More stories

  • in

    New integrated hydrologic approach for the assessment of rivers environmental flows into the Urmia Lake

    Specifications of the study areaUrmia Lake, as the largest inland lake of Iran, is a national park and one of the largest Ramsar sites of Iran (Ramsar, 1971). The lake is formed in a natural depression within the catchment area in the northwest of Iran. The basin of the lake covers an area of 52,000 km2 and its area is about 5,700 km249. In addition, its maximum length and width are 140 and 50 km, respectively. Further, the lake catchment is a closed inland basin in which all rainwater runoff flows to the central saline lake, and evaporation from the surface of the lake is the only way out. More importantly, it is the largest saltwater lake in Iran and the second largest saltwater lake in the world.The current surface flow system to Urmia Lake consists of 10 main rivers with permanent flow potential, including Zola, Nazlu, Rozeh, Shahrchai, Baranduz, Gadar, Mahabad, Simineh, Zarrineh, and Aji. In terms of the water supply potential of Urmia Lake, Zarrineh, Simineh, Aji, and Nazlu rivers with a flow allocation of 41, 11, 10, and 6% have a key role, respectively.The rivers of this basin are originated from mountains and pass through the heights and enter the agricultural plains. The main usage in plains are for agriculture which cause the changes in natural rivers flow regime. On the other hand, the natural flow regime of the rivers should be considered as the basis for e-flow calculation. So, in the current study the obtained data from the stations situated in the upstream of the rivers and the stations before the agricultural plains are utilized to alleviate the effects of agricultural use on natural flow regime of the rivers. Also, to eliminate the effects of dam rule curve on river flow regime, stations situated in the upstream of the dams are considered as the main scale in the upstream of the dammed rivers like Zarrineh, Mahabad and Zola. Despite all the efforts made to select stations with the least human impact, the two stations related to Aji and Shahar Rivers have been affected by the structures built above them. Therefore, in order to eliminate the effects of the constructed structures at the upstream of the stations, flow naturalization methods were used only for the two stations of Venyar of Aji River and the Band Urmia station of Shahar River. There are several ways to naturalize hydrometric station data. Terrier et al.51 by studying flow naturalization methods in various researches were able to provide a comprehensive study of naturalization methods and selection criteria for each of these methods. According to their studies, the first and the most important prerequisite for stream naturalization is to identify the factors affecting the river and the quality of data in the region, which play a major role in choosing the flow naturalization method. Two factors play a major role in affecting river hydrology. The first factor is the construction of hydraulic structures along the path of rivers and the second factor is the change of land use that has occurred in the rivers basin. In the current study, the purpose of flow naturalization is to eliminate the effects of large dams built on the inlet rivers of the lake, which can affect the hydrology of the river flow. It should be noted that it is not possible to eliminate the effects of land use change due to the gradual nature of the changes, the inability to determine the exact amount and time of the changes and the lack of required data as well. Therefore, in this study, the effects of land use change at the upstream of the stations have been neglected. The most important reason that the Aji River needs to naturalize is the existence of several small dams upstream of Venyar station. To eliminate the effects of dams and flow naturalization at the upstream of this station, the spatial interpolation method introduced by Hughes and Smakhtin52 was used. In this method, Sahzab hydrometric station located at the upstream of the river was used as a base station to naturalize the flow. The next station which needs to be naturalized the flow is the Band Urmia station Shahar River. The main problem for this river has been the construction of a dam upstream of Band Urmia river station since 2004. The drainage area ratio method introduced by Hirsch53 was used to eliminate the effect of this dam on the station data. This method has been used by various researchers to naturalize river flow54,55,56 which is based on the upstream drainage area of the stations. In this method the ratio of the drainage area of the two stations is used to naturalize the flow in the affected station. For this purpose, the data of Bardehsoor station located upstream of the dam was used to naturalize the data of the Band Urmia station. So, anthropogenic effects are at the minimum level in calculations. The utilized stations to calculate the e-flow as upstream stations are illustrated in Fig. 1.Figure 1An overview of the Urmia Lake basin, the rivers, and selected gauging stations. Figure 1 was generated by ArcGIS v10.2 software50 (Environmental Systems Research Institute, Inc., USA, URL http://www.esri.com/).Full size imageAppropriate criteria for allocating the EWR of the Urmia LakeDue to the high salinity of Urmia Lake, only a small number of invertebrates make up the living organisms of this huge water body. Saltwater shrimp or Artemia is a type of aquatic crustacean which can be found in saltwater lakes or coastal lagoons worldwide. Artemia can tolerate salinity less than 10 gl−1 up to 340 gl−1 and adapt to environmental conditions. Artemia Urmiana, the most well-known species of the Urmia Lake, is considered as the main food of migratory birds that spend part of their wintering period on the lake and surrounding wetlands. The presence of this species in the Urmia Lake was first reported by Gunter (1899), and many researchers have confirmed the existence of this bisexual creature in this lake57,58,59,60,61.One of the key factors in estimating the EWR of Urmia Lake is to create an appropriate environmental condition for its dominant species. Abbaspour and Nazari Doost39 identified the EWR of the Urmia Lake by considering the living conditions of Artemia as its dominant species. In this study, Artemia Urmaina was selected as a biological indicator, along with NaCl and elevation above mean sea level (AMSL) as the indicators of water quality and quantity, respectively. The combination of these three indicators forms the ecological basis of Urmia Lake. Therefore, salinity is considered to be equal to 240 gl−1 as the tolerable limit of the biological index. Using long-term statistics in the Urmia Lake and the relationship between quantitative and qualitative water indicators, the water level of 1274.1 m (AMSL) was chosen as the ecological level of the lake so that the balance of these three indicators remained within the allowable range. The study indicated that the calculated environmental water demand of Urmia Lake was equal to 3084 Mm3 per year provided by main rivers entering the lake. Therefore, the proposed new methods should be able to deliver this volume of water to the lake and simultaneously feed the EFR of the river. To supply this water volume, government has programs in order to mitigate the water consumption especially in agriculture. The most important program is 40 percent reduction in agricultural water consumption which is accompanied with the increase of efficiency. Also the government pursues urban wastewater treatment to retrieve some of domestic water to the lake. The mentioned programs are time consuming, however, the new methods presented in this study can be useful for managers in determining the allocation patterns and consumption management. Ordinary method of flow duration curve shifting (FDCS) in estimating e-flowSince the early 1990s, various methods have been developed based on the hydrological indices62 in order to determine the e-flow by taking into account the flow variability and adaptation to the ecological conditions of rivers. One of the intended diagrams in the study of the hydrological characteristics is the flow duration curve (FDC), which is used to assess the fluctuations and variability of water flow from an environmental point of view. Given the importance of the presence of flood currents in the restoration of the river and wetland ecosystems63,64, the FDC is one of the most practical methods to show the full range of river discharge characteristics from water shortage to flood events. This diagram also demonstrates the relationship between the amount and frequency of the flow which can be prepared for daily, annual, and monthly time intervals65. The FDCS is a method in which FDC is employed to estimate the river flow. This method was introduced by Smakhtin and Anputhas66 to evaluate the e-flow in the river system. The method, which is called FDCS, provides a hydrological regime to protect the river in the desired ecological conditions.In the previous research, most of the rivers in the Urmia Lake basin have been compatible with FDCS, and due to the lack of biological data regarding these rivers, it is always one of the top priorities among the methods of estimating the e-flow in rivers leading to the Urmia Lake67,68. It is noteworthy that the characteristics of calculation steps of the ordinary method are provided as follows.This method consists of four main steps:

    1.

    Assessing the existing hydrological conditions (preparing the FDC for a natural river flow regime),

    2.

    Selecting the appropriate environmental management class;

    3.

    Acquiring the environmental FDC;

    4.

    Generating e-flow time series.

    The first step is to prepare the FDC in the desired river range using monthly flow data. In this method, FDC for the natural river flow regime is prepared by 17 fixed percentage points of occurrence probabilities (0.01, 0.1, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, 99.99) where P1 = 99.99% and P17 = 0.01% represent the highest and lowest probability of occurrence, respectively. These points ensure that the entire flow range is adequately covered, as well as facilitating the continuation of the next steps.This method, which uses mean monthly flow (MMF) data, considers six environmental management classes (EMC) from A to F. The FDC of EFR (FDC-EFR) for each class in terms of EMC is determined based on the obtained natural river FDC by the MMF. The higher EMC needs more water to maintain the ecosystem. These classes are determined based on empirical relationships between the flow and ecological status of rivers, which currently have no specific criteria for identifying these limits. The selection of the appropriate class individually relies on the expert’s judgment of the river ecosystem condition.After obtaining the natural FDC, the next step is to calculate the FDC-EFR for each EMC using the lateral shifts of FDC to the left along the probabilistic axis. For EMC-A rivers, one lateral shift to the left is applied while two, three, and four lateral shifts are employed for EMC-B, EMC-C, and EMC-D rivers, respectively. It should be noted that the overall hydrological pattern of the flow will be maintained although the flow variation is lost for each shift.In the current study, global e-flow calculation (GEFC) v2.0 software69,70 has been utilized to compute the e-flow by the FDCS method. The long-term data (at least 20 years) of MMF are the required input data for this software.According to the research conducted on the rivers of the Urmia Lake basin, EMC-C is the minimum considered EMC for 10 main rivers of the lake, thus the EMC-C has been considered in this study, and all calculations for classes A, B, C have been performed accordingly.The description of new methods based on ordinary methodThe main purpose of presenting new methods is to combine the EWR of wetlands or lakes and the hydrological method of FDCS, which can be used to calculate the e-flow of rivers and meet the needs of lakes or wetlands in downstream. These methods relies on the FDCS while with the difference that the proposed method includes three fundamental changes compared to the original one.

    1.

    Applying monthly FDC (FDC for each month separately) instead of annual FDC,

    2.

    Employing daily flow data instead of MMF,

    3.

    Considering the downstream EWR in the amount of the lateral shift in the FDCS method.

    The use of the structure of new methods lead to a dynamic process that is based on the selected EMC of the river, the amount of the natural flow, and the date of occurrence and can compute the amount of the e-flow of the river on each day of the year.River hydrology greatly varies depending on the type of the basin, the climate of the area, and the relationship between the basin and the river each exhibiting different behaviors during the months of the year. Accordingly, the proposed methods should provide sufficient comprehensiveness in estimating the e-flow by considering different flow characteristics. Due to the type and timing of precipitation in the Urmia Lake basin, the rivers are full of water from March to June and spend extremely less flows during the other times of the year. For example, Fig. 2 shows the distribution of the Nazlu River flows in the west of Urmia Lake throughout the year. According to the data, 74% of the AF crosses the river from March to June, and the highest and lowest river discharges are related to May with 29% and September and August with 2% of the AF, respectively.Figure 2Historical hydrograph at the Tapik Station, Nazlu River: (a) Daily and mean monthly distribution of flows and (b) Magnified hydrograph for a typical year (1993).Full size imageAccording to the flow distribution throughout the year, the annual FDC is an average FDC of each month of the year. However, the flow of a river during the months of the year represents significant changes. Therefore, the monthly FDC is higher than the annual FDC in the high-water months (e.g., May). Additionally, this curve is lower compared to the annual FDC in the low-water months (e.g., September). Accordingly, the use of monthly FDCs provides more details of changes in the hydrological parameters of the flow and can be a better indicator of the hydrological index of river flows.In the conventional FDCS method, the FDC is obtained using the MMF data of each station. The obtained curve represents the monthly average of river flow and does not illustrates the minimum, maximum and the effect of flow fluctuations in the estimation of e-flows (Fig. 2).In the new methods, all FDC diagrams were obtained by daily data. Both annual (EFR-Ann) and monthly (EFR-Mon) methods are separately utilized to compare the calculation of the e-flow and to choose the best method. The annual FDC is a probabilistic chart for the whole year and the monthly FDC includes 12 probability curves for each year. Due to the use of FDC in e-flow estimations, it has been attempted to perform all calculations from this diagram. Therefore, concepts related to the flow volume can be integrated with the FDCS method. Some of the applied concepts for this purpose are as follows.In the FDCS method, the FDC is defined based on 17 probabilistic percentage points. To calculate the mean AF (MAF) volume, the theorem of the mean value for a definite integral is employed in the FDC diagram. Accordingly, considering that FDC is continuous between the first and seventeenth probability points, the mean flow (Fm) is obtained from Eq. (1) as.
    $$F_{m} = frac{1}{{P_{1} – P_{17} }}mathop smallint limits_{{P_{17} }}^{{p_{1} }} Fleft( p right)dp$$
    (1)
    Fm = Mean flow. P1, P17 = Points of FDC probability that P1 = 99.99 and P17 = 0.01.Given that the FDC consists of 17 probability points and the probability function ‘F(P)’ is unavailable for this curve as a mathematical equation, obtaining this equation for each flow curve increases the computational cost. Therefore, numerical integration methods can be used in this regard. The trapezoidal numerical solution method has been utilized for this purpose. By applying the trapezoidal method in solving Eq. (1), Eq. (2) is obtained, which is used to compute the mean flow of the FDC.$$F_{m} = frac{1}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (2)
    Pi = 17 points of FDC probability that P1 = 99.99% and P17 = 0.01%. Fi = The amount of the river flow with the probability of the occurrence of Pi.To calculate the AF volume by monthly and annual FDCs, Eq. (3) can be applied for the AF volume in the EFR-Ann method, as well as employing Eqs. (4) and (5) for the monthly and AF volume in the EFR-Mon method, respectively.$${text{V}}_{{AF_{Ann} }} = frac{365*24*3600}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (3)
    $${text{V}}_{Monthly } = frac{{D_{k} *24*3600}}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (4)
    $${text{V}}_{{AF_{Mon} }} = mathop sum limits_{k = 1}^{12} left[ {{text{V}}_{Monthly } } right]_{k}$$
    (5)

    VAFAnn = AF volume using annual FDC. VMonthly = Monthly flow volume. VAFMon = AF volume using monthly FDC. Dk = Number of the days of the kth month. k = Number of each month.The required e-flow by wetlands and lakes must have two basic characteristics. The volume of EWR for maintaining their ecological level must be determined and provided by the studies of their ecosystems. In addition, fluctuations must be maintained in water levels in the lake due to hydrological conditions under the basins of the lake supplying rivers given the fact that maintaining the hydrological conditions of the river is one of the major goals of the FDCS method in estimating the e-flow of the river. On the other hand, the rehabilitation of the wetland or lake downstream of rivers requires a certain amount of water, and the new methods must be applied to combine these two goals. In this regard, the AF volume, which can be transferred to the lake (VL Mon or Ann) by these rivers, is calculated by taking into account the natural flow conditions of the rivers in the basin and without considering the consumptions,.$${text{V}}_{{L_{Ann} }} { } = mathop sum limits_{j = 1}^{{text{n}}} left[ {{text{V}}_{{AF_{Ann} }} } right]_{j}$$
    (6)
    $${text{V}}_{{L _{Mon} }} = mathop sum limits_{j = 1}^{{text{n}}} left[ {{text{V}}_{{AF_{Mon} }} } right]_{j}$$
    (7)

    n = Number of input rivers to the lake. VLAnn = AF volume, which can be transferred to the lake using annual FDC. VLMon = AF volume, which can be transferred to the lake using monthly FDC.The ratio of the EWR of the lake or wetland to the average annual volume of the basin should be determined at this stage.$$b = frac{{{text{V}}_{EWR} }}{{{text{V}}_{{L_{Ann} }} or {text{V}}_{{L _{Mon} }} }}$$
    (8)
    b = The ratio of the EWR of the lake or wetland to the average annual volume of the basin. VEWR = Volume of environmental water requirement of the lake or wetland.In the conventional FDCS method, which is determined using GEFC v2.0 software70 (It is then called the GEFC method), depending on the type of the river EMC, the allocation curve is obtained with one or more shifts of the FDC. Each EMC includes a certain ratio of the MAF volume of the river, and changing the flow EMC facilitates changing the flow volume. It is impossible to supply a specific and predetermined downstream water volume of the river. Therefore, in the new methods, a new process must be used to calculate the amount of the FDC shift in order to provide a certain volume of water in the shifting of the FDC. First, a new definition of the EMC was developed for the new methods. In this definition, instead of using a specific shift of the FDC, the range between the two classes was characterized as an EMC. For example, the region between the curve of EMC-A and the natural flow and the region between the EMC-A and EMC-B curves are defined as EMC-A and EMC-B areas, respectively. These regions can be defined for all EMCs (Fig. 3).Figure 3Comparison of the EFR allocated to each of the environmental management classes from this new approach (on the left) with the conventional FDCS methods (on the right).Full size imageBased on the new definition of the range of EMC, the FDC can be shifted as much as needed according to the volume of downstream EWR. The EWR can be defined as the annual percentage river flow respecting the shift of EMCs or a percentage between two specific classes. If the required flow volume is between two specific classes, Eq. (9) can be used to shift the FDC. In fact, with the new definition, any required probable shift can be applied to the FDC ِdiagram to reach a certain volume. In this case, new probable points are determined using Eq. (9), followed by performing the FDC shift similar to the FDCS method in the next step.$$P_{{i_{new} }} = P_{i} + a{*}left( {P_{i – 1} – P_{i} } right)quad i = t, ldots ,16$$
    (9)
    Pinew = New shifted probability point. Pi = 17 points of FDC probability that P1 = 99.99% and P17 = 0.01%. a = Coefficient of shift which defined between 0 and 1. t = Number of shifts performed on the FDC diagram numbered 1–6 for the areas of EMC A, B, C, D, E, F, respectively.The concept of numerical integration and Eqs. (9) and (3) were utilized to calculate the annual volume of different EMCs for each river, and Eqs. (10) and (12) were obtained for the new annual and monthly methods, respectively.$$begin{aligned} & {text{V}}_{{AF class_{t} Ann }} = frac{1}{{P_{1} – left[ {P_{17} + a*left( {P_{16} – P_{17} } right)} right]}} \ & quad quad quad quad quad *left[ {F_{1} *left[ {P_{1} – left[ {P_{t + 1} + a*left( {P_{t} – P_{t + 1} } right)} right]} right] + mathop sum limits_{{i = {text{t}} + 1}}^{16} frac{{left( {F_{i – t} + F_{i – t + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} + a{*}left( {P_{i – 1} – 2P_{i} + P_{i + 1} } right)} right]} right]*365*24*3600 \ end{aligned}$$
    (10)
    $$begin{aligned}&{text{V}}_{{ class_{t} Mon }} = frac{{D_{k} *24*3600}}{{P_{1} – left[ {P_{17} + a*left( {P_{16} – P_{17} } right)} right]}} \ & quad quad quad quad quad *left[ {F_{1} *left[ {P_{1} – left[ {P_{t + 1} + a*left( {P_{t} – P_{t + 1} } right)} right]} right] + mathop sum limits_{{i = {text{t}} + 1}}^{16} frac{{left( {F_{i – t} + F_{i – t + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} + a{*}left( {P_{i – 1} – 2P_{i} + P_{i + 1} } right)} right]} right] end{aligned}$$
    (11)
    $${text{V}}_{{AF class_{t} Mon}} = mathop sum limits_{K = 1}^{12} left[ {{text{V}}_{{ class_{t} Mon}} } right]_{k}$$
    (12)

    VAF classt Ann = AF volume for the related class of selected t for annual method. Vclasst Mon = Monthly flow volume for the related class of selected t for monthly method. VAF classt Mon = AF volume for the related class of selected t for monthly method.where t is the number of shifts performed on the FDC diagram numbered 1–6 for the areas of EMC A, B, C, D, E, F, respectively. To find the exact value of a in these equations, the scope of the EMC must be determined based on the required volume by downstream. Therefore, assuming a = 0 in these equations, the AF volume at the boundary of each class is obtained for both EFR-Mon (Eq. (10)) and EFR-Ann (Eq. (12)) methods. The nearest calculated annual volume is selected as the appropriate EMC which is smaller than the volume of downstream. Further, the corresponding t-class is used to solve the equations, representing the range of the selected EMC.At this stage, the value of the obtained ‘a’ from the FDC shift diagram equals the required volume of downstream. For this purpose, Eqs. (13) and (14) for the EFR-Ann and EFR-Mon methods are obtained from Eqs. (10) and (12), respectively.$$b{text{*V}}_{{AF_{Ann} }} = V_{{AF class_{t } Ann }}$$
    (13)
    $$b{text{*V}}_{{AF_{Mon} }} = V_{{AF class_{t} Mon }}$$
    (14)

    By solving Eqs. (13) and (14), the obtained value of a represents the annual and monthly methods, and the obtained shifted FDC stands for the required annual volume downstream.After determining the appropriate FDC, it is used to calculate the daily e-flow needs of the river using the spatial interpolation algorithm52, which is also employed in the FDCS method. To this end, the probability of the river flow occurrence from the annual or monthly FDCs (according to the selected method) is determined and then the required river flow in the specified probability of occurrence is obtained using the e-flow curve.The range of variability approach (RVA)71,72 is a complex method based on the use of e-flow for achieving the goals of river ecosystem management. This method is applied to compare the methods and select the best one based on the least hydrological change compared to the natural flow of the river. Furthermore, it is based on the importance of the hydrological feature impact of the river on the life, biodiversity of native aquatic species, and the natural ecosystem of the river and aims to provide complete statistical characteristics of the flow regime.In the RVA method, the indicators of hydrologic alteration (IHA) parameters related to the natural river flow are considered as a basis, and changes in the IHA parameters of different EMCs are evaluated accordingly. Richter et al.72 suggested that the distribution of the annual values of IHA parameters for maintaining river environmental conditions must be kept as close as possible to natural flow condition parameters. In several studies, this method was used to investigate changes in the hydrological parameters of a river over time37.Moreover, the total data related to the natural flow of the river for each IHA parameter are classified into three categories in the RVA method. In this study, this classification is based on Default software, and the 17% distance from the median is introduced as the boundary of the classes. By this definition, three classes of the same size are created, in which the middle category is between 34 and 67, and the lower and higher ranges are called the lowest and highest categories, respectively.Using the current change factor obtained from Eq. (15), the RVA method can quantify the change amount in the values of the 33 IHA parameters compared to the natural flow conditions.$$HA = left( {O_{f} – E_{f} } right)/E_{f}$$
    (15)
    HA = Hydrological alteration index. Of = Number of flows occurring within a certain category of the IHA parameter under changed flow conditions. Ef = Number of flows occurring in the same category specified by the parameter under natural flow conditions.In this case, for each IHA parameter, three HA factors are obtained, which can be separately examined for river flows in these three categories. In the analysis of parameters, the positive HA means that the number of occurrences of the phenomenon has increased in a certain IHA category compared to the natural conditions of the river flow. Negative values imply a decrease in the number of occurrences of the same phenomenon. To compare the number of changes in IHA parameters, the HA factor of the RVA method and IHA software (Version 7.1)73 was employed to allocate e-flows in different methods. The obtained results using RVA method calculates and represents HA of each 33 parameters. However, making decision to choose the best method, all parameters need to be assessed and presented as a total index. Due to calculate total HA index based on studies of Xue et al.74 Eq. (16) can be used.$$HA_{o} = sqrt {frac{{mathop sum nolimits_{i = 1}^{33} HA_{i}^{2} }}{33}} *100$$
    (16)
    HAo = Total hydrological alteration index. HAi = Hydrological alteration of each of 33 parameters.Determination of EFR for different EMCs for all methodsInitially, the MMF for each available statistical month was obtained by daily data from stations located in the upstream of the basin rivers of Urmia Lake (Fig. 1). The FDC for the natural flow and various EMCs were obtained using MMF values and GEFC software. Next, to perform the calculations in the EFR-Ann method, the FDC of a natural flow and different EMCs during the year were plotted by daily data. Finally, for the EFR-Mon method, the daily data of each month of the year were examined and the FDC of the natural flow and EMCs were separately plotted for each month.Based on the presented method in this research, Fig. 4 illustrates a step-by-step diagram for determining the e-flows of rivers in the Urmia Lake basin.Figure 4Step-by-step flowchart for determining the environmental flows of rivers in the Urmia Lake basin.Full size image More

  • in

    Non-linear relationships between density and demographic traits in three Aedes species

    Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Fussman, G. F. & Heber, G. Food web complexity and chaotic population dynamics. Ecol. Lett. 5, 394–401 (1978).Article 

    Google Scholar 
    Maron, J. L. & Crone, E. Herbivory: effects on plant abundance, distribution, and population growth. Proc. R. Soc. B. 272, 2575–2584 (1978).
    Google Scholar 
    Johst, K., Berryman, A. & Lima, M. From individual interactions to population dynamics: Individual resource partitioning simulation exposes the causes of nonlinear intra-specific competition. Pop. Ecol. 50, 79–90 (2008).Article 

    Google Scholar 
    McIntire, K. M. & Juliano, S. A. How can mortality increase population size? A test of two hypotheses. Ecology 99, 1660–1670 (2018).PubMed 
    Article 

    Google Scholar 
    Mylius, S. D. & Deikmann, O. On evolutionary stable life histories, optimization and the need to be specific about density dependence. Oikos 74, 218–224 (1995).Article 

    Google Scholar 
    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 44, 498–501 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lafferty, K. D. & Holt, R. D. How should environmental stress affect the population dynamics of disease?. Ecol. Lett. 6, 654–664 (2003).Article 

    Google Scholar 
    Sibley, R. M., Barker, D., Denham, M. C., Hone, J. & Pagel, M. On the regulation of populations of mammals, birds, fish, and insects. Science 309, 607–610 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Bjorndal, K., Bolten, A. B. & Chaloupka, M. Y. Green turtle somatic growth model: evidence for density-dependence. Ecol. App. 10, 269–282 (2000).
    Google Scholar 
    Lamb, J. S., Satgé, Y. G. & Jodice, P. G. R. Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird. Ecol. Evol. 7, 6469–6481 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kobayashi, K. Sexual selection sustains biodiversity via producing negative density-dependent population growth. J. Ecol. 107, 1433–1438 (2018).Article 

    Google Scholar 
    López-Sepulcre, A. & Kokko, H. Territorial defense, territory size, and population regulation. Am. Nat. 166, 317–325 (2005).PubMed 
    Article 

    Google Scholar 
    Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Density-dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).PubMed 
    Article 

    Google Scholar 
    Bonenfant, C. et al. Empirical evidence of density- dependence in populations of large herbivores. Adv. Ecol. Res. 41, 313–357 (2009).Article 

    Google Scholar 
    Legros, M., Lloyd, A. L., Huang, Y. & Gould, F. Density-dependent intraspecific competition in the larval stage of Aedes aegypt (Diptera: Culicidae): Revisiting the current paradigm. J. Med. Entomol. 46, 409–419 (2009).PubMed 
    Article 

    Google Scholar 
    Hixon, M. A. & Jones, G. P. Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86, 2847–2859 (2006).Article 

    Google Scholar 
    Vonesh, J. R. & De La Cruz, O. Complex life cycles and density dependence: Assessing the contribution of egg mortality to amphibian declines. Oecologia 133, 325–333 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Ae. aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dye, C. Intraspecific competition amongst larval Aedes aegypti: food exploitation or chemical interference. Ecol. Entomol. 7, 39–46 (1982).Article 

    Google Scholar 
    Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Anim. Ecol. 53, 247–268 (1984).Article 

    Google Scholar 
    Livdahl, T. P. & Willey, M. S. Prospects for an invasion: competition between Aedes albopictus and native Aedes triseriatus. Science 253, 189–191 (1991).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alto, B. W., Lounibos, L. P., Higgs, S. & Juliano, S. A. Larval competition differentially affects arbovirus infection in Aedes mosquito. Ecology 86, 3279–3288 (2005).PubMed 
    Article 

    Google Scholar 
    Juliano, S. A. Population dynamics. J. Am. Mosq. Control Assoc. 23, 265–275 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Focks, D. A., Haile, D. G., Daniels, E. & Mount, G. A. Dynamics life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. J. Med. Entomol. 30, 1018–1028 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, A. M., Garcia, A. J., Focks, D. A., Morrison, A. C. & Scott, T. W. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Am. J. Trop. Med. Hyg. 85, 257–264 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilpin, M. E. & McClelland, G. A. H. Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr. Zool. 25, 355–388 (1979).CAS 
    PubMed 

    Google Scholar 
    Juliano, S. A. Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition?. Ecology 79, 255–268 (1998).Article 

    Google Scholar 
    Lord, C. C. Density dependence in larval Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 35, 825–829 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).Article 

    Google Scholar 
    Walsh, R. K., Facchinelli, L., Ramsey, J. M., Bond, J. G. & Gould, F. Assessing the impact of density dependence in field populations of Aedes aegypti. J. Vect. Ecol. 36, 300–307 (2011).CAS 
    Article 

    Google Scholar 
    Walsh, R. K., Bradley, C., Apperson, C. S. & Gould, F. An experimental field study of delayed density dependence in natural populations of Aedes albopictus. PLoS ONE 7, e35959 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, R. K. et al. Regulation of Aedes aegypti population dynamics in field systems: Quantifying direct and delayed density dependence. Am. J. Trop. Med. Hyg. 89, 68–77 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Anim. Ecol. 53, 573–580 (1984).Article 

    Google Scholar 
    Getz, W. M. A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology 77, 2014–2026 (1996).Article 

    Google Scholar 
    Tenan, S., Tavecchia, G., Oro, D. & Pradel, R. Assessing the effect of density on population growth when modeling individual encounter data. Ecology 100, e02595 (2019).PubMed 
    Article 

    Google Scholar 
    Arditi, R., Bersier, L. & Rohr, R. P. The perfect mixing paradox and the logistic equation: Verhulst vs. Lotka. Ecosphere 7, e01599 (2016).Article 

    Google Scholar 
    Cortés, E. Perspectives on the intrinsic rate of population growth. Meth. Ecol. Evol. 7, 1136–1145 (2016).Article 

    Google Scholar 
    Smith, F. E. Population dynamics in Daphnia magna and a new model for population growth. Ecology 4, 651–663 (1963).Article 

    Google Scholar 
    Ayala, F. J., Gilpin, M. E. & Ehrenfeld, J. G. Competition between species: Theoretical models and experimental tests. Theor. Pop. Biol. 4, 331–356 (1973).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Borlestean, A., Frost, P. C. & Murray, D. L. A mechanistic analysis of density dependence in algal population dynamics. Front. Ecol. Evol. 3, 37 (2015).Article 

    Google Scholar 
    Clark, F., Brook, B. W., Delean, S., Akçakaya, H. R. & Bradshaw, C. J. A. The theta-logistic is unreliable for modelling most census data. Methods Ecol. Evol. 1, 253–262 (2010).Article 

    Google Scholar 
    Chmielewski, M. W., Khatchikian, C. & Livdahl, T. Estimating the per capita rate of population change: How well do life-history surrogates perform?. Ann. Entomol. Soc. Am. 103, 734–741 (2010).Article 

    Google Scholar 
    Neale, J. T. & Juliano, S. A. Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere. 10, e02855 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Armistead, J. S., Arias, J. R., Nishimura, N. & Lounibos, L. P. Interspecific larval competition between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in northern Virginia. J. Med. Entomol. 45, 629–637 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaplan, L., Kendell, D., Robertson, D., Livdahl, T. & Khatchikian, C. Aedes aegypti and Aedes albopictus in Bermuda: Extinction, invasion, invasion and extinction. Bio. Invasions. 12, 3277–3288 (2010).Article 

    Google Scholar 
    Juliano, S. A. Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr. J. Ecol. Evol. 56, 325–351 (2010).PubMed 
    Article 

    Google Scholar 
    Murrell, E. G. & Juliano, S. A. Competitive abilities in experimental microcosms are accurately predicted by a demographic index for R*. PLoS ONE 7, e43458 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leisnham, P. T. & Juliano, S. A. Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion of a superior competitor. Oecologia 164, 221–230 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leisnham, P. T., Lounibos, L. P., O’Meara, G. F. & Juliano, S. A. Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology 90, 2405–2413 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, M. V., Drake, J. M., Jones, L. & Murdock, C. C. Assessing temperature-dependent competition between two invasive mosquito species. Ecol. Appl. 31, e02334 (2021).PubMed 

    Google Scholar 
    Léonard, P. M. & Juliano, S. A. Effects of leaf litter and density on fitness and population performance of the hole mosquito Aedes triseriatus. Ecol. Entomol. 20, 125–136 (1995).Article 

    Google Scholar 
    Chandrasegaran, K. & Juliano, S. A. How do trait-mediated non-lethal effects of predation affect population-level performance of mosquitoes?. Front. Ecol. Evol. 7, 25 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and microorganism productivity to competitive interactions between aquatic insect detritivores. J. Anim. Ecol. 76, 1105–1115 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fader, J. E. & Juliano, S. A. An empirical test of the aggregation model of coexistence and consequences for competing container-dwelling mosquitoes. Ecology 94, 478–488 (2013).PubMed 
    Article 

    Google Scholar 
    Murrell, E. G., Damal, K., Lounibos, L. P. & Juliano, S. A. Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Ann. Entomol. Soc. Am. 104, 688–698 (2011).PubMed 
    Article 

    Google Scholar 
    Tjørve, K. M. C. & Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 12, e0178691 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Motulsky, H. & Christopoulos, A. Fitting Models to Biological Data using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting (Oxford University Press, 2004).MATH 

    Google Scholar 
    Osenberg, C. W. et al. Rethinking ecological inference: density dependence in reef fishes. Ecol. Lett. 5, 715–721 (2002).Article 

    Google Scholar 
    Schmitt, R. J., Holbrook, S. J. & Osenberg, C. W. Quantifying the effects of multiple processes on local abundance: A cohort approach for open populations. Ecol. Lett. 2, 294–303 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fish, D. An analysis of adult size variation within natural mosquito population. In Ecology of Mosquitoes: Proceedings of a Workshop (eds Lounibos, L. P. et al.) 419–429 (Medical Entomology Laboratory, 1985).
    Google Scholar 
    Schneider, J. R., Chadee, D. D., Mori, A., Romero-Severson, J. & Severson, D. W. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect. Genet. Evol. 11, 11–16 (2011).PubMed 
    Article 

    Google Scholar 
    Wormington, J. D. & Juliano, S. A. Sexually dimorphic body size and development time plasticity in Aedes mosquitoes (Diptera: Culicidae). Evol. Ecol. Res. 16, 1–12 (2014).
    Google Scholar 
    Steinwascher, K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS ONE 15, e0234676 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barrera, R. Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecol. Entomol. 21, 117–127 (1996).Article 

    Google Scholar 
    Servanty, S. et al. Assessing whether mortality is additive using marked animals: A Bayesian state-space modeling approach. Ecology 91, 1916–1923 (2010).PubMed 
    Article 

    Google Scholar 
    Wolfe, M. L. et al. Is anthropogenic cougar mortality compensated by changes in natural mortality in Utah? Insights from long-term studies. Biol. Conserv. 182, 187–196 (2015).Article 

    Google Scholar 
    Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Ann. Rev. Entomol. 43, 243–270 (1998).CAS 
    Article 

    Google Scholar 
    Lounibos, L. P. Invasions by insect vectors of human diseases. Ann. Rev. Entomol. 47, 233–266 (2002).CAS 
    Article 

    Google Scholar 
    Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020

    Cox, P. & Jones, C. Climate change – Illuminating the modern dance of climate and CO2. Science 321, 1642–1644 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilmanov, T. G. et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. Glob. Biogeochem. Cycle 17, 1071 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    Running, S. W. Climate change – Ecosystem disturbance, carbon, and climate. Science 321, 652–653 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sun, Z. et al. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration and land-cover change, 1982–2015. Ecol. Inform. 46, 156–165 (2018).CAS 
    Article 

    Google Scholar 
    Running, S. W. et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 70, 108–127 (1999).ADS 
    Article 

    Google Scholar 
    Madani, N. et al. The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska. J. Geophys. Res.-Biogeosci. 126, e2020JG006078 (2021).ADS 
    Article 

    Google Scholar 
    Morales, P. et al. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob. Change Biol. 11, 2211–2233 (2005).ADS 
    Article 

    Google Scholar 
    Tramontana, G., Ichii, K., Camps-Valls, G., Tomelleri, E. & Papale, D. Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data. Remote Sens. Environ. 168, 360–373 (2015).ADS 
    Article 

    Google Scholar 
    Canadell, J. G. et al. Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3, 115–130 (2000).CAS 
    Article 

    Google Scholar 
    Fletcher, B. J. et al. Photosynthesis and productivity in heterogeneous arctic tundra: consequences for ecosystem function of mixing vegetation types at stand edges. J. Ecol. 100, 441–451 (2012).CAS 
    Article 

    Google Scholar 
    Liu, L., Guan, L. & Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agr. Forest Meteorol. 232, 1–9 (2017).ADS 
    Article 

    Google Scholar 
    Xu, X. et al. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data. J. Environ. Manage. 246, 605–616 (2019).PubMed 
    Article 

    Google Scholar 
    Baldocchi, D. D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Change Biol. 26, 242–260 (2020).ADS 
    Article 

    Google Scholar 
    He, L., Chen, J. M., Liu, J., Belair, S. & Luo, X. Assessment of SMAP soil moisture for global simulation of gross primary production. J. Geophys. Res.-Biogeosci. 122, 1549–1563 (2017).Article 

    Google Scholar 
    Wang, S., Ibrom, A., Bauer-Gottwein, P. & Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agr. Forest Meteorol. 248, 479–493 (2018).ADS 
    Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, G., Fu, Y., Sun, X., Wen, X. & Zhang, L. Recent progress and future directions of ChinaFLUX. Sci. China Ser. D-Earth Sci. 49, 1–23 (2006).ADS 
    Article 

    Google Scholar 
    McCallum, I. et al. Improved light and temperature responses for light-use-efficiency-based GPP models. Biogeosciences 10, 6577–6590 (2013).ADS 
    Article 

    Google Scholar 
    Stocker, B. D. et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nature Geoscience 12, 264‐+ (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Cheng, S. J. et al. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agr. Forest Meteorol. 201, 98–110 (2015).ADS 
    Article 

    Google Scholar 
    Zhang, M. et al. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agr. Forest Meteorol. 151, 803–816 (2011).ADS 
    Article 

    Google Scholar 
    Oliphant, A. J. et al. The role of sky conditions on gross primary production in a mixed deciduous forest. Agr. Forest Meteorol. 151, 781–791 (2011).ADS 
    Article 

    Google Scholar 
    Urban, O. et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob. Change Biol. 13, 157–168 (2007).ADS 
    Article 

    Google Scholar 
    Zhou, H. et al. Large contributions of diffuse radiation to global gross primary productivity during 1981–2015. Glob. Biogeochem. Cycle 35, e2021GB006957 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).ADS 
    Article 

    Google Scholar 
    Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 111, E1327–E1333 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, L. & Cheng, Z. Detection of vegetation light-use efficiency based on solar-induced chlorophyll fluorescence separated from canopy radiance spectrum. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 3, 306–312 (2010).ADS 
    Article 

    Google Scholar 
    MacBean, N. et al. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data (vol 8, 1973, 2018). Sci. Rep. 8, 10420 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Meroni, M. et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009).ADS 
    Article 

    Google Scholar 
    Zheng, T. & Chen, J. M. Photochemical reflectance ratio for tracking light use efficiency for sunlit leaves in two forest types. ISPRS-J. Photogramm. Remote Sens. 123, 47–61 (2017).ADS 
    Article 

    Google Scholar 
    Damm, A. et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Change Biol. 16, 171–186 (2010).ADS 
    Article 

    Google Scholar 
    Lee, J. E. et al. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Glob. Change Biol. 21, 3469–3477 (2015).ADS 
    Article 

    Google Scholar 
    Pinto, F. et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39, 1500–1512 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xie, X., Li, A., Jin, H., Yin, G. & Nan, X. Derivation of temporally continuous leaf maximum carboxylation rate (V-cmax) from the sunlit leaf gross photosynthesis productivity through combining BEPS model with light response curve at tower flux sites. Agr. Forest Meteorol. 259, 82–94 (2018).ADS 
    Article 

    Google Scholar 
    Chen, J. M., Liu, J., Leblanc, S. G., Lacaze, R. & Roujean, J. L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 84, 516–525 (2003).ADS 
    Article 

    Google Scholar 
    Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycle 26, GB1019 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    Running, S. W., Thornton, P. E., Nemani, R. & Glassy, J. M. in Methods in Ecosystem Science. Ch.3 (Springer, New York, NY. Press, 2000).Wu, C., Munger, J. W., Niu, Z. & Kuang, D. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens. Environ. 114, 2925–2939 (2010).ADS 
    Article 

    Google Scholar 
    Makela, A. et al. Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob. Change Biol. 14, 92–108 (2008).ADS 
    Article 

    Google Scholar 
    McCallum, I. et al. Satellite-based terrestrial production efficiency modeling. Carbon Balanc. Manag. 4, 8–8 (2009).Article 

    Google Scholar 
    Wang, H. et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sens. Environ 114, 2248–2258 (2010).ADS 
    Article 

    Google Scholar 
    Yu, R. An improved estimation of net primary productivity of grassland in the Qinghai-Tibet region using light use efficiency with vegetation photosynthesis model. Ecol. Model. 431, 109121 (2020).Article 

    Google Scholar 
    Yuan, W. et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agr. Forest Meteorol. 143, 189–207 (2007).ADS 
    Article 

    Google Scholar 
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Zhang, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agr. Forest Meteorol. 223, 116–131 (2016).ADS 
    Article 

    Google Scholar 
    He, M. et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agr. Forest Meteorol. 173, 28–39 (2013).ADS 
    Article 

    Google Scholar 
    Zhou, Y. et al. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites. J. Geophys. Res.-Biogeosci. 121, 1045–1072 (2016).Article 

    Google Scholar 
    Friedlingstein, P. et al. Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J. Clim. 27, 511–526 (2014).ADS 
    Article 

    Google Scholar 
    Raich, J. W. et al. Potential net primary productivity in South-America – application of a global-model. Ecol. Appl. 1, 399–429 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, J. et al. An algorithm differentiating sunlit and shaded leaves for improving canopy conductance and vapotranspiration estimates. J. Geophys. Res.-Biogeosci. 124, 807–824 (2019).ADS 
    Article 

    Google Scholar 
    Chen, J. M., Liu, J., Cihlar, J. & Goulden, M. L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 124, 99–119 (1999).CAS 
    Article 

    Google Scholar 
    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 
    Article 

    Google Scholar 
    Korson, L., Drosthan, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).CAS 
    Article 

    Google Scholar 
    Olofsson, P., Van Laake, P. E. & Eklundh, L. Estimation of absorbed PAR across Scandinavia from satellite measurements Part I: Incident PAR. Remote Sens. Environ. 110, 252–261 (2007).ADS 
    Article 

    Google Scholar 
    González, J. A. & Calbó, J. Modelled and measured ratio of PAR to global radiation under cloudless skies. Agr. Forest Meteorol. 110, 319–325 (2002).ADS 
    Article 

    Google Scholar 
    Zhang, X., Zhang, Y. & Zhoub, Y. Measuring and modelling photosynthetically active radiation in Tibet Plateau during April–October. Agr. Forest Meteorol. 102, 207–212 (2000).ADS 
    Article 

    Google Scholar 
    Yang, Y., Xiao, P., Feng, X. & Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS-J. Photogramm. Remote Sens. 125, 156–173 (2017).ADS 
    Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. GLOBMAP global Leaf Area Index since 1981. Zenodo https://doi.org/10.5281/zenodo.4700264 (2019).Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD09A1.006 (2015).Deng, F., Chen, J. M., Plummer, S., Chen, M. & Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 44, 2219–2229 (2006).ADS 
    Article 

    Google Scholar 
    Vermote, E. NOAA CDR Program. NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 5. LAI. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5TT4P69 (2019).He, L., Chen, J. M., Pisek, J., Schaaf, C. & Strahler, A. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 119, 118–130 (2012).ADS 
    Article 

    Google Scholar 
    Liu, R. G. & Liu, Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 133, 21–37 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, J. M., Deng, F. & Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote Sens. 44, 2230–2238 (2006).ADS 
    Article 

    Google Scholar 
    Harris, I.C. CRU JRA: Collection of CRU JRA forcing datasets of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data. Centre for Environmental Data Analysis http://catalogue.ceda.ac.uk/uuid/863a47a6d8414b6982e1396c69a9efe8 (2019).Li, X., Liang, H. & Cheng, W. Evaluation and comparison of light use efficiency models for their sensitivity to the diffuse PAR fraction and aerosol loading in China. Int. J. Appl. Earth Obs. Geoinf. 95, 102269 (2021).
    Google Scholar 
    Duan, Q. Y., Sorooshian, S. & Gupta, V. Effective and efficient global optimization for conceptual rain full-runoff models. Water Resour. Res. 28, 1015–1031 (1992).ADS 
    Article 

    Google Scholar 
    Gu, L. H. et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.-Atmos. 107, 4050 (2002).ADS 

    Google Scholar 
    Bi, W. & Zhou, Y. A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies (1992–2020). Dryad https://doi.org/10.5061/dryad.dfn2z352k (2022).Ogutu, B. O. & Dash, J. Assessing the capacity of three production efficiency models in simulating gross carbon uptake across multiple biomes in conterminous USA. Agr. Forest Meteorol. 174, 158–169 (2013).ADS 
    Article 

    Google Scholar 
    Cai, W. et al. Large differences in terrestrial vegetation production derived from satellite-based light use efficiency models. Remote Sens. 6, 8945–8965 (2014).ADS 
    Article 

    Google Scholar 
    Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys. 53, 785–818 (2015).ADS 
    Article 

    Google Scholar 
    Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).ADS 
    Article 

    Google Scholar 
    Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences 14, 4101–4124 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).ADS 
    Article 

    Google Scholar 
    Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 755, 142569 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).ADS 
    Article 

    Google Scholar 
    Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD17A2H.006 (2015).Ciais, P. et al. A three-dimensional synthesis study of delta O-18 in atmospheric CO2 .1. Surface fluxes. J. Geophys. Res.-Atmos. 102, 5857–5872 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Gentine, P. & Zhou, S. Reduced solar-induced chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Glob. Change Biol. 24, 2229–2230 (2018).ADS 
    Article 

    Google Scholar 
    Xie, X. et al. Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models. Sci. Total Environ. 690, 1120–1130 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang, H., Wei, S., Jiang, C. & Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ. 124, 610–621 (2012).ADS 
    Article 

    Google Scholar 
    Camacho, F., Cemicharo, J., Lacaze, R., Baret, F. & Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 137, 310–329 (2013).ADS 
    Article 

    Google Scholar 
    Prince, S. D. & Goward, S. N. Global primary production: A remote sensing approach. J. Biogeogr. 22, 815–835 (1995).Article 

    Google Scholar 
    Verma, S. B. et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agr. Forest Meteorol. 131, 77–96 (2005).ADS 
    Article 

    Google Scholar 
    Yan, H. et al. Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecol. Model. 297, 42–59 (2015).CAS 
    Article 

    Google Scholar 
    Jiang, S. et al. Comparison of satellite-based models for estimating gross primary productivity in agroecosystems. Agr. Forest Meteorol. 297, 108253 (2021).ADS 
    Article 

    Google Scholar 
    Yang, X. et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhou, H. et al. Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmos. Environ. 244, 117905 (2021).CAS 
    Article 

    Google Scholar 
    Han, J. et al. Effects of diffuse photosynthetically active radiation on gross primary productivity in a subtropical coniferous plantation vary in different timescales. Ecol. Indic. 115, 106403 (2020).Article 

    Google Scholar 
    Grant, I. F., Prata, A. J. & Cechet, R. P. The impact of the diurnal variation of albedo on the remote sensing of the daily mean albedo of grassland. J. Appl. Meteorol. 39, 231–244 (2000).ADS 
    Article 

    Google Scholar 
    Singarayer, J. S., Ridgwell, A. & Irvine, P. Assessing the benefits of crop albedo bio-geoengineering. Environ. Res. Lett. 4, 045110 (2009).ADS 
    Article 

    Google Scholar 
    Tang, S. et al. LAI inversion algorithm based on directional reflectance kernels. J. Environ. Manage. 85, 638–648 (2007).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Island biogeography and human practices drive ecological connectivity in mosquito species richness in the Lakshadweep Archipelago

    MacArthur, R. H. & Wilson, E. O. The theory of island biogeography (Princeton University Press, 1967).
    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1968).
    Google Scholar 
    Caraballo, H. Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16(5), 1–2 (2014).MathSciNet 
    PubMed 

    Google Scholar 
    Rejmánková, E., Grieco, J., Achee, N., Roberts, DR. Ecology of larval habitats. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors 9th. InTech; Rijeka: pp. 397–446. (2013).Sharma, M., Quader, S., Guttal, V. & Isvaran, K. The enemy of my enemy: multiple interacting selection pressures lead to unexpected anti-predator responses. Oecologia 192(1), 1–12 (2020).ADS 
    PubMed 

    Google Scholar 
    Yee, D. A., Kesavaraju, B. & Juliano, S. A. Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Ann. Entomol. Soc. Am. 97, 720–728 (2006).
    Google Scholar 
    Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Day, J. F. Mosquito oviposition behavior and vector control. Insects 7(4), 65 (2016).PubMed Central 

    Google Scholar 
    McBride, C. S. Genes and odors underlying the recent evolution of mosquito preference for humans. Curr. Biol. 26, R41–R46 (2016).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Southerst, R. W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17, 136–173 (2004).
    Google Scholar 
    Vitousek, P. M. Nutrient cycling and limitation: Hawai‘i as a model system (Princeton University Press, 2004).
    Google Scholar 
    Grant, P. R. & Grant, B. R. How and why species multiply: the radiation of darwin’s finches (Princeton University Press, 2011).
    Google Scholar 
    Cliff, A. D. & Haggett, P. The epidemiological significance of islands. Health Place. 1, 199–209 (1995).
    Google Scholar 
    Arrhenius, O. Species and area. J. Ecol. 9(1), 95–99 (1921).
    Google Scholar 
    Preston, F. W. Time and space and the variation of species. Ecology 41(4), 611–627 (1960).
    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, 1995).
    Google Scholar 
    Drakare, S. et al. The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol. Lett. 9: 215 227. (2006).Kotiaho, J., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. Proc. Natl. Acad. Sci. USA 102, 1963–1967 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bataille, A. et al. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc. Nat. Acad. Sci. 106(25), 10230–10235 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sinka, M. E. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Nat. Acad. Sci. 117(40), 24900–24908 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, J.R. Genetic variation in insect vectors: death of typology? Insects. 11;9(4):139. (2018).Whittaker, R. H. Communities and ecosystems (Macmillan, 1975).
    Google Scholar 
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Google Scholar 
    Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Horner-Devine, M. C., Lage, M. & Hughes, J. B. Bohannan BJ A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martiny, J, B. H., Eisen, J.A., Penn, K., Allison, S.D., Horner-Devine, M.C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl. Acad. Sci. USA 108(19):7850−4. (2011).Segre, H., Ron, R., de Malach, N., Henkin, Z., Mandel, M., Kadmon, R. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett., 17(11):1400−8. (2014).Ishtiaq, F. et al. Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J. Biogeogr. 37, 120–132 (2010).
    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan. Puerto Rico. PLoS Negl. Trop. Dis. 5(12), e1378. https://doi.org/10.1371/journal.pntd.0001378 (2011).Article 
    PubMed 

    Google Scholar 
    Campbell, K. M., Lin, C. D., Iamsirithaworn, S. & Scott, T. W. The complex relationship between weather and dengue virus transmission in Thailand. Am. J. Trop. Med. Hyg. 89, 1066–1080. https://doi.org/10.4269/ajtmh.13-0321 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in Urban Areas. Am. J. Trop. Med. Hyg. 101(2), 362–370 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mustak, M. S. et al. The peopling of Lakshadweep Archipelago. Sci. Rep. 9, 6968 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S. K. & Hamzakoya, K. K. Geographical spread of Anopheles stephensi, vector of urban malaria, Aedes aegypti vector of Dengue/DHF, in the Arabian sea islands of Lakshadweep. India. Dengue Bull. 25, 88–91 (2001).
    Google Scholar 
    Sharma RS, Ali, MKS, Dhillon GPS. Epidemiological and entomological aspects of an outbreak of chikungunya in Lakshadweep islands, India, during 2007. Dengue Bull., 178–185 (2008).Subramaniam, H., Ramoo, H. & Sumanam, S. D. Filariasis survey in the Laccadive, minicoy and amindivi Islands. Madras state. Indian J. Malariol. 12, 115–127 (1958).CAS 
    PubMed 

    Google Scholar 
    Roy, R. G., Joy, C. T., Hussain, C. M. & Mohamed, I. K. Malaria in Lakshadweep Islands. Indian J. Med. Res. 67, 924–925 (1978).CAS 
    PubMed 

    Google Scholar 
    Ali, S. M. K. et al. Study on the ecoepidemiology of chikungunya in UT of Lakshadweep. J. Commun. Dis. 41(2), 81–92 (2009).
    Google Scholar 
    Samuel, P. P., Krishnamoorthi, R., Hamzakoya, K. K. & Aggarwal, C. S. Entomo-epidemiological investigations on chikungunya outbreak in the Lakshadweep Islands. Indian Ocean. Indian J. Med. Res. 129(4), 442–445 (2009).PubMed 

    Google Scholar 
    Jayalakshmi, K. & Mathiarasan, L. Prevalence of disease vectors in Lakshadweep Islands during post-monsoon season. J. Vector Borne Dis. 55, 189–196 (2018).
    Google Scholar 
    Su, C. L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Muslim, A. et al. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur. Peninsular Malaysia. Parasites Vectors 6, 219 (2013).PubMed 

    Google Scholar 
    Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lum, J. K., Kaneko, A., Taleo, G., Amos, M. & Reiff, D. M. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu. inferred malaria dispersal and implications for malaria control. Acta Trop. 103, 102–107 (2007).CAS 
    PubMed 

    Google Scholar 
    Marques, T. C. et al. Mosquito (Diptera: Culicidae) assemblages associated with Nidularium and Vriesea bromeliads in Serra do Mar, Atlantic Forest, Brazil. Parasites Vectors 5, 41 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Laporta, G. Z. & Sallum, M. A. M. Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecol. 14, 30 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. & Takken, W. Cannibalism and predation among larvae of the Anopheles gambiae complex. Med. Vet. Entomol. 17(1), 61–66 (2003).CAS 
    PubMed 

    Google Scholar 
    Chathuranga, W. G. D., Karunaratne, S. H. P. P., Priyanka, W. A. & De Silva, P. Predator–prey interactions and the cannibalism of larvae of Armigeres subalbatus (Diptera: Culicidae). J. Asia-Pac. Entomol. 23, 124–131 (2020).
    Google Scholar 
    Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56(2), 159–167 (1997).CAS 
    PubMed 

    Google Scholar 
    Lounibos, L. P., Bargielowski, I., Carrasquilla, M. C. & Nishimura, N. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida two decades after competitive displacements. J. Med. Entomol. 53, 1385–1390 (2016).PubMed 

    Google Scholar 
    Juliano, S. A. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu. Rev. Entomol. 54, 37–56 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bargielowski, I.E., Lounibos, L.P., Carrasquilla, M.C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl. Acad. Sci. 19:110(8):2888–92. (2013).Chadee, D. D. Dengue cases and Aedes aegypti indices in Trinidad. West Indies. Acta Trop. 112(2), 174–180 (2009).CAS 
    PubMed 

    Google Scholar 
    XX. https://www.census2011.co.in/census/state/lakshadweep.htmlChristophers, S. R. The fauna of British India, including Ceylon and Burma; Diptera: Family Culicidae; Tribe Anophelini Vol. 4 (Taylor & Francis, 1933).
    Google Scholar 
    Barraud, P.J. The fauna of British India, including Ceylon and Burma. Diptera V. Family Culicidae. Tribes Megarhinini and Culicini. London: Taylor and Francis p. 463. (1934).Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).CAS 
    PubMed 

    Google Scholar 
    Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. R Package Version 2(10), 2013 (2015).
    Google Scholar 
    R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).McFadden, D. Conditional logit analysis of qualitative choice behavior. Front. Econ. 1, 105–142 (1974).
    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 27, 325–349 (1957).
    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research 3rd edn. (Freeman, 1995).MATH 

    Google Scholar 
    Fortin, M. J. & Dale, M. R. T. Spatial analysis: a guide for ecologists 1–30 (Cambridge University Press, 2005).
    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. http://florianhartig.github.io/DHARMa/. (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    World Health Organization, Guidelines for dengue surveillance and mosquito control. Western Pacific Education in Action Series No.8 (WHO, Geneva, 1995) More

  • in

    Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales

    Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS 
    Article 

    Google Scholar 
    Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS 
    Article 

    Google Scholar 
    Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article 

    Google Scholar 
    McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS 
    Article 

    Google Scholar 
    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article 

    Google Scholar 
    Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS 
    Article 

    Google Scholar 
    Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article 

    Google Scholar 
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article 

    Google Scholar 
    Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
    Google Scholar 
    Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article 
    PubMed 

    Google Scholar 
    Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article 

    Google Scholar 
    Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article 

    Google Scholar 
    Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
    Google Scholar 
    Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS 
    Article 

    Google Scholar 
    Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article 

    Google Scholar 
    Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article 

    Google Scholar 
    Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article 

    Google Scholar 
    Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article 

    Google Scholar 
    Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS 
    Article 

    Google Scholar 
    Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS 
    Article 

    Google Scholar 
    Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article 

    Google Scholar  More

  • in

    Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Tauber, E. & Kyriacou, C. P. Review: Genomic approaches for studying biological clocks. Funct. Ecol. 22, 19–29 (2008).
    Google Scholar 
    White, E. R. & Hastings, A. Seasonality in ecology: Progress and prospects in theory. Ecol. Complex. 44, 100867 (2020).Article 

    Google Scholar 
    Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cassone, V. M. Avian circadian organization: A chorus of clocks. Front. Neuroendocrinol. 35, 76–88 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Peixoto, A. A., Sandrelli, F., Costa, R. & Tauber, E. Clines in clock genes: Fine-tuning circadian rhythms to the environment. Trends Genet. 24, 124–132 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).Article 

    Google Scholar 
    Kalmbach, D. A. et al. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep https://doi.org/10.1093/sleep/zsw048 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, J. S., Shimomura, K. & Kumar, V. Searching for genes underlying behavior: Lessons from circadian rhythms. Science 322, 909–912 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Yoshimura, T. et al. Molecular analysis of avian circadian clock genes11Published on the World Wide Web on 23 May 2000. Mol. Brain Res. 78, 207–215 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gekakis, N. et al. Role of the CLOCK Protein in the Mammalian circadian mechanism. Science 280, 1564–1569 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Saleem, Q., Anand, A., Jain, S. & Brahmachari, S. K. The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum. Genet. 109, 136–142 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Follett, B. Rhythms and photoperiodism in birds. Biological rhythms and photoperiodism in plants (1998).Hazlerigg, D. G. & Wagner, G. C. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol. Metab. 17, 83–91 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stirland, J. A., Mohammad, Y. N. & Loudon, A. S. I. A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc. R Soc. London Ser. B Biol. Sci. 263, 345–350 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).Article 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).Article 

    Google Scholar 
    Rittenhouse, J. L., Robart, A. R. & Watts, H. E. Variation in chronotype is associated with migratory timing in a songbird. Biol. Lett. 15, 20190453 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: Evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B Biol. Sci. 277, 3703–3714 (2010).Article 
    CAS 

    Google Scholar 
    O’Malley, K. G. & Banks, M. A. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: Evidence for selection on PolyQ length variants. Proc. R. Soc. B Biol. Sci. 275, 2813–2821 (2008).Article 
    CAS 

    Google Scholar 
    Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2, 115 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saino, N. et al. Timing of molt of barn swallows is delayed in a rare Clock genotype. PeerJ 1, e17 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Johnsen, A. et al. Avian Clock gene polymorphism: Evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867–4880 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: Evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).PubMed 
    Article 

    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Dor, R. et al. Clock gene variation in Tachycineta swallows. Ecol. Evol. 2, 95–105 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dor, R. et al. Low variation in the polymorphic Clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLoS ONE 6, e28843 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B Biol. Sci. 278, 2848–2856 (2011).CAS 
    Article 

    Google Scholar 
    Liedvogel, M. & Sheldon, B. C. Low variability and absence of phenotypic correlates of Clock gene variation in a great tit Parus major population. J. Avian Biol. 41, 543–550 (2010).Article 

    Google Scholar 
    Lugo-Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. A 203, 383–397 (2017).CAS 
    Article 

    Google Scholar 
    Majoy, S. B. & Heideman, P. D. Tau differences between short-day responsive and short-day nonresponsive white-footed mice (Peromyscus leucopus) do not affect reproductive photoresponsiveness. J. Biol. Rhythms 15, 501–513 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the threespine stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Ross, J. D., Shipley, J. R. & Kelly, J. F. Examination of clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS ONE 13, e0190859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8, 790–802 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chahad-Ehlers, S. et al. Expanding the view of clock and cycle gene evolution in Diptera. Insect Mol. Biol. 26, 317–331 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: What can the insect clock teach us about seasonal adaptation?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160257 (2017).Article 

    Google Scholar 
    van Noordwijk, A. J. et al. A framework for the study of genetic variation in migratory behaviour. J .Ornithol. 147, 221–233 (2006).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
    Google Scholar 
    Gohli, J., Lifjeld, J. T. & Albrecht, T. Migration distance is positively associated with sex-linked genetic diversity in passerine birds. Ethol. Ecol. Evol. 28, 42–52 (2016).Article 

    Google Scholar 
    Bazzi, G. et al. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan migratory birds. Mol. Ecol. 25, 6077–6091 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doren, B. M. V., Liedvogel, M. & Helm, B. Programmed and flexible: Long-term Zugunruhe data highlight the many axes of variation in avian migratory behaviour. J. Avian Biol. 48, 155–172 (2017).Article 

    Google Scholar 
    Helm, B., Gwinner, E. & Trost, L. Flexible seasonal timing and migratory behavior: Results from stonechat breeding programs. Ann. N. Y. Acad. Sci. 1046, 216–227 (2005).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Helm, B. Geographically distinct reproductive schedules in a changing world: Costly implications in captive Stonechats. Integr Comp Biol 49, 563–579 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhondt, A. A. Variations in the number of overwintering stonechats possibly caused by natural selection. Ringing Migr. 4, 155–158 (1983).Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47, 339–345 (2000).Article 

    Google Scholar 
    GOUDET, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Doren, B. M. et al. Correlated patterns of genetic diversity and differentiation across an avian family. Mol. Ecol. 26, 3982–3997 (2017).PubMed 
    Article 

    Google Scholar 
    Illera, J. C., Richardson, D. S., Helm, B., Atienza, J. C. & Emerson, B. C. Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola. Mol. Phylogenet. Evol. 48, 1145–1154 (2008).PubMed 
    Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Reproduction in an endemic bird of a semiarid island: A food-mediated process. J. Avian Biol. 37, 447–456 (2006).Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Site fidelity in the Canary Islands stonechat Saxicola dacotiae in relation to spatial and temporal patterns of habitat suitability. Acta Oecol. 34, 1–8 (2008).Article 
    ADS 

    Google Scholar 
    Gwinner, E. & Dittami, J. Endogenous reproductive rhythms in a tropical bird. Science 249, 906–908 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Dittami, J. & Gwinner, E. Annual cycles in the African stonechat Saxicola torquata axillaris and their relationship to environmental factors. J. Zool. 207, 357–370 (1985).Article 

    Google Scholar 
    Gwinner, E. Circannual rhythms in tropical and temperate-zone stonechats: A comparison of properties under constant conditions. Ökologie der Vögel 13, 5–14 (1991).
    Google Scholar 
    Gwinner, E. Circannual Rhythms: Endogenous Annual Clocks in the Organization of Seasonal Processes (Springer, 2012).
    Google Scholar 
    Helm, B., Fiedler, W. & Callion, J. Movements of European stonechats Saxicola torquata according to ringing recoveries. ARDEA-WAGENINGEN- 94, 33 (2006).
    Google Scholar 
    Opaev, A., Red’kin, Y., Kalinin, E. & Golovina, M. Species limits in Northern Eurasian taxa of the common stonechats, Saxicola torquatus complex (Aves: Passeriformes, Muscicapidae). Vertebr.ate Zool. 68, 199 (2018).
    Google Scholar 
    Gwinner, E. & Czeschlik, D. On the significance of spring migratory restlessness in caged birds. Oikos 30, 364–372 (1978).Article 

    Google Scholar 
    Krist, M., Munclinger, P., Briedis, M. & Adamík, P. The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia https://doi.org/10.1007/s00442-021-04930-x (2021).Article 
    PubMed 

    Google Scholar 
    Berthold, P. & Pulido, F. Heritability of migratory activity in a natural bird population. Proc. R. Soc. London Ser. B Biol. Sci. 257, 311–315 (1994).Article 
    ADS 

    Google Scholar 
    Pulido, F. & Berthold, P. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. 107, 7341–7346 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Liedvogel, M. & Lundberg, M. The Genetics of Migration. In Animal Movement Across Scales (eds Hansson, L.-A. & Åkesson, S.) 219–231 (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199677184.003.0012.Chapter 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).Article 

    Google Scholar 
    Stevenson, T. J. & Kumar, V. Neural control of daily and seasonal timing of songbird migration. J. Comp. Physiol. A 203, 399–409 (2017).Article 

    Google Scholar 
    Verhagen, I. et al. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct. Ecol. 33, 1708–1721 (2019).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of Postjuvenal molt in African (Saxicola Torquata Axillaris) and European (Saxicola Torquata Rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Zink, R. M., Pavlova, A., Drovetski, S., Wink, M. & Rohwer, S. Taxonomic status and evolutionary history of the Saxicola torquata complex. Mol. Phylogenet. Evol. 52, 769–773 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flinks, H. & Pfeifer, F. Brutzeit, Gelegegröße und Bruterfolg beim Schwarzkehlchen (Saxicola torquata). Charadrius 23, 128–140 (1987).
    Google Scholar 
    Urquhart, E. Stonechats (Christopher Helm, 2002).
    Google Scholar 
    Glutz von Blotzheim, U. Bauer Handbuch der Vögel Mitteleuropas KM: Bd. 11. Aula, Wiesbaden (1988).Yamaura, Y. et al. Tracking the Stejneger’s stonechat Saxicola stejnegeri along the East Asian-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197–202 (2017).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefiederte Welt 111, 118–120 (1987).
    Google Scholar 
    Flinks, H., Helm, B. & Rothery, P. Plasticity of moult and breeding schedules in migratory European Stonechats Saxicola rubicola. Ibis 150, 687–697 (2008).Article 

    Google Scholar 
    Humphrey, P. S. & Parkes, K. C. An approach to the study of molts and plumages. Auk 76, 1–31 (1959).Article 

    Google Scholar 
    Berthold, P. Bird Migration: A General Survey (Oxford University Press, 2001).
    Google Scholar 
    RStudio | Open source & professional software for data science teams. https://rstudio.com/.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014).Lüdecke, D. & Lüdecke, M. D. Package ‘sjPlot’. (2015).del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018).
    Google Scholar  More

  • in

    Physiological and morphological effects of a marine heatwave on the seagrass Cymodocea nodosa

    IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O. et al.] In press (2019).Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibble, C. et al. Investigation of a largescale Common Murre (Uria aalge) mortality event in California, USA, in 2015. J. Wildl. Dis. 54, 569–574 (2018).PubMed 
    Article 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Genevier, L. G., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Change Biol. 25, 2338–2351 (2019).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723–2730 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).Article 

    Google Scholar 
    Alongi, D. M. Blue Carbon: Coastal Sequestration for Climate Change Mitigation (Springer, Berlin, 2018).Book 

    Google Scholar 
    Blandon, A. & ZuErmgassen, P. S. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coast. Shelf Sci. 141, 1–8 (2014).ADS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Carr, J., D’odorico, P., McGlathery, K. & Wiberg, P. L. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001103 (2010).Article 

    Google Scholar 
    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett. 3, 58–71. https://doi.org/10.1046/j.1461-0248.2000.00111.x (2000).Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003793 (2010).Article 

    Google Scholar 
    Cabaço, S. & Santos, R. Human-induced changes of the seagrass Cymodocea nodosa in Ria Formosa lagoon (Southern Portugal) after a decade. Cah. Biol. Mar. 55, 101–108 (2014).
    Google Scholar 
    Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Bañolas, G., Fernández, S., Espino, F., Haroun, R. & Tuya, F. Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean Coast. Manag. 187, 105112 (2020).Article 

    Google Scholar 
    Duarte, C. M. & Krause-Jensen, D. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4, 13 (2017).
    Google Scholar 
    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosci. 2, 1–8 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003848 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Collier, C. J. et al. Optimum temperatures for net primary productivity of three tropical seagrass species. Front. Plant Sci. 8, 1446 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, R., Gullström, M., Mangora, M. M., Mtolera, M. S. & Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: a mesocosm experiment on four tropical seagrass species. Ecol. Evol. 8, 4508–4517 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savva, I., Bennett, S., Roca, G., Jordà, G. & Marbà, N. Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol. Evol. 8, 12032–12043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massa, S. I., Arnaud-Haond, S., Pearson, G. A. & Serrão, E. A. Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619, 195–201 (2009).Article 

    Google Scholar 
    Bergmann, N. et al. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol. Ecol. 19, 2870–2883 (2010).PubMed 
    Article 

    Google Scholar 
    Franssen, S. U. et al. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar. Genomics 15, 65–73 (2014).PubMed 
    Article 

    Google Scholar 
    Qin, L. Z. et al. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the seagrass Zostera marina in Korean coastal waters. Estuaries Coasts 43, 449–462 (2020).CAS 
    Article 

    Google Scholar 
    Gao, Y. et al. Photosynthetic and metabolic responses of eelgrass Zostera marina L. to short-term high-temperature exposure. J. Oceanol. Limnol. 37, 199–209 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Costa, M. M., Silva, J., Barrote, I. & Santos, R. Heatwave effects on the photosynthesis and antioxidant activity of the seagrass Cymodocea nodosa under contrasting light regimes. Oceans 2, 448–460 (2021).Article 

    Google Scholar 
    de los Santos, C. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).Cunha, A. H., Assis, J. F. & Serrão, E. A. Reprint of “Seagrasses in Portugal: A most endangered marine habitat”. Aquat. Bot. 115, 3–13 (2014).Article 

    Google Scholar 
    Olsen, Y. S., Sánchez-Camacho, M., Marbà, N. & Duarte, C. M. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries Coasts 35, 1205–1213 (2012).Article 

    Google Scholar 
    Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Lüning, K. Seaweeds. Their Environment, Biogeography, and Ecophysiology (Wiley-Interscience, New York, 1990).Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175 (2007).Article 

    Google Scholar 
    Franssen, S. U. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. 108, 19276–19281 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winters, G., Nelle, P., Fricke, B., Rauch, G. & Reusch, T. B. H. Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar. Ecol. Prog. Ser. 435, 83–95 (2011).ADS 
    Article 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schubert, N. et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Sci. Rep. 8, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Miyake, C., Yonekura, K., Kobayashi, Y. & Yokota, A. Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol. 43, 951–957 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmusson, L. M., Gullström, M., Gunnarsson, P. C. B., George, R. & Björk, M. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Buapet, P. & Björk, M. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Photosynth. Res. 129, 59–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehler, A. H. Studies on reactions of illuminated chloroplasts. II Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys. 34, 339–51 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalanika De Silva, H. C. & Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 12, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    Beer, S., Björk, M., Gademann, R. & Ralph, P. Measurements of photosynthetic rates in seagrasses. In Global Seagrass Research Methods pp. 183–198 (Elsevier Science, 2001).Brodersen, K. E., Kühl, M., Nielsen, D. A., Pedersen, O. & Larkum, A. W. Rhizome, root/sediment interactions, aerenchyma and internal pressure changes in seagrasses. In Seagrasses of Australia pp. 393–418; https://doi.org/10.1007/978-3-319-71354-0_13 (Springer, Cham, 2018).Purnama, P. R., Purnama, E. R., Manuhara, Y. S. W., Hariyanto, S. & Purnobasuki, H. Effect of high temperature stress on changes in morphology, anatomy and chlorophyll content in tropical seagrass Thalassia hemprichii. AACL Bioflux 11, 1825–1833 (2018).
    Google Scholar 
    Rosalina, D., Herawati, E. Y., Musa, M., Sofarini, D. & Risjani, Y. Anatomical changes in the roots, rhizomes and leaves of seagrass (Cymodocea serrulata) in response to lead. Biodiversitas 20, 2583–2588; https://doi.org/10.13057/biodiv/d200921 (2019).Beca-Carretero, P., Olesen, B., Marbà, N. & Krause-Jensen, D. Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Mar. Ecol. Progr. Ser. 589, 59–72; https://doi.org/10.3354/meps12439 (2018).Beca-Carretero, P., Guihéneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Env. Res. 161, 105075; https://doi.org/10.1016/j.marenvres.2020.105075 (2020).Pérez, M. & Romero, J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot. 43, 51–62; https://doi.org/10.1016/0304-3770(92)90013-9 (1992).Saha, M. et al. Response of foundation macrophytes to near‐natural simulated marine heatwaves. Global Change Biol. 26, 417–430; https://doi.org/10.1111/gcb.14801 (2020).Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102; https://doi.org/10.1016/j.marenvres.2017.10.011 (2017).Moreno‐Marín, F., Brun, F. G. & Pedersen, M. F. Additive response to multiple environmental stressors in the seagrass Zostera marina L. Limnol. Oceanogr. 63, 1528–1544; https://doi.org/10.1002/lno.10789 (2018).Kim, M. et al. Influence of water temperature anomalies on the growth of Zostera marina plants held under high and low irradiance levels. Estuaries Coasts 43, 463–476; https://doi.org/10.1007/s12237-019-00578-2 (2020).Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26; https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine Coastal Shelf Sci. 57, 73–85; https://doi.org/10.1016/S0272-7714(02)00332-3 (2003).Instituto Hidrográfico. Marés 81/82 Ria de Faro. Estudo das marés de oito estacões da Ria de Faro pp. 13 (Lisbon: Instituto Hidrográfico, 1986).Andrade, J. P. Aspectos Geomorfológicos, Ecológicos e Socioeconómicos da Ria Formosa pp. 91 (Faro: Universidade do Algarve, 1985).Hobday, A.J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238; https://doi.org/10.1016/j.pocean.2015.12.014 (2016).Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr. 31, 162–173; https://doi.org/10.5670/oceanog.2018.205 (2018).Cunha, A. H., Paulo, D. S., Sousa, I. & Serrão, E. The rediscovery of Caulerpa prolifera in Ria Formosa, Portugal, 60 years after the previous record. Cah. Biol. Mar. 54, 359–364 (2013).
    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2020).ADS 
    Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modelling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker; 10.5281/zenodo.3787872 (2020).Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (Eds.). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (IPCC) (Cambridge University Press, 2012).Silva, J., Barrote, I., Costa, M. M., Albano, S. & Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8, e81058 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silva, J. & Santos, R. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii?. J. Exp. Mar. Biol. Ecol. 307, 207–216 (2004).CAS 
    Article 

    Google Scholar 
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Henley, W. J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).Article 

    Google Scholar 
    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    Folin, O. & Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927).CAS 
    Article 

    Google Scholar 
    Booker, F. L. & Miller, J. E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L) Merr] leaves following exposure to ozone. J. Exp. Bot. 49, 1191–1202 (1998).CAS 
    Article 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26, 1231–1237 (1999).CAS 
    Article 

    Google Scholar 
    Gillespie, K. M., Chae, J. M. & Ainsworth, E. A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2, 867–870 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. & Prior, R. L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 50, 4437–4444 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Rasband, W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018. https://imagej.nih.gov/ij/ (1997).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2014).Devore, J. & Farnum, N. Applied Statistics for Engineers and Scientists (ed. Brooks/Cole) pp. 656 (Pacific Grove, CA, USA, 1999). More

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More