More stories

  • in

    Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent

    Smith, J., Nicholas, A., & Beresford. Chernobyl-Catastrophe and Consequences. Springer (published in association with Praxis publishing, UK), ISBN 3–540–23866–2 Springer (2005)Rosenthal, H. L. Content of stable strontium in man and animal biota. In C Skoryna (4): Handbook of Common Strontium. New York Plenum, pp. 503–514 (1981)Ujwal, P. Studies on transfer factors and transfer coefficients of cesium and strontium in soil-grass-milk pathway and estimation and radiation dose in the environment of Kaiga. Ph D thesis, Mangalore University. http://hdl.handle.net/10603/131678 (2012).World Health Organization (WHO). Concise international chemical assessment document 77 (strontium and strontium compounds). http://apps.who.int/iris/bitstream/10665/44280/1/9789241530774_ eng.pdf (2010).Jones, S. Wind scale and Kyshtym: a double anniversary. J. Environ. Radioact. 99(1), 1–6. https://doi.org/10.1016/j.jenvrad.2007.10.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000. Vol. I, Annex A (2000)Nabeshi, et al. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident. Shokuhin Eiseigaku Zasshi. 56(4), 133–143. https://doi.org/10.3358/shokueishi.56.133 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abu –Khadra et al. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leaves of Wheat Plant. Radiation Physics & Protection Conference, 15–19 November 2008, Nasr City – Cairo, Egypt (2008)Alexakhin, R. et al. Fluxes of radionuclides in agricultural environments: Main results and still unsolved problems. In The radiological consequences of the Chernobyl Accident (eds Karaoglou, A. et al.) 39–47 (European Commission, 1996).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series (TRS) No. 472 (IAEA-TRS-472). IAEA, Vienna (2010).International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series (TRS) No. 364. IAEA, Vienna (1994).Howard, B. J. et al. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk. J. Environ. Radioact. 167, 254–268 (2017).CAS 
    Article 

    Google Scholar 
    Tagami, et al. Chapter 5 – Terrestrial Radioecology in Tropical Systems, Editor(s): John R. Twining, Radioactivity in the Environment, Elsevier, Vol 18, pp 155–230 (2012).Voigt, G. et al. Measurements of transfer coefficients for 137Cs, 60Co, 54Mn, 22Na, 131I, and 95mTc from feed into milk and beef. Radiat. Environ. Biophys. 27, 143–152. https://doi.org/10.1007/BF01214604 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Popplewell, D. S. & Ham, G. J. Transfer factors for 137Cs and 90Sr from grass to bovine milk under field conditions. J. Radio. Prot. 9(3), 189–193 (1989).CAS 
    Article 

    Google Scholar 
    Schuller, P. et al. 137Cs concentration in soil, prairie plants, and milk from sites in southern Chile. Health Phy. 64(2), 157–161 (1993).CAS 
    Article 

    Google Scholar 
    Kirchner, G. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys. 66(6), 653–665. https://doi.org/10.1097/00004032-199406000-00005 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Assimakopoulos, P. A. et al. Variation of the transfer coefficient for radiocaesium transport to sheep’s milk during a complete lactation period. J. Environ. Radioact. 22, 63–75 (1994).Article 

    Google Scholar 
    Wang, C. J. et al. Transfer of radionuclides from soil to grass in Northern Taiwan. Appl. Radiat. Isot. 48(2), 301–303 (1997).CAS 
    Article 

    Google Scholar 
    Zhu, Y.-G. & Smolders, E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635–1645 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 35 km from the Chernobyl nuclear power plant. J. Environ. Radioact. 47, 157–170 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. Does size matter? In: International conference on the protection of the environment from the effects of ionizing radiation, Stockholm, International Atomic Energy Agency, Vienna, IAEA-CN-109, 182–185 (2003).Howard, B. J. and Beresford, N. A. Advances in animal radioecology. In: Brechignac F, Howard, B.J., (Eds) Proceedings of international symposium in Aix-en-Provence, France, 3–7. EDP Science, Les Ulis, pp. 187–207 (2001).Solecki, J. & Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 252(1), 89–93 (2002).CAS 
    Article 

    Google Scholar 
    Strebl, F. et al. Radiocaesium contamination of meadow vegetation-time-dependent variability and influence of soil characteristics at grassland sites in Austria. J. Environ. Radioact. 58, 143–161 (2002).CAS 
    Article 

    Google Scholar 
    Tsukada, H. S. et al. Transfer of 137Cs and stable Cs in soil–grass–milk pathway in Aomori, Japan. J. Radioanal. Nucl. Chem. 255(3), 455–458 (2003).CAS 
    Article 

    Google Scholar 
    Toki, H. et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 10, 4074. https://doi.org/10.1038/s41598-020-60999-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kubo, K. et al. Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Sci. Rep. 10(3744), 2020. https://doi.org/10.1038/s41598-020-60716-w (2020).CAS 
    Article 

    Google Scholar 
    Saito, R. et al. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joshy, P. J. et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. J. Environ. Radioact. 102, 1070–1077 (2011).Article 

    Google Scholar 
    Joshi, R. M. et al. Baseline radioactivity levels in Kaiga site soil and its migration to biosphere. J. Radioanal. Nucl. Chem. 247(3), 571–574 (2001).CAS 
    Article 

    Google Scholar 
    Sachdev, P. et al. The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants (IAEA-TECDOC–1497). International Atomic Energy Agency (IAEA) (2006)Geetha, P. V. et al. Determination of concentration of iodine in grass and cow milk by NAA methods using reactor neutrons. J. Radioanal. Nucl. Chem. 294, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Geetha, P. V. et al. Grass to cow milk transfer coefficient (Fm) of iodine for equilibrium and emergency situations. Radiat. Prot. Environ. 37(1), 14–20 (2014).Article 

    Google Scholar 
    Karunakara, N. et al. Studies on the soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J. Environ. Radioact. 124, 101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karunakara, N. et al. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J. Environ. Radioact. 2013(118), 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 (2013).CAS 
    Article 

    Google Scholar 
    Ujwal, P. et al. Estimation of grass to milk transfer coefficient for cesium for emergency situations. Radiat Prot Environ [serial online] [cited 2021 Sep 23]; 34: 210–2. Available from: https://www.rpe.org.in/text.asp?2011/34/3/210/101727 (2011).International Atomic Energy Agency (IAEA). Soil–Plant Transfer of Radionuclides in Non-temperate Environments. IAEA-TECDOC No. 1979, IAEA, Vienna (2021a).Iurian, A.-R. et al. Transfer parameters and processes in arid or humid warm climates. J. Environ. Radioact https://doi.org/10.1016/j.jenvrad.2021.106692 (2021).Article 
    PubMed 

    Google Scholar 
    Doering, et al. A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. J. Environ. Radioact., 232, 106570, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106570 (2021).Rout et al. Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review. J. Environ. Radioact., 235–236, 106652, ISSN 0265–931X. https://doi.org/10.1016/j.jenvrad.2021.106652 (2021a).Rout et al. A review of soil to rice transfer of radionuclides in tropical regions of Indian subcontinent. J. Environ. Radioact. 234: 106631. https://doi.org/10.1016/j.jenvrad.2021.106631 (2021b).Twining, J. R. et al. Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia. J. Environ. Radioact. 71(2004), 71 (2004).CAS 
    Article 

    Google Scholar 
    Twining, J. R. et al. Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical northern Australia. Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC-1497, IAEA, Vienna (2006)Mollah, A. et al. Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat. Environ. Biophys. 37, 125–128. https://doi.org/10.1007/s004110050104 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, H. Q. The classification of soil systems on the basis of transfer factors from soil to reference plants, Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC1497 (IAEA, 2006).
    Google Scholar 
    Mahfuza, S., Sultana et al. Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh, Soil Remediation and Plants, Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00012-7 (2015)Nguyen, T. B. et al. Radionuclide transfer factors from air, soil and freshwater to the food chain of man in monsoon tropical condition of Vietnam, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex VIII to this publication (2021).Robison, W.L. & Conrado, C.L. Concentration ratios for foods grown on Bikini Island at Bikini atoll, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex X to this publication9 (2021).Doering, C. & Bollhöfer, A. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province. J. Environ. Radioact. 162–163, 154 (2016).Article 

    Google Scholar 
    Tenpe, S. P. & Parwate, D. V. Evaluation of elemental uptake of Citrus reticulata by nuclear analytical techniques. Int. J. Innov. Res. Sci. Eng. Technol. 4(2015), 2754 (2015).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Approaches for Modelling of Radioecological Data to Identify Key Radionuclides and Associated Parameter Values for Human and Wildlife. Exposure Assessments. IAEA-TECDOC No. 1950, IAEA, Vienna (2021b).Johansen, M. P. & Twining, J. R. Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: Data compilation and analysis. Radiat. Environ. Biophys. 49(4), 603–611. https://doi.org/10.1007/s00411-010-0318-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sotiropoulou, M., & Florou, H. Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece, J. Environ. Radioact., 237, 2021, 106666, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106666 (2021).Howard, B. J. et al. Updating animal product transfer parameter values for cow and goat milk. In: Soil-pant transfer of radionuclides in non-temperate environments, IAEA-TECDOC-1950, IAEA, Vienna (2021)Musatovová, O. & Vavrová, M. Transfer of 137Cs and 90Sr to some Animal Products in the site of Previewed Nuclear Power Plant Construction. Isotopenpraxis Isotopes Environ. Health Stud. 27(7), 339–341. https://doi.org/10.1080/10256019108622561 (1991).Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-No. 1616. IAEA, Vienna (2009).Karunakara, N. et al. Studies on transfer Factors of Iodine, Cesium and Strontium in air→ grass→ cow→ milk pathway and estimation of radiation dose specific to Kaiga region. Final report of the research project, Nuclear Power Corporation of India Ltd. (NPCIL). Grant No. Kaiga–3&4/00000/SD/2007/S/343 dated 27.12.2007, Kaiga –3&4/00000/SD/2007/S/343 (2012).Karunakara, N. et al. Estimation of air-to-grass mass interception factors for iodine, J. Environ. Radioact., 186, 71–77. ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2017.06.018 (2018).Nayak, R. S. et al. Experimental database on water equivalent factor (WEQp) and organically bound tritium activity for tropical monsoonal climate region of South West Coast of India. Appl. Radiat. Isotopes, https://doi.org/10.1016/j.apradiso.2020.109390 (2020).Karunakara, N. et al. 137Cs concentration in environment of Kaiga in the South-West Coast of India. Health Phys. 81(2), 148–155 (2001).CAS 
    Article 

    Google Scholar 
    Karunakara, N. et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga of south-west Coast of India. J. Environ. Radioact. 65, 255–266 (2003).CAS 
    Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Measurement of radionuclides in food and the environment, a guide book. Technical report series No. 295. IAEA, Vienna (1989).Environmental Measurements Laboratory, procedures manual. U.S. Department of Energy. Ed. 26 (1983).Uchida, S. & Tagami, K. Soil-to-plant transfer factors of fallout Cs-137 and native Cs-133 in various crops collected in Japan. J. Radioanal. Nucl. Chem. 273, 205–210 (2007).CAS 
    Article 

    Google Scholar 
    Gavlak, R. D. et al. Plant, soil and water reference methods for the Western Region. Western Regional Extension Publication (WREP) 125, WERA-103 Technical Committee, http://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (2005).Nuclear Power Corporation of India Ltd. (NPCIL). Environmental impact assessment for Kaiga atomic power project (Kaiga unit 5 & 6), 2 x 700 MWe PHWRs at Kaiga, Karnataka volume – I : Main report. NPCIL, Mumbai, India (2018).Siddappa, K. et al. Distribution of natural and artificial radioactivity components in the environs of coastal Karnataka, Kaiga and Goa (1991–94). Final Project Report to Board of Research in Nuclear Sciences (BRNS), Govt. of India, Mangalore University, Mangalore, India (1994).Radhakrishna, A. P. et al. Distribution of some natural and artificial radionuclides in mangalore environment of South India. J. Environ. Radioact. 30(1), 31–54 (1996).CAS 
    Article 

    Google Scholar 
    Patra, A. K. et al. Influence of site characteristics on soil to plant transfer of Strontium. National Symposium on Environment, 2004. pp. 475–480 (2004).Ross, et al. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Protect. Environ., 35(2) 64–68, DOI https://doi.org/10.4103/0972-0464.112340 (2012).National Research Council (NRC), Nutrient requirements of dairy cattle. 5th revised edition, National Academic Press; Washington D.C (1978).Patra, A. K. Studies on The Biological Translocation of Major and Trace elements in Kaiga Environment, Ph.D. Thesis, Mangalore University (2005).Ehlken, S. & Kirchner, G. Seasonal variations in soil to grass transfer of fallout Strontium and Cesium and of Potassium in North German soils. J. Environ. Radioact. 33(2), 147–181 (1996).CAS 
    Article 

    Google Scholar 
    International Union of Radioecology (IUR). 6th report of the working group soil-plant transfer factors. Report of the working group meeting in Guttannen, Grimselpass, Switzerland, May (1989).Lu, et al. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. Journal of Environmental Radioactivity 90(2), 89–99 (2006).Bergeijk, K. E. et al. Influence of pH, Soil Organic Matter Content on Soil-to-Plant Transfer of Radiocesium and Strontium as Analyzed by a Non-Parametric Method. J. of Environ. Radioactivity 15, 265–276 (1992).Article 

    Google Scholar 
    Anderson, R. R. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055 (1992).CAS 
    Article 

    Google Scholar 
    Hurley, W. L. Lactation Biology. Minerals and Vitamins. Ed. by Univ. Urbana. Illinois USA. (1997).Hingorani, S. B. et al. Sr-90 measurements in milk and composite diet samples in India. J. Sci. Indust. Res. 35, 557–579 (1976).CAS 

    Google Scholar 
    Lettner, H. A. et al. 137Cs and 90Sr transfer to milk in Austrian alpine agriculture. J. Environ. Radioact. 98, 69–84 (2007).CAS 
    Article 

    Google Scholar 
    Klemola, S. et al. Monitoring of Radionuclides in the Environs of the Finnish Nuclear Power Stations in 1988. Supplement 3 to Annual Report STUK-A89, Helsinki (1991)Abukawa, J. et al. A Survey of 90Sr and 137Cs Activity Levels of Retail Foods in Japan. J. Environ. Radioact. 41 (3), 287–305. (1998)Green, N. et al. The transfer of Cs and Sr along the soil-pasture-cow’s milk pathway in an area of land reclaimed from the Sea. J. Environ. Radioact. 23, 151–170 (1994).CAS 
    Article 

    Google Scholar 
    Green, N. et al. Factors affecting the transfer of radionuclides to sheep grazing on pastures reclaimed from the Sea. J. Environ. Radioact. 30(2), 173–183 (1996).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of radiocaesium to ewes through a breeding cycle: An illustration of the pitfalls of the transfer coefficient. J. Environ. Radioact. 98, 24–35 (2007).CAS 
    Article 

    Google Scholar 
    Bobovnikova, et al. Chemical forms of occurrence of long-lived radionuclides and their alteration in soils near the Chernobyl Nuclear Power Station. Soviet Soil Sci. 23, 52–57. (1991).Kashparov, V. A. et al. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys. 76, 251–299 (1999).CAS 
    Article 

    Google Scholar 
    Joshy, P. J. Studies on Environmental Transportation of Natural Radionuclides in Kaiga Region. Ph D Thesis, Mangalore University, pp. 105 (2007). More

  • in

    An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

    Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
    Google Scholar 
    Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).CAS 
    Article 

    Google Scholar 
    Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).CAS 
    Article 

    Google Scholar 
    IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).CAS 
    Article 

    Google Scholar 
    Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).CAS 
    Article 

    Google Scholar 
    Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).CAS 
    Article 

    Google Scholar 
    Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).Article 

    Google Scholar 
    UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).Article 

    Google Scholar 
    Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).CAS 
    Article 

    Google Scholar 
    Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).Article 

    Google Scholar 
    Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).CAS 
    Article 

    Google Scholar 
    Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).Article 

    Google Scholar 
    Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).Article 

    Google Scholar 
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).Article 

    Google Scholar 
    Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).CAS 
    Article 

    Google Scholar 
    Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).Article 

    Google Scholar 
    Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
    Google Scholar 
    Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).Article 

    Google Scholar 
    Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).Article 

    Google Scholar 
    Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).Article 

    Google Scholar 
    Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).Article 

    Google Scholar 
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).Article 

    Google Scholar 
    Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
    Google Scholar 
    IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).Article 

    Google Scholar 
    Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).Article 

    Google Scholar 
    Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).Article 

    Google Scholar 
    Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).Article 

    Google Scholar 
    Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).Article 

    Google Scholar 
    Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).Article 

    Google Scholar 
    Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).Article 

    Google Scholar 
    Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).Article 

    Google Scholar 
    Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).CAS 
    Article 

    Google Scholar 
    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).CAS 
    Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).Article 

    Google Scholar 
    Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).CAS 

    Google Scholar 
    Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).Article 

    Google Scholar 
    Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).Article 

    Google Scholar 
    Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).CAS 
    Article 

    Google Scholar 
    Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
    Google Scholar 
    Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
    Google Scholar 
    Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    The evolution of trait variance creates a tension between species diversity and functional diversity

    Calow, P. Towards a definition of functional ecology. Funct. Ecol. 1, 57–61 (1987).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).Article 
    PubMed 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).Article 
    PubMed 

    Google Scholar 
    Dehling, D. M. & Stouffer, D. B. Bringing the Eltonian niche into functional diversity. Oikos 127, 1711–1723 (2018).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Leinster, T. & Cobbold, C. A. Measuring diversity: the importance of species similarity. Ecology 93, 477–489 (2012).Article 
    PubMed 

    Google Scholar 
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).Article 
    PubMed 

    Google Scholar 
    Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 89, e01343 (2019).ADS 
    Article 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J., Bönisch, G. & D’iaz, S. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Fajardo, A. & Siefert, A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024–1030 (2018).Article 
    PubMed 

    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).Article 
    PubMed 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).Article 
    PubMed 

    Google Scholar 
    Loreau, M. The Challenges of Biodiversity Science. Excellence in Ecology Series (International Ecology Institute, 21385 Oldendorf/Luhe, Germany, 2010).Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. J. Veg. Sci. 24, 921–931 (2013).Article 

    Google Scholar 
    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 
    PubMed 

    Google Scholar 
    Mullon, C. & Lehmann, L. An evolutionary quantitative genetics model for phenotypic (co)variance under limited dispersal, with an application to socially synergistic traits. Evolution 73, 1695–1728 (2019).Article 
    PubMed 

    Google Scholar 
    Taper, M. L. & Case, T. J. Quantitative genetic models for the coevolution of character displacement. Ecology 66, 355–371 (1985).Article 

    Google Scholar 
    Engen, S., Grotan, V., Saether, B.-E. & Coste, C. F. D. An evolutionary and ecological community model for distribution of phenotypes and abundances among competing species. Am. Natur. 198, 1 (2021). https://doi.org/10.1086/714529.Kohyama, T. & Takada, T. The stratification theory for plant coexistence promoted by one-sided competition. J. Ecol. 97, 463–471 (2009).Article 

    Google Scholar 
    Kinzig, A. P., Levin, S. A., Dushoff, J. & Pacala, S. W. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. Am. Nat. 153, 371–383 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Adler, F. R. & Mosquera, J. Is space necessary? Interference competition and limits to biodiversity. Ecology 81, 3226–3232 (2000).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS 
    Article 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. 174, 898–905 (2009).Article 
    PubMed 

    Google Scholar 
    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A. Paleogeographic Model of the Galápagos Islands and Biogeographical and Evolutionary Implications. In Geophysical Monograph Series, (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.), chap. 8, 145–166 (2014).Parent, C. E. & Crespi, B. J. Sequential colonization and diversification of Galápagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60, 2311–2328 (2006).CAS 
    PubMed 

    Google Scholar 
    Parent, C. E. Diversification on islands: bulimulid land snails of Galápagos. Ph.D. thesis, Simon Fraser University, Burnaby, Canada (2008).Kraemer, A. C., Roell, Y. E., Shoobs, N. F. & Parent, C. E. Does island ontogeny dictate both the accumulation of species richness and functional diversity? Glob. Ecol. Biogeogr. 31, 123–137 (2021).Kraemer, A. C., Philip, C. W., Rankin, A. M. & Parent, C. E. Trade-offs direct the evolution of coloration in Galápagos land snails. Proc. R. Soc. B 286, 20182278 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barabás, G. & D’Andrea, R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016).Article 
    PubMed 

    Google Scholar 
    Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).CAS 
    MATH 
    Article 
    PubMed 

    Google Scholar 
    Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).Article 

    Google Scholar 
    Keddy, P. A. & Shipley, B. Competitive hierarchies in herbaceous plant communities. Oikos 54, 234–241 (1989).Article 

    Google Scholar 
    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 7842 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. S., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spaak, J. W. & De Laender, F. Effects of pigment richness and size variation on coexistence, richness and function in light limited phytoplankton. J. Ecol. 109, 2385–2394 (2021).Article 

    Google Scholar 
    Parain, E. C., Rohr, R. P., Gray, S. M. & Bersier, L.-F. Increased temperature disrupts the biodiversity–ecosystem functioning relationship. Am. Nat. 193, 227–239 (2019).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I., Svanbäck, R., Araujo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Goodfriend, G. A. Variation in land-snail shell form and size and its causes: a review. Syst. Biol. 35, 204–223 (1986).Article 

    Google Scholar 
    Machin, J. Structural adaptation for reducing water-loss in three species of terrestrial snail. J. Zool. 152, 55–65 (1967).Article 

    Google Scholar 
    McMahon, R. F. Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. In Progress in Littorinid and Muricid Biology, 241–260 (Springer, Dordrecht, The Netherlands, 1990).Rees, B. B. & Hand, S. C. Heat dissipation, gas exchange and acid-base status in the land snail oreohelix during short-term estivation. J. Exp. Biol. 152, 77–92 (1990).Article 

    Google Scholar 
    Newkirk, G. F. & Doyle, R. W. Genetic analysis of shell-shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30, 227–237 (1975).Article 

    Google Scholar 
    Seeley, R. H. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. Natl Acad. Sci. USA 83, 6897–6901 (1986).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K., Taylor, C. R. & Shkolnik, A. Desert snails: problems of heat, water and food. J. Exp. Biol. 55, 385–398 (1971).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xavier Jordani, M. et al. Intraspecific and interspecific trait variability in tadpole metacommunitiees from the Brazilian Atlantic rainforest. Ecol. Evol. 9, 4025–4037 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria

    Biological control in IPM systems in Africa. (CABI, 2002). https://doi.org/10.1079/9780851996394.0000Kvakkestad, V., Sundbye, A., Gwynn, R. & Klingen, I. Authorization of microbial plant protection products in the Scandinavian countries: A comparative analysis. Environ. Sci. Policy 106, 115–124 (2020).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33, 243–255 (2013).Article 

    Google Scholar 
    Bale, J., van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 363, 761–776 (2008).CAS 
    Article 

    Google Scholar 
    Vacante, V. & Bonsignore, C. P. Natural enemies and pest control. In Handbook of Pest Management in Organic Farming 60–77 (CABI, 2018). https://doi.org/10.1079/9781780644998.0060Eilenberg, J., Hajek, A. & Lomer, C. Suggestions for unifying the terminology in biological control. Biocontrol 46, 387–400 (2001).Article 

    Google Scholar 
    Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatting, J. L., Moore, S. D. & Malan, A. P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 165, 54–66 (2019).PubMed 
    Article 

    Google Scholar 
    Karimi, S., Askari Seyahooei, M., Izadi, H., Bagheri, A. & Khodaygan, P. Effect of arsenophonus endosymbiont elimination on fitness of the date palm hopper, ommatissus lybicus (Hemiptera: Tropiduchidae). Environ. Entomol. 48, 614–622 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, K. K. et al. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 165, 74–81 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mascarin, G. M. et al. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 165, 46–53 (2019).PubMed 
    Article 

    Google Scholar 
    Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of epizootiology and microbial control. Insect Pathol. https://doi.org/10.1016/B978-0-12-384984-7.00003-8 (2012).Article 

    Google Scholar 
    Hawkins, B. A. & Cornell, H. V. Theoretical Approaches to Biological Control. https://doi.org/10.1017/CBO9780511542077 (Cambridge University Press, 2009).Tonnang, H. E. Z., Nedorezov, L. V., Ochanda, H., Owino, J. & Löhr, B. Assessing the impact of biological control of Plutella xylostella through the application of Lotka—Volterra model. Ecol. Model. 220, 60–70 (2009).Article 

    Google Scholar 
    Hesketh, H., Roy, H. E., Eilenberg, J., Pell, J. K. & Hails, R. S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. Biocontrol 55, 55–73 (2010).Article 

    Google Scholar 
    Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1987).
    Google Scholar 
    Lacey, L. A. Manual of Techniques in Insect Pathology. Manual of Techniques in Insect Pathology (Academic, 1997). https://doi.org/10.1016/b978-0-12-432555-5.x5000-3.Book 

    Google Scholar 
    Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J. & Thomas, M. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46, 667–702 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Sci. Technol. 10, 321–329 (2000).Article 

    Google Scholar 
    Jiang, W. et al. Effects of the entomopathogenic fungus Metarhizium anisopliae on the mortality and immune response of Locusta migratoria. Insects 11, 36 (2020).Article 

    Google Scholar 
    Thomas, M. B. & Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18, 344–350 (2003).Article 

    Google Scholar 
    Douthwaite, M. B. Development and Commercialization of the Green Muscle Biopesticide 21 (2001).Douthwaite, B., Langewald, J., & Harris, J. Development and commercialization of the Green Muscle biopesticide. (International Institute of Tropical Agriculture, 2002).CABI. Green Muscle providing strength against devastating locusts in the horn of Africa—CABI.org. CABI.org https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Geoff, G. & Steve, W. Biological Control (Springer, 1996). https://doi.org/10.1007/978-1-4613-1157-7.Book 

    Google Scholar 
    Fargues, J., Ouedraogo, A., Goettel, M. S. & Lomer, C. J. Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol Sci. Technol. 7, 345–356 (1997).Article 

    Google Scholar 
    Aragón, P., Coca-Abia, M. M., Llorente, V. & Lobo, J. M. Estimation of climatic favourable areas for locust outbreaks in Spain: Integrating species’ presence records and spatial information on outbreaks. J. Appl. Entomol. 137, 610–623 (2013).Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effect of dose, pre-mortem host incubation temperature and thermal behaviour on host mortality, mycosis and sporulation of Metarhizium anisopliae var. acridum in Schistocerca gregaria. Biocontrol Sci. Technol. 11, 411–420 (2001).Article 

    Google Scholar 
    van der Valk, H. Review of the efficacy of Metarhizium anisopliae var. acridum. FAO—U.N. Publ. (2007).Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).Article 

    Google Scholar 
    Devi, K. U., Sridevi, V., Mohan, C. M. & Padmavathi, J. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 88, 181–189 (2005).PubMed 
    Article 

    Google Scholar 
    Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).Article 

    Google Scholar 
    Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).Article 

    Google Scholar 
    Thomas, M. B. & Jenkins, N. E. Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper Zonocerus variegatus. Mycol. Res. 101, 1469–1474 (1997).Article 

    Google Scholar 
    Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).Article 

    Google Scholar 
    Castro, T., Moral, R., Demétrio, C., Delalibera, I. & Klingen, I. Prediction of sporulation and germination by the spider mite pathogenic fungus Neozygites floridana (Neozygitomycetes: Neozygitales: Neozygitaceae) based on temperature, humidity and time. Insects 9, 69 (2018).PubMed Central 
    Article 

    Google Scholar 
    Hajek, A. E., Larkin, T. S., Carruthers, R. I. & Soper, R. S. Modelling the dynamics of Entomophaga maimaga (Zygomycetes: Entomophtorales) epizootics in gypsy moth (Lepidoptera: Lymantridae) populations. Environ. Entomol. 22, 1172–1187 (1993).Article 

    Google Scholar 
    Gul, H. T., Saeed, S. & Khan, F. A. Z. Entomopathogenic fungi as effective insect pest management tactic: A review. Appl. Sci. Bus. Econ. 1, 10–18 (2014).
    Google Scholar 
    Davidson, G. et al. Study of temperature—Growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J. Appl. Microbiol. 94, 816–825 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallsworth, J. E. & Magan, N. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J. Invertebr. Pathol. 74, 261–266 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fargues, J. et al. Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biol. Control 28, 320–331 (2003).Article 

    Google Scholar 
    Boulard, T. et al. Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agric. For. Meteorol. 125, 225–239 (2004).ADS 
    Article 

    Google Scholar 
    Mishra, S., Kumar, P. & Malik, A. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. J. Parasit. Dis. 39, 697–704 (2015).PubMed 
    Article 

    Google Scholar 
    Klingen, I., Westrum, K. & Meyling, N. V. Effect of Norwegian entomopathogenic fungal isolates against Otiorhynchus sulcatus larvae at low temperatures and persistence in strawberry rhizospheres. Biol. Control 81, 1–7 (2015).Article 

    Google Scholar 
    Thaochan, N., Benarlee, R., Shekhar Prabhakar, C. & Hu, Q. Impact of temperature and relative humidity on effectiveness of Metarhizium guizhouense PSUM02 against longkong bark eating caterpillar Cossus chloratus Swinhoe under laboratory and field conditions. J. Asia. Pac. Entomol. 23, 285–290 (2020).Article 

    Google Scholar 
    Kryukov, V. et al. Ecological preferences of Metarhizium spp. from Russia and neighboring territories and their activity against Colorado potato beetle larvae. J. Invertebr. Pathol. 149, 1–7 (2017).PubMed 
    Article 

    Google Scholar 
    Saldarriaga Ausique, J. J., D’Alessandro, C. P., Conceschi, M. R., Mascarin, G. M. & Delalibera Júnior, I. Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. J. Pest Sci. 2017 903 90, 947–960 (2017).
    Google Scholar 
    Dwyer, G. Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143, 533–562 (1994).ADS 
    Article 

    Google Scholar 
    Dwyer, G., Elkinton, J. & Hajek, A. Spatial scale and the spread of a fungal pathogen of gypsy moth. Am. Nat. 152, 485–494 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knudsen, G. R. & Schotzko, D. J. Spatial simulation of epizootics caused by Beauveria bassiana in Russian wheat aphid populations. Biol. Control 16, 318–326 (1999).Article 

    Google Scholar 
    Weseloh, R. M. Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol. Control 29, 138–144 (2004).Article 

    Google Scholar 
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Chang. Biol. 23, 4739–4749 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious diseases of humans: Dynamics and control. Aust. J. Public Health 16, 208–212 (1991).
    Google Scholar 
    Cáceres, C. E. et al. Complex Daphnia interactions with parasites and competitors. Math. Biosci. 258, 148–161 (2014).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Briggs, C. J. & Godfray, H. C. J. The dynamics of insect-pathogen interactions stage-structured populations c. J. Am. Nat. 145, 855–887 (1995).Article 

    Google Scholar 
    Rapti, Z. & Cáceres, C. E. Effects of intrinsic and extrinsic host mortality on disease spread. Bull. Math. Biol. 78, 235–253 (2016).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R0 for tick-borne infections. Am. Nat. 171, 743–754 (2014).Article 

    Google Scholar 
    Arthur, F. H. Toxicity of diatomaceous earth to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): Effects of temperature and relative humidity. J. Econ. Entomol. 93, 526–532 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J. Invertebr. Pathol. 78, 59–65 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whipps, J. M. & Davies, K. G. Success in Biological Control of Plant Pathogens and Nematodes by Microorganisms. In Biological Control: Measures of Success 1st edn, (eds Gurr, G. & Wratten, S.) 429. https://doi.org/10.1007/978-94-011-4014-0_8 (Springer, Dordrecht, 2000).Gilchrist, M. A., Sulsky, D. L. & Pringle, A. Identifying fitness and optimal life-history strategies for an asexual filamentous fungus. Evolution 60, 970–979 (2006).PubMed 
    Article 

    Google Scholar 
    Frank, S. A. Spatial processes in host-parasite genetics. In Metapopulation Biology, 1st edn, (eds Hanski, I. A. & Gilpin, M. E.) 325–352. https://doi.org/10.1016/B978-012323445-2/50018-3 (Elsevier, 1997).Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H.M. & Chang, K.T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).Article 

    Google Scholar 
    Inglis, G. D., Johnson, D. L. & Goettel, M. S. Effects of temperature and thermoregulation on mycosis by Beauveria bassianain grasshoppers. Biol. Control 7, 131–139 (1996).Article 

    Google Scholar 
    Lactin, D. J. & Johnson, D. L. Temperature-dependent feeding rates of Melanoplus sanguinipes nymphs (Orthoptera: Acrididae) laboratory trials. Environ. Entomol. 24, 1291–1296 (1995).Article 

    Google Scholar 
    FAO. Biopesticides for locust control | FAO Stories | Food and Agriculture Organization of the United Nations. Food and Agriculture Organisation of the UN http://www.fao.org/fao-stories/article/en/c/1267098/ (2021).Kimathi, E. et al. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 10, 11937 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordovez, J. M., Rendon, L. M., Gonzalez, C. & Guhl, F. Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia. Acta Trop. 129, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Hartemink, N. A. et al. Mapping the basic reproduction number ( R 0) for vector-borne diseases: A case study on bluetongue virus. EPIDEM 1, 153–161 (2009).CAS 
    Article 

    Google Scholar 
    Jamison, A., Tuttle, E., Jensen, R., Bierly, G. & Gonser, R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl. Geogr. 63, 418–426 (2015).Article 

    Google Scholar 
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 2 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ngarakana-Gwasira, E. T., Bhunu, C. P., Masocha, M. & Mashonjowa, E. Transmission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS approach. Commun. Nonlinear Sci. Numer. Simul. 35, 137–147 (2016).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ogden, N. H. & Radojevic, M. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis. Environ. Health Perspect. 122, 631–639 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 
    Article 

    Google Scholar 
    Phillips, J. Climate change and surface mining: A review of environment-human interactions & their spatial dynamics. Appl. Geogr. 74, 95–108 (2016).Article 

    Google Scholar 
    Rogers, D. J. & Randolphz, S. E. The global spread of malaria in a future. Warmer World Sci. 2, 1763–1766 (2000).
    Google Scholar 
    Wu, X. et al. Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J. Theor. Biol. 319, 50–61 (2013).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    CABI. Green Muscle providing strength against devastating locusts in the horn of Africa. https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Piou, C. et al. Mapping the spatiotemporal distributions of the Desert Locust in Mauritania and Morocco to improve preventive management. Basic Appl. Ecol. 25, 37–47 (2017).Article 

    Google Scholar 
    FAO. FAO Locust Hub. https://locust-hub-hqfao.hub.arcgis.com/ (2021).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeJesus, E. X. & Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Qgisorg (2014).RCoreTeam. R: A language and environment for statistical computing. The R Foundation for Statistical Computing. (2020).Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar  More

  • in

    Phylotype diversity within soil fungal functional groups drives ecosystem stability

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, W. et al. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytol. 226, 1129–1143 (2020).PubMed 
    Article 

    Google Scholar 
    Semchenko, M. et al. Fungal diversity regulates plant–soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohli, M. et al. Stability of grassland production is robust to changes in the consumer food web. Ecol. Lett. 22, 707–716 (2019).PubMed 
    Article 

    Google Scholar 
    Liang, M. et al. Soil microbes drive phylogenetic diversity–productivity relationships in a subtropical forest. Sci. Adv. 5, eaax5088 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. How soil biota drive ecosystem stability. Trends Plant Sci. 23, 1057–1067 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pörtner, H.O. et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change (IPBES, 2021).Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Jia, Y. Y., van der Heijden, M. G. A., Wagg, C., Feng, G. & Walder, F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J. Ecol. 109, 3171–3181 (2020).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).Article 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How do mycorrhizal associations drive plant population and community biology? Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078–1088 (2014).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagg, C. et al. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. Elife 10, 3207 (2021).Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. Plant and soil biodiversity have non-substitutable stabilizing effects on biomass production. Ecol. Lett. 24, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Chen, L. T. et al. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13307 (2021).Garcia-Palacios, P., Gross, N., Gaitan, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. B. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset, A., Schmid, B., Scheu, S. & Eisenhauer, N. Genotypic richness and dissimilarity opposingly affect ecosystem performance. Ecol. Lett. 14, 537–624 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, L., Pu, Z. & Nemergut, D. R. On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117, 488–493 (2008).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paruelo, J., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).Article 

    Google Scholar 
    Jobbágy, E. G., Sala, O. E. & Paruelo, J. M. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83, 307–319 (2002).
    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastos, A., Running, S. W., Gouveia, C. & Trigo, R. M. The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosci. 118, 1247–1255 (2013).Article 

    Google Scholar 
    Orwin, K. H. & Wardle, D. A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912 (2004).CAS 
    Article 

    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).Article 

    Google Scholar 
    Sun, Y. et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).CAS 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, H. et al. Contrasting responses of planted and natural forests to drought intensity in Yunnan, China. Remote Sens. 8, 635 (2016).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Allen, R. G. et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO, 1998); https://www.fao.org/3/x0490e/x0490e00.htmOksanen, J. et al. Vegan: Community Ecology Package (R Foundation for Statistical Computing, 2013).Legendre, P. et al. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3–8 (2008).Article 

    Google Scholar 
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Lefcheck., J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579.Bates, D. et al. lme4: linear mixed-effects models using Eigen and S4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar  More

  • in

    Animal-vehicle collisions during the COVID-19 lockdown in early 2020 in the Krakow metropolitan region, Poland

    Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, M. W. et al. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23, 1522–1536 (2020).PubMed 
    Article 

    Google Scholar 
    Silva-Rodríguez, E. A., Gálvez, N., Swan, G. J. F., Cusack, J. J. & Moreira-Arce, D. Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142713 (2020).Article 
    PubMed 

    Google Scholar 
    Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci Rep 11, 22658 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chung, P.-C. & Chan, T.-C. Impact of physical distancing policy on reducing transmission of SARS-CoV-2 globally: Perspective from government’s response and residents’ compliance. PLoS ONE 16, e0255873 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Connellan, I. The ‘anthropause’ during COVID-19. Cosmos Magazine https://cosmosmagazine.com/nature/animals/the-anthropause-during-covid-19/ (2020).Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 
    PubMed 

    Google Scholar 
    Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B Biol. Sci. 288, 20202513 (2021).CAS 
    Article 

    Google Scholar 
    Gaynor, K. M. et al. Anticipating the impacts of the COVID-19 pandemic on wildlife. Front. Ecol. Environ. 18, 542–543 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphrey, C. Under cover of COVID-19, loggers plunder Cambodian wildlife sanctuary. Mongabay Environmental News https://news.mongabay.com/2020/08/under-cover-of-covid-19-loggers-plunder-cambodian-wildlife-sanctuary/ (2020).Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Cons. 248, 108665 (2020).Article 

    Google Scholar 
    Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Cons. 241, 108383 (2020).Article 

    Google Scholar 
    Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jägerbrand, A. K., Antonson, H. & Ahlström, C. Speed reduction effects over distance of animal-vehicle collision countermeasures – a driving simulator study. Eur. Transp. Res. Rev. 10, 40 (2018).Article 

    Google Scholar 
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state. Brazil. PLoS One 14, e0215152 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canal, D., Martín, B., de Lucas, M. & Ferrer, M. Dogs are the main species involved in animal-vehicle collisions in southern Spain: Daily, seasonal and spatial analyses of collisions. PLoS One 13, e0203693 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Visintin, C., van der Ree, R. & McCarthy, M. A. Consistent patterns of vehicle collision risk for six mammal species. J. Environ. Manage. 201, 397–406 (2017).PubMed 
    Article 

    Google Scholar 
    Kreling, S. E. S., Gaynor, K. M. & Coon, C. A. C. Roadkill distribution at the wildland-urban interface. J. Wildl. Manag. 83, 1427–1436 (2019).Article 

    Google Scholar 
    Bíl, M. et al. COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries. Biol. Cons. 256, 109076 (2021).Article 

    Google Scholar 
    Langbein, J., Putman, R. & Pokorny, B. Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. Ungulate management in Europe: problems and practices 215–259 (2010).Filonchyk, M., Hurynovich, V. & Yan, H. Impact of Covid-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 198, 110454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Porębska, A. et al. Lockdown in a disneyfied city: Kraków Old Town and the first wave of the Covid-19 pandemic. Urban Des Int 26, 315–331 (2021).Article 

    Google Scholar 
    Tarkowski, M., Puzdrakiewicz, K., Jaczewska, J. & Połom, M. COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data. Prace Komisji Geografii Komunikacji PTG 2020, 46–55 (2020).Article 

    Google Scholar 
    Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81 (2019).Article 

    Google Scholar 
    Saint-Andrieux, C., Calenge, C. & Bonenfant, C. Comparison of environmental, biological and anthropogenic causes of wildlife–vehicle collisions among three large herbivore species. Popul. Ecol. 62, 64–79 (2020).Article 

    Google Scholar 
    Grosman, P. D., Jaeger, J. A. G., Biron, P. M., Dussault, C. & Ouellet, J.-P. Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions. Ecol. Model. 222, 1423–1435 (2011).Article 

    Google Scholar 
    Barbosa, P., Schumaker, N. H., Brandon, K. R., Bager, A. & Grilo, C. Simulating the consequences of roads for wildlife population dynamics. Landsc. Urban Plan. 193, 103672 (2020).PubMed 
    Article 

    Google Scholar 
    Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: The availability of prey in road verges. J Environ Manage 247, 644–650 (2019).PubMed 
    Article 

    Google Scholar 
    Sullivan, J. M. Trends and characteristics of animal-vehicle collisions in the United States. J. Safety Res. 42, 9–16 (2011).PubMed 
    Article 

    Google Scholar 
    Morelle, К, Lehaire, F. & Lejeune, P. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nature Conservation 5, 53–73 (2013).Article 

    Google Scholar 
    Bartonička, T., Andrášik, R., Duľa, M., Sedoník, J. & Bíl, M. Identification of local factors causing clustering of animal-vehicle collisions. J. Wildl. Manag. 82, 940–947 (2018).Article 

    Google Scholar 
    Saxena, A., Chatterjee, N., Rajvanshi, A. & Habib, B. Integrating large mammal behaviour and traffic flow to determine traversability of roads with heterogeneous traffic on a Central Indian Highway. Sci Rep 10, 18888 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Basak, S. M. et al. Human-wildlife conflicts in Krakow City, Southern Poland. Animals 10, 1014 (2020).PubMed Central 
    Article 

    Google Scholar 
    Gil-Fernández, M., Harcourt, R., Newsome, T., Towerton, A. & Carthey, A. Adaptations of the red fox (Vulpes vulpes) to urban environments in Sydney, Australia. J. Urban Ecol. https://doi.org/10.1093/jue/juaa009 (2020).Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal 94, 109–119 (2013).Article 

    Google Scholar 
    Steiner, W., Schöll, E. M., Leisch, F. & Hackländer, K. Temporal patterns of roe deer traffic accidents: Effects of season, daytime and lunar phase. PLoS ONE 16, e0249082 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagnacci, F. et al. Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).Article 

    Google Scholar 
    Kämmerle, J.-L. et al. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PLoS One 12, e0184761 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Romanowski, J. Vistula river valley as the ecological corridor for mammals. Pol. J. Ecol. 55, 805–819 (2007).
    Google Scholar 
    Abraham, J. O. & Mumma, M. A. Elevated wildlife-vehicle collision rates during the COVID-19 pandemic. Sci Rep 11, 20391 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gunson, K. E., Mountrakis, G. & Quackenbush, L. J. Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects. J. Environ. Manage. 92, 1074–1082 (2011).PubMed 
    Article 

    Google Scholar 
    Leblond, M., Dussault, C. & Ouellet, J.-P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).Article 

    Google Scholar 
    Bissonette, J. A. & Kassar, C. A. Locations of deer–vehicle collisions are unrelated to traffic volume or posted speed limit. Human-Wildlife Conflicts 2, 122–130 (2008).
    Google Scholar 
    Steiner, W., Leisch, F. & Hackländer, K. A review on the temporal pattern of deer–vehicle accidents: Impact of seasonal, diurnal and lunar effects in cervids. Accid. Anal. Prev. 66, 168–181 (2014).PubMed 
    Article 

    Google Scholar 
    Kušta, T., Keken, Z., Ježek, M., Holá, M. & Šmíd, P. The effect of traffic intensity and animal activity on probability of ungulate-vehicle collisions in the Czech Republic. Saf. Sci. 91, 105–113 (2017).Article 

    Google Scholar 
    Shilling, F. et al. A Reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Cons. 256, 109013 (2021).Article 

    Google Scholar 
    Yasin, Y. J., Grivna, M. & Abu-Zidan, F. M. Global impact of COVID-19 pandemic on road traffic collisions. World J Emerg Surg 16, 51 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seiler, A. & Helldin, J. O. Mortality in wildlife due to transportation. In The Ecology of Transportation: Managing Mobility for the Environment (eds Davenport, J. & Davenport, J. L.) (Springer, 2006).
    Google Scholar 
    Smits, R., Bohatkiewicz, J., Bohatkiewicz, J. & Hałucha, M. A Geospatial Multi-scale Level Analysis of the Distribution of Animal-Vehicle Collisions on Polish Highways and National Roads. In Vision Zero for Sustainable Road Safety in Baltic Sea Region (eds Varhelyi, A. et al.) (Springer International Publishing, 2020).
    Google Scholar 
    Sozański, B. et al. Psychological responses and associated factors during the initial stage of the coronavirus disease (COVID-19) epidemic among the adult population in Poland – a cross-sectional study. BMC Public Health 21, 1929 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sidor, A. & Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 12, E1657 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Vingilis, E. et al. Coronavirus disease 2019: What could be the effects on Road safety?. Accid. Anal. Prev. 144, 105687 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kioko, J. et al. Driver knowledge and attitudes on animal vehicle collisions in Northern Tanzania. Trop. Conserv. Sci. 8, 352–366 (2015).Article 

    Google Scholar 
    Stokstad, E. Pandemic lockdown stirs up ecological research. Science 369, 893–893 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dandy, N. Behaviour, lockdown and the natural world. Environ. Values 29, 253–259 (2020).Article 

    Google Scholar 
    Baścik, M. & Degórska, B. Środowisko przyrodnicze Krakowa. Zasoby – Ochrona – Kształtowanie. vol. 2 (2015).Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 
    Book 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.r-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2019).Hervé, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics (2020).Hancock, J. M. Jaccard Distance (Jaccard Index, Jaccard Similarity Coefficient). in Dictionary of Bioinformatics and Computational Biology (American Cancer Society, 2014). https://doi.org/10.1002/9780471650126.dob0956 More

  • in

    State of ex situ conservation of landrace groups of 25 major crops

    Crops and their landrace study areasFood crops whose genetic resources are researched and conserved by CGIAR international agricultural research centres or by the CePaCT of the SPC were included in this study. Crop landrace distributions were modelled and conservation analyses conducted within recognized primary and, for some crops, secondary regions of diversity, where these crops were domesticated and/or have been cultivated for very long periods, and where they are, thus, expected to feature high genetic diversity and adaptation to local environmental and cultural factors (Supplementary Tables 1 and 2)9,13. These regions were identified through literature review (Supplementary Information) and confirmed by crop experts.Occurrence dataOur crop landrace group distribution modelling and conservation gap analysis rely on occurrence data, including coordinates of locations where landraces were previously collected for ex situ conservation and reference sightings. For ex situ conservation records, occurrences marked as landraces were retrieved from two major online databases: the Genesys Plant Genetic Resources portal33 and the World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) of the Food and Agriculture Organization of the United Nations34. Occurrences were also obtained directly from individual international genebank information systems: AfricaRice, the International Transit Centre and Musa Germplasm Information System of Bioversity International35, CePaCT, International Center for Tropical Agriculture (CIAT), International Maize and Wheat Improvement Center (CIMMYT), International Potato Center (CIP), International Center for Agricultural Research in the Dry Areas (ICARDA), International Crops Research Institute for the Semi-arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA) and International Rice Research Institute (IRRI), as well as from the United States Department of Agriculture (USDA) Genetic Resources Information Network (GRIN)–Global36 and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)37. Occurrences were compiled from the Global Biodiversity Information Facility (GBIF), with ‘living specimen’ records classified as ex situ conservation records and the remaining serving as reference sightings for use in distribution modelling. Reference occurrences were also drawn from published literature (Supplementary Information). Duplicated observations within or between data sources were eliminated, with a preference to utilize the most original data. Coordinates were corrected or removed when latitude and longitude were equal to zero or inverted, located in water bodies or in the wrong country or had poor resolution ( 10 (ref. 60). The predictors and whether they were selected for the modelling of each landrace group are presented in Supplementary Table 4.We generated a random sample of pseudo-absences as background points in areas that (1) were within the same ecological land units61 as the occurrence points, (2) were deemed potentially suitable according to a support vector machine classifier that uses all occurrences and predictor variables and (3) were farther than 5 km from any occurrence62. The number of pseudo-absences generated per crop group was ten times its number of unique occurrences.MaxEnt models were fitted through five-fold (K = 5) cross-validation with 80% training and 20% testing. For each fold, we calculated the area under the receiving operating characteristic curve (AUC), sensitivity, specificity and Cohen’s kappa as measures of model performance. To create a single prediction that represents the probability of occurrence for the landrace group, we computed the median across K models. Geographic areas in the form of pixels with probability values above the maximum sum of sensitivity and specificity were treated as the final area of predicted presence13.Ex situ conservation status and gapsThree separate but complementary metrics were developed to compare the geographic and environmental diversity in current ex situ conservation collections to the total geographic and environmental variation across the crop landrace group distribution model and, thus, to identify and quantify ex situ conservation gaps13.A connectivity gap score (SCON) was calculated for each 2.5-arc-minute pixel within the distribution model by drawing a triangle63,64 around each pixel using the three closest genebank accession occurrence locations as vertices and then deriving normalized values for the pixel based on distance to the triangle centroid and vertices13. The SCON of a pixel is high—closer to 1 on a scale of 0–1—when its corresponding triangle is large, when the pixel is close to the centroid of the triangle or when the distance to the vertices is large. A high SCON represents a greater probability of the pixel location being a gap in existing ex situ collections.An accessibility gap score (SACC) was calculated for each 2.5-arc-minute pixel in the distribution model by computing travel time from each pixel to its nearest genebank accession occurrence location based both on distance and the speed of travel, defined by a friction surface13,45. Travel time scores were normalized by dividing pixel values by the longest travel time within the distribution model, with the final score ranging from 0 to 1. A high SACC value for a pixel reflects long travel times from existing genebank collection occurrences and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.An environmental gap score (SENV) was calculated for each 2.5-arc-minute pixel in the distribution model by conducting a hierarchical clustering analysis using Ward’s method with all the predictor variables from the distribution modelling. The Mahalanobis distance between each pixel and the environmentally closest genebank accession occurrence location was then computed13. Environmental distance scores were normalized between 0 and 1. A high SENV value for a pixel reflects a large distance to areas with similar environments where landraces have previously been collected for genebank conservation and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.Spatial ex situ conservation gaps were determined from the conservation gap scores using a cross-validation procedure to derive a threshold for each score. We created synthetic gaps by removing existing genebank occurrences in five randomly chosen circular areas with a 100 km radius within the distribution model. We then tested whether these artificial gaps could be predicted by our gap analysis, identifying the threshold value of each score that would maximize the prediction of these synthetic gaps. Performance for each of the five gap areas was assessed using AUC, sensitivity and specificity. The average cross-area threshold value was calculated for each score to discern pixels with a high likelihood of finding ex situ conservation gaps and that, thus, were higher priority for further field sampling. These were pixels with combined gap scores above the threshold, assigned a value of 1, as opposed to the relatively well-conserved areas below the threshold, which were assigned a value of 0.The three binary conservation gap scores were then mapped in combination, resulting in pixels across the distribution model with gap values ranging from 0 to 3. Pixels with a value of 0 display no connectivity, accessibility or environmental gaps and are considered well represented ex situ. Pixels with a value of 1 indicate a conservation gap in connectivity, accessibility or the environment; we consider these ‘low-confidence’ gaps. Pixels with a value of 2 indicate gaps in two metrics or ‘medium-confidence’ gaps, and values of 3 indicate gaps across all metrics or ‘high-confidence’ gaps. High-confidence gap areas are displayed on crop-conservation-gap maps (Fig. 2b and Supplementary Information) and conservation hotspot maps across crops (Fig. 4 and Extended Data Figs. 5–8).The representation of crop landrace groups in current ex situ conservation collections was calculated based on the final 1–3 value conservation-gap maps. The complement of the proportion of the modelled distribution considered as a potential conservation gap by any single gap score represents the minimum estimate of current representation; the complement of the proportion considered by all three scores as a gap, which is to say high-confidence gap areas, represents the maximum estimate (Supplementary Tables 1 and 2).While distribution modelling and conservation gap analyses were conducted at the crop landrace group level and results are presented in full in the Supplementary Information, for ease of comparison of results across crops, and to avoid bias towards crops with many landrace groups, we also calculated summary results at the crop level. Crops that had been assessed with geographic differentiations, including maize in Africa and Latin America and yams in the New World and the Old World, were also combined. For spatial results, the pixels in crop landrace group models were summed—that is, constituent landrace group models were combined. The minimum and maximum current conservation representation estimations at the crop level were then calculated based on combined spatial models.GBIF occurrence downloadsThe following occurrence downloads from the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/, 2017−2021) were used: 10.15468/dl.rrntfr, 10.15468/dl.2f2v4h, 10.15468/dl.2ywlb7, 10.15468/dl.lnfelh, 10.15468/dl.ryrmfj, 10.15468/dl.8adf61, 10.15468/dl.nff5ys, 10.15468/dl.erxs6e, 10.15468/dl.vbfgho, 10.15468/dl.mjjk3x, 10.15468/dl.uppz1n, 10.15468/dl.938bgm, 10.15468/dl.hr87hm, 10.15468/dl.k1va80, 10.15468/dl.coqpu2, 10.15468/dl.lkoo9u, 10.15468/dl.e998mp, 10.15468/dl.vfbmm7, 10.15468/dl.tnp478, 10.15468/dl.6zxsea, 10.15468/dl.0lray8, 10.15468/dl.5sjgsw, 10.15468/dl.wkju6h, 10.15468/dl.7xzfvc, 10.15468/dl.autlf5, 10.15468/dl.fe2amw, 10.15468/dl.2zblvz, 10.15468/dl.ddplkj, 10.15468/dl.jbzejg, 10.15468/dl.ej5bha, 10.15468/dl.905pxd, 10.15468/dl.pim1vs, 10.15468/dl.vdridc, 10.15468/dl.b43gyv, 10.15468/dl.nnw3z7, 10.15468/dl.bnt9jc, 10.15468/dl.f5x2cg, 10.15468/dl.ub7zbg, 10.15468/dl.sggf2v, 10.15468/dl.ath5ve, 10.15468/dl.23k3ug, 10.15468/dl.cym376, 10.15468/dl.53bwzk, 10.15468/dl.fsad7h and 10.15468/dl.fm6p7z.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The effect of reducing per capita water and energy uses on renewable water resources in the water, food and energy nexus

    This work formulates a general framework of the WFE Nexus at the national level, which includes all pertinent interactions between water, food, and energy sources and demands. Figure 1 depicts the feedbacks involving resource availability and consumption. The causal loops of the developed model for national-scale assessment are shown in Fig. 2. The model depicted in Fig. 2 proposes reducing consumption to reduce the water crisis to the extent possible. By reducing water use and pollution the environmental water requirement can be reduced, thus alleviating the water crisis. This paper’s objective is sustainable management by reducing per capita water use (in the residential section) and per capita energy use (in the domestic, public, and commercial section). The WFE nexus is modeled as a dynamic system for demand management applied to the stocks of energy, surface water, and groundwater resources to calculate their input and output rates (flows) at the national level while providing for environmental flow requirements (Fig. 3). The national modeling approach is of the lumped type, meaning that inputs and outputs to the stocks of water and energy represent totals over an entire country (in the case study, Iran); therefore, the models does not consider intra-country regional variations. The units of water resources and energy resources are expressed in cubic meters and MWh, respectively.Figure 1Feedbacks between resources and uses in the WFE nexus taking into account environmental considerations.Full size imageFigure 2The causal loops of the model developed for simulating the WFE nexus.Full size imageFigure 3Flow diagram of the WFE Nexus system.Full size imageBalance of water resourcesThe study of water exchanges in a country is based on the law of conservation of matter. The following sections present calculations pertinent to the annual balance of surface and groundwater resources.Surface water resourcesThe national runoff generated in a country’s high-elevation areas (or high terrain) and low-elevation areas (plains) is quantified with the following equations:$${preheight}_{t}=HeightCotimes {Precipitation}_{t}$$
    (1)

    in which ({preheight}_{t}) = volume of precipitation that falls in high-elevation areas during period t, (HeightCo) = the percentage of total precipitation that falls in high-elevation areas, and ({Precipitation}_{t}) = volume of precipitation during period t.$${preplain}_{t}=PlainCotimes {Precipitation}_{t}$$
    (2)

    in which ({preplain}_{t}) = volume of precipitation that falls in the plains during period t, and (PlainCo) = the percentage of total precipitation that falls in plains (low elevation areas).$${SInflow}_{t}=HeighSInflowCotimes {preheight}_{t}+PlainSInflowCotimes {preplain}_{t}+{OutCSW}_{t}+{Dr}_{t}$$
    (3)

    in which ({SInflow}_{t}) = the total volume of surface flows during period t, (HeighSInflowCo) = the runoff coefficient in high-elevation areas, (PlainSInflowCo) = the runoff coefficient in the plains, ({OutCSW}_{t}) = the difference between the volume of surface inflow and outflow through a country’s border during period t; and ({Dr}_{t}) = the flow of groundwater resources to surface water resources (i.e., baseflow) during period t.It is possible to calculate the water use after calculating the annual surface water originating by precipitation. Some of the water use by the agricultural, industrial, and municipal sectors becomes return flows. Equations (4) through (9) show how to calculate the surface water use and the water return flows to the surface water sources.$${DomWD}_{t}={Population}_{t}times PerCapitaWatertimes 365$$
    (4)

    in which ({DomWD}_{t}) = the volume of water use in the municipal sector during period t, ({Population}_{t}) = the population of the country during period t, and (PerCapitaWater) = per capita drinking water use (cubic meters per person per day).$${IndDomWD}_{t}={DomWD}_{t}+{IndWD}_{t}$$
    (5)

    in which ({IndDomWD}_{t}) = the volume of water use in the municipal and industrial sectors during period t, and ({IndWD}_{t}) = the volume of water use in the industrial sector during period t.The water use by the agricultural sector accounts for the water footprint of agricultural products, which measures their water use per mass of produce, and adjusting the water use by including water losses and agricultural return flows. A separate sub-agent (AGR agent) is introduced to perform the calculations related to the agricultural sector to simplify the dynamic-system model (main model), and the required outputs (BWAgr, GWAgr) of the dynamic system model are called by the agent in the main model (see Figs. 3 and 4). The BWAgr is given by the expression within parentheses in Eq. (6).Figure 4Agricultural subsystem modeled in the AGR agent (shows how to calculate the blue and gray water footprints of agricultural products).Full size image$${AgrWD}_{t}=left(sum_{iin A}{BW}_{i}times {Product}_{i,t}right)times frac{1}{{E}_{Agr}}+OtherAgrWD$$
    (6)

    in which ({AgrWD}_{t}) = the volume of agricultural water use during period t, ({BW}_{i}) = blue water footprint of agricultural product i (cubic meters per ton), ({Product}_{i,t}) = the amount of production of agricultural product i during period t (tons), ({E}_{Agr}) = the overall irrigation efficiency, (OtherAgrWD) = the volume of water consumed by agricultural products not included in the set A of agricultural products (in cubic meters). The set A includes those agricultural products with the largest yields and shares of the national food basket.$${AgrReW}_{t}={AgrWD}_{t}times AgrReCo$$
    (7)

    in which ({AgrReW}_{t}) = the volume of water returned from agricultural water use during the period t, and (AgrReCo) = the coefficient of water returned from agricultural water use.$${IndDomReW}_{t}={IndDomWD}_{t}times IndDomReCo$$
    (8)

    in which ({IndDomReW}_{t}) = the volume of water returned from industrial and municipal water use during period t, and (IndDomReCo) = the coefficient of water returned from industrial and municipal water uses.$${ReSW}_{t}=IndDomReSWCotimes {IndDomReW}_{t}+AgrReSWCotimes {AgrReW}_{t}$$
    (9)

    in which ({ReSW}_{t}) = the volume of water returned from water uses to surface water resources during period t, (IndDomReSWCo) = the percentage of water returned from municipal and industrial water use to surface water resources, and (AgrReSWCo) = the percentage of water returned from agricultural water use to surface water resources.Water is applied to produce energy, and Eqs. (10) through (15) perform the related calculations. The ({WEIF}_{t}) variable in Eq. (14) is necessary to account for the volume of water saved as a result of the energy savings. A PR model is introduced to account for such water savings (see Fig. 3).$${Diff}_{t} ={OutputE}_{t}-{OutputE}_{t}^{P}$$
    (10)

    in which ({Diff}_{t})= the difference between the energy used in the main model during period t and the energy used in period t in the PR model, ({OutputE}_{t}) = the sum of energy uses during period t in the main model (the method of calculating ({OutputE}_{t}) is described in detail in “Energy uses”), and ({OutputE}_{t}^{P}) = the sum of energy uses during period t in the PR model. Equations (11) and (12) account for the case when energy use exceeds energy production under current conditions, in which case energy exports are reduced. This prevents additional energy production to meet excess demand, and, consequently, there would not be increases in water use.$${Diff}_{t} le 0,,,{if,,func}_{t}=0$$
    (11)
    $${Diff}_{t} >0,,,{ if,,func}_{t}={Diff}_{t}$$
    (12)

    in which ({ iffunc}_{t}) = the amount of energy saved during period t.Equation (13) calculates the water required to produce energy:$${{TotalWE}_{t}=Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN+{Elec}_{t}times ENwateruseE$$
    (13)

    in which ({TotalWE}_{t}) = the volume of water required to produce the energy demand during period t,({Elec}_{t}) = the amount of electricity production during period t (MWh), and (ENwateruseE) = the water required per unit of energy generated by electricity (cubic meters per MWh), all other terms were previously defined.Equation (14) calculates the water savings:$${WEIF}_{t}=sum_{t=1}^{T}frac{{TotalWE}_{t}}{{OutputE}_{t}^{0}}times {if,,func}_{t}$$
    (14)

    in which ({WEIF}_{t})= the volume of water saved as a result of the energy saved during period t, T = the number of periods of simulation (T = 5 years).Part of the water used to produce energy from coal, oil, petroleum products, and nuclear fuel is accounted for in the industrial sector water use. For this reason, the volume of water to produce energy calculated with Eq. (15) is reduced by that part of water already accounted for in the industrial water use to avoid double accounting.$${WE}_{t}={Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN-INDEtimes {IndWD}_{t}-{WEIF}_{t}$$
    (15)

    in which ({WE}_{t}) = the volume of water required to produce different types of energy (except those included in the industrial sector) during period t, ({Coal}_{t}) = the energy produced with coal during period t (MWh), (ENwateruseC) = the water required per unit of energy produced with coal (cubic meters per MWh),({Gas}_{t}) = the amount of energy produced with natural gas during period t (MWh), (ENwateruseG) = the water required per unit of energy produced with natural gas (cubic meters per MWh), ({OilPetroleumP}_{t}) = the amount of energy produced with crude oil and other petroleum products during period t (MWh), (ENwateruseO) = the water required per unit of energy produced with crude oil and petroleum products (cubic meters per MWh),({Nuclear}_{t}) = the amount of nuclear energy produced during period t (MWh), (ENwateruseN) = the water required per unit of nuclear energy produced (cubic meters per MWh), and (INDE) = the percentage of industrial water use already accounted for in Eq. (5) (which pertains to water used in the coke coal, oil refineries, and nuclear fuel industries).Part of the discharge of springs enters the surface water sources, and this enters the calculation of the input to the surface water-resources stock in Eq. (16):$${InputSW}_{t}= SInflow+{ReSW}_{t}{+ Fountain}_{t}$$
    (16)

    in which ({InputSW}_{t}) = the volume of inflow water to surface water sources during period t, and ({Fountain}_{t}) = discharge of springs to surface water sources during period t, other terms previously defined.The output of the surface water resources includes water use and the infiltration of surface water into groundwater, the latter calculated with Eq. (17):$${SInflowInf}_{t}={SInflow}_{t}times SInflowInfCo$$
    (17)

    in which ({SInflowInf}_{t}) = the infiltration volume of surface water during period t, and (SInflowInfCo) = the infiltration coefficient of surface water.The output of the surface water resources stock is calculated using Eq. (18):$${OutputSW}_{t}={AgrSWDCo}_{t}times {AgrWD}_{t}+{IndSWDCo}_{t}times {IndWD}_{t}+{DomSWDCo}_{t}times {DomWD}_{t}+{mathrm{ WE}}_{t}+{SInflowInf}_{t}-{EvSwSea}_{t}$$
    (18)

    in which ({OutputSW}_{t}) = the output volume of surface water during period t, ({AgrSWDCo}_{t}) = the percentage of gross agricultural water use from surface water resources during period t, ({IndSWDCo}_{t}) = the percentage of industrial water use from surface water resources during period t, ({DomSWDCo}_{t})= the percentage of gross drinking water consumption from surface water sources during period t, and ({EvSwSea}_{t}) = the total volume of evaporation from surface water plus the discharge of surface water to the sea during period t.The balance of surface water resources is calculated based on Eq. (19):$$SWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputSW}_{t}left(Sright)-{OutputSW}_{t}(S)right]dt+SWater(0)$$
    (19)

    in which (SWaterleft(tright)) = the stock of surface water resources at time t, (SWater(0)) denotes the stock of surface water at the initial time (t = 0).Groundwater resourcesGroundwater resources gain water from deep infiltration of precipitation in the plains and elevated areas from (1) inflows from outside of the study area, (2) infiltration from surface flows and return waters. Groundwater output factors also include the discharge of groundwater resources (wells, springs, and aqueducts), groundwater flow that moves outside the study area and evaporation. Infiltration of precipitation in the plains and in high terrain into groundwater resources is calculated with Eq. (20):$${Inf}_{t}=PrePInfCotimes {preplain}_{t}+PreHInfCotimes {preheight}_{t}$$
    (20)

    in which ({Inf}_{t}) = the volume of water entering groundwater sources through infiltration of precipitation during period t, (PrePInfCo) = the infiltration coefficient of precipitation in the plains, and (PreHInfCo) = the infiltration coefficient of rainfall in high terrain.Equation (21) calculates the volume of return water that accrues to groundwater resources:$${ReGW}_{t}=IndDomReGWCotimes {IndDomReW}_{t}+AgrReGWCotimes {AgrReW}_{t}$$
    (21)

    in which ({ReGW}_{t}) = the volume of water returned from water use that accrues to groundwater resources during period t, (IndDomReGWCo) = the percentage of water returned from municipal and industrial water use accruing to groundwater resources, and (AgrReGWCo) = the percentage of water returned from agricultural water use accruing to groundwater resources.The volume of groundwater input is calculated with Eq. (22):$${InputGW}_{t}={Inf}_{t}+{ReGW}_{t}+{SInflowInf}_{t}+{OutCGw }_{t}$$
    (22)

    in which ({InputGW}_{t}) = the volume of groundwater input during period t, and ({OutCGw }_{t}) = the difference between the volume of groundwater leaving and that entering the country during period t.The volume of groundwater output is calculated with Eq. (23):$${OutputGW}_{t}={AgrGWDCo}_{t}times {AgrWD}_{t}+IndGWDCotimes {IndWD}_{t}+DomGWDCotimes {DomWD}_{t}+{EvGwDr}_{t}$$
    (23)

    in which ({OutputGW}_{t}) = the volume of groundwater output during period t, ({AgrGWDCo}_{t}) = the percentage of gross agricultural water use from groundwater resources during period t, IndGWDCo = the percentage of industrial water use from groundwater resources during period t, DomGWDCo = the percentage of municipal water use from groundwater resources during period t, and ({EvGwDr }_{t}) = the total volume of evaporation from groundwater plus the drainage of groundwater resources to surface water resources at time t.Equation (24) calculates the annual balance of groundwater resources:$$GWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputGW}_{t}left(Sright)-{OutputGW}_{t}left(Sright)right]dt+GWater(0)$$
    (24)

    in which GWater(t) = the groundwater resources stock at time t, (GWater(0)) denotes the stock of groundwater at the initial time (t = 0).Energy usesEnergy uses are calculated with Eqs. (25)–(27). The total national energy use includes the agricultural, industrial, transportation, and exports sectors’ energy demands. The energy uses by these sectors do not change during the implementation of the policy, and, consequently do not change the WFE Nexus in that period; therefore, they are not included in the calculations.$${WDTP}_{t}={DomWD}_{t}times {CEIntensity}_{t}$$
    (25)

    in which ({WDTP}_{t}) = the energy used in the extraction, transmission, distribution, and treatment of water in the water and wastewater system during period t, and ({CEIntensity}_{t}) = the energy intensity in the extraction, transmission, distribution, and treatment of water in water and wastewater systems during the period t (MWh per cubic meter).$${ResComPubED}_{t}=ResComPubPerCapitatimes {Population}_{t}$$
    (26)

    in which ({ResComPubED}_{t}) = the energy use by the domestic, commercial, and public sectors during period t, and (ResComPubPerCapita) = the per capita energy consumption by the domestic, commercial, and public sectors (MWh per person per year).$${OutputE}_{t}={ResComPubED}_{t}+{WDTP}_{t}$$
    (27)
    Environmental water needsThe gray water footprint is defined as the volume of freshwater that is required to assimilate the load of pollutants based on natural background concentrations and existing ambient water quality standards. The estimation of the gray water footprint associated with discharges from agricultural production is based on the load of nitrogen fertilizers, which are pervasive in agriculture. The gray water footprint in terms of nitrogen concentration has been estimated by Mekonnen and Hoekstra24,25, as written in Eq. (28):$${GW}_{t}^{Agr}=sum_{iin A}{GW}_{i}times {Product}_{i,t}$$
    (28)

    in which ({GW}_{t}^{Agr})= the volume of gray water in the agricultural sector during period t, and ({GW}_{i}) = the volume of gray water associated with the production of one ton of agricultural product i (cubic meters per ton)(.)There are no accurate estimates of the concentrations of pollutants per unit of industrial production, or of the concentration of pollutants in municipal wastewater. Therefore, the conservative dilution factor (DF), which is equal to 1 for untreated returned water from the municipal and industrial sectors, is applied in this work. Equation (29) is a simplified equation of the gray water footprint26. The fraction appearing on the right-hand side of Eq. (29) is equal to the DF.$${GW}_{t}^{IndDom}= frac{{C}_{eff}-{C}_{nat}}{{C}_{max}-{C}_{nat}}times {IndDomReW}_{t}times IndDomReUT$$
    (29)

    in which ({GW}_{t}^{IndDom}) = the gray water footprint of the municipal and industrial sectors during period t, ({C}_{eff}) = the nitrogen concentration in return water (mg/L), ({C}_{nat}) = the natural concentrations of contaminant in surface water (mg/L), ({C}_{max}) = the maximum allowable concentration contaminant in surface water (mg/L), and (IndDomReUT) = the percentage of untreated returned water from the municipal and industrial sectors.The total gray water footprint is obtained by summing the footprints associated with the municipal/industrial and agricultural sectors:$${TotalGW}_{mathrm{t}}={GW}_{t}^{IndDom}+{GW}_{t}^{Agr}$$
    (30)

    in which ({TotalGW}_{mathrm{t}}) = the volume of gray water from all sectors during period t.This work considers qualitative and quantitative environmental water needs. Equation (31) is used to calculate the total environmental water need. The Tennant method for calculating the riverine environmental flow requirement (or instream flow) stipulates that, based on the conditions of each basin, between 10 to 30% of the average long-term flow of rivers represents the environmental flow requirement27. The sum of these requirements across all the basins equals the environmental requirement of the entire region or country. Yet, by providing 10 to 30% of the average long-term flow of rivers the riverine ecosystem barely emerges from critical conditions, and is far from optimal ecologic functioning. The total environmental water need is equal to the sum of the environmental flow requirement plus the volume of water needed to dilute the contaminants entering the surface water sources:$${ENV}_{t}={TotalGW}_{t}+Tennant$$
    (31)

    in which ({ENV}_{t}) = the environmental flow requirement during period t, and Tennant = the environmental flow requirement calculated by the Tennant (1976) method.The policy evaluation indexThe available renewable water is calculated with Eq. (32):$${IN}_{t}={OutCGW }_{t}+ {SInflow }_{t}+{ Inf}_{t}-{EvGwDr}_{t}$$
    (32)

    in which ({IN}_{t})= the renewable water available before the application of environmental constraints during period t.The volume of manageable water is calculated with Eq. (33):$$REWleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[INleft(tright)-ENVleft(tright)right]dt$$
    (33)

    in which REW (t) = the (cumulative) manageable and exploitable renewable water in the period t-t0.Equation (34) calculates the total water withdrawals by the agricultural, industrial, municipal, and energy production sectors:$${WDW}_{t}={OutputSW }_{t}+ {OutputGW}_{t}- {cheshmeh}_{t}$$
    (34)

    in which ({WDW}_{t}) = the sum of the withdrawals by the agricultural, industrial, municipal, and energy production sectors during period t.The cumulative water withdrawals are calculated with Eq. (35):$$withdleft(tright)=underset{{t}_{0}}{overset{t}{int }}WDWleft(tright)dt$$
    (35)

    in which (withdleft(tright)) = the sum of the withdrawals by the agricultural, industrial, municipal and energy production sectors in the horizon t-t0.Equation (36) calculates the water stress index:$${index}_{{t}_{f}}^{MRW}=frac{withd({t}_{f})}{REWleft({t}_{f}right)}times 100$$
    (36)

    in which ({index}_{{t}_{f}}^{MRW}) = the renewable water stress index at the end of the study period, and ({t}_{f}) = the period marking the end of the study horizon.Once the water and energy model is developed it must be calibrated with observational data prior to its use in predictions, as shown below. More