More stories

  • in

    Evolutionary causes and consequences of ungulate migration

    Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).Article 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
    Article 

    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant? Am. Nat.131, 781–798 (1988).Article 

    Google Scholar 
    Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kauffman, M. J. et al. Causes, consequences, and conservation of ungulate migration. Annu. Rev. Ecol. Evol. Syst. 52, 453–478 (2021).Article 

    Google Scholar 
    Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2007).PubMed 

    Google Scholar 
    Fryxell, J. M. & Holt, R. D. Environmental change and the evolution of migration. Ecology 94, 1274–1279 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).Article 

    Google Scholar 
    Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).PubMed 
    Article 

    Google Scholar 
    Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).Article 

    Google Scholar 
    Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).Article 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 

    Google Scholar 
    Found, R. & St. Clair, C. C. Behavioural syndromes predict loss of migration in wild elk. Anim. Behav. 115, 35–46 (2016).Article 

    Google Scholar 
    Abraham, J. O., Hempson, G. P., Faith, J. T. & Staver, A. C.Seasonal strategies differ between tropical and extratropical herbivores. J. Anim. Ecol. 91, 681–692 (2022).PubMed 
    Article 

    Google Scholar 
    Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R. & Whiten, A. The reach of gene–culture coevolution in animals. Nat. Commun. 10, 2405 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlon, T. M., Caylor, K. K., Manfreda, S., Levin, S. A. & Rodriguez-Iturbe, I. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Adv. Water Res. 28, 291–302 (2005).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Fryxell, J. M. & Sinclair, A. R. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Langvatn, R., Albon, S. D., Burkey, T. & Clutton-Brock, T. H. Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J. Anim. Ecol. 65, 653–670 (1996).Article 

    Google Scholar 
    Webber, Q. M. R. & McGuire, L. P. Heterothermy, body size, and locomotion as ecological predictors of migration in mammals. Mamm. Rev. 52, 82–95 (2022).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. Camb. Philos. Soc. 94, 328–352 (2018).PubMed Central 
    Article 

    Google Scholar 
    Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).Article 

    Google Scholar 
    Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).PubMed 
    Article 

    Google Scholar 
    Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).Book 

    Google Scholar 
    Gonzalez-Voyer, A. & von Hardenberg, A. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, 2014).Pérez-Barbería, F. J., Gordon, I. J. & Nores, C. Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3, 221–230 (2001).
    Google Scholar 
    Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).Article 

    Google Scholar 
    Janis, C. M. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 21–45 (Springer, 2008).Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhat, U., Kempes, C. P. & Yeakel, J. D. Scaling the risk landscape drives optimal life-history strategies and the evolution of grazing. Proc. Natl Acad. Sci. USA 117, 1580–1586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).PubMed 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797–1805 (2019).PubMed 
    Article 

    Google Scholar 
    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).Article 

    Google Scholar 
    Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeakel, J. D., Kempes, C. P. & Redner, S. Dynamics of starvation and recovery predict extinction risk and both Damuth’s law and Cope’s rule. Nat. Commun. 9, 657 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 11331 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dantas, V. L. & Pausas, J. G. The legacy of the extinct Neotropical megafauna on plants and biomes. Nat. Commun. 13, 129 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).Article 

    Google Scholar 
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 

    Google Scholar 
    Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
    Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403 (2003).Article 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species 2019 (IUCN, 2019).Toljagić, O., Voje, K. L., Matschiner, M., Liow, L. H. & Hansen, T. F. Millions of years behind: slow adaptation of ruminants to grasslands. Syst. Biol. 67, 145–157 (2018).PubMed 
    Article 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).Beaulieu, J. M. & O’Meara, B. OUwie: Analysis of evolutionary rates in an OU framework. R package version 2.6 https://rdrr.io/cran/OUwie/ (2014).Cressler, C. E., Butler, M. A. & King, A. A. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein–Uhlenbeck model. Syst. Biol. 64, 953–968 (2015).PubMed 
    Article 

    Google Scholar 
    Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).PubMed 
    Article 

    Google Scholar 
    van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Ungulates on the move

    Joly, K. et al. Sci. Rep. 9, 15333 (2019).Article 

    Google Scholar 
    Shaw, A. K. Evol. Ecol 30, 991–1007 (2016).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Science 344, 1242552 (2014).CAS 
    Article 

    Google Scholar 
    Abraham, J. O., Upham, N. S., Damian-Serrano, A. & Jesmer, B. R. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01749-4 (2022).Article 

    Google Scholar 
    Middleton, A. D. et al. Oikos 127, 1060–1068 (2018).Article 

    Google Scholar 
    Hein, A. M., Hou, C. & Gillooly, J. F. Ecol. Lett. 15, 104–110 (2012).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Science 292, 686–693 (2001).CAS 
    Article 

    Google Scholar 
    Edwards, E. J. et al. Science 328, 587–591 (2010).CAS 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Curr. Biol. 30, 3444–3449 (2020).CAS 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Ecol. Lett. 22, 1797–1805 (2019).Article 

    Google Scholar 
    Jesmer, B. R. et al. Science 361, 1023–1025 (2018).CAS 
    Article 

    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. & Berger, J. Endanger. Species Res. 7, 55–76 (2009).Article 

    Google Scholar 
    Aikens, E. O. et al. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Doughty, C. E. et al. Ecography 43, 1107–1117 (2020).Article 

    Google Scholar 
    Kauffman, M. J. et al. Science 372, 566–569 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Publisher Correction: Healing the land and the academy

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Carbon benefits of enlisting nature for crop protection

    Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).Article 

    Google Scholar 
    Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Labrie, G. et al. PLoS ONE 15, e0229136 (2020).CAS 
    Article 

    Google Scholar 
    Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).Article 

    Google Scholar 
    Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).Article 

    Google Scholar 
    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).ADS 
    Article 

    Google Scholar 
    Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).CAS 
    Article 

    Google Scholar 
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    Article 

    Google Scholar 
    Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).ADS 
    Article 

    Google Scholar 
    Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).ADS 
    Article 

    Google Scholar 
    Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).Article 

    Google Scholar 
    Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).CAS 
    Article 

    Google Scholar 
    van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).Article 

    Google Scholar 
    Herrero, M. et al. Nat. Food 1, 266–272 (2020).Article 

    Google Scholar 
    Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).Article 

    Google Scholar 
    Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).Article 

    Google Scholar  More

  • in

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Richardson, D.M., & Rundel, P.W. Ecology and biogeography of Pinus: An introduction. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 3–40. (Cambridge Press, 1998).Keeley, J. E. Ecology and evolution of pine life histories. Ann. For. Sci. 69, 445–453 (2012).Article 

    Google Scholar 
    Agee, J.K. Fire and pine ecosystems. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 193–217. (Cambridge Press, 1998).Keeley, J.E., & Zedler, P.H. Evolution of life histories in Pinus. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 219–251. (Cambridge Press, 1998).Pausas, J. G., Bradstock, R., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Hare, R. C. Contribution of bark to fire resistance of southern trees. J. For. 63, 248–251 (1965).
    Google Scholar 
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).PubMed 
    Article 

    Google Scholar 
    Stephens, S. L. & Libby, W. J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. J. Biogeogr. 33, 648–652 (2006).Article 

    Google Scholar 
    Chapman, H. H. Is the longleaf type a climax?. Ecology 13, 328–334 (1932).Article 

    Google Scholar 
    Pile, L. S., Wang, G. G., Knapp, B. O., Liu, G. & Yu, D. Comparing morphology and physiology of southeastern US Pinus seedlings: Implications for adaptation to surface fire regimes. Ann. For. Sci. 74, 68 (2017).Article 

    Google Scholar 
    Rodríguez-Trejo, D. A. & Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildl. Fire 12, 23–37 (2003).Article 

    Google Scholar 
    Pausas, J. G. Bark thickness and fire regime. Funct. Ecol. 29, 315–327 (2015).Article 

    Google Scholar 
    Little, S. & Mergen, F. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. For. Sci. 12, 268–275 (1966).
    Google Scholar 
    Kolström, T. & Kellomäki, S. Tree survival in wildfires. Silva Fenn. 27, 277–281 (1993).Article 

    Google Scholar 
    Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94, 326–236 (2001).Article 

    Google Scholar 
    Reyes, O. & Casal, M. Effect of high temperatures on cone opening and on the release and viability of Pinus pinaster and P. radiata seeds in NW Spain. Ann. For. Sci. 59, 327–334 (2002).Article 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fonda, R. W., Bellanger, L. A. & Burley, L. L. Burning characteristics of western conifer needles. Northwest Sci. 72, 1–9 (1998).
    Google Scholar 
    Fonda, R. W. Burning characteristics of needles from eight pine species. For. Sci. 47, 390–396 (2001).
    Google Scholar 
    Anderson, H. E. Forest fuel ignitability. Fire Tech. 6, 312–319 (1970).CAS 
    Article 

    Google Scholar 
    Martin, R.E., et al. Assessing the flammability of domestic and wildland vegetation. in Proceedings of the 12th Conference Fire and Forest Meteorology. Jekyll Island. 130–137. (1993)Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and wildland litter: A synthesis. Curr. For. Rep. 1, 91–99 (2015).
    Google Scholar 
    Fernandes, P. M. & Cruz, M. G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 194, 606–609 (2012).PubMed 
    Article 

    Google Scholar 
    Wenk, E. S., Wang, G. G. & Walker, J. L. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills. Int. J. Wildl. Fire 20, 866–875 (2012).Article 

    Google Scholar 
    Whelan, A. W., Bigelow, S. W. & O’Brien, J. J. Overstory longleaf pines and hardwoods create diverse patterns of energy release and fire effects during prescribed fire. Front. For. Glob. Change. 4, 25 (2021).Article 

    Google Scholar 
    Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).Article 

    Google Scholar 
    Troumbis, A. S. & Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. 10, 167–175 (1989).
    Google Scholar 
    Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).Article 

    Google Scholar 
    Snyder, J. R. The role of fire: Mutch ado about nothing?. Oikos 43, 404–405 (1984).Article 

    Google Scholar 
    Bond, W. J. & Midgley, J. J. Kill thy neighbour: An individualistic argument for theevolution of flammability. Oikos 73, 79–85 (1995).Article 

    Google Scholar 
    Gagnon, P. R. et al. Does pyrogenicity protect burning plants?. Ecology 91, 3481–3486 (2010).PubMed 
    Article 

    Google Scholar 
    Vines, R. G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 16, 499–514 (1968).Article 

    Google Scholar 
    Harmon, M. E. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65, 796–802 (1984).Article 

    Google Scholar 
    Schwilk, D. W., Gaetani, M. S. & Poulos, H. M. Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8, e79285 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, J., Kling, M., Schwilk, D., Varner, J. M. & Kane, J. M. Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob. Ecol. Biogeogr. 29, 944–955 (2020).Article 

    Google Scholar 
    Rosell, J. A. Bark thickness across the angiosperms: More than just fire. New Phytol. 211, 90–102 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kane, J. M., Varner, J. M. & Hiers, J. K. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For. Ecol. Manag. 256, 2039–2045 (2008).Article 

    Google Scholar 
    Engber, E. A. & Varner, J. M. Patterns of flammability of the California oaks: The role of leaf traits. Can. J. For. Res. 42, 1965–1975 (2012).Article 

    Google Scholar 
    Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).Article 

    Google Scholar 
    Stambaugh, M.C., Varner, J.M., & Jackson, S.T. Biogeography: An interweave of climate, fire, and humans. in Ecological Restoration and Management of Longleaf Pine Forests (Kirkman, K., Jack, S. B. Eds.). 17–38. (CRC Press, 2017).Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).Article 

    Google Scholar 
    Schwilk, D. W. & Caprio, A. C. Scaling from leaf traits to fire behavior: community composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980 (2011).Article 

    Google Scholar 
    Ormeño, E. et al. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 257, 471–482 (2009).Article 

    Google Scholar 
    Mirov, N. T. The terpenes (in relation to the biology of genus Pinus). Ann. Rev. Biochem. 17, 521–540 (1948).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitić, Z. S. et al. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 14, e1600453 (2017).Article 

    Google Scholar 
    Baradat, P. & Yazdani, R. Genetic expression for monoterpenes in clones of Pinus sylvestris grown on different sites. Scand. J. For. Res. 3, 25–36 (1987).Article 

    Google Scholar 
    Hanover, J. W. Applications of terpene analysis in forest genetics. New For. 6, 159–178 (1992).Article 

    Google Scholar 
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).PubMed 
    Article 

    Google Scholar 
    Saladin, B. et al. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. Evol. Biol. 17, 95 (2017).
    Google Scholar 
    Kreye, J. K. et al. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 48, 1331–1342 (2018).Article 

    Google Scholar 
    Ganteaume, A., Jappiot, M., Curt, T., Lampin, C. & Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildl. Fire 23, 1061–1075 (2014).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    Orme, D., et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R. Version 1.0.1. https://CRAN.R-project.org/package=caper. (2018).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn. (2019).Little, E.L. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. 1–320. (Miscellaneous Publication 1146, USDA, Forest Service, 1971).Prasad, A.M. & Iverson, L.R. Little’s Range and FIA Importance Value Database for 135 Eastern US Tree Species. http://www.fs.fed.us/ne/delaware/4153/global/littlefia/index.html. (Northeastern Research Station, USDA Forest Service). More

  • in

    Novel passive detection approach reveals low breeding season survival and apparent lactation cost in a critically endangered cave bat

    Odonnell, C. Population dynamics and survivorship in bats. In Ecology and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 158–176 (The Johns University Press, 2009).
    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Gibbons, J. W. & Andrews, K. M. PIT tagging: Simple technology at its best. Bioscience 54, 447–454 (2004).Article 

    Google Scholar 
    Ellison, L. E. et al. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus). Acta Chiropterologica 9, 149–160 (2007).Article 

    Google Scholar 
    van Harten, E. et al. High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats. Ecol. Evol. 9, 10916–10928 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schorr, R. A., Ellison, L. E. & Lukacs, P. M. Estimating sample size for landscape-scale mark-recapture studies of North American migratory tree bats. Acta Chiropterologica 16, 231–239 (2014).Article 

    Google Scholar 
    Baker, G. B. et al. The effect of forearm bands on insectivorous bats (Microchiroptera) in Australia. Wildl. Res. 28, 229–237 (2001).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Survival estimation in bats: Historical overview, critical appraisal, and suggestions for new approaches. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson, W. L.) 297–336 (Island Press, 2004).
    Google Scholar 
    O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). J. Mammal. 92, 433–443 (2011).Article 

    Google Scholar 
    Schorr, R. A. & Siemers, J. L. Population dynamics of little brown bats (Myotis lucifugus) at summer roosts: Apparent survival, fidelity, abundance, and the influence of winter conditions. Ecol. Evol. 11, 7427–7438 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J., Edmonds, H. & Hoare, J. M. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through a pest control operation using the toxin pindone in bait stations. N. Z. J. Ecol. 35, 291–295 (2011).
    Google Scholar 
    Edmonds, H., Pryde, M. & O’Donnell, C. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through an aerial 1080 pest control operation. N. Z. J. Ecol. 41, 186–192 (2017).
    Google Scholar 
    Reusch, C. et al. Differences in seasonal survival suggest species-specific reactions to climate change in two sympatric bat species. Ecol. Evol. 9, 7957–7965 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020-2. http://www.iucnredlist.org (2020).Lentini, P. E., Bird, T. J., Griffiths, S. R., Godinho, L. N. & Wintle, B. A. A global synthesis of survival estimates for microbats. Biol. Lett. 11, 20150371 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A., Linton, D. M. & Macdonald, D. W. Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community. Glob. Ecol. Conserv. 12, 263–271 (2017).Article 

    Google Scholar 
    Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    Schorcht, W., Bontadina, F. & Schaub, M. Variation of adult survival drives population dynamics in a migrating forest bat. J. Anim. Ecol. 78, 1182–1190 (2009).PubMed 
    Article 

    Google Scholar 
    Sendor, T. & Simon, M. Population dynamics of the pipistrelle bat: Effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol. 72, 308–320 (2003).Article 

    Google Scholar 
    Sripathi, K., Raghuram, H., Rajasekar, R., Karuppudurai, T. & Abraham, S. G. Population size and survival in the indian false vampire bat Megaderma lyra. Acta Chiropterologica 6, 145–154 (2004).Article 

    Google Scholar 
    Papadatou, E., Butlin, R. K., Pradel, R. & Altringham, J. D. Sex-specific roost movements and population dynamics of the vulnerable long-fingered bat, Myotis capaccinii. Biol. Conserv. 142, 280–289 (2009).Article 

    Google Scholar 
    López-Roig, M. & Serra-Cobo, J. Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul. Ecol. 56, 471–480 (2014).Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DELWP. National Recovery Plan for the Southern Bent-wing Bat Miniopterus orianae bassanii (2020).Lumsden, L. & Gray, P. Longevity record for a southern bent-wing bat Miniopterus schreibersii bassanii. Australas. Bat Soc. Newsl. 16, 43–44 (2001).
    Google Scholar 
    Holz, P. H. et al. Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses. PLoS ONE 13, e0197625 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Marenda, M. S., Browning, G. F. & Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 13, e0204282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F. & Hufschmid, J. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in south-eastern Australia. Int. J. Parasitol. Parasites Wildl. 7, 423–428 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Legione, A. R. & Hufschmid, J. Polychromophilus melanipherus and haemoplasma infections not associated with clinical signs in southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Int. J. Parasitol. Parasites Wildl. 8, 10–18 (2019).PubMed 
    Article 

    Google Scholar 
    Holz, P. H., Clark, P., McLelland, D. J., Lumsden, L. F. & Hufschmid, J. Haematology of southern bent-winged bats (Miniopterus orianae bassanii) from the Naracoorte Caves National Park, South Australia. Comp. Clin. Pathol. 29, 231–237 (2020).CAS 
    Article 

    Google Scholar 
    Dwyer, P. D. The population pattern of Miniopterus schreibersii (Chiroptera) in north-eastern New South Wales. Aust. J. Zool. 14, 1073–1137 (1966).Article 

    Google Scholar 
    Dwyer, P. D. Mortality factors of the bent-winged bat. Vic. Nat. 83, 31–36 (1966).
    Google Scholar 
    Dwyer, P. D. Seasonal changes in activity and weight of Miniopterus schreibersii blepotis (Chiroptera) in north-eastern NSW. Aust. J. Zool. 12, 52–69 (1964).Article 

    Google Scholar 
    Bureau of Meteorology. Drought archive. http://www.bom.gov.au/climate/drought/archive.shtml (2019).Dwyer, P. D. Population ranges of Miniopterus schreibersii (Chiroptera) in south-eastern Australia. Aust. J. Zool. 17, 665–686 (1969).Article 

    Google Scholar 
    Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 7370 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mammal. 76, 940–946 (1995).Article 

    Google Scholar 
    Reeder, D. M. et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE 7, e38920 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 3355–3363 (2011).Article 

    Google Scholar 
    van Harten, E. Population Dynamics of the Critically Endangered, Southern Bent-Winged Bat Miniopterus orianae bassanii (La Trobe University, 2020).
    Google Scholar 
    PIRSA. History of the south east drainage system – summary. https://www.pir.sa.gov.au/aghistory/natural_resources/water_resources_ag_dev/history_of_the_south_east_drainage_system_-_summary/history_of_the_south_east_drainage_system_-_summary#_ftnref2 (2017).Harding, C., Herpich, D. & Cranswick, R. H. Examining temporal and spatial changes in surface water hydrology of groundwater dependent ecosystems using WOfS (Water Observations from Space): Southern Border Groundwaters Agreement area, South East South Australia. (2018).Holz, P. H., Lumsden, L. F., Reardon, T., Gray, P. & Hufschmid, J. Does size matter? Morphometrics of southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Aust. Zool. AZ https://doi.org/10.7882/AZ.2019.019 (2020).Article 

    Google Scholar 
    Rashid, M. M. & Beecham, S. Characterization of meteorological droughts across South Australia. Meteorol. Appl. 26, 556–568 (2019).Article 

    Google Scholar 
    Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade-offs in long-lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunz, T. H., Whitaker, J. O. & Wadanoli, M. D. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia 101, 407–415 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J. Anim. Ecol. 77, 1115–1121 (2008).PubMed 
    Article 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).Article 

    Google Scholar 
    Lučan, R. & Radil, J. Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia (Bratisl.) 65 (2010).Amorim, F., Jorge, I., Beja, P. & Rebelo, H. Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecol. Evol. 8, 5801–5814 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J. Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. J. Zool. 257, 311–323 (2002).Article 

    Google Scholar 
    Holz, P. H., Stent, A., Lumsden, L. F. & Hufschmid, J. Trauma found to be a significant cause of death in a pathological investigation of bent-winged bats (Miniopterus orianae). J. Zoo Wildl. Med. 50, 966–971 (2020).PubMed 
    Article 

    Google Scholar 
    Hughes, P. M., Rayner, J. M. V. & Jonesg, G. Ontogeny of ‘true’ flight and other aspects of growth in the bat Pipistrellus pipistrellus. J. Zool. 236, 291–318 (1995).Article 

    Google Scholar 
    Wund, M. A. Learning and the development of habitat-specific bat echolocation. Anim. Behav. 70, 441–450 (2005).Article 

    Google Scholar 
    McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99, 1065–1071 (2018).Article 

    Google Scholar 
    Mispagel, C. et al. DDT and metabolites residues in the southern bent-wing bat (Miniopterus schreibersii bassanii) of south-eastern Australia. Chemosphere 55, 997–1003 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allinson, G. et al. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64, 1464–1471 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. https://doi.org/10.1002/ece3.5901 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherwin, H. A., Montgomery, W. I. & Lundy, M. G. The impact and implications of climate change for bats. Mammal Rev. 43, 171–182 (2013).Article 

    Google Scholar 
    O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: A global review. Mammal Rev. 46, 175–190 (2016).Article 

    Google Scholar 
    Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Assemblage-level analysis of sex-ratios in Coloradan bats in relation to climate variables: A model for future expectations. Glob. Ecol. Conserv. 14, e00379 (2018).Article 

    Google Scholar 
    Crichton, E. G., Seamark, R. F. & Krutzsch, P. H. The status of the corpus luteum during pregnancy in Miniopterus schreibersii (Chiroptera: Vespertilionidae) with emphasis on its role in developmental delay. Cell Tissue Res. 258, 183–201 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, I. C. The analysis of continuous mark-recapture data (Norwegian University of Science and Technology, 2006).
    Google Scholar 
    Barbour, A. B., Ponciano, J. M. & Lorenzen, K. Apparent survival estimation from continuous mark-recapture/resighting data. Methods Ecol. Evol. 4, 846–853 (2013).Article 

    Google Scholar 
    van Harten, E. et al. Recovery of southern bent-winged bats (Miniopterus orianae bassanii) after PIT-tagging and the use of surgical adhesive. Aust. Mammal. 42, 216–219 (2020).Article 

    Google Scholar 
    McDonald, T. L., Amstrup, S. C. & Manly, B. F. Tag loss can bias Jolly-Seber capture-recapture estimates. Wildl. Soc. Bull. 31, 814–822 (2003).
    Google Scholar 
    van Harten, E. et al. Low rates of PIT-tag loss in an insectivorous bat species. J. Wildl. Manag. 85, 1739–1743 (2021).Article 

    Google Scholar 
    Lebl, K. & Ruf, T. An easy way to reduce PIT-tag loss in rodents. Ecol. Res. 25, 251–253 (2010).Article 

    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Locatelli, A. G., Ciuti, S., Presetnik, P., Toffoli, R. & Teeling, E. Long-term monitoring of the effects of weather and marking techniques on body condition in the Kuhl’s pipistrelle bat, Pipistrellus kuhlii. Acta Chiropterologica 21, 87–102 (2019).Article 

    Google Scholar 
    Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).PubMed 
    Article 

    Google Scholar 
    Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 1469, 5–25 (2020).PubMed 
    Article 

    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Churchill, S. Australian Bats (Allen and Unwin, 2008).
    Google Scholar 
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. 25 (2013).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Caswell, H. Matrix population models. In Encyclopedia of Environmetrics (eds El-Shaarawi, A. H. & Piegorsch, W. W.) (Wiley, Berlin, 2006). https://doi.org/10.1002/9780470057339.vam006m.Chapter 

    Google Scholar 
    Dwyer, P. D. The breeding biology of Miniopterus schreibersii blepotis (Termminck) (Chiroptera) in north-eastern NSW. Aust. J. Zool. 11, 219–240 (1963).Article 

    Google Scholar 
    Richardson, E. G. The biology and evolution of the reproductive cycle of Miniopterus schreibersii and M. australis (Chiroptera: Vespertilionidae). J. Zool. 183, 353–375 (1977).Article 

    Google Scholar  More

  • in

    Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus

    Water samples were filtered twice (see Methods), first through a large filter (0.45 µm, LF or “Large Filter”) and then the filtrate was passed through a small filter (0.05 µm, UF or “Ultrafine Fraction”). Using whole genome shotgun metagenomics from four water samples (LF92 and UF92 from the 92 m depth, LF99 and UF99 from the 99 m depth) as well as one sediment sample, we provide the first comprehensive whole genome shotgun metagenomics investigation of this section of the lake and highlight both the taxonomic composition and potential metabolic strategies for survival, as well as identify areas for deeper investigation.Cell counts and dissolved nutrientsIn order to determine the habitability of the anoxic basin, the cell counts were measured in the oxycline (75 m depth) and the anoxic region (92 and 99 m depth), where oxygen content is  More

  • in

    Elevated fires during COVID-19 lockdown and the vulnerability of protected areas

    Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdfCorlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).Article 

    Google Scholar 
    Singh, R. et al. Impact of the COVID-19 pandemic on rangers and the role of rangers as a planetary health service. Parks 27, 119–134 (2021).Article 

    Google Scholar 
    Hockings, M. et al. COVID‐19 and protected and conserved areas. Parks 26, 7–24 (2020).Article 

    Google Scholar 
    Waithaka, J. The Impact of COVID-19 Pandemic on Africa’s Protected Areas Operations and Programmes (IUCN, 2020); https://www.iucn.org/sites/dev/files/content/documents/2020/report_on_the_impact_of_covid_19_doc_july_10.pdfLindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Amador-Jiménez, M., Millner, N., Palmer, C., Pennington, R. T. & Sileci, L. The unintended impact of Colombia’s COVID-19 lockdown on forest fires. Environ. Resour. Econ. 76, 1081–1105 (2020).Article 

    Google Scholar 
    Poulter, B., Freeborn, P. H., Matt Jolly, W. & Morgan Varner, J. COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc. Natl Acad. Sci. USA 118, e2015666118 (2021).Article 
    CAS 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    CAS 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    Tabor, K. et al. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny–Zahemena Corridor, Madagascar. PLoS ONE 12, e0190119 (2017).Article 
    CAS 

    Google Scholar 
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 
    Article 

    Google Scholar 
    Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).CAS 
    Article 

    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).CAS 
    Article 

    Google Scholar 
    Turco, M. et al. Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9, 2718 (2018).Article 
    CAS 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    Article 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    Jones, J. P. G. et al. Last chance for Madagascar’s biodiversity. Nat. Sustain. 2, 350–352 (2019).Article 

    Google Scholar 
    Gardner, C. J. et al. The rapid expansion of Madagascar’s protected area system. Biol. Conserv. 220, 29–36 (2018).Article 

    Google Scholar 
    Hockley, N., Mandimbiniaina, R. & Rakotonarivo, O. S. Fair and equitable conservation: do we really want it, and if so, do we know how to achieve it? Madag. Conserv. Dev. 13, 3–5 (2018).Article 

    Google Scholar 
    Corson, C. in Conservation and Environmental Management in Madagascar (ed. Scales, I. R.) 193–215 (Routledge, 2014).Davies, B. et al. Community factors and excess mortality in first wave of the COVID-19 pandemic in England. Nat. Commun. 12, 3755 (2021).CAS 
    Article 

    Google Scholar 
    Kull, C. A. & Lehmann, C. E. R. in The New Natural History of Madagascar (ed. Goodman, S. M.) 197–203 (Princeton Univ. Press, in the press).Razafindrakoto, M., Roubaud, F. & Wachsberger, J.-M. Puzzle and Paradox: A Political Economy of Madagascar (Cambridge Univ. Press, 2020).Ruggiero, P. G. C., Pfaff, A., Nichols, E., Rosa, M. & Metzger, J. P. Election cycles affect deforestation within Brazil’s Atlantic Forest. Conserv. Lett. 14, e12818 (2021).Article 

    Google Scholar 
    Morpurgo, J., Kissling, W. D., Tyrrell, P., Negret, P. J. & Allan, J. R. The role of elections as drivers of tropical deforestation. Preprint at bioRxiv https://doi.org/10.1101/2021.05.04.442551 (2021).Tourism in Madagascar (WorldData, 2021); https://www.worlddata.info/africa/madagascar/tourism.phpRapport annuel d’activites 2018 (Madagascar National Parks, 2018).Vyawahare, M. As minister and activists trade barbs, Madagascar’s forests burn. Mongabay (17 December 2020).Cochrane, M. A. in Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (ed. Cochrane, M. A.) 389–426 (Springer-Verlag, 2009); https://doi.org/10.1007/978-3-540-77381-8_14Cochrane, M. A. in Tropical Rainforest Responses to Climatic Change (eds Bush, M. et al.) 213–240 (Springer, 2011); https://doi.org/10.1007/978-3-642-05383-2_7Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE 11, e0159691 (2016).Article 
    CAS 

    Google Scholar 
    Madagascar Economic Update: COVID-19 Increases Poverty, a New Reform Momentum is Needed to Build Back Stronger (World Bank, 2020); https://www.worldbank.org/en/country/madagascar/publication/madagascar-economic-update-covid-19-increases-poverty-a-new-reform-momentum-is-needed-to-build-back-strongerBaker, A. Climate, not conflict. Madagascar’s famine is the first in modern history to be solely caused by global warming. Time (20 July 2021).Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in Madagascar. Conserv. Sci. Pract. 1, e107 (2019).
    Google Scholar 
    Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest. Conserv. Biol. 27, 155–165 (2013).Article 

    Google Scholar 
    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: how important is management? Conserv. Lett. 12, e12650 (2019).Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The new VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).Article 

    Google Scholar 
    Forest Monitoring Designed for Action (Global Forest Watch, 2021); https://www.globalforestwatch.org/Musinsky, J. et al. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv 4, 189–196 (2018).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, e2011160118 (2021).CAS 
    Article 

    Google Scholar 
    Global Economic Prospects, June 2021 (World Bank, 2021).Razanatsoa, E. et al. Fostering local involvement for biodiversity conservation in tropical regions: lessons from Madagascar during the COVID‐19 pandemic. Biotropica 53, 994–1003 (2021).Article 

    Google Scholar 
    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).CAS 
    Article 

    Google Scholar 
    ArcGIS 10.8 for Desktop (ESRI, 2021).Python Language Reference v.3.8.5 (Python Software Foundation, 2021); http://www.python.orgR Core Team R: A Language and Environment for Statistical Computing. R version 4.0.2 (R Foundation for Statistical Computing, 2020); https://www.R-project.org/Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.netGoodman, S. M., Raherilalao, J. M. & Wohlhauser, S. The Terrestrial Protected Areas of Madagascar: Their History, Description, and Biota (Association Vahatra, 2018).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    NRT VIIRS 375 m Active Fire Product VNP14IMGT (NASA, 2020); https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002Chen, D., Shevade, V., Baer, A. E. & Loboda, T. V. Missing burns in the high northern latitudes: the case for regionally focused burned area products. Remote Sens. 13, 4145 (2021).Article 

    Google Scholar 
    Schroeder, W. & Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4 (NASA, 2018).Global Precipitation Measurement: Precipitation Data Directory (NASA, 2020); https://gpm.nasa.gov/data/directoryGlobal Precipitation Measurement: The Tropical Rainfall Measuring Mission (TRMM) (NASA, 2020) https://gpm.nasa.gov/missions/trmmHantson, S. et al. Rare, intense, big fires dominate the global tropics under drier conditions. Sci. Rep. 7, 14374 (2017).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).Joseph, M. B. et al. Spatiotemporal prediction of wildfire extremes with Bayesian finite sample maxima. Ecol. Appl. 29, e01898 (2019).Article 

    Google Scholar 
    Guo, F. et al. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. J. For. Res. 27, 379–388 (2016).Article 

    Google Scholar 
    Garay, A. M., Hashimoto, E. M., Ortega, E. M. M. & Lachos, V. H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 55, 1304–1318 (2011).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).
    Google Scholar 
    Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).Article 

    Google Scholar 
    Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28 (2021). More