More stories

  • in

    No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120(3), 321–326 (2011).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540(7632), 220–229. https://doi.org/10.1038/nature20588 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113(1), 146–151 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).Article 

    Google Scholar 
    Velthuis, H. H. W. & Van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37(4), 421–451 (2006).Article 

    Google Scholar 
    Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Royal Soc. B Biol. Sci. 285(1870), 20172140 (2018).Article 

    Google Scholar 
    Brown, M. J. F. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40(3), 410–416 (2009).Article 

    Google Scholar 
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259 (2013).Article 

    Google Scholar 
    David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48(1), 12–21 (2019).PubMed 
    Article 

    Google Scholar 
    Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Johnson, R. M. et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7(2), e31051. https://doi.org/10.1371/journal.pone.0031051 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108(2), 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25(4), 662–671. https://doi.org/10.1111/j.1523-1739.2011.01707.x (2011).Article 
    PubMed 

    Google Scholar 
    O’Neal, S. T., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article 
    PubMed 

    Google Scholar 
    Botías, C. et al. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90(2), 415–431 (2021).PubMed 
    Article 

    Google Scholar 
    Dance, C., Botías, C. & Goulson, D. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fauser-Misslin, A., Sadd, B. M., Neumann, P. & Sandrock, C. Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. J. Appl. Ecol. 51(2), 450–459 (2014).Article 

    Google Scholar 
    Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35(2), 420–434 (2021).Article 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Why bees are so vulnerable to environmental stressors. Trends Ecol. Evol. 32(4), 268–278 (2017).PubMed 
    Article 

    Google Scholar 
    Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. Bee reverse-learning behavior and intra-colony differences: simulations based on behavioral experiments reveal benefits of diversity. Ecol. Model. 277, 119–131 (2014).Article 

    Google Scholar 
    Raine, N. E. & Chittka, L. No trade-off between learning speed and associative flexibility in bumblebees: A reversal learning test with multiple colonies. PLoS ONE 7(9), e45096 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 55(6), 2812–2821 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119. https://doi.org/10.1037/0735-7036.97.2.107 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    Takeda, K. Classical conditioned response in the honey bee. J. Insect Physiol. 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9 (1961).CAS 
    Article 

    Google Scholar 
    Laloi, D. et al. Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exp. Appl. 90(2), 123–129 (1999).Article 

    Google Scholar 
    Gómez-Moracho, T., Heeb, P. & Lihoreau, M. Effects of parasites and pathogens on bee cognition. Ecol. Entomol. 42, 51–64 (2017).Article 

    Google Scholar 
    Garratt, M. P. D. et al. The identity of crop pollinators helps target conservation for improved ecosystem services. Biol. Cons. 169, 128–135 (2014).CAS 
    Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462–467 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siviter, H. et al. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 7, e7208 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sparks, T. C. et al. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 107(1), 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7(1), e29268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491(7422), 105–108 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53(5), 1440–1449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williamson, S. M. & Wright, G. A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216(10), 1799–1807 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101(6), 1743–1748 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, E., Chang, H., Wu, W. & Chen, Y. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE 7(11), e49472 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, G. B., Siebert, M. W., Wang, N. X., Loso, M. R. & Sparks, T. C. Sulfoxaflor–A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. Pestic. Biochem. Physiol. 178, 104924 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordes, N. et al. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 109(2), 209–216 (2012).PubMed 
    Article 

    Google Scholar 
    Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 35(6), 737–747 (2010).Article 

    Google Scholar 
    Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9(2), 169–173 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shykoff, J. A. & Schmid-Hempel, P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22(2), 117–125 (1991).Article 

    Google Scholar 
    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. Royal Soc. B Biol. Sci. 273(1590), 1073–1078 (2006).Article 

    Google Scholar 
    Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58(4), 383–389 (2005).Article 

    Google Scholar 
    Martin, C. D., Fountain, M. T. & Brown, M. J. F. Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Azpiazu, C. et al. Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci. Rep. 11(1), 1–9 (2021).Article 
    CAS 

    Google Scholar 
    European Food Safety Authority (EFSA) et al. Peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA J. 17(3), e05633 (2019).
    Google Scholar 
    Linguadoca, A., Rizzi, C., Villa, S. & Brown, M. J. F. Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Sci. Total Environ. 795, 148680 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandor, A., Sarospataki, M. & Farkas, S. The mode of action of neonicotinoids on insects. Növényvédelem 51(1), 14–24 (2015).
    Google Scholar 
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alghamdi, A., Dalton, L., Phillis, A., Rosato, E. & Mallon, E. B. Immune response impairs learning in free-flying bumble-bees. Biol. Lett. 4(5), 479–481 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. Immune response inhibits associative learning in insects. Proc. Royal Soc. London Series B Biol. Sci. 270(1532), 2471–2473 (2003).Article 

    Google Scholar 
    Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav. Immun. 20(2), 135–138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fries, I. et al. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 40(3–4), 91–96 (2001).CAS 
    Article 

    Google Scholar 
    Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 287(1932), 20200935 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charbonneau, L. R., Hillier, N. K., Rogers, R. E., Williams, G. R. & Shutler, D. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory. Sci. Rep. 6, 22626 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gage, S. L. et al. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera). J. Exp. Biol. 221(4), jeb161489. https://doi.org/10.1242/jeb.161489 (2018).Article 
    PubMed 

    Google Scholar 
    Piiroinen, S. & Goulson, D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. Royal Soc. B Biol. Sci. 283(1828), 20160246 (2016).Article 
    CAS 

    Google Scholar 
    Bell, H. C., Montgomery, C. N., Benavides, J. E. & Nieh, J. C. Effects of nosema ceranae (Dissociodihaplophasida: Nosematidae) and flupyradifurone on olfactory learning in honey bees, Apis mellifera (Hymenoptera: Apidae). J. Insect Sci. https://doi.org/10.1093/jisesa/ieaa130 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x (2000).Article 

    Google Scholar 
    Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561(7721), 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, B. D., Skemp, A. K. & Papaj, D. R. Learning in two contexts: The effects of interference and body size in bumblebees. J. Exp. Biol. 208(11), 2045–2053 (2005).PubMed 
    Article 

    Google Scholar 
    Riveros, A. J. & Gronenberg, W. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856. https://doi.org/10.1007/s00114-009-0532-y (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66(1), 50–61. https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Arce, A. N. et al. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc. Royal Soc. B Biol. Sci. 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655 (2018).CAS 
    Article 

    Google Scholar 
    Muth, F., Gaxiola, R. L. & Leonard, A. S. No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. Royal Soc. Open Sci. 7(5), 191883 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Rutrecht, S. T. & Brown, M. J. F. Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos 118(6), 941–949 (2009).Article 

    Google Scholar 
    Schmid-Hempel, P., Puhr, K., Krüger, N., Reber, C. & Schmid-Hempel, R. Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 53(2), 426–434 (1999).PubMed 
    Article 

    Google Scholar 
    Evans, L. J., Raine, N. E. & Leadbeater, E. Reproductive environment affects learning performance in bumble bees. Behav. Ecol. Sociobiol. 70(12), 2053–2060 (2016).Article 

    Google Scholar 
    Cole, R. J. The application of the “triangulation” method to the purification of nosema spores from insect tissues. J. Invertebr. Pathol. 15(2), 193–195. https://doi.org/10.1016/0022-2011(70)90233-8 (1970).Article 

    Google Scholar 
    Folly, A. J., Barton-Navarro, M. & Brown, M. J. F. Exposure to nectar-realistic sugar concentrations negatively impacts the ability of the trypanosome parasite (Crithidia bombi) to infect its bumblebee host. Ecol. Entomol. 45(6), 1495–1498 (2020).Article 

    Google Scholar 
    Schlüns, H., Sadd, B. M., Schmid-Hempel, P. & Crozier, R. H. Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. Dev. Comp. Immunol. 34(7), 705–709 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Yourth, C., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1 (2008).Article 

    Google Scholar 
    Fournier, A., Rollin, O., Le Féon, V., Decourtye, A. & Henry, M. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae). J. Econ. Entomol. 107(1), 38–46 (2014).PubMed 
    Article 

    Google Scholar 
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6(1), 1–11 (2016).Article 
    CAS 

    Google Scholar 
    R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Kassambara, A., Kosinski, M., Biecek, P., & Fabian, S. (2020). survminer: drawing survival curves using ‘ggplot2’. R package version 0.4. 8. 2019.Therneau, T. M. & Lumley, T. Package ‘survival’. R Top Doc 128(10), 28–33 (2020).
    Google Scholar 
    Bartoń, K. (2020). MuMIn: Multi-Model Inference. R package ver. 1.43. 17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multimodel inference, 2. More

  • in

    Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection

    Model overview and parametersOur mathematical model of the CF lung microbiome dynamics, originally developed in [20], is based on knowledge of the physiology and interactions among community members from experimental data and evidence in the literature. The model setting is a mucus-plugged tube, open to the air at the top and sealed at the bottom, mimicking a lung bronchiole. This setting is meant to pair with a previously established experimental microcosm called the WinCF system [21], which we use below for experiments. There is an important spatial component to the model, as oxygen penetration from the open top of the tube is constant and shapes the community structure. The consequences of these chemical gradients were first modelled in our initial study [20]. The community members are classified as either “pathogens”, representing classic CF pathogens, or “fermenters”, representing other anaerobic organisms commonly encountered in CF airways. These classifications are a significant simplification, but they can be considered as guilds, in that their individual members have similar inherent properties defined by their core metabolism, antibiotic resistance, and niche occupancy [20]. The definition of classic pathogens and anaerobic fermenters is also clinically relevant, as the former are those assayed in clinical labs for antibiotic resistance to inform treatment decisions, whereas anaerobic fermenters are not cultured or tested for susceptibility in most clinical labs. Classifications of each microbiome member into these guilds are available in Tables S2–S4. Fermenters reside in low oxygen areas and utilize sugars to produce acids [20] (Fig. 1). Pathogens, principally, but not exclusively, Pseudomonas aeruginosa, occupy high oxygen regions where they aerobically respire and utilize amino acids as a carbon source producing ammonium, which increases the surrounding pH [20] (Fig. 1). Pathogens can also respire anaerobically, with nitrate as an electron acceptor (Fig. 1). In addition to increasing the surrounding pH, they produce inhibitor molecules (such as phenazines and quinolones) that inhibit the growth of fermenters [20] (Fig. 1). This model is hereon referred to as the “mathematical model”.Fig. 1: Schematic of principles and interacations defining the mathematical model.All consitunents of the model are represented in illustrating basic assumptions and interactions. Fermenters (θf) metabolize (SG) as a carbon source, which produce acid (F) leading to an increase in hydrons (H+) (i.e. lowering the pH) under anaerobic conditions. This pH decrease inhibitis the growth of pathogens. Pathogens (θP) in the presence of oxygen (SO) (i.e., aerobic conditions) use amino acids (SA) as their primary carbon source. The byproduct of this metabolism is ammonium (P), which produces hydroxide (OH-) leading to an increase in pH, inhibiting fermenter growth. Under anaerobic conditions pathogens use nitrate (SN) as an electron acceptor. In addition to this pathogens produce a chemical inhibitor of fermenters (I).Full size imagePredicting and modelling outcomes of antibiotic therapyTo better conceputalize and compare our modeling and experimental results, we first theoretically predicted the outcomes of antimicrobial therapy against the two guilds using three theoretical drugs: one with fermenter coverage (denoted Tf), one with pathogen coverage (denoted Tp), and one with broad spectrum coverage (denoted Tw). This approach is hereon referred to as the “theoretical prediction”. To further enable comparison to experimental data we outline characteristics of the two guilds we expect to observe in the experiments. Firstly, the growth of anaerobic fermenters is positively correlated with an increase in gas production (bubble formation in the WinCF system) [21]. Second, an increase in P. aeruginosa positively correlates with an increase in its inhibitor molecule (e.g., Quinolone HHQ) and P. aeruginosa does not produce gas in the WinCF system [21]. Thirdly, based on Tables S1–S4 and the CF microbiome literature, fermenters are more diverse than pathogens [2, 43, 44]. These characteristics of our theoretical prediction enable direct comparison to microbiome measures of experimental results, such as alpha diversity, beta diversity, pathogen relative abundance, fermenter relative abundance and total bacterial load (TBL).With our theoretical prediction we expect the following outcomes when communities are exposed to antibiotics: (1) community resistance, (2) community death, (3) pathogen death, and (4) fermenter death (Fig. 2A–E). In both the complete absence of an antibiotic and community resistance, we expect TBL, pathogens, fermenters, HHQ, and gas production measures to increase until reaching carrying capacity (Fig. 2B). The opposite, community death (treatment with Tw) results in both microbial entities failing to grow (Fig. 2C). Tw treatment would not change alpha or beta diversity, as we would simply measure the initial inoculum due to total community death. Outcomes 1 and 2 have a degree of uncertainty due to the fact that it is difficult to assume the community would not change from the inoculum without an antibiotic present, but it is expected that Tw would have less impact on microbiome diversity than Tp or Tf (Fig. 1C). Treatment with Tp results in an anaerobic fermenter bloom, increasing alpha and beta diversity along with gas production and a decrease in HHQ production (Fig. 2D). Finally, in the case of Tf treatment, fermenter abundance and gas production would decrease while HHQ abundance would increase (Fig. 1E). Treatment with Tf will also result in a decrease in alpha diversity and an increase in beta diversity because of changes in community structure when the diverse anaerobic fermenters are killed (Fig. 2E).Fig. 2: Theoretical predictions and Model iteration 1.The initial microbiome is composed of both pathogens and fermenters and is illustrated in (A), but the proportions of these are unique to each patient. Under pressure of the various treatments (B) NT, (C) Tw, (D) Tp, and (E) Tf the predicted community response is illustrated. The response i.e., (expected change) in common microbiome measures as indicated in the legend (yellow = increase, red = decrease). The measures are the following: Alpha diversity (AD), Beta diversity (BD), gas production (GP), total bacterial load (TBL), pathogen abundance (P), fermenter abundance (F), and 2-heptyl-4quinolone abundance (HHQ). The model output treatment-to-NT log-ratio of (F) fermenter population and (G) pathogen population of patient 12 as an example with spatial variation at t = 50 h. Boxplots showing model outcomes of the (H) 16S rRNA gene copy ratio and (I) Pathogen to Fermenter log-ratio compared to the control. Each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). The dotted grey line denotes no change from treatment.Full size imageThe theoretical prediction was then tested with the mathematical model hereon referred to as “model iteration 1”. Importantly, our model parameters can use relative abundance data of the two guilds as input. Therefore, we used the sputum microbiome data of all 24 subjects as inputs for model interation 1 (Fig. 2F–H). The outputs were in line with our theoretical prediction and showed that the fermenter drug would reduce the fermenter load, with little effect on the pathogens, the pathogen drug vice versa, and the broad-spectrum antibiotic would kill both (Fig. 2F–H). However, model iteration 1 did produce some unexpected results. The TBL of the Tw decreased to similar levels as Tf and Tp, indicating similar levels of killing whether there was selection against a single guild or the whole community (Fig. 2H). In addition, the TBL and Pathogen/Fermenter log-ratio were variable, indicating the carrying capacity and community dynamics were predicated upon characteristics of this initial sputum inoculum (Fig. 2F–H). Our theoretical prediction (Fig. 2A–E), in tandem with model iteration 1 (Fig. 2F–H), provided a platform for comparison to the in vitro antibiotic experiments with the WinCF system described below.Experimental results of antibiotic therapy against the lung microbiomeWe examined the effects of antibiotics (n = 11) on the CF sputum microbiome cultured in a lung bronchiole microcosm (WinCF system, n = 24) using a combination of 16S rRNA gene amplicon sequencing, metabolomics, and qPCR analysis and compared to our theoretical prediction and model iteration 1. This is hereon referred to as the “antibiotic experiment”. The antibiotics were chosen to represent the main chemical classes commonly used in CF clinics and included: amoxicillin, azithromycin, aztreonam, ciprofloxacin, colistin, doxycycline, levofloxacin, meropenem, metronidazole, bactrim (a combination of sulfamethoxazole/trimethoprim), and tobramycin. Each of the 24 sputum samples were used as an incoculum in ASM treated with one of 11 different antibiotics cultured at 37 °C for 48 h (Table S1) and compared to a no-treatment control. WinCF tubes were also inoculated with this media/sputum/antibiotic mixture to quantify gas bubble production from fermentation (as described in [21]). The antibiotic concentration for each drug was variable and chosen to match the measured concentrations in the blood or sputum of pwCF in pharmacokinetic studies (Table S1). The most prominent genera across all samples after growth were Pseudomonas, Streptococcus, Veillonella, Haemophilus, Fusobacterium, Prevotella, Staphylococcus, Achromobacter, and Neisseria (Fig. S2). A principal component analysis (PCA) biplot, examining the top five factors by percent contribution, showed the primary genera driving community differentiation were Pseudomonas, Streptococcus, and Staphylococcus (Fig. S3). The effects of antibiotics and individual patients on the composition of the communities were compared via PERMANOVA (Table S7). Tested separately, both antibiotic and subject source had a highly significant effect on the community structure (p 40%), which occurred in 6.8% of samples. The microbiomes of outcome 6 were predominantly dominated by pathogens compared to the control samples (Fig. S7). We found this outcome to be especially interesting, with potential clinical relevance; we therefore performed follow up experiments to understand it further.Fig. 4: Characterizing outcomes in the antibiotic experiment.Weighted UniFrac distance compared to (A) rRNA gene copies, (B) Gas production, (C) Pathogen to fermenter log ratio, (D) Shannon index. Individual points are colored by antibiotic treatment (n = 11). Observed outcomes (Community resistance, community death, pathogen death, anaerobe death, niche replacement, and release of community level inhibition) are highlighted via large cogs on each of the panels colored by the outcome they represent. These highlighted regions are meant to aid in visualization of their presence in the overlying data. Cutoff values of for the outcomes are further described in Table S17.Full size imageOther interesting data relationships were found in these experiments (Fig. S8) though they were not defined as outcomes. For example, the changing UniFrac distance and change in alpha diversity were negatively correlated (Fig. S8a). A large increase in UniFrac distance (over 40% increase), was generally associated with takeover by a particular ASV, driving this phenomenon (Figs. S7 and S9). According to prevalence measures of theses samples the prominent genera in these instances were Pseudomonas and Streptococcus (Fig. S9). In the cases of meropenem and amoxicillin, UniFrac distances were increased while the Shannon indices were decreased, due to the killing of diverse anaerobic community, but there were fewer cases of an increase in alpha diversity and a significant microbiome change (observed in 3 samples only) indicating a kind of buffering of the microbiome by the diverse anaerobic community (Fig. S7a). The increase in TBL characterizing outcome 6 was rarely associated with an increase in alpha diversity (Table S17). Finally, similar to a phenomenon described in CF sputum [31], when the microbiome alpha diversity increases the metabolome diversity decreases, likely reflecting consumption of different metabolites by a more diverse microbiome (Fig. S7c).Model iteration 2 and experimental validation to explain increase in TBLBecause model iteration 1 did not predict the interesting outcome 6, we altered its parameters to determine if we could observe an increase in TBL in the presence of an antibiotic, hereon referred to as “model iteration 2”. In model iteration 1, parameter λ in the function g2(Z) was set to 0.1, which represents pH driven inhibition of fermenters on pathogen growth. Due to the inverse relationship of this parameter, reducing it to 0.05 increased the strength of inhibition, resulting in an increase in TBL for some subjects, akin to that observed in our experimental outcome 6 (Fig. 5A). This only occurred in Tf treatments in model iteration 2, corresponding to a bloom in pathogens after killing of anaerobes. Furthermore, this phenomenon was only present in modelled samples that initially contained much lower populations of the fermenter guild compared to pathogens and is dependent on the spatial structure driven by oxygen gradients that is an inherent property the modeled system (Figs. 1 and 5A). This finding suggests that outcome 6 in the antibiotic experiment may be driven by an antibiotic mediated release of community level inhibition driven by the effect of low pH from fermenters on pathogens and the inhibition of anaerobes by oxygen [20]. Thus, we set out to explore this phenomenon in more detail experimentally.Fig. 5: Model alteration and verification.(A) Model iteration 2 outcomes of 16S rRNA gene copy ratio of each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n = 24). Individual points are colored by antibiotic treatment (n = 11). The dotted grey line denotes no change from treatment. Subsequent experimental validation using two communities, P1 and P2 (n = 10), showing the (B) pH in relation to log rRNA gene copies, (C) Approximate pH, (D) Pathogen/Fermenter log ratio, (E) log rRNA gene copies, (F) Genera abundance, (G) Distribution based on genera-classification as classical pathogen or anaerobic fermenter. Asterisks denote p-value significance where ****p ≥ 0.0001, ***p ≥ 0.001, **p ≥ 0.01, *p ≥ 0.05.Full size imageA simple in vitro experiment was performed where three antibiotics, meropenem (Tw), tobramycin (Tp), and metronidazole (Tf), were added at 2.048 mg/L in ASM media inoculated with two representative communities obtained from pwCF: P1 and P2 (n = 10 replicates) (Fig. 5B–F). The three drugs were selected based on their common uses against CF infections based on pathogen and/or anaerobic coverage, but we acknowledge that their effects are not exclusive to these organisms. Community P1 did not contain P. aeruginosa via culturing on cetrimide agar, whereas the bacterium was isolated from the sputum of P2. This provided a unique opportunity to test the predictions from model iteration 2 on the outcomes of a community with or without P. aeruginosa. A lower concentration of antibiotics was chosen to avoid widespread killing of the communities. We examined the following: rRNA gene copies, approximate pH (based on RGB color values inferred from phenol red buffered media standards) and 16S rRNA gene amplicon sequencing (Fig. 5). This is hereon referred to as the validation experiment. The validation experiment reproduced outcome 6, where both the number of rRNA gene copies were higher when the antibiotic was present than in the no treatment control for both P1 and P2 (Fig. 5C). In contrast to model iteration 2, this only occurred in treatment Tw (paired t-test, p = 0.000831) (Fig. 5). Accordingly, this increase in TBL corresponded to an increase in pH of the cultures, validating the association of the anaerobe induced fermentation with an inhibition of the communities’ total carrying capacity (p = 1.69 × 10−9, Fig. 5B–E). In fact, there was a strong positive correlation between the TBL and media pH overall (Fig. 5B). Furthermore, P2 reached a higher bacterial load overall than P1 in the validation experiment, indicating that the pathogen’s presence drove the community to a higher carrying capacity (Fig. 5E). The lower growth in community P1 shows that a community of primarily anaerobic fermenters struggles without the aerobic pathogen present. Microbiome profiles of these follow up experiments validated the predictions of model iteration 2 and initial findings of outcome 6 (Fig. 5F, G). Meropenem killed the anaerobic community (primarily Streptococci) and the increase in TBL was driven by a bloom of Pseudomonas (P2 community) and Staphylococcus (P1 community) to a higher level than the communities’ inherent carrying capacity (Fig. 5F, G). This experiment was subsequently repeated (n = 5), with the same results observed (Fig. S10). It was interesting that a similar increase in TBL occurred from a community without a dominant pathogen (P1, Fig. 5G). We hypothesize that this result is due to the importance of both oxygen and pH in the governing dynamics. With very low levels of the pathogen guild, the community struggles to grow due to high oxygen penetration. When the anaerobes are inhibited by antibiotics, even low levels of an initial pathogen can begin to bloom, as they are not inhibited by oxygen or the antibiotic, and this leads to an increase in total carrying capacity.Antibiotic effects at the strain level in pwCFTo explore similar phenomena in outcomes 5 and 6 from pwCF treated with antibiotics we sequenced the metagenomes of sputum samples collected from subjects immediately prior to and during antibiotic treatment (n = 6) (Table S19). To minimize the effects of multiple therapies at once, a common occurrence in CF therapeutics, these samples were selected based on the treatment provided being the only known antibiotic prescribed to the subject at the time. Metagenomes were analyzed at the strain level and TBL was examined using qPCR. Overall, there was no significant decrease in TBL (Fig. 6A, Wilcoxon rank-sum test, p = 0.095), but alpha diversity significantly decreased (Fig. 6B, Wilcoxon rank-sum test, p = 0.045). Analysis of the rank abundance changes of the microbiome at the strain level showed that all six subjects had dynamic changes in their sputum microbiomes associated with antibiotic treatment despite little decrease in TBL (Fig. 6C). Thus, like outcome 5, and indicative of outcome 6, dynamic community changes occur in pwCF with minor changes in TBL.Fig. 6: In vivo changes across individuals.qPCR and shotgun metagenomics were performed on sputum samples from individuals (n = 6) before and after exacerbation. We examined the following: (A) rRNA gene copies (B) Shannon Index, and (C) Rank abundance. Each point on the rank abundance represents an individual strain. The color of lines on the rank abundance represents type of bacterium based on our model definitions where blue equates to Fermenters, red to Pathogens, and green to other.Full size image More

  • in

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans

    Regional distribution of airborne and surface water bacterial phyla in the Pacific and Atlantic oceansThe two open ocean sailing transects examined in this study included the western Pacific path, sampled in May 2017 from Keelung, Taiwan, towards Fiji (Fig. 1a and Supplementary Data 1), and the Atlantic crossing, sampled in June 2016 from Lorient, France, to Miami, USA (Fig. 1b and Supplementary Data 1). In the water, we found a higher homogeneity in phyla distribution within each transect (significantly lower Euclidean distances between centered log-ratio (CLR)-converted phyla counts (betadispar): Atlantic: 0.3212 compared to 0.4229 in the air, ANOVA (with Tukey’s post hoc), p  More

  • in

    Reply to “Marine abundance and its prehistoric past in the Baltic”

    Hausmann, N., Robson, H. K. & Bailey, G. Marine abundance and its past in the Baltic: a response to Lewis and co-authors. Nat. Commun. Matters Arising (submitted).Lewis, J. P. et al. Marine resource abundance drove pre-agricultural population increase in Stone Age Scandinavia. Nat. Commun. 11, 2006 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Fischer, A. et al. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J. Archaeol.Sci. 34, 2125–2150 (2007).Article 

    Google Scholar 
    Stein, J. K., Deo, J. N. & Phillips, L. S. Big sites—short time: accumulation rates in archaeological sites. J. Archaeol. Sci. 30, 297–316 (2003).Article 

    Google Scholar 
    Andersen, S. H. In Shell Middens in Atlantic Europe (eds N. Milner, O. E. Craig, & G.N Bailey) 31–45 (Oxbow Books, 2007).Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).ADS 
    Article 

    Google Scholar 
    Bennike, O. & Jensen, J. B. Postglacial, relative shore-level changes in Lillebælt, Denmark. Geol. Surv. Den. Greenl. Bull. 23, 37–40 (2011).
    Google Scholar 
    Bjørnsen, M., Clemmensen, L. B., Murray, A. & Pedersen, K. New evidence of the Littorina transgressions in the Kattegat: Optically stimulated luminescence dating of a beach ridge system on Anholt, Denmark. Boreas 37, 157–168 (2008).Article 

    Google Scholar 
    Berglund, B. E. et al. Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat. Int. 130, 111–139 (2005).Article 

    Google Scholar 
    Bailey, G., Andersen, S. H. & Maarleveld, T. J. In The Archaeology of Europe’s Drowned Landscapes Coastal Research Library (eds G. Bailey et al.) (2020).Bennike, O., Andresen, K. T., Astrup, P. M., Olsen, J. & Seidenkrantz, M.-S. Late Glacial and Holocene shore-level changes in the Aarhus Bugt area, Denmark. GEUS Bull. 47, 6530 (2021).Article 

    Google Scholar 
    Rowley-Conwy, P. The laziness of the short-distance hunter: the origins of agriculture in western Denmark. J. Anthropol. Archaeol. 3, 300–324 (1984).Article 

    Google Scholar 
    Milner, N. In The Archaeology and Historical Ecology of Small Scale Economies (eds V. D. Thompson & J. C. Waggoner Jr.) 16–39 (University Press of Florida, 2013).Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).ADS 
    Article 

    Google Scholar 
    Lewis, J. P. et al. The shellfish enigma across the Mesolithic-Neolithic transition in southern Scandinavia. Quat. Sci. Rev. 151, 315–320 (2016).ADS 
    Article 

    Google Scholar 
    Robson, H. K. & Ritchie, K. In Working at the sharp end: from bone and antler to Early Mesolithic life in Northern Europe 10 (eds D. Groß, D. Jantzen, H. Lübke, & J. Meadows) 289–303 (Wachholtz-Verlag, 2020).Aaris-Sørensen, K. Diversity and dynamics of the mammalian fauna in Denmark Throughout the last glacial-interglacial cycle, 115-0 kyr BP. Foss. Strat. 57, 1–59 (2009).
    Google Scholar 
    Boethius, A. & Ahlström, T. Fish and resilience among Early Holocene foragers of southern Scandinavia: A fusion of stable isotopes and zooarchaeology through Bayesian mixing modelling. J. Archaeol. Sci. 93, 196–210 (2018).Article 

    Google Scholar 
    Bennike, O., Jensen, J. B., Lemke, W., Kuijpers, A. & Lomholt, S. Late- and postglacial history of the Great Belt, Denmark. Boreas 33, 18–33 (2004).Article 

    Google Scholar 
    Bennike, O., Andreasen, M. S., Jensen, J. B., Moros, M. & Noe-Nygaard, N. Early Holocene sea-level changes in Øresund, southern Scandinavia. Geol. Surv. Den. Greenl. Bull. 26, 29–32, www.geus.dk/publications/bull (2012).
    Google Scholar 
    Boethius, A., Kjällquist, M., Kielman-Schmitt, M., Ahlström, T. & Larsson, L. Early Holocene Scandinavian foragers on a journey to affluence: Mesolithic fish exploitation, seasonal abundance and storage investigated through strontium isotope ratios by laser ablation (LA‐MC-ICP‐MS). PLoS ONE 16, e0245222 (2021).CAS 
    Article 

    Google Scholar 
    Petersen, E. B. & Meiklejohn, C. Historical context of the term ‘Complexity’. Acta Archaeol. 78, 181–192 (2007).Article 

    Google Scholar 
    Bennike, O., Nørgaard-Pedersen, N., Jensen, J. B., Andresen, K. J. & Seidenkrantz, M.-S. Development of the western Limfjord, Denmark, after the last deglaciation: a review with new data. Bull. Geol. Soc. Den. 67, 53–73 (2019).
    Google Scholar 
    Clemmensen, L. B., Murray, A. S. & Nielsen, L. Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia. Quat. Sci. Rev. 40, 54–63 (2012).ADS 
    Article 

    Google Scholar 
    Mörner, N.-A. Eustatic changes during the last 8,000 years in view of radiocarbon calibration and new information from the Kattegatt region and other northwestern European coastal areas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19, 63–85 (1976).Article 

    Google Scholar 
    Schrøder, N. The Kattegat Island of Anholt: sea-level changes and groundwater formation on an island. J. Transdisciplinary Environ. Stud. 14, 27–49 (2015).
    Google Scholar 
    Christensen, C. In Denmarks Hunting Stone Age—status and perspectives (eds O. L. Jensen, S. A. Sørensen, & K. M. Hansen) 183–193 (Hørsholm Egns Museum, 2001).Lambeck, K., Rouby, H., Purcell, Y. S. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. U.S.A. 111, 15296–15303 (2014).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Metabolome dynamics during wheat domestication

    Haas, M., Schreiber, M. & Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61(3), 204–225 (2019).PubMed 
    Article 

    Google Scholar 
    Hebelstrup, K. H. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci. 256, 1–4 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borisjuk, N. et al. Genetic modification for wheat improvement: From transgenesis to genome editing. Biomed. Res. Int. 2019, 6216304 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51(5), 885–895 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426), 705–710 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zimin, A. V. et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11), 1–7 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93–97 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681), 498–502 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443), 91–95 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J. et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. U. S. A. 100(5), 2489–2494 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Allen, A. M. et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11(3), 279–295 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merchuk-Ovnat, L., Fahima, T., Krugman, T. & Saranga, Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. Plant Sci. 251, 23–34 (2018).Article 
    CAS 

    Google Scholar 
    Bhalla, P. L., Sharma, A. & Singh, M. B. Enabling molecular technologies for trait improvement in wheat. Methods Mol. Biol. 1679, 3–24 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hong, J., Yang, L., Zhang, D., & Shi, J. Plant metabolomics: An indispensable system biology tool for plant science. Int. J. Mol. Sci. 17(6), 1–16 (2016).ADS 

    Google Scholar 
    Batyrshina, Z. S., Yaakov, B., Shavit, R., Singh, A. & Tzin, V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biol. 20(1), 19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zorb, C., Langenkamper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Matthews, S. B. et al. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7(8), e44179 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    de Leonardis, A. M. et al. Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int. J. Mol. Sci. 16(12), 30382–30404 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ullah, N., Yuce, M., Neslihan Ozturk Gokce, Z. & Budak, H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genom. 18(1), 969 (2017).Article 
    CAS 

    Google Scholar 
    Lannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front Plant Sci. 8, 2124 (2017).Article 

    Google Scholar 
    Beleggia, R. et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33(7), 1740–1753 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poudel, R., Bhinderwala, F., Morton, M., Powers, R. & Rose, D. J. Metabolic profiling of historical and modern wheat cultivars using proton nuclear magnetic resonance spectroscopy. Sci. Rep. 11(1), 3080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hanhineva, K. et al. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69(13), 2463–2481 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Abu, Y. & Itsko, M. “Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication. Sci. Rep. 11(1), 20340. https://doi.org/10.1038/s41598-021-98764-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3(6), 429–441. https://doi.org/10.1038/nrg817 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., Beiles, A., Flom, D. & Nevo, E. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE. 13(2), e0190424 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., et al., Durum wheat evolution—a genomic analysis. In Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, Vol. 110 29–44 (2014).Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155, 233–243 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Arbona, V. & Gomez-Cadenas, A. Metabolomics of Disease resistance in crops. Mol. Biol. 19, 13–30 (2016).
    Google Scholar 
    Okada, K., Abe, H. & Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56(1), 16–27 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Belz, R. G. Allelopathy in crop/weed interactions–an update. Pest. Manag. Sci. 63(4), 308–326 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mondal, S. et al. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 7, 991 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, L. et al. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu. Rev. Phytopathol. 54, 279–301 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-David, R., Dinoor, A., Peleg, Z. & Fahima, T. Reciprocal hosts’ responses to powdery mildew isolates originating from domesticated wheats and their wild progenitor. Front. Plant Sci. 9, 75 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yahiaoui, N., Brunner, S. & Keller, B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47(1), 85–98 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant—a review. Crit. Rev. Food Sci. Nutr. 56(1), 160–179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mou, Y., et al. Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L). Int. J. Mol. Sci. 20(8), 85–97 (2019).Article 
    CAS 

    Google Scholar 
    Kage, U., Karre, S., Kushalappa, A. C. & McCartney, C. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol. J. 15(4), 447–457 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dutartre, L., Hilliou, F. & Feyereisen, R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluster. BMC Evol. Biol. 12, 64 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE 11(5), e0155851 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kage, U., Yogendra, K. N. & Kushalappa, A. C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci. Rep. 7, 42596 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Masisi, K., Beta, T. & Moghadasian, M. H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 196, 90–97 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 12(8), 749–767 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Vizcaino, F. & Fraga, C. G. Research trends in flavonoids and health. Arch Biochem. Biophys. 646, 107–112 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kong, L., Guo, H. & Sun, M. Signal transduction during wheat grain development. Planta 241(4), 789–801 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nadolska-Orczyk, A., Rajchel, I. K., Orczyk, W. & Gasparis, S. Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6), 1081–1098 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Yang, B. Translational genomics of grain size regulation in wheat. Theor. Appl. Genet. 130(9), 1765–1771 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, P. F. et al. Transcriptional reference map of hormone responses in wheat spikes. BMC Genom. 20(1), 390 (2019).Article 
    CAS 

    Google Scholar 
    Hill, C. B. & Li, C. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front .Plant Sci. 7, 1906 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49(12), 1741–1746 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ

    Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & McPhail, J. D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 140, 85–108 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).ADS 
    Article 

    Google Scholar 
    Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).PubMed 
    Article 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    Day, T. & Young, K. A. Competitive and facilitative evolutionary diversification. Bioscience 54, 101–109 (2004).Article 

    Google Scholar 
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).Article 

    Google Scholar 
    Stuart, Y. E., Inkpen, S. A., Hopkins, R. & Bolnick, D. I. Character displacement is a pattern: so, what causes it? Biol. J. Linn. Soc. 121, 711–715 (2017).Article 

    Google Scholar 
    Brockhurst, M. A., Hochberg, M. E., Bell, T. & Buckling, A. Character displacement promotes cooperation in bacterial biofilms. Curr. Biol. 16, 2030–2034 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, C. N., Traverse, C. C., Mayo-Smith, L., Buskirk, S. W. & Cooper, V. S. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution 69, 283–293 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rainey, P. B., Buckling, A., Kassen, R. & Travisano, M. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15, 243–247 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, P. E., Souza, V. & Lenski, R. E. Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996).Article 

    Google Scholar 
    Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104, 876–881 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Westeberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Evol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Development and evolution of character displacement. Ann NY Acad Sci. 1256, 89–107 (2012).ADS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas Gonzalez, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leveau, J. H. & Lindow, S. E. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Natl. Acad. Sci. USA 98, 3446–3453 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13, 238–243 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106, 16428–16433 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlstrom, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 22, 142–155 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Roman-Reyna, V. et al. Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice (NY) 13, 72 (2020).Article 

    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio. 6, e02527–14 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Laforest-Lapointe, I. & Whitaker, B. K. Decrypting the phyllosphere microbiota: progress and challenges. Am. J. Bot. 106, 171–173 (2019).PubMed 

    Google Scholar 
    Baldotto, L. E. B. & Olivares, F. L. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can. J. Microbiol. 54, 918–931 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl. Acad. Sci. USA 100, 15977–15982 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70, 346–355 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, C. E., Monier, J. M. & Jacques, M. A. A technique To quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 64, 4789–4795 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218, 1327–1333 (2018).PubMed 
    Article 

    Google Scholar 
    Gourion, B., Rossignol, M. & Vorholt, J. A. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl. Acad. Sci. USA 103, 13186–13191 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, J. L., Carroll, T. L. & Sundin, G. W. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb. Ecol. 49, 104–113 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15, 3256–3269 (2016).Article 
    CAS 

    Google Scholar 
    Ochsner, A. M. et al. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Mol. Microbiol. 111, 1152–1166 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helmann, T. C., Deutschbauer, A. M. & Lindow, S. E. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc. Natl. Acad. Sci. USA 116, 18900–18910 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl. Acad. Sci. USA 115, E3055–E3064 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pulawska, J. et al. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci. Rep. 10, 20582 (2020).Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vogel, C., Innerebner, G., Zingg, J., Guder, J. & Vorholt, J. A. Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp Strain Fr1 against Pseudomonas syringae DC3000. Appl. Environ. Microbiol. 78, 5529–5535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier, B. A. et al. A general non-self response as part of plant immunity. Nat. Plants 7, 696–705 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29r–37r (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tao, F., Swarup, S. & Zhang, L. H. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159–3170 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, M. X., Zhu, F., Dong, S. L., Pritchard, D. G. & Wu, H. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 285, 12140–12148 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, A. et al. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 4, 187–190 (2002).CAS 
    PubMed 

    Google Scholar 
    Halder, U., Banerjee, A. & Bandopadhyay, R. Structural and functional properties, biosynthesis, and patenting trends of bacterial succinoglycan: a review. Indian J. Microbiol. 57, 278–284 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehaus, K. & Becker, A. The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Sub-Cell. Biochem. 29, 73–116 (1998).CAS 
    Article 

    Google Scholar 
    Ellis, H. R. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39, 178–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marco, M. L., Legac, J. & Lindow, S. E. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ. Microbiol. 7, 1379–1391 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, X. L. et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. USA 110, E425–E434 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, S. J. & Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 277, 24155–24161 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, B. C. et al. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J. Bacteriol. 195, 4742–4752 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheublin, T. R. et al. Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 16, 2212–2225 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hopsu-Havu, V. K. & Glenner, G. G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7, 197–201 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. & Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6, 544 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chipperfield, J. R. & Ratledge, C. Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13, 165–168 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visca, P., Ciervo, A., Sanfilippo, V. & Orsi, N. Iron-regulated salicylate synthesis by Pseudomonas Spp. J. Gen. Microbiol. 139, 1995–2001 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seifert, G. J., Barber, C., Wells, B., Dolan, L. & Roberts, K. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablackis, E., Huang, J., Muller, B., Darvill, A. G. & Albersheim, P. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Beneit, F. The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol. 6, 402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mortimer, J. C. et al. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J. 83, 413–426 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J. Bacteriol. 176, 3474–3483 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077–7081 (1989).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jameson, G. N., Cosper, M. M., Hernandez, H. L., Johnson, M. K. & Huynh, B. H. Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43, 2022–2031 (2004).Sirithanakorn, C. & Cronan, J. E. Biotin, a universal and essential cofactor: synthesis, ligation and regulation. FEMS Microbiol. Rev. 45, fuab003 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Choi-Rhee, E. & Cronan, J. E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilmes, P. et al. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2, 853–864 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 9, 1141–1151 (2015).PubMed 
    Article 

    Google Scholar 
    Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).Article 

    Google Scholar 
    Singh, P., Santoni, S., Weber, A., This, P. & Peros, J. P. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures. Sci. Rep. 9, 14294 (2019).Kosma, D. K. et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 1918–1929 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piffeteau, A. & Gaudry, M. Biotin uptake: influx, efflux and countertransport in Escherichia coli K12. Biochim. Biophys. Acta 816, 77–82 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hassani, M. A., Duran, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P. Beyond the black queen hypothesis. ISME J. 10, 2085–2091 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pacheco, A. R., Moel, M. & Segre, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Joyner, D. C. & Lindow, S. E. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiol. 146, 2435–2445 (2000).CAS 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N., de Oliveira, S., Schreiber, L. & Leveau, J. H. Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles. Front. Microbiol. 2, 197 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Remus-Emsermann, M. N. P., Tecon, R., Kowalchuk, G. A. & Leveau, J. H. J. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 6, 756–765 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peredo, E. L. & Simmons, S. L. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front. Microbiol. 8, 2669 (2018).Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ledermann, R., Strebel, S., Kampik, C. & Fischer, H. M. Versatile vectors for efficient mutagenesis of Bradyrhizobium diazoefficiens and other alphaproteobacteria. Appl. Environ. Microbiol. 82, 2791–2799 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staswick, P. E., Tiryaki, I. & Rowe, M. L. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. & Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlesier, B., Breton, F. & Mock, H. P. A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Mol. Biol. Rep. 21, 449–456 (2003).CAS 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemmerle, L., Ochsner, A. M., Vonderach, T., Hattendorf, B. & Vorholt, J. A. Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol. 650, 215–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uhrig, R. G. et al. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant Cell Environ. 44, 821–841 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, J. J. et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48, D606–D612 (2020).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system

    Sabo, J. et al. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86, 56–62 (2005).Article 

    Google Scholar 
    Lind, L., Hasselquist, E. & Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage. 249, 109391–109391 (2019).PubMed 
    Article 

    Google Scholar 
    Merritt, D., Nilsson, C. & Jansson, R. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecol. Monogr. 80, 609–626 (2010).Article 

    Google Scholar 
    Jansson, R., Nilsson, C. & Renöfält, B. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81, 899–903 (2000).Article 

    Google Scholar 
    Mari, L. et al. Metapopulation persistence and species spread in river networks. Ecol. Lett. 17, 426–434 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768. https://doi.org/10.1038/s41598-020-70816-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wobus, C. et al. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211 (2017).ADS 
    Article 

    Google Scholar 
    Meyer, J. L. et al. The contribution of headwater streams to biodiversity in river networks1. J. Am. Water Resour. Assoc. 43, 86–103. https://doi.org/10.1111/j.1752-1688.2007.00008.x (2007).ADS 
    Article 

    Google Scholar 
    Van Looy, K. & Piffady, J. Metapopulation modelling of riparian tree species persistence in river networks under climate change. J. Environ. Manage. 202, 437–446 (2017).PubMed 
    Article 

    Google Scholar 
    Sochor, M. et al. Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet. Genomes 9, 1193–1205 (2013).Article 

    Google Scholar 
    Garssen, A. G. et al. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 23, 3052–3063. https://doi.org/10.1111/gcb.13687 (2017).ADS 
    Article 

    Google Scholar 
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und historischer Sicht. 6., vollst. neu bearb. und stark erw. Aufl edn, (Ulmer, 2010).Hanski, I. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, New York, 1997).MATH 

    Google Scholar 
    Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    Chen, F.-Q. & Xie, Z.-Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol. 191, 67–75 (2007).Article 

    Google Scholar 
    Bonn, S. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. (Quelle und Meyer Verlag, 1998).Müller-Schneider, P. Verbreitungsbiologie der Blütenpflanzen Graubündens: Diasporology of the Spermatophytes of the Grisons. Vol. 85. (Switzerland) (1986).Aradottir, A., Svavarsdottir, K. & Bau, A. Clonal variability of native willows (Salix pylicifofia and Salix lanata) in Iceland and implications for use in restoration. Icel. Agric. Sci. 20, 61–72 (2007).
    Google Scholar 
    Egelund, B., Pertoldi, C. & Barfod, A. S. Isolation and reduced gene flow among Faroese populations of tea-leaved willow (Salix phylicifolia, Salicaceae). N. J. Bot. J. Bot. Soc. B. Isles 2, 9–15 (2012).
    Google Scholar 
    Van Puyvelde, K. & Triest, L. ISSRs indicate isolation by distance and spatial structuring in Salix alba populations along Alpine upstream rivers (Alto Adige and Upper Rhine). Belg. J. Bot. 140, 100–108 (2007).
    Google Scholar 
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108. https://doi.org/10.1007/s10750-016-3021-2 (2017).Article 

    Google Scholar 
    Werth, S., Schoedl, M. & Scheidegger, C. Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshw. Biol. 59, 2502–2515 (2014).Article 

    Google Scholar 
    Pollux, B. J. A., Luteijn, A., Van-Groenendael, J. M., Ouborg, N. J. & Ouborg, N. J. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54, 64–76 (2009).Article 

    Google Scholar 
    Davis, C., Epps, C., Flitcroft, R. & Banks, M. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5, e1269 (2018).Article 

    Google Scholar 
    Vega-Retter, C. et al. Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquat. Conserv.Mar. Freshw. Ecosyst. 30, 2254–2268. https://doi.org/10.1002/aqc.3425 (2020).Article 

    Google Scholar 
    Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 23. https://doi.org/10.1186/s12898-016-0079-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. Lond. B: Biol. Sci. 285, 20172746. https://doi.org/10.1098/rspb.2017.2746 (2018).Article 

    Google Scholar 
    Sitzia, T., Kudrnovsky, H., Müller, N. & Michielon, B. Biological flora of Central Europe Myricaria germanica (L.) Desv. Perspect. Plant Ecol. Evol. Syst. 52, 125629. https://doi.org/10.1016/j.ppees.2021.125629 (2021).Article 

    Google Scholar 
    Egger, G., Steineder, R. & Angermann, K. Verbreitung und Erhaltungszustand des FFH-Lebensraumtyps 3230 “Alpine Flüsse mit Ufergehölzen von Myricaria germanica” an der Isel und deren Zubringern (Osttirol, Österreich). Carinthia II 204, 391–432 (2014).
    Google Scholar 
    Schletterer, M., Gewolf, S., Egger, G. & Fink, S. Forschungsprojekt Tamariske: Genetische Untersuchung von Populationen an der Isel – Dokumentation der Beprobungen 2018. 32 (Innbruck, 2019).Scheidegger, C. & Wiedmer, A. Genetische Untersuchung zur Deutschen Tamariske in Tirol. (Eidg. Forschungsanstalt WSL, Birmensdorf, 2014).Hedrick, P., Lacy, R., Allendorf, F. & Soule, M. Directions in conservation biology: Comments on caughley. Conserv. Biol. 10, 1312–1320 (1996).Article 

    Google Scholar 
    Sampson, J., Byrne, M., Gibson, N. & Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 6, 5867–5880 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kudrnovsky, H. & Stöhr, O. Myricaria germanica (L.) Desv. historisch und aktuell in Österreich: Ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA Rep. 99, 13–34 (2013).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Auffret, A. G., Plue, J. & Cousins, S. A. O. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, 51–59. https://doi.org/10.1007/s13280-014-0588-6 (2015).Article 
    PubMed Central 

    Google Scholar 
    Herrmann, J. et al. Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97, 1274–1282 (2016).PubMed 
    Article 

    Google Scholar 
    Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mosner, E., Liepelt, S., Ziegenhagen, B. & Leyer, I. Floodplain willows in fragmented river landscapes: Understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol. Conserv. 153, 211–218 (2012).Article 

    Google Scholar 
    Chambers, J., MacMahon, J. & Brown, R. Alpine seedling establishment: The influence of disturbance type. Ecology 71, 1323–1341 (1990).Article 

    Google Scholar 
    Bill, H.-C. Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse PhD thesis, Philipps-Universität Marburg, (2000).Lite, S. J., Bagstad, K. J. & Stromberg, J. C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid Environ. 63, 785–813. https://doi.org/10.1016/j.jaridenv.2005.03.026 (2005).ADS 
    Article 

    Google Scholar 
    Andersson, E., Nilsson, C. & Johansson, M. E. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27, 1095–1106 (2000).Article 

    Google Scholar 
    Aguiar, F. et al. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 55, 2227–2240 (2018).Article 

    Google Scholar 
    Leyer, I. Dispersal, diversity and distribution patterns in pioneer vegetation: The role of river-floodplain connectivity. J. Veg. Sci. 17, 407–416 (2006).Article 

    Google Scholar 
    Crookes, S. & Shaw, P. W. Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv. Genet. 17, 861–874. https://doi.org/10.1007/s10592-016-0828-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9, e99400 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity 96, 471–478. https://doi.org/10.1038/sj.hdy.6800825 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mayer, C., Schiegg, K. & Pasinelli, G. Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol. Ecol. 18, 2353–2364 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benda, L. E. E. et al. The network dynamics hypothesis: How Channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51. https://doi.org/10.1007/s10592-020-01317-y (2021).CAS 
    Article 

    Google Scholar 
    Fink, S., Lanz, T., Stecher, R. & Scheidegger, C. Colonization potential of an endangered riparian shrub species. Biodivers. Conserv. 26, 2099–2114. https://doi.org/10.1007/s10531-017-1347-3 (2017).Article 

    Google Scholar 
    Merritt, D. & Wohl, E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).Article 

    Google Scholar 
    Sitzia, T., Michielon, B., Iacopino, S. & Kotze, D. J. Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecol. Eng. 95, 828–838 (2016).Article 

    Google Scholar 
    Wöllner, R., Scheidegger, C. & Fink, S. Gene flow in a highly dynamic habitat and a single founder event: Proof from a plant population on a relocated river site. Glob. Ecol. Conserv. 28, e01686. https://doi.org/10.1016/j.gecco.2021.e01686 (2021).McLaughlin, B. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).ADS 
    Article 

    Google Scholar 
    Chiu, M. C. et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations. bioRxiv https://doi.org/10.1101/550194 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catford, J. & Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204, 19–36 (2014).PubMed 
    Article 

    Google Scholar 
    Schletterer, M. & Scheiber, T. Wiederansiedlung der deutschen tamariske (Myricaria germanica (L.) DESV.) an der Leutascher Ache (Nordtirol, Österreich). B. Naturwiss. Med. Ver. Innsbr. 95, 53–65 (2008).
    Google Scholar 
    Riehl, S. & Zehm, A. in ANLiegen Natur Vol. 40, 17–20 (ANL Bayern, Laufen, 2017).Egger, G., Angermann, K. & Gruber, A. Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 393–418 (2010).Kudrnovsky, H. Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: Proposing the Isel river system for the Natura 2000 network. Eco. Mont 5, 5–18 (2013).
    Google Scholar 
    Lener, F. P. Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten Master thesis (University of Vienna, Vienna, 2011).
    Google Scholar 
    Schiechtl, H. M. in Alpenländ. Bienenzeitung Vol. 4 125–131 (1957).Bill, H.-C., Poschlod, P., Reich, M. & Plachter, H. Experiments and observations on seed dispersal by running water in an Alpine floodplain. Bull. Geobot. Inst. ETH 65, 13–28 (1999).
    Google Scholar 
    Nilsson, C., Brown, R., Jansson, R. & Merritt, D. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).PubMed 

    Google Scholar 
    Lener, F. P., Egger, G. & Karrer, G. Sprossaufbau und entwicklung der deutschen tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II(203), 515–552 (2013).
    Google Scholar 
    Werth, S. & Scheidegger, C. Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conserv. Genet. Resour. 3, 445–448 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comp., (2016).Excoffier, L., Laval, G. & Schneider, S. Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247. https://doi.org/10.1093/jhered/89.3.238 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Smouse, P. E., Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rannala, B. (ed University of California Davis) 1–12 (2007).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in Bayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733. https://doi.org/10.1111/1755-0998.12216 (2014).Article 
    PubMed 

    Google Scholar 
    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The influence of sea ice on the detection of bowhead whale calls

    Stirling, I., Calvert, W. & Cleator, H. Underwater vocalizations as a tool for studying the distribution and relative abundance of wintering pinnipeds in the High Arctic. Arctic https://doi.org/10.14430/arctic2275 (1983).Article 

    Google Scholar 
    Sirovic, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. II 51, 2327–2344 (2004).Article 
    ADS 

    Google Scholar 
    Jones, J. M. et al. Ringed, bearded, and ribbon seal vocalizations north of barrow, Alaska: Seasonal presence and relationship with sea ice. Arctic 67, 203–222 (2014).Article 

    Google Scholar 
    Clark, C. W. et al. A year in the acoustic world of bowhead whales in the Bering, Chukchi and Beaufort seas. Prog. Oceanogr. 136, 223–240 (2015).Article 
    ADS 

    Google Scholar 
    Marques, T. A., Munger, L., Thomas, L., Wiggins, S. & Hildebrand, J. A. Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endangered Species Res. 13, 163–172 (2011).Article 

    Google Scholar 
    Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    von Benda-Beckmann, A. M., Thomas, L., Tyack, P. L. & Ainslie, M. A. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates. J. Acoust. Soc. Am. 143, 954–967 (2018).Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A. et al. Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the Gulf of Mexico. Front. Mar. Sci. 6, 66 (2019).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 

    Google Scholar 
    Helble, T. A., D’Spain, G. L., Campbell, G. S. & Hildebrand, J. A. Calibrating passive acoustic monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characterisitcs. J. Acoust. Soc. Amer. 134, EL400–EL406 (2013).Article 
    ADS 

    Google Scholar 
    Frasier, K. E. et al. Delphinid echolocation click detection probability on near-seafloor sensors. J. Acoust. Soc. Am. 140, 1918–1930 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Larsen Tempel, J. T., Wise, S., Osborne, T. Q., Sparks, K. & Atkinson, S. “Life without ice: Perceptions of environmental impacts on marine resources and subsistence users of St. Lawrence Island. Ocean Coast. Manag. 212, 105819 (2021).Article 

    Google Scholar 
    Clark, C. W. & Johnson, J. H. The sounds of the bowhead whale, Balaena mysticetus, during the spring migrations of 1979 and 1980. Can. J. Zool. 62, 1436–1441 (1984).Article 

    Google Scholar 
    Ashjian, C. J., Braund, S. R., Campbell, R. G., George, J. C., Kruse, J., Maslowski, W., Moore, S. E., Nicolson, C. R., Okkonen, S. R., & Sherr, B. F. Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska, Arctic 179–194 (2010).Moore, S. E. & Clarke, J. T. Bowhead whale fall distribution and relative abundance in relation to oil and gas lease areas in the northeastern Chukchi Sea. Polar Rec. 29, 209–214 (1993).Article 

    Google Scholar 
    Reeves, R., Rosa, C., George, J. C., Sheffield, G. & Moore, M. “Implications of Arctic industrial growth and strategies to mitigate future vessel and fishing gear impacts on bowhead whales. Mar. Policy 36, 454–462 (2012).Article 

    Google Scholar 
    Blackwell, S. B., Richardson, W., Greene Jr, C., & Streever, B. Bowhead whale (Balaena mysticetus) migration and calling behaviour in the Alaskan Beaufort Sea, Autumn 2001–04: An acoustic localization study, Arctic 255–270 (2007).Mathias, D., Thode, A., Blackwell, S. B., & Greene, C. Computer-aided classification of bowhead whale call categories for mitigation monitoring. In New Trends for Environmental Monitoring Using Passive Systems, Hyeres, French Riviera 1–6 (2008).Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Moore, S. E., Stafford, K. M. & Munger, L. M. Acoustic and visual surveys for bowhead whales in the western Beaufort and far northeastern Chukchi seas. Deep Sea Res. Part II 57, 153–157 (2010).Article 
    ADS 

    Google Scholar 
    Ballard, M. S. et al. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am. 148, 1663–1680 (2020).PubMed 
    Article 
    ADS 

    Google Scholar 
    Duda, T. F., Zhang, W. G. & Lin, Y.-T. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am. 149, 2117–2136 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Diachok, O. I. & Winokur, R. S. Spatial variability of underwater ambient noise at the Arctic ice-water boundary. J. Acoust. Soc. Am. 55, 750–753 (1974).Article 
    ADS 

    Google Scholar 
    Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110–1120 (1976).Article 
    ADS 

    Google Scholar 
    Yang, T. & Votaw, C. W. Under ice reflectivities at frequencies below 1 kHz. J. Acoust. Soc. Am. 70, 841–851 (1981).Article 
    ADS 

    Google Scholar 
    Milne, A. R. & Ganton, J. H. Ambient Noise under Arctic-Sea Ice. J. Acoust. Soc. Am. 36, 855–865 (1964).Article 
    ADS 

    Google Scholar 
    Brown, J. R. & Milne, A. R. Reverberation under Arctic Sea-Ice. J. Acoust. Soc. Am. 42, 78–82 (1967).Article 
    ADS 

    Google Scholar 
    Duckworth, G., LePage, K. & Farrell, T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results. J. Acoust. Soc. Am. 110, 747–760 (2001).Article 
    ADS 

    Google Scholar 
    Jensen, F. B. & Kuperman, W. A. Optimum frequency of propagation in shallow water environments. J. Acoust. Soc. Am. 73, 813–819 (1983).Article 
    ADS 

    Google Scholar 
    Keen, K. A., Thayre, B. J., Hildebrand, J. A. & Wiggins, S. M. Seismic airgun sound propagation in Arctic Ocean waveguides. Deep Sea Res. I 141, 24–32 (2018).Article 

    Google Scholar 
    Greene, C. R. & Buck, B. M. Arctic ocean ambient noise. J. Acoust. Soc. Am. 36, 1218–1220 (1964).Article 
    ADS 

    Google Scholar 
    Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034–2045 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. & Wiggins, S. M. An empirical model for wind-generated ocean noise. J. Acoust. Soc. Am. 149, 4516–4533 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Farmer, D. M. & Xie, Y. The sound of cracking sea ice. J. Acoust. Soc. Am. 84, S123–S123 (1988).Article 
    ADS 

    Google Scholar 
    Bassett, C., Thomson, J., Dahl, P. H. & Polagye, B. Flow-noise and turbulence in two tidal channels. J. Acoust. Soc. Am. 135(4), 1764–1774 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    Chapman, R. P. & Harris, J. Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am. 34, 1592–1597 (1962).Article 
    ADS 

    Google Scholar 
    Gauss, R. C., Fialkowski, J. M., & Wurmser, D. A low- and mid-frequency bistatic scattering model for the ocean surface. In Proceedings of OCEANS 2005 MTS/IEEE, Vol. 2 1738–1744 (2005)Jin, G., Lynch, J. F., Pawlowicz, R. & Worcester, P. Acoustic scattering losses in the Greenland Sea marginal ice zone during the 1988–89 tomography experiment. J. Acoust. Soc. Am. 96, 3045–3053 (1994).Article 
    ADS 

    Google Scholar 
    Citta, J. J. et al. Ecological characteristics of core-use areas used by Bering-Chukchi-Beaufort (BCB) bowhead whales, 2006–2012. Prog. Oceanogr. 136, 201–222 (2015).Article 
    ADS 

    Google Scholar 
    Thode, A. M., Blackwell, S. B., Conrad, A. S., Kim, K. H. & Macrander, A. M. Decadal-scale frequency shift of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 142, 1482–1502 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    Wiggins, S. M., & Hildebrand, J. A. High-frequency acoustic recording package (HARP) for broad-band, long-term marine mammal monitoring. In International Symposium on Underwater Technology 2007 and International Workshop on Scientific use of Submarine Cables & Related Technologies 2007. Institute of Electrical and Electronics Engineers, Tokyo, Japan 551–557 (2007).Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. & Tyack, P. L. Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. J. Acoust. Soc. Am. 125, 1982–1994 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Küsel, E. T. et al. Cetacean population density estimation from single fixed sensors using passive acoustics. J. Acoust. Soc. Am. 129, 3610–3622 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    Cummings, W. C. & Holliday, D. V. Sounds and source levels from bowhead whales off Pt. Barrow, Alaska. J. Acoust. Soc. Am. 82, 814–821 (1987).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Thode, A. M. et al. Source level and calling depth distributions of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 140, 4288 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Blackwell, S. B. et al. Directionality of bowhead whale calls measured with multiple sensors. Mar. Mammal Sci. 28, 200–212 (2012).Article 

    Google Scholar 
    Markus, T., Stroeve, J. C. & Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Oceans https://doi.org/10.1029/2009JC005436 (2009).Article 

    Google Scholar 
    Kwok, R. & Cunningham, G. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140157 (2015).Article 
    ADS 

    Google Scholar 
    Krishfield, R., Toole, J., Proshutinsky, A. & Timmermans, M.-L. Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Tech. 25, 2091–2105 (2008).Article 
    ADS 

    Google Scholar 
    Gong, D. & Pickart, R. S. Summertime circulation in the eastern Chukchi Sea. Deep Sea Res. Part II 118, 18–31 (2015).Article 

    Google Scholar 
    Meng, X., Li, G., Han, G. & Kan, G. Sound velocity and related properties of seafloor sediments in the Bering Sea and Chukchi Sea. Acta Oceanol. Sin. 34, 75–80 (2015).CAS 
    Article 

    Google Scholar 
    Toole, J. M., Krishfield, R. A., Timmermans, M.-L. & Proshutinsky, A. The ice-tethered profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).Article 

    Google Scholar 
    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I 55, 50–72 (2008).Article 

    Google Scholar 
    Kutschale, H. Long-range sound transmission in the Arctic Ocean. J. Geophys. Res. 66, 2189–2198 (1961).Article 
    ADS 

    Google Scholar 
    Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052219 (2012).Article 

    Google Scholar 
    Warner, G. A., Dosso, S. E., Dettmer, J. & Hannay, D. E. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea. J. Acoust. Soc. Am. 137, 3009–3023 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Pang, X. et al. Comparison between AMSR2 sea ice concentration products and pseudo-ship observations of the Arctic and Antarctic sea ice edge on cloud-free days. Remote Sens. 10, 317 (2018).Article 
    ADS 

    Google Scholar 
    Kahru, M. Windows image manager: Image display and analysis program for Microsoft Windows with special features for satellite images (2001).Duncan, A. J. & Maggi, A. L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. Proc. Acoust. 2006, 471–477 (2006).
    Google Scholar 
    Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).Article 
    ADS 

    Google Scholar 
    Alexander, P., Duncan, A., Bose, N., & Smith, D. Modelling acoustic transmission loss due to sea ice cover. Acoust. Aust. 41 (2013).Goff, J. A. Quantitative analysis of sea ice draft: 1. Methods for stochastic modeling. J. Geophys. Res. Oceans 100, 6993–7004 (1995).Article 
    ADS 

    Google Scholar 
    Gavrilov, A. N. & Mikhalevsky, P. N. Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment. J. Acoust. Soc. Am. 119, 3694–3706 (2006).Article 
    ADS 

    Google Scholar  More