More stories

  • in

    A sea change in craft brewing

    New wave: Petar Puškarić used yeast isolated from the Adriatic Sea to make a beer that he named Morski Kukumar (Sea Cucumber).Credit: Marin Ordulj

    Petar Puškarić is an engineer, ecologist and head of beer production at LAB Split, a craft brewery in Split, Croatia. He graduated with a master’s degree from the department of marine studies at the University of Split last year, after successfully making a beer from Candida famata, a yeast that can be isolated from sea water. He now hopes to brew this sea-yeast beer commercially. He speaks to Nature about some of the challenges in going from dissertation to commercialization.How did your marine-yeast beer come about?I’ve had an interest in brewing beer for a long time, and started brewing as a hobby when I was a student. During a marine-microbiology lecture as part of my undergraduate degree in ecology, my mentor Marin Ordulj and I started to talk about marine yeasts, and one question led to another. We wondered whether sea yeast could ferment beer.We researched the literature and could not find anyone who had made a beer with a yeast isolated from the sea. Perhaps we could become the first to do so? The idea stayed with me for a few years as I continued my degree and moved on to my master’s course. When I came to choose my dissertation topic, I decided it was time to put the idea to the test. I discussed things with Marin, and he agreed to help me plan an experiment. By then, I was working part-time at the LAB Split brewery, so I had some brewing experience to bring to our investigations.Our first task was to isolate yeasts from the sea. We then tested the fermentation abilities of the isolated yeasts and grew cultures from the most promising samples. Finally, we used those cultures to brew beer.How did you manage your time between brewing and your degree?I wasn’t overorganized, but I always made sure to be disciplined and to do whatever was needed as tasks came along. I kept active outside work as well, continuing to play as a mandolinist in an orchestra, for example.I didn’t think too strictly about my career, and made time to do the things I enjoyed. I’d recommend that other students also try to enjoy life and spend as much time as possible with friends. After all, life is not just about building a career. I was lucky in proposing a graduate topic that I found interesting and that my mentor liked: that helped me through the duller and more difficult moments.What was the hardest part of the process?The biggest problem was created by marine bacteria, which would outgrow the yeast colonies and thus make the isolation of yeast more difficult. We tackled this problem by using selective nutrient media, which inhibit the growth of bacteria. Eventually, this resulted in pure yeast cultures.What did the beer taste like?The first beer tasting after all that research, thinking and anticipation was really exciting. We noted clove and fruit aromas and a slightly sour tone. It didn’t carry the taste of the sea; the flavour was closest to that of sour beer.What impact do you hope this work will have?The beer is an exciting product of my graduate work, but I also hope that my thesis will encourage others to explore in more detail the yeasts in the Adriatic Sea, and to realize their potential in ecology, medicine and nutrition. Split is on the Adriatic coast and I like the idea that we’re contributing in some small way to protecting that coastline.Sea Cucumber, as we’ve named the beer, might not help much directly in that regard, but I do hope that it could raise awareness about how many useful things there are in the sea.Are you planning on taking the sea yeast further in your career?Any experience in microbiology helps in the food industry. Sea yeast might turn out to be useful in brewing, but we have to consider the finances and infrastructure we’d need to support its use commercially. For now, we’re concentrating on brewing more standard beers. In the future, I hope to brew some of my own recipes, whether Sea Cucumber or something else. I would definitely like to combine brewing with the search for new yeasts that can be used not only in beer making, but in other industries as well. More

  • in

    Optimal strategies and cost-benefit analysis of the $${varvec{n}}$$ n -player weightlifting game

    PreliminariesTo unify all the five classes of two-by-two games, Yamamoto et al.35 introduced the weightlifting game. In this game, each player either cooperates or defects in carrying a weight. Players who carry the weight pay a cost, (cge 0). The weight is successfully lifted with probability ({p}_{i}), where (i=mathrm{0,1},2) is the total number of cooperators and ({p}_{i}) increases with the number of cooperators (i). If the cooperators succeed, both players receive a benefit (b >0). However, in case of failure, both players gain nothing. The pay-off of the cooperators is (b{p}_{i}-c), and the pay-off of the defectors is (b{p}_{i}) (Table 2). In terms of the parameters (Delta {p}_{1}={p}_{1}-{p}_{0}) and (Delta {p}_{2}={p}_{2}-{p}_{1}), which represents the increase in the probability of success due to an additional cooperator, the following inequalities are obtained for the pay-offs (R, T, S), and (P) (Table 1):

    (i)

    (Delta {p}_{1} >c/b) for (S >P),

    (ii)

    (Delta {p}_{2} >c/b) for (R >T), and

    (iii)

    (Delta {p}_{1}+Delta {p}_{2} >c/b) for (R >P).

    Table 2 Pay-off table of two-person weightlifting game.Full size tablePD satisfies only (iii), CH satisfies (i) and (iii), SH satisfies (ii) and (iii), DT satisfies none of the three conditions, and CT satisfies all three. In 2021, Chiba et al.1 studied the evolution of cooperation in society by incorporating environmental value in the weightlifting game. They found that the evolution of cooperation seems to follow a DT to DT trajectory, which can explain the rise and fall of human societies.The ({varvec{n}})-player weightlifting gameIn this study, we generalize the weightlifting game to (n)-players. Suppose (n) self-interested and rational individuals selected from a population of infinite size. The (n) players are asked to lift a weight. Each individual (or player) can decide to either carry the weight (cooperate, (C)) or not carry/pretend to carry the weight (defect, (D)). Players who decide to carry the weight can either succeed or fail. The probability of successful weightlifting is denoted by ({p}_{i}), (i=mathrm{0,1},dots ,n), where (i) indicates the number of cooperators (henceforth, (i) always represents the number of cooperators). The probability of success increases with the number of individuals cooperating, and it may remain less than unity even if all (n) individuals cooperate. Players who decide to carry the weight pay a cost, (cge 0), regardless of the outcome, while those who defect need not pay anything. If the cooperators succeed, all (n) individuals receive a benefit (bge 0). There is no penalty for failure. We use the expected gains/losses of the players as the pay-off. If there are (i-1) cooperative players, then the pay-off of (j) is ({B}_{C}left(iright)=b{p}_{i}-c) when (j) cooperates and ({B}_{D}left(i-1right)=b{p}_{i-1}) when (j) defects. The number of cooperators differs by one, since in ({B}_{C}left(iright)), there is an additional cooperator, which is (j) him- or herself. To decide whether to cooperate or defect, all players weigh their expected gain and rationally choose the option with the highest expected gain. The graphical outline of this game is illustrated in Fig. 1 (see also Supplementary Figure S1 for the flow of the game). The pay-off table for a four-player game is shown as an example in Table 3. Here, player (1) is the innermost row (strategies are listed in the second column of the table), player (2) is the innermost column (strategies are listed in the second row of the table), and the succeeding players take the succeeding rows or columns (we enter the first player as a row player and the following player as a column player and continue in this order). Each cell represents players’ pay-offs, with the first component being the pay-off for the first player, the second for the second player, and so on. For instance, consider the entry in the first row and third column, where players (1, 2) and (3) cooperate but player (4) defects. The pay-offs of players (1) to (3) are ({B}_{C}(3)), while the pay-off of player (4) is ({B}_{D}left(3right)). In the above example, there are as many row players as column players because the number of players is even. However, we can have one more player in the rows than in the columns if there is an odd number of players.Figure 1A schematic diagram of the n-player weightlifting game. In this game, players decide whether to cooperate or defect in carrying the weight. Cooperators need to pay a cost. The weightlifting can either succeed or fail. In case of success, all players receive a benefit. In case of failure, all players receive nothing. The player’s pay-off depends on the benefit, cost and probability of success. Each player decides whether to cooperate or defect so as to maximize the expected gain.Full size imageTable 3 Pay-off table of four-player weightlifting game.Full size tableNash equilibrium and pareto optimal strategiesHere we present the Nash equilibrium and Pareto optimal strategies of the (n)-player weightlifting game in terms of the cost-to-benefit ratio (c/b) and probability of success ({p}_{i}). The Nash equilibrium consists of the best responses of each player. Players have no incentive to deviate from this strategy profile since deviation will not increase an individual’s pay-off if the other players maintain the same strategy. If ({B}_{C}(i)ge {B}_{D}(i-1)), the best response of player (j) is to cooperate, but if ({B}_{C}(i)le {B}_{D}(i-1)), the best response is to defect.We have (Delta {p}_{i}={p}_{i}-{p}_{i-1}ge 0) for the increase in the probability of success because the probability ({p}_{i}) increases with the number of cooperators (i). It is convenient to divide cases depending on whether (Delta {p}_{i} >c/b) or (Delta {p}_{i} More

  • in

    Searching the web builds fuller picture of arachnid trade

    Our online sampling methods largely follow protocols detailed in3,4, though we limited our online searches to online shops and did not extend to social media. Large portions of code are directly re-used from those papers, although we provide modified code with this paper additionally. For keyword searches and data review we used R v.4.1.149 via RStudio v.1.4.110350, and made wide use of functions supplied by the anytime v.0.3.951, assertthat v.0.2.152, dplyr v.1.0.753, glue v.1.4.254, lazyeval v.0.2.255, lubridate v.1.7.1056, magrittr v.2.0.157, 17urr v.0.3.458, reshape2 v.1.4.459, stringr v.1.4.060, and tidyr v.1.1.361 other specific package uses are listed during the methods description. We used the grateful v.0.0.362 package to generate citations for all R packages. Code and data used to produce figures and summary data are also available at: 10.5281/zenodo.5758541.Website sampling and searchWe searched for contemporary arachnid selling websites using the Google search engine and targeted nine languages (English, French, Spanish, German, Portuguese, Japanese, Czech, Polish, Russian). Terms were created to be inclusive, so only spiders and scorpions were on the initial search string as specialist groups may exist for either, but are unlikely for smaller arachnid groups, which were often listed under “other” in online shops. Terms were selected to be encompassing so that any sites listing variants of “spider” or mentioning arachnid in the chosen language were selected. Whilst some groups such as tarantulas are more popular as pets such sites will not omit translations of spider and should also be captured in the search, hence Terraristika (as was shown in previous analysis of amphibians and reptiles) listed the greatest number of species, despite not being a specialist site. We used the localised versions of each of these languages with the following Boolean search strings:

    English: (Spider OR scorpion OR arachnid) AND for sale

    French: (Araignée OR scorpion OR arachnide) AND à vendre

    Spanish: (Araña OR escorpión OR arácnido) AND en venta

    German: (Arachnoid OR Spinne OR Skorpion OR Spinnentier) AND zum Verkauf

    Portuguese: (Aranha OR escorpião OR aracnídeo) AND à venda

    Japanese: (クモ OR サソリ OR クモ型類) AND (中村彰宏 OR 販売)

    Czech: (Pavouk OR Štír OR pavoukovec) AND prodej

    Polish: (Pająk OR Skorpion OR pajęczak) AND sprzedaż

    Russian: Продажа пауков OR скорпионов

    We undertook these searches in a private window in the Firefox v.92.0.1 browser63 to limit the impacts of search history. These keywords were used to identify sites which may be selling arachnids, which could then be checked before a comprehensive scrape.For each language, we downloaded the first 15 pages of results between 2021-06-06 and 2021-07-07 (or fewer in the result that the search returned fewer than 15 pages: German 8 pages and Spanish 14 pages). This resulted in ~1270 sites that could potentially be selling arachnids. After removing duplicates and simplifying the URLs (so all ended in.com,.org,. co.uk etc.; Code S1), we reviewed each site for the following criteria (2021-07-31 to 2021-08-02): whether they sell arachnids, the type of site (trade or classified ads), the order arachnids were listed in (e.g., date or alphabetical), the best search method for gather species appearances (see below for hierarchical search methods), a refined target URL listing species inventory, the number of pages within the website potentially required to cycle through, and if the search method required a crawl, whether the site explicitly forbade crawling data collection and whether we could limit the crawl’s scope with a filter on downstream URLs. Finally, we assigned all suitable sites with a unique ID. We have made a censored version of the website review results available in Data S1. In addition to the systematic search for arachnid trade, we added 43 websites discovered ad hoc from links on previously discovered sites (many listed online shops), those listed in other journal articles on invertebrate trade (i.e.,6) or from discussion with informed colleagues (between 2021-08-07 and 2021-09-15). After reviewing these ad hoc sites (2021-08-07 to 2021-09-15), we had a combined total of 111 sites to attempt to search for the appearance of arachnid species.Our searches of websites took one of five forms (Code S2), designed to minimise server load and limit the number of irrelevant pages searched, while ensuring we captured the pages listing species. We prioritised using the lowest/simplest search method possible for each site.Single page or PDFFor websites that listed their entire arachnid stock on a single page, we retrieved that single page using the downloader v.0.4 package64. In cases where the inventory was listed in a PDF, we manually downloaded the PDF and used pdftools v.3.0.165 to assess the text.CycleSome websites had large stocklists split across multiple pages that could be accessed sequentially. In these cases, we used the downloader v.0.4 package64 to retrieve each page, as we cycled from page 1 to the terminal page identified during the website review stage. Two sites required a slight modification to the page cycling process: as the sequential pages were not defined by pages, but by the number of adverts displayed. In these instances, we cycled through all adverts 20 adverts at a time (i.e., matching the default number displayed at a time by the site). For all cycling we implemented a 10 s cooldown between requests to limit server load.Level 1 crawlFor websites that split their stock between multiple pages, but with no sequential ordering, we used a level 1 crawl, via the Rcrawler v.0.1.9.1 package66 to access them all. For example, where a site had an “arachnid for sale” page, but full species names existed only in linked pages (e.g., “tarantulas”, “scorpions”).Cycle and level 1 crawlSome websites required a combined approach, where stock was split sequentially across pages, and the species identities (i.e., scientific names) required accessing the pages linked to from the sequential pages. In these cases, we ran the initial sequential sampling followed by a level 1 crawl.Level 2 crawlWhere level 1 crawls were insufficient to cover all species sold on a site, we used a level 2 crawl to reach all pages listing species. This tended to be the case on websites with multiple categories to classify and split their stock (e.g., “arachnid”—“spider”—“tarantula”).For all crawls, we used a cooldown of 20 s between requests to limit server load, and where possible we limited the scope of the crawl (i.e., linked pages to be retrieved) using a key phrase common to all stock listing pages (e.g., “/category=arachnid/”).In addition to the sampling of contemporary sites, we explored the archived pages available for https://www.terraristik.com via the Internet Archive (2002–201967). Terraristika had been previously shown as a major contributor to traded species lists4, and the website’s age and accessibility via the internet archive meant it was one of the few websites where temporal sampling was feasible. We used pages retrieved via the Internet Archive’s Wayback machine API68, via code created for3,4. The code used was based on the wayback v.0.4.0 package69, but additionally made httr v.1.4.270, jsonlite v.1.7.271, downloader v.0.464, lubridate v.1.7.1056, and tibble v.3.1.3 packages72 (Code S3).Keyword generationWe relied on multiple sources to build a list of arachnid species (spiders, scorpions and uropygi). For spiders we used the WSC (ref. 18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18). We filtered the WSC dataset to remove subspecies, then used a combination of rvest v.1.0.173, dplyr v.1.0.753, and stringr v.1.4.0 packages60 (see Code S4) to query the online version of the WSC database to retrieve all synonyms for each species. Where the synonyms were listed with an abbreviated genus, we replace the abbreviation with the first instance of a genus that matched the first letter of the abbreviation.We combined the WSC data with a list manually retrieved from the Scorpion Files74 (https://www.ntnu.no/ub/scorpion-files/index.php; accessed 2021-09-19). For the uropygi species, we combined species listings from Integrated Taxonomic Information System (ITIS75; https://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=source&search_id=source_id&search_id_value=1209 and https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&anchorLocation=SubordinateTaxa&credibilitySort=TWG%20standards%20met&rankName=ALL&search_value=82710&print_version=SCR&source=from_print#SubordinateTaxa; accessed 2021-09-19) and the Western Australian Museum76 (http://www.museum.wa.gov.au/catalogues-beta/browse/uropygi; accessed 2021-09-19). We were unable to source reliable data on all scorpion and uropygi synonyms; therefore, we used all names listed from all sources, but made note of those names considered nomen dubium. Our final keyword list contained 52,111 species, 94,184 different species names, with mean of 1.81 SE ± 0.01 terms per species (range 1–61). For summaries of total species, we relied on the species classed as accepted by the species databases (WSC, Scorpion Files, ITIS and the Western Australian Museum).Keyword searchWe successfully retrieved 3020 pages from 103 websites (mean = 28.78 SE ± 11.42, range: 1–1077), and used a further 4668 previously archived pages. To prepare each of the retrieved web pages for keyword searching, we removed all double spaces, html elements, and non-alpha-numeric characters, replacing them with single spaces (Code S5). For this process we used rvest v.1.0.173, XML v.3.99.0.877, and xml2 v.1.3.278 packages. This process increased the chances that genus and species epithets would appear in a compatible format when compared to our keyword list. The process was not able to repair abbreviated genera, or aid detection where genus and species epithet were not reported side-by-side.Due to the large number of species we were forced to adapt previous searching methods, instead implementing a hierarchical genus-species search (Code S6). We searched each retrieved page for any mention of genera, then only searched for species that were contained within that genus. We did not differentiate whether the genus was currently accepted or old, so if a species had ever belonged to a genus it was included in the second stage of the search. The specifics of the keyword search used case-insensitive fixed string matching (via the stringr v.1.4.0 package60). While collation string matching would have helped detect species with differently coded ligatures or diacritic marks, the occurrence of ligature and diacritic marks are infrequent in scientific names and did not warrant the considerably increased computational costs.Via the keyword search we recorded all instances of genus matches, species matches, the website ID, and the page number. We also collected the words surrounding a genus match (3 prior and four after) as a means of exploring common terms that may be used to describe the genera.We provide the compiled outputs from searching contemporary and historic pages in Data S2–S4. Prior to combining these two datasets into a final list of traded species, and summarising the overall patterns, we cleaned out instances of spurious genera and species detections. Predominantly this included short genera names that could appear at the start of longer words (e.g., terms such as: “rufus”, “Dia”, “Diana”, “Mala”, “Inca”, “Pero”, “May”, “Janus”, “Yukon”, “Lucia”, “Zora”, “Beata”, “Neon”, “Prima”, “Meta”, “Patri”, “Enna”, “Maso”, “Mica”, “Perro”; we already implemented a filter that required genera to be preceded by a space and thus these were not part of the species name). We are confident these genera should be excluded, as none had species detected within them.Trade database and third-party dataWe downloaded United States Fish and Wildlife Service’s LEMIS data compiled by79,80 from https://doi.org/10.5281/zenodo.3565869 (Data S5). We filtered the LEMIS data to records where the class was listed as Arachnida (Code S6).We downloaded the Gross imports data from the CITES trade database from the website and filtered to Class Arachnid, years 1975–202181 (accessed 2021-09-15; Data S6), and downloaded the CITES appendices filtered to arachnids82 (Data S7).We downloaded the IUCN Redlist assessments for arachnids from https://www.iucnredlist.org83 (accessed 2021-09-15; Data S8).Species summary and visualisationWe compiled all sources of trade data (online, LEMIS, CITES) into a single dataset detailing which genera/species had been detected in each source (Data S9 and Code S7). We used two criteria to determine detection, whether there was an exact match with an accepted genus/species or whether there was a match to any historically used genera/species name. Because of splits in genera, the “ANY genera” matching is likely overly generous. For broad summaries we rely on the “ANY species” name matching.We used cowplot v.1.1.184, ggplot2 v.3.3.585, ggpubr v.0.4.086, ggtext v.0.1.187, scales v.1.1.188, scico v.1.2.089, and UpSetR v.1.4.090 to generate summary visuals (Code S8; Code S9). We added additional details to the upset plot and modified the position of plot labels using Affinity Designer v.1.10.391. We also used Affinity Designer to create the Uropygid silhouette for Fig. 1. We obtained public domain licensed spider and scorpion silhouettes from http://phylopic.org/ (https://phylopic.org/image/d7a80fdc0-311f-4bc5-b4fc-1a45f4206d27/; http://phylopic.org/image/4133ae32-753e-49eb-bd31-50c67634aca1/).Descriptions and coloursWe explored the lag time between species descriptions, and their detection in LEMIS or online trade (Code S10). We relied on the description dates provided alongside the lists of species names. Unlike the broader summaries, we restricted explorations of lag times to species detected only via exact matches (operating under the assumption that newly described species traded swiftly after description would be using the modern accepted name). We distinguished between those species detected only in the complementary data, as the earliest trade date was not known; therefore, our summaries of lag time are based on those species detected in a particular year either via LEMIS or temporal online trade.Following a visual inspection of sites where we often noticed listings with either colour or localities (e.g., “Chilobrachys spp. “Electric Blue” 0.1.3. Chilobrachys sp. “Kaeng Krachan” 0.1.0. Chilobrachys spp. “Prachuap Khiri Khan”: Data S9). We explored the words that surrounded detected genera. After using the forcats v.0.5.192, stringr v.1.4.060, and tidytext v.0.3.193 package to compile common terms and remove English stop words, we determine colour was frequently mentioned (Code S11). To filter out non-colour words, we used wikipedia’s list of colours (https://en.wikipedia.org/wiki/List_of_colors:_N%E2%80%93Z). Once cleaned, we further removed terms that are ambiguously colour related (e.g., “space”, “racing”, “photo”, “boy”, “bean”, “blaze”, “jungle”, “mountain”, “dune”, “web”, “colour”, “rainforest”, “tree”, “sea”). We then summarised this data as the counts of instances where a genus appeared alongside a given colour term (n.b., counts are therefore impacted by any underlying imbalances in how many times a site mentioned a genus). We plotted all colours using the same hex codes listed on the wikipedia page, with the exception of “cobalt”, “grey”, “metallic”, “slate”, “electric”, “dark”, “sheen”, and “chocolate” that required manual linking to a hex code.Summary of trade numbersWe summarised LEMIS data using a number of filters (Code S12). Following3,4,94, we limited our summaries to items that feasibly can be considered to represent whole individuals (LEMIS code = Dead animal BOD, live eggs (EGL), dead specimen (DEA), live specimen (LIV), specimen (SPE), whole skin (SKI), entire animal trophy (TRO)). We describe the portion of trade that is prevented (i.e., seized, where disposition == “S”). We classed non-commercial trade as anything listed as for Biomedical research (M), Scientific (S), or Reintroduction/introduction into the wild (Y). For captive vs. wild summaries, we treated all Animals bred in captivity (C and F), Commercially bred (D), and Specimens originating from a ranching operation (R) as originating from captivity. We only included animals listed as Specimens taken from the wild (W) in wild counts. The few instances that fell outside of our defined captive vs. wild categorisation are treated as other. For summaries of wild capture per genus, we relied entirely on LEMIS’s listings of genera, making no effort to determine synonymisations. We did filter out those listed only as “Non-CITES entry” or NA. We used the countrycode v.1.3.095 package to help plot the LEMIS countries of origin. Taxonomy represents an ongoing challenge, we were limited to recognising the species listed in the aforementioned databases, generating synonym lists from these sources, and attempting to reconcile these lists. Rapid rates of species description means that compiling comprehensive lists can be challenging, and species may be traded under junior synonyms or old names, and newer descriptions may not have been added to sites96. We were also limited to platforms that advertised using text not images, as images can be challenging to identify accurately.MappingMapping species is challenging due to the lack of standardised data on species distributions. Spider distributions were mapped based on the data in the World Spider Catalogue (Data S12). Firstly, the localities associated with each species were collated into four spreadsheets based on the data provided in the WSC (WSC18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18), these listed (1) country, (2) region, (3) “to” (where the range was given as one country to another) and (4) Island.Before processing any “introduced” localities were removed, the four sheets were then checked for any simple spelling errors (in islands file) or mislistings (i.e., regions in the islands file). Country data were cross-referenced with the names of country provided by Thematic Mapper to standardise them (https://thematicmapping.org/; Data S11). This was done by uploading data into Arcmap and using joins and connects to connect it to the standard country name file, and any which could not be paired were corrected to ensure all could be successfully digitised.Regions were digitised based on accepted names of different regions and included 33 different regions (see supplements) for each of these the standard accepted area within each of these regions was searched online to determine the accepted boundaries. These were then selected from the Thematic mapper, exported and labelled with the corresponding region. Once this was completed for all 33 regions they were merged and exported to a geodatabase. The spreadsheet listing regional preferences of each species was also uploaded to Arcmap 10.3, then exported into the geodatabase, then connected to a regional map using joins and relates to connect the regional preferences from the spreadsheet to the shapefiles. The new dbf was then exported to provide a listing of each species and each country in the region it was connected to, and then copied into the same csv as the corrected country listings.For preferences listed as “to” we first separated each country listed in the “to” listings into a separate column, then developed a list of species and each of the countries listed in the “to” list (which was frequently between 5–6). These were then corrected to the standard names from thematic mapper for both countries and the regions used in the previous section. We then merged the countries and regions file and added fields of geometry in ArcMap to provide a centroid for each designated area. This table was then exported and joined and connected to the species in the “to” file. This data was then converted to point form and turned to a point file, then a minimum convex polygon (convex hulls) developed for each species to connect the regions between all those listed. These species specific minimum convex polygons were then intersected with the countries from Thematic mapper, and then dissolve was used to form a shapefile that just listed species and all the countries between those ranges. This was then exported and merged with the listings from countries and regions.The islands file included both independent islands (which needed names corrected, or archipelago names given) and those that fall within a national designation. For those islands we replaced the island name with that of the country, as listings of species may be particularly poor, and tiny non-independent islands are not visible in the global-scale analysis.This forth database table was then merged with the former three, and remove duplicates used to remove any duplicate entries, as species often had individual countries listed in additions to regions or “to”. This was then uploaded into Arcmap and exported to a geodatabase file then connected to the original Thematic mapper file and exported to the geodatabase to yield 134,187 connections between species and countries. This was then connected to our main analysis to include the trade status, and CITES and IUCN Redlist status for each species for further analysis.Scorpion data was considerably messier than that on the world spider catalogue. Firstly, we downloaded all scorpion data from iNaturalist and GBIF97,98 (search; scorpions), removed duplicates, then cross-referenced these with the thematic mapper file within Quantum GIS. Species listed in regions where they were clearly not native (i.e., a species listed in the UK when the rest of that species or genus were in Australia) were removed, and all extinct species were excluded.In addition, all the “update files” were downloaded from the “Scorpion files”, the PDFs collated then using smallpdf tools the tables were extracted into excel form and cleaned to include just species and country listing. This was added to the countries listed for species within99 and100 though this was restricted to a subset of species. The data were all collated into an excel file with the species name, and country listing. This was then added to all the data from https://scorpiones.pl/maps/. These maps have a good coverage of species countries, but are apparently no longer being updated (Jan Ove Rein pers comm 2021) hence the need for further data to provide complete and updated and comprehensive coverage for all species. Country names were then standardised based on the Thematic Mapper standards (Data S13 and Data S11). Species names were then cross-referenced to those listed in the Scorpion files, any not matching were checked as synonyms and converted to the accepted name (though the only collated data for Scorpion synonyms was on French-language Wikipedia, i.e., see https://fr.wikipedia.org/wiki/Bothriurus). Once all country and species names were corrected this provided a listing of 4059 species-country associations. These were then associated with country files in the same way as spiders. We plotted spider and scorpion species/genera, as well as LEMIS origins, using ggplot285, combining Thematic world border data (https://thematicmapping.org/) with summaries of species/genera/and trade levels. Species listed in a single-country (and thus more likely to be country endemic) were also counted using summary statistics, so that species most vulnerable to trade could be noted separately.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Distribution of invasive versus native whitefly species and their pyrethroid knock-down resistance allele in a context of interspecific hybridization

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    Wilcove, D. S. & Chen, L. Y. Management costs for endangered species. Conserv. Biol. 12, 1405–1407 (1998).
    Google Scholar 
    Singer, M. C., Wee, B., Hawkins, S. & Butcher, M. Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies in The Evolutionary Biology of Herbivorous Insects: Speciation, Specialization and Radiation (ed. Tilmon, K. J.). 311–324. (University of California Press, 2008).Ruesink, J. L., Parker, I. M., Groom, M. J. & Kareiva, P. M. Reducing the risks of nonindigenous species introductions. Bioscience 45, 465–477 (1995).
    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).
    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).ADS 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 

    Google Scholar 
    Blackburn, T. M. & Jeschke, J. M. Invasion success and threat status: two sides of a different coin?. Ecography 32, 83–88 (2009).
    Google Scholar 
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).PubMed 

    Google Scholar 
    Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Natl. Acad. Sci. USA 97, 7043–7050 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhoeven, K. J. F., Macel, M., Wolfe, L. M. & Biere, A. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278, 2–8 (2011).
    Google Scholar 
    Brevik, K., Lindström, L., McKay, S. D. & Chen, Y. H. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr. Opin. Insect Sci. 26, 34–40 (2018).PubMed 

    Google Scholar 
    Kirk, W. D. J. & Terry, L. I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. Forest. Entomol. 5, 301–310 (2003).
    Google Scholar 
    Piiroinen, S., Lyytinen, A. & Lindström, L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6, 313–323 (2013).PubMed 

    Google Scholar 
    Margus, A. et al. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Vais, H., Williamson, M. S., Devonshire, A. L. & Usherwood, P. N. R. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57, 877–888 (2001).CAS 
    PubMed 

    Google Scholar 
    Smith, L. B., Kasai, S. & Scott, J. G. Voltage-sensitive sodium channel mutations S989P+ V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Manag. Sci. 74, 737–745 (2018).CAS 
    PubMed 

    Google Scholar 
    Guerrero, F. D., Jamroz, R. C., Kammlah, D. & Kunz, S. E. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: Identification of kdr and super-kdr point mutations. Insect Biochem. Mol. 27, 745–755 (1997).CAS 

    Google Scholar 
    Morin, S. et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. 32, 1781–1791 (2002).CAS 

    Google Scholar 
    Kasai, S. et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn. J. Infect. Dis. 64, 217–221 (2011).CAS 
    PubMed 

    Google Scholar 
    Brito, L. P. et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8, e60678 (2013).ADS 
    MathSciNet 

    Google Scholar 
    De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).PubMed 

    Google Scholar 
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Google Scholar 
    Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).CAS 
    PubMed 

    Google Scholar 
    Mugerwa, H. et al. African ancestry of new world, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanakala, S. & Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14, e0213946 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, J. et al. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondr. DNA Part DNA Mapp. Seq. Anal. 29, 474–484 (2018).Vyskocilova, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheek, S. & Macdonald, O. Statutory controls to prevent the establishment of Bemisia tabaci in the United Kingdom. Pestic. Sci. 42, 135–137 (1994).CAS 

    Google Scholar 
    Horowitz, A. R. et al. Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 94–98 (2003).
    Google Scholar 
    Basit, M. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47, 207–225 (2019).CAS 

    Google Scholar 
    Horowitz, A. R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58, 216–225 (2005).CAS 
    PubMed 

    Google Scholar 
    Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R. & Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 93, 893–910 (2020).
    Google Scholar 
    Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. B. Entomol. Res. 95, 29–35 (2005).CAS 

    Google Scholar 
    Peterschmitt, M. et al. First report of tomato yellow leaf curl virus in Réunion Island. Plant Dis. 83, 303 (1999).CAS 
    PubMed 

    Google Scholar 
    Delatte, H., Lett, J.-M., Lefeuvre, P., Reynaud, B. & Peterschmitt, M. An insular environment before and after TYLCV introduction in Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance (ed. Czosnek, H.). 13–23. (Springer, 2007).Delatte, H. et al. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet. Res. 87, 109–124 (2006).CAS 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms. B. Entomol. Res. 101, 487–497 (2011).CAS 

    Google Scholar 
    Thierry, M. et al. Mitochondrial, nuclear, and endosymbiotic diversity of two recently introduced populations of the invasive Bemisia tabaci MED species in La Réunion. Insect. Conserv. Divers. 8, 71–80 (2015).
    Google Scholar 
    Tsagkarakou, A. et al. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic. Biochem. Phys. 94, 49–54 (2009).CAS 

    Google Scholar 
    Delatte, H. et al. Differential invasion success among biotypes: case of Bemisia tabaci. Biol. Invasions 11, 1059–1070 (2009).
    Google Scholar 
    Chu, D., Tao, Y.-L., Zhang, Y.-J., Wan, F.-H. & Brown, J. K. Effects of host, temperature and relative humidity on competitive displacement of two invasive Bemisia tabaci biotypes [Q and B]. Insect Sci. 19, 595–603 (2012).
    Google Scholar 
    Chu, D., Wan, F. H., Zhang, Y. J. & Brown, J. K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 39, 1028–1036 (2010).PubMed 

    Google Scholar 
    Pascual, S. & Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. B. Entomol. Res. 94, 369–375 (2004).CAS 

    Google Scholar 
    Pan, H. et al. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25, 1585–1595 (2015).PubMed 

    Google Scholar 
    Shatters, R. G. et al. Population genetics of Bemisia tabaci biotypes B and Q from the Mediterranean and the U.S. inferred using microsatellite markers. in Fourth International Bemisia Workshop International Whitefly Genomics Workshop (3–8 December 2006). (Duck Key: USDA/ARS US Horticultural Research Laboratory, 2006).McKenzie, C. L. & Osborne, L. S. Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Fla. Entomol. 100, 481–484 (2017).
    Google Scholar 
    Guo, X.-J. et al. Diversity and genetic differentiation of the whitefly Bemisia tabaci species complex in China based on mtCOI and cDNA-AFLP analysis. J. Integr. Agr. 11, 206–214 (2012).CAS 

    Google Scholar 
    Prabhaker, N., Castle, S., Henneberry, T. J. & Toscano, N. C. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). B. Entomol. Res. 95, 535–543 (2005).CAS 

    Google Scholar 
    Taquet, A. et al. Insecticide resistance and fitness cost in Bemisia tabaci (Hemiptera: Aleyrodidae) invasive and resident species in La Réunion Island. Pest Manag. Sci. 76, 1235–1244 (2020).CAS 
    PubMed 

    Google Scholar 
    Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thierry, M. et al. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol. Ecol. 20, 2172–2187 (2011).CAS 
    PubMed 

    Google Scholar 
    Gauthier, N. et al. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. Pest Manag. Sci. 70, 1477–1491 (2014).CAS 
    PubMed 

    Google Scholar 
    Alon, M. et al. Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. 36, 71–79 (2006).CAS 

    Google Scholar 
    Vassiliou, V. et al. Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci. 18, 30–39 (2011).CAS 

    Google Scholar 
    Gnankiné, O., Hema, O., Namountougou, M., Mouton, L. & Vavre, F. Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Prot. 104, 86–91 (2018).
    Google Scholar 
    Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). B. Entomol. Res. 85, 181–187 (1995).CAS 

    Google Scholar 
    Weill, M. et al. Insecticide resistance: A silent base prediction. Curr. Biol. 14, 552–553 (2004).
    Google Scholar 
    Bouvier, J.-C. et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity (Edinb) 87, 456–462 (2001).CAS 

    Google Scholar 
    Calvert, L. A. et al. Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Ann. Entomol. Soc. Am. 94, 512–519 (2001).CAS 

    Google Scholar 
    Tocko-Marabena, B. K. et al. Genetic diversity of Bemisia tabaci species colonizing cassava in Central African Republic characterized by analysis of cytochrome c oxidase subunit I. PLoS ONE 12, e0182749 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2020).Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed 

    Google Scholar 
    Vähä, J.-P. & Primmer, C. R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63–72 (2006).PubMed 

    Google Scholar  More

  • in

    Online pet shops are crawling with spiders captured in the wild

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Tempo and drivers of plant diversification in the European mountain system

    Hughes, C. E. & Atchinson, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. N. Phytol. 207, 275–282 (2015).Article 

    Google Scholar 
    Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life (Springer, 1999).Smyčka, J. et al. Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps – a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 30, 31–40 (2018).Article 

    Google Scholar 
    Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Haller, A. von. Enumeratio Methodica Stirpium Helvetiae indigenarum. (Officina Academica Abrami Vandenhoek, 1742).de Candolle, A. Sur les causes de l’inégale distribution des plantes rares dans la chaîne des Alpes. Atti del Congr. Internazionale Bot. Tenuto Firenze. 92–104 (1875).Boucher, F. C., Zimmermann, N. E. & Conti, E. Allopatric speciation with little niche divergence is common among alpine Primulaceae. J. Biogeogr. 43, 591–602 (2016).Article 

    Google Scholar 
    Schneeweiss, G. M. et al. Molecular phylogenetic analyses identify Alpine differentiation and dysploid chromosome number changes as major forces for the evolution of the European endemic Phyteuma (Campanulaceae). Mol. Phylogenet. Evol. 69, 634–652 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tkach, N. et al. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon 64, 1159–1187 (2015).Article 

    Google Scholar 
    Favre, A. et al. Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967–1978 (2016).Article 

    Google Scholar 
    Kadereit, J. W., Griebeler, E. M. & Comes, H. Quaternary diversification in European alpine plants: pattern and process. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 265–274 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. 114, E3444–E3451 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). N. Phytol. 210, 1430–1442 (2016).Article 

    Google Scholar 
    Ding, W. N., Ree, R. H., Spicer, R. A. & Xing, Y. W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Roquet, C., Boucher, F. C., Thuiller, W. & Lavergne, S. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J. Biogeogr. 40, 1874–1886 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luebert, F. & Muller, L. A. H. Biodiversity from mountain building. Front. Genet. 6, (2015).Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haffer, J. Speciation in Colombian forest birds west of the Andes. Am. Museum Novit. 2294, 1–58 (1967).Aguilée, R., Claessen, D. & Lambert, A. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution 67, 1291–1306 (2013).PubMed 
    Article 

    Google Scholar 
    Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154 (2016).Article 

    Google Scholar 
    Molina-Venegas, R., Aparicio, A., Lavergne, S. & Arroyo, J. Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot. Ann. Bot. 119, 229–238 (2017).PubMed 
    Article 

    Google Scholar 
    Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. 103, 10334–10339 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pouchon, C. et al. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 67, 1041–1060 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kadereit, J. W. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps—a review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect. Plant Ecol. Evol. Syst. 26, 28–38 (2017).Article 

    Google Scholar 
    Escobar García, P. et al. Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (Senecio carniolicus, Asteraceae). Mol. Ecol. 21, 1255–1270 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohse, K., Nicholls, J. A. & Stone, G. N. Inferring the colonization of a mountain range-refugia vs. nunatak survival in high alpine ground beetles. Mol. Ecol. 20, 394–408 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stehlik, I. Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52, 499–510 (2003).Article 

    Google Scholar 
    Schneeweiss, G. M. & Schönswetter, P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 20, 190–192 (2011).PubMed 
    Article 

    Google Scholar 
    Westergaard, K. B. et al. Glacial survival may matter after all: Nunatak signatures in the rare European populations of two west-arctic species. Mol. Ecol. 20, 376–393 (2011).PubMed 
    Article 

    Google Scholar 
    Bettin, O., Cornejo, C., Edwards, P. J. & Holderegger, R. Phylogeography of the high alpine plant Senecio halleri (Asteraceae) in the European Alps: In situ glacial survival with postglacial stepwise dispersal into peripheral areas. Mol. Ecol. 16, 2517–2524 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomasello, S., Karbstein, K., Hodač, L., Paetzold, C. & Hörandl, E. Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate-montane plant species: a case study on the Ranunculus auricomus species complex. Mol. Ecol. 29, 2031–2049 (2020).PubMed 
    Article 

    Google Scholar 
    Ozenda, P. L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot. Gall. 142, 753–762 (1995).Article 

    Google Scholar 
    Rolland, J., Lavergne, S. & Manel, S. Combining niche modelling and landscape genetics to study local adaptation: A novel approach illustrated using alpine plants. Perspect. Plant Ecol. Evol. Syst. 17, 491–499 (2015).Article 

    Google Scholar 
    Alvarez, N. et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol. Lett. 12, 632–640 (2009).PubMed 
    Article 

    Google Scholar 
    Gao, Y.-D., Gao, X.-F. & Harris, A. Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Front. Plant Sci. 10, 1–16 (2019).Article 

    Google Scholar 
    Knox, E. B. Adaptive radiation of African montane plants. In Adaptive Speciation (eds. Dieckmann, U., Doebeli, M., Metz, J. A. J. & Tautz, D.) 345–361 (Cambridge University Press, 2004).Segar, S. T. et al. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. J. Evol. Biol. 30, 512–523 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pouchon, C. et al. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. Am. J. Bot. 108, 113–128 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luebert, F. & Weigend, M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 1–17 (2014).Article 

    Google Scholar 
    Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).PubMed 
    Article 

    Google Scholar 
    Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012).PubMed 
    Article 

    Google Scholar 
    Gitzendanner, M., Soltis, P., Yi, T.-S., Li, D.-Z. & Soltis, D. Plastome Phylogenetics: 30 years of inferences into plant evolution. In Advances in Botanical Research 293–313 (Elsevier, 2018).Birks, H. H. The late-quaternary history of arctic and alpine plants. Plant Ecol. Divers. 1, 135–146 (2008).Article 

    Google Scholar 
    Mai, D. Tertiäre Vegetationsgeschichte Europas—Metoden und Ergebnisse. (Gustav Fischer Verlag, 1995).Svenning, J. C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6, 646–653 (2003).Article 

    Google Scholar 
    Fauquette, S. et al. The Alps: a geological, climatic and human perspective on vegetation history and modern plant diversity. In Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 413 (Wiley-Blackwell, 2018).Mráz, P. et al. Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. Biol. J. Linn. Soc. 119, 630–648 (2016).Article 

    Google Scholar 
    Puşcaş, M. et al. Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol. Ecol. 17, 2417–2429 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Puşcaş, M., Taberlet, P. & Choler, P. No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers. Distrib. 14, 852–861 (2008).Article 

    Google Scholar 
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quat. Sci. Rev. 95, 60–79 (2014).ADS 
    Article 

    Google Scholar 
    Prodon, R., Thibault, J. C. & Dejaifve, P. A. Expansion vs. compression of bird altitudinal ranges on a Mediterranean island. Ecology 83, 1294–1306 (2002).Article 

    Google Scholar 
    Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).PubMed 
    Article 

    Google Scholar 
    Aguilée, R., Gascuel, F., Lambert, A. & Ferriere, R. Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nat. Commun. 9, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Vargas, P. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52, 463–476 (2003).Article 

    Google Scholar 
    Kruckeberg, A. R. An essay: the stimulus of unusual geologies for plant speciation. Syst. Bot. 11, 455–463 (1986).Article 

    Google Scholar 
    Cowling, R. M. & Holmes, P. M. Endemism and speciation in a lowland flora from the Cape Floristic Region. Biol. J. Linn. Soc. 47, 367–383 (1992).Article 

    Google Scholar 
    Lexer, C. et al. Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restio capensis (Restionaceae). Mol. Ecol. 23, 4373–4386 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anacker, B. L. & Strauss, S. Y. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B Biol. Sci. 281, 20132980 (2014).Article 

    Google Scholar 
    Moore, A. J. & Kadereit, J. W. The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: in situ origin or repeated colonization? Am. J. Bot. 100, 2412–2425 (2013).PubMed 
    Article 

    Google Scholar 
    Guggisberg, A. et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 27, 5088–5103 (2018).PubMed 
    Article 

    Google Scholar 
    Gigon, A. Vergleich alpiner Rasen auf Silikat- und auf Karbonatboden—Konkurrenz—und Stickstofformenversuche sowie standortskundliche Untersuchungen im Nardetum und im Seslerietum bei Davos. (ETH Zuerich, 1971).Davies, M. S. & Snaydon, R. W. Physiological differences among populations of Anthoxanthum odoratum L. collected from the park grass experiment, Rothamsted. I. Response to calcium. J. Appl. Ecol. 10, 33–45 (1973).Article 

    Google Scholar 
    Snaydon, R. W. Rapid population differentiation in mosaic environment. I. The response of Anthoxantum odoratum populations to soils. Evolution 24, 257–269 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohlen, A. & Tyler, G. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann. Bot. 94, 427–432 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kassen, R., Llewellyn, M. & Rainey, P. B. Ecological contraints on diversification in a model adaptive radiation. Nature 431, 984–988 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolář, F. et al. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 25, 3929–3949 (2016).PubMed 
    Article 

    Google Scholar 
    Dentant, C. & Lavergne, S. Plantes de haute montagne: état des lieux, évolution et analyse diachronique dans le massif des Écrins (France). Bull. Soc. linn. Provence 64, 83–98 (2013).
    Google Scholar 
    Dentant, C. The highest vascular plants on Earth. Alp. Bot. 128, 97–106 (2018).Article 

    Google Scholar 
    Boucher, F. C. et al. Reconstructing the origins of high‐alpine niches and cushion life form in the genus Androsace sl (Primulaceae). Evolution 66, 1255–1268 (2012).PubMed 
    Article 

    Google Scholar 
    Boucher, F. C., Lavergne, S., Basile, M., Choler, P. & Aubert, S. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Syst. 20, 22–31 (2016).Article 

    Google Scholar 
    Schönswetter, P. & Schneeweiss, G. M. Is the incidence of survival in interior Pleistocene refugia (nunataks) underestimated? Phylogeography of the high mountain plant Androsace alpina (Primulaceae) in the European Alps revisited. Ecol. Evol. 9, 4078–4086 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aeschimann, D., Rasolofo, N. & Theurillat, J. P. Analyse de la flore des Alpes. 2: Diversité et chorologie. Candollea 66, 225–253 (2011).Article 

    Google Scholar 
    Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910 (2017).Article 

    Google Scholar 
    Hannon, G. FASTX. http://hannonlab.cshl.edu/fastx_toolkit/ (2014).Coissac, E. The ORGanelle ASseMbler 1.0.3. https://git.metabarcoding.org/org-asm/org-asm/wikis/home (2016).Shaw, J. et al. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. Am. J. Bot. 101, 1987–2004 (2014).PubMed 
    Article 

    Google Scholar 
    Mansion, G. et al. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS ONE 7, e50076 (2012).Rossi, M. Taxonomy, phylogeny and reproductive ecology of Gentiana lutea L (University in Bologna, 2011).Hämmerli, M. Molecular Aspects in Systematics of Gentiana Sect. Calathianae Froel (Université de Neuchâtel, 2007).Hungerer, K. B. & Kadereit, J. W. The phylogeny and biogeography of Gentiana L. sect. Ciminalis (Adans.) Dumort.: A historical interpretation of distribution ranges in the European high mountains. Perspect. Plant Ecol. Evol. Syst. 1, 121–135 (1998).Article 

    Google Scholar 
    Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One 6, e22594 (2011).Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kück, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Katoh, K., Kuma, K. I., Toh, H. & Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6 (2014).Article 
    CAS 

    Google Scholar 
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11 (2017).Article 

    Google Scholar 
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).PubMed 
    Article 

    Google Scholar 
    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Editions Belin, 2004).Castroviejo, S. Flora Iberica (Real Jardin Botanico CSIC, 2012).Goliášová, K. & Michalková, E. Flóra Slovenska (Vydavateľstvo Slovenskej akadémie vied, 2012).Speta, E. & Rákosy, L. Wildpflanzen Siebenbürgen (Naturhistorisches Museum Wien, 2010).Sarić, M. Flora Srbije (Srpska akademija nauka i umetnosti, 1992).Schönswetter, P. & Schneeweiss, G. M. Androsace komovensis sp. nov., a long mistaken local endemic from the southern Balkan Peninsula with biogeographic links to the Eastern Alps. Taxon 58, 544–549 (2009).Article 

    Google Scholar 
    Schönswetter, P., Magauer, M. & Schneeweiss, G. M. Androsace halleri subsp. nuria Schönsw. & Schneew. (Primulaceae), a new taxon from the eastern Pyrenees (Spain, France). Phytotaxa 201, 227–232 (2015).Article 

    Google Scholar 
    Schneeweiss, G. M. & Schonswetter, P. The wide but disjunct range of the European mountain plant Androsace lactea L. (Primulaceae) reflects Late Pleistocene range fragmentation and post-glacial distributional stasis. J. Biogeogr. 37, 2016–2025 (2010).
    Google Scholar 
    Webb, D. A. & Gornall, R. J. Saxifrages of Europe (Timber Press, 1989).GBIF. https://www.gbif.org/ (2018).Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Anacker, B. L., Whittall, J. B., Goldberg, E. E. & Harrison, S. P. Origins and consequences of serpentine endemism in the California flora. Evolution 65, 365–376 (2011).PubMed 
    Article 

    Google Scholar 
    Morlon, H. et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).Fitzjohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).PubMed 
    Article 

    Google Scholar 
    O’Meara, B. C. & Beaulieu, J. M. Past, future, and present of state-dependent models of diversification. Am. J. Bot. 103, 792–795 (2016).PubMed 
    Article 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 
    Article 

    Google Scholar 
    Herrera-Alsina, L., Van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).PubMed 
    Article 

    Google Scholar 
    Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B Biol. Sci. 285, (2018).Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).PubMed 
    Article 

    Google Scholar 
    Holland, B. R., Ketelaar-Jones, S., O’Mara, A. R., Woodhams, M. D. & Jordan, G. J. Accuracy of ancestral state reconstruction for non-neutral traits. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).Article 

    Google Scholar 
    Schoener, T. W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408–418 (1970).Article 

    Google Scholar 
    Zhang, J. spaa: SPecies Association Analysis 0.2.2. https://cran.r-project.org/package=spaa (2016).Smyčka, J. Tempo and drivers of plant diversification in the European mountain system. multidiv, https://doi.org/10.5281/zenodo.6341727 (2022). More

  • in

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 11823–11826. https://doi.org/10.1073/pnas.0802891105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104. https://doi.org/10.1371/journal.pbio.2001104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A. V. & Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Global Food Secur. 14, 38–53. https://doi.org/10.1016/j.gfs.2017.03.005 (2017).Article 

    Google Scholar 
    Henry, R. J. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 56, 168–173. https://doi.org/10.1016/j.pbi.2019.11.004 (2020).Article 
    PubMed 

    Google Scholar 
    Stokes, C. & Howden, M. Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future (Csiro Publishing, 2010).Book 

    Google Scholar 
    Bräutigam, K. et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415. https://doi.org/10.1002/ece3.461 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735. https://doi.org/10.1093/jxb/err177 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yaish, M. W. DNA methylation-associated epigenetic changes in stress tolerance of plants. In Molecular Stress Physiology of Plants (eds Rout, G. R. & Das, A. B.) 427–440 (Springer India, 2013).Chapter 

    Google Scholar 
    Suji, K. K. & Joel, A. J. An epigenetic change in rice cultivars underwater stress conditions. Electron. J. Plant Breed. 1, 1142–1143 (2010).
    Google Scholar 
    Peng, H. & Zhang, J. Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Prog. Nat. Sci. 19, 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014 (2009).CAS 
    Article 

    Google Scholar 
    Baduel, P. & Colot, V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos. Trans. R. Soc. B 376, 20200123. https://doi.org/10.1098/rstb.2020.0123 (2021).CAS 
    Article 

    Google Scholar 
    Labra, M. et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 4, 694–699. https://doi.org/10.1055/s-2002-37398 (2002).CAS 
    Article 

    Google Scholar 
    Wang, W.-S. et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 62, 1951–1960. https://doi.org/10.1093/jxb/erq391 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433. https://doi.org/10.1093/aob/mcm307 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomczyk, P. P., Kiedrzyński, M., Jedrzejczyk, I., Rewers, M. & Wasowicz, P. The transferability of microsatellite loci from a homoploid to a polyploid hybrid complex: An example from fine-leaved Festuca species (Poaceae). PeerJ 8, e9227. https://doi.org/10.7717/peerj.9227 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piękoś-Mirkowa, H. & Mirek, Z. Distribution patterns and habitats of endemic vascular plants in the Polish Carpathians. Acta Soc. Bot. Pol. 78, 321–326 (2009).Article 

    Google Scholar 
    Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122(6), 1359–1370. https://doi.org/10.1002/2016JG003629 (2017).Article 

    Google Scholar 
    Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 6, e5576. https://doi.org/10.7717/peerj.5576 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiedrzyński, M. et al. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci. Rep. 11, 18735 (2021).ADS 
    Article 

    Google Scholar 
    Mounger, J. et al. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. B 376, 20200117. https://doi.org/10.1098/rstb.2020.0117 (2021).CAS 
    Article 

    Google Scholar 
    Bewick, A. J. & Schmitz, R. J. Epigenetics in the wild. Elife 4, e07808. https://doi.org/10.7554/eLife.07808 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahu, P. P. et al. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 32(8), 1151–1159. https://doi.org/10.1007/s00299-013-1462-x (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso, C. et al. Interspecific variation across angiosperms in global DNA methylation: Phylogeny, ecology and plant features in tropical and Mediterranean communities. New Phytol. 224(2), 949–960. https://doi.org/10.1111/nph.16046 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19(7), 1283–1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Batog, J. & Wawro, A. Process of obtaining bioethanol from sorghum biomass using genome shuffling. Cellul. Chem. Technol. 53, 459–467 (2019).CAS 
    Article 

    Google Scholar 
    Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article 
    PubMed 

    Google Scholar 
    Li, N. et al. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. 223(2), 979–992. https://doi.org/10.1111/nph.15820 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Róis, A. S. et al. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol. 13(1), 205. https://doi.org/10.1186/1471-2229-13-205 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, A. et al. DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol. Biol. Rep. 29, 784–793. https://doi.org/10.1007/s11105-010-0280-3 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Sokolova, D. A., Vengzhen, G. S. & Kravets, A. P. An Analysis of the correlation between the changes in satellite DNA methylation patterns and plant cell responses to the stress. Cell Bio 2, 163–171. https://doi.org/10.4236/cellbio.2013.23018 (2013).CAS 
    Article 

    Google Scholar 
    Johnson, L. I. & Tricker, P. J. Epigenomic plasticity within populations: Its evolutionary significance and potential. Heredity 105, 113–121. https://doi.org/10.1038/hdy.2010.25 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, X. et al. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 8(11), e80253. https://doi.org/10.1371/journal.pone.0080253 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karan, R., DeLeon, T., Biradar, H. & Subudhi, P. K. Salt Stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6), e40203. https://doi.org/10.1371/journal.pone.0040203 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L. & Pigliucci, M. Epigenetic inheritance. A decade into the extended evolutionary synthesis. Paradigmi 38, 463–494. https://doi.org/10.30460/99624 (2020).Article 

    Google Scholar 
    Chelaifa, H., Monnier, A. & Ainouche, M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol. 186(1), 161–174. https://doi.org/10.1111/j.1469-8137.2010.03179.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Al-Lawati, A., Al-Bahry, S., Victor, R., Al-Lawati, A. H. & Yaish, M. W. Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet. Mol. Res. 15, 15018299. https://doi.org/10.4238/gmr.15018299 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewandowska-Gnatowska, E. et al. Is DNA methylation modulated by wounding-induced oxidative burst in maize?. Plant Physiol. Biochem. 82, 202–208. https://doi.org/10.1016/j.plaphy.2014.06.003 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marfil, C. et al. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol. Biochem. 135, 287–294. https://doi.org/10.1016/j.plaphy.2018.12.021 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zedek, F. et al. Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. Ann. Bot. 126(5), 883–889. https://doi.org/10.1093/aob/mcaa109 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4), 869–879. https://doi.org/10.1007/s00425-015-2323-3 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Molinier, J. Genome and epigenome surveillance processes underlying UV exposure in plants. Genes 8(11), 316. https://doi.org/10.3390/genes8110316 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194. https://doi.org/10.1186/s13059-016-1059-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5, e10326. https://doi.org/10.1371/journal.pone.0010326 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L., Verhoeven, K. J. F. & Bossdorf, O. Evolutionary significance of epigenetic variation. In Plant Genome Diversity Vol. 1 (eds Wendel, J. F. et al.) 257–274 (Springer Vienna, 2012).Chapter 

    Google Scholar 
    Paun, O. et al. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol. Biol. Evol. 27, 2465–2473. https://doi.org/10.1093/molbev/msq150 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, H. et al. Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Front. Plant Sci. 8, 130398. https://doi.org/10.3389/fpls.2017.01860 (2017).Article 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187(3), 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Portis, E., Acquadro, A., Comino, C. & Lanteri, S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 166, 169–178. https://doi.org/10.1016/j.plantsci.2003.09.004 (2004).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org (R Foundation for Statistical Computing, 2013).Schloerke, B. et al. GGally: Extension to “ggplot2” R package version 2.1.0. https://CRAN.R-project.org/package=GGally (2021).StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com (2011).Tomczyk, P. Phenotypic measurement of inbreeding depression in grasses—An overview of traits (Fenotypowe miary depresji wsobnej u traw—przegląd cech). Wiad. Bot. https://doi.org/10.5586/wb.2019.005 (2019).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression (Sage Publications, 2019).
    Google Scholar  More

  • in

    Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia

    DataAll data was processed and analyzed using R (R Core Team, Version 4.0.3).Dengue case data were collected and shared by the Alcaldía de Medellín, Secretaría de Salud. In Medellin, dengue case surveillance is conducted by public health institutions that classify and report all cases that meet the WHO clinical dengue case criteria for a probable case to Medellin’s Secretaría de Salud through SIVIGILA (“el Sistema Nacional de Vigilancia en Salud Publica). All case data were de-identified and aggregated to the SIT Zone level.Human public transit usage and movement data were collected and shared by the Área Metropolitana del Valle de Aburrá for 50–200 respondents per SIT Zone. The “Encuestas Origen Destino” (Origen Destination Surveys) were conducted in 2005, 2011, and 2016 and published in 2006, 2012, and 2017, with survey methods described by the Área Metropolitana del Valle de Aburrá25. Survey respondents include a randomly selected subset of all Medellin residents in each SIT zone regardless of whether they use public transit or not. Survey respondents reported the start and end locations, purpose for travel, and mode of travel for all movement over the last 24 h from the time the survey was administered. Respondents reported all modes of movement, including public transit, private transit, and movement on foot. The results of the survey published in 2017 are published online by the Área Metropolitana del Valle de Aburrá26, and select data are available through the geodata-Medellin open data portal27. The results and data of the survey published in 2012 are not publicly available and were obtained directly from the Área Metropolitana del Valle de Aburrá.The public transit usage survey data were also used to extract socioeconomic data to the SIT zone; surveyors also reported basic demographic data including household Estrato, which was averaged per SIT zone to estimate zone socioeconomic status. “Estrato” measures socioeconomic status on a scale from 1 (lowest) to 6 (highest). This system is used by the government of Colombia to allocate public services and subsidies (Law 142, 1994). Data from the public transit usage survey were used to extract socioeconomic status data because it is the only location available where the spatial scale of the data matched the spatial scale of the SIT zone.Data on the location of Medellín public transit lines was downloaded as shape files from the geodata-Medellín open data portal27 and subset for each year to the set of transit lines that was available in that year. Data on the opening date of each Medellín public transit line was taken from the Medellín metro website28.Because census data at the zone level were not available for this study and only exists for 2005 and 2018, we used population estimates for each year downloaded from the WorldPop project29 and aggregated by SIT zone. The accuracy of WorldPop estimates were checked against available census data for 2005 and 2018 at the comuna level, accessed via the geodata- Medellín open data portal27.Ethical considerationsNo human subjects research was conducted. All data used was de-identified, and the analysis was conducted on a database of cases meeting the clinical criteria for dengue with no intervention or modification of biological, physical, psychological, or social variables. All methods were performed in accordance with the relevant guidelines and regulations.Data analysisQuantifying public transit usage and distance from nearest transit lineTo quantify public transit usage, we determined if each respondent reported using the metro, metroplus, or ruta alimentadora (supplementary bus route system integrated with the metro system) in the last 24 h. We then calculated the percent of respondents using the public transit system at least once for each SIT zone.To quantify the distance to the nearest public transit line, we calculated the distance from the center point of each zone to the closest metro, metroplus, tranvía, metrocable, ruta alimentadora, or escalera eléctrica. This was recalculated for each year, including new transit lines that were added within that year.Spatial autoregressive models of dengue incidenceDengue incidence per year at the level of the SIT zone was modeled using a fixed effects spatial panel model by maximum likelihood (R package splm30) as described in31. Our fixed effects were socioeconomic status, distance from public transit, a two-way interaction between these factors, and year. To weight dengue cases by population per SIT zone, the model contained a log offset of population per zone per year. Dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year. Year was analyzed as a categorical variable to avoid smoothing epidemic years. All continuous variables were scaled to enable comparison of effect size. Because these panel models require balanced data across time, data was truncated to SIT zones that had data for all years available (247 remaining of 291). Spatial dependency was evaluated, and the model was selected using the Hausman specification test and locally robust panel Lagrange Multiplier tests for spatial dependence. Based on a significant Hausman specification test result, which indicates a poor specification of the random effect model, a fixed effect model was chosen. This result is supported by the fact that we had a nearly exhaustive sample of SIT zones in the Medellin metro area. Lagrange multiplier tests were used to determine the most appropriate spatial dependency specifications. Based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was the most appropriate to incorporate spatial dependency; a SAR model considers that the number of dengue cases in a SIT zone depends on the number in neighboring zones.Because public transit usage was a measurement taken during just two of the study years, we constructed an additional fixed effects spatial panel model by maximum likelihood model of dengue incidence in just 2011 and 2016 that included ridership as an additional predictor variable. Our fixed effects were year, socioeconomic status, distance from public transit, a two-way interaction between socioeconomic status and distance from public transit, percent utilizing public transit, and a two-way interaction between socioeconomic status and percent utilizing public transit. As in our model of all years, the model contained a log offset of population per zone per year and dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year, year was analyzed as a categorical variable, and all continuous variables were scaled to enable comparison of effect size. The data was truncated to SIT zones that had data for all years available (251 remaining of 291). We used the same model selection process, and again a fixed effect model was chosen, and based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was determined the most appropriate to incorporate spatial dependency. More