotomanana, H., Jenkins, R. K. B. & Ratsimbazafy, J. Conservation challenges for Madagascar in the next decade. In Conservation Biology: Voices from the Tropics (eds Raven, P. H., Sodhi, N. S. & Gibson, L.) 33–39 (Wiley-Blackwell, 2013). https://doi.org/10.1002/9781118679838.ch5.Jenkins, R. K. B. et al. Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE 9, 1 – 14 (2014). https://doi.org/10.1371/journal.pone.0100173Velosoa, J. et al. An integrated research, management, and community conservation program for the Rere (Madagascar Big-headed turtle), Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 171–177 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a27p171.Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 56–58 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a11p56.Rafeliarisoa, T., Shore, G., Engberg, S., Louis, E. & Brenneman, R. Characterization of 11 microsatellite marker loci in the Malagasy big-headed turtle (Erymnochelys madagascariensis). Mol. Ecol. Notes 6, 1228–1230 (2006).CAS 
    Article 

    Google Scholar 
    Roca, V., García, G. & Montesinos, A. Gastrointestinal helminths found in the three freshwater turtles (Erymnochelys madagascariensis, Pelomedusa subrufa and Pelusios castanoides) from Ankarafantsika National Park, Madagascar. Helminthologia 44, 177–182 (2007).Article 

    Google Scholar 
    Kuchling, G. & Garcia, G. Pelomedusidae, freshwater turtles. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. P.) 956–960 (University of Chicago Press, 2003).
    Google Scholar 
    Pedrono, M. & Smith, L. Overview of the natural history of Madagascar’s endemic tortoises and freshwater turtles: Essential components for effective conservation. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 59–66 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a12p59.Kuchling, G. Population structure, reproductive potential and increasing exploitation of the freshwater turtle Erymnochelys madagascariensis. Biol. Conserv. 43, 107–113 (1988).Article 

    Google Scholar 
    Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).Article 

    Google Scholar 
    Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis (errata version published in 2016). The IUCN Red List of Threatened Species. 2008, 1–3 (2008).Kuchling, G. Concept and design of the Madagascar side-necked turtle Erymnochelys madagascariensis breeding facility at Ampijoroa, Madagascar. Dodo 36, 62–74 (2000).
    Google Scholar 
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).Article 

    Google Scholar 
    Stanton, D. W. G. et al. Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management. Conserv. Genet. 16, 1115–1126 (2015).Article 

    Google Scholar 
    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Orozco-Terwengel, P., Andreone, F., Louis, E. & Vences, M. Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus Dyscophus. Mol. Ecol. 22, 6074–6090 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, R. G. & Raxworthy, C. J. The evolution of local endemism in Madagascar: Watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution (New York) 63, 959–967 (2009).
    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulce, D., Li, X., Snyder-Leiby, T. & Liu, J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. https://doi.org/10.1002/wps.20394 (2011).Article 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99, 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl. Acad. Sci. U. S. A. 97, 6585–6590 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bulut, Z. et al. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica 136, 501–504 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Plummer, M. & Murrell, P. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News. 6, 7–11 (2006).R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008). https://doi.org/10.1017/CBO9781107415324.004.Book 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945–959 (2000). https://doi.org/10.1111/j.1471-8286.2007.01758.x.Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).PubMed 
    Article 

    Google Scholar 
    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17, 27–32 (2017).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).CAS 
    Article 

    Google Scholar 
    Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).CAS 
    Article 

    Google Scholar 
    Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prost, S. & Anderson, C. N. K. TempNet: A method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    Paquette, S. R. et al. Riverbeds demarcate distinct conservation units of the radiated tortoise (Geochelone radiata) in southern Madagascar. Conserv. Genet. 8, 797–807 (2007).CAS 
    Article 

    Google Scholar 
    Bouchard, C., Tessier, N. & Lapointe, F. J. Watersheds influence the wood turtle’s (Glyptemys insculpta) genetic structure. Conserv. Genet. 20, 653–664 (2019).Article 

    Google Scholar 
    Perlman, S. J., Hodson, C. N., Hamilton, P. T., Opit, G. P. & Gowen, B. E. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10162–10168 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Pearse, D. E. et al. Estimating population structure under nonequilibrium conditions in a conservation context: Continent-wide population genetics of the giant Amazon river turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol. Ecol. 15, 985–1006 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearse, D. E. & Avise, J. C. Turtle mating systems: Behavior, sperm storage, and genetic paternity. J. Hered. 92, 206–211 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).Article 
    ADS 

    Google Scholar 
    Virah-Sawmy, M., Willis, K. J. & Gillson, L. Threshold response of Madagascar’s littoral forest to sea-level rise. Glob. Ecol. Biogeogr. 18, 98–110 (2009).Article 

    Google Scholar 
    Wahlund, S. Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11, 65–106 (1928).Article 

    Google Scholar 
    Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 272, 1525–1534 (2005).CAS 
    Article 

    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. (Camb.) 89, 311–336 (2008).Article 

    Google Scholar 
    Valenzuela, N. Multiple paternity in side-neck turtles Podocnemis expansa: Evidence from microsatellite DNA data. Mol. Ecol. 9, 99–105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Volkmann, L., Martyn, I., Moulton, V., Spillner, A. & Mooers, A. O. Prioritizing populations for conservation using phylogenetic networks. PLoS ONE 9, 1–10 (2014). https://doi.org/10.1371/journal.pone.0088945Article 
    CAS 

    Google Scholar 
    García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).Article 

    Google Scholar 
    Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).PubMed 
    Article 

    Google Scholar 
    Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, 1–10 (2021). https://doi.org/10.1073/pnas.2015096118Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science (80-) 318, 100–103 (2007).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    From the archive: Jamaican coral reefs, and indispensable photography

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More