More stories

  • in

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler

    Considering the actual and predicted values, the model generated through the different inputted parameters should be diagnosed satisfactorily. It is pretty understanding that agreement between the actual and predicted values given the effectiveness and accuracy of the generated model, as shown in Fig. 2. The following polynomial regression model equations were obtained:$$begin{aligned} COD;removal , % , & = 76.63 – 0.019*A , + , 0.064*B , – 0.511*C , – 0.405*AB , – 0.153*AC , \ &quad – 0.099*BC , + , 0.263*A^{2} + , 0.479*B^{2} – 0.303*C^{2} \ end{aligned}$$
    (1)
    $$begin{aligned} Nitrate;Removal , % , & = 72.04 , – 1.881*A – 0.142* , B , + , 2.384*C , + , 2.623*AB , + , 8.579*AC , \ &quad – 2.626*BC , – 10.783*A^{2} + , 0.223*B^{2} + , 0.963*C^{2 } hfill \ end{aligned}$$
    (2)
    $$begin{aligned} & Phosphate , Removal , % , = \ & 67.179 – 1.215*A , + , 3.539*B , – 1.068*C , + , 1.610*AB , – 2.559*AC , + , 0.392*BC , + , 0.788*A^{2} – 2.943*B^{2} + , 0.564*C^{2} \ end{aligned}$$
    (3)
    where A is initial pH, B is current time (min), C is MLSS concentration (mg L−1) at which the study was carried out.Figure 2Normal probability versus studentized residuals and predicted versus actual plots for (i) COD removal, (ii) nitrate removal, and (iii) phosphate removal.Full size imageIt has been observed that statistics for the model having low values represent well for the system and its predictions.Statistical analysis of COD, nitrate and phosphate removalIt was seen that 3D surface plots could provide a better understanding of the interactive effects of the parameters. The 3D surface plots are illustrated in Figs. 3, 4, and 5, respectively. It was observed that the maximum removal efficiency for COD, nitrate, and phosphate is in the range of 59% to 74%.Figure 3Model generated surface plot of % COD removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 4Model generated surface plot of %nitrate removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 5Model generated surface plot of %phosphate removal (i) pH versus current time (ii) pH versus MLSS (iii) MLSS versus current time.Full size imageTable 4 (i) shows the statistics for COD removal. Adeq Precision is desirable, which measures the signal-to-noise ratio and a ratio greater than 4. For the COD removal, Adeq Precision was 19.255, indicating an adequate signal. It was also observed that the adjusted R2 is 0.9118 (difference less than 0.2), and the predicted R2 of 0.8601 was significant, implying that the predictions are in good agreement with experimental values.Table 4 Fit statistics for (i) COD removal, (ii) Nitrate removal, (iii) Phosphate removal.Full size tableFigure 3 illustrates the effect of current flow time and pH concerning the percentage removal of COD. The model predicted values observed were seen to lie in the range of 73.1% at MLSS values of 2500 mg L−1, keeping initial COD values as 200 mg L−1. As the COD load increases, it seems to be predicted that the overloading of bacteria occurs, thereby slowing down the consumption of organics. In Fig. 4, the expected removal efficacy shows upward trends with an increase in the values of MLSS, which also coincided with previous studies. As the value of MLSS increases, the contact time of biomass in the system increases, hence producing more effective results than others.Table 4 (ii) shows the statistics for nitrate removal. The predicted R2 of 0.9164 was in reasonable agreement with the adjusted R2 of 0.9730. For the nitrate removal, Adeq Precision was 29.608, indicating an adequate signal. This model can be used to navigate the design space.Table 4 (iii) shows the statistics for phosphate removal. The predicted R2 of 0.9165 was in reasonable agreement with the adjusted R2 of 0.9720. For the phosphate removal, Adeq Precision was 34.945, indicating an adequate signal. This model can be used to navigate the design space.Figure 5 illustrates that as we reduce the cycle time from 24 to 18 h, the system efficacy, i.e., COD removal effectiveness shows a downward trend due to less contact time with biomass. Meanwhile, if we increase the cycle time, we observe higher efficacy in the system. The model generated surface plot in Fig. 5 illustrated that increasing MLSS values by 3000 mg L−1 will enhance the COD removal by 73.1%, keeping the initial pH constant. This may be due to many microbes that can break down organic matter. In aerobic reactors, pH is an essential factor in the growth of the microbial population. To create granules, the pH of the reactor has a direct impact. Studies have shown that granule formation occurs when bacteria grow at the ideal pH level, whereas mass proliferation of fungus occurs in an acidic environment.COD removal in EBR and tubesettlerThe Influence, effluent, and removal of COD in EBR & tubesettler are illustrated in Fig. 6a,b. Results demonstrate that the COD concentration is consistent and better COD removal efficacy rate. The average removal rate values observed in the EBR were between 74 and 79%, with the initial COD concentration kept around 360–396 mg L−1. It was also observed that tubesettler resulted in approximately 25–36% efficacy when the initial concentration was between 75 and 97 mg L−1. The results of EBR are promising and can be attributed to the fact that electrocoagulation takes place along with the oxidation and biodegradation process. It was also observed that the percentage removal of COD shows downward trends due to electrochemical oxidation and adsorption, thereby resulting in physical entrapment and electrostatic attraction30. It has also been reported in many other studies that COD removal of around 85–90% was observed using composite cathode membrane using MRB/MFC system19 for the specialized treatment of landfill leachate. It was seen with the electrooxidation process having COD removal of around 80–84% and 84–96% with submerged membrane bioreactors, using Iron electrode6. For the Coal industry, it was found to be around 85% using membrane electro bioreactors31.Figure 6(a) Influent, effluent and removal of COD in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of COD in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn the current study, results seemed to be lower than the values reported in the previous studies. The main reason might be the employment of a modified EBR system and the production of biomass species. When the overall COD removal with tubesettler is considered, up to 83.58% removal efficiency is observed. The overall COD removal efficiency is significant and is at par with other studies3,4,5. This signifies that EBR performed better than tubesettler in COD removal. The tubesettler’s lower removal efficiency can be attributed to lower influent concentration from already reduced wastewater from EBR.Nitrate removal in EBR and tubesettlerIt was observed in many studies that nitrifying is the leading cause of nitrification, i.e., conversion of NH3-N to nitrate NO3-N10. The indirect method of system nitrification process claudication was to be ascertained using measurements concerning ammonia values32,33. In the current study, the nitrification process was considered using the nitrate concentration measurement from the influent and effluent in both systems, i.e., EBR and tubesettler34,35,36. The nitrate concentration of influent and effluent was observed and illustrated in Fig. 7a,b. The system stabilized and produced enhanced results up to 70% of nitrate removal, and it was seen to be in the range of 40–45% for the tubesettler. It has been observed that EBR produced better results than the tubesettler. The results variation in both the systems were reasonably attributed mainly to two primary reasons (1) low influent concentration in the influent compared to the EBR system and (2) inhibition effect due to the applied DC field, which was absent in tubesettlers.Figure 7(a) Influent, effluent, and removal of nitrate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of nitrate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageThe removal efficiency of around 70% was achieved, lower than the values in submerged membrane bioreactors, i.e., 82%6. However, including a membrane would have enhanced the removal efficiency and considered a hybrid EBR system. The results of the current study are close enough to many other studies with a similar system and different operating parameters. Hence, a combined approach can be used for better efficacy. During the weekly analysis, the nitrate concentration during the 1st to 3rd week is lower than in the following weeks. As the concentration of nitrifying bacteria decreased, they had less to work with. Thus, the substrate concentration grew, and so did the removal rate. Nitrate concentrations rose by more than twice the previous week during Week 7. They slowed the bacterial activity, resulting in an efficiency decline to 47% from 70% during the last week’s study period and weeks 6 and 8. A similar pattern emerged for the seventh week in a row in tubesettler. On the other hand, microorganisms overcame differences in engagement because the nitrate content was low in other weeks.Phosphate removal in EBR and tubesettlerMany researchers have looked at nitrate content, but none have looked at phosphate concentration. Eutrophication in receiving water bodies, on the other hand, is predominantly caused by phosphate and nitrate. Additionally, there is a lack of information available on hospital wastewater. The influent and effluent phosphate concentrations in the Electro bioreactor and the tubesettler is shown in Fig. 8a,b. A 75% reduction in the effluent phosphate content in EBR was achieved tubesettler had a 67% effectiveness in phosphate removal but a lower efficiency in nitrate reduction. A previous similar study that used a Submerged Membrane Electro bioreactor claimed a clearance rate of 76% to 95%, which is lower than this study’s results6. Phosphate removal was reported at 50–70% using the electrocoagulation process for different Ph and current6.Figure 8(a) Influent, effluent, and removal of phosphate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of phosphate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn week 6 and week 8, the EBR’s phosphate removal efficiency fluctuated dependent on the weekly average concentration in EBR. This volatility can be linked to a shift in the composition of hospital wastewater. tubesettler had a modest variation ranging from 5 to 6%. Although phosphate concentrations rose in week two, tubesettler removal efficiency improved. As demonstrated in Fig. 8a,b, the arriving wastewater ingredient exhibited a strong affinity in terms of phosphate reduction.Excess effluent concentration and standard deviation from EBR and tubesettler are shown in Table 5. EBR performed better than tubesettler in COD reduction when nitrate and phosphate were compared. Because tubesettler solely employs a physical process to remove contaminants, this is to be anticipated. Effluent from the secondary treatment facility is sent to a tubesettler, which acts as a polishing unit. EBR eliminated COD by 91%, nitrate by 85%, and Phosphate reduction by 81% compared to tubesettler’ s total efficiency. At the same time, tubesettler reduced COD by 37%, nitrate by 51%, and phosphate by 53%. Hence, EBR primarily removed pollutants from wastewater while tubesettler acted as a polishing unit. Table 5 illustrates the effluent wastewater characteristics of EBR and tubesettler.Table 5 Effluent wastewater characteristics of EBR and tubesettler.Full size tableKinetic models post optimizationFirst-order modelA first-order linear model was analyzed on the experimental data by plotting (So − Se)/Se against hydraulic retention time (HRT), providing K1 and R2. For COD, R2 values were 0.761 with a constant value of 1.213, as shown in Table 6. Henceforth based on the results, the obtained model did not seem to fit well for either of the cases.Table 6 Analyzed kinetic models.Full size tableGrau second-order modelA Grau second-order model was analyzed on the experimental data by plotting HRT/((So − Se)/So) versus HRT. The COD constant obtained was Ks = 10–5, as shown in Table 6. The R2 value of 0.99 suggests a good correlation coefficient. Therefore, the obtained results fit well for AOX and COD.Modified Stover–Kincannon modelSubstrate utilization rate expressed as organic loading in this model is widely used in biological reactor kinetic modelling of wastewater. The developed model can evaluate the performance of the biological system and estimate its efficiency based on the input parameters. The kinetic constant KB and Umax for COD were 0.35 and 1.73 g L−1 d−1, respectively. The R2 was 0.98 for the substrate removal, as presented in Table 6.Monod modelCOD utilization rate was obtained by plotting VX/Q (So − Se) against 1/Se. The value of 1/K (0.421) was obtained from the intercept, while the Ks/K value (1.235) was the slope of the line. COD removal half-saturation values were 0.045 and 0.056 g L−1. These values infer a high affinity of bacteria for the substrate. The R2 value of 0.95 depicted an excellent correlation coefficient in the case of COD. The Monod model fits well for COD, resulting in R2 = 0.98, as shown in Table 6. More

  • in

    The plant rhizosheath–root niche is an edaphic “mini-oasis” in hyperarid deserts with enhanced microbial competition

    Laity JJ. Deserts and desert environments. John Wiley & Sons; UK, 2009.Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2015;6:166–71.Article 

    Google Scholar 
    Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, et al. Global ecosystem thresholds driven by aridity. Science. 2020;367:787–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Danin A. Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F, editors. Adaptations of desert organisms. Plant of desert dunes. Springer; Verlag Berlin Heidelberg, 1996.Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N, Leff JWJ, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronca S, Ramond J-BB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noy-Meir I. Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst. 1974;5:195–214.Article 

    Google Scholar 
    Danin A. Plants of desert dunes. In: Cloudsley-Thompson J, editor. Adaptations of desert organisms. Springer; Verlag Berlin Heidelberg, 2000.Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, et al. Leaf surface structures enable the endemic Namib Desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface. 2012;9:1965–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J Arid Environ. 2011;75:524–31.Article 

    Google Scholar 
    Cartwright J. Ecological islands: conserving biodiversity hotspots in a changing climate. Front Ecol Environ. 2019;17:fee.2058.Article 

    Google Scholar 
    André HM, Noti MI, Jacobson KM. The soil microarthropods of the Namib Desert: a patchy mosaic. J African Zool. 1997;111:499–517.
    Google Scholar 
    Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown LK, George TS, Neugebauer K, White PJ. The rhizosheath—a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 
    Article 

    Google Scholar 
    Pang J, Ryan MH, Siddique KHMM, Simpson RJ. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 
    Article 

    Google Scholar 
    Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, et al. Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome. 2022;17:14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.Article 
    CAS 

    Google Scholar 
    Wullstein LHH, Pratt SAA. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot. 1981;68:408–19.Article 

    Google Scholar 
    Young IM. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 1995;130:135–9.Article 

    Google Scholar 
    Ashraf M, Hasnain S, Berge O, Campus Q. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol. 2006;3:45–53.Article 

    Google Scholar 
    George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol. 2014;203:195–205.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 
    Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA. Biodiversity of diazotrophs associated to the plant cover of north sinai deserts. Arch Agron Soil Sci. 2003;49:683–705.Article 

    Google Scholar 
    Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat. 2009;69:105–14.Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol. 2016;7:1–11.Article 

    Google Scholar 
    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 
    Article 

    Google Scholar 
    Alsharif W, Saad MM, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 2020;11:1666.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016;405:357–70.CAS 
    Article 

    Google Scholar 
    Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. Competition-colonization dynamics in experimental bacterial metacommunities. Nat Commun. 2012;3:1–8.Article 
    CAS 

    Google Scholar 
    Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seely MK. The Namib dune desert: an unusual ecosystem. J Arid Environ. 1978;1:117–28.Article 

    Google Scholar 
    Klaassen E, Craven P. Checklist of grasses in Namibia. SABONET; Pretoria & Windhoek, 2014. (Produced by National Botanical Research Institute Private Bag 13184).Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems. 2017;2:1–15.Article 

    Google Scholar 
    Darwin C. On the origin of species. London: Routledge; 1859.Gunnigle E, Frossard A, Ramond J-B, Guerrero L, Seely M, Cowan DA. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep. 2017;7:40189.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. Media. Springer; New York, NY 2016.RC-Team. R: A language and environment for statistical computing (Version 3.5. 2, R foundation for statistical computing, Vienna, Austria, 2018). R Foundation for Statistical Computing; 2019.Anderson MMJJ, Gorley RNRN, Clarke KRR. PERMANOVA + for PRIMER: guide to software and statistical methods; PRIMER-E. Plymouth, UK: PRIMER-E Ltd.; 2008.Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep. 2015;7:668–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Craig Cary S, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo dry valleys of Antarctica. Front Microbiol. 2018;9:1–12.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2014;22:5271–7.Article 
    CAS 

    Google Scholar 
    Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: user manual/tutorial. Plymouth, UK: PRIMER-E; 2015.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, et al. The vegan R package: community ecology. 2013:0–291Wang Y, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–4.Article 

    Google Scholar 
    Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.Article 

    Google Scholar 
    Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Package ‘adespatial’. R package version. 2018.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. 2009;8:361–2.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.Article 

    Google Scholar 
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:1–9.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2019;21:3212–28.CAS 
    Article 

    Google Scholar 
    Al-Hosni K, Shahzad R, Khan AL, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact. 2018;13:112–8.CAS 
    Article 

    Google Scholar 
    Sen D, Paul K, Saha C, Mukherjee G, Nag M, Ghosh S, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26:131–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae–induced disease development in roots. Mol Plant-Microbe Interact. 2019;32:351–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–65.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zeng Y, Charkowski AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology®. 2021;111:600–10.Article 

    Google Scholar 
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 

    Google Scholar 
    Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329:1653–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith VH. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002;81:99–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    Albalasmeh AA, Ghezzehei TA. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil. 2014;374:739–51.CAS 
    Article 

    Google Scholar 
    Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ. 2002;50:99–108.Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Hegazi NA. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 
    Article 

    Google Scholar 
    Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 2018;58:1009–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGAA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-TT, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez BR, Bacilio M. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils. 2020;56:447–59.CAS 
    Article 

    Google Scholar 
    Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11:343–8.Article 

    Google Scholar 
    Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol. 2017;67:94–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiménez-Gómez A, Saati-Santamaría Z, Igual J, Rivas R, Mateos P, García-Fraile P. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms. 2019;7:354.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu T, Ye N, Wang X, Das D, Tan Y, You X, et al. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol. 2021;63:1753–74.Blouin M. Chemical communication: an evidence for co-evolution between plants and soil organisms. Appl Soil Ecol. 2018;123:409–15.Article 

    Google Scholar 
    Sarrocco S, Diquattro S, Baroncelli R, Cimmino A, Evidente A, Vannacci G, et al. A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycol Prog. 2015;14:112.Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15.Zhang K, Bonito G, Hsu C, Hameed K, Vilgalys R, Liao H-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020;10:754.Article 

    Google Scholar 
    Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 2016;7:1–15.Article 

    Google Scholar 
    Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43:760–5.CAS 
    Article 

    Google Scholar 
    Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep. 2019;9:7537.Article 
    CAS 

    Google Scholar 
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol. 2017;93:fiw217.PubMed 
    Article 
    CAS 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82:770–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287–19.Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.CAS 
    Article 

    Google Scholar 
    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlatter DC, Kinkel LL. Antibiotics: conflict and communication in microbial communities. Microbe Mag. 2014;9:282–8.Article 

    Google Scholar  More

  • in

    Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances

    Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).
    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4, 25 (2013).
    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001).CAS 
    PubMed 

    Google Scholar 
    Tomasello, M., Hare, B., Lehmann, H. & Call, J. Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. J. Hum. Evol. 52, 314–320 (2007).PubMed 

    Google Scholar 
    Farroni, T. et al. Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proc. Natl. Acad. Sci. USA 102, 17245–17250 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farroni, T., Massaccesi, S., Pividori, D. & Johnson, M. H. Gaze following in newborns. Infancy 5, 39–60 (2004).
    Google Scholar 
    Itakura, S. & Tanaka, M. Use of experimenter-given cues during object-choice tasks by chimpanzees (Pan troglodytes), an orangutan (Pongo pygmaeus), and human infants (Homo sapiens). J. Comp. Psychol. 112, 119–126 (1998).CAS 
    PubMed 

    Google Scholar 
    Yorzinski, J. L., Thorstenson, C. A. & Nguyen, T. P. Sclera and iris color interact to influence gaze perception. Front. Psychol. 12, 1–11 (2021).
    Google Scholar 
    Yorzinski, J. L., Harbourne, A. & Thompson, W. Sclera color in humans facilitates gaze perception during daytime and nighttime. PLoS One 16, 1–15 (2021).
    Google Scholar 
    Yorzinski, J. L. & Miller, J. Sclera color enhances gaze perception in humans. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).CAS 
    PubMed 

    Google Scholar 
    Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014).
    Google Scholar 
    Kano, F., Kawaguchi, Y. & Yeow, H. Experimental evidence for the gaze-signaling hypothesis: White sclera enhances the visibility of eye gaze direction in humans and chimpanzees. bioRxiv 2021.09.21.461201 (2021).Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. USA 116, 19248–19250 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos ?. J. Hum. Evol. 157, 103043 (2021).PubMed 

    Google Scholar 
    Mearing, A. S., Burkart, J. M., Dunn, J., Street, S. E. & Koops, K. The evolutionary origins of primate scleral coloration. bioRxiv 40, 2021.07.25.453695 (2021).Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 

    Google Scholar 
    Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Kano, F. et al. What is unique about the human eye? Comparative image analysis on the external eye morphology of human and nonhuman great apes. Evol. Hum. Behav. https://doi.org/10.1016/j.evolhumbehav.2021.12.004 (2021).
    Google Scholar 
    Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).
    Google Scholar 
    Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752 (2005).CAS 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. The gaze of a social monkey is perceptible to conspecifics and predators but not prey. Proc. R. Soc. B Biol. Sci. 20, 10 (2002).
    Google Scholar 
    Bethell, E. J., Vick, S. & Bard, K. A. Measurement of eye-gaze in chimpanzees (Pan troglodytes). Am. J. Primatol. 69, 562–575 (2007).PubMed 

    Google Scholar 
    Sreekar, R. & Quader, S. Influence of gaze and directness of approach on the escape responses of the Indian rock lizard, Psammophilus dorsalis (Gray, 1831). J. Biosci. 38, 829–833 (2013).CAS 
    PubMed 

    Google Scholar 
    Lee, S. et al. Direct look from a predator shortens the risk-assessment time by prey. PLoS One 8, 1–7 (2013).
    Google Scholar 
    Carter, J., Lyons, N. J., Cole, H. L. & Goldsmith, A. R. Subtle cues of predation risk: Starlings respond to a predator’s direction of eye-gaze. Proc. R. Soc. B Biol. Sci. 275, 1709–1715 (2008).
    Google Scholar 
    Newton-Fisher, N. E. Chimpanzee hunting. Behav. Handb. Paleoanthropol. https://doi.org/10.1007/978-3-540-33761-4_42. (2007).
    Google Scholar 
    Caro, T. et al. The evolution of primate coloration revisited. Behav. Ecol. 32, 555–567 (2021).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergman, T. J. & Beehner, J. C. A simple method for measuring colour in wild animals: Validation and use on chest patch colour in geladas (Theropithecus gelada). Biol. J. Linn. Soc. 94, 231–240 (2008).
    Google Scholar 
    Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: Towards visual system-dependent methods. Int. J. Primatol. 30, 893–917 (2009).
    Google Scholar 
    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).
    Google Scholar 
    Deeb, S. S., Jorgensen, A. L., Battisti, L., Iwasaki, L. & Motulsky, A. G. Sequence divergence of the red and green visual pigments in great apes and humans. Proc. Natl. Acad. Sci. USA 91, 7262–7266 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsuzawa, T. Form perception and visual acuity. Folia Primatol. Int. J. Primatol. 55, 24–32 (1990).CAS 

    Google Scholar 
    Jacobs, G. H., Deegan, J. F. & Moran, J. L. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vis. Res. 36, 2587–2594 (1996).CAS 
    PubMed 

    Google Scholar 
    Jacobs, G. H. & Deegan, J. F. Uniformity of colour vision in Old World monkeys. Proc. R. Soc. B Biol. Sci. 266, 2023–2028 (1999).CAS 

    Google Scholar 
    Kemp, A. D. & Christopher Kirk, E. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).
    Google Scholar 
    Osorio, D., Smith, A. C., Vorobyev, M. & Buchanan-Smith, H. M. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164, 696–708 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour threshoIds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed 

    Google Scholar  More

  • in

    Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge

    Fox MD, Williams GJ, Johnson MD, Radice VZ, Zgliczynski BJ, Kelly ELA, et al. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol. 2018;28:3355–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63.PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagès C, Hoogenboom M, Houlbreque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds). Coral Reefs: An Ecosystem in Transition. 2011. Springer, pp 215–29.Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Ann Rev Mar Sci. 2017;9:311–35.PubMed 
    Article 

    Google Scholar 
    Fabricius KE, Klumpp DW. Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser. 1995;125:195–204.Article 

    Google Scholar 
    Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, et al. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev. 2020;95:1720–58.PubMed 
    Article 

    Google Scholar 
    Freeman CJ, Easson CG, Fiore CL, Thacker RW. Sponge–microbe interactions on coral reefs: multiple evolutionary solutions to a complex environment. Front Mar Sci. 2021;8:1–24.Article 

    Google Scholar 
    Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci USA. 2015;112:E1453–60.
    Google Scholar 
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:1–12.CAS 

    Google Scholar 
    Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT, et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rützler K. Associations between Caribbean sponges and photosynthetic organisms. In: New Perspectives in Sponge Biology: 3d International Sponge Conference, 1985. 1990. Smithsonian Institution Press.Trautman DA, Hinde R, Borowitzka MA. Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Bio Ecol. 2000;244:87–105.Article 

    Google Scholar 
    Sarà M. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol. 1971;11:214–21.Article 

    Google Scholar 
    Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc U Kingd. 2007;87:1683–92.CAS 
    Article 

    Google Scholar 
    Arillo A, Bavestrello G, Burlando B, Sarà M. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol. 1993;117:159–62.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.CAS 
    Article 

    Google Scholar 
    Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G. Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol. 2000;137:453–61.CAS 
    Article 

    Google Scholar 
    Unson MD, Faulkner DJ. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia. 1993;49:349–53.CAS 
    Article 

    Google Scholar 
    Freeman CJ, Thacker RW, Baker DM, Fogel ML. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J. 2013;7:1116–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilkinson CR. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea. Coral Reefs. 1987;5:183–8.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR, Seddon S, Westphalen G. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar Freshw Res. 1997;48:589–99.Article 

    Google Scholar 
    Thacker RW, Diaz MC, Rützler K, Erwin PM, Kimble SJ, Pierce MJ, et al. Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Hajdu E, Muricy G (eds). Porifera Research: Biodiversity, Innovation and Sustainability. 2007. Museu Nacional: Rio de Janeiro, pp 621–6.Erwin PM, Thacker RW. Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser. 2008;362:139–47.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Trott L. Light as a factor determining the distribution of sponges across the central Great Barrier Reef. Proc. 5th Int. Coral Reef Congr. 1985. pp 125–30.Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature. 2001;413:726–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerovasileiou V, Voultsiadou E. Marine caves of the mediterranean sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS One. 2012;7:1–17.Article 
    CAS 

    Google Scholar 
    Kornder NA, Cappelletto J, Mueller B, Zalm MJL, Martinez SJ, Vermeij MJA, et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs. 2021;40:1137–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente J, Webb MK, Paulay G, Rakchai W, Timmers MA, Jury CP, et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs 2021; https://doi.org/10.1007/s00338-021-02109-7.Beer S, Ilan M. In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol. 1998;131:613–7.Article 

    Google Scholar 
    Erwin PM, López-Legentil S, Turon X. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Micro Ecol. 2012;64:771–83.CAS 
    Article 

    Google Scholar 
    Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.PubMed 
    Article 

    Google Scholar 
    Biggerstaff A, Smith DJ, Jompa J, Bell JJ. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions. Coral Reefs. 2015;34:1049–61.Article 

    Google Scholar 
    Freeman CJ, Baker DM, Easson CG, Thacker RW. Shifts in sponge-microbe mutualisms across an experimental irradiance gradient. Mar Ecol Prog Ser. 2015;526:41–53.Article 

    Google Scholar 
    Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. ISME J. 2021;16:1163–75.Achlatis M, Pernice M, Green K, de Goeij JM, Guagliardo P, Kilburn MR, et al. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B Biol Sci 2019;286:20192153.Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rützler K, Duran S, Piantoni C. Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida). Mar Ecol. 2007;28:95–111.Article 

    Google Scholar 
    de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMed 
    Article 
    CAS 

    Google Scholar 
    Chalker BE. Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol. 1981;63:135–41.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–18.Article 

    Google Scholar 
    Muscatine L, McCloskey LR, Marian R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26:601–611.CAS 
    Article 

    Google Scholar 
    Koopmans M, Martens D, Wijffels RH. Growth efficiency and carbon balance for the sponge Haliclona oculata. Mar Biotechnol. 2010;12:340–349.CAS 
    Article 

    Google Scholar 
    Leys SP, Kahn AS, Fang JKH, Kutti T, Bannister RJ. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol Oceanogr. 2018;63:187–202.CAS 
    Article 

    Google Scholar 
    de Kluijver A, Bart MC, van Oevelen D, de Goeij JM, Leys SP, Maier SR, et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front Mar Sci. 2021;7:1–18.Article 

    Google Scholar 
    de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser. 2008;357:139–51.Article 
    CAS 

    Google Scholar 
    Bart MC, Mueller B, Rombouts T, van de Ven C, Tompkins G, Osinga R, et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr. 2021;66:925–38.CAS 
    Article 

    Google Scholar 
    Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs. 2004;23:413–22.Article 

    Google Scholar 
    Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, et al. A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol. 2015;17:3570–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hudspith M, Rix L, Achlatis M, Bougoure J, Guagliardo P, Clode P, et al. Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome. 2021;9:1–15.Article 
    CAS 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: User Manual/Tutorial. Plymouth, UK. 2015. pp 1–296.Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK. 2008. pp 1–214.Muscatine L, Falkowski PG, Porter JW, Dubinsky Z. Fate of photosynthetically fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B Biol Sci. 1984;222:181–202.CAS 

    Google Scholar 
    Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Chang Biol. 2014;20:1043–54.PubMed 
    Article 

    Google Scholar 
    Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. Increasing ocean stratification over the past half-century. Nat Clim Chang. 2020;10:1116–23.Article 

    Google Scholar 
    Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA. 2009;106:6176–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol. 1998;34:281–90.Article 

    Google Scholar 
    de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds). Climate Change, Ocean Acidification and Sponges. 2017. Springer, Cham, pp 373–410.Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr. 2018;63:337–51.CAS 
    Article 

    Google Scholar 
    McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.CAS 
    Article 

    Google Scholar 
    Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.CAS 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis, Thiele, 1900. Mar Biol. 2016;163:100.Article 

    Google Scholar 
    Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS. Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep. 2016;6:39038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mews LK. The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc R Soc Lond Ser B Biol Sci. 1980;209:377–401.CAS 

    Google Scholar 
    Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, van Woesik R, Yamazato K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser. 1996;139:167–178.Article 

    Google Scholar 
    Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:1–9.CAS 
    Article 

    Google Scholar 
    Wilkinson CR. Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds). Biologie des Spongiaires. 1979. Coli. Int. C.N.R.S., Paris, p No. 291.Wilkinson CR. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 1978;49:177–85.Article 

    Google Scholar 
    Berthold RJ, Borowitzka MA, Mackay MA. The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia. 1982;21:327–35.Article 

    Google Scholar 
    Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio. 2015;6:1–14.Article 
    CAS 

    Google Scholar 
    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao ZM, Zhou GW, Huang H, Wang Y. The cyanobacteria-dominated sponge Dactylospongia elegans in the South China Sea: prokaryotic community and metagenomic insights. Front Microbiol. 2017;8:1–12.
    Google Scholar 
    Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trautman DA, Hinde R. Sponge/algal symbioses: a diversity of associations. In: Seckback J (ed). Symbiosis. Springer, Dordrecht; 2006, pp 521–37.Pile AJ, Grant A, Hinde R, Borowitzka MA. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. J Exp Biol. 2003;206:4533–8.PubMed 
    Article 

    Google Scholar 
    Davy SK, Lucas IAN, Turner JR. Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol. 1996;126:773–83.Article 

    Google Scholar 
    Pupier CA, Fine M, Bednarz VN, Rottier C, Grover R, Ferrier-Pagès C. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci Rep. 2019;9:1–10.CAS 
    Article 

    Google Scholar 
    Podell S, Blanton JM, Oliver A, Schorn MA, Agarwal V, Biggs JS, et al. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome. 2020;8:1–17.Article 
    CAS 

    Google Scholar 
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Botté ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkinson CR. Interocean differences in size and nutrition of coral reef sponge populations. Science. 1987;236:1654–1657.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2013;16:225–233.PubMed 
    Article 

    Google Scholar 
    Steindler L, Beer S, Ilan M. Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis. 2002;33:263–73.
    Google Scholar 
    Lemloh M-L, Fromont J, Brümmer F, Usher KM. Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol. 2009;9:4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Northern wildlife feels the heat

    Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2022).Lenoir, J. et al. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Antão, L. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01381-x (2022).Article 

    Google Scholar 
    Trisos, C. H. et al. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Outhwaite, C. L. et al. Nat. Ecol. Evol. 4, 384–392 (2020).Article 

    Google Scholar 
    Pilotto, F. et al. Nat. Commun. 11, 3486 (2020).CAS 
    Article 

    Google Scholar 
    Marta, S. et al. Nat. Ecol. Evol. 5, 1291–1300 (2021).Article 

    Google Scholar 
    Outhwaite, C. L. et al. Nature https://doi.org/10.1038/s41586-022-04644-x (2022).Article 

    Google Scholar 
    Sonne, J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01693-3 (2022).Article 

    Google Scholar 
    Stefanescu, C. et al. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13689 (2022).Article 

    Google Scholar 
    Rumpf, S. et al. Nat. Commun. 10, 4293 (2019).Article 

    Google Scholar 
    Fourcade, Y. et al. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Mingarro, M. et al. Insect Conserv. Diversity 14, 647–660 (2021).Article 

    Google Scholar 
    Hodgson, J. et al. Glob. Change Biol. https://doi.org/10.1111/gcb.16220 (2022). More

  • in

    Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns

    Soil physicochemical propertiesTable 1 shows the basic chemical characteristics of the 81 soil samples. The pH values of most of the soil samples from the rape fields and the paddy fields ranged between 6.5 and 7.5, while the pH values of most of the soil samples from the wheat fields were less than 6.0. The relatively low pH values for soils from the wheat fields could be due to traditional farming practices adopted in the farms, including continuous cropping. In addition, acidic soil is conducive for wheat growth. Organic matter contents were generally low in all the soils, and soils from the rape fields had the lowest organic matter contents. Generally, the mean soil total N contents in the fields were in the order of rape fields (756 mg/kg)  Zn  > Cd, and the concentrations of metals in most soil samples collected from the wheat and paddy fields were in the order of Fe  > Mn  > Pb  > Cu  > Zn  > Cd. However, independent of the farmland use patterns, the concentrations of all the metals extracted using NH4OAC and NH4NO3 were much lower than those extracted with the other three types of extractants.Table 3 Extractable metal concentrations in the soils (mg/kg).Full size tableThe concentrations of 0.1 mol/L HCl-extracted heavy metals in soils from the rape fields at the R21, R23, and R32 sites, in the wheat fields at the W21 site, and in the paddy fields at the P1 and P2 sites were extremely low, especially in the cases of Fe and Pb. For example, 0.1 mol/L HCl-extracted Fe concentrations at the R21, R23, and R32 sites were 0.2 mg/kg, 0.6 mg/kg, and below the detection limit, respectively, whereas the range of 0.1 mol/L HCl-extracted Fe concentration in the other sites in the rape fields was 22.4–533 mg/kg. Therefore, 0.1 mol/L HCl-extracted heavy metal concentrations at the R21, R23, R32, W21, P1, and P2 sites were omitted from subsequent analyses to ensure homogeneity of variance. The basic pH values at the sites (pH values at R21, R23, R32, W21, P1, and P2 were 8.0, 8.0, 7.7, 8.0, 8.0, and 8.0, respectively) could explain this low HCl-extractability and reduced mobility35,36. Although HCl is considered a universal extractant, it may not be suitable under alkaline soil conditions.Heavy metal concentrations in rape, wheat and rice grainsFigure 4 illustrates the concentrations of six heavy metals in rape, wheat, and rice grains. Similar to the order of the soil metal concentrations, the Fe, Mn, Zn, and Cu concentrations in the grains were much higher than the Pb and Cd concentrations.Figure 4Concentrations of heavy metals ((a) Cu, (b) Zn, (c)Pb, (d) Cd, (e) Fe, and (f) Mn) in the grain of three different crops. (Rape grains (n = 36); Wheat grains (n = 25); Rice grains (n = 20), on dry weight basis).Full size imageThe results are similar to those reported in previous studies with regard to heavy metal concentration trends in rice grains16,37. The reason could be Fe, Mn, Zn, and Cu are all essential for crop growth as micronutrients, leading to the higher levels in soils. Among the studied crops, rice grains accumulated relatively lower amounts of Fe, Mn, and Zn than rape and wheat grains, where Pb and Cd concentrations exhibited opposite trends. The trends are consistent with the findings of Liu et al.38 and Du et al.1, and indicate that rice has a stronger Cd uptake capacity from soil. Williams et al.39 also reported higher rice Cd concentrations than wheat, barley, and maize Cd concentrations. The results could also be attributed to water management and soil oxidation–reduction status in soil-rice systems. Paddy fields are irrigated considerably more than wheat and rape fields. In addition, the water in the study area was contaminated by Cd, Cu, As, and Zn27. Previous studies have also reported that water management practices influence Cd uptake by rice and its bioavailability in soils19,20,40. In the cases of Zn and Pb, according to Feng et al.23, rice grains accumulated lower amounts of Zn than wheat grains, whereas rice grains accumulated higher Pb amounts than wheat grains. Although soil Cd concentrations were generally high in the rape fields, the concentrations of Cd in rape grains were lower than those in the wheat and rice grains.On the other hand, Cu concentrations in grains in all the three crops were below the maximum allowable Cu levels in food (10 mg/kg (GB 15199-94)). Similarly, Zn concentrations in rice grains were below the maximum allowable Zn levels in food (50 mg/kg (GB 13106-91)), while 25% of the rape grain samples and 20% of the wheat grain samples exceeded the threshold value. Although total Pb concentrations in soils were generally low in the three farmland use patterns, Pb concentrations in 70% of the rice grain samples exceeded the maximum allowable Pb levels in food (0.2 mg/kg (GB 2762-2005)). Only four rape and two wheat grain samples exceeded the Pb threshold values, respectively. The varying Pb trends are potentially linked to physical contamination from direct atmospheric deposition8, differences in physiological activities among the crops, and the fruit structures of the studied crops23. Similar to the soil Cd contamination, 96% and 60% of wheat and rice grain samples, respectively exceeded the maximum allowable Cd levels in food (0.1 mg/kg and 0.2 mg/kg for wheat and rice, respectively (GB 2762-2005)). Furthermore, Cd concentrations in approximately 10% of the rice grain samples exceeded 1.0 mg/kg. Conversely, only 14% of rape grain samples exceeded the maximum allowable Cd levels in food (Cd: 0.1 mg/kg for rape (GB 2762-2005)), and the maximum Cd concentration in rape grains was 0.18 mg/kg. According to the results, rape grains were generally safe for consumption whereas wheat and rice grains posed health threats in the study area.Soil to grain bioaccumulation factorsBAF values have been used widely to evaluate the capacity of crop grains to accumulate metals from soil30,41. Similar to a previous study on food crops37, Fe and Pb had the lowest BAF values (Fig. 5). Generally, metal accumulation in crop grains did not increase considerably with an increase in total concentrations of metals in soil. Heavy metal accumulation could have been regulated by crops, so that only low amounts were accumulated into grains. In addition, there were significant differences in some BAF values of the same metal across different crop species (Fig. 5). Different crop species have different accumulation capacities for the same metal42. Overall, the average BAF values of Cu (0.22), Zn (0.37), and Mn (0.14) in wheat grains were significantly higher than those in rape and rice grains. The average BAF value of Pb (0.005) in rice grains was significantly higher than those in rape and wheat grains, and the average BAF values of Cu (0.07) and Cd (0.06) in rape grains were significantly lower than those in wheat and rice grains. The results indicated that rape grains have lower heavy metal accumulation capacity than wheat and rice grains, except in the cases of Zn and Fe. However, the finding is not consistent with the results of a previous study43, which report that grasses have lower accumulation capacity than dicotyledonous plants. Nevertheless, as mentioned above, numerous factors could influence the accumulation capacity of metals in crop grains.Figure 5Bioaccumulation factors (BAF) of heavy metals ((a) Cu, (b) Zn, (c) Pb, (d) Cd, (e) Fe, and (f) Mn) from soil to the grains of three crop species. The error bars indicate the standard deviation. Different letters on bars indicate significant difference (p  More

  • in

    The role of zinc in the adaptive evolution of polar phytoplankton

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 (1998).CAS 
    PubMed 

    Google Scholar 
    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).CAS 
    PubMed 

    Google Scholar 
    Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).CAS 

    Google Scholar 
    Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020).CAS 

    Google Scholar 
    Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 

    Google Scholar 
    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
    Google Scholar 
    Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).CAS 

    Google Scholar 
    Ellwood, M. J. Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the subantarctic zone between 40–52°S; 155–160°E. Mar. Chem. 112, 107–117 (2008).CAS 

    Google Scholar 
    Zhao, Y., Vance, D., Abouchami, W. & de Baar, H. J. W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–667 (2014).CAS 

    Google Scholar 
    John, S. G., Helgoe, J. & Townsend, E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256–262 (2018).CAS 

    Google Scholar 
    Middag, R., de Baar, H. J. W. & Bruland, K. W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cy. 33, 63–84 (2019).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37, 25–40 (1992).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 

    Google Scholar 
    Vance, D. et al. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10, 202 (2017).CAS 

    Google Scholar 
    Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72 (2018).CAS 
    PubMed 

    Google Scholar 
    Roshan, S., DeVries, T., Wu, J. & Chen, G. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cy. 32, 1833–1849 (2018).CAS 

    Google Scholar 
    Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2012).
    Google Scholar 
    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).CAS 
    PubMed 

    Google Scholar 
    Blaby-Haas, C. E. & Merchant, S. S. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70, 605–638 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. H. et al. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30, 3330–3341 (2020).CAS 
    PubMed 

    Google Scholar 
    Clarke, A. et al. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. Lond. B 338, 299–309 (1992).
    Google Scholar 
    Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).CAS 
    PubMed 

    Google Scholar 
    Krishna, S. S., Majumdar, I. & Grishin, N. V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barlow, P. N. et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J. Mol. Biol. 237, 201–211 (1994).CAS 
    PubMed 

    Google Scholar 
    Stephens, T. G. et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 18, 56 (2020).Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral–dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).CAS 
    PubMed 

    Google Scholar 
    Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365 (2018).CAS 

    Google Scholar 
    Ferguson, R. E. et al. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).CAS 
    PubMed 

    Google Scholar 
    Aslam, S. N. et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, J. J. et al. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9, 2328 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, Thomas. Sea of Change: Eukaryotic Phytoplankton Communities in the Arctic Ocean. United States. https://doi.org/10.25585/1488054Duncan, A. et al. Metagenome-assembled genomes of phytoplankton communities across the Arctic Circle and Atlantic Oceans. Microbiome 10 https://doi.org/10.1186/s40168-022-01254-7 (2022).Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, T. & Gradinger, R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177, 15–26 (1999).CAS 

    Google Scholar 
    Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003).CAS 

    Google Scholar 
    Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proc. US-Japan Conference, Hakone, 12-15 September 1966 (eds Watanabe, A & Hattori, A.) 63–75 (Japanese Society of Plant Physiology, 1968).Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, C. X. et al. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin, M. et al. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20, 955 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).
    Google Scholar 
    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).CAS 
    PubMed 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
    Google Scholar 
    Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf. 7, 62 (2006).
    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2018).PubMed Central 

    Google Scholar 
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).CAS 
    PubMed 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 4, 259–263 (2006).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar 
    Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 

    Google Scholar 
    Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell Proteom. 13, 3497–3506 (2014).
    Google Scholar 
    Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2016).
    Google Scholar 
    Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).Löytynoja, A. Phylogeny-aware Alignment with PRANK: Multiple Sequence Alignment Methods (Humana Press, 2014).Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 

    Google Scholar  More

  • in

    A new functional ecological model reveals the nature of early plant management in southwest Asia

    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Fuller, D. Q., Willcox, G. & Allaby, R. G. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol. 43, 628–652 (2011).Article 

    Google Scholar 
    Ibáñez, J. J., Anderson, P. C., González-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81 (2016).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J. Archaeol. Sci. 31, 145–150 (2004).Article 

    Google Scholar 
    White, C. E. & Makarewicz, C. A. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. Veg. Hist. Archaeobot. 21, 85–94 (2012).Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: the archaeobotanical evidence from PPNA Dhra‘. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proc. Natl Acad. Sci. USA 106, 10966–10970 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Willcox, G. & Stordeur, D. Large-scale cereal processing before domestication during the tenth millennium cal bc in northern Syria. Antiquity 86, 99–114 (2012).Article 

    Google Scholar 
    Colledge, S. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 121–131 (ICARDA, 1998).Hillman, G. C., Hedges, R., Moore, A. M. T., Colledge, S. & Pettitt, P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 383–393 (2001).Article 

    Google Scholar 
    Willcox, G. Searching for the origins of arable weeds in the Near East. Veg. Hist. Archaeobot. 21, 163–167 (2012).Article 

    Google Scholar 
    Snir, A. et al. The origin of cultivation and proto-weeds, long before neolithic farming. PLoS ONE 10, e0131422 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harris, D. R. & Fuller, D. Q. in Encyclopedia of Global Archaeology (ed. Smith, C.) 104–113 (Springer, 2014).Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species (Springer, 2014).Harlan, J. R., de Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).PubMed 
    Article 

    Google Scholar 
    Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asouti, E. in Neolithic Corporate Identities. Studies in Early Near Eastern Production, Subsistence and Environment 20 (eds Benz, M. et al.) 21–53 (Ex oriente, 2017).Harris, D. R. in Foraging and Farming: the Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.) 11–26 (Unwin Hyman, 1989).Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).Article 

    Google Scholar 
    Rindos, D. The Origins of Agriculture: an Evolutionary Perspective (Academic, 1984).Weide, A. Towards a socio-economic model for southwest Asian cereal domestication. Agronomy 11, 2432 (2021).Article 

    Google Scholar 
    Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehist. 4, 157–222 (1990).Article 

    Google Scholar 
    Kislev, M. E., Hartmann, A. & Weiss, E. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weide, A. et al. The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the Levant. Environ. Archaeol. https://doi.org/10.1080/14614103.2021.1882715 (2021).Zohary, M. The segetal plant communities of Palestine. Vegetatio 2, 387–411 (1950).Article 

    Google Scholar 
    Abbo, S., Lev-Yadun, S. & Gopher, A. Plant domestication and crop evolution in the Near East: on events and processes. Crit. Rev. Plant Sci. 31, 241–257 (2012).Article 

    Google Scholar 
    Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. Lond. B 285, 20180277 (2018).
    Google Scholar 
    Bogaard, A., Palmer, C., Jones, G., Charles, M. & Hodgson, J. G. A FIBS approach to the use of weed ecology for the archaeobotanical recognition of crop rotation regimes. J. Archaeol. Sci. 26, 1211–1224 (1999).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Charles, M. & Hodgson, J. G. Distinguishing the effects of agricultural practices relating to fertility and disturbance: a functional ecological approach in archaeobotany. J. Archaeol. Sci. 27, 1073–1084 (2000).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, 2016).Bogaard, A. Neolithic Farming in Central Europe (Routledge, 2004).Bogaard, A. et al. From traditional farming in Morocco to early urban agroecology in northern Mesopotamia: combining present-day arable weed surveys and crop isotope analysis to reconstruct past agrosystems in (semi-)arid regions. Environ. Archaeol. 23, 303–322 (2018).Article 

    Google Scholar 
    Hamerow, H. et al. An integrated bioarchaeological approach to the medieval ‘agricultural revolution’: a case study from Stafford, England, c. ad 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).Article 

    Google Scholar 
    Green, L., Charles, M. & Bogaard, A. Exploring the agroecology of Neolithic Çatalhöyük, Central Anatolia: an archaeobotanical approach to agricultural intensity based on functional ecological analysis of arable weed flora. Paléorient 44, 29–44 (2018).
    Google Scholar 
    Green, L. Assessing the Nature of Early Farming in Neolithic Western Asia: A Functional Ecological Approach to Emerging Arable Weeds. Univ. of Oxford (2017).Atran, S. Hamula organisation and masha’a tenure in Palestine. Man 21, 271–295 (1986).Article 

    Google Scholar 
    Palmer, C. ‘Following the plough’: the agricultural environment of northern Jordan. Levant 30, 129–165 (1998).Article 

    Google Scholar 
    Håkansson, S. in Biology and Ecology of Weeds (eds Holzner, W. & Numata, M.) 123–135 (Springer Netherlands, 1982).Charles, M., Bogaard, A., Jones, G., Hodgson, J. & Halstead, P. Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg. Hist. Archaeobot. 11, 133–142 (2002).Article 

    Google Scholar 
    Hartmann-Shenkman, A., Kislev, M. E., Galili, E., Melamed, Y. & Weiss, E. Invading a new niche: obligatory weeds at Neolithic Atlit-Yam, Israel. Veg. Hist. Archaeobot. 24, 9–18 (2015).Article 

    Google Scholar 
    Kuijt, I. in The Neolithic Demographic Transition and its Consequences (eds Bocquet-Appel, J.-P. & Bar-Yosef, O.) 287–313 (Springer Netherlands, 2008).Bogaard, A. et al. Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. Antiquity 83, 649–668 (2009).Article 

    Google Scholar 
    Jones, G. et al. The origins of agriculture: intentions and consequences. J. Archaeol. Sci. 125, 105290 (2021).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D. & Tschauner, H. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. J. Archaeol. Sci. 35, 2400–2414 (2008).Article 

    Google Scholar 
    Kluyver, T. A., Charles, M., Jones, G., Rees, M. & Osborne, C. P. Did greater burial depth increase the seed size of domesticated legumes? J. Exp. Bot. 64, 4101–4108 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Preece, C., Jones, G., Rees, M. & Osborne, C. P. Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecol. Evol. 11, 3300–3312 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halstead, P. Two Oxen Ahead: Pre-mechanized Farming in the Mediterranean (Wiley, 2014).Anderson, P. C. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 145–159 (ICARDA, 1998).Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S. & di Lernia, S. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nat. Plants 4, 71–81 (2018).PubMed 
    Article 

    Google Scholar 
    Spengler, R. N. & Mueller, N. G. Grazing animals drove domestication of grain crops. Nat. Plants 5, 656–662 (2019).PubMed 
    Article 

    Google Scholar 
    Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. Lond. B 366, 836–848 (2011).Article 

    Google Scholar 
    Bogaard, A. et al. Reconsidering domestication from a process archaeology perspective. World Archaeol. https://doi.org/10.1080/00438243.2021.1954990 (2021).Coqueugniot, E. in Espace Naturel, Espace Habité En Syrie Du Nord (10e–2e millénaires av. J.-C.) (eds M. Fortin & O. Aurenche) 109–114 (Maison de l’Orient et de la Méditerranée, 1998).Douché, C. Émergence et développement des sociétés agricoles au Néolithique acéramique (Xe-VIIIe millénaires av. n. ère) étude archéobotanique de Dja’de El-Mughara et Tell Aswad, Syrie. PhD thesis (Archaeological Mission of Dja’de el Mughara, 2018).Noy, T. Gilgal I: a pre-pottery Neolithic site, Israel. The 1985–1987 seasons. Paléorient 15, 11–18 (1989).Article 

    Google Scholar 
    Bar-Yosef, O. & Gopher, A. in An Early Neolithic Village in the Jordan Valley (eds Bar-Yosef, O. & Gopher, A.) 41–69 (Harvard Univ., 1997).Wright, K. I. The social origins of cooking and dining in early villages of western Asia. Proc. Prehist. Soc. 66, 89–121 (2000).Article 

    Google Scholar 
    Finlayson, B. Egalitarian societies and the earliest Neolithic of southwest Asia. Prehist. Archaeol. J. Interdiscip. Stud. 3, 27–43 (2020).Article 

    Google Scholar 
    Bowles, S. & Choi, J.-K. The Neolithic agricultural revolution and the origins of private property. J. Polit. Econ. 127, 2186–2228 (2019).Article 

    Google Scholar 
    Kuijt, I. The Neolithic refrigerator on a Friday night: how many people are coming to dinner and just what should I do with the slimy veggies in the back of the fridge? Environ. Archaeol. 20, 321–336 (2015).Article 

    Google Scholar 
    Danin, A. Flora and vegetation of Israel and adjacent areas. Zoogeogr. Isr. 30, 251–276 (1988).
    Google Scholar 
    Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).Article 

    Google Scholar 
    Noy-Meir, I. The effect of grazing on the abundance of wild wheat, barley and oat in Israel. Biol. Conserv. 51, 299–310 (1990).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Halstead, P., Charles, M. & Smith, H. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu. Br. Sch. Athens 94, 167–189 (1999).Article 

    Google Scholar 
    Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D. & Kigel, J. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J. Appl. Ecol. 37, 224–237 (2000).Article 

    Google Scholar 
    Sternberg, M. et al. Testing the limits of resistance: a 19-year study of Mediterranean grassland response to grazing regimes. Glob. Change Biol. 21, 1939–1950 (2015).Article 

    Google Scholar 
    Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135, 551–563 (2016).Article 

    Google Scholar 
    Osem, Y., Perevolotsky, A. & Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 90, 936–946 (2002).Article 

    Google Scholar 
    Temper, L. Creating facts on the ground: agriculture in Israel and Palestine (1882–2000). Hist. Agrar. 48, 75–110 (2009).
    Google Scholar 
    Dan, J., Yaalon, D., Koyumdjisky, H. & Raz, Z. The soil association map of Israel (1:1,000,000). Isr. J. Earth Sci. 21, 29–49 (1970).
    Google Scholar 
    Sans, F. X. & Masalles, R. M. Phenological patterns in an arable land weed community related to disturbance. Weed Res. 35, 321–332 (1995).Article 

    Google Scholar 
    Zohary, M. & Feinbrun-Dothan, N. Flora Palaestina Vol. 1–4 (Israel Academy of Sciences and Humanities, 1966).Davis, P. Flora of Turkey and the East Aegean Islands Vol. 1–10 (Edinburgh Univ. Press, 1965).Mortimer, A. M. in Weed Control Handbook: Principles (eds Hance, R. J. & Holly, K.) 1–42 (Blackwell, 1990).Douché, C. & Willcox, G. New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): a comparison between the northern and the southern Levant. Paléorient 44, 45–58 (2018).
    Google Scholar 
    Jones, G. The application of present-day cereal processing studies to charred archaeobotanical remains. Circaea 6, 91–96 (1990).
    Google Scholar 
    Bogaard, A., Jones, G. & Charles, M. The impact of crop processing on the reconstruction of crop sowing time and cultivation intensity from archaeobotanical weed evidence. Veg. Hist. Archaeobot. 14, 505–509 (2005).Article 

    Google Scholar 
    Bogaard, A. et al. in Humans and Landscapes of Çatalhöyük: Reports from the 2000–2008 Seasons (ed. Hodder, I.) 93–128 (Cotsen Institute of Archaeology/British Institute at Ankara, 2013).Filipović, D. Early Farming in Central Anatolia: an Archaeobotanical Study of Crop Husbandry, Animal Diet and Land Use at Neolithic Çatalhöyük (British Archaeological Reports, 2014).Helmer, D. et al. in New Methods and the First Steps of Mammal Domestication (eds Vigne, J.-D. et al.) 86–95 (Oxbow Books, 2005).Charles, M. Fodder from dung: the recognition and interpretation of dung-derived plant material from archaeological sites. Environ. Archaeol. 1, 111–122 (1998).Article 

    Google Scholar 
    Kislev, M. E. in An Early Neolithic Village in the Jordan Valley (eds Ofer Bar-Yosef & Avi Gopher) 209–236 (Harvard Univ., 1997).Kislev, M. E. et al. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 251–257 (Oxbow Books, 2010).Snir, A., Nadel, D. & Weiss, E. Plant-food preparation on two consecutive floors at Upper Paleolithic Ohalo II, Israel. J. Archaeol. Sci. 53, 61–71 (2015).Article 

    Google Scholar 
    Jones, G., Charles, M., Bogaard, A. & Hodgson, J. Crops and weeds: the role of weed functional ecology in the identification of crop husbandry methods. J. Archaeol. Sci. 37, 70–77 (2010).Article 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge Univ. Press, 2014).Galili, E. et al. Atlit-Yam: a Prehistoric site on the sea floor off the Israeli coast. J. Field Archaeol. 20, 133–157 (1993).
    Google Scholar 
    Brenet, M., Sanchez-Priego, J. & Ibáñez-Estévez, J. J. in Préhistoire et Approche Expérimentale (eds Bourguignon, L. et al.) 121–164 (Monique Mergoil, 2001).Bar-Yosef, O., Gopher, A., Goring-Morris, A. N. & Kozlowski, S. K. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 11–26 (Oxbow Books, 2010). More