More stories

  • in

    Global forest management data for 2015 at a 100 m resolution

    Reference data collectionIn February 2019, we involved forest experts from different regions around the world and organized a workshop to (1) discuss the variety of forest management practices that take place in various parts of the world; (2) explore what types of forest management information could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing Maps, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE); (3) generalize and harmonize the definitions at global scale; (4) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (5) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the participants. Based on the results of this analysis, we launched the crowdsourcing campaigns by involving a broader group of participants, which included people recruited from remote sensing, geography and forest research institutes and universities. After the crowdsourcing campaigns, we collected additional data with the help of experts. Hence, the final reference data consists of two parts: (1) a randomly stratified sample collected by crowdsourcing (49,982 locations); (2) a targeted sample collected by experts (176,340 locations, at those locations where the information collected from the crowdsourcing campaign was not large enough to ensure a robust classification).DefinitionsTable 1 contains the initial classification used for visual interpretation of the reference samples and the aggregated classes presented in the final reference data set. For the Geo-Wiki campaigns, we attempted to collect information (1) related to forest management practices and (2) recognizable from very high-resolution satellite imagery or time series of vegetation indices. The final reference data set and the final map contain an aggregation of classes, i.e., only those that were reliably distinguishable from visual interpretation of satellite imagery.Table 1 Forest management classes and definitions.Full size tableSampling design for the crowdsourcing campaignsInitially, we generated a random stratified sample of 110,000 sites globally. The total number of sample sites was chosen based on experiences from past Geo-Wiki campaigns12, a practical estimation of the potential number of volunteer participants that we could engage in the campaign, and the expected spatial variation in forest management. We used two spatial data sets for the stratification of the sample: World Wildlife Fund (WWF) Terrestrial Ecoregions13 and Global Forest Change14. The samples were stratified into three biomes, based on WWF Terrestrial Ecoregions (Fig. 2): boreal (25 000 sample sites), temperate (35,000 sample sites) and tropical (50,000 sample sites). Within each biome, we used Hansen’s14 Global Forest Change maps to derive areas with “forest remaining forest” 2000–2015, “forest loss or gain”, and “permanent non-forest” areas.Fig. 2Biomes for sampling stratification (1 – boreal, 2 – temperate, 3 – sub-tropical and tropical).Full size imageThe sample size was determined from previous experiences, taking into account the expected spatial variation in forest management within each biome. Tropical forests had the largest sample size because of increasing commodity-driven deforestation15, the wide spatial extent of plantations, and slash and burn agriculture. Temperate forests had a larger sample compared to boreal forests due to their higher fragmentation. Each sample site was classified by at least three different participants, thus accounting for human error and varying expertise16,17,18. At a later stage, following a preliminary analysis of the data collected, we increased the number of sample sites to meet certain accuracy thresholds for every mapped class (aiming to exceed 75% accuracy).The Geo‐Wiki applicationGeo‐Wiki.org is an online application for crowdsourcing and expert visual interpretation of satellite imagery, e.g., to classify land cover and land use. This application has been used in several data collection campaigns over the last decade16,19,20,21,22,23. Here, we implemented a new custom branch of Geo‐Wiki (‘Human impact on Forest’), which is devoted to the collection of forest management data (Fig. 3). Various map overlays (including satellite images from Google Maps, Microsoft Bing Maps and Sentinel 2), campaign statistics and tools to aid interpretation, such as time series profiles of NDVI, were provided as part of this Geo‐Wiki branch, giving users a range of options and choices to facilitate image classification and general data collection. Google Maps and Microsoft Bing Maps include mosaics of very high-resolution satellite and aerial imagery from different time periods and multiple image providers, including the Landsat satellites operated by NASA and USGS as base imagery to commercial image providers such as Digital Globe. More information on the spatial and temporal distribution of very high-resolution satellite imagery can be found in Lesiv et al.24. This collection of images was supplied as guidance for visual interpretation16,20. Participants could analyze time series profiles of NDVI from Landsat, Sentinel 2 and MODIS images, which were derived from Google Earth Engine (GEE). More information on tools can be found in Supplementary file 1.Fig. 3Screenshot of the Geo‐Wiki interface showing a very high-resolution image from Google Maps and a sample site as a 100 mx100 m blue square, which the participants classified based on the forest management classes on the right.Full size imageThe blue box in Fig. 3 corresponds to 100 m × 100 m pixels aligned with the Sentinel grid in UTM projection. It is the same geometry required for the classification workflow that is used to produce the Copernicus Land Cover product for 201511.Before starting the campaign, the participants were shown a series of slides designed to help them gain familiarity with the interface and to train them in how to visually determine and select the most appropriate type of land use and forest management classes at each given location, thereby increasing both consistency and accuracy of the labelling tasks among experts. Once completed, the participants were shown random locations (from the random stratified sample) on the Geo‐Wiki interface and were then asked to select one of the forest management classes outlined in the Definition section (see Table 1 above).Alternatively, if there was either insufficient quality in the available imagery, or if a participant was unable to determine the forest management type, they could skip such a site (Fig. 3). If a participant skipped a sample site because it was too difficult, other participants would then receive this sample site for classification, whereas in the case of the absence of high-resolution satellite imagery, i.e., Google Maps and Microsoft Bing Maps, this sample site was then removed from the pool of available sample sites. The skipped locations were less than 1% of the total amount of locations assigned for labeling. Table 2 shows the distribution of the skipped locations by countries, based on the subset of the crowdsourced data where all the participants agreed.Table 2 Distribution of the skipped locations by countries.Full size tableQuality assurance and data aggregation of the crowdsourced dataBased on the experience gained from previous crowdsourcing campaigns12,19, we invested in the training of the participants (130 persons in total) and overall quality assurance. Specifically, we provided initial guidelines for the participants in the form of a video and a presentation that were shown before the participants could start classifying in the forest management branch (Supplementary file 1). Additionally, the participants were asked to classify 20 training samples before contributing to the campaign. For each of these training samples, they received text‐based feedback regarding how each location should be classified. Summary information about the participants who filled in the survey at the end of the campaign (i.e., gender, age, level of education, and their country of residence) is provided in the Supplementary file 2. We would like to note that 130 participants is a high number, especially taking the complexity of the task into consideration.Furthermore, during the campaign, sample sites that were part of the “control” data set were randomly shown to the participants. The participants received text-based feedback regarding whether the classification had been made correctly or not, with additional information and guidance. By providing immediate feedback, our intention was that participants would learn from their mistakes, increasing the quality and classification accuracy over time. If the text‐based feedback was not sufficient to provide an understanding of the correct classification, the participants were able to submit a request (“Ask the expert”) for a more detailed explanation by email.The control set was independent of the main sample, and it was created using the same random stratified sampling procedure within each biome and the stratification by Global Forest Change maps14 (see “Sample design” section). To determine the size of the control sample, we considered two aspects: (a) the maximum number of sample sites that one person could classify during the entire campaign; (b) the frequency at which control sites would appear among the task sites (defined at 15%, which is a compromise between the classification of as many unknown locations as possible and a sufficient level of quality control, based on previous experience). Our control sample consisted of 5,000 sites. Each control sample site was classified twice by two different experts. When the two experts agreed, these sample sites were added to the final control sample. Where disagreement occurred (in 25% of cases), these sample sites were checked again by the experts and revised accordingly. During the campaign, participants had the option to disagree with the classification of the control site and submit a request with their opinion and arguments. They received an additional quality score in the situation when they were correct, but the experts were not. This procedure also ensured an increase in the quality of the control data set.To incentivize participation and high-quality classifications, we offered prizes as part of the campaign design. The ranking system for the prize competition considered both the quality of the classifications and the number of classifications provided by a participant. The quality measure was based on the control sample discussed above. The participants randomly received a control point, which was classified in advance by the experts. For every control point, a participant could receive a maximum of +30 points (fully correct classification) to a minimum of −30 points (incorrect classification). In the case where the answer was partly correct (e.g., the participant correctly classified that the forest is managed, but misclassified the regeneration type), they received points ranging from 5 to 25.The relative quality score for each participant was then calculated as the total sum of gained points divided by the maximum sum of points that this participant could have earned. For any subsequent data analysis, we excluded classifications from those participants whose relative quality score was less than 70%. This threshold corresponds to an average score of 10 points at each location (out of a maximum of 30 points), i.e., where participants were good at defining the aggregated forest management type but may have been less good at providing the more detailed classification.Unfortunately, we observed some imbalance in the proportion of participants coming from different countries, e.g. there were not so many participants from the tropics. This could have resulted in interpretation errors, even when all the participants agreed on a classification. To address this, we did an additional quality check. We selected only those sample sites where all the participants agreed and then randomly checked 100 sample sites from each class. Table 3 summarizes the results of this check and explains the selection of the final classes presented in Table 1.Table 3 Qualitative analysis of the reference sample sites with full agreement.Full size tableAs a result of the actions outlined in Table 3, we compiled the final reference data set, which consisted of 49,982 consistent sample sites.Additional expert data collectionWe used the reference data set to produce a test map of forest management (the classification algorithm used is described in the next section). By checking visually and comparing against the control data set, we found that the map was of insufficient quality for many locations, especially in the case of heterogeneous landscapes. While several reasons for such an unsatisfactory result are possible, the experts agreed that a larger sample size would likely increase the accuracy of the final map, especially in areas of high heterogeneity and for forest management classes that only cover a small spatial extent. To increase the amount of high-quality training data and hence to improve the map, we collected additional data using a targeted approach. In practice, the map was uploaded to Geo-Wiki, and using the embedded drawing tools, the experts randomly checked locations on the map, focusing on their region of expertise and added classified polygons in locations where the forest management was misclassified. To limit model overfitting and oversampling of certain classes, the experts also added points for correctly mapped classes to keep the density of the points the same. This process involved a few iterations of collecting additional points and training the classification algorithm until the map accuracy reached 75%. In total, we collected an additional 176,340 training points. With the 49,982 consistent training points from the Geo-Wiki campaigns, this resulted in 226,322 (Fig. 4). This two-pronged approach would not have been possible without the exhaustive knowledge obtained from running the initial Geo-Wiki campaigns, including numerous questions raised by the campaign participants. Figure 4 also highlights in yellow the areas of very high sampling density, I.e., those collected by the experts. The sampling intensity of these areas is much higher in comparison with the randomly distributed crowdsourced locations, and these are mainly areas with very mixed forest classes or small patches, in most cases, including plantations.Fig. 4Distribution of reference locations.Full size imageClassification algorithmTo produce the forest management map for the year 2015, we applied a workflow that was developed as part of the production of the Copernicus Global Land Services land cover at 100 m resolution (CGLS-LC100) collection 2 product11. A brief description of the workflow (Fig. 5), focusing on the implemented changes, is given below. A more thorough explanation, including detailed technical descriptions of the algorithms, the ancillary data used, and the intermediate products generated, can be found in the Algorithm Theoretical Basis Document (ATBD) of the CGLS-LC100 collection 2 product25.Fig. 5Workflow overview for the generation of the Copernicus Global Land Cover Layers. Adapted from the Algorithm Theoretical Basis Document25.Full size imageThe CGLS-LC100 collection 2 processing workflow can be applied to any satellite data, as it is unspecific to different sensors or resolutions. While the CGLS-LC100 Collection 2 product is based on PROBA-V sensor data, the workflow has already been tested with Sentinel 2 and Landsat data, thereby using it for regional/continental land cover (LC) mapping applications11,26. For generating the forest management layer, the main Earth Observation (EO) input was the PROBA-V UTM Analysis Ready Data (ARD) archive based on the complete PROBA-V L1C archive from 2014 to 2016. The ARD pre-processing included geometric transformation into a UTM coordinate system, which reduced distortions in high northern latitudes, as well as improved atmospheric correction, which converted the Top-of-Atmosphere reflectance to surface reflectance (Top-of-Canopy). In a further processing step, gaps in the 5-daily PROBA-V UTM multi-spectral image data with a Ground Sampling Distance (GSD) of ~0.001 degrees (~100 m) were filled using the PROBA-V UTM daily multi-spectral image data with a GSD of ~0.003 degrees (~300 m). This data fusion is based on a Kalman filtering approach, as in Sedano et al.27, but was further adapted to heterogonous surfaces25. Outputs from the EO pre-processing were temporally cleaned by using the internal quality flags of the PROBA-V UTM L3 data, a temporal cloud and outlier filter built on a Fourier transformation. This was done to produce consistent and dense 5-daily image stacks for all global land masses at 100 m resolution and a quality indicator, called the Data Density Indicator (DDI), used in the supervised learning process of the algorithm.Since the total time series stack for the epoch 2015 (a three-year period including the reference year 2015 +/− 1 year) would be composed of too many proxies for supervised learning, the time and spectral dimension of the data stack had to be condensed. The spectral domain was condensed by using Vegetation Indices (VIs) instead of the original reflectance values. Overall, ten VIs based on the four PROBA-V reflectance bands were generated, which included: Normalized Difference Vegetation Index (NDVI); Enhanced Vegetation Index (EVI); Structure Intensive Pigment Index (SIPI); Normalized Difference Moisture Index (NDMI); Near-Infrared reflectance of vegetation (NIRv); Angle at NIR; HUE and VALUE of the Hue Saturation Value (HSV) color system transformation. The temporal domain of the time series VI stacks was then condensed by extracting metrics, which are used as general descriptors to enable distinguishing between the different LC classes. Overall, we extracted 266 temporal, descriptive, and textual metrics from the VI times series stacks. The temporal descriptors were derived through a harmonic model, fitted through the time series of each of the VIs based on a Fourier transformation28,29. In addition to the seven parameters of the harmonic model that describe the overall level and seasonality of the VI time series, 11 descriptive statistics (mean, standard deviation, minimum, maximum, sum, median, 10th percentile, 90th percentile, 10th – 90th percentile range, time step of the first minimum appearance, and time step of the first maximum appearance) and one textural metric (median variation of the center pixel to median of the neighbours) were generated for each VI. Additionally, the elevation, slope, aspect, and purity derived at 100 m from a Digital Elevation Model (DEM) were added. Overall, 270 metrics were extracted from the PROBA-V UTM 2015 epoch.The main difference to the original CGLS-LC100 collection 2 algorithms is the use of forest management training data instead of the global LC reference data set, as well as only using the discrete classification branch of the algorithm. The dedicated regressor branch of the CGLS-LC100 collection 2 algorithm, i.e., outputting cover fraction maps for all LC classes, was not needed for generating the forest management layer.In order to adapt the classification algorithm to sub-continental and continental patterns, the classification of the data was carried out per biome cluster, with the 73 biome clusters defined by the combination of several global ecological layers, which include the ecoregions 2017 dataset30, the Geiger-Koeppen dataset31, the global FAO eco-regions dataset32, a global tree-line layer33, the Sentinel-2 tiling grid and the PROBA-V imaging extent;30,31 this, effectively, resulted in the creation of 73 classification models, each with its non-overlapping geographic extent and its own training dataset. Next, in preparation for the classification procedure, the metrics of all training points were analyzed for outliers, as well as screened via an all-relevant feature selection approach for the best metric combinations (i.e., best band selection) for each biome cluster in order to reduce redundancy between parameters used in the classification. The best metrics are defined as those that have the highest separability compared to other metrics. For each metric, the separability is calculated by comparing the metric values of one class to the metric values of another class; more details can be found in the ATBD25. The optimized training data set, together with the quality indicator of the input data (DDI data set) as a weight factor, were used in the training of the Random Forest classifier. Moreover, a 5-fold cross-validation was used to optimize the classifier parameters for each generated model (one per biome).Finally, the Random Forest classification was used to produce a hard classification, showing the discrete class for each pixel, as well as the predicted class probability. In the last step, the discrete classification results (now called the forest management map) are modified by the CGLS-LC100 collection 2 tree cover fraction layer29. Therefore, the tree cover fraction layer, showing the relative distribution of trees within one pixel, was used to remove areas with less than 10% tree cover fraction in the forest management layer, following the FAO definition of forest. Figure 6 shows the class probability layer that illustrates the model behavior, highlighting the areas of class confusion. This layer shows that there is high confusion between forest management classes in heterogeneous landscapes, e.g., in Europe and the Tropics while homogenous landscapes, such as Boreal forests, are mapped with high confidence. It is important to note that a low probability does not mean that the classification is wrong.Fig. 6The predicted class probability by the Random Forest classification.Full size image More

  • in

    Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent

    Smith, J., Nicholas, A., & Beresford. Chernobyl-Catastrophe and Consequences. Springer (published in association with Praxis publishing, UK), ISBN 3–540–23866–2 Springer (2005)Rosenthal, H. L. Content of stable strontium in man and animal biota. In C Skoryna (4): Handbook of Common Strontium. New York Plenum, pp. 503–514 (1981)Ujwal, P. Studies on transfer factors and transfer coefficients of cesium and strontium in soil-grass-milk pathway and estimation and radiation dose in the environment of Kaiga. Ph D thesis, Mangalore University. http://hdl.handle.net/10603/131678 (2012).World Health Organization (WHO). Concise international chemical assessment document 77 (strontium and strontium compounds). http://apps.who.int/iris/bitstream/10665/44280/1/9789241530774_ eng.pdf (2010).Jones, S. Wind scale and Kyshtym: a double anniversary. J. Environ. Radioact. 99(1), 1–6. https://doi.org/10.1016/j.jenvrad.2007.10.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000. Vol. I, Annex A (2000)Nabeshi, et al. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident. Shokuhin Eiseigaku Zasshi. 56(4), 133–143. https://doi.org/10.3358/shokueishi.56.133 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abu –Khadra et al. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leaves of Wheat Plant. Radiation Physics & Protection Conference, 15–19 November 2008, Nasr City – Cairo, Egypt (2008)Alexakhin, R. et al. Fluxes of radionuclides in agricultural environments: Main results and still unsolved problems. In The radiological consequences of the Chernobyl Accident (eds Karaoglou, A. et al.) 39–47 (European Commission, 1996).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series (TRS) No. 472 (IAEA-TRS-472). IAEA, Vienna (2010).International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series (TRS) No. 364. IAEA, Vienna (1994).Howard, B. J. et al. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk. J. Environ. Radioact. 167, 254–268 (2017).CAS 
    Article 

    Google Scholar 
    Tagami, et al. Chapter 5 – Terrestrial Radioecology in Tropical Systems, Editor(s): John R. Twining, Radioactivity in the Environment, Elsevier, Vol 18, pp 155–230 (2012).Voigt, G. et al. Measurements of transfer coefficients for 137Cs, 60Co, 54Mn, 22Na, 131I, and 95mTc from feed into milk and beef. Radiat. Environ. Biophys. 27, 143–152. https://doi.org/10.1007/BF01214604 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Popplewell, D. S. & Ham, G. J. Transfer factors for 137Cs and 90Sr from grass to bovine milk under field conditions. J. Radio. Prot. 9(3), 189–193 (1989).CAS 
    Article 

    Google Scholar 
    Schuller, P. et al. 137Cs concentration in soil, prairie plants, and milk from sites in southern Chile. Health Phy. 64(2), 157–161 (1993).CAS 
    Article 

    Google Scholar 
    Kirchner, G. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys. 66(6), 653–665. https://doi.org/10.1097/00004032-199406000-00005 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Assimakopoulos, P. A. et al. Variation of the transfer coefficient for radiocaesium transport to sheep’s milk during a complete lactation period. J. Environ. Radioact. 22, 63–75 (1994).Article 

    Google Scholar 
    Wang, C. J. et al. Transfer of radionuclides from soil to grass in Northern Taiwan. Appl. Radiat. Isot. 48(2), 301–303 (1997).CAS 
    Article 

    Google Scholar 
    Zhu, Y.-G. & Smolders, E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635–1645 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 35 km from the Chernobyl nuclear power plant. J. Environ. Radioact. 47, 157–170 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. Does size matter? In: International conference on the protection of the environment from the effects of ionizing radiation, Stockholm, International Atomic Energy Agency, Vienna, IAEA-CN-109, 182–185 (2003).Howard, B. J. and Beresford, N. A. Advances in animal radioecology. In: Brechignac F, Howard, B.J., (Eds) Proceedings of international symposium in Aix-en-Provence, France, 3–7. EDP Science, Les Ulis, pp. 187–207 (2001).Solecki, J. & Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 252(1), 89–93 (2002).CAS 
    Article 

    Google Scholar 
    Strebl, F. et al. Radiocaesium contamination of meadow vegetation-time-dependent variability and influence of soil characteristics at grassland sites in Austria. J. Environ. Radioact. 58, 143–161 (2002).CAS 
    Article 

    Google Scholar 
    Tsukada, H. S. et al. Transfer of 137Cs and stable Cs in soil–grass–milk pathway in Aomori, Japan. J. Radioanal. Nucl. Chem. 255(3), 455–458 (2003).CAS 
    Article 

    Google Scholar 
    Toki, H. et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 10, 4074. https://doi.org/10.1038/s41598-020-60999-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kubo, K. et al. Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Sci. Rep. 10(3744), 2020. https://doi.org/10.1038/s41598-020-60716-w (2020).CAS 
    Article 

    Google Scholar 
    Saito, R. et al. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joshy, P. J. et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. J. Environ. Radioact. 102, 1070–1077 (2011).Article 

    Google Scholar 
    Joshi, R. M. et al. Baseline radioactivity levels in Kaiga site soil and its migration to biosphere. J. Radioanal. Nucl. Chem. 247(3), 571–574 (2001).CAS 
    Article 

    Google Scholar 
    Sachdev, P. et al. The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants (IAEA-TECDOC–1497). International Atomic Energy Agency (IAEA) (2006)Geetha, P. V. et al. Determination of concentration of iodine in grass and cow milk by NAA methods using reactor neutrons. J. Radioanal. Nucl. Chem. 294, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Geetha, P. V. et al. Grass to cow milk transfer coefficient (Fm) of iodine for equilibrium and emergency situations. Radiat. Prot. Environ. 37(1), 14–20 (2014).Article 

    Google Scholar 
    Karunakara, N. et al. Studies on the soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J. Environ. Radioact. 124, 101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karunakara, N. et al. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J. Environ. Radioact. 2013(118), 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 (2013).CAS 
    Article 

    Google Scholar 
    Ujwal, P. et al. Estimation of grass to milk transfer coefficient for cesium for emergency situations. Radiat Prot Environ [serial online] [cited 2021 Sep 23]; 34: 210–2. Available from: https://www.rpe.org.in/text.asp?2011/34/3/210/101727 (2011).International Atomic Energy Agency (IAEA). Soil–Plant Transfer of Radionuclides in Non-temperate Environments. IAEA-TECDOC No. 1979, IAEA, Vienna (2021a).Iurian, A.-R. et al. Transfer parameters and processes in arid or humid warm climates. J. Environ. Radioact https://doi.org/10.1016/j.jenvrad.2021.106692 (2021).Article 
    PubMed 

    Google Scholar 
    Doering, et al. A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. J. Environ. Radioact., 232, 106570, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106570 (2021).Rout et al. Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review. J. Environ. Radioact., 235–236, 106652, ISSN 0265–931X. https://doi.org/10.1016/j.jenvrad.2021.106652 (2021a).Rout et al. A review of soil to rice transfer of radionuclides in tropical regions of Indian subcontinent. J. Environ. Radioact. 234: 106631. https://doi.org/10.1016/j.jenvrad.2021.106631 (2021b).Twining, J. R. et al. Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia. J. Environ. Radioact. 71(2004), 71 (2004).CAS 
    Article 

    Google Scholar 
    Twining, J. R. et al. Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical northern Australia. Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC-1497, IAEA, Vienna (2006)Mollah, A. et al. Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat. Environ. Biophys. 37, 125–128. https://doi.org/10.1007/s004110050104 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, H. Q. The classification of soil systems on the basis of transfer factors from soil to reference plants, Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC1497 (IAEA, 2006).
    Google Scholar 
    Mahfuza, S., Sultana et al. Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh, Soil Remediation and Plants, Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00012-7 (2015)Nguyen, T. B. et al. Radionuclide transfer factors from air, soil and freshwater to the food chain of man in monsoon tropical condition of Vietnam, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex VIII to this publication (2021).Robison, W.L. & Conrado, C.L. Concentration ratios for foods grown on Bikini Island at Bikini atoll, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex X to this publication9 (2021).Doering, C. & Bollhöfer, A. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province. J. Environ. Radioact. 162–163, 154 (2016).Article 

    Google Scholar 
    Tenpe, S. P. & Parwate, D. V. Evaluation of elemental uptake of Citrus reticulata by nuclear analytical techniques. Int. J. Innov. Res. Sci. Eng. Technol. 4(2015), 2754 (2015).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Approaches for Modelling of Radioecological Data to Identify Key Radionuclides and Associated Parameter Values for Human and Wildlife. Exposure Assessments. IAEA-TECDOC No. 1950, IAEA, Vienna (2021b).Johansen, M. P. & Twining, J. R. Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: Data compilation and analysis. Radiat. Environ. Biophys. 49(4), 603–611. https://doi.org/10.1007/s00411-010-0318-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sotiropoulou, M., & Florou, H. Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece, J. Environ. Radioact., 237, 2021, 106666, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106666 (2021).Howard, B. J. et al. Updating animal product transfer parameter values for cow and goat milk. In: Soil-pant transfer of radionuclides in non-temperate environments, IAEA-TECDOC-1950, IAEA, Vienna (2021)Musatovová, O. & Vavrová, M. Transfer of 137Cs and 90Sr to some Animal Products in the site of Previewed Nuclear Power Plant Construction. Isotopenpraxis Isotopes Environ. Health Stud. 27(7), 339–341. https://doi.org/10.1080/10256019108622561 (1991).Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-No. 1616. IAEA, Vienna (2009).Karunakara, N. et al. Studies on transfer Factors of Iodine, Cesium and Strontium in air→ grass→ cow→ milk pathway and estimation of radiation dose specific to Kaiga region. Final report of the research project, Nuclear Power Corporation of India Ltd. (NPCIL). Grant No. Kaiga–3&4/00000/SD/2007/S/343 dated 27.12.2007, Kaiga –3&4/00000/SD/2007/S/343 (2012).Karunakara, N. et al. Estimation of air-to-grass mass interception factors for iodine, J. Environ. Radioact., 186, 71–77. ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2017.06.018 (2018).Nayak, R. S. et al. Experimental database on water equivalent factor (WEQp) and organically bound tritium activity for tropical monsoonal climate region of South West Coast of India. Appl. Radiat. Isotopes, https://doi.org/10.1016/j.apradiso.2020.109390 (2020).Karunakara, N. et al. 137Cs concentration in environment of Kaiga in the South-West Coast of India. Health Phys. 81(2), 148–155 (2001).CAS 
    Article 

    Google Scholar 
    Karunakara, N. et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga of south-west Coast of India. J. Environ. Radioact. 65, 255–266 (2003).CAS 
    Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Measurement of radionuclides in food and the environment, a guide book. Technical report series No. 295. IAEA, Vienna (1989).Environmental Measurements Laboratory, procedures manual. U.S. Department of Energy. Ed. 26 (1983).Uchida, S. & Tagami, K. Soil-to-plant transfer factors of fallout Cs-137 and native Cs-133 in various crops collected in Japan. J. Radioanal. Nucl. Chem. 273, 205–210 (2007).CAS 
    Article 

    Google Scholar 
    Gavlak, R. D. et al. Plant, soil and water reference methods for the Western Region. Western Regional Extension Publication (WREP) 125, WERA-103 Technical Committee, http://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (2005).Nuclear Power Corporation of India Ltd. (NPCIL). Environmental impact assessment for Kaiga atomic power project (Kaiga unit 5 & 6), 2 x 700 MWe PHWRs at Kaiga, Karnataka volume – I : Main report. NPCIL, Mumbai, India (2018).Siddappa, K. et al. Distribution of natural and artificial radioactivity components in the environs of coastal Karnataka, Kaiga and Goa (1991–94). Final Project Report to Board of Research in Nuclear Sciences (BRNS), Govt. of India, Mangalore University, Mangalore, India (1994).Radhakrishna, A. P. et al. Distribution of some natural and artificial radionuclides in mangalore environment of South India. J. Environ. Radioact. 30(1), 31–54 (1996).CAS 
    Article 

    Google Scholar 
    Patra, A. K. et al. Influence of site characteristics on soil to plant transfer of Strontium. National Symposium on Environment, 2004. pp. 475–480 (2004).Ross, et al. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Protect. Environ., 35(2) 64–68, DOI https://doi.org/10.4103/0972-0464.112340 (2012).National Research Council (NRC), Nutrient requirements of dairy cattle. 5th revised edition, National Academic Press; Washington D.C (1978).Patra, A. K. Studies on The Biological Translocation of Major and Trace elements in Kaiga Environment, Ph.D. Thesis, Mangalore University (2005).Ehlken, S. & Kirchner, G. Seasonal variations in soil to grass transfer of fallout Strontium and Cesium and of Potassium in North German soils. J. Environ. Radioact. 33(2), 147–181 (1996).CAS 
    Article 

    Google Scholar 
    International Union of Radioecology (IUR). 6th report of the working group soil-plant transfer factors. Report of the working group meeting in Guttannen, Grimselpass, Switzerland, May (1989).Lu, et al. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. Journal of Environmental Radioactivity 90(2), 89–99 (2006).Bergeijk, K. E. et al. Influence of pH, Soil Organic Matter Content on Soil-to-Plant Transfer of Radiocesium and Strontium as Analyzed by a Non-Parametric Method. J. of Environ. Radioactivity 15, 265–276 (1992).Article 

    Google Scholar 
    Anderson, R. R. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055 (1992).CAS 
    Article 

    Google Scholar 
    Hurley, W. L. Lactation Biology. Minerals and Vitamins. Ed. by Univ. Urbana. Illinois USA. (1997).Hingorani, S. B. et al. Sr-90 measurements in milk and composite diet samples in India. J. Sci. Indust. Res. 35, 557–579 (1976).CAS 

    Google Scholar 
    Lettner, H. A. et al. 137Cs and 90Sr transfer to milk in Austrian alpine agriculture. J. Environ. Radioact. 98, 69–84 (2007).CAS 
    Article 

    Google Scholar 
    Klemola, S. et al. Monitoring of Radionuclides in the Environs of the Finnish Nuclear Power Stations in 1988. Supplement 3 to Annual Report STUK-A89, Helsinki (1991)Abukawa, J. et al. A Survey of 90Sr and 137Cs Activity Levels of Retail Foods in Japan. J. Environ. Radioact. 41 (3), 287–305. (1998)Green, N. et al. The transfer of Cs and Sr along the soil-pasture-cow’s milk pathway in an area of land reclaimed from the Sea. J. Environ. Radioact. 23, 151–170 (1994).CAS 
    Article 

    Google Scholar 
    Green, N. et al. Factors affecting the transfer of radionuclides to sheep grazing on pastures reclaimed from the Sea. J. Environ. Radioact. 30(2), 173–183 (1996).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of radiocaesium to ewes through a breeding cycle: An illustration of the pitfalls of the transfer coefficient. J. Environ. Radioact. 98, 24–35 (2007).CAS 
    Article 

    Google Scholar 
    Bobovnikova, et al. Chemical forms of occurrence of long-lived radionuclides and their alteration in soils near the Chernobyl Nuclear Power Station. Soviet Soil Sci. 23, 52–57. (1991).Kashparov, V. A. et al. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys. 76, 251–299 (1999).CAS 
    Article 

    Google Scholar 
    Joshy, P. J. Studies on Environmental Transportation of Natural Radionuclides in Kaiga Region. Ph D Thesis, Mangalore University, pp. 105 (2007). More

  • in

    An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

    Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
    Google Scholar 
    Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).CAS 
    Article 

    Google Scholar 
    Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).CAS 
    Article 

    Google Scholar 
    IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).CAS 
    Article 

    Google Scholar 
    Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).CAS 
    Article 

    Google Scholar 
    Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).CAS 
    Article 

    Google Scholar 
    Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).Article 

    Google Scholar 
    UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).Article 

    Google Scholar 
    Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).CAS 
    Article 

    Google Scholar 
    Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).Article 

    Google Scholar 
    Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).CAS 
    Article 

    Google Scholar 
    Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).Article 

    Google Scholar 
    Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).Article 

    Google Scholar 
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).Article 

    Google Scholar 
    Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).CAS 
    Article 

    Google Scholar 
    Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).Article 

    Google Scholar 
    Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
    Google Scholar 
    Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).Article 

    Google Scholar 
    Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).Article 

    Google Scholar 
    Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).Article 

    Google Scholar 
    Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).Article 

    Google Scholar 
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).Article 

    Google Scholar 
    Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
    Google Scholar 
    IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).Article 

    Google Scholar 
    Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).Article 

    Google Scholar 
    Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).Article 

    Google Scholar 
    Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).Article 

    Google Scholar 
    Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).Article 

    Google Scholar 
    Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).Article 

    Google Scholar 
    Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).Article 

    Google Scholar 
    Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).Article 

    Google Scholar 
    Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).CAS 
    Article 

    Google Scholar 
    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).CAS 
    Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).Article 

    Google Scholar 
    Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).CAS 

    Google Scholar 
    Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).Article 

    Google Scholar 
    Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).Article 

    Google Scholar 
    Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).CAS 
    Article 

    Google Scholar 
    Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
    Google Scholar 
    Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
    Google Scholar 
    Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    The evolution of trait variance creates a tension between species diversity and functional diversity

    Calow, P. Towards a definition of functional ecology. Funct. Ecol. 1, 57–61 (1987).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).Article 
    PubMed 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).Article 
    PubMed 

    Google Scholar 
    Dehling, D. M. & Stouffer, D. B. Bringing the Eltonian niche into functional diversity. Oikos 127, 1711–1723 (2018).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Leinster, T. & Cobbold, C. A. Measuring diversity: the importance of species similarity. Ecology 93, 477–489 (2012).Article 
    PubMed 

    Google Scholar 
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).Article 
    PubMed 

    Google Scholar 
    Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 89, e01343 (2019).ADS 
    Article 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J., Bönisch, G. & D’iaz, S. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Fajardo, A. & Siefert, A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024–1030 (2018).Article 
    PubMed 

    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).Article 
    PubMed 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).Article 
    PubMed 

    Google Scholar 
    Loreau, M. The Challenges of Biodiversity Science. Excellence in Ecology Series (International Ecology Institute, 21385 Oldendorf/Luhe, Germany, 2010).Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. J. Veg. Sci. 24, 921–931 (2013).Article 

    Google Scholar 
    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 
    PubMed 

    Google Scholar 
    Mullon, C. & Lehmann, L. An evolutionary quantitative genetics model for phenotypic (co)variance under limited dispersal, with an application to socially synergistic traits. Evolution 73, 1695–1728 (2019).Article 
    PubMed 

    Google Scholar 
    Taper, M. L. & Case, T. J. Quantitative genetic models for the coevolution of character displacement. Ecology 66, 355–371 (1985).Article 

    Google Scholar 
    Engen, S., Grotan, V., Saether, B.-E. & Coste, C. F. D. An evolutionary and ecological community model for distribution of phenotypes and abundances among competing species. Am. Natur. 198, 1 (2021). https://doi.org/10.1086/714529.Kohyama, T. & Takada, T. The stratification theory for plant coexistence promoted by one-sided competition. J. Ecol. 97, 463–471 (2009).Article 

    Google Scholar 
    Kinzig, A. P., Levin, S. A., Dushoff, J. & Pacala, S. W. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. Am. Nat. 153, 371–383 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Adler, F. R. & Mosquera, J. Is space necessary? Interference competition and limits to biodiversity. Ecology 81, 3226–3232 (2000).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS 
    Article 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. 174, 898–905 (2009).Article 
    PubMed 

    Google Scholar 
    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A. Paleogeographic Model of the Galápagos Islands and Biogeographical and Evolutionary Implications. In Geophysical Monograph Series, (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.), chap. 8, 145–166 (2014).Parent, C. E. & Crespi, B. J. Sequential colonization and diversification of Galápagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60, 2311–2328 (2006).CAS 
    PubMed 

    Google Scholar 
    Parent, C. E. Diversification on islands: bulimulid land snails of Galápagos. Ph.D. thesis, Simon Fraser University, Burnaby, Canada (2008).Kraemer, A. C., Roell, Y. E., Shoobs, N. F. & Parent, C. E. Does island ontogeny dictate both the accumulation of species richness and functional diversity? Glob. Ecol. Biogeogr. 31, 123–137 (2021).Kraemer, A. C., Philip, C. W., Rankin, A. M. & Parent, C. E. Trade-offs direct the evolution of coloration in Galápagos land snails. Proc. R. Soc. B 286, 20182278 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barabás, G. & D’Andrea, R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016).Article 
    PubMed 

    Google Scholar 
    Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).CAS 
    MATH 
    Article 
    PubMed 

    Google Scholar 
    Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).Article 

    Google Scholar 
    Keddy, P. A. & Shipley, B. Competitive hierarchies in herbaceous plant communities. Oikos 54, 234–241 (1989).Article 

    Google Scholar 
    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 7842 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. S., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spaak, J. W. & De Laender, F. Effects of pigment richness and size variation on coexistence, richness and function in light limited phytoplankton. J. Ecol. 109, 2385–2394 (2021).Article 

    Google Scholar 
    Parain, E. C., Rohr, R. P., Gray, S. M. & Bersier, L.-F. Increased temperature disrupts the biodiversity–ecosystem functioning relationship. Am. Nat. 193, 227–239 (2019).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I., Svanbäck, R., Araujo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Goodfriend, G. A. Variation in land-snail shell form and size and its causes: a review. Syst. Biol. 35, 204–223 (1986).Article 

    Google Scholar 
    Machin, J. Structural adaptation for reducing water-loss in three species of terrestrial snail. J. Zool. 152, 55–65 (1967).Article 

    Google Scholar 
    McMahon, R. F. Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. In Progress in Littorinid and Muricid Biology, 241–260 (Springer, Dordrecht, The Netherlands, 1990).Rees, B. B. & Hand, S. C. Heat dissipation, gas exchange and acid-base status in the land snail oreohelix during short-term estivation. J. Exp. Biol. 152, 77–92 (1990).Article 

    Google Scholar 
    Newkirk, G. F. & Doyle, R. W. Genetic analysis of shell-shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30, 227–237 (1975).Article 

    Google Scholar 
    Seeley, R. H. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. Natl Acad. Sci. USA 83, 6897–6901 (1986).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K., Taylor, C. R. & Shkolnik, A. Desert snails: problems of heat, water and food. J. Exp. Biol. 55, 385–398 (1971).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xavier Jordani, M. et al. Intraspecific and interspecific trait variability in tadpole metacommunitiees from the Brazilian Atlantic rainforest. Ecol. Evol. 9, 4025–4037 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

    Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).Article 

    Google Scholar 
    García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).Article 

    Google Scholar 
    Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).Article 

    Google Scholar 
    Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).
    Google Scholar 
    Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).
    Google Scholar 
    Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).
    Google Scholar 
    Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).Article 

    Google Scholar 
    Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).Article 

    Google Scholar 
    Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).Article 
    PubMed Central 

    Google Scholar 
    El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).Article 

    Google Scholar 
    Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).CAS 
    Article 

    Google Scholar 
    Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).
    Google Scholar 
    Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).Article 

    Google Scholar 
    Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).Article 

    Google Scholar 
    da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).Article 

    Google Scholar 
    Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).Article 

    Google Scholar 
    Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).Article 

    Google Scholar 
    El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).CAS 
    Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).CAS 
    Article 

    Google Scholar 
    Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).Article 

    Google Scholar 
    Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).CAS 
    Article 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).Article 

    Google Scholar 
    Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).
    Google Scholar 
    Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).
    Google Scholar 
    Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).Article 

    Google Scholar 
    Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).Article 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).Article 

    Google Scholar 
    Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).Article 

    Google Scholar 
    Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).
    Google Scholar 
    De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).
    Google Scholar 
    Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).Article 
    PubMed 

    Google Scholar 
    Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).
    Google Scholar 
    Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).Article 
    PubMed 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).Article 
    PubMed 

    Google Scholar 
    Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).Article 
    PubMed Central 

    Google Scholar 
    Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).Article 

    Google Scholar 
    Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).Article 

    Google Scholar 
    Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).CAS 
    Article 

    Google Scholar 
    Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).
    Google Scholar 
    Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).
    Google Scholar 
    Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).
    Google Scholar 
    Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).CAS 
    Article 

    Google Scholar 
    Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).Article 

    Google Scholar 
    Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).CAS 
    Article 

    Google Scholar 
    Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).Article 

    Google Scholar 
    Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).Article 

    Google Scholar 
    Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).Article 

    Google Scholar 
    Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).Article 

    Google Scholar 
    Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).Article 

    Google Scholar 
    Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).Article 

    Google Scholar 
    Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).Article 

    Google Scholar 
    Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).Chapter 

    Google Scholar 
    Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).Article 
    PubMed 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).Article 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).Article 

    Google Scholar 
    Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).
    Google Scholar 
    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).Chapter 

    Google Scholar 
    White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).Chapter 

    Google Scholar 
    Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).Article 

    Google Scholar 
    Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).
    Google Scholar 
    Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011). More

  • in

    Phylotype diversity within soil fungal functional groups drives ecosystem stability

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, W. et al. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytol. 226, 1129–1143 (2020).PubMed 
    Article 

    Google Scholar 
    Semchenko, M. et al. Fungal diversity regulates plant–soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohli, M. et al. Stability of grassland production is robust to changes in the consumer food web. Ecol. Lett. 22, 707–716 (2019).PubMed 
    Article 

    Google Scholar 
    Liang, M. et al. Soil microbes drive phylogenetic diversity–productivity relationships in a subtropical forest. Sci. Adv. 5, eaax5088 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. How soil biota drive ecosystem stability. Trends Plant Sci. 23, 1057–1067 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pörtner, H.O. et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change (IPBES, 2021).Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Jia, Y. Y., van der Heijden, M. G. A., Wagg, C., Feng, G. & Walder, F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J. Ecol. 109, 3171–3181 (2020).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).Article 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How do mycorrhizal associations drive plant population and community biology? Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078–1088 (2014).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagg, C. et al. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. Elife 10, 3207 (2021).Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. Plant and soil biodiversity have non-substitutable stabilizing effects on biomass production. Ecol. Lett. 24, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Chen, L. T. et al. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13307 (2021).Garcia-Palacios, P., Gross, N., Gaitan, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. B. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset, A., Schmid, B., Scheu, S. & Eisenhauer, N. Genotypic richness and dissimilarity opposingly affect ecosystem performance. Ecol. Lett. 14, 537–624 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, L., Pu, Z. & Nemergut, D. R. On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117, 488–493 (2008).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paruelo, J., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).Article 

    Google Scholar 
    Jobbágy, E. G., Sala, O. E. & Paruelo, J. M. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83, 307–319 (2002).
    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastos, A., Running, S. W., Gouveia, C. & Trigo, R. M. The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosci. 118, 1247–1255 (2013).Article 

    Google Scholar 
    Orwin, K. H. & Wardle, D. A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912 (2004).CAS 
    Article 

    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).Article 

    Google Scholar 
    Sun, Y. et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).CAS 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, H. et al. Contrasting responses of planted and natural forests to drought intensity in Yunnan, China. Remote Sens. 8, 635 (2016).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Allen, R. G. et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO, 1998); https://www.fao.org/3/x0490e/x0490e00.htmOksanen, J. et al. Vegan: Community Ecology Package (R Foundation for Statistical Computing, 2013).Legendre, P. et al. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3–8 (2008).Article 

    Google Scholar 
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Lefcheck., J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579.Bates, D. et al. lme4: linear mixed-effects models using Eigen and S4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar  More

  • in

    Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).Article 

    Google Scholar 
    Campbell, I., Czamanske, G., Fedorenko, V., Hill, R. & Stepanov, V. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science 258, 1760–1763 (1992).Article 

    Google Scholar 
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).Article 

    Google Scholar 
    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).Article 

    Google Scholar 
    Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).Article 

    Google Scholar 
    Lee, C. & Lackey, J. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).Article 

    Google Scholar 
    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).Article 

    Google Scholar 
    Ratschbacher, B. C., Paterson, S. R. & Fischer, T. P. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20, 2997–3018 (2019).Article 

    Google Scholar 
    Soreghan, G. S., Soreghan, M. J. & Heavens, N. G. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47, 600–604 (2019).Article 

    Google Scholar 
    Jones, M. T., Sparks, R. S. J. & Valdes, P. J. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29, 553–564 (2007).Article 

    Google Scholar 
    DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).Article 

    Google Scholar 
    Ducea, M. N., Paterson, S. R. & DeCelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).Article 

    Google Scholar 
    Milan, L. A., Daczko, N. R. & Clarke, G. L. Cordillera Zealandia: a Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. Sci. Rep. 7, 261 (2017).Article 

    Google Scholar 
    Gravley, D. M., Deering, C. D., Leonard, G. S. & Rowland, J. V. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci. Rev. 162, 65–82 (2016).Article 

    Google Scholar 
    de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).Article 

    Google Scholar 
    Attia, S., Cottle, J. M. & Paterson, S. R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 48, 446–451 (2020).Article 

    Google Scholar 
    Chisholm, E.-K. I., Simpson, C. & Blevin, P. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 (Geoscience Australia, 2014).McPhie, J. Evolution of a non-resurgent cauldron: the Late Permian Coombadjha volcanic complex, northeastern New South Wales, Australia. Geol. Mag. 123, 257–277 (1986).Article 

    Google Scholar 
    Lackie, M. The magnetic fabric of the Late Permian Dundee Ignimbrite, Dundee, NSW. Explor. Geophys. 19, 481–488 (1988).Article 

    Google Scholar 
    Stewart, A. Facies in an Upper Permian volcanic succession, Emmaville Volcanics, Deepwater, northeastern New South Wales. Aust. J. Earth Sci. 48, 929–942 (2001).Article 

    Google Scholar 
    Milan, L. A. et al. A new reconstruction for Permian East Gondwana based on zircon data from ophiolite of the East Australian Great Serpentinite Belt. Geophys. Res. Lett. 48, e2020GL090293 (2021).Article 

    Google Scholar 
    Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 46, 291–325 (2018).Article 

    Google Scholar 
    Shaw, S., Flood, R. & Pearson, N. The New England Batholith of eastern Australia: evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos 126, 115–126 (2011).Article 

    Google Scholar 
    Kohn, B. et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust. J. Earth Sci. 49, 697–717 (2002).Article 

    Google Scholar 
    Metcalfe, I., Crowley, J., Nicoll, R. & Schmitz, M. High-precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).Article 

    Google Scholar 
    Laurie, J. et al. Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 63, 701–730 (2016).Article 

    Google Scholar 
    Creech, M. Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. Int. J. Coal Geol. 51, 185–214 (2002).Article 

    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).Article 

    Google Scholar 
    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, 49, 1089–1095 (2021).Grevenitz, P., Carr, P. & Hutton, A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. Int. J. Coal Geol. 55, 27–46 (2003).Article 

    Google Scholar 
    Phillips, L. et al. U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 65, 153–173 (2018).Article 

    Google Scholar 
    Siégel, C., Bryan, S., Allen, C., Gust, D. & Purdy, D. Crustal evolution in the New England Orogen, Australia: repeated igneous activity and scale of magmatism govern the composition and isotopic character of the continental crust. J. Petrol., 61, 1–28 (2020).Wang, X. et al. Convergent continental margin volcanic source for ash beds at the Permian–Triassic boundary, South China: constraints from trace elements and Hf-isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 154–165 (2019).Article 

    Google Scholar 
    Nelson, D. & Cottle, J. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).Article 

    Google Scholar 
    He, B., Zhong, Y.-T., Xu, Y.-G. & Li, X.-H. Triggers of Permo-Triassic boundary mass extinction in South China: the Siberian Traps or Paleo-Tethys ignimbrite flare-up? Lithos 204, 258–267 (2014).Article 

    Google Scholar 
    Cope, T. Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 468, 1–10 (2017).Article 

    Google Scholar 
    Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).Article 

    Google Scholar 
    Jin, Y. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).Article 

    Google Scholar 
    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).Article 

    Google Scholar 
    Ramezani, J. & Bowring, S. A. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol. Soc. Spec. Publ. 450, 51–60 (2018).Article 

    Google Scholar 
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).Article 

    Google Scholar 
    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).Article 

    Google Scholar 
    Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).Article 

    Google Scholar 
    Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).Article 

    Google Scholar 
    Shen, S. Z. et al. High‐resolution Lopingian (Late Permian) timescale of South China. Geol. J. 45, 122–134 (2010).Article 

    Google Scholar 
    Shellnutt, J. G., Denyszyn, S. W. & Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118–126 (2012).Article 

    Google Scholar 
    Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).Article 

    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).Article 

    Google Scholar 
    Liu, Z. et al. Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chem. Geol. 529, 119313 (2019).Article 

    Google Scholar 
    Cheng, C. et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen’an, Shaanxi Province, central China: climatological implications for the easternmost Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 407–422 (2019).Article 

    Google Scholar 
    Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article 

    Google Scholar 
    Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).Article 

    Google Scholar 
    Yugan, J., Jing, Z. & Qinghua, S. Two Phases of the End-Permian Mass Extinction. In Pangea: Global Environments and Resources — Memoir, 17, 813-822 (1994).Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney Basin, Australia. Gondwana Res. 51, 149–169 (2017).Article 

    Google Scholar 
    van der Boon, A. et al. Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Clim. Past 17, 229–239 (2021).Article 

    Google Scholar 
    Metcalfe, I. Tectonic evolution of Sundaland. Bull. Geol. Soc. Malays. 63, 27–60 (2017).Article 

    Google Scholar 
    Maravelis, A. G. et al. Re-assessing the Upper Permian stratigraphic succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 10, 474 (2020).Article 

    Google Scholar 
    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).Article 

    Google Scholar 
    Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).Article 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).Article 

    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).Article 

    Google Scholar 
    Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).Article 

    Google Scholar 
    Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta 37, 485–494 (1973).Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).Article 

    Google Scholar 
    Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, https://doi.org/10.1029/2006gc001492 (2007).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).Article 

    Google Scholar 
    Crowley, J. L., Schoene, B. & Bowring, S. A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).Article 

    Google Scholar 
    Ludwig, K. R. User’s manual for Isoplot 3.00 (Berkley Geochronology Center, 2003).Offenburg, A. C. & Pogson, D. J. Geological Map of New England 1:500,000 (Geological Survey of New South Wales, 1973).Cranfield, L. C., Hutton, L. J. & Green, P. M. Geological Map of Ipswich 1:100,000 (Geological Survey of Queensland, 1978).Shaw, S. E. & Flood, R. H. The New England Batholith, eastern Australia: geochemical variations in time and space. J. Geophys. Res. Solid Earth 86, 10530–10544 (1981).Article 

    Google Scholar 
    Barnes, R. G., Brown, R. E., Brownlow, J. W. & Stroud, W. J. Late Permian volcanics in New England. Q. Notes Geol. Surv. N. South Wales 84, 1–36 (1991).
    Google Scholar 
    Finlayson, D. M. & Collins, C. D. N. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141–153 (1993).Article 

    Google Scholar 
    Timothy, C., Geoffrey, L. C., Nathan, R. D., Sandra, P. & Adrianna, R. Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos 216–217, 1–16 (2015).
    Google Scholar 
    Chapman, T., Clarke, G. L. & Daczko, N. R. Crustal differentiation in a thickened arc—evaluating depth dependences. J. Petrol. 57, 595–620 (2016).Article 

    Google Scholar 
    Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).Article 

    Google Scholar 
    Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43, 919–922 (2015).Article 

    Google Scholar 
    Bryant, C. J. A Compendium of Granites of the Southern New England Orogen, Eastern Australia (Geological Survey of New South Wales, 2017).Phillips, G., Landenberger, B. & Belousova, E. A. Building the New England Batholith, eastern Australia—linking granite petrogenesis with geodynamic setting using Hf isotopes in zircon. Lithos 122, 1–12 (2011).Article 

    Google Scholar 
    Kemp, A., Hawkesworth, C., Collins, W., Gray, C. & Blevin, P. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).Article 

    Google Scholar 
    Anderson, J. R., Fraser, G. L., McLennan, S. M. & Lewis, C. J. A U–Pb Geochronology Compilation for Northern Australia Report No. 2017/22 (Geoscience Australia, 2017).Belousova, E. A., Griffin, W. L. & O’Reilly, S. Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J. Petrol. 47, 329–353 (2005).Article 

    Google Scholar 
    Bodorkos, S. et al. U–Pb Ages from the Central Lachlan Orogen and New England Orogen, New South Wales Report No. 2016/21 (Geoscience Australia, 2016).Cawood, P. A., Pisarevsky, S. A. & Leitch, E. C. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 30, 1–15 (2011).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2012–June 2014 Report No. 2014/13 (Geoscience Australia, 2014).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 Report No. 2014/13 (Geoscience Australia, 2014).Cross, A. & Blevin, P. L. Summary of Results for the Joint GSNSW–GA Geochronology Project Report No. GS2013/0426 (Geoscience Australia, 2013).Craven, S. J., Daczko, N. R. & Halpin, J. A. Thermal gradient and timing of high-T–low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. J. Metamorph. Geol. 30, 3–20 (2012).Article 

    Google Scholar 
    Black, L. P. U–Pb Zircon Ages Obtained During 2006/07 for NSW Geological Survey Projects (Geoscience Australia, 2007).Rosenbaum, G., Li, P. & Rubatto, D. The contorted New England Orogen (eastern Australia): new evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31, https://doi.org/10.1029/2011tc002960 (2012).Walthenberg, K., Blevin, P. L., Bull, K. F., Cronin, D. E. & Armistead, S. E. New SHRIMP U–Pb Zircon Ages from the Lachland Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2015–June 2016 Report No. 2016/28 (Geoscience Australia, 2016).Walthenberg, K., Blevin, P. L., Bodorkos, S. & Cronin, D. E. New SHRIMP U–Pb Ages from the New England Orogen, New South Wales: July 2014–June 2015 Report No. 2015/28 (Geoscience Australia, 2015).Jeon, H., Williams, I. S. & Chappell, B. W. Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 319, 104–117 (2012).Article 

    Google Scholar  More

  • in

    State of ex situ conservation of landrace groups of 25 major crops

    Crops and their landrace study areasFood crops whose genetic resources are researched and conserved by CGIAR international agricultural research centres or by the CePaCT of the SPC were included in this study. Crop landrace distributions were modelled and conservation analyses conducted within recognized primary and, for some crops, secondary regions of diversity, where these crops were domesticated and/or have been cultivated for very long periods, and where they are, thus, expected to feature high genetic diversity and adaptation to local environmental and cultural factors (Supplementary Tables 1 and 2)9,13. These regions were identified through literature review (Supplementary Information) and confirmed by crop experts.Occurrence dataOur crop landrace group distribution modelling and conservation gap analysis rely on occurrence data, including coordinates of locations where landraces were previously collected for ex situ conservation and reference sightings. For ex situ conservation records, occurrences marked as landraces were retrieved from two major online databases: the Genesys Plant Genetic Resources portal33 and the World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) of the Food and Agriculture Organization of the United Nations34. Occurrences were also obtained directly from individual international genebank information systems: AfricaRice, the International Transit Centre and Musa Germplasm Information System of Bioversity International35, CePaCT, International Center for Tropical Agriculture (CIAT), International Maize and Wheat Improvement Center (CIMMYT), International Potato Center (CIP), International Center for Agricultural Research in the Dry Areas (ICARDA), International Crops Research Institute for the Semi-arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA) and International Rice Research Institute (IRRI), as well as from the United States Department of Agriculture (USDA) Genetic Resources Information Network (GRIN)–Global36 and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)37. Occurrences were compiled from the Global Biodiversity Information Facility (GBIF), with ‘living specimen’ records classified as ex situ conservation records and the remaining serving as reference sightings for use in distribution modelling. Reference occurrences were also drawn from published literature (Supplementary Information). Duplicated observations within or between data sources were eliminated, with a preference to utilize the most original data. Coordinates were corrected or removed when latitude and longitude were equal to zero or inverted, located in water bodies or in the wrong country or had poor resolution ( 10 (ref. 60). The predictors and whether they were selected for the modelling of each landrace group are presented in Supplementary Table 4.We generated a random sample of pseudo-absences as background points in areas that (1) were within the same ecological land units61 as the occurrence points, (2) were deemed potentially suitable according to a support vector machine classifier that uses all occurrences and predictor variables and (3) were farther than 5 km from any occurrence62. The number of pseudo-absences generated per crop group was ten times its number of unique occurrences.MaxEnt models were fitted through five-fold (K = 5) cross-validation with 80% training and 20% testing. For each fold, we calculated the area under the receiving operating characteristic curve (AUC), sensitivity, specificity and Cohen’s kappa as measures of model performance. To create a single prediction that represents the probability of occurrence for the landrace group, we computed the median across K models. Geographic areas in the form of pixels with probability values above the maximum sum of sensitivity and specificity were treated as the final area of predicted presence13.Ex situ conservation status and gapsThree separate but complementary metrics were developed to compare the geographic and environmental diversity in current ex situ conservation collections to the total geographic and environmental variation across the crop landrace group distribution model and, thus, to identify and quantify ex situ conservation gaps13.A connectivity gap score (SCON) was calculated for each 2.5-arc-minute pixel within the distribution model by drawing a triangle63,64 around each pixel using the three closest genebank accession occurrence locations as vertices and then deriving normalized values for the pixel based on distance to the triangle centroid and vertices13. The SCON of a pixel is high—closer to 1 on a scale of 0–1—when its corresponding triangle is large, when the pixel is close to the centroid of the triangle or when the distance to the vertices is large. A high SCON represents a greater probability of the pixel location being a gap in existing ex situ collections.An accessibility gap score (SACC) was calculated for each 2.5-arc-minute pixel in the distribution model by computing travel time from each pixel to its nearest genebank accession occurrence location based both on distance and the speed of travel, defined by a friction surface13,45. Travel time scores were normalized by dividing pixel values by the longest travel time within the distribution model, with the final score ranging from 0 to 1. A high SACC value for a pixel reflects long travel times from existing genebank collection occurrences and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.An environmental gap score (SENV) was calculated for each 2.5-arc-minute pixel in the distribution model by conducting a hierarchical clustering analysis using Ward’s method with all the predictor variables from the distribution modelling. The Mahalanobis distance between each pixel and the environmentally closest genebank accession occurrence location was then computed13. Environmental distance scores were normalized between 0 and 1. A high SENV value for a pixel reflects a large distance to areas with similar environments where landraces have previously been collected for genebank conservation and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.Spatial ex situ conservation gaps were determined from the conservation gap scores using a cross-validation procedure to derive a threshold for each score. We created synthetic gaps by removing existing genebank occurrences in five randomly chosen circular areas with a 100 km radius within the distribution model. We then tested whether these artificial gaps could be predicted by our gap analysis, identifying the threshold value of each score that would maximize the prediction of these synthetic gaps. Performance for each of the five gap areas was assessed using AUC, sensitivity and specificity. The average cross-area threshold value was calculated for each score to discern pixels with a high likelihood of finding ex situ conservation gaps and that, thus, were higher priority for further field sampling. These were pixels with combined gap scores above the threshold, assigned a value of 1, as opposed to the relatively well-conserved areas below the threshold, which were assigned a value of 0.The three binary conservation gap scores were then mapped in combination, resulting in pixels across the distribution model with gap values ranging from 0 to 3. Pixels with a value of 0 display no connectivity, accessibility or environmental gaps and are considered well represented ex situ. Pixels with a value of 1 indicate a conservation gap in connectivity, accessibility or the environment; we consider these ‘low-confidence’ gaps. Pixels with a value of 2 indicate gaps in two metrics or ‘medium-confidence’ gaps, and values of 3 indicate gaps across all metrics or ‘high-confidence’ gaps. High-confidence gap areas are displayed on crop-conservation-gap maps (Fig. 2b and Supplementary Information) and conservation hotspot maps across crops (Fig. 4 and Extended Data Figs. 5–8).The representation of crop landrace groups in current ex situ conservation collections was calculated based on the final 1–3 value conservation-gap maps. The complement of the proportion of the modelled distribution considered as a potential conservation gap by any single gap score represents the minimum estimate of current representation; the complement of the proportion considered by all three scores as a gap, which is to say high-confidence gap areas, represents the maximum estimate (Supplementary Tables 1 and 2).While distribution modelling and conservation gap analyses were conducted at the crop landrace group level and results are presented in full in the Supplementary Information, for ease of comparison of results across crops, and to avoid bias towards crops with many landrace groups, we also calculated summary results at the crop level. Crops that had been assessed with geographic differentiations, including maize in Africa and Latin America and yams in the New World and the Old World, were also combined. For spatial results, the pixels in crop landrace group models were summed—that is, constituent landrace group models were combined. The minimum and maximum current conservation representation estimations at the crop level were then calculated based on combined spatial models.GBIF occurrence downloadsThe following occurrence downloads from the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/, 2017−2021) were used: 10.15468/dl.rrntfr, 10.15468/dl.2f2v4h, 10.15468/dl.2ywlb7, 10.15468/dl.lnfelh, 10.15468/dl.ryrmfj, 10.15468/dl.8adf61, 10.15468/dl.nff5ys, 10.15468/dl.erxs6e, 10.15468/dl.vbfgho, 10.15468/dl.mjjk3x, 10.15468/dl.uppz1n, 10.15468/dl.938bgm, 10.15468/dl.hr87hm, 10.15468/dl.k1va80, 10.15468/dl.coqpu2, 10.15468/dl.lkoo9u, 10.15468/dl.e998mp, 10.15468/dl.vfbmm7, 10.15468/dl.tnp478, 10.15468/dl.6zxsea, 10.15468/dl.0lray8, 10.15468/dl.5sjgsw, 10.15468/dl.wkju6h, 10.15468/dl.7xzfvc, 10.15468/dl.autlf5, 10.15468/dl.fe2amw, 10.15468/dl.2zblvz, 10.15468/dl.ddplkj, 10.15468/dl.jbzejg, 10.15468/dl.ej5bha, 10.15468/dl.905pxd, 10.15468/dl.pim1vs, 10.15468/dl.vdridc, 10.15468/dl.b43gyv, 10.15468/dl.nnw3z7, 10.15468/dl.bnt9jc, 10.15468/dl.f5x2cg, 10.15468/dl.ub7zbg, 10.15468/dl.sggf2v, 10.15468/dl.ath5ve, 10.15468/dl.23k3ug, 10.15468/dl.cym376, 10.15468/dl.53bwzk, 10.15468/dl.fsad7h and 10.15468/dl.fm6p7z.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More