Harnessing agricultural microbiomes for human pathogen control
Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018;67:1.PubMed Central
Article
Google Scholar
CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated With Consumption of Fresh Spinach – United States. JAMA. 2006;296:2195–6.Article
Google Scholar
Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis. 2007;13:1908.PubMed
PubMed Central
Article
Google Scholar
Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS One. 2007;2:e1159.PubMed
PubMed Central
Article
Google Scholar
Mukherjee A, Mammel MK, LeClerc JE, Cebula TA. Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak. J Bacteriol. 2008;190:1710–7.CAS
PubMed
Article
Google Scholar
Macarisin D, Patel J, Bauchan G, Giron JA, Sharma VK. Role of Curli and Cellulose Expression in Adherence of Escherichia coli O157:H7 to Spinach Leaves. Foodborne Pathog Dis. 2012;9:160–7.CAS
PubMed
Article
Google Scholar
Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol. 2014;44:108–18.CAS
PubMed
Article
Google Scholar
Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage. Appl Environ Microbiol. 2014;80:2504–15.PubMed
PubMed Central
Article
Google Scholar
CDC. Investigation Details. 2021 [updated 2021; cited]; Available from: https://www.cdc.gov/ecoli/2021/o157h7-02-21/details.html.Karp DS, Gennet S, Kilonzo C, Partyka M, Chaumont N, Atwill ER, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.CAS
PubMed
PubMed Central
Article
Google Scholar
Jones MS, Fu Z, Reganold JP, Karp DS, Besser TE, Tylianakis JM, et al. Organic farming promotes biotic resistance to foodborne human pathogens. J Appl Ecol. 2019;56:1117–27.Article
Google Scholar
Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMs Microbiol Rev. 2009;33:689–703.CAS
PubMed
Article
Google Scholar
Holden N. You are what you can find to eat: bacterial metabolism in the rhizosphere. Curr Issues Mol Biol. 2019;30:1–16.Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165:503–15.CAS
PubMed
Article
Google Scholar
Liao H, Li X, Bai Y, Cui P, Wen C, Liu C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evolut. 2021;38:2337–50.CAS
Article
Google Scholar
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014;7:496–516.PubMed
PubMed Central
Article
Google Scholar
Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology. 2013;103:333–40.PubMed
Article
Google Scholar
Dinu L-D, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol. 2011;77:8295–302.CAS
PubMed
PubMed Central
Article
Google Scholar
Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, et al. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology. 2021;167:1–12.Franz E, Semenov AV, Van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol. 2008;105:1569–84.CAS
PubMed
Article
Google Scholar
Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. Internal colonization of salmonella enterica serovar typhimurium in tomato plants. PLoS One. 2011;6:e27340.CAS
PubMed
PubMed Central
Article
Google Scholar
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, et al. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;12:1088. 7
Google Scholar
Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front Plant Sci. 2020;30:10.
Google Scholar
Launders N, Locking ME, Hanson M, Willshaw G, Charlett A, Salmon R, et al. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes. Epidemiol Infect. 2016;144:171–81.CAS
PubMed
Article
Google Scholar
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS
PubMed
Article
Google Scholar
Schenkel D, Deveau A, Niimi J, Mariotte P, Vitra A, Meisser M, et al. Linking soil’s volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environ Microbiol. 2019;21:3313–27.Article
Google Scholar
Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS
PubMed
Article
Google Scholar
Darlison J, Mogren L, Rosberg A-K, Grudén M, Minet A, Liné C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12.CAS
PubMed
Article
Google Scholar
Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett. 2013;346:146–54.CAS
PubMed
Article
Google Scholar
Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet J-Y, et al. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes. 2020;11:1207.CAS
PubMed Central
Article
Google Scholar
Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, et al. Global soil biodiversity atlas. European Commission; 2016.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS
PubMed
Article
Google Scholar
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS
PubMed
Article
Google Scholar
Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Scientific Reports. 2016;6:23584.CAS
PubMed
PubMed Central
Article
Google Scholar
Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol. 2016;38:137–42.CAS
PubMed
Article
Google Scholar
Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME Journal. 2016;10:265–8.CAS
PubMed
Article
Google Scholar
Schikora A, Jackson RW, Van Overbeek L, Holden N. Editorial: plants as alternative hosts for human and animal pathogens – second edition. Front Microbiol. [Editorial] 2020;14:11.
Google Scholar
Lebeis SL. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol. 2015;24:82–6.CAS
PubMed
Article
Google Scholar
Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, et al. A conceptual framework for invasion in microbial communities. ISME J. 2016;10:2773–9.PubMed
PubMed Central
Article
Google Scholar
Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf. 2015;14:336–56.Article
Google Scholar
Litchman E. Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13:1560–72.PubMed
Article
Google Scholar
Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24:1942–53.PubMed
Article
Google Scholar
Hawkes CV, Connor EW. Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes. Journal. 2017;1:57–69.
Google Scholar
Meyer KM, Leveau JH. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621–9.PubMed
Article
Google Scholar
Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 2011;5:1108–14.PubMed
PubMed Central
Article
Google Scholar
Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ. 2014;29:123–35.Alegbeleye OO, Singleton I, Sant’Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol. 2018;73:177–208.PubMed
PubMed Central
Article
Google Scholar
Johannessen GS, Bengtsson GB, Heier BT, Bredholt S, Wasteson Y, Rørvik LM. Potential uptake of Escherichia coli O157: H7 from organic manure into crisphead lettuce. Appl Environ Microbiol. 2005;71:2221–5.CAS
PubMed
PubMed Central
Article
Google Scholar
Fett WF. Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot. 2006;69:719–28.PubMed
Article
Google Scholar
Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. Phytopathology. 2013;103:316–25.PubMed
Article
Google Scholar
Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol. 2019;84:103241.PubMed
Article
Google Scholar
Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, et al. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol. 2021;131:1564–77.CAS
PubMed
PubMed Central
Article
Google Scholar
Williams TR, Moyne A-L, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8:e68642.CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, et al. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. 2018;94:fiy135.CAS
PubMed
Article
Google Scholar
Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015;15:1–13.CAS
Article
Google Scholar
Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J, Chattopadhyay S, et al. Creek to rable: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci Total Environ. 2019;666:461–71.CAS
PubMed
Article
Google Scholar
Gu G, Yin H-B, Ottesen A, Bolten S, Patel J, Rideout S, et al. Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes J. 2019;3:137–47.Article
Google Scholar
Obayomi O, Edelstein M, Safi J, Mihiret M, Ghazaryan L, Vonshak A, et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology Fertility Soils. 2020;56:729–42.CAS
Article
Google Scholar
Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One. 2018;13:e0199291.PubMed
PubMed Central
Article
Google Scholar More