More stories

  • in

    Physiological and morphological effects of a marine heatwave on the seagrass Cymodocea nodosa

    IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O. et al.] In press (2019).Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibble, C. et al. Investigation of a largescale Common Murre (Uria aalge) mortality event in California, USA, in 2015. J. Wildl. Dis. 54, 569–574 (2018).PubMed 
    Article 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Genevier, L. G., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Change Biol. 25, 2338–2351 (2019).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723–2730 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).Article 

    Google Scholar 
    Alongi, D. M. Blue Carbon: Coastal Sequestration for Climate Change Mitigation (Springer, Berlin, 2018).Book 

    Google Scholar 
    Blandon, A. & ZuErmgassen, P. S. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coast. Shelf Sci. 141, 1–8 (2014).ADS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Carr, J., D’odorico, P., McGlathery, K. & Wiberg, P. L. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001103 (2010).Article 

    Google Scholar 
    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett. 3, 58–71. https://doi.org/10.1046/j.1461-0248.2000.00111.x (2000).Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003793 (2010).Article 

    Google Scholar 
    Cabaço, S. & Santos, R. Human-induced changes of the seagrass Cymodocea nodosa in Ria Formosa lagoon (Southern Portugal) after a decade. Cah. Biol. Mar. 55, 101–108 (2014).
    Google Scholar 
    Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Bañolas, G., Fernández, S., Espino, F., Haroun, R. & Tuya, F. Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean Coast. Manag. 187, 105112 (2020).Article 

    Google Scholar 
    Duarte, C. M. & Krause-Jensen, D. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4, 13 (2017).
    Google Scholar 
    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosci. 2, 1–8 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003848 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Collier, C. J. et al. Optimum temperatures for net primary productivity of three tropical seagrass species. Front. Plant Sci. 8, 1446 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, R., Gullström, M., Mangora, M. M., Mtolera, M. S. & Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: a mesocosm experiment on four tropical seagrass species. Ecol. Evol. 8, 4508–4517 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savva, I., Bennett, S., Roca, G., Jordà, G. & Marbà, N. Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol. Evol. 8, 12032–12043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massa, S. I., Arnaud-Haond, S., Pearson, G. A. & Serrão, E. A. Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619, 195–201 (2009).Article 

    Google Scholar 
    Bergmann, N. et al. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol. Ecol. 19, 2870–2883 (2010).PubMed 
    Article 

    Google Scholar 
    Franssen, S. U. et al. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar. Genomics 15, 65–73 (2014).PubMed 
    Article 

    Google Scholar 
    Qin, L. Z. et al. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the seagrass Zostera marina in Korean coastal waters. Estuaries Coasts 43, 449–462 (2020).CAS 
    Article 

    Google Scholar 
    Gao, Y. et al. Photosynthetic and metabolic responses of eelgrass Zostera marina L. to short-term high-temperature exposure. J. Oceanol. Limnol. 37, 199–209 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Costa, M. M., Silva, J., Barrote, I. & Santos, R. Heatwave effects on the photosynthesis and antioxidant activity of the seagrass Cymodocea nodosa under contrasting light regimes. Oceans 2, 448–460 (2021).Article 

    Google Scholar 
    de los Santos, C. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).Cunha, A. H., Assis, J. F. & Serrão, E. A. Reprint of “Seagrasses in Portugal: A most endangered marine habitat”. Aquat. Bot. 115, 3–13 (2014).Article 

    Google Scholar 
    Olsen, Y. S., Sánchez-Camacho, M., Marbà, N. & Duarte, C. M. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries Coasts 35, 1205–1213 (2012).Article 

    Google Scholar 
    Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Lüning, K. Seaweeds. Their Environment, Biogeography, and Ecophysiology (Wiley-Interscience, New York, 1990).Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175 (2007).Article 

    Google Scholar 
    Franssen, S. U. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. 108, 19276–19281 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winters, G., Nelle, P., Fricke, B., Rauch, G. & Reusch, T. B. H. Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar. Ecol. Prog. Ser. 435, 83–95 (2011).ADS 
    Article 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schubert, N. et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Sci. Rep. 8, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Miyake, C., Yonekura, K., Kobayashi, Y. & Yokota, A. Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol. 43, 951–957 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmusson, L. M., Gullström, M., Gunnarsson, P. C. B., George, R. & Björk, M. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Buapet, P. & Björk, M. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Photosynth. Res. 129, 59–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehler, A. H. Studies on reactions of illuminated chloroplasts. II Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys. 34, 339–51 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalanika De Silva, H. C. & Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 12, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    Beer, S., Björk, M., Gademann, R. & Ralph, P. Measurements of photosynthetic rates in seagrasses. In Global Seagrass Research Methods pp. 183–198 (Elsevier Science, 2001).Brodersen, K. E., Kühl, M., Nielsen, D. A., Pedersen, O. & Larkum, A. W. Rhizome, root/sediment interactions, aerenchyma and internal pressure changes in seagrasses. In Seagrasses of Australia pp. 393–418; https://doi.org/10.1007/978-3-319-71354-0_13 (Springer, Cham, 2018).Purnama, P. R., Purnama, E. R., Manuhara, Y. S. W., Hariyanto, S. & Purnobasuki, H. Effect of high temperature stress on changes in morphology, anatomy and chlorophyll content in tropical seagrass Thalassia hemprichii. AACL Bioflux 11, 1825–1833 (2018).
    Google Scholar 
    Rosalina, D., Herawati, E. Y., Musa, M., Sofarini, D. & Risjani, Y. Anatomical changes in the roots, rhizomes and leaves of seagrass (Cymodocea serrulata) in response to lead. Biodiversitas 20, 2583–2588; https://doi.org/10.13057/biodiv/d200921 (2019).Beca-Carretero, P., Olesen, B., Marbà, N. & Krause-Jensen, D. Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Mar. Ecol. Progr. Ser. 589, 59–72; https://doi.org/10.3354/meps12439 (2018).Beca-Carretero, P., Guihéneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Env. Res. 161, 105075; https://doi.org/10.1016/j.marenvres.2020.105075 (2020).Pérez, M. & Romero, J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot. 43, 51–62; https://doi.org/10.1016/0304-3770(92)90013-9 (1992).Saha, M. et al. Response of foundation macrophytes to near‐natural simulated marine heatwaves. Global Change Biol. 26, 417–430; https://doi.org/10.1111/gcb.14801 (2020).Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102; https://doi.org/10.1016/j.marenvres.2017.10.011 (2017).Moreno‐Marín, F., Brun, F. G. & Pedersen, M. F. Additive response to multiple environmental stressors in the seagrass Zostera marina L. Limnol. Oceanogr. 63, 1528–1544; https://doi.org/10.1002/lno.10789 (2018).Kim, M. et al. Influence of water temperature anomalies on the growth of Zostera marina plants held under high and low irradiance levels. Estuaries Coasts 43, 463–476; https://doi.org/10.1007/s12237-019-00578-2 (2020).Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26; https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine Coastal Shelf Sci. 57, 73–85; https://doi.org/10.1016/S0272-7714(02)00332-3 (2003).Instituto Hidrográfico. Marés 81/82 Ria de Faro. Estudo das marés de oito estacões da Ria de Faro pp. 13 (Lisbon: Instituto Hidrográfico, 1986).Andrade, J. P. Aspectos Geomorfológicos, Ecológicos e Socioeconómicos da Ria Formosa pp. 91 (Faro: Universidade do Algarve, 1985).Hobday, A.J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238; https://doi.org/10.1016/j.pocean.2015.12.014 (2016).Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr. 31, 162–173; https://doi.org/10.5670/oceanog.2018.205 (2018).Cunha, A. H., Paulo, D. S., Sousa, I. & Serrão, E. The rediscovery of Caulerpa prolifera in Ria Formosa, Portugal, 60 years after the previous record. Cah. Biol. Mar. 54, 359–364 (2013).
    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2020).ADS 
    Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modelling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker; 10.5281/zenodo.3787872 (2020).Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (Eds.). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (IPCC) (Cambridge University Press, 2012).Silva, J., Barrote, I., Costa, M. M., Albano, S. & Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8, e81058 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silva, J. & Santos, R. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii?. J. Exp. Mar. Biol. Ecol. 307, 207–216 (2004).CAS 
    Article 

    Google Scholar 
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Henley, W. J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).Article 

    Google Scholar 
    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    Folin, O. & Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927).CAS 
    Article 

    Google Scholar 
    Booker, F. L. & Miller, J. E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L) Merr] leaves following exposure to ozone. J. Exp. Bot. 49, 1191–1202 (1998).CAS 
    Article 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26, 1231–1237 (1999).CAS 
    Article 

    Google Scholar 
    Gillespie, K. M., Chae, J. M. & Ainsworth, E. A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2, 867–870 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. & Prior, R. L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 50, 4437–4444 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Rasband, W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018. https://imagej.nih.gov/ij/ (1997).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2014).Devore, J. & Farnum, N. Applied Statistics for Engineers and Scientists (ed. Brooks/Cole) pp. 656 (Pacific Grove, CA, USA, 1999). More

  • in

    Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales

    Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS 
    Article 

    Google Scholar 
    Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS 
    Article 

    Google Scholar 
    Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article 

    Google Scholar 
    McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS 
    Article 

    Google Scholar 
    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article 

    Google Scholar 
    Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS 
    Article 

    Google Scholar 
    Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article 

    Google Scholar 
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article 

    Google Scholar 
    Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
    Google Scholar 
    Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article 
    PubMed 

    Google Scholar 
    Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article 

    Google Scholar 
    Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article 

    Google Scholar 
    Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
    Google Scholar 
    Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS 
    Article 

    Google Scholar 
    Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article 

    Google Scholar 
    Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article 

    Google Scholar 
    Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article 

    Google Scholar 
    Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article 

    Google Scholar 
    Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS 
    Article 

    Google Scholar 
    Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS 
    Article 

    Google Scholar 
    Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article 

    Google Scholar  More

  • in

    Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Tauber, E. & Kyriacou, C. P. Review: Genomic approaches for studying biological clocks. Funct. Ecol. 22, 19–29 (2008).
    Google Scholar 
    White, E. R. & Hastings, A. Seasonality in ecology: Progress and prospects in theory. Ecol. Complex. 44, 100867 (2020).Article 

    Google Scholar 
    Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cassone, V. M. Avian circadian organization: A chorus of clocks. Front. Neuroendocrinol. 35, 76–88 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Peixoto, A. A., Sandrelli, F., Costa, R. & Tauber, E. Clines in clock genes: Fine-tuning circadian rhythms to the environment. Trends Genet. 24, 124–132 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).Article 

    Google Scholar 
    Kalmbach, D. A. et al. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep https://doi.org/10.1093/sleep/zsw048 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, J. S., Shimomura, K. & Kumar, V. Searching for genes underlying behavior: Lessons from circadian rhythms. Science 322, 909–912 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Yoshimura, T. et al. Molecular analysis of avian circadian clock genes11Published on the World Wide Web on 23 May 2000. Mol. Brain Res. 78, 207–215 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gekakis, N. et al. Role of the CLOCK Protein in the Mammalian circadian mechanism. Science 280, 1564–1569 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Saleem, Q., Anand, A., Jain, S. & Brahmachari, S. K. The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum. Genet. 109, 136–142 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Follett, B. Rhythms and photoperiodism in birds. Biological rhythms and photoperiodism in plants (1998).Hazlerigg, D. G. & Wagner, G. C. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol. Metab. 17, 83–91 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stirland, J. A., Mohammad, Y. N. & Loudon, A. S. I. A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc. R Soc. London Ser. B Biol. Sci. 263, 345–350 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).Article 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).Article 

    Google Scholar 
    Rittenhouse, J. L., Robart, A. R. & Watts, H. E. Variation in chronotype is associated with migratory timing in a songbird. Biol. Lett. 15, 20190453 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: Evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B Biol. Sci. 277, 3703–3714 (2010).Article 
    CAS 

    Google Scholar 
    O’Malley, K. G. & Banks, M. A. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: Evidence for selection on PolyQ length variants. Proc. R. Soc. B Biol. Sci. 275, 2813–2821 (2008).Article 
    CAS 

    Google Scholar 
    Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2, 115 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saino, N. et al. Timing of molt of barn swallows is delayed in a rare Clock genotype. PeerJ 1, e17 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Johnsen, A. et al. Avian Clock gene polymorphism: Evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867–4880 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: Evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).PubMed 
    Article 

    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Dor, R. et al. Clock gene variation in Tachycineta swallows. Ecol. Evol. 2, 95–105 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dor, R. et al. Low variation in the polymorphic Clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLoS ONE 6, e28843 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B Biol. Sci. 278, 2848–2856 (2011).CAS 
    Article 

    Google Scholar 
    Liedvogel, M. & Sheldon, B. C. Low variability and absence of phenotypic correlates of Clock gene variation in a great tit Parus major population. J. Avian Biol. 41, 543–550 (2010).Article 

    Google Scholar 
    Lugo-Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. A 203, 383–397 (2017).CAS 
    Article 

    Google Scholar 
    Majoy, S. B. & Heideman, P. D. Tau differences between short-day responsive and short-day nonresponsive white-footed mice (Peromyscus leucopus) do not affect reproductive photoresponsiveness. J. Biol. Rhythms 15, 501–513 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the threespine stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Ross, J. D., Shipley, J. R. & Kelly, J. F. Examination of clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS ONE 13, e0190859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8, 790–802 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chahad-Ehlers, S. et al. Expanding the view of clock and cycle gene evolution in Diptera. Insect Mol. Biol. 26, 317–331 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: What can the insect clock teach us about seasonal adaptation?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160257 (2017).Article 

    Google Scholar 
    van Noordwijk, A. J. et al. A framework for the study of genetic variation in migratory behaviour. J .Ornithol. 147, 221–233 (2006).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
    Google Scholar 
    Gohli, J., Lifjeld, J. T. & Albrecht, T. Migration distance is positively associated with sex-linked genetic diversity in passerine birds. Ethol. Ecol. Evol. 28, 42–52 (2016).Article 

    Google Scholar 
    Bazzi, G. et al. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan migratory birds. Mol. Ecol. 25, 6077–6091 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doren, B. M. V., Liedvogel, M. & Helm, B. Programmed and flexible: Long-term Zugunruhe data highlight the many axes of variation in avian migratory behaviour. J. Avian Biol. 48, 155–172 (2017).Article 

    Google Scholar 
    Helm, B., Gwinner, E. & Trost, L. Flexible seasonal timing and migratory behavior: Results from stonechat breeding programs. Ann. N. Y. Acad. Sci. 1046, 216–227 (2005).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Helm, B. Geographically distinct reproductive schedules in a changing world: Costly implications in captive Stonechats. Integr Comp Biol 49, 563–579 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhondt, A. A. Variations in the number of overwintering stonechats possibly caused by natural selection. Ringing Migr. 4, 155–158 (1983).Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47, 339–345 (2000).Article 

    Google Scholar 
    GOUDET, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Doren, B. M. et al. Correlated patterns of genetic diversity and differentiation across an avian family. Mol. Ecol. 26, 3982–3997 (2017).PubMed 
    Article 

    Google Scholar 
    Illera, J. C., Richardson, D. S., Helm, B., Atienza, J. C. & Emerson, B. C. Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola. Mol. Phylogenet. Evol. 48, 1145–1154 (2008).PubMed 
    Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Reproduction in an endemic bird of a semiarid island: A food-mediated process. J. Avian Biol. 37, 447–456 (2006).Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Site fidelity in the Canary Islands stonechat Saxicola dacotiae in relation to spatial and temporal patterns of habitat suitability. Acta Oecol. 34, 1–8 (2008).Article 
    ADS 

    Google Scholar 
    Gwinner, E. & Dittami, J. Endogenous reproductive rhythms in a tropical bird. Science 249, 906–908 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Dittami, J. & Gwinner, E. Annual cycles in the African stonechat Saxicola torquata axillaris and their relationship to environmental factors. J. Zool. 207, 357–370 (1985).Article 

    Google Scholar 
    Gwinner, E. Circannual rhythms in tropical and temperate-zone stonechats: A comparison of properties under constant conditions. Ökologie der Vögel 13, 5–14 (1991).
    Google Scholar 
    Gwinner, E. Circannual Rhythms: Endogenous Annual Clocks in the Organization of Seasonal Processes (Springer, 2012).
    Google Scholar 
    Helm, B., Fiedler, W. & Callion, J. Movements of European stonechats Saxicola torquata according to ringing recoveries. ARDEA-WAGENINGEN- 94, 33 (2006).
    Google Scholar 
    Opaev, A., Red’kin, Y., Kalinin, E. & Golovina, M. Species limits in Northern Eurasian taxa of the common stonechats, Saxicola torquatus complex (Aves: Passeriformes, Muscicapidae). Vertebr.ate Zool. 68, 199 (2018).
    Google Scholar 
    Gwinner, E. & Czeschlik, D. On the significance of spring migratory restlessness in caged birds. Oikos 30, 364–372 (1978).Article 

    Google Scholar 
    Krist, M., Munclinger, P., Briedis, M. & Adamík, P. The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia https://doi.org/10.1007/s00442-021-04930-x (2021).Article 
    PubMed 

    Google Scholar 
    Berthold, P. & Pulido, F. Heritability of migratory activity in a natural bird population. Proc. R. Soc. London Ser. B Biol. Sci. 257, 311–315 (1994).Article 
    ADS 

    Google Scholar 
    Pulido, F. & Berthold, P. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. 107, 7341–7346 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Liedvogel, M. & Lundberg, M. The Genetics of Migration. In Animal Movement Across Scales (eds Hansson, L.-A. & Åkesson, S.) 219–231 (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199677184.003.0012.Chapter 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).Article 

    Google Scholar 
    Stevenson, T. J. & Kumar, V. Neural control of daily and seasonal timing of songbird migration. J. Comp. Physiol. A 203, 399–409 (2017).Article 

    Google Scholar 
    Verhagen, I. et al. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct. Ecol. 33, 1708–1721 (2019).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of Postjuvenal molt in African (Saxicola Torquata Axillaris) and European (Saxicola Torquata Rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Zink, R. M., Pavlova, A., Drovetski, S., Wink, M. & Rohwer, S. Taxonomic status and evolutionary history of the Saxicola torquata complex. Mol. Phylogenet. Evol. 52, 769–773 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flinks, H. & Pfeifer, F. Brutzeit, Gelegegröße und Bruterfolg beim Schwarzkehlchen (Saxicola torquata). Charadrius 23, 128–140 (1987).
    Google Scholar 
    Urquhart, E. Stonechats (Christopher Helm, 2002).
    Google Scholar 
    Glutz von Blotzheim, U. Bauer Handbuch der Vögel Mitteleuropas KM: Bd. 11. Aula, Wiesbaden (1988).Yamaura, Y. et al. Tracking the Stejneger’s stonechat Saxicola stejnegeri along the East Asian-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197–202 (2017).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefiederte Welt 111, 118–120 (1987).
    Google Scholar 
    Flinks, H., Helm, B. & Rothery, P. Plasticity of moult and breeding schedules in migratory European Stonechats Saxicola rubicola. Ibis 150, 687–697 (2008).Article 

    Google Scholar 
    Humphrey, P. S. & Parkes, K. C. An approach to the study of molts and plumages. Auk 76, 1–31 (1959).Article 

    Google Scholar 
    Berthold, P. Bird Migration: A General Survey (Oxford University Press, 2001).
    Google Scholar 
    RStudio | Open source & professional software for data science teams. https://rstudio.com/.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014).Lüdecke, D. & Lüdecke, M. D. Package ‘sjPlot’. (2015).del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018).
    Google Scholar  More

  • in

    Microbial functional changes mark irreversible course of Tibetan grassland degradation

    Literature studyLiterature considering the effect of pasture degradation on SOC, N, and clay content, as well as bulk density (BD), was assembled by searching (i) Web of Science V.5.22.1, (ii) ScienceDirect (Elsevier B.V.) (iii) Google Scholar, and (iv) the China Knowledge Resource Integrated Database (CNKI). Search terms were “degradation gradient”, “degradation stages”, “alpine meadow”, “Tibetan Plateau”, “soil”, “soil organic carbon”, and “soil organic matter” in different combinations. The criteria for including a study in the analysis were: (i) a clear and comprehensible classification of degradation stages was presented, (ii) data on SOC, N, and/or BD were reported, (iii) a non-degraded pasture site was included as a reference to enable an effect size analysis and the calculation of SOC and N losses, (iv) sampling depths and study location were clearly presented. (v) Studies were only considered that took samples in 10 cm depth intervals, to maintain comparability to the analyses from our own study site. The degradation stages in the literature studies were regrouped into the six successive stages (S0–S5) according to the respective degradation descriptions. In total, we compiled the results of 49 publications published between 2002 and 2020.When SOM content was presented, this was converted to SOC content using a conversion factor of 2.032. SOC and N stocks were calculated using the following equation:$${{{{{rm{Elemental; stock}}}}}}=100* {{{{{rm{content}}}}}}* {{{{{rm{BD}}}}}}* {{{{{rm{depth}}}}}}$$
    (1)
    where elemental stock is SOC or N stock [kg ha−1]; content is SOC or N content [g kg−1]; BD is soil bulk density [g cm−3] and depth is the soil sampling depth [cm].The effect sizes of individual variables (i.e., SOC and N stocks as well as BD) were quantified as follows:$${{{{{rm{ES}}}}}}=,frac{(D-R)}{R* 100 % }$$
    (2)
    where ES is the effect size in %, D is the value of the corresponding variable in the relevant degradation stage and R is the value of each variable in the non-degraded stage (reference site). When ES is positive, zero, or negative, this indicates an increase, no change, or decrease, respectively, of the parameter compared to the non-degraded stage.Experimental design of the field studyLarge areas in the study region are impacted by grassland degradation. In total, 45% of the surface area of the Kobresia pasture ecosystem on the TP is already degraded2. The experiment was designed to differentiate and quantify SOC losses by erosion vs. net decomposition and identify underlying shifts in microbial community composition and link these to changes in key microbial functions in the soil C cycle. We categorized the range of Kobresia root-mat degradation from non-degraded to bare soils into six successive degradation stages (S0–S5). Stage S0 represented non-degraded root mats, while stages S1–S4 represented increasing degrees of surface cracks, and bare soil patches without root mats defined stage S5 (Supplementary Fig. 1). All six degradation stages were selected within an area of about 4 ha to ensure equal environmental conditions and each stage was sampled in four field replicates. However, the studied degradation patterns are common for the entire Kobresia ecosystem (Supplementary Fig. 1).Site descriptionThe field study was conducted near Nagqu (Tibet, China) in the late summer 2013 and 2015. The study site of about 4 ha (NW: 31.274748°N, 92.108963°E; NE: 31.274995°N, 92.111482°E; SW: 31.273488°N, 92.108906°E; SE: 31.273421°N, 92.112025°E) was located on gentle slopes (2–5%) at 4,484 m a.s.l. in the core area of the Kobresia pygmaea ecosystem according to Miehe et al.8. The vegetation consists mainly of K. pygmaea, which covers up to 61% of the surface. Other grasses, sedges, or dwarf rosette plants (Carex ivanoviae, Carex spp., Festuca spp., Kobresia pusilla, Poa spp., Stipa purpurea, Trisetum spp.) rarely cover more than 40%. The growing season is strongly restricted by temperature and water availability. At most, it lasts from mid-May to mid-September, but varies strongly depending on the onset and duration of the summer monsoon. Mean annual precipitation is 431 mm, with roughly 80% falling as summer rains. The mean annual temperature is −1.2 °C, while the mean maximum temperature of the warmest month (July) is +9.0 °C2.A characteristic feature of Kobresia pastures is their very compact root mats, with an average thickness of 15 cm at the study site. These consist mainly of living and dead K. pygmaea roots and rhizomes, leaf bases, large amounts of plant residue, and mineral particles. Intact soil is a Stagnic Eutric Cambisol (Humic), developed on a loess layer overlying glacial sediments and containing 50% sand, 33% silt, and 17% clay in the topsoil (0–25 cm). The topsoil is free of carbonates and is of neutral pH (pH in H2O: 6.8)5. Total soil depth was on average 35 cm.The site is used as a winter pasture for yaks, sheep, and goats from January to April. Besides livestock, large numbers of plateau pikas (Ochotona) are found on the sites. These animals have a considerable impact on the plant cover through their burrowing activity, in particular the soil thrown out of their burrows, which can cover and destroy the Kobresia turf.Sampling designThe vertical and horizontal extent of the surface cracks was measured for each plot (Supplementary Table 2). Vegetation cover was measured and the aboveground biomass was collected in the cracks (Supplementary Table 2). In general, intact Kobresia turf (S0) provided high resistance to penetration as measured by a penetrologger (Eijkelkamp Soil and Water, Giesbeek, NL) in 1 cm increments and four replicates per plot.Soil sampling was conducted using soil pits (30 cm length × 30 cm width × 40 cm depth). Horizons were classified and then soil and roots were sampled for each horizon directly below the cracks. Bulk density and root biomass were determined in undisturbed soil samples, using soil cores (10 cm height and 10 cm diameter). Living roots were separated from dead roots and root debris by their bright color and soft texture using tweezers under magnification, and the roots were subsequently washed with distilled water to remove the remaining soil. Because over 95% of the roots occurred in the upper 25 cm5, we did not sample for root biomass below this depth.Additional soil samples were taken from each horizon for further analysis. Microbial community and functional characterization were performed on samples from the same pits but with a fixed depth classification (0–5 cm, 5–15 cm, 15–35 cm) to reduce the number of samples.Plant and soil analysesSoil and roots were separated by sieving (2 mm) and the roots subsequently washed with distilled water. Bulk density and root density were determined by dividing the dry soil mass (dried at 105 °C for 24 h) and the dry root biomass (60 °C) by the volume of the sampling core. To reflect the root biomass, root density was expressed per soil volume (mg cm−3). Soil and root samples were milled for subsequent analysis.Elemental concentrations and SOC characteristicsTotal SOC and total N contents and stable isotope signatures (δ13C and δ15N) were analyzed using an isotope ratio mass spectrometer (Delta plus, Conflo III, Thermo Electron Cooperation, Bremen, Germany) coupled to an elemental analyzer (NA 1500, Fisons Instruments, Milano, Italy). Measurements were conducted at the Centre for Stable Isotope Research and Analysis (KOSI) of the University of Göttingen. The δ13C and δ15N values were calculated by relating the isotope ratio of each sample (Rsample = 13C/12C or 15N/14N) to the international standards (Pee Dee Belemnite 13C/12C ratio for δ13C; the atmospheric 15N/14N composition for δ15N).Soil pH of air-dried soil was measured potentiometrically at a ratio (v/v) of 1.0:2.5 in distilled water.Lignin phenols were depolymerized using the CuO oxidation method25 and analyzed with a gas chromatography-mass spectrometry (GC–MS) system (GC 7820 A, MS 5977B, Agilent Technologies, Waldbronn, Germany). Vanillyl and syringyl units were calculated from the corresponding aldehydes, ketones, and carboxylic acids. Cinnamyl units were derived from the sum of p-coumaric acid and ferulic acid. The sum of the three structural units (VSC = V + S + C) was considered to reflect the lignin phenol content in a sample.DNA extraction and PCRSamples were directly frozen on site at −20 °C and transported to Germany for analysis of microbial community structure. Total DNA was extracted from the soil samples with the PowerSoil DNA isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions, and DNA concentration was determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The extracted DNA was amplified with forward and reverse primer sets suitable for either t-RFLP (fluorescence marked, FAM) or Illumina MiSeq sequencing (Illumina Inc., San Diego, USA): V3 (5’-CCT ACG GGN GGC WGC AG-3’) and V4 (5’-GAC TAC HVG GGT ATC TAA TCC-3’) primers were used for bacterial 16 S rRNA genes whereas ITS1 (5’-CTT GGT CAT TTA GAG GAA GTA A-3’), ITS1-F_KYO1 (5’-CTH GGT CAT TTA GAG GAA STA A-3’), ITS2 (5’-GCT GCG TTC TTC ATC GAT GC-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) were used for fungi33,34. Primers for Illumina MiSeq sequencing included adaptor sequences (forward: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-3’; reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3’)33. PCR was performed with the Phusion High-Fidelity PCR kit (New England Biolabs Inc., Ipswich, MA, USA) creating a 50 µl master mix with 28.8 µl H2Omolec, 2.5 µl DMSO, 10 µl Phusion GC buffer, 1 µl of forward and reverse primer, 0.2 µl MgCl2, 1 µl dNTPs, 0.5 µl Phusion HF DNA Polymerase, and 5 µl template DNA. PCR temperatures started with initial denaturation at 98 °C for 1 min, followed by denaturation (98 °C, 45 s), annealing (48/60 °C, 45 s), and extension (72 °C, 30 s). These steps were repeated 25 times, finalized again with a final extension (72 °C, 5 min), and cooling to 10 °C. Agarose gel electrophoresis was used to assess the success of the PCR and the amount of amplified DNA (0.8% gel:1.0 g Rotigarose, 5 µl Roti-Safe Gelstain, Carl Roth GmbH & Co. KG, Karlsruhe, Germany; and 100 ml 1× TAE-buffer). PCR product was purified after initial PCR and restriction digestion (t-RFLP) with either NucleoMag 96 PCR (16 S rRNA gene amplicons, Macherey-Nagel GmbH & Co. KG, Düren, Germany) or a modified clean-up protocol after Moreau (t-RFLP)35: 3× the volume of the reaction solution as 100% ethanol and ¼x vol. 125 mM EDTA was added and mixed by inversion or vortex. After incubation at room temperature for 15 min, the product was centrifuged at 25,000 × g for 30 min at 4 °C. Afterwards the supernatant was removed, and the inverted 96-well plate was centrifuged shortly for 2 min. Seventy microliters ethanol (70%) were added and centrifuged at 25,000 × g for 30 min at 4 °C. Again, the supernatant was removed, and the pallet was dried at room temperature for 30 min. Finally, the ethanol-free pallet was resuspended in H2Omolec.T-RFLP fingerprintingThe purified fluorescence-labeled PCR products were digested with three different restriction enzymes (MspI and BstUI, HaeIII) according to the manufacturer’s guidelines (New England Biolabs Inc., Ipswich, MA, USA) with a 20 µl master mix: 16.75 µl H2Omolec, 2 µl CutSmart buffer, 0.25 or 0.5 µl restriction enzyme, and 1 µl PCR product for 15 min at 37 °C (MspI) and 60 °C (BstUI, HaeIII), respectively. The digested PCR product was purified a second time35, dissolved in Super-DI Formamide (MCLAB, San Francisco, CA, USA) and, along with Red DNA size standard (MCLAB, San Francisco, USA), analyzed in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA). Terminal restriction fragments shorter than 50 bp and longer than 800 bp were removed from the t-RFLP fingerprints.16 S rRNA gene and internal transcribed spacer (ITS) sequencing and sequence processingThe 16 S rRNA gene and ITS paired-end raw reads for the bacterial and fungal community analyses were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) and can be found under the BioProject accession number PRJNA626504. This BioProject contains 70 samples and 139 SRA experiments (SRR11570615–SRR11570753) which were processed using CASAVA software (Illumina, San Diego, CA, USA) for demultiplexing of MiSeq raw sequences (2 × 300 bp, MiSeq Reagent Kit v3).Paired-end sequences were quality-filtered with fastp (version 0.19.4)36 using default settings with the addition of an increased per base phred score of 20, base-pair corrections by overlap (-c), as well as 5′- and 3′-end read trimming with a sliding window of 4, a mean quality of 20 and minimum sequence size of 50 bp. Paired-end sequences were merged using PEAR v0.9.1137 with default parameters. Subsequently, unclipped reverse and forward primer sequences were removed with cutadapt v1.1838 with default settings. Sequences were then processed using VSEARCH (v2.9.1)39. This included sorting and size-filtering (—sortbylength,—minseqlength) of the paired reads to ≥300 bp for bacteria and ≥140 bp for ITS1, dereplication (—derep_fulllength). Dereplicated sequences were denoised with UNOISE340 using default settings (—cluster_unoise—minsize 8) and chimeras were removed (—uchime3_denovo). An additional reference-based chimera removal was performed (—uchime_ref) against the SILVA41 SSU NR database (v132) and UNITE42 database (v7.2) resulting in the final set of amplicon sequence variants (ASVs)43. Quality-filtered and merged reads were mapped to ASVs (—usearch_global–id 0.97). Classification of ASVs was performed with BLAST 2.7.1+ against the SILVA SSU NR (v132) and UNITE (v7.2) database with an identity of at least 90%. The ITS sequences contained unidentified fungal ASVs after UNITE classification, these sequences were checked (blastn)44 against the “nt” database (Nov 2018) to remove non-fungal ASVs and only as fungi classified reads were kept. Sample comparisons were performed at the same surveying effort, utilizing the lowest number of sequences by random selection (total 15,800 bacteria, 20,500 fungi). Species richness, alpha and beta diversity estimates, and rarefaction curves were determined using the QIIME 1.9.145 script alpha_rarefaction.py.The final ASV tables were used to compute heatmaps showing the effect of degradation on the community using R (Version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria) and R packages “gplots”, “vegan”, “permute” and “RColorBrewer”. Fungal community functions were obtained from the FunGuild database46. Plant mycorrhizal association types were compiled from the literature38,39,40,41,47,48,49,50. If no direct species match was available, the mycorrhizal association was assumed to remain constant within the same genus.Enzyme activityEnzyme activity was measured to characterize the functional activity of the soil microorganisms. The following extracellular enzymes, involved in C, N, and P transformations, were considered: two hydrolases (β-glucosidase and xylanase), phenoloxidase, urease, and alkaline phosphatase. Enzyme activities were measured directly at the sampling site according to protocols after Schinner et al.51. Beta-glucosidase was incubated with saligenin for 3 h at 37 °C, xylanase with glucose for 24 h at 50 °C, phenoloxidase with L-3,4-dihydroxy phenylalanine (DOPA) for 1 h at 25 °C, urease with urea for 2 h at 37 °C and alkaline phosphatase on P-nitrophenyl phosphate for 1 h at 37 °C. Reaction products were measured photometrically at recommended wavelengths (578, 690, 475, 660, and 400 nm, respectively).SOC stocks and SOC lossThe SOC stocks (in kg C m−2) for the upper 30 cm were determined by multiplying the SOC content (g C kg−1) by the BD (g cm−3) and the thickness of the soil horizons (m). SOC losses (%) were calculated for each degradation stage and horizon and were related to the mean C stock of the reference stage (S0). The erosion-induced SOC loss of the upper horizon was estimated by considering the topsoil removal (extent of vertical soil cracks) of all degraded soil profiles (S1–S5) and the SOC content and BD of the reference (S0). To calculate the mineralization-derived SOC loss, we accounted for the effects of SOC and root mineralization on both SOC content and BD. Thus, we used the SOC content and BD from each degradation stage (S1–S5) and multiplied it by the mean thickness of each horizon (down to 30 cm) from the reference site (S0). The disentanglement of erosion-derived SOC loss from mineralization-derived SOC loss was based on explicit assumptions that (i) erosion-derived SOC losses are mainly associated with losses from the topsoil, and (ii) the decreasing SOC contents in the erosion-unaffected horizons were mainly driven by mineralization and decreasing root C input.Statistical analysesStatistical analyses were performed using PASW Statistics (IBM SPSS Statistics) and R software (Version 3.6.1). Soil and plant characteristics are presented as means and standard errors (means ± SE). The significance of treatment effects (S0–S5) and depth was tested by one-way ANOVA at p  More

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More

  • in

    Understanding the diversity and biogeography of Colombian edible plants

    Carvalho, A. M. & Barata, A. M. The consumption of wild edible plants. In Wild plants, mushrooms and nuts: functional food properties and applications (eds Isabel, C. F. R. et al.) (John Wiley & Sons, New York City, 2017).
    Google Scholar 
    Diazgranados, M. et al. World checklist of useful plant species. Royal Botanic Gardens, Kew. (Richmond, UK, 2020).
    Google Scholar 
    Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 12(5), 421–445 (2020).Article 

    Google Scholar 
    Shaheen, S., Ahmad, M., Haroon, N. Edible wild plants: a solution to overcome food insecurity. In: Edible Wild Plants: An alternative approach to food security (eds Shaheen, S., et al.) 41–57. Springer, Cham. https://doi.org/10.1007/978-3-319-63037-3_2 (2017).Chapter 

    Google Scholar 
    Food and Agriculture Organization. World programme for the census of agriculture 2020, Vol. 1. FAO, (Rome, Italy, 2015).
    Google Scholar 
    Wolff, F. Legal factors driving agrobiodiversity loss. Environ. Law Netw. Int. 1, 1–11 (2004).
    Google Scholar 
    Padulosi, S., Heywood, V., Hunter, D. & Jarvis, A. Underutilized species and climate change: current status and outlook. In Crop Adaptation to Climate Change (eds Shyam, S. Y. et al.) 507–517 (Blackwell Publishers, 2011).Chapter 

    Google Scholar 
    Kalamandeen, M., Gloor, E. & Mitchard, E. Pervasive raise of small-scale deforestation in Amazonia. Sci. Rep. 8(1600), 1–10 (2018).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean community of South America. Ambio 50, 1681–1697 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogueira, S. & Nogueira-Filho, S. Wildlife farming: an alternative to unsustainable hunting and deforestation in neotropical forests?. Biodivers. Consrv. 20, 1385–1397 (2011).Article 

    Google Scholar 
    Pilgrim, S. E., Cullen, L. C., Smith, D. J. & Pretty, J. Ecological knowledge is lost in wealthier communities and countries. Environ. Sci. Technol. 42(4), 1004–1009 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Cuervo, A. M. & Mitchell-Aide, T. Consequences of the armed conflict forced human displacement, and land abandonment on forest cover change in Colombia: a multi-scaled analysis. Ecosystems 16, 1052–1070 (2013).Article 

    Google Scholar 
    Rodriguez-Eraso, N., Armenteras-Pascual, D. & Retana-Alumbreros, J. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J. Land Use Sci. 8(2), 154–174 (2013).Article 

    Google Scholar 
    Food and Agriculture Organization. in The State of the World’s biodiversity for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments (eds Bélanger, J., Pilling, D.). (FAO, Rome, Italy, 2019).Borelli, T. et al. Local solutions for sustainable food systems: the contribution of orphan crops and wild edible species. Agronomy 10(2), 231–256 (2020).CAS 
    Article 

    Google Scholar 
    Padulosi, S., Thompson, J. & Rudebjer, P. Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward (Bioversity International, 2013).
    Google Scholar 
    Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brehmy, J. M., Maxted, N., Martin-Louçao, M. A. & Frod-Lloyd, B. V. New approaches for establishing conservation priorities for socio-economically important plant species. Biodivers. Conserv. 19(9), 2715–2740 (2010).Article 

    Google Scholar 
    N’Danikou, S., Achigan-Dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in Southern Benin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).Article 

    Google Scholar 
    Dulloo, M. E. et al. Conserving agricultural biodiversity for use in sustainable food systems. (2017).de Oliveira Beltrame, D. M. et al. Brazilian underutilised species to promote dietary diversity, local food procurement, and biodiversity conservation: a food composition gap analysis. Lancet Planet. Health. 2, S22. (2018).Article 

    Google Scholar 
    Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6(37), 1–5 (2020).Article 

    Google Scholar 
    Renjifo, L. M., Amaya-Villareal, A. M. & Butchart, S. H. M. Tracking extinction risk trends and patterns in a mega-diverse country: a red list index for birds in Colombia. PLoSONE 15(1), 1–19 (2020).Article 

    Google Scholar 
    Clerici, N., Salazar, C., Pardo-Díaz, C., Jiggins, C. D. & Linares, M. Peace in Colombia is a critical moment for neotropical connectivity and conservation: save the northern Andes-Amazon biodiversity bridge. Conserv. Lett. 12, 1–7 (2019).Article 

    Google Scholar 
    Hurtado-Bermudez, L. J., Vélez-Torres, I. & Méndez, F. No land for food: prevalence of food insecurity in ethnic communities enclosed by sugarcane monocrop in Colombia. Int. J. Public Health 65, 1087–1096 (2020).PubMed 
    Article 

    Google Scholar 
    Boron, V., Payan, E., McMillan, D. & Tzanopulos, J. Achieving sustainable development in rural areas in Colombia: future scenarios for biodiversity conservation under land use change. Land Use Policy 59, 27–37 (2016).Article 

    Google Scholar 
    Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13(2), 1–16 (2008).Article 

    Google Scholar 
    Rivas Abadía, X., Pazos, S. C., Castillo, S. K. & Pachón, H. Indigenous foods of the indigenous and Afro-descendant communities of Colombia (International Center for Tropical Agriculture (CIAT), Cali, 2010) ((In Spanish, English summary)).
    Google Scholar 
    López Diago, D. & García, N. Wild edible fruits of Colombia: diversity and use prospects. Biota Colomb. 22(2), 16–55 (2021).Article 

    Google Scholar 
    Pieroni, A., Pawera, L. & Shah, G. M. Gastronomic ethnobiology. In Introduction to Ethnobiology (eds Albuquerque, U. P. & Alves, R. N.) 53–62 (Springer, 2016).Chapter 

    Google Scholar 
    Castañeda, R. R. Frutas silvestres de Colombia. Instituto Colombiano de Cultura Hispánica. (1991).Medina, C. I., Martínez, E. & López, C. A. Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Revista Facultad Nacional de Agronomía Medellín 72(3), 8897–8908 (2019).Article 

    Google Scholar 
    Asprilla-Perea, J. & Díaz-Puente, J. M. Traditional use of wild edible food in rural territories within tropical forest zones: a case study from the northwestern Colombia. New Trends Issues Proc. Humanit. Soc. Sci. 5(1), 162–181 (2018).
    Google Scholar 
    López Estupiñán, L. Potatoes and land in Boyacá: ethnobotanical and ethnohistorical research of one of the main products of Colombian food. Boletín de Antropología Universidad de Antioquia 30(50), 170–190 (2015) ((In Spanish)).
    Google Scholar 
    Marín Santamaría, C.M. Potential for food use for human consumption of wild fruits in Encenillo Biological Reserve, Guasca, Cundinamarca. Thesis in Biological Sciences. Pontificia Universidad Javeriana. Bogotá, Colombia. (2010) (In Spanish).Molina Samacá, J. R. Ancestral Food Plant Heritage: Construction of the Baseline in the Province of Sumapaz. Master thesis in Agricultural Sciences. University of Cundinamarca, Colombia (2019) (In Spanish).Pasquini, M. W., Sánchez-Ospina, C. & Mendoza, J. S. Traditional food plant knowledge and use in three afro-descendant communities in the Colombian Caribbean Coast: Part II drivers of change. Econ. Bot. 72(3), 295–310 (2018).Article 

    Google Scholar 
    Villa Villegas, M. Análisis del conocimiento asociado al uso de la flora alimenticia y medicinal en la comunidad de San Francisco, Acandí (Chocó. Pontificia Universidad Javeriana, 2020).
    Google Scholar 
    Cook, E. M. F. Economic botany data collection standard (Royal Botanic Gardens, Kew, Richmond, 1995).
    Google Scholar 
    Diazgranados, M. & Kor, L. Notes on the biogeographic distribution of the useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 147–161. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).Diazgranados, M. et al. Annotated checklist of useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 165–473. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org/. (2021)POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved on 14 April, 2021, from: http://www.plantsoftheworldonline.org/ (2021).Missouri Botanical Gardens. Tropicos.org. Retrieved on 10 April 2021, https://tropicos.org (2021)Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40(1), 1–29 (2011).Article 

    Google Scholar 
    Wickham, H., Francois, R. Dplyr: A Grammar of Data Manipulation. R Package Version 0.4.3 (2021).GBIF Sectretaria. GBIF backbone taxonomy. Retrieved on 22 April 2021, from: https://www.gbif.org/ (2021)Food and Agriculture Organization. The second report on the State of The World’s plant genetic resources for food and agriculture. (FAO, Rome, Italy, 2015).Bystriakova, N. et al. Colombia’s bioregions as a source of useful plants. PLoS One 16(8), 1–19 (2021).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11), 933–938 (2001).Article 

    Google Scholar 
    Chamberlain, S., Oldoni, D., Barve, V., Desmet, P., Geffert, L., Mcglinn, D., Ram, K. Rgbif: interface to the global “Biodiversity” information facility API. R Package Version 3.6.0. (2021)Ondo, I. et al. ShinyCCleaner: an interactive app for cleaning species occurrence records. Unpublished (2021).Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Summer, M., Hijmans, R., Baston, D., Rouault, E., et al. Rgdal: bindings for the “Geospatial” data abstraction library. R Package Version 1.5-23. Retrieved from: https://cran.r-project.org/web/packages/rgdal/index.html (2021)Hijmans, R. J., van Etten, J. Raster: geographic analysis and modeling with raster data. R package version 2.0-12. Available at: http://CRAN.R-project.org/package=raster (2012)Bivand, R.S., Pebesma, E., Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. Springer, NY. Available at: https://asdar-book.org/ (2013)Brown, J. L., Bennett, J. & French, C. M. SDMtoolbox: the next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DANE. Indigenous population of Colombia. In: Results of the national population and housing census 2018 (eds DANE). (Bogotá, Colombia, 2019) (In Spanish).Minority Rights Home Minorities and indigenous peoples in Colombia. Retrieved on 20 October, 2021, from: Colombia – World Directory of Minorities & Indigenous Peoples (minorityrights.org) (2021).Maffi, L. & Woodley, E. Biocultural diversity conservation: a global sourcebook 304 (Routledge, 2012).Book 

    Google Scholar 
    van Zonnevelda, M. et al. Human diets drive range expansion of megafauna-dispersed fruit species. PNAS 115(13), 3326–3331 (2018).Article 

    Google Scholar 
    Diazgranados, M., Mendoza, J. E., Peñuela, M., Ramírez, W. Comida, identidad, paisaje… ¿articulación o antagonismo? Universitas Humanistica pp. 119–127. ISSN-0120-4807 (1997).Rojas, T.M., Cortés, C., Pizano, M.N., Ulian, T., Diazgranados, M. Evaluación del estado de los desarrollos bioeconómicos colombianos en plantas y hongos. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt (2020).Departamento Administrativo de la Función Pública. Decree 690 of 2021, Article 10. Bogotá, Colombia (2021).Ahoyo, C. C. et al. A quantitative ethnobotanical approach toward biodiversity conservation of useful woody species in Wari-Maro forest reserve (Benin, West Africa). Environ. Dev. Sustain. https://doi.org/10.1007/s10668-017-9990-0 (2017).Article 

    Google Scholar 
    Suwardi, A. B., Navia, Z. I., Harmawan, T. & Syamsuardi, E. Ethnobotany and conservation of indigenous edible fruit plants in South Aceh, Indonesia. Biodiversitas 12(5), 1850–1860 (2020).
    Google Scholar 
    Pei, S., Alan, H. & Wang, Y. Vital roles for ethnobotany in conservation and sustainable development. Plant Divers. 42(6), 399 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bernal, M. H. Y. & Correa, Q. J. E. Erythrina edulis. In Promising plant species from countries of the Convenio Andrés Bello Vol. 8 (eds Bernal, M. H. Y. & Correa, Q. J. E.) 231–278 (Editora Guadalupe Ltda, Bogotá, 1992) ((In Spanish)).
    Google Scholar 
    Bernal, M.H.Y., Correa, Q.J.E. Food plants of Colombia. in Promising plant species from the Andrés Bello Convention countries (andean countries). First edition. (eds Bernal M.H.Y., Correa, Q.J.E.) Editora Guadalupe Ltda. Bogotá, D.C., Colombia. Volume I, p. 547; Volume II, 462; Volume III, 485; Volume IV, 489; Volume V, 569; Volume VI, 507; Volume VII, p. 684; Volume VIII, p. 547; Volume IX, p. 482; Volume X, 549; Volume XI, p. 516 and Volume XII, p. 621 (1989–1998) (In Spanish).Bernal, M.H.Y., Farfán, M.M. Guide for the cultivation and use of the “chachafruto” or “balú” (Erythrina edulis Triana ex Micheli). Bogotá: Editoria Guadalupe Ltda. 50 p. (1996) (In Spanish).Bernal, M.H.Y., Jiménez, L.C. The “Creole bean” Canavalia ensiformis (Linnaeus) De Candolle (Fabaceae-Faboideae). Bogotá: Editoria Guadalupe Ltda. 533 p. (1990) (In Spanish).Jiménez, B.L.C., Bernal, M.H.Y. The “inchi” Caryodendron orinocense Karsten (Euphorbiaceae). Bogotá: Editora Guadalupe Ltda. p. 429 (1992) (In Spanish).Melgarejo, L.M., Hernández, M.S., Barrera, J.A., Carrillo, M. Offers and potential of a germplasm bank of the genus Theobroma for the enrichment of Amazonian systems. Instituto de Investigaciones Científicas Sinchi. Universidad Nacional de Colombia. Bogotá, Colombia. p. 225 (2006) (In Spanish).Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., Gutiérrez, M. Nombres Comunes de las Plantas de Colombia. Retrieved 15 June, 2021, from: http://www.biovirtual.unal.edu.co/nombrescomunes/ (2017)Food Plants International. Retrieved on 14 March 2021 at Articles & Books – Food Plants International (2021).Lorenzi, H., Bacher, L., Lacerda, M. & Sartori, S. Brazilian fruits and cultivated exotics (Instituto Plantarum De Estudos Da Flora LTDA, Nova Odessa, 2000).
    Google Scholar 
    Martín, F.W., Campbell, C.W., Ruberté, R.M. Perennial Edible Fruits of the Tropics: An Inventory. U.S. Department of Agriculture, Agricultural Research Service. (1987)Marrugo, S. L. Como Pepa’e Guama: Lo que no sabías acerca de la vida de los guamos (Royal Botanic Gardens Kew, Richmond, 2019).
    Google Scholar 
    Leon, J. Central American and West Indian Species of Inga (Leguminosae). Ann. Mo. Bot. Gard. 53(3), 265–359 (1966).Article 

    Google Scholar 
    Blombery, A. & Rodd, T. Palms of the world (Angus and Robertson, 1992).
    Google Scholar 
    Wickens, G. E. Edible nuts: non-wood forest products, handbook 5 (FAO, 1995).
    Google Scholar 
    Chízmar, C. Plantas comestibles de Centroamérica. Santo Domingo de Heredia, Costa Rica: Editorial INBio. p. 358 (2009)Rodríguez, L. M. G. Growth and fruit production study of Bactris guineesis (güiscoyol) in Agroforestry Systems as development potential in the Chorotega Region (Universidad Técnica Nacional Investigación y transferencia, 2019).
    Google Scholar 
    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).PubMed 
    Article 

    Google Scholar 
    Noh, J. K. et al. Warning about conservation status of forest ecosystems in tropical Andes: National assessment based on IUCN criteria. PLoS One 15(8), e0237877 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, M. T. et al. Habitat loss and extinction in the hotspots of biodiversity. Biodivers. Conserv. 16(4), 909–923 (2002).
    Google Scholar 
    Ocampo, J. Diversidad y distribución de las Passifloraceae en el departamento del Huila en Colombia. Acta biologica Colombiana 18(3), 511–516 (2013).
    Google Scholar 
    Durán-Izquierdo, M. & Olivero-Verbel, J. Vulnerability assessment of Sierra Nevada de Santa Marta Colombia World’s most irreplaceable nature reserve. Glob. Ecol. Conserv. 28, e01592 (2021).Article 

    Google Scholar 
    Cabrera Gaviria, L.D., Gil Pereira, L.F. Comparative analysis of the loss of natural coverage in the protected areas Nukak and Puinawai and their effects on the ecosystems present in the period between the years 2000–2020. Thesis in Environmental and Sanitary Engineering. Universidad de La Salle, Bogotá. Available at: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1943 (2021) (In Spanish).Castillo, H. M. N. A story of the indigenous struggle against mining: the creation of the Yaigojé-Apaporis National Natural Park in the Colombian Amazon (Universidade Federal De Minas Gerais, 2018) ((In Portuguese)).
    Google Scholar 
    Walsh, J. & Sanchez, G. The spreading of illicit crops in Colombia (Instituto de Estudios para el Desarrollo y la Paz, Bogotá, 2008).
    Google Scholar 
    MAPS, OPS, ICBF. Encuesta Nacional de la Situacion Nutricional-ENSIN. Retrieved on 12 October, 2-21, from: http://www.ensin.gov.co/Documents/Documento-metodologico-ENSIN-2015.pdf (2015)Correa-García, E., Vélez-Correa, J., Zapata-Caldas, E., Vélez-Torres, I. & Figueroa-Casas, A. Territorial transformations produced by the sugarcane agroindustry in the ethnic communities of López Adentro and El Tiple, Colombia. Land Use Policy 76, 847–860 (2018).Article 

    Google Scholar 
    Hurtado, D. & Vélez-Torres, I. Toxic dispossession: on the social impacts of the aerial use of glyphosate by the sugarcane agroindustry in Colombia. Crit. Criminol. 28, 557–576 (2020).Article 

    Google Scholar 
    Vélez-Torres, I., Varela-Corredor, D., Rátiva-Gaona, S., Salcedo-Fidalgo, A. Agroindustry and extractivism in the Alto Cauca: impact on the livelihood systems of Afro-descendent Farmers and Resistance (1950–2011). CS, 12: 157–188. (2013) (In Spanish, English summary).Fernández Lucero, M. Protocol for the use of Guáimaro (Brosimum alicastrum Sw.) seeds in Montes de María and Serranía del Perijá, Colombian Caribbean. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (2021) (In Spanish).Santillán-Fernández, A. et al. Brosimum alicastrum Swartz as an alternative for the productive reconversion of agrosilvopastoral areas in Campeche. Revista Mexicana de Ciencias Forestales 11(61), 51–69 (2020).Article 

    Google Scholar 
    Subiria-Cueto, R. et al. Brosimum alicastrum Sw. (Ramón): an alternative to improve the nutritional properties and functional potential of the wheat flour tortilla. Foods 8(12), 613 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Quiñones-Hoyos, C., Rengifo-Fernández, A., Bernal-Galeano, S., Peña, R., Fernández, M., Tatiana Rojas, M., Diazgranados, M. A look at useful plants and fungi in three biodiverse areas of Colombia. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia (2021) (In Spanish)Royal Botanic Gardens, Kew. Discovering the Guáimaro trails: promote a market for native species. Retrieved on 18 February 2022 from https://storymaps.arcgis.com/stories/f540b764fc6c47db886b38515560852f (2022)Gottesch, B. et al. Extinction risk of Mesoamerican crop wild relatives. Plants People Planet 3, 775–795 (2021).Article 

    Google Scholar 
    French, B. Food plants international database of edible plants of the world, a free resource for all. Acta Hort. 1241, 1–6 (2019).
    Google Scholar 
    Meyers, N., Mittermeier, R., Mittermeier, C. G. & Kent, J. Biodiversity hotspot for conservation priority. Nature 403(6772), 853–858 (2000).Article 

    Google Scholar  More

  • in

    Exposure of domestic dogs and cats to ticks (Acari: Ixodida) and selected tick-borne diseases in urban and recreational areas in southern Poland

    Siński, E. & Welc-Falęciak, R. Risk of Infections Transmitted by Ticks in Forest Ecosystems of Poland. (Zarządzanie Ochroną Przyrody w Lasach 6, 2012).Kantar Public. Zwierzęta w polskich domach, 2017. http://www.tnsglobal.pl/archiwumraportow/files/2017/05/K.021_Zwierzeta_domowe_O04a-17.pdf.Maia, C. et al. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit. Vectors. 7, 115. https://doi.org/10.1186/1756-3305-7-115 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maia, C. et al. Bacterial and protozoal agents of canine vector-borne diseases in the blood of domestic and stray dogs from southern Portugal. Parasit. Vectors. 23(8), 138. https://doi.org/10.1186/s13071-015-0759-8 (2015).Article 

    Google Scholar 
    Baturo, I.M. Parki narodowe i krajobrazowe, rezerwaty przyrody. (Departament Turystyki, Sportu, Promocji Urzędu Marszłkowskiego Województwa Małopolskiego, 2010).Dulias, R. & Hibszer, A. Województwo śląskie—przyroda, gospodarka, dziedzictwo kulturowe (Wydawnictwo Kubajak, 2004).
    Google Scholar 
    Siuda, K. Kleszcze Polski Acari Ixodida). Część II. Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, 1993).
    Google Scholar 
    Nowak-Chmura, M. Fauna kleszczy (Ixodida) Europy Środkowej (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 2013).
    Google Scholar 
    Rijpkema, S., Golubić, D., Molkenboer, M., Verbeek-De Kruif, N. & Schellekens, J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp. Appl. Acarol. 20, 23–30 (1996).CAS 
    Article 

    Google Scholar 
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin makroregion. Ann. Agric. Environ. Med. 16(1), 151–158 (2009).PubMed 

    Google Scholar 
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36(4), 1090–1095 (1998).CAS 
    Article 

    Google Scholar 
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).CAS 
    Article 

    Google Scholar 
    Sroka, J., Szymańska, J. & Wójcik-Fatla, A. The occurence of Toxoplasma gondii and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from east Poland with the use of PCR. Ann. Agric. Environ. Med. 16(2), 313–319 (2009).PubMed 

    Google Scholar 
    Siuda, K., Nowak, M., Gierczak, M., Wierzbowska, I. & Faber, M. Kleszcze (Acari: Ixodida) pasożytujące na psach i kotach domowych w Polsce. Wiad. Parazytol. 53, 155 (2007).
    Google Scholar 
    Zajkowska, P. Ticks (Acari:Ixodida) attacking domestic dogs in the Malopolska voivodeship, Poland. In Arthropods: In the contemporary world (eds Buczek, A. & Błaszak, C. Z.) 87–99 (Koliber, 2015).Chapter 

    Google Scholar 
    Szymański, S. Przypadek masowego rozwoju kleszcza Rhipicephalus sanguineus (Latreile, 1806) w warszawskim mieszkaniu. Wiad. Parazytol. 25, 453–458 (1979).PubMed 

    Google Scholar 
    Król, N., Obiegala, A., Pfeffer, M., Lonc, E. & Kiewra, D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration South-West Poland. Parasit. Vectors. 9(1), 351. https://doi.org/10.1186/s13071-016-1632-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kocoń, A., Nowak-Chmura, M., Kłyś, M. & Siuda, K. Ticks (Acari: Ixodida) attacking domestic cats (Felis catus L.) in southern Poland. In Arthropods in Urban and Suburban Environments (eds Buczek, A. & Błaszak, C.) 51–61 (Koliber, 2017).
    Google Scholar 
    Roczeń-Karczmarz, M. et al. Comparison of the occurrence of tick-borne diseases in ticks collected from vegetation and animals in the same area. Med. Weter. 74(8), 484–488. https://doi.org/10.21521/mw.6107 (2018).Article 

    Google Scholar 
    Cuber, P., Asman, M., Solarz, K., Szilman, E. & Szilman, P. Pierwsze stwierdzenia obecności wybranych patogenów chorób transmisyjnych w kleszczach Ixodes ricinus (Acari: Ixididae) zebranych w okolicach zbiorników wodnych w Rogoźniku (województwo śląskie) in Stawonogi. Ekologiczne i patologiczne aspekty układu pasożyt – żywiciel (eds. Buczek, C. & Błaszak, Cz.). 155-164 (Akapit, Lublin, 2010).Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and co-infections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59(1), 13–19 (2013).PubMed 

    Google Scholar 
    Pawełczyk, O. et al. The PCR detection of Anaplasma phagocytophilum, Babesia microti and Borrelia burgdorferi sensu lato in ticks and fleas collected from pets in the Będzin district area (Upper Silesia, Poland) – the preliminary studies in Stawonogi: zagrożenie zdrowia człowieka i zwierząt (eds. Buczek, C. & Błaszak, Cz.). 111–119 (Koliber, Lublin, 2014).Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60(4), 666–674. https://doi.org/10.1515/ap-2015-0095 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zygner, W. & Wędrychowicz, H. Occurrence of hard ticks in dogs from Warsaw area. Ann. Agric. Environ. Med. 13(2), 355–359 (2006).PubMed 

    Google Scholar 
    Kilar, P. Ticks attacking domestic dogs in the area of the Rymanów district, Subcarpathian province Poland. Wiad. Parazytol. 57(3), 189–1991 (2011).PubMed 

    Google Scholar 
    Claerebout, E. et al. Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit. Vectors. 6, 183. https://doi.org/10.1186/1756-3305-6-183 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schreiber, C. et al. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit. Vectors. 7, 535. https://doi.org/10.1186/s13071-014-0535-1 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eichenberger, R. M., Deplazes, P. & Mathis, A. Ticks on dogs and cats: A pet owner-based survey in a rural town in northeastern Switzerland. Ticks Tick-borne Dis. 6, 267–271. https://doi.org/10.1016/j.ttbdis.2015.01.007 (2015).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M. Skład gatunkowy kleszczy psów (Acari: Ixodida) z terenu aglomeracji miejskiej w cyklu wieloletnim. Med. Weter. 73(11), 698–701 (2017).
    Google Scholar 
    Geurden, T. et al. Detection of tick-borne pathogens in ticks from dogs and cats in different European countries. Ticks. Tick. Borne. Dis. 9(6), 1431–1436. https://doi.org/10.1016/j.ttbdis.2018.06.013 (2018).Article 
    PubMed 

    Google Scholar 
    Namina, A. et al. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011–2016. BMC Vet. Res. 15, 398. https://doi.org/10.1186/s12917-019-2149-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhide, M., Travnicek, M., Curlik, J. & Stefancikova, A. The importance of dogs in eco-epidemiology of Lyme borreliosis: a review. Vet. Med. Czech 49(4), 135–142 (2004).Article 

    Google Scholar 
    Burgess, E. C. Experimentally induced infection of cats with Borrelia burgdorferi. Am. J. Vet. Res. 53, 1507–1511 (1992).CAS 
    PubMed 

    Google Scholar 
    Skotarczak, B. & Wodecka, B. Identification of Borrelia burgdorferi genospecies inducing Lyme disease in dogs from western Poland. Acta Vet. Hung. 53(1), 13–21 (2005).Article 

    Google Scholar 
    Skotarczak, B. et al. Prevalence of DNA and antibodies to Borrelia burgdorferi sensu lato in dogs suspected of borreliosis. Ann. Agric. Environm. Med. 12(2), 199–205 (2005).CAS 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S., Kutrzeba, J., Puchalski, A. & Dębiak, P. Przypadki boreliozy u psow na Lubelszczyźnie. Życie Wet. 83, 311–313 (2008).
    Google Scholar 
    Hovius, K. E. Borreliosis. In Arthropod-borne Infectious Diseases of the Dog and Cat (eds Shaw, S. E. & Day, M. J.) 100–109 (Manson Publishing, 2005).Chapter 

    Google Scholar 
    Zygner, W., Jaros, S. & Wędrychowicz, H. Prevalence of Babesia canis, Borrelia afzelii, and Anaplasma phagocytophilum infection in hard ticks removed from dogs in Warsaw (central Poland). Vet. Parasitol. 153, 139–142. https://doi.org/10.1016/j.vetpar.2008.01.036 (2008).Article 
    PubMed 

    Google Scholar 
    Welc-Falęciak, R., Rodo, A., Siński, E. & Bajer, A. Babesia canis and other tick-borne infections in dogs in Central Poland. Vet. Parasitol. 166(3–4), 191–198. https://doi.org/10.1016/j.vetpar.2009.09.038 (2009).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M., Kubiak, K., Szczotko, M., Chajęcka, M. & Dmitryjuk, M. Molecular Detection of Borrelia burgdorferi Sensu Lato and Anaplasma phagocytophilum in Ticks Collected from Dogs in Urban Areas of North-Eastern Poland. Pathogens. 9(6), 455. https://doi.org/10.3390/pathogens9060455 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Nijhof, A. M. et al. Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector. Borne. Zoonot. Dis. 7, 585–595. https://doi.org/10.1089/vbz.2007.0130 (2007).Article 

    Google Scholar 
    Adaszek, Ł, Martinez, A. C. & Winiarczyk, S. The factors affecting the distribution of babesiosis in dogs in Poland. Vet. Parasitol. 181, 160–165. https://doi.org/10.1016/j.vetpar.2011.03.059 (2011).Article 
    PubMed 

    Google Scholar 
    Adaszek, Ł, Łukaszewska, J., Winiarczyk, S. & Kunkel, M. Pierwszy przypadek babeszjozy u kota w Polsce. Życie Wet. 83(8), 668–670 (2008).
    Google Scholar 
    Kocoń, A. et al. Molecular detection of tick-borne pathogens in ticks collected from pets in selected mountainous areas of Tatra County (Tatra Mountains, Poland). Sci. Rep. 10, 15865. https://doi.org/10.1038/s41598-020-72981-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22(1), 80–83. https://doi.org/10.5604/12321966.1141373 (2015).Article 
    PubMed 

    Google Scholar 
    Stensvold, C. R. et al. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasit. Vectors. 8(8), 262. https://doi.org/10.1186/s13071-015-0843-0 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, S., Helps, C., Tasker, S., Newbury, H. & Wall, R. Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the UK. Med. Vet. Entomol. 32(1), 14–22. https://doi.org/10.1111/mve.12257 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjoersdorff, A., Svendenius, L., Owens, J. H. & Massung, R. F. Feline granulocytic ehrlichiosis– a report of a new clinical entity and characterisation of the infectious agent. J. Small. Anim. Pract. 40(1), 20–24. https://doi.org/10.1111/j.1748-5827.1999.tb03249 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lappin, M. R. et al. Molecular and serologic evidence of Anaplasma phagocytophilum infection in cats in North America. J. Am. Vet. Med. Assoc. 225(6), 893–896. https://doi.org/10.2460/javma.2004.225.893 (2004).Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Molecular evidence of tick-transmitted infections in dogs and cats in the United Kingdom. Vet. Rec. 157(21), 645–648. https://doi.org/10.1136/vr.157.21.645 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tarello, W. Microscopic and clinical evidence for Anaplasma (Ehrlichia) phagocytophilum infection in Italian cats. Vet. Rec. 156(24), 772–774. https://doi.org/10.1136/vr.156.24.772 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schaarschmidt-Kiener, D., Graf, F., von Loewenich, F. D. & Muller, W. Anaplasma phagocytophilum infection in a cat in Switzerland. Schweiz. Arch. Tierheilkd. 151(7), 336–341. https://doi.org/10.1024/0036-7281.151.7.336 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Heikkila, H. M., Bondarenko, A., Mihalkov, A., Pfister, K. & Spillmann, T. Anaplasma phagocytophilum infection in a domestic cat in Finland. Acta. Vet. Scand. 52(1), 62. https://doi.org/10.1186/1751-0147-52-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, D., Bondarenko, A., Silaghi, C., Nolte, I. & Pfister, K. Seroprevalence and bacteremia of Anaplasma phagocytophilum in cats from Bavaria and Lower Saxony (Germany). Berl. Munch. Tierarztl. Wochenschr. 125(3–4), 163–167 (2012).PubMed 

    Google Scholar 
    Morgenthal, D. et al. Prevalence of haemotropic Mycoplasma spp., Bartonella spp. and Anaplasma phagocytophilum in cats in Berlin/Brandenburg (Northeast Germany). Berl. Munch Tierarztl. Wochenschr. 125(9–10), 418–427 (2012).PubMed 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S. & Łukaszewska, J. A first case of ehrlichiosis in a horse in Poland. Dtsch. Tierarztl. Wchschr. 116(9), 330–334 (2009).
    Google Scholar 
    Adaszek, Ł, Policht, K., Gorna, M., Kutrzuba, J. & Winiarczyk, S. Pierwszy w Polsce przypadek anaplazmozy (erlichiozy) granulocytarnej u kota. Życie Wet. 86, 132–135 (2011).
    Google Scholar 
    Adaszek, Ł, Kotowicz, W., Klimiuk, P., Gorna, M. & Winiarczyk, S. Ostry przebieg anaplazmozy granulocytarnej u psa—przypadek własny. Wet. w Praktyce 9, 59–62 (2011).
    Google Scholar 
    Adaszek, Ł et al. Three clinical cases of Anaplasma phagocytophilum infection in cats in Poland. J. Feline Med. Surg. 15, 333–337. https://doi.org/10.1177/1098612X12466552 (2013).Article 
    PubMed 

    Google Scholar 
    Pusterla, N. et al. Seroprevalence of Ehrlichia canis and of canine granulocytic ehrlichia infection in dogs in Switzerland. J. Clin. Microbiol. 36, 3460–3462. https://doi.org/10.1128/JCM.36.12.3460-3462.1998 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egenvall, A. et al. Detection of granulocytic Ehrlichia species DNA by PCR in persistently infected dogs. Vet. Rec. 146(7), 186–190. https://doi.org/10.1136/vr.146.7.186 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Review of exotic infectious dise-ases in small animals entering the United Kingdom from abroad diagnosed by PCR. Vet. Rec. 152(6), 176–177. https://doi.org/10.1136/vr.152.6.176 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Skotarczak, B., Adamska, M. & Supron, M. Blood DNA analysis for Ehrlichia (Anaplasma) phagocytophila and Babesia spp in dogs from Northern Poland. Acta Vet. Brno. 73, 347–351. https://doi.org/10.1136/vr.152.6.176 (2004).Article 

    Google Scholar 
    Adaszek, Ł. Wybrane Aspekty Epidemiologii Babeszjozy, Boreliozy i Erlichiozy Psów (Praca doktorska, 2007).
    Google Scholar 
    Kybicová, K. et al. Detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs in the Czech Republic. Vec. Born Zoon Dis. 9(6), 655–661. https://doi.org/10.1089/vbz.2008.0127 (2009).Article 

    Google Scholar  More

  • in

    Crop harvests for direct food use insufficient to meet the UN’s food security goal

    Growth in harvests of crops meant for exports, processing and industrial use, together with their higher yields and faster yield gains, stands out globally; at a more granular level, this was driven by specific global regions that are getting increasingly specialized in harvesting crops for these usages.Changes in global-level harvested areasAt the global scale, we find that crops harvested for direct food utilization have the highest area and have been relatively stable over the study period (Fig. 1a). However, as the total harvested hectares have increased globally (Supplementary Table 1), this has translated into decreasing fractions of crops harvested for direct food utilization, from ~51% in the 1960s (average over 1964 to 1968) to ~37% in the 2010s (average over 2009 to 2013), with a similar reduction in feed crop harvests (Table 1). Conversely, there has been a substantial increase in crops for processing, exports and industrial use (Fig. 1a, Table 1 and Supplementary Table 1). The increase in industrial crop harvests occurred after year 2000. Around the same time, harvested hectares for exported crops ramped up and by the 2010s had surpassed those of crops harvested for feed use (Fig. 1a). Crops harvested for seed usage and losses are relatively minor, and we will not discuss them further. If the global trends observed in the past 20 years continue (Fig. 1a), by 2030, crops harvested for exports, processing and industrial use will account for ~ 23%, 17% and 8% of overall harvested hectares, whereas those for food will decrease to ~29% (Table 1).Fig. 1: Sector-based global crop-utilization trends.a–d, Observed total harvested ha (a), average yield in kcal ha−1 per year (b), average yield in protein ha−1 per year (c) and average yield in fat ha−1 per year (d) in the seven sectors of food, feed, processing, export, other uses (non-food/industrial), seed and losses from 1964 to 2013, annually, and projections to 2030 based on the past 20 years. The shading shows the 90% confidence interval for the significant linear model projections.Full size imageTable 1 Sector-based global crop-utilization changesFull size tableChanges in global-level crop yieldsWe find that crops harvested for direct food usage generally have had lower yields than all other sectors at the global scale over the time period of the study (Fig. 1b–d). This is not a new phenomenon, as crops harvested for direct food utilization have always had lower yields relative to other sectors (Supplementary Table 1). What has changed, however, is the ramping up (steeper positive slopes) of industrial, export and processing crop yields (Fig. 1b–d and Table 1). At these rates, caloric yields of industrial-use crops could increase by 28% from the 2010s to 2030 compared with 24% and 21% yield increases of crops harvested for directly consumed food and for feed use (Fig. 1b). Given that caloric yields of industrial-use crops are already substantially higher than food and feed crops (2× and 1.4×, respectively, in the 2010s), the faster caloric yield increases for industrial-use crops will widen this gap (2.1× and 1.5×, respectively). Yield measurements in other units of protein and fat show similar results (Table 1, Fig. 1c,d and Supplementary Table 1).Changes in the spatial patterns of harvested areas and productionWithin country-level information on harvested areas and productivity based on utilization categories is required for developing more locally effective agricultural policies. Over the course of the study time period 1964 to 2013 (Fig. 2a,b and Supplementary Video 1), we find changes in all continents when spatially analysed at the grid-cell level, except for most parts of Africa. Even in Africa, there are locations with fractional reductions in food crop harvests over the study period, such as parts of Angola, Ghana, Nigeria and South Africa. Within these and other countries, the exact location, magnitude and direction of the change varies from one region to the next (that is, compare Fig. 2a with Fig. 2b).Fig. 2: Sector-based spatial changes in crop harvests.a,b, The fraction of a grid cell in one of seven categories—food, feed, processing, export, other (non-food/industrial use), seed and losses—in each period, 1964–1968 (a) and 2009–2013 (b).Full size imageCrops harvested for direct food utilization have been prevalent in Asia, though much has changed since the 1960s (Fig. 2a,b and Supplementary Video 1). In China, there appears to be an imaginary belt, north and west of which harvests of crops used as directly consumed food decreased between the 1960s (Fig. 2a) and 2010s (Fig. 2b), while those for other uses increased. This belt appears to roughly extend from the northern half of Jiangsu (a province on the Yellow Sea in the east), curving westwards and southwards through northern Anhui, southern Henan, central Hubei and the northern tip of Hunan, and then turning sharply south and splitting Guangdong (a province on the South China Sea) through the middle. The sector gaining from the 10–20% fractional food harvest reduction varies. The increase in crops for feed, processing and industrial usage increases as one moves northward, especially north of Jiangsu and Anhui (Fig. 2a,b and Supplementary Video 1).Similarly, in India, there is a north–south zone encompassing eastern Haryana in the north, moving southwards through eastern Rajasthan, western Madhya Pradesh to eastern Maharashtra in the south, where there was a drastic reduction in crops harvested for direct food utilization over the study period (Fig. 2 and Supplementary Video 1); crops harvested for processing primarily increased. Changes in South and Southeast Asia over the study period are primarily away from once-dominant harvests of directly consumed food crops to feed crops, followed by processing crops, export crops and industrial-use crops, as in Myanmar and Thailand. In Malaysia, the growth was in export and industrial-usage crops, whereas in Indonesia, it was export crops and smaller increases in industrial-utilization crops. Central Asian states, especially Kazakhstan and some parts of Russia, witnessed a large reduction in crops harvested for direct food use over the study period, replaced by the crops destined for exports between the two periods (Fig. 2 and Supplementary Video 1).In Australia in the 1960s, food crops were harvested everywhere, accounting for ~10% of the total, which declined to ~5% by the 2010s. This was accompanied by small reductions in crops harvested for feed and export and balanced mainly by increases in crops for processing and industrial utilization (Fig. 2 and Supplementary Video 1).In Europe in the 1960s, crops were dominantly harvested for food and feed, but by the 2010s, this changed to include crops harvested for processing (Fig. 2 and Supplementary Video 1). In France, major reductions in feed crops have been balanced by growth in processing, export and industrial-use crops. In Spain, the primary change is from crops harvested for direct food to those of feed. In Germany, crops harvested for export have replaced those for direct food utilization.Latin America used to dominantly harvest food crops (as in Mexico) or food and feed crops (as in Brazil and Argentina) (Fig. 2 and Supplementary Video 1). Midwestern Brazil used to harvest only food crops, and feed and processing crop harvests were restricted to the Atlantic states (the 1960s; Fig. 2a), but by the 2010s (Fig. 2b), harvests of food crops had become a negligible fraction in Midwestern Brazil (as in Mato Grosso), and crops harvested for processing and exports are dominant now. In the Atlantic states of Brazil, one of the major changes is the increased proportion of harvests for industrial crops. In Argentina, over the study period, the proportion of crops harvested for food and feed has decreased, and this utilization has been mainly replaced by crops harvested for processing; crops harvested for exports changed, but the direction of change was spatially heterogeneous across Argentina (Fig. 2 and Supplementary Video 1). In Mexico, the primary change is the reduction in the fraction of crops harvested for direct food consumption and the increased harvests of crops for feed.Crops harvested for food and feed are also on the decline proportionally in North America. The United States has experienced a change from the dominance of food and feed crops in the 1960s to processing and industrial-usage crops in the 2010s. Detailed changes in the United States and Canada vary from one location to the next (Fig. 2), though the major change is the lower fraction of crops harvested for direct food consumption.Results are similar when viewed through the lens of calories, protein and fat with local-level differences as yields vary based on the measurement units (Supplementary Fig. 1). Further dramatic changes can be expected if observed linear trends from 1994 to 2013 at each grid cell continued until 2030 (Supplementary Fig. 2).Calories harvested in 2030 and achieving UN SDG 2We compare the extra food calories that will potentially be harvested in 2030 (Fig. 3a and Supplementary Data 2) to those required for both the projected extra population and feeding the projected undernourished population in each country (Fig. 3b and Supplementary Data 2). As an extreme case, we also compared whether total calories (all seven utilization sectors) would be sufficient (Fig. 3c and Supplementary Data 2). Altogether, we evaluated 156 countries, of which 86 had reported undernourished populations (Supplementary Data 2). On the basis of the minimum dietary energy requirement (MDER), we find that countries with reported undernourished populations will have a shortfall of ~675.4 trillion kcal per year to nourish the increased population and the expected undernourished from their extra harvested food calories. However, compared with the more realistic average dietary energy requirement (ADER), this shortfall will be ~993.9 trillion kcal per year (or ~70% from requirements) in 2030 (15 additional scenarios of undernourished populations in 2030 (provided in Supplementary Data 3) show global calorie shortfalls may similarly range from ~587.2 trillion kcal per year to ~1,269.3 trillion kcal per year based on the MDER level of nutrition requirement, and ~880.7 trillion kcal per year to ~1,755.6 trillion kcal per year based on the more realistic ADER level of nutrition requirement in 2030).Fig. 3: Meeting UN SDG goal 2 in 2030.a, Same as Fig. 2 but for the projected kcal ha−1 per year in 2030 per utilization sector and then mapping the fraction of total kcal ha−1 per year projected as harvested. b, Shortfall or gap from kcal per year harvested in 2030 as crops for direct food use and those to plug the gap from population growth and/or undernourished population. Computed based on the 2018 to 2020 ADER number for the country. c, Same as b but the kcal per year harvested used for computation is the total across all the seven sectors and shortfall is from whether the total calories harvested were used for direct food consumption (little to no processing).Full size imageCountries reporting undernourishment can, however, meet their requirement of extra calories in 2030 for both population change and those for the undernourished if calories from other utilization sectors are diverted and consumed directly as food calories (Fig. 3c and Supplementary Data 2 and 3). Though at the global scale, it appears that countries with high levels of undernourishment in 2030 can divert just a portion of their total harvested calories and meet some of the requirements of UN’s SDG 2 (ref. 4). In reality, many of the individual countries concentrated in sub-Saharan Africa have limited scope of diversion of calories from other sectors such as feed, processing or exports as crops for direct food use, as they already harvest most crops for direct food consumption (Fig. 2 and Supplementary Figs. 1 and 2). As such, many countries in this region may see deepening reliance on food imports. Note that the UN’s second SDG goal is broader in scope, including efforts to end malnutrition and increase agricultural productivity, among other goals4. Reconfiguration planning19 can use our spatially detailed information (Figs. 2 and 3, Supplementary Figs. 1 and 2 and Supplementary Data 2 and 3) in conjunction with policies that incentivize increased food crop harvests globally and ensure their equitable distribution to undernourished regions when local production is not sufficient20,21. This will require supply chain management22,23 and detailed analysis of optimization scenarios24 with our maps and tables as an important step linking specific production regions with the initial use of that production. More