More stories

  • in

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 11823–11826. https://doi.org/10.1073/pnas.0802891105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104. https://doi.org/10.1371/journal.pbio.2001104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A. V. & Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Global Food Secur. 14, 38–53. https://doi.org/10.1016/j.gfs.2017.03.005 (2017).Article 

    Google Scholar 
    Henry, R. J. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 56, 168–173. https://doi.org/10.1016/j.pbi.2019.11.004 (2020).Article 
    PubMed 

    Google Scholar 
    Stokes, C. & Howden, M. Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future (Csiro Publishing, 2010).Book 

    Google Scholar 
    Bräutigam, K. et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415. https://doi.org/10.1002/ece3.461 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735. https://doi.org/10.1093/jxb/err177 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yaish, M. W. DNA methylation-associated epigenetic changes in stress tolerance of plants. In Molecular Stress Physiology of Plants (eds Rout, G. R. & Das, A. B.) 427–440 (Springer India, 2013).Chapter 

    Google Scholar 
    Suji, K. K. & Joel, A. J. An epigenetic change in rice cultivars underwater stress conditions. Electron. J. Plant Breed. 1, 1142–1143 (2010).
    Google Scholar 
    Peng, H. & Zhang, J. Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Prog. Nat. Sci. 19, 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014 (2009).CAS 
    Article 

    Google Scholar 
    Baduel, P. & Colot, V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos. Trans. R. Soc. B 376, 20200123. https://doi.org/10.1098/rstb.2020.0123 (2021).CAS 
    Article 

    Google Scholar 
    Labra, M. et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 4, 694–699. https://doi.org/10.1055/s-2002-37398 (2002).CAS 
    Article 

    Google Scholar 
    Wang, W.-S. et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 62, 1951–1960. https://doi.org/10.1093/jxb/erq391 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433. https://doi.org/10.1093/aob/mcm307 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomczyk, P. P., Kiedrzyński, M., Jedrzejczyk, I., Rewers, M. & Wasowicz, P. The transferability of microsatellite loci from a homoploid to a polyploid hybrid complex: An example from fine-leaved Festuca species (Poaceae). PeerJ 8, e9227. https://doi.org/10.7717/peerj.9227 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piękoś-Mirkowa, H. & Mirek, Z. Distribution patterns and habitats of endemic vascular plants in the Polish Carpathians. Acta Soc. Bot. Pol. 78, 321–326 (2009).Article 

    Google Scholar 
    Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122(6), 1359–1370. https://doi.org/10.1002/2016JG003629 (2017).Article 

    Google Scholar 
    Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 6, e5576. https://doi.org/10.7717/peerj.5576 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiedrzyński, M. et al. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci. Rep. 11, 18735 (2021).ADS 
    Article 

    Google Scholar 
    Mounger, J. et al. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. B 376, 20200117. https://doi.org/10.1098/rstb.2020.0117 (2021).CAS 
    Article 

    Google Scholar 
    Bewick, A. J. & Schmitz, R. J. Epigenetics in the wild. Elife 4, e07808. https://doi.org/10.7554/eLife.07808 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahu, P. P. et al. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 32(8), 1151–1159. https://doi.org/10.1007/s00299-013-1462-x (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso, C. et al. Interspecific variation across angiosperms in global DNA methylation: Phylogeny, ecology and plant features in tropical and Mediterranean communities. New Phytol. 224(2), 949–960. https://doi.org/10.1111/nph.16046 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19(7), 1283–1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Batog, J. & Wawro, A. Process of obtaining bioethanol from sorghum biomass using genome shuffling. Cellul. Chem. Technol. 53, 459–467 (2019).CAS 
    Article 

    Google Scholar 
    Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article 
    PubMed 

    Google Scholar 
    Li, N. et al. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. 223(2), 979–992. https://doi.org/10.1111/nph.15820 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Róis, A. S. et al. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol. 13(1), 205. https://doi.org/10.1186/1471-2229-13-205 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, A. et al. DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol. Biol. Rep. 29, 784–793. https://doi.org/10.1007/s11105-010-0280-3 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Sokolova, D. A., Vengzhen, G. S. & Kravets, A. P. An Analysis of the correlation between the changes in satellite DNA methylation patterns and plant cell responses to the stress. Cell Bio 2, 163–171. https://doi.org/10.4236/cellbio.2013.23018 (2013).CAS 
    Article 

    Google Scholar 
    Johnson, L. I. & Tricker, P. J. Epigenomic plasticity within populations: Its evolutionary significance and potential. Heredity 105, 113–121. https://doi.org/10.1038/hdy.2010.25 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, X. et al. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 8(11), e80253. https://doi.org/10.1371/journal.pone.0080253 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karan, R., DeLeon, T., Biradar, H. & Subudhi, P. K. Salt Stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6), e40203. https://doi.org/10.1371/journal.pone.0040203 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L. & Pigliucci, M. Epigenetic inheritance. A decade into the extended evolutionary synthesis. Paradigmi 38, 463–494. https://doi.org/10.30460/99624 (2020).Article 

    Google Scholar 
    Chelaifa, H., Monnier, A. & Ainouche, M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol. 186(1), 161–174. https://doi.org/10.1111/j.1469-8137.2010.03179.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Al-Lawati, A., Al-Bahry, S., Victor, R., Al-Lawati, A. H. & Yaish, M. W. Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet. Mol. Res. 15, 15018299. https://doi.org/10.4238/gmr.15018299 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewandowska-Gnatowska, E. et al. Is DNA methylation modulated by wounding-induced oxidative burst in maize?. Plant Physiol. Biochem. 82, 202–208. https://doi.org/10.1016/j.plaphy.2014.06.003 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marfil, C. et al. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol. Biochem. 135, 287–294. https://doi.org/10.1016/j.plaphy.2018.12.021 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zedek, F. et al. Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. Ann. Bot. 126(5), 883–889. https://doi.org/10.1093/aob/mcaa109 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4), 869–879. https://doi.org/10.1007/s00425-015-2323-3 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Molinier, J. Genome and epigenome surveillance processes underlying UV exposure in plants. Genes 8(11), 316. https://doi.org/10.3390/genes8110316 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194. https://doi.org/10.1186/s13059-016-1059-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5, e10326. https://doi.org/10.1371/journal.pone.0010326 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L., Verhoeven, K. J. F. & Bossdorf, O. Evolutionary significance of epigenetic variation. In Plant Genome Diversity Vol. 1 (eds Wendel, J. F. et al.) 257–274 (Springer Vienna, 2012).Chapter 

    Google Scholar 
    Paun, O. et al. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol. Biol. Evol. 27, 2465–2473. https://doi.org/10.1093/molbev/msq150 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, H. et al. Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Front. Plant Sci. 8, 130398. https://doi.org/10.3389/fpls.2017.01860 (2017).Article 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187(3), 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Portis, E., Acquadro, A., Comino, C. & Lanteri, S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 166, 169–178. https://doi.org/10.1016/j.plantsci.2003.09.004 (2004).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org (R Foundation for Statistical Computing, 2013).Schloerke, B. et al. GGally: Extension to “ggplot2” R package version 2.1.0. https://CRAN.R-project.org/package=GGally (2021).StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com (2011).Tomczyk, P. Phenotypic measurement of inbreeding depression in grasses—An overview of traits (Fenotypowe miary depresji wsobnej u traw—przegląd cech). Wiad. Bot. https://doi.org/10.5586/wb.2019.005 (2019).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression (Sage Publications, 2019).
    Google Scholar  More

  • in

    Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau

    Study areaWith an area of about 2.33 × 105 km2, the Western Sichuan Plateau (27.11°–34.31°N and 97.36°–104.62°E) is located in the transition zone between the Qinghai-Tibet Plateau and the Sichuan Basin, including all of Garze Prefecture and Aba Prefecture, and parts of Liangshan Yi Autonomous Prefecture28 (Fig. 1). With an altitude of 780–7556 m, this area is dominated by mountain and ravine areas and high mountain and plateau areas, and the terrain is high in the west and low in the east. The climate belongs to the subtropical plateau monsoon climate, with large temperature difference between day and night and abundant sunshine. The annual average temperature is about 9.01–10.5 °C, and the precipitation is about 556.8–730 mm28. The study area is rich in water resources, including the Yalong River, Minjiang River and other important river systems in the upper reaches of the Yangtze River, and the Baihe River, Heihe river and other river systems of the Yellow River. The main types of soil are plateau meadow soil dark brown soil, brown soil, cold frozen soil and cinnamon soil, and the main vegetation types are alpine meadow and scrub. With rich and diverse soil vegetation types and distinctive vertical zonal distribution characteristics, it is one of the global biodiversity conservation hotspots29.Figure 1Location of the study area. The map is created in the support of ArcGIS 10.2 (ESRI). The China map and Western Sichuan Plateau boundary data were collected from Resources and Environmental Science and Data Center (http://www.resdc.cn/). The Qinghai-Tibetan Plateau boundary data were collected from the Global Change Research Data Publishing & Repository (http://www.geodoi.ac.cn/WebCn/Default.aspx).Full size imageData source and processingMultisource archival data were used in this study (Table 1). The land use remote sensing monitoring data, administrative boundary data and geological disaster vector data were obtained from Resources and Environmental Science and Data Center. The spatial resolution of land use remote sensing monitoring data is 30 × 30 m, including 6 first-level classification and 26s-level classification. The first-level classification includes cropland, woodland, grassland, water body, built-up land, and unused land. The accuracy of remote sensing classification is not less than 95% for cropland and built-up land, not less than 90% for grassland, woodland, and water body, and not less than 85% for unused land, which meets the need of the research. Landsat remote sensing monitoring data is used as the main information resources, among which Landsat-TM/ETM remote sensing monitoring data is used in 2000, 2005, 2010 and Landsat 8 remote sensing monitoring data is used in 2015 and 2020. In light of actual conditions and the implementation of policies and philosophies including the natural forest protection project, return of farmland to forest, land remediation, ecological civilization, the period from 2000 to 2020 is selected as the study period, and the land use data of each period is cropped using ArcGIS 10.2 to reclassify the 26 secondary classifications into cropland, woodland, grassland, water body, built-up land and unused land.Table 1 Characteristics of data used for the study.Full size tableThe DEM data were obtained from SRTM (Shuttle Radar Topography Mission) of Resources and Environmental Science and Data Center, the spatial resolution of 30 × 30 m, absolute horizontal accuracy ± 20 m, absolute elevation accuracy ± 16 m, elevation and slope are extracted from the downloaded DEM. The Qinghai-Tibetan Plateau boundary data were collected from the Global Change Research Data Publishing & Repository. Data of carbon density of different land types were obtained from Chinese Ecosystem Research Network Data Center (http://www.nesdc.org.cn/).A total of 29,284 evaluation units were collected for spatial grid processing of the Western Sichuan Plateau according to 3 km × 3 km by ArcGIS 10.2. The impact factors obtained in this study include grid data per kilometer of GDP spatial distribution, grid data per kilometer of population spatial distribution, annual mean temperature spatial interpolation data, annual mean rainfall spatial interpolation data, long-term normalized difference vegetation index (NDVI) comes from Resources and Environmental Science and Data Center with a resolution of 1 km × 1 km. The Human Active Index (HAI), with a resolution of 30 m × 30 m, can be calculated by formula30,31, and the factors are discretized into the data type required for the geodetector by the natural breakpoint method.MethodsThe InVEST modelThe InVEST model was developed by Stanford University, the University of Minnesota, the Nature Conservancy and the World Wide Fund for Nature (WWF). The model’s terrestrial ecosystem services assessment includes four modules: soil conservation, water retention, carbon storage and biodiversity assessment, and provides an overall measurement of regional ecosystem services32. The carbon storage model of the InVEST model divides the carbon storage of the ecosystem into 4 basic carbon pools, namely above-ground carbon, underground carbon, soil carbon, dead organic matter carbon7.The calculation formula of total carbon storage in the Western Sichuan Plateau is as follows7:$$C_{total} = C_{above} + C_{below} + C_{soil} + C_{dead}$$
    (1)
    In formula (1), Ctotal is the total carbon storage; Cabove is the above-ground carbon storage; Cbelow is the underground carbon storage; Csoil is the soil carbon storage, and Cdead is the dead organic matter carbon storage.Based on the carbon density and land use data of different land use type, the carbon storage of each land use type in the Western Sichuan Plateau is calculated by the formula7:$$C_{{text{total}}i} = (C_{{text{above}}i} + C_{{text{below}}i} + C_{{text{soil}}i} + C_{{text{dead}}i}) times A_{i}$$
    (2)
    In formula (2), i is the average carbon density of each land use, and Ai is the area of this land used.The carbon density data of different land use types in this study were obtained from the shared date of the National Ecological Science Data Center and some documents33,34,35,36,37. Since the carbon density data were collected from the results of studies in different parts of China, the selected documents should be close to or similar to the study area as far as possible to avoid excessive data gap. At the same time, the carbon density varies with climate, soil properties and land use38, so the carbon density should be modified according to the climate characteristics and land use types of the Western Sichuan Plateau. Existing research results show that the carbon density is positively correlated with annual precipitation and weakly correlated with annual average temperature. The quantitative expression of the relationship between carbon density and temperature and precipitation is as follows39,40,41,42:$$C_{SP} = 3.3968 times P + 3996.1;;left( {{text{R}}^{{2}} = 0.{11}} right)$$
    (3)
    $$C_{BP} = 6.7981e^{0.00541p};;;left( {{text{R}}^{{2}} = 0.{7}0} right)$$
    (4)
    $$C_{BT} = 28 times {text{T}} + 398;;left( {{text{R}}^{{2}} = 0.{47,};{text{P}} < 0.0{1}} right)$$ (5) In these formula, CSP is the soil carbon density (kg m−2) based on the annual precipitation; CBP is the biomass carbon density (kg m−2) based on the annual precipitation; CBT is the biomass carbon density (kg m−2) based on annual average temperature; P is the average annual precipitation (mm), and T is the annual average temperature (°C). According to the data of China Meteorological Data Service Centre (http://data.cma.cn/), in the past 20 years, the average annual temperature of China and the Western Sichuan Plateau was 9.0 °C and 6.3 °C, and the average annual precipitation was 643.50 mm and 812.65 mm respectively.The modified formula of carbon density in the Western Sichuan Plateau is as follows7:$$K_{BP} = frac{C^{prime}{_{BP}}}{{C^{primeprime}{_{BP}}}}$$ (6) $$K_{BT} = frac{C^{prime}{_{BT}}}{{C^{primeprime}{_{BT}}}}$$ (7) $$C_{BT} = 28 times T + 398;;left( {{text{R}}^{{2}} = 0.{47,};{text{P}} < 0.0{1}} right)$$ (8) $$K_{S} = frac{C^{prime}{_{SP}}}{{C^{primeprime}{_{SP}}}}$$ (9) In these formula, KBP is the modified indices of precipitation factor in biomass carbon density; KBT is the modified indices of temperature factor; C'BP and C''BP are the biomass carbon density obtained from annual precipitation in the Western Sichuan Plateau and the whole country respectively. C'BT and C''BT are the biomass carbon density obtained from annual average temperature; C'SP and C''SP are the soil carbon density data obtained from annual average temperature; KB and KS are the biomass carbon density modified indices and soil carbon density modified indices respectively. The carbon density values of each land use type after modified in the Western Sichuan Plateau are shown in Table 2.Table 2 Carbon density values of different land use types in the Western Sichuan plateau (t hm−2).Full size tableExploratory spatial analysis methodGlobal spatial autocorrelationGlobal Moran’s I was used to describe the spatial differentiation characteristics of carbon storage in the study area, and the expression formula is as follows43:$$I = frac{{nsumnolimits_{i = 1}^{n} {sumnolimits_{j = 1}^{n} {w_{i,j} left( {x_{i} - overline{x} } right)left( {x_{j} - overline{x} } right)} } }}{{sumnolimits_{i = 1}^{n} {sumnolimits_{j = 1}^{n} {omega_{ij} } } sumnolimits_{i = 1}^{n} {left( {x_{i} - overline{x} } right)^{2} } }}$$ (10) wij is the spatial weight; x is the attribute mean; xi and xj are the attribute values of elements i, j, respectively; n is the number of cells, and the correlation is considered significant when |Z|  > 1.96.Local indications of spatial association (LISA)LISA reveals the local cluster characteristics of spatial unit attributes by analyzing the difference and significance between spatial units and surrounding units, and the expression formula is as follows42:$$I_{i} (d) = frac{{n(x_{i} – overline{x} )sumnolimits_{j = 1}^{n} {w_{ij} (x_{j} – overline{x} )} }}{{sumnolimits_{i = 1}^{n} {(x_{j} – overline{x} )^{2} } }}$$
    (11)
    Correlation analysisIn order to evaluate the influence of natural factors and socioeconomic factors on carbon storage in the study area, the correlation coefficients of temperature, rainfall, NDVI, GDP, population density (PD), HAI and carbon storage were calculated according to the Pearson correlation coefficient method. The calculation formula is as follows44:$$r_{xy} = frac{{sumnolimits_{i = 1}^{n} {(M_{i} – overline{x} )(y_{i} – overline{y} )} }}{{sqrt {sumnolimits_{i = 1}^{n} {(M_{i} – overline{x} )^{2} sumnolimits_{i = 1}^{n} {(y_{i} – overline{y} )} } } }}$$
    (12)
    rxy represents the correlation coefficient between x and y; Mi represents the carbon storage in the ith year; yi represents the value of the impact factor Y in the ith year, and ({overline{text{x}}}) and ({overline{text{y}}}) respectively represents the average value of carbon storage and impact factor in the research period over several years.Human influence index analysis methodLand use is significantly spatially clustered in the study area31, and LUCC changes will have a certain impact on the structure and process of the ecosystem. HAI has the characteristics of spatial variability, which can reflect the impact of human activities on land use and landscape composition changes. In this study, Human Influence Index Analysis Method (HAI) index was used to analyze the correlation between carbon storage and human interference intensity in the Western Sichuan Plateau. The calculation formula is as follows30,$$HAI = sumlimits_{i = 1}^{n} {left( {A_{i} P_{i} /TA} right)}$$
    (13)
    HAI is Human Active Index; Ai is the total area of the ith land use type; Pi The intensity parameter of human impact reflected by type i land use type; TA is the total final surface area of land use type in evaluation unit; n is the number of land use types. Combined with the land use type of this study, Pi is assigned by Delphi method, in which cropland is 0.67, woodland is 0.13, grassland is 0.12, water body is 0.10, built-up land is 0.96, and unused land is 0.0530,45.GeodetectorGeodetector is an algorithm that uses spatial heterogeneity principle to detect driving factors of carbon storage, which can quantitatively detect the influence of impact factors on carbon storage and explore the interaction between driving factors. Geodetector includes factor detection, risk detection, interaction detection and ecological detection46.Differentiation and factor detection: the influence factors were discretized, and then the significance test of the difference in the mean values of the impact factors was conducted to detect the relative importance among the factors. The statistical quantity q is used to measure the explanatory power of impact factors on the carbon storage spatial differentiation and the value range of q is between 0 and 1. The larger the value, the stronger the explanatory power of the factor47.$$q = 1{ – }frac{{sumnolimits_{h = 1}^{L} {N_{h} sigma_{h}^{2} } }}{{Nsigma^{2} }}$$
    (14)
    In this formula, h = 1, 2…, L is the classification or partition of variable (Y) or factor (X); Nh and N are layer h and regional number units respectively; and (sigma_{h}^{2}) and (sigma_{{}}^{2}) are the variance of the layer h and regional value Y respectively.The variance of the regional value Y is calculated as follows,$$sigma^{2} = frac{{sumnolimits_{i = 1}^{n} {(Y_{i} – overline{Y} )^{2} } }}{N – 1}$$
    (15)
    where, Yi and (overline{Y}) are the mean value of sample j and the region Y, respectively.$$sigma^{2} = frac{{sumnolimits_{i = 1}^{{n_{h} }} {(Y_{h,i} – overline{{Y_{h} }} )^{2} } }}{{N_{h} – 1}}$$
    (16)
    where, Y and (overline{Y}) are the value and mean value of sample i in layer h, respectively.Interaction detection: it is used to identify the interaction between different impact factors Xs, that is, to evaluate whether the combined action of X1 and X2 will increase or weaken the explanatory power of vegetation coverage Y, or the influence of these factors on Y is independent of each other. The evaluation method is to first calculate the value q of the two factors X1 and X2 for Y respectively: q(X1) and q(X2), and calculate the value q of their interaction (the new polygon distribution formed by the tangent of the two layers of the superimposed variables X1 and X2) : q(X1 ∩ X2) and compare q(X1) and q(X2) with q(X1 ∩ X2)46. More

  • in

    Changing surface ocean circulation caused the local demise of echinoid Scaphechinus mirabilis in Taiwan during the Pleistocene–Holocene transition

    Hu, C.-H. in Introduction to Roadside Geology of Ten Field Geology Excursion Routes in Northern Taiwan (ed Taiwan Normal University Department of Earth Science) 63–100 (Taiwan Normal University, 1987).Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene), Longgang area, Miaoli County. Atlas Fossil Mollusca Taiwan 2, 689–754 (1992).
    Google Scholar 
    Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene) in Baishatun and Touwo, Tongxiao village, Miaoli County. Atlas Fossil Mollusca Taiwan 1, 175–314 (1991).
    Google Scholar 
    Hayasaka, I. & Morishita, A. Notes on some fossil echinoids of Taiwan, II. Acta Geol. Taiwan. 1, 93–110 (1947).
    Google Scholar 
    Lin, Y.-J., Fang, J.-N., Chang, C.-C., Cheng, C.-C. & Lin, J. P. Stereomic microstructure of Clypeasteroida in thin section based on new material from Pleistocene strata in Taiwan. Terr. Atmos. Ocean. Sci. J. https://doi.org/10.3319/TAO.2021.07.28.01 (2021).Article 

    Google Scholar 
    Morishita, A. in Contributions to Celebrate Prof. Ichiro Hayasaka’s 76th Birthday 109–116 (1967).Wang, C.-C., Lin, C.-F. & Li, L.-C. Measurements on Late Pleistocene sand dollar Scaphechinus mirabilis from northern Taiwan. Annu. Rep. Central Geol. Surv. 72, 49–56 (1984).
    Google Scholar 
    Nisiyama, S. The echinoid fauna from Japan and adjacent regions. Part 2. Palaeontol. Soc. Jpn. Spec. Pap. 13, 1–491 (1968).
    Google Scholar 
    Kashenko, S. D. Effects of extreme changes of sea water temperature and salinity on the development of the sand dollar Scaphechinus mirabilis. Russ. J. Mar. Biol. 35, 422–430. https://doi.org/10.1134/s1063074009050083 (2009).Article 

    Google Scholar 
    Davies, A. J. & John, C. M. The clumped (13C–18O) isotope composition of echinoid calcite: Further evidence for “vital effects” in the clumped isotope proxy. Geochim. Cosmochim. Acta 245, 172–189. https://doi.org/10.1016/j.gca.2018.07.038 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, W.-S., Yeh, J.-J. & Syu, S.-J. Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics 750, 56–69. https://doi.org/10.1016/j.tecto.2018.09.003 (2019).ADS 
    Article 

    Google Scholar 
    Peng, T.-R., Wang, C.-H. & Chen, C. T. A. Oxygen and carbon isotopic studies of fossil Mollusca in the Kuokang Shell Bed, Paishatung, Miaoli. Spec. Publ. Central Geol. Surv. 4, 307–322 (1990).
    Google Scholar 
    Lee, C.-L. Biostratigraphy and sedimentary environments of Toukoshan Formation in Baishatun area, Miaoli MS thesis, National Central University (2000).Locarnini, R. A. et al. World Ocean Atlas 2018, Volume 1: Temperature. 1–52 (NOAA, 2019).Liew, P.-M. Quaternary stratigraphy in western Taiwan: Palynological correlation. Proc. Geol. Soc. China 31, 169–180 (1988).
    Google Scholar 
    Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook. Rev. Geophys. https://doi.org/10.1029/2007rg000226 (2008).Article 

    Google Scholar 
    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026011 (2006).Article 

    Google Scholar 
    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic formainifera isotopic records. Quatern. Sci. Rev. 21, 295–305 (2002).ADS 
    Article 

    Google Scholar 
    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am. 64, 1315–1326 (1963).Article 

    Google Scholar 
    Weber, J. N. & Raup, D. M. Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms—the Echinoidea. Part II. Environmental and genetic factors. Geochim. Cosmochim. Acta 30, 705–736 (1966).ADS 
    CAS 
    Article 

    Google Scholar 
    Eiler, J. M. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quatern. Sci. Rev. 30, 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001 (2011).ADS 
    Article 

    Google Scholar 
    Takeda, S. Mechanism maintaining dense beds of the sand dollar Scaphechinus mirabilis in northern Japan. J. Exp. Mar. Biol. Ecol. 363, 21–27. https://doi.org/10.1016/j.jembe.2008.06.010 (2008).Article 

    Google Scholar 
    Takatsu, T., Nakatani, T., Miyamoto, T., Kooka, K. & Takahashi, T. Spatial distribution and feeding habits of Pacific cod (Gadus macrocephalus) larvae in Mutsu Bay, Japan. Fish. Oceanogr. 11, 90–101 (2002).Article 

    Google Scholar 
    Zhao, M., Huang, C.-Y. & Wei, K.-Y. A 28,000 year U37 K’ sea-surface temperature record of ODP Site 1202B, the southern Okinawa Trough. TAO 16, 45–56 (2005).ADS 
    Article 

    Google Scholar 
    Jan, S., Tseng, Y.-H. & Dietrich, D. E. Sources of water in the Taiwan Strait. J. Oceanogr. 66, 211–221 (2010).Article 

    Google Scholar 
    Liao, E., Oey, L. Y., Yan, X.-H., Li, L. & Jiang, Y. The deflection of the China Coastal Current over the Taiwan Bank in winter. J. Phys. Oceanogr. 48, 1433–1450. https://doi.org/10.1175/jpo-d-17-0037.1 (2018).ADS 
    Article 

    Google Scholar 
    Hu, J., Kawamura, H., Li, C., Hong, H. & Jiang, Y. Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr. 66, 591–610 (2010).Article 

    Google Scholar 
    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quatern. Sci. Rev. 152, 72–79. https://doi.org/10.1016/j.quascirev.2016.09.012 (2016).ADS 
    Article 

    Google Scholar 
    Klein, R. T., Lohmann, K. C. & Kennedy, G. L. Elemental and isotopic proxies of paleotemperature and paleosalinity: Climate reconstruction of the marginal northeast Pacific ca. 80 ka. Geology 25, 363–366 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Jarvis, I., Trabucho-Alexandre, J., Gröcke, D. R., Uličný, D. & Laurin, J. Intercontinental correlation of organic carbon and carbonate stable isotope records: Evidence of climate and sea-level change during the Turonian (Cretaceous). Depos. Rec. 1, 53–90. https://doi.org/10.1002/dep2.6 (2016).Article 

    Google Scholar 
    Chen, P. S. M. A study of the stratigraphy and molluscan fossils of the Tunghsiao area, Miaoli, Taiwan, R.O.C.. Bull. Malacol. Republic of China 4, 63–78 (1977).
    Google Scholar 
    Chen, W.-S. & Hsu, W.-J. The Pleistocene paleoenvironmental significance of the unearthed megafauna strata in Taiwan. Bull. Central Geol. Surv. 23, 137–163 (2010).
    Google Scholar 
    Chang, C. H. et al. The first archaic Homo from Taiwan. Nat. Commun. 6, 6037. https://doi.org/10.1038/ncomms7037 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cai, B.-Q. Fossil human humerus of Late Pleistocene from the Taiwan Straits. Acta Antrhopologica Sinica 20, 178–185 (2001).
    Google Scholar 
    Tong, H. & Patou-Mathis, M. Mammoth and other proboscideans in China during the Late Pleistocene. Deinsea 9, 421–428 (2003).
    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 (2006).Article 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. PNAS 99, 14624–14627 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Ugan, A. & Byers, D. A global perspective on the spatiotemporal pattern of the Late Pleistocene human and woolly mammoth radiocarbon record. Quatern. Int. 191, 69–81. https://doi.org/10.1016/j.quaint.2007.09.035 (2008).Article 

    Google Scholar 
    Adlan, Q., Davies, A. J. & John, C. M. Effects of oxygen plasma ashing treatment on carbonate clumped isotopes. Rapid Commun. Mass Spectrom. 34, e8802. https://doi.org/10.1002/rcm.8802 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    John, C. M. & Bowen, D. Community software for challenging isotope analysis: First applications of “Easotope” to clumped isotopes. Rapid Commun. Mass Spectrom. 30, 2285–2300 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bernasconi, S. M. et al. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 27, 603–612. https://doi.org/10.1002/rcm.6490 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bernasconi, S. M. et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22, e2020GC009588. https://doi.org/10.1029/2020GC009588 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, N. T. et al. Unified clumped isotope thermometer calibration (0.5–1,100°C) using carbonate-based standardization. Geophys. Res. Lett. 48, e2020GL092069 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Lee, H. et al. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in western Taiwan. Quatern. Int. 528, 120–129 (2019).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    Human-ignited fires result in more extreme fire behavior and ecosystem impacts

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 
    Article 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    United Nations Environment Programme. Spreading like Wildfire–The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. (United Nations Environment Programme, Nairobi, 2022).Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7, 892–910 (2019).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).ADS 
    Article 

    Google Scholar 
    Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150178 (2016).Article 

    Google Scholar 
    Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire. (University of Washington Press, 2017).Fire and Resource Assessment Program. Fire Perimeters. Available: https://frap.fire.ca.gov/frap-projects/fire-perimeters/. (California Department of Forestry & Fire Protection, 2018).Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313, 940–943 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).ADS 
    Article 

    Google Scholar 
    Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).Article 

    Google Scholar 
    Parsons, D. J. & DeBenedetti, S. H. Impact of fire suppression on a mixed-conifer forest. For. Ecol. Manag. 2, 21–33 (1979).Article 

    Google Scholar 
    Vose, R., Easterling, D. R., Kunkel, K. & Wehner, M. Temperature Changes in the United States. (NASA, 2017).Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, S. L., Martin, R. E. & Clinton, N. E. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. For. Ecol. Manag. 251, 205–216 (2007).Article 

    Google Scholar 
    Sugihara, N. G., Van Wagtendonk, J. W., Fites-Kaufman, J., Shaffer, K. E. & Thode, A. E. Fire in California’s Ecosystems. (University of California Press, 2006).Jin, Y. et al. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ. Res. Lett. 10, 094005 (2015).ADS 
    Article 

    Google Scholar 
    Trollope, W. in Ecological Effects of Fire In South African Ecosystems. 199–217 (Springer, 1984).Byram, G. M. in Forest Fire: Control and Use (ed. Davis, K. P.) 155–182 (McGraw-Hill, 1959).McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. https://doi.org/10.1111/1365-2745.13403 (2020).Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).ADS 
    Article 

    Google Scholar 
    Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels (USFS, 1972).Hood, S. M., Varner, J. M., van Mantgem, P. & Cansler, C. A. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 13, 113004 (2018).ADS 
    Article 

    Google Scholar 
    Cattau, M. E., Wessman, C., Mahood, A., Balch, J. K. & Poulter, B. Anthropogenic and lightning‐started fires are becoming larger and more frequent over a longer season length in the USA. Glob. Ecol. Biogeogr. 29, 668–681 (2020).Article 

    Google Scholar 
    Abatzoglou, J. T., Balch, J. K., Bradley, B. A. & Kolden, C. A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 27, 377–386 (2018).Article 

    Google Scholar 
    Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).Article 

    Google Scholar 
    van Wagtendonk, J. W. The history and evolution of wildland fire use. Fire Ecol. 3, 3–17 (2007).Article 

    Google Scholar 
    Sullivan, A. L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009).Article 

    Google Scholar 
    Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).ADS 
    Article 

    Google Scholar 
    Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).ADS 
    Article 

    Google Scholar 
    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).ADS 
    Article 

    Google Scholar 
    Reinhardt, E. D. First Order Fire Effects Model: FOFEM 4.0, User’s Guide. (Intermountain Forest and Range Experiment Station, Forest Service, US …, 1997).Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).CAS 
    Article 

    Google Scholar 
    Pateiro-Lopez, B. & Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane v. R package version 2.2 (2019).Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. theory 29, 551–559 (1983).MathSciNet 
    Article 

    Google Scholar 
    Rodríguez Casal, A. & Pateiro López, B. Generalizing the Convex Hull of A Sample: the R Package alphahull. (2010).Bell, D. M. et al. Multiscale divergence between Landsat-and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 13, 15 (2018).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    MTBS. Monitoring Trends in Burn Severity Data Access: Fire Level Geospatial Data. (MTBS). (2018).Miller, J. D. et al. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645–656 (2009).ADS 
    Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar  More

  • in

    Endocranial volume increases across captive generations in the endangered Mexican wolf

    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172(Suppl. 1), S63–S71 (2008).PubMed 
    Article 

    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 
    Article 

    Google Scholar 
    Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: A review. Ecol. Evol. 3(8), 2751–2764 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. PNAS 113(9), 2532–2537 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Näslund, J., Aarestrup, K., Thomassen, S. T. & Johnsson, J. I. Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): No evidence for a critical period. Can. J. Fish. Aquat. Sci. 69(9), 1481–1490 (2012).Article 

    Google Scholar 
    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3(12), 160622 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamaguchi, N., Kitchener, A. C., Gilissen, E. & MacDonald, D. W. Brain size of the lion (Panthera leo) and the tiger (P. tigris): Implications for intrageneric phylogeny, intraspecific differences and the effects of captivity. Biol. J. Linn. Soc. 98, 85–93 (2009).Article 

    Google Scholar 
    Turschwell, M. P. & White, C. R. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish Gambusia holbrooki. Biol. Open. 5(3), 205–210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Welniak-Kaminska, M. et al. Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS ONE 14(4), e0215348 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guay, P. J., Parrott, M. & Selwood, L. Captive breeding does not alter brain volume in a marsupial over a few generations. Zoo Biol. 31, 82–86 (2012).PubMed 
    Article 

    Google Scholar 
    Isler, K. et al. Endocranial volumes of primate species: Scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55(6), 967–978 (2008).PubMed 
    Article 

    Google Scholar 
    Burns, J. G., Saravanan, A. & Rodd, F. H. Rearing environment affects the brain size of guppies: Lab-reared guppies have smaller brains than wild-caught guppies. Ethol. 115(2), 122–133 (2009).Article 

    Google Scholar 
    Kruska, D. On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol. 65(2), 73–108 (2005).PubMed 
    Article 

    Google Scholar 
    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Processes. 92, 143–146 (2013).PubMed 
    Article 

    Google Scholar 
    Colby, A. E., Kimock, C. M. & Higham, J. P. Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate. Sci. Rep. 11, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Stuermer, I. W. & Wetzel, W. Early experience and domestication affect auditory discrimination learning, open field behaviour and brain size in wild Mongolian gerbils and domesticated Laboratory gerbils (Meriones unguiculatus forma domestica). Behav. Brain Res. 173, 11–21 (2006).PubMed 
    Article 

    Google Scholar 
    Agnvall, B., Bélteky, J. & Jensen, P. Brain size is reduced by selection for tameness in red junglefowl-correlated effects in vital organs. Sci. Rep. 7(3306), 1–7 (2017).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Wild is not really wild: Brain weight of wild and domestic mammals. Berl. Munch. Tierarztliche Wochenschrift. 112(6–7), 234–238 (1999).
    Google Scholar 
    Smith, B. P., Lucas, T. A., Norris, R. M. & Henneberg, M. Brain size/body weight in the dingo (Canis dingo): Comparisons with domestic and wild canids. Aust. J. Zool. 65(5), 292–301 (2017).Article 

    Google Scholar 
    Roberts, T., McGreevy, P. & Valenzuela, M. Human induced rotation and reorganization of the brain of domestic dogs. PLoS ONE 5(7), e11946 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollen, A. A. et al. Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav. Evol. 70, 21–39 (2007).PubMed 
    Article 

    Google Scholar 
    Kihslinger, R. L., Lema, S. C. & Nevitt, G. A. Environmental rearing conditions produce forebrain differences in wild Chinook salmon Oncorhynchus tshawytscha. Comp. Biochem. Physiol. 145(2), 145–151 (2006).CAS 
    Article 

    Google Scholar 
    Guay, P. J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110(2), 276–284 (2008).Article 

    Google Scholar 
    Diamond, M. C., Ingham, C. A., Johnson, R. E., Bennett, E. L. & Rosenzweig, M. R. Effects of environment on morphology of rat cerebral cortex and hippocampus. J. Neurobiol. 7, 75–85 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Courtney Jones, S. K., Munn, A. J. & Byrne, P. G. Effect of captivity on morphology: Negligible changes in external morphology mask significant changes in internal morphology. R. Soc. Open Sci. 5(5), 1–13 (2018).Article 

    Google Scholar 
    Kruska, D. & Röhrs, M. Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z. Anat. Entwicklungsgesch. 144(1), 61–73 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kruska, D. Changes of brain size in Tylopoda during phylogeny and caused by domestication. Verh. Dtsch. Zool. Ges. 75, 173–183 (1982).
    Google Scholar 
    Groves, C. P. Skull-changes due to captivity in certain Equidae. Z. Säugetierkd. 31, 44–46 (1966).
    Google Scholar 
    Groves, C. P. The skulls of Asian rhinoceroses: Wild and captive. Zoo Biol. 1, 251–261 (1982).Article 

    Google Scholar 
    Hollister, N. Some effects of environment and habit on captive lions. Proc. US. Natl. Mus. 53, 177–193 (1917).Article 

    Google Scholar 
    Price, E. O. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 65(3), 245–271 (1999).Article 

    Google Scholar 
    Wolff, J. Das Gesetz der Transformation der Knochen (A. Hirchwild, 1892).
    Google Scholar 
    Herring, S. W. Formation of the vertebrate face: Epigenetic and functional influences. Am. Zool. 33, 472–483 (1993).Article 

    Google Scholar 
    Wroe, S. & Milne, N. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evol. 61(5), 1251–1260 (2007).Article 

    Google Scholar 
    Damasceno, E. M., Hingst-Zaher, E. & Astúa, D. Bite force and encephalization in the Canidae (Mammalia: Carnivora). J. Zool. 290(4), 246–254 (2013).Article 

    Google Scholar 
    Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).PubMed 
    Article 

    Google Scholar 
    Van Valkenburgh, B. Carnivore dental adaptations and diet: A study of trophic diversity within guilds in Carnivore behavior, ecology, and evolution (ed. Gittleman, J. L.) 410–436 (Springer Science & Business Media, 1989).Slater, G. J., Dumont, E. R. & Van Valkenburgh, B. Implications of predatory specialization for cranial form and function in canids. J. Zool. 278(3), 181–188 (2009).Article 

    Google Scholar 
    Michaud, M., Veron, G. & Fabre, A. C. Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists. Evol. 74(12), 2681–2702 (2020).Article 

    Google Scholar 
    O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm. Rev. 35, 215–230 (2005).Article 

    Google Scholar 
    Kapoor, V., Antonelli, T., Parkinson, J. A. & Hartstone-Rose, A. Oral health correlates of captivity. Res. Vet. Sci. 107, 213–219 (2016).PubMed 
    Article 

    Google Scholar 
    Mitchell, D. R., Wroe, S., Ravosa, M. J. & Menegaz, R. A. More challenging diets sustain feeding performance: Applications toward the captive rearing of wildlife. Integr. Org. Biol. 3, 1–13 (2021).
    Google Scholar 
    Curtis, A. A., Orke, M., Tetradis, S. & Van Valkenburgh, B. Diet-related differences in craniodental morphology between captive-reared and wild coyotes, Canis latrans (Carnivora: Canidae). Biol. J. Linn. Soc. 123(3), 677–693 (2018).Article 

    Google Scholar 
    Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Cranial morphology of captive mammals: A meta-analysis. Front. Zool. 18(4), 1–13 (2021).
    Google Scholar 
    Corruccini, R. S. & Beecher, R. M. Occlusal variation related to soft diet in a nonhuman primate. Science 218, 74–75 (1982).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez Rozzi, F. V., González-José, R. & Pucciarelli, H. M. Cranial growth in normal and low-protein-fed Saimiri An environmental heterochrony. J. Hum. Evol. 49(4), 515–535 (2005).PubMed 
    Article 

    Google Scholar 
    Taylor, A. B. & van Schaik, C. P. Variation in brain size and ecology in Pongo. J. Hum. Evol. 52, 59–71 (2007).PubMed 
    Article 

    Google Scholar 
    AZA Canid TAG. Large Canid (Canidae) Care Manual. (Association of Zoos and Aquariums, 2012).Mexican Wolf Species Survival Plan. Mexican Gray Wolf Husbandry Manual: Guidelines for Captive Management (2009 edition). (Mexican Wolf Species Survival Plan and U.S. Fish and Wildlife Service, 2009).Carrera, R. et al. Comparison of Mexican wolf and coyote diets in Arizona and New Mexico. The J. Wildl. Manag. 72(2), 376–381 (2008).Article 

    Google Scholar 
    Reed, J. E. et al. Diets of free-ranging Mexican gray wolves in Arizona and New Mexico. Wildl. Soc. Bull. 34(4), 1127–1133 (2006).Article 

    Google Scholar 
    Kazimierska, K., Biel, W. & Witkowicz, R. Mineral composition of cereal and cereal-free dry dog foods versus nutritional guidelines. Molecules 25(21), 1–24 (2020).Article 
    CAS 

    Google Scholar 
    Pezzali, J. G. & Aldrich, C. G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 98(2), 3758–3767 (2019).Article 

    Google Scholar 
    Hartstone-Rose, A., Selvey, H., Villari, J. R., Atwell, M. & Schmidt, T. The three-dimensional morphological effects of captivity. PLoS ONE 9(11), 1–15 (2014).Article 
    CAS 

    Google Scholar 
    Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Changes in canid cranial morphology induced by captivity and conservation implications. Biol. Conserv. 257, 109143 (2021).Article 

    Google Scholar 
    Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11(2), 615–626 (2010).Article 

    Google Scholar 
    Greely, S. E. Mexican Wolf, Canis lupus baileyi, International Studbook 2018. Palm Desert, California. (2018).Kalinowski, S. T., Hedrick, P. W. & Miller, P. S. No inbreeding depression observed in Mexican and red wolf captive breeding programs. Conserv. Biol. 13(6), 1371–1377 (1999).Article 

    Google Scholar 
    Sakai, S. T., Whitt, B., Arsznov, B. M. & Lundrigan, B. L. Endocranial development in the coyote (Canis latrans) and gray wolf (Canis lupus): A computed tomographic study. Brain Behav. Evol. 91(2), 1–18 (2018).Article 

    Google Scholar 
    Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores in Body size in mammalian paleobiology: estimation and biological implications (eds. Damuth, J. & MacFadden, B. J.) (Cambridge University Press, 1990).Rohlf, F. J. TPSDig2: a program for landmark development and analysis (2001).Siciliano-Martina, L., Light, J. E., Riley, D. G. & Lawing, A. M. One of these wolves is not like the other: morphological effects and conservation implications of captivity in Mexican wolves. Anim. Conserv. 25, 77–90 (2021).Article 

    Google Scholar 
    Zelditch, M. L., Donald, L., Swiderski, H., Sheets, D. & Fink, W. L. Geometric morphometrics for biologists: a primer. (Elsevier Academic Press, 2004).Coster, A. pedigree: Pedigree functions. R package version 1.4 (2013).Traylor-Holzer, K. (ed.). PMx user’s manual. Version 1.0. Apple Valley, MN: IUCN SSC Conservation Breeding Specialist Group. (2011).Thomason, J. J. Cranial strength in relation to estimated biting forces in some Mammals. Can. J. Zool. 69, 2326–2333 (1991).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9(7), 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).Cofran, Z. Brain size growth in wild and captive chimpanzees (Pan troglodytes). Am. J. Primat. 80(7), 1–8 (2018).Article 

    Google Scholar 
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20(9), 1843–1861 (2011).Article 

    Google Scholar 
    Gómez-Sánchez, D. et al. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mole. Ecol. 27(18), 3599–3612 (2018).Article 

    Google Scholar 
    Elbroch, M. Animal skulls: a guide to North American species. (Stackpole Books, 2006).Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72(4), 267–284 (2014).PubMed 
    Article 

    Google Scholar 
    Hecht, E. E. et al. Neuromorphological changes following selection for tameness and aggression in the Russian farm-fox experiment. J. Neurosci. 41(28), 6144–6156 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, E. L., Rosenzweig, M. R. & Diamond, M. C. Rat brain: Effects of environmental enrichment on wet and dry weights. Science 163(3869), 825–826 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cummins, R. A., Walsh, R. N., Budtz-Olsen, O. E., Konstantinos, T. & Horsfall, C. R. Environmentally-induced changes in the brains of elderly rats. Nature 243(5409), 516–518 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Welch, B. L., Brown, D. G., Welch, A. S. & Lin, D. C. Isolation, restrictive confinement or crowding of rats for one year. I. Weight, nucleic acids and protein of brain regions. Brain Res. 75, 71–84 (1974).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Infected food web and ecological stability

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. The community ecology of pathogens: Coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).Article 

    Google Scholar 
    French, R. K. & Holmes, E. C. An ecosystems perspective on virus evolution and emergence. Trends Microbiol. 28, 165–175 (2020).CAS 
    Article 

    Google Scholar 
    Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites?. Trends Ecol. Evol. 21, 381–385 (2006).Article 

    Google Scholar 
    Raffel, T. R., Martin, L. B. & Rohr, J. R. Parasites as predators: Unifying natural enemy ecology. Trends Ecol. Evol. 23, 610–618 (2008).Article 

    Google Scholar 
    Johnson, P. T. J. et al. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).Article 

    Google Scholar 
    Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).Article 

    Google Scholar 
    Jephcott, T. G., Sime-Ngando, T., Gleason, F. H. & Macarthur, D. J. Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs 6, 1–8 (2016).Article 

    Google Scholar 
    Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).Article 

    Google Scholar 
    Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).Article 

    Google Scholar 
    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325 (1997).CAS 
    Article 

    Google Scholar 
    Chen, H.-W. et al. Network position of hosts in food webs and their parasite diversity. Oikos 117, 1847–1855 (2008).Article 

    Google Scholar 
    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103, 11211–11216 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).Article 

    Google Scholar 
    Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics (eds Pascual, M. & Dunne, J. A.) 27–28 (Oxford University Press, 2005).
    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. The Ecology of Wildlife Diseases. (Oxford University Press, Oxford, 2002).
    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).
    Google Scholar 
    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).CAS 
    Article 

    Google Scholar 
    De Castro, F. & Bolker, B. M. Parasite establishment and host extinction in model communities. Oikos 111, 501–513 (2005).Article 

    Google Scholar 
    McQuaid, C. F. & Britton, N. F. Parasite species richness and its effect on persistence in food webs. J. Theor. Biol. 364, 377–382 (2015).ADS 
    Article 

    Google Scholar 
    Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G. & Schauber, E. M. Parasite establishment in host communities. Ecol. Lett. 6, 837–842 (2003).
    Article 

    Google Scholar 
    Hatcher, M. J. & Dunn, A. M. Parasites in Ecological Communities: From Interactions to Ecosystems (Cambridge University Press, 2011).Book 

    Google Scholar 
    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004).Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka–Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).CAS 
    Article 

    Google Scholar 
    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).MathSciNet 
    Article 

    Google Scholar 
    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Hethcote, H. W., Wang, W., Han, L. & Ma, Z. A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004).Article 

    Google Scholar 
    Kooi, B. W., van Voorn, G. A. K. & Das, K. P. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease. Ecol. Complex. 8, 113–122 (2011).Article 

    Google Scholar 
    Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).Article 

    Google Scholar 
    Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).ADS 
    Article 

    Google Scholar 
    Wootton, J. T. Estimates and tests of per capita interaction strength: Diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).Article 

    Google Scholar 
    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory (Springer, 1990).Book 

    Google Scholar 
    Mougi, A. Diversity of biological rhythm and food web stability. Biol. Lett. 17, 20200673 (2021).Article 

    Google Scholar  More

  • in

    Oyster reef restoration facilitates the recovery of macroinvertebrate abundance, diversity, and composition in estuarine communities

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Lotze, H. K. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, J. & Kidd, I. M. Identifying major stressors: The essential precursor to restoring cultural ecosystem services in a degraded estuary. Estuar. Coast. 35, 1007–1017 (2012).Article 

    Google Scholar 
    Copeland, B. Effects of decreased river flow on estuarine ecology. J. Water Pollut. Control Fed. 66, 1831–1839 (1966).
    Google Scholar 
    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. https://doi.org/10.3897/BDJ.5.e11764 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    McAfee, D. & Connell, S. D. The global fall and rise of oyster reefs. Front. Ecol. Environ. 19, 118–125 (2021).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).ADS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).Article 

    Google Scholar 
    Goldewijk, K. K. Estimating global land use change over the past 300 years: The HYDE database. Glob. Biogeochem. 15, 417–433 (2001).ADS 
    Article 

    Google Scholar 
    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).ADS 
    Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).ADS 
    Article 

    Google Scholar 
    Elliott, M., Burdon, D., Hemingway, K. L. & Apitz, S. E. Estuarine, coastal and marine ecosystem restoration: Confusing management and science—A revision of concepts. Estuar. Coast. Shelf Sci. 74, 349–366 (2007).ADS 
    Article 

    Google Scholar 
    Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325, 1121–1124 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Hobbs, R. J. & Norton, D. A. Towards a conceptual framework for restoration ecology. Restor. Ecol. 4, 93–110 (1996).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as Ecosystem Engineers in Ecosystem Management 130–147 (Springer, 1994).Tolley, S. G. & Volety, A. K. The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. J. Shellf. Res. 24, 1007–1012 (2005).Article 

    Google Scholar 
    Carroll, J. M., Keller, D. A., Furman, B. T. & Stubler, A. D. Rough around the edges: Lessons learned and future directions in marine edge effects studies. Curr. Landsc. Ecol. Rep. 4, 91–102 (2019).Article 

    Google Scholar 
    Harwell, H. D., Posey, M. H. & Alphin, T. D. Landscape aspects of oyster reefs: Effects of fragmentation on habitat utilization. J. Exp. Mar. Biol. Ecol. 409, 30–41 (2011).Article 

    Google Scholar 
    Shervette, V. R. & Gelwick, F. Seasonal and spatial variations in fish and macroinvertebrate communities of oyster and adjacent habitats in a Mississippi estuary. Estuar. Coast. 31, 584–596 (2008).Article 

    Google Scholar 
    Gain, I. E. et al. Macrofauna using intertidal oyster reef varies in relation to position within the estuarine habitat mosaic. Mar. Biol. 164, 1–16 (2017).MathSciNet 
    Article 

    Google Scholar 
    Wong, M., Peterson, C. & Piehler, M. Evaluating estuarine habitats using secondary production as a proxy for food web support. Mar. Ecol. Prog. Ser. 440, 11–25 (2011).ADS 
    Article 

    Google Scholar 
    Meyer, D. L. Habitat partitioning between the xanthid crabs Panopeus herbstii and Eurypanopeus depressus on intertidal oyster reefs (Crassostrea virginica) in southeastern North Carolina. Estuaries 17, 674–679 (1994).Article 

    Google Scholar 
    McDonald, J. Divergent life history patterns in the co-occurring intertidal crabs Panopeus herbstii and Eurypanopeus depressus (Crustacea: Brachyura: Xanthidae). Mar. Ecol. Prog. Ser. 8, 173–180 (1982).ADS 
    Article 

    Google Scholar 
    Grabowski, J. H. & Peterson, C. H. Restoring oyster reefs to recover ecosystem services in Theoretical Ecology Series vol. 4 281–298 (Elsevier, 2007).Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116 (2011).Article 

    Google Scholar 
    Reeves, S. E. et al. Facilitating better outcomes: how positive species interactions can improve oyster reef restoration. Front. Mar. Sci. 7, 656 (2020).Article 

    Google Scholar 
    Jud, Z. R. & Layman, C. A. Changes in motile benthic faunal community structure following large-scale oyster reef restoration in a subtropical estuary. Food Webs 25, e00177 (2020).Article 

    Google Scholar 
    Pinnell, C. M., Ayala, G. S., Patten, M. V. & Boyer, K. E. Seagrass and oyster reef restoration in living shorelines: effects of habitat configuration on invertebrate community assembly. Diversity 13, 246 (2021).Article 

    Google Scholar 
    La Peyre, M. K., Humphries, A. T., Casas, S. M. & La Peyre, J. F. Temporal variation in development of ecosystem services from oyster reef restoration. Ecol. Eng. 63, 34–44 (2014).Article 

    Google Scholar 
    Geraldi, N. R., Powers, S. P., Heck, K. L. & Cebrian, J. Can habitat restoration be redundant? Response of mobile fishes and crustaceans to oyster reef restoration in marsh tidal creeks. Mar. Ecol. Prog. Ser. 389, 171–180 (2009).ADS 
    Article 

    Google Scholar 
    Humphries, A. T. & La Peyre, M. K. Oyster reef restoration supports increased nekton biomass and potential commercial fishery value. PeerJ 3, e1111 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ziegler, S. L., Grabowski, J. H., Baillie, C. J. & Fodrie, F. Effects of landscape setting on oyster reef structure and function largely persist more than a decade post-restoration. Restor. Ecol. 26, 933–942 (2018).Article 

    Google Scholar 
    Rodriguez, A. B. et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Change 4, 493–497 (2014).ADS 
    Article 

    Google Scholar 
    Hanke, M. H., Posey, M. H. & Alphin, T. D. The influence of habitat characteristics on intertidal oyster Crassostrea virginica populations. Mar. Ecol. Prog. Ser. 571, 121–138 (2017).ADS 
    Article 

    Google Scholar 
    Barber, A., Walters, L. & Birch, A. Potential for restoring biodiversity of macroflora and macrofauna on oyster reefs in Mosquito Lagoon, Florida. Fla. Sci. 66, 47–62 (2010).
    Google Scholar 
    Boudreaux, M. L., Stiner, J. L. & Walters, L. J. Biodiversity of sessile and motile macrofauna on intertidal oyster reefs in Mosquito Lagoon, Florida. J. Shellf. Res. 25, 1079–1089 (2006).Article 

    Google Scholar 
    Desmond, J. S., Deutschman, D. H. & Zedler, J. B. Spatial and temporal variation in estuarine fish and invertebrate assemblages: Analysis of an 11-year data set. Estuaries 25, 552–569 (2002).Article 

    Google Scholar 
    Xu, Y., Xian, W. & Li, W. Spatial and temporal variations of invertebrate community in the Yangtze River Estuary and its adjacent waters. Biodivers. Sci. 22, 311 (2014).Article 

    Google Scholar 
    Nichols, F. H. Abundance fluctuations among benthic invertebrates in two pacific estuaries. Estuaries 8, 136 (1985).Article 

    Google Scholar 
    Van Horn, J. & Tolley, S. G. Patterns of distribution along a salinity gradient in the flatback mud crab Eurypanopeus depressus. Gulf Mex. Sci. 26, 66 (2008).
    Google Scholar 
    Costlow, J. D., Bookhout, C. G. & Monroe, R. Salinity-temperature effects on the larval development of the crab, Panopeus herbstii Milne-Edwards, reared in the laboratory. Physiol. Zool. 35, 79–93 (1962).Article 

    Google Scholar 
    Sulkin, S., Heukelem, W. & Kelly, P. Behavioral basis for depth regulation in the hatching and post larval stages of the mud crab Eurypanopeus depresus. Mar. Ecol. Prog. Ser. 11, 157–164 (1983).ADS 
    Article 

    Google Scholar 
    Phlips, E. J., Badylak, S. & Grosskopf, T. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuar. Coast. Shelf. Sci. 55, 385–402 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Menendez, R. J. Vertical zonation of the xanthid mud crabs Panopeus obesus and Panopeus simpsoni on oyster reefs. Bull. Mar. Sci. 40, 73–77 (1987).
    Google Scholar 
    Barshaw, D. E. & Lavalli, K. L. Predation upon postlarval lobsters Homarus americanus by cunners Tautogolabrus adspersus and mud crabs Neopanope sayi on three different substrates: Eelgrass, mud and rocks. Mar. Ecol. Prog. Ser. 48, 119–123 (1988).ADS 
    Article 

    Google Scholar 
    Key, P. B., Wirth, E. F. & Fulton, M. H. A review of grass shrimp, Palaemonetes spp., as a bioindicator of anthropogenic impacts. Environ. Bioindic. 1, 115–128 (2006).CAS 
    Article 

    Google Scholar 
    Kneib, R. T. & Weeks, C. A. Intertidal distribution and feeding habits of the mud crab, Eurytium limosum. Estuaries 13, 462 (1990).Article 

    Google Scholar 
    Hsueh, P.-W., McClintock, J. B. & Hopkins, T. S. Comparative study of the diets of the blue crabs Callinectes similis and C. sapidus from a mud-bottom habitat in Mobile Bay, Alabama. J. Crust. Biol. 12, 615–619 (1992).Article 

    Google Scholar 
    King, S. P. & Sheridan, P. Nekton of new seagrass habitats colonizing a subsided salt marsh in Galveston Bay, Texas. Estuar. Coast. 29, 286–296 (2006).Article 

    Google Scholar 
    Zupo, V. & Nelson, W. Factors influencing the association patterns of Hippolyte zostericola and Palaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida. Mar. Biol. 134, 181–190 (1999).Article 

    Google Scholar 
    Weber, J. C. & Epifanio, C. E. Response of mud crab (Panopeus herbstii) megalopae to cues from adult habitat. Mar. Biol. 126, 655–661 (1996).Article 

    Google Scholar 
    Harris, K. P. Oyster Reef Restoration: Impacts on Infaunal Communities in a Shallow Water Estuary. Honors Thesis. University of Central Florida (2018).Shaffer, M., Donnelly, M. & Walters, L. Does intertidal oyster reef restoration affect avian community structure and behavior in a shallow estuarine system? A post-restoration analysis. Fla. Field Nat. 47, 37–59 (2019).
    Google Scholar 
    Puckett, B. J. et al. Integrating larval dispersal, permitting, and logistical factors within a validated habitat suitability index for oyster restoration. Front. Mar. Sci. 5, 76 (2018).Article 

    Google Scholar 
    Kim, C., Park, K. & Powers, S. P. Establishing restoration strategy of eastern oyster via a coupled biophysical transport model. Restor. Ecol. 21, 353–362 (2013).Article 

    Google Scholar 
    Rodriguez-Perez, A., James, M. A. & Sanderson, W. G. A small step or a giant leap: Accounting for settlement delay and dispersal in restoration planning. PLoS ONE 16, e0256369 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeager, L. A. & Layman, C. A. Energy flow to two abundant consumers in a subtropical oyster reef food web. Aquat. Ecol. 45, 267–277 (2011).Article 

    Google Scholar 
    Rodney, W. S. & Paynter, K. T. Comparisons of macrofaunal assemblages on restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay in Maryland. J. Exp. Mar. Biol. Ecol. 335, 39–51 (2006).Article 

    Google Scholar 
    Macreadie, P. I., Geraldi, N. R. & Peterson, C. H. Preference for feeding at habitat edges declines among juvenile blue crabs as oyster reef patchiness increases and predation risk grows. Mar. Ecol. Prog. Ser. 466, 145–153 (2012).ADS 
    Article 

    Google Scholar 
    Fodrie, F. J. et al. Measuring individuality in habitat use across complex landscapes: Approaches, constraints, and implications for assessing resource specialization. Oecologia 178, 75–87 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Grabowski, J. H. et al. Regional environmental variation and local species interactions influence biogeographic structure on oyster reefs. Ecology 101, e02921 (2020).PubMed 
    Article 

    Google Scholar 
    Peterson, C., Grabowski, J. & Powers, S. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264 (2003).ADS 
    Article 

    Google Scholar 
    Garvis, S. K., Sacks, P. E. & Walters, L. J. Formation, movement, and restoration of dead intertidal oyster reefs in Canaveral National Seashore and Mosquito Lagoon, Florida. J. Shellf. Res. 34, 251–258 (2015).Article 

    Google Scholar 
    Gilmore, G. R. Environmental and biogeographic factors influencing ichthyofaunal diversity: Indian River Lagoon. Bull. Mar. Sci. 57, 153–170 (1995).
    Google Scholar 
    Swain, H. M. Reconciling rarity and representation: A review of listed species in the Indian River Lagoon. Bull. Mar. Sci. 57, 252–266 (1995).ADS 

    Google Scholar 
    Tremain, D. M. & Adams, D. H. Seasonal variations in species diversity, abundance, and composition of fish communities in the northern Indian River Lagoon, Florida. Bull. Mar. Sci. 57, 171–192 (1995).
    Google Scholar 
    Paperno, R., Mille, K. & Kadison, E. Patterns in species composition of fish and selected invertebrate assemblages in estuarine subregions near Ponce de Leon Inlet, Florida. Estuar. Coast. Shelf. Sci. 52, 117–130 (2001).ADS 
    Article 

    Google Scholar 
    Smithsonian Marine Station (SMS) at Fort Pierce. Indian River Lagoon Species Inventory https://naturalhistory2.si.edu/smsfp/irlspec/Walters, L. J. et al. A negative association between recruitment of the eastern oyster Crassostrea virginica and the brown tide Aureoumbra lagunensis in Mosquito Lagoon, Florida. Fla. Sci. 84, 81–91 (2021).
    Google Scholar 
    Walters, L. J., Sacks, P. E. & Campbell, D. E. Boating impacts and boat-wake resilient restoration of the eastern oyster Crassostrea virginica in Mosquito Lagoon, Florida, USA. Fla. Sci. 84, 173–199 (2021).
    Google Scholar 
    Hanke, M. H., Posey, M. H. & Alphin, T. D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 581, 57–70 (2017).ADS 
    Article 

    Google Scholar 
    Crabtree, R. E. & Dean, J. M. The structure of two South Carolina estuarine tide pool fish assemblages. Estuaries 5, 2–9 (1982).Article 

    Google Scholar 
    Baggett, L. P. et al. Guidelines for evaluating performance of oyster habitat restoration: Evaluating performance of oyster restoration. Restor. Ecol. 23, 737–745 (2015).Article 

    Google Scholar 
    Chambers, L. G. et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon?. Estuar. Coast. 41, 784–799 (2018).Article 

    Google Scholar 
    Shannon, C. & Wiener, W. The Mathematical Theory of Communication (Illinois Press, 1963).
    Google Scholar 
    Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 22, 175–186 (2002).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2021).Hulbert, J. Pseudoreplication and the design of field experiments in ecology. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Wang, Z. & Goonewardene, L. A. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 84, 1–11 (2004).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Mixed-Effects Models Using the lme4 Package in R (2008).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021).Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).Article 

    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).Article 

    Google Scholar 
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).Article 

    Google Scholar 
    Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (Primer-E Ltd, 2014).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). More

  • in

    Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east Pacific) based on distribution models predicted with random forest

    Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).CAS 
    Article 

    Google Scholar 
    Kaiser, S., Smith, C. R. & MartínezArbizu, P. Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Mar. Biodivers. 47, 259–264 (2017).Article 

    Google Scholar 
    Bluhm, H. Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific Ocean in association with commercial deep-sea mining. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 187–201 (1994).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog. Oceanogr. 170, 119–133 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013).Article 

    Google Scholar 
    Kuhn, T., Wegorzewski, A., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential Technical and Environmental Considerations (ed. Sharma, R.) 23–63 (Springer, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.Chapter 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    International Seabed Authority. Deep Seabed Minerals Contractors. https://www.isa.org.jm/deep-seabed-minerals-contractors?qt-contractors_tabs_alt=0#qt-contractors_tabs_alt (2020).Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 53 (2018).ADS 
    Article 

    Google Scholar 
    Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & MartínezArbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats (eds Harris, P. T. & Baker, E.) 933–947 (Elsevier, 2020).Chapter 

    Google Scholar 
    Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci. Rep. 6, 30492 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lodge, M. et al. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone: A partnership approach. Mar. Policy 49, 66–72 (2014).Article 

    Google Scholar 
    Cuvelier, D. et al. Are seamounts refuge areas for fauna from polymetallic nodule fields?. Biogeosciences 17, 2657–2680 (2020).ADS 
    Article 

    Google Scholar 
    Wedding, L. M. et al. Managing mining of the deep seabed. Science 349, 144–145 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    International Seabed Authority. Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on the Prospecting and Exploration for Polymetallic Nodules in the Area and related matters. (2013).International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. (2020).Jones, D. O. B., Ardron, J. A., Colaço, A. & Durden, J. M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy 118, 103312 (2020).Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 57, 1210–1221 (2020).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Ostmann, A. & Martínez Arbizu, P. Predictive models using random forest regression for distribution patterns of meiofauna in Icelandic waters. Mar. Biodivers. 48, 719–735 (2018).Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T., Gillard, B. & Martínez Arbizu, P. Meiofauna in a potential deep-sea mining area: Influence of temporal and spatial variability on small scale abundance models. Diversity 13, 3 (2021).CAS 
    Article 

    Google Scholar 
    Gazis, I.-Z., Schoening, T., Alevizos, E. & Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 15, 7347–7377 (2018).ADS 
    Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 40, 1–15 (2010).Article 

    Google Scholar 
    Miljutin, D., Miljutina, M. & Messié, M. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep Sea Res. Oceanogr. Res. Pap. 106, 126–135 (2015).ADS 
    Article 

    Google Scholar 
    Pape, E., Bezerra, T. N., Hauquier, F. & Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 4, 205 (2017).Article 

    Google Scholar 
    Hauquier, F. et al. Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 16, 3475–3489 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Meiofauna abundance and distribution predicted with random forest regression in the German exploration area for polymetallic nodule mining, Clarion Clipperton Fracture Zone, Pacific. (2020).Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Thiel, H. et al. The large-scale environmental impact experiment DISCOL: Reflection and foresight. Deep Sea Res. 48, 3869–3882 (2001).ADS 
    Article 

    Google Scholar 
    Brown, A., Wright, R., Mevenkamp, L. & Hauton, C. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquat. Toxicol. 191, 10–16 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClain, C. R. Seamounts: identity crisis or split personality?. J. Biogeogr. 34, 2001–2008 (2007).Article 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 years on. In Advances in Marine Biology Vol. 79 (ed. Sheppard, C.) 137–224 (Academic Press, 2018).
    Google Scholar 
    Durden, J. M., Bett, B. J., Jones, D. O. B., Huvenne, V. A. I. & Ruhl, H. A. Abyssal hills–hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Prog. Oceanogr. 137, 209–218 (2015).ADS 
    Article 

    Google Scholar 
    Durden, J. M. et al. Megafaunal ecology of the western Clarion Clipperton Zone. Front. Mar. Sci. 8, 671062 (2021).ADS 
    Article 

    Google Scholar 
    Jones, D. O. B. et al. Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific). Prog. Oceanogr. 197, 102653 (2021).Article 

    Google Scholar 
    Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Volz, J. B. et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone. Pacific Ocean. Deep Sea Res. 140, 159–172 (2018).CAS 
    Article 

    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).PubMed 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).ADS 
    Article 

    Google Scholar 
    Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).Article 

    Google Scholar 
    Smith, C. R. et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep Sea Res. 44, 2295–2317 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuhn, T. & Rühlemann, C. Exploration of polymetallic nodules and resource assessment: A case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 11, 618 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).Article 

    Google Scholar 
    Wiedicke-Hombach, M. & Shipboard Scientific Party. Campaign “MANGAN 2008” with R/V Kilo Moana. (2009).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2017).Kaufman, L. & Rousseeuw, P. J. Clustering Large Applications (Program CLARA). in Finding Groups in Data 126–163 (Wiley, 1990). https://doi.org/10.1002/9780470316801.ch3.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster. (2019).Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0: Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 605 (2019).Article 

    Google Scholar 
    Amon, D. J. et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers. Data J. 5, e14598 (2017).Article 

    Google Scholar 
    Molodtsova, T. N. & Opresko, D. M. Black corals (Anthozoa: Antipatharia) of the Clarion-Clipperton Fracture Zone. Mar. Biodivers. 47, 349–365 (2017).Article 

    Google Scholar 
    Kersken, D., Janussen, D. & MartínezArbizu, P. Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II—Hexasterophora. Mar. Biodivers. 49, 947–987 (2019).Article 

    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Hughes, J. A. & Gooday, A. J. Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep Sea Res. 51, 1741–1758 (2004).Article 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by random Forest. R News 2, 18–22 (2002).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2019).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Garnier, S. viridisLite: Default Color Maps from ‘matplotlib’ (Lite Version). (2018).Rabosky, A. R. D. et al. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Smith, M. R. Ternary: An R package for creating ternary plots. Zenodo https://doi.org/10.5281/zenodo.1068996 (2017). More