More stories

  • in

    The effect of reducing per capita water and energy uses on renewable water resources in the water, food and energy nexus

    This work formulates a general framework of the WFE Nexus at the national level, which includes all pertinent interactions between water, food, and energy sources and demands. Figure 1 depicts the feedbacks involving resource availability and consumption. The causal loops of the developed model for national-scale assessment are shown in Fig. 2. The model depicted in Fig. 2 proposes reducing consumption to reduce the water crisis to the extent possible. By reducing water use and pollution the environmental water requirement can be reduced, thus alleviating the water crisis. This paper’s objective is sustainable management by reducing per capita water use (in the residential section) and per capita energy use (in the domestic, public, and commercial section). The WFE nexus is modeled as a dynamic system for demand management applied to the stocks of energy, surface water, and groundwater resources to calculate their input and output rates (flows) at the national level while providing for environmental flow requirements (Fig. 3). The national modeling approach is of the lumped type, meaning that inputs and outputs to the stocks of water and energy represent totals over an entire country (in the case study, Iran); therefore, the models does not consider intra-country regional variations. The units of water resources and energy resources are expressed in cubic meters and MWh, respectively.Figure 1Feedbacks between resources and uses in the WFE nexus taking into account environmental considerations.Full size imageFigure 2The causal loops of the model developed for simulating the WFE nexus.Full size imageFigure 3Flow diagram of the WFE Nexus system.Full size imageBalance of water resourcesThe study of water exchanges in a country is based on the law of conservation of matter. The following sections present calculations pertinent to the annual balance of surface and groundwater resources.Surface water resourcesThe national runoff generated in a country’s high-elevation areas (or high terrain) and low-elevation areas (plains) is quantified with the following equations:$${preheight}_{t}=HeightCotimes {Precipitation}_{t}$$
    (1)

    in which ({preheight}_{t}) = volume of precipitation that falls in high-elevation areas during period t, (HeightCo) = the percentage of total precipitation that falls in high-elevation areas, and ({Precipitation}_{t}) = volume of precipitation during period t.$${preplain}_{t}=PlainCotimes {Precipitation}_{t}$$
    (2)

    in which ({preplain}_{t}) = volume of precipitation that falls in the plains during period t, and (PlainCo) = the percentage of total precipitation that falls in plains (low elevation areas).$${SInflow}_{t}=HeighSInflowCotimes {preheight}_{t}+PlainSInflowCotimes {preplain}_{t}+{OutCSW}_{t}+{Dr}_{t}$$
    (3)

    in which ({SInflow}_{t}) = the total volume of surface flows during period t, (HeighSInflowCo) = the runoff coefficient in high-elevation areas, (PlainSInflowCo) = the runoff coefficient in the plains, ({OutCSW}_{t}) = the difference between the volume of surface inflow and outflow through a country’s border during period t; and ({Dr}_{t}) = the flow of groundwater resources to surface water resources (i.e., baseflow) during period t.It is possible to calculate the water use after calculating the annual surface water originating by precipitation. Some of the water use by the agricultural, industrial, and municipal sectors becomes return flows. Equations (4) through (9) show how to calculate the surface water use and the water return flows to the surface water sources.$${DomWD}_{t}={Population}_{t}times PerCapitaWatertimes 365$$
    (4)

    in which ({DomWD}_{t}) = the volume of water use in the municipal sector during period t, ({Population}_{t}) = the population of the country during period t, and (PerCapitaWater) = per capita drinking water use (cubic meters per person per day).$${IndDomWD}_{t}={DomWD}_{t}+{IndWD}_{t}$$
    (5)

    in which ({IndDomWD}_{t}) = the volume of water use in the municipal and industrial sectors during period t, and ({IndWD}_{t}) = the volume of water use in the industrial sector during period t.The water use by the agricultural sector accounts for the water footprint of agricultural products, which measures their water use per mass of produce, and adjusting the water use by including water losses and agricultural return flows. A separate sub-agent (AGR agent) is introduced to perform the calculations related to the agricultural sector to simplify the dynamic-system model (main model), and the required outputs (BWAgr, GWAgr) of the dynamic system model are called by the agent in the main model (see Figs. 3 and 4). The BWAgr is given by the expression within parentheses in Eq. (6).Figure 4Agricultural subsystem modeled in the AGR agent (shows how to calculate the blue and gray water footprints of agricultural products).Full size image$${AgrWD}_{t}=left(sum_{iin A}{BW}_{i}times {Product}_{i,t}right)times frac{1}{{E}_{Agr}}+OtherAgrWD$$
    (6)

    in which ({AgrWD}_{t}) = the volume of agricultural water use during period t, ({BW}_{i}) = blue water footprint of agricultural product i (cubic meters per ton), ({Product}_{i,t}) = the amount of production of agricultural product i during period t (tons), ({E}_{Agr}) = the overall irrigation efficiency, (OtherAgrWD) = the volume of water consumed by agricultural products not included in the set A of agricultural products (in cubic meters). The set A includes those agricultural products with the largest yields and shares of the national food basket.$${AgrReW}_{t}={AgrWD}_{t}times AgrReCo$$
    (7)

    in which ({AgrReW}_{t}) = the volume of water returned from agricultural water use during the period t, and (AgrReCo) = the coefficient of water returned from agricultural water use.$${IndDomReW}_{t}={IndDomWD}_{t}times IndDomReCo$$
    (8)

    in which ({IndDomReW}_{t}) = the volume of water returned from industrial and municipal water use during period t, and (IndDomReCo) = the coefficient of water returned from industrial and municipal water uses.$${ReSW}_{t}=IndDomReSWCotimes {IndDomReW}_{t}+AgrReSWCotimes {AgrReW}_{t}$$
    (9)

    in which ({ReSW}_{t}) = the volume of water returned from water uses to surface water resources during period t, (IndDomReSWCo) = the percentage of water returned from municipal and industrial water use to surface water resources, and (AgrReSWCo) = the percentage of water returned from agricultural water use to surface water resources.Water is applied to produce energy, and Eqs. (10) through (15) perform the related calculations. The ({WEIF}_{t}) variable in Eq. (14) is necessary to account for the volume of water saved as a result of the energy savings. A PR model is introduced to account for such water savings (see Fig. 3).$${Diff}_{t} ={OutputE}_{t}-{OutputE}_{t}^{P}$$
    (10)

    in which ({Diff}_{t})= the difference between the energy used in the main model during period t and the energy used in period t in the PR model, ({OutputE}_{t}) = the sum of energy uses during period t in the main model (the method of calculating ({OutputE}_{t}) is described in detail in “Energy uses”), and ({OutputE}_{t}^{P}) = the sum of energy uses during period t in the PR model. Equations (11) and (12) account for the case when energy use exceeds energy production under current conditions, in which case energy exports are reduced. This prevents additional energy production to meet excess demand, and, consequently, there would not be increases in water use.$${Diff}_{t} le 0,,,{if,,func}_{t}=0$$
    (11)
    $${Diff}_{t} >0,,,{ if,,func}_{t}={Diff}_{t}$$
    (12)

    in which ({ iffunc}_{t}) = the amount of energy saved during period t.Equation (13) calculates the water required to produce energy:$${{TotalWE}_{t}=Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN+{Elec}_{t}times ENwateruseE$$
    (13)

    in which ({TotalWE}_{t}) = the volume of water required to produce the energy demand during period t,({Elec}_{t}) = the amount of electricity production during period t (MWh), and (ENwateruseE) = the water required per unit of energy generated by electricity (cubic meters per MWh), all other terms were previously defined.Equation (14) calculates the water savings:$${WEIF}_{t}=sum_{t=1}^{T}frac{{TotalWE}_{t}}{{OutputE}_{t}^{0}}times {if,,func}_{t}$$
    (14)

    in which ({WEIF}_{t})= the volume of water saved as a result of the energy saved during period t, T = the number of periods of simulation (T = 5 years).Part of the water used to produce energy from coal, oil, petroleum products, and nuclear fuel is accounted for in the industrial sector water use. For this reason, the volume of water to produce energy calculated with Eq. (15) is reduced by that part of water already accounted for in the industrial water use to avoid double accounting.$${WE}_{t}={Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN-INDEtimes {IndWD}_{t}-{WEIF}_{t}$$
    (15)

    in which ({WE}_{t}) = the volume of water required to produce different types of energy (except those included in the industrial sector) during period t, ({Coal}_{t}) = the energy produced with coal during period t (MWh), (ENwateruseC) = the water required per unit of energy produced with coal (cubic meters per MWh),({Gas}_{t}) = the amount of energy produced with natural gas during period t (MWh), (ENwateruseG) = the water required per unit of energy produced with natural gas (cubic meters per MWh), ({OilPetroleumP}_{t}) = the amount of energy produced with crude oil and other petroleum products during period t (MWh), (ENwateruseO) = the water required per unit of energy produced with crude oil and petroleum products (cubic meters per MWh),({Nuclear}_{t}) = the amount of nuclear energy produced during period t (MWh), (ENwateruseN) = the water required per unit of nuclear energy produced (cubic meters per MWh), and (INDE) = the percentage of industrial water use already accounted for in Eq. (5) (which pertains to water used in the coke coal, oil refineries, and nuclear fuel industries).Part of the discharge of springs enters the surface water sources, and this enters the calculation of the input to the surface water-resources stock in Eq. (16):$${InputSW}_{t}= SInflow+{ReSW}_{t}{+ Fountain}_{t}$$
    (16)

    in which ({InputSW}_{t}) = the volume of inflow water to surface water sources during period t, and ({Fountain}_{t}) = discharge of springs to surface water sources during period t, other terms previously defined.The output of the surface water resources includes water use and the infiltration of surface water into groundwater, the latter calculated with Eq. (17):$${SInflowInf}_{t}={SInflow}_{t}times SInflowInfCo$$
    (17)

    in which ({SInflowInf}_{t}) = the infiltration volume of surface water during period t, and (SInflowInfCo) = the infiltration coefficient of surface water.The output of the surface water resources stock is calculated using Eq. (18):$${OutputSW}_{t}={AgrSWDCo}_{t}times {AgrWD}_{t}+{IndSWDCo}_{t}times {IndWD}_{t}+{DomSWDCo}_{t}times {DomWD}_{t}+{mathrm{ WE}}_{t}+{SInflowInf}_{t}-{EvSwSea}_{t}$$
    (18)

    in which ({OutputSW}_{t}) = the output volume of surface water during period t, ({AgrSWDCo}_{t}) = the percentage of gross agricultural water use from surface water resources during period t, ({IndSWDCo}_{t}) = the percentage of industrial water use from surface water resources during period t, ({DomSWDCo}_{t})= the percentage of gross drinking water consumption from surface water sources during period t, and ({EvSwSea}_{t}) = the total volume of evaporation from surface water plus the discharge of surface water to the sea during period t.The balance of surface water resources is calculated based on Eq. (19):$$SWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputSW}_{t}left(Sright)-{OutputSW}_{t}(S)right]dt+SWater(0)$$
    (19)

    in which (SWaterleft(tright)) = the stock of surface water resources at time t, (SWater(0)) denotes the stock of surface water at the initial time (t = 0).Groundwater resourcesGroundwater resources gain water from deep infiltration of precipitation in the plains and elevated areas from (1) inflows from outside of the study area, (2) infiltration from surface flows and return waters. Groundwater output factors also include the discharge of groundwater resources (wells, springs, and aqueducts), groundwater flow that moves outside the study area and evaporation. Infiltration of precipitation in the plains and in high terrain into groundwater resources is calculated with Eq. (20):$${Inf}_{t}=PrePInfCotimes {preplain}_{t}+PreHInfCotimes {preheight}_{t}$$
    (20)

    in which ({Inf}_{t}) = the volume of water entering groundwater sources through infiltration of precipitation during period t, (PrePInfCo) = the infiltration coefficient of precipitation in the plains, and (PreHInfCo) = the infiltration coefficient of rainfall in high terrain.Equation (21) calculates the volume of return water that accrues to groundwater resources:$${ReGW}_{t}=IndDomReGWCotimes {IndDomReW}_{t}+AgrReGWCotimes {AgrReW}_{t}$$
    (21)

    in which ({ReGW}_{t}) = the volume of water returned from water use that accrues to groundwater resources during period t, (IndDomReGWCo) = the percentage of water returned from municipal and industrial water use accruing to groundwater resources, and (AgrReGWCo) = the percentage of water returned from agricultural water use accruing to groundwater resources.The volume of groundwater input is calculated with Eq. (22):$${InputGW}_{t}={Inf}_{t}+{ReGW}_{t}+{SInflowInf}_{t}+{OutCGw }_{t}$$
    (22)

    in which ({InputGW}_{t}) = the volume of groundwater input during period t, and ({OutCGw }_{t}) = the difference between the volume of groundwater leaving and that entering the country during period t.The volume of groundwater output is calculated with Eq. (23):$${OutputGW}_{t}={AgrGWDCo}_{t}times {AgrWD}_{t}+IndGWDCotimes {IndWD}_{t}+DomGWDCotimes {DomWD}_{t}+{EvGwDr}_{t}$$
    (23)

    in which ({OutputGW}_{t}) = the volume of groundwater output during period t, ({AgrGWDCo}_{t}) = the percentage of gross agricultural water use from groundwater resources during period t, IndGWDCo = the percentage of industrial water use from groundwater resources during period t, DomGWDCo = the percentage of municipal water use from groundwater resources during period t, and ({EvGwDr }_{t}) = the total volume of evaporation from groundwater plus the drainage of groundwater resources to surface water resources at time t.Equation (24) calculates the annual balance of groundwater resources:$$GWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputGW}_{t}left(Sright)-{OutputGW}_{t}left(Sright)right]dt+GWater(0)$$
    (24)

    in which GWater(t) = the groundwater resources stock at time t, (GWater(0)) denotes the stock of groundwater at the initial time (t = 0).Energy usesEnergy uses are calculated with Eqs. (25)–(27). The total national energy use includes the agricultural, industrial, transportation, and exports sectors’ energy demands. The energy uses by these sectors do not change during the implementation of the policy, and, consequently do not change the WFE Nexus in that period; therefore, they are not included in the calculations.$${WDTP}_{t}={DomWD}_{t}times {CEIntensity}_{t}$$
    (25)

    in which ({WDTP}_{t}) = the energy used in the extraction, transmission, distribution, and treatment of water in the water and wastewater system during period t, and ({CEIntensity}_{t}) = the energy intensity in the extraction, transmission, distribution, and treatment of water in water and wastewater systems during the period t (MWh per cubic meter).$${ResComPubED}_{t}=ResComPubPerCapitatimes {Population}_{t}$$
    (26)

    in which ({ResComPubED}_{t}) = the energy use by the domestic, commercial, and public sectors during period t, and (ResComPubPerCapita) = the per capita energy consumption by the domestic, commercial, and public sectors (MWh per person per year).$${OutputE}_{t}={ResComPubED}_{t}+{WDTP}_{t}$$
    (27)
    Environmental water needsThe gray water footprint is defined as the volume of freshwater that is required to assimilate the load of pollutants based on natural background concentrations and existing ambient water quality standards. The estimation of the gray water footprint associated with discharges from agricultural production is based on the load of nitrogen fertilizers, which are pervasive in agriculture. The gray water footprint in terms of nitrogen concentration has been estimated by Mekonnen and Hoekstra24,25, as written in Eq. (28):$${GW}_{t}^{Agr}=sum_{iin A}{GW}_{i}times {Product}_{i,t}$$
    (28)

    in which ({GW}_{t}^{Agr})= the volume of gray water in the agricultural sector during period t, and ({GW}_{i}) = the volume of gray water associated with the production of one ton of agricultural product i (cubic meters per ton)(.)There are no accurate estimates of the concentrations of pollutants per unit of industrial production, or of the concentration of pollutants in municipal wastewater. Therefore, the conservative dilution factor (DF), which is equal to 1 for untreated returned water from the municipal and industrial sectors, is applied in this work. Equation (29) is a simplified equation of the gray water footprint26. The fraction appearing on the right-hand side of Eq. (29) is equal to the DF.$${GW}_{t}^{IndDom}= frac{{C}_{eff}-{C}_{nat}}{{C}_{max}-{C}_{nat}}times {IndDomReW}_{t}times IndDomReUT$$
    (29)

    in which ({GW}_{t}^{IndDom}) = the gray water footprint of the municipal and industrial sectors during period t, ({C}_{eff}) = the nitrogen concentration in return water (mg/L), ({C}_{nat}) = the natural concentrations of contaminant in surface water (mg/L), ({C}_{max}) = the maximum allowable concentration contaminant in surface water (mg/L), and (IndDomReUT) = the percentage of untreated returned water from the municipal and industrial sectors.The total gray water footprint is obtained by summing the footprints associated with the municipal/industrial and agricultural sectors:$${TotalGW}_{mathrm{t}}={GW}_{t}^{IndDom}+{GW}_{t}^{Agr}$$
    (30)

    in which ({TotalGW}_{mathrm{t}}) = the volume of gray water from all sectors during period t.This work considers qualitative and quantitative environmental water needs. Equation (31) is used to calculate the total environmental water need. The Tennant method for calculating the riverine environmental flow requirement (or instream flow) stipulates that, based on the conditions of each basin, between 10 to 30% of the average long-term flow of rivers represents the environmental flow requirement27. The sum of these requirements across all the basins equals the environmental requirement of the entire region or country. Yet, by providing 10 to 30% of the average long-term flow of rivers the riverine ecosystem barely emerges from critical conditions, and is far from optimal ecologic functioning. The total environmental water need is equal to the sum of the environmental flow requirement plus the volume of water needed to dilute the contaminants entering the surface water sources:$${ENV}_{t}={TotalGW}_{t}+Tennant$$
    (31)

    in which ({ENV}_{t}) = the environmental flow requirement during period t, and Tennant = the environmental flow requirement calculated by the Tennant (1976) method.The policy evaluation indexThe available renewable water is calculated with Eq. (32):$${IN}_{t}={OutCGW }_{t}+ {SInflow }_{t}+{ Inf}_{t}-{EvGwDr}_{t}$$
    (32)

    in which ({IN}_{t})= the renewable water available before the application of environmental constraints during period t.The volume of manageable water is calculated with Eq. (33):$$REWleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[INleft(tright)-ENVleft(tright)right]dt$$
    (33)

    in which REW (t) = the (cumulative) manageable and exploitable renewable water in the period t-t0.Equation (34) calculates the total water withdrawals by the agricultural, industrial, municipal, and energy production sectors:$${WDW}_{t}={OutputSW }_{t}+ {OutputGW}_{t}- {cheshmeh}_{t}$$
    (34)

    in which ({WDW}_{t}) = the sum of the withdrawals by the agricultural, industrial, municipal, and energy production sectors during period t.The cumulative water withdrawals are calculated with Eq. (35):$$withdleft(tright)=underset{{t}_{0}}{overset{t}{int }}WDWleft(tright)dt$$
    (35)

    in which (withdleft(tright)) = the sum of the withdrawals by the agricultural, industrial, municipal and energy production sectors in the horizon t-t0.Equation (36) calculates the water stress index:$${index}_{{t}_{f}}^{MRW}=frac{withd({t}_{f})}{REWleft({t}_{f}right)}times 100$$
    (36)

    in which ({index}_{{t}_{f}}^{MRW}) = the renewable water stress index at the end of the study period, and ({t}_{f}) = the period marking the end of the study horizon.Once the water and energy model is developed it must be calibrated with observational data prior to its use in predictions, as shown below. More

  • in

    Gentle-giant sharks are on a collision course with mighty ships

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa

    Runham, N. A study of the replacement mechanism of the pulmonate radula. J. Cell Sci. 3(66), 271–277 (1963).Article 

    Google Scholar 
    Runham, N. & Isarankura, K. Studies on radula replacement. Malacologia 5, 73 (1966).
    Google Scholar 
    Mackenstedt, U. & Märkel, K. Radular structure and function. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 213–236 (CABI Publishing, Oxon, United Kingdom, 2001).Chapter 

    Google Scholar 
    Crampton, D. M. Functional anatomy of the buccal apparatus of Onchidoris bilamellata (Mollusca: Opisthobranchia). Trans. Zool. Soc. Lond. 34(1), 45–86 (1977).Article 

    Google Scholar 
    Steneck, R. S. & Watling, L. Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar. Biol. 68(3), 299–319 (1982).Article 

    Google Scholar 
    Jensen, K. R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 11, 301–335 (1997).Article 

    Google Scholar 
    Nishi, M. & Kohn, A. J. Radular teeth of Indo-Pacific molluscivorous species of Conus: A comparative analysis. J. Molluscan Stud. 65(4), 483–497 (1999).Article 

    Google Scholar 
    Duda, T. F., Kohn, A. J. & Palumbi, S. R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. Lond. 73, 391–409 (2001).Article 

    Google Scholar 
    von Rintelen, T., Wilson, A. B., Meyer, A. & Glaubrecht, M. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc. R. Soc. B 271, 2541–2549 (2004).Article 

    Google Scholar 
    Ekimova, I. et al. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 141, 106609 (2019).PubMed 
    Article 

    Google Scholar 
    Mikhlina, A., Ekimova, I. & Vortsepneva, E. Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidia: Fionidae). Zoology 143, 125850 (2020).PubMed 
    Article 

    Google Scholar 
    Krings, W. Trophic specialization of paludomid gastropods from ‘ancient’ Lake Tanganyika reflected by radular tooth morphologies and material properties, Thesis, Universität Hamburg (2020).Krings, W., Brütt, J.-O., Gorb, S. N. & Glaubrecht, M. Tightening it up: Diversity of the chitin anchorage of radular-teeth in paludomid freshwater-gastropods. Malacologia 63(1), 77–94 (2020).Article 

    Google Scholar 
    Bleakney, J. S. Indirect evidence of a morphological response in the radula of Placida dendritica (Alder & Hancock, 1843) (Opisthobranchia: Ascoglossa/ Sacoglossa) to different algae prey. Veliger 33(1), 111–115 (1990).
    Google Scholar 
    Jensen, K. R. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. Lond. 48, 135–155 (1993).Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littorina species (Gastropoda: Littorinidae). J. Molluscan Stud. 65, 355–370 (1999).Article 

    Google Scholar 
    Padilla, D. K., Dilger, E. K. & Dittmann, D. E. Phenotypic plasticity of feeding structures in species of Littorina. Am. Zool. 40, 1161 (2000).
    Google Scholar 
    Ito, A., Ilano, A. S., Goshima, S. & Nakao, S. Seasonal and tidal height variations in body weight and radular length in Nodilittorina radiata (Eydoux and Souleyet, 1852). J. Molluscan Stud. 68, 197–203 (2002).Article 

    Google Scholar 
    Padilla, D. K. Form and function of radular teeth of herbivorous molluscs: Focus on the future. Am. Malacol. Bull. 18(1/2), 163–168 (2003).
    Google Scholar 
    Krings, W. & Gorb, S. N. Substrate roughness induced wear pattern in gastropod radulae. Biotribology 26, 100164 (2021).Article 

    Google Scholar 
    Krings, W., Hempel, C., Siemers, L., Neiber, M. T. & Gorb, S. N. Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci. Rep. 11, 9556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, D. & Barber, A. H. Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9(71), 1318–1324 (2012).PubMed 
    Article 

    Google Scholar 
    Grunenfelder, L. K. et al. Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri. Adv. Funct. Mater. 24(39), 6093–6104 (2014).CAS 
    Article 

    Google Scholar 
    Barber, A. H., Lu, D. & Pugno, N. M. Extreme strength observed in limpet teeth. J. R. Soc. Interface 12(105), 20141326 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herrera, S. A., Grunenfelder, L., Escobar, E., Wang, Q., Salinas, C., Yaraghi, N., Geiger, J., Wuhrer, R., Zavattieri, P. & Kisailus, D. Stylus support structure and function of radular teeth. In Cryptochiton Stelleri, 20th International Conference on Composite Materials Copenhagen, 19–24th July, 2015.Ukmar-Godec, T. et al. Materials nanoarchitecturing via cation-mediated protein assembly: Making limpet teeth without mineral. Adv. Mater. 29(27), 1701171 (2017).Article 
    CAS 

    Google Scholar 
    Pohl, A. et al. Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. J. Mech. Behav. Biomed. Mater. 111, 103991 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stegbauer, L. et al. Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. PNAS 118(23), e2020160118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13(1–2), 42–52 (2010).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri. Adv. Fun. Mater. 23, 2908–2917 (2013).CAS 
    Article 

    Google Scholar 
    Ukmar-Godec, T. Mineralization of goethite in limpet radular teeth. In Iron Oxides: From Nature to Applications (eds Faivre, D. & Frankel, R. B.) 207–224 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Krings, W., Brütt, J.-O. & Gorb, S. N. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Under review at Frontiers in Zoology (2022).Brooker, L. R. & Shaw, J. A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization (ed. Seto, J.) 65–84 (Intech Open, Rijeka, Croatia, 2012).
    Google Scholar 
    Joester, D. & Brooker, L. R. The chiton radula: A model system for versatile use of iron oxides. In Iron Oxides: From Nature to Applications (ed. Seto, J.) 177–205 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Kisailus, D. & Nemoto, M. Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Biological Magnetic Materials and Applications (eds Matsunaga, T. et al.) 53–73 (Springer, Singapore, 2018).Chapter 

    Google Scholar 
    Moura, H. M. & Unterlass, M. M. Biogenic metal oxides. Biomimetics 5(2), 29 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A., Glaubrecht, M. & Gorb, S. N. Differences in the Young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology 137, 125713 (2019).PubMed 
    Article 

    Google Scholar 
    Krings, W., Neiber, M. T., Kovalev, A., Gorb, S. N. & Glaubrecht, M. Trophic specialisation reflected by radular tooth material properties in an ‘ancient’ Lake Tanganyikan gastropod species flock. BMC Ecol. Evol. 21, 35 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Marcé-Nogué, J. & Gorb, S. N. Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci. Rep. 11, 22775 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorb, S. N. & Krings, W. Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomater. 134, 513–530 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Troschel, F. H. Das Gebiss Der Schnecken Zur Begründung Einer Natürlichen Classification (Nicolaische Verlagsbuchhandlung, Berlin, Germany, 1863).
    Google Scholar 
    Sollas, I. B. The molluscan radula: Its chemical composition, and some points in its development. Q. J. Microsc. Sci. 51, 115–136 (1907).
    Google Scholar 
    Jones, E., McCance, R. & Shackleton, L. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. J. Exp. Biol. 12(1), 59–64 (1935).CAS 
    Article 

    Google Scholar 
    Tillier, S. & Cuif, J.-P. L’animal-conodonte est-il un Mollusque Aplacophore. C. R. Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univ. Sci. Terre 303(7), 627–632 (1986).Cruz, R., Lins, U. & Farina, M. Minerals of the radular apparatus of Falcidens sp. (Caudofoveata) and the evolutionary implications for the phylum mollusca. Biol. Bull. 194(2), 224–230 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, I. F. Lepidochitona cinerea, identification and biology, 2020. https://doi.org/10.13140/RG.2.2.28288.58889.Smith, I. F. Acanthochitona fascicularis (Linnaeus, 1767), identification and biology, 2020. https://doi.org/10.13140/RG.2.2.10640.64005.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 57, 999–1008 (2010).ADS 
    Article 

    Google Scholar 
    Coelho, M., Domingues, P., Balguerias, E., Fernandez, M. & Andrade, J. P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (Central-East Atlantic). Fish. Res. 29(3), 245–255 (1997).Article 

    Google Scholar 
    Notman, G. M., McGill, R. A., Hawkins, S. J. & Burrows, M. T. Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar. Ecol. Prog. Ser. 549, 113–123 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Marchais, V. et al. New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Mar. Biol. 164, 71 (2017).Article 

    Google Scholar 
    Eichhorst, T. E. Neritidae of the World: Volume 1 and 2 (ConchBooks, 2016).Bourguignat, M. J. R. Notice Prodromique sur les Mollusques Terrestres et Fluviatiles (Savy, Paris, 1885).
    Google Scholar 
    Bourguignat, M. J. R. Iconographie Malacologiques des Animaux Mollusques Fluviatiles du Lac Tanganika (Corbeil, Crété, 1888).Book 

    Google Scholar 
    West, K., Michel, E., Todd, J., Brown, D. & Clabaugh, J. The gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna (Special publications: Societas Internationalis Limnologiae – Int. Assoc. of Theoretical and Applied Limnology, 2003)Glaubrecht, M. Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosyst. Evol. 84, 71–122 (2008).Article 

    Google Scholar 
    Moore, J. E. S. The Tanganyika Problem (Burst and Blackett, London, 1903).Book 

    Google Scholar 
    Leloup, E. Exploration Hydrobiologique du Lac Tanganika (1946–1947) (Bruxelles, 1953).Brown, D. Freshwater Snails of Africa and their Medical Importance (Taylor and Francis, London, 1994).Book 

    Google Scholar 
    Germain, L. Mollusques du Lac Tanganyika et de ses environs. Extrait des resultats secientifiques des voyages en Afrique d’Edouard Foa. Bull. Mus. Natl. Hist. Nat. 14, 1–612 (1908).
    Google Scholar 
    Coulter, G. W. Lake Tanganyika and its Life (Oxford University Press, Oxford, 1991).
    Google Scholar 
    Bandel, K. Evolutionary history of East African fresh water gastropods interpreted from the fauna of Lake Tanganyika and Lake Malawi. Zent. Geol. Paläontol. Teil I, 233–292 (1997).
    Google Scholar 
    Pilsbry, H. A. & Bequaert, J. The aquatic mollusks of the Begian Congo. With a geographical and ecological account of Congo malacology. Bull. Am. Mus. Nat. Hist. 53, 69–602 (1927).
    Google Scholar 
    Lok, A. F. S. L., Ang, W. F., Ng, P. X., Ng, B. Y. Q. & Tan, S. K. Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore. NiS 4, 115–121 (2011).
    Google Scholar 
    Das, R. R. et al. Limited distribution of devil snail Faunus ater (Linnaeus, 1758) in tropical mangrove habitats of India. IJMS 47(10), 2002–2007 (2018).
    Google Scholar 
    Watson, D. C. & Norton, T. A. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88, 193–211 (1985).Article 

    Google Scholar 
    Imrie, D. W., McCrohan, C. R. & Hawkins, S. J. Feeding behaviour in Littorina littorea: A study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. Hydrobiologia 193, 191–198 (1990).Article 

    Google Scholar 
    Olsson, M., Svärdh, L. & Toth, G. B. Feeding behaviour in Littorina littorea: The red seaweed Osmundea ramosissima may not prevent trematode infection. Mar. Ecol. Prog. Ser. 348, 221–228 (2007).ADS 
    Article 

    Google Scholar 
    Lauzon-Guay, J. S. & Scheibling, R. E. Food-dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581–587 (2009).Article 

    Google Scholar 
    Bogan, A. E. & Hanneman, E. H. A carnivorous aquatic gastropod in the pet trade in North America: The next threat to freshwater gastropods?. Ellipsaria 15, 18–19 (2013).
    Google Scholar 
    Strong, E. E., Galindo, L. A. & Kantor, Y. I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 11(5), e3638 (2017).Article 

    Google Scholar 
    Himmelman, J. H. & Hamel, J. R. Diet behaviour and reproduction of the whelk Buccinum undatum in the northern Gulf of St Lawrence, eastern Canada. Mar. Biol. 116, 423–430 (1993).Article 

    Google Scholar 
    Barnes, H. & Powell, H. T. Onchidoris fusca (Müller); A predator of barnacles. J. Anim. Ecol. 23(2), 361–363 (1954).Article 

    Google Scholar 
    Waters, V. L. Food-preference of the nudibranch Aeolidia papillosa, and the effect of the defenses of the prey on predation. Veliger 15(3), 174–192 (1973).
    Google Scholar 
    Edmunds, M., Potts, G., Swinfen, R. & Waters, V. The feeding preferences of Aeolidia papillosa (L.) (Mollusca, Nudibranchia). J. Mar. Biol. Assoc. U. K. 54(4), 939–947 (1974).Article 

    Google Scholar 
    Edmunds, M. Advantages of food specificity in Aeolidia papillosa. J. Molluscan Stud. 49(1), 80–81 (1983).Article 

    Google Scholar 
    Sørensen, C. G., Rauch, C., Pola, M. & Malaquias, M. A. E. Integrative taxonomy reveals a cryptic species of the nudibranch genus Polycera (Polyceridae) in European waters. J. Mar. Biol. Assoc. U. K. 100(5), 733–752 (2020).Article 
    CAS 

    Google Scholar 
    Forrest, J. E. On the feeding habits and the morphology and mode of functioning of the alimentary canal in some littoral dorid nudibranchiate. Mollusca. Proc. Linn. Soc. Lond. 164(2), 225–235 (1953).Article 

    Google Scholar 
    Rose, R. M. Functional morphology of the buccal mass of the nudibranch Archidoris pseudoargus. J. Zool. 165(3), 317–336 (1971).Article 

    Google Scholar 
    Faivre, D. & Ukmar-Godec, T. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54(16), 4728–4747 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Towe, K. M. & Lowenstam, H. A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastruct. Res. 17(1–2), 1–13 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Distribution and composition of the matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Mar. Biol. 109, 281–286 (1991).CAS 
    Article 

    Google Scholar 
    Macey, D. J. & Brooker, L. R. The junction zone: Initial site of mineralization in radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). J. Morphol. 230, 33–42 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, A. P. et al. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3, 614–619 (1998).CAS 
    Article 

    Google Scholar 
    Brooker, L. R. & Macey, D. J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 16(1/2), 203–215 (2001).
    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., Webb, J. & van Bronswijk, W. A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. J. Biol. Inorg. Chem. 8(3), 256–262 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, J. A. et al. The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. J. Morphol. 270(5), 588–600 (2009).PubMed 
    Article 

    Google Scholar 
    Gordon, L. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194–198 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmanuel, S., Schuessler, J. A., Vinther, J., Matthews, A. & von Blanckenburg, F. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments. Biogeosciences 11(19), 5493–5502 (2014).ADS 
    Article 

    Google Scholar 
    Shaw, J. A., Macey, D. J. & Brooker, L. R. Radula synthesis by three species of iron mineralizing molluscs: Production rate and elemental demand. J. Mar. Biol. Assoc. U. K. 88(3), 597–601 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., van Bronswijk, W. & Webb, J. Multiple-front iron-mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Mar. Biol. 142, 447–454 (2003).CAS 
    Article 

    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., van Bronswijk, W. & Webb, J. Apatite mineralization in teeth of the chiton Acanthopleura echinata. Calcif. Tissue Int. 67, 408–415 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., Webb, J. & van Bronswijk, W. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder Chitonina. Venus 65(1–2), 71–80 (2006).
    Google Scholar 
    van der Wal, P. Structure and formation of the magnetite-bearing cap of the polyplacophoran tricuspid radula teeth. In Iron Biominerals (eds Frankel, R. B. & Blakemore, R. P.) 221–229 (Plenum Press, New York, 1990).
    Google Scholar 
    Saunders, M., Kong, C., Shaw, J. A. & Clode, P. L. Matrix-mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microsc. Microanal. 17, 220–225 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. Phosphatic hard tissues of marine invertebrates, their nature and mechanical function, and some fossil implications. Chem. Geol. 9, 153–166 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Macey, D. J., Webb, J. & Brooker, L. R. The structure and synthesis of biominerals in chiton teeth. Bull. Inst. Océanogr. (Monaco) 4(1), 191–197 (1994).
    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radula teeth of chitons. Science 227, 51–52 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Mollusca. In On biomineralization (eds Lowenstam, H. A. & Weiner, S.) 88–305 (Oxford University Press, Oxford, 1989).Chapter 

    Google Scholar 
    Evans, L. A. & Alvarez, R. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis. J. Biol. Inorg. Chem. 4(2), 166–170 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radula teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78–82 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, K. S., Webb, J., Macey, D. J. & Cohen, D. D. Compositional changes during biomineralization of the radula of the chiton Clavarizona hirtosa. J. Inorg. Biochem. 28(2–3), 337–345 (1986).CAS 
    Article 

    Google Scholar 
    Runham, N. W. The histochemistry of the radula of Patella vulgata. Q. J. Microsc. Sci. 102(3), 371–380 (1961).
    Google Scholar 
    Runham, N. W., Thronton, P. R., Shaw, D. A. & Wayte, R. C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Z. Zellforsch. 99, 608–626 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grime, G. et al. Biological applications of the Oxford scanning proton microprobe. Trends Biochem. Sci. 10(1), 6–10 (1985).CAS 
    Article 

    Google Scholar 
    St Pierre, T. G. et al. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata; Mössbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. B 228, 31–42 (1986).ADS 
    CAS 

    Google Scholar 
    Mann, S., Perry, C. C., Webb, J., Luke, B. & Williams, R. J. P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc. R. Soc. B 227(1247), 179–190 (1986).ADS 
    CAS 

    Google Scholar 
    van der Wal, P. Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). J. Ultrastruct. Mol. Struct. Res. 102(2), 147–161 (1989).Article 

    Google Scholar 
    Huang, C., Li, C.-W., Deng, M. & Chin, T. Magnetic properties of goethite in radulae of limpets. IEEE Trans. Magn. 28(5), 2409–2411 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Rinkevich, B. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantea. Mar. Biol. 117, 269–277 (1993).Article 

    Google Scholar 
    Liddiard, K. J., Hockridge, J. G., Macey, D. J., Webb, J. & van Bronswijk, W. Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Res. 24, 21–31 (2004).CAS 
    Article 

    Google Scholar 
    Cruz, R. & Farina, M. Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar. Biol. 147, 163–168 (2005).CAS 
    Article 

    Google Scholar 
    Davies, M. S., Proudlock, D. J. & Mistry, A. Metal concentrations in the radula of the common limpet, Patella vulgata L., from 10 sites in the UK. Ecotoxicology 14(4), 465–475 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, E. D., Weiner, S. & Addadi, L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hua, T.-E. & Li, C.-W. Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zool. Stud. 46(4), 379–388 (2007).CAS 

    Google Scholar 
    Krings, W. et al. In slow motion: Radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding. R. Soc. Open Sci. 6(7), 2054–5703 (2019).Article 
    CAS 

    Google Scholar 
    Mikovari, A. et al. Radula development in the giant key-hole limpet Megathura crenulate. J. Shellfish Res. 34(3), 893–902 (2015).Article 

    Google Scholar 
    Ukmar-Godec, T., Kapun, G., Zaslansky, P. & Faivre, D. The giant keyhole limpet radular teeth: A naturally-grown harvest machine. J. Struct. Biol. 192, 392–402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macey, D. J., Brooker, L. R. & Cameron, V. Mineralisation in the teeth of the gastropod mollusc Nerita atramentosa. Molluscan Res. 18(1), 33–41 (1997).Article 

    Google Scholar 
    Barkalova, V. O., Fedosov, A. E. & Kantor, Y. I. Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res. 36, 54–73 (2016).Article 

    Google Scholar 
    Ponte, G. & Modica, M. V. Salivary glands in predatory mollusks: Evolutionary considerations. Front. Physiol. 8, 580 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haszprunar, G. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367–441 (1988).Article 

    Google Scholar 
    Sasaki, T. Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). Univ. Tokyo Bull. 38, 1–224 (1998).
    Google Scholar 
    Simone, L. R. L. Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arq. Zool. 42(4), 161–323 (2011).Article 

    Google Scholar 
    Meirelles, C. A. & Matthews-Cascon, H. Relations between shell size and radula size in marine prosobranchs (Mollusca: Gastropoda). Thalassas 19(2), 45–53 (2003).
    Google Scholar 
    Peile, A. J. Some radula problems. J. Conchol. 20, 292–304 (1937).
    Google Scholar 
    Marcus, E. & Marcus, E. Mesogastropoden von der Küste São Paulos. Abh Math Naturwissenschaftlichen Kl Akad Wiss Lit Mainz 1963(1), 1–105 (1963).
    Google Scholar 
    Reid, D. G. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: The Genus LITTORARIA (British Museum Natural History, London, 1986).
    Google Scholar 
    Reid, D. G. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B 324, 1–110 (1989).ADS 
    Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littoraria species (Gastropoda: Littorinidae). J. Molluscan Stud. 65(3), 355–370 (1999).Article 

    Google Scholar 
    Fretter, V. & Graham, A. British Prosobranch Molluscs (The Ray Society, London, 1994).
    Google Scholar 
    Cabral, J. P. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival. Web Ecol. 7, 11–21 (2007).Article 

    Google Scholar 
    Nesson, M. H. Studies on radula tooth mineralization in the Polyplacophora, thesis, California Institute of Technology, Pasadena, USA (1969).Shaw, J. A., Brooker, L. R. & Macey, D. J. Radular tooth turnover in the chiton Acanthopleura hirtosa (Blainville, 1825) (Mollusca: Polyplacophora). Molluscan Res. 22, 93–99 (2002).Article 

    Google Scholar 
    Isarankura, K. & Runham, N. Studies on the replacement of the gastropod radula. Malacologia 7(1), 71–91 (1968).
    Google Scholar 
    Padilla, D. K., Dittman, D. E., Franz, J. & Sladek, R. Radular production rates in two species of Lacuna Turton (Gastropoda: Littorinidae). J. Molluscan Stud. 62(3), 275–280 (1996).Article 

    Google Scholar 
    Runham, N. W. Rate of replacement of the molluscan radula. Nature 194, 992–993 (1962).ADS 
    Article 

    Google Scholar 
    Mackenstedt, U. & Märkel, K. Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology 107(4), 209–239 (1987).Article 

    Google Scholar 
    Mischor, B. & Märkel, K. Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia). Zoomorphology 104, 42–66 (1984).Article 

    Google Scholar 
    Fujioka, Y. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (Küster) (Gastropoda: Muricidae). J. Exp. Mar. Biol. Ecol. 90(1), 43–54 (1985).Article 

    Google Scholar 
    Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progr. Mater. Sci. 88, 467–498 (2017).CAS 
    Article 

    Google Scholar 
    Vincent, J. F. V. The hardness of the tooth of Patella vulgata L. Radula: A Reappraisal. J. Molluscan Stud. 46, 129–133 (1980).
    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa. Philos. Trans. R. Soc. Lond. B 329, 87–96 (1990).ADS 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa. Acta Zool. 75(1), 75–79 (1994).Article 

    Google Scholar 
    Wealthall, R. J., Brooker, L. R., Macey, D. J. & Griffin, B. J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J. Morphol. 265, 165–175 (2005).PubMed 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proc. R. Soc. B 288, 20203173 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater. 135, 458–472 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Radwin, G. E. & Wells, H. W. Comparative radular morphology and feeding habits of muricid gastropods from the Gulf of Mexico. Bull. Mar. Sci. 18(1), 72–85 (1968).
    Google Scholar 
    Grünbaum, D. & Padilla, D. K. An integrated modeling approach to assessing linkages between environment, organism, and phenotypic plasticity. Integr. Comp. Biol. 54(2), 323–335 (2014).PubMed 
    Article 

    Google Scholar 
    Scheel, C., Gorb, S. N., Glaubrecht, M. & Krings, W. Not just scratching the surface: Distinct radular motion patterns in Mollusca. Biol. Open 9, bio055699 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. On the division of ctenobranchous gasteropodous Mollusca into larger groups and families. Ann. Mag. Nat. Hist. 11(2), 124–133 (1853).Article 

    Google Scholar 
    Hyman, L. H. Mollusca I. Aplacophora polyplacophora monoplacophora. Gastropoda, the coelomate bilateria. The invertebrates 6 (McGraw-Hill Book Company, New York, 1967).
    Google Scholar 
    Nixon, M. A nomenclature for the radula of the Cephalopoda (Mollusca) – living and fossil. J. Zool. 236, 73–81 (1995).Article 

    Google Scholar 
    Haszprunar, G. & Götting, K. J. Mollusca, Weichtiere. In Spezielle Zoologie Teil Einzeller und wirbellose Tiere (eds Westheide, W. & Rieger, R.) 305–362 (Springer, Berlin, Germany, 2007).
    Google Scholar 
    Lowenstam, H. A. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. Am. Bull. 73, 435–438 (1962).ADS 
    CAS 
    Article 

    Google Scholar 
    Kirschvink, J. L. & Lowenstam, H. A. Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. EPSL 44, 193–204 (1979).ADS 
    Article 

    Google Scholar 
    Han, Y. et al. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus. Bioelectromagnetics 32, 226–233 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemoto, M. et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci. Rep. 9, 856 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McCoey, J. M. et al. Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa. Small Methods 4, 1900754 (2020).CAS 
    Article 

    Google Scholar 
    Lowenstam, H. A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 56, 1373–1375 (1967).ADS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J. & Webb, J. Molluscan and other marine teeth. In Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) 5186–5189 (Elsevier Science Ltd., Oxford, 2001).Chapter 

    Google Scholar 
    Shaw, J. A. et al. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc. Microanal. 15(2), 154–165 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Creighton, T. E. Protein folding coupled to disulphide bond formation. Biol. Chem. 378(8), 731–744 (1997).CAS 
    PubMed 

    Google Scholar 
    Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Cryst. D 58, 872–874 (2002).Article 
    CAS 

    Google Scholar 
    Hayes, T. The influence of diet on local distributions of Cypraea. Pac. Sci. 37(1), 27–36 (1983).
    Google Scholar 
    Padilla, D. K. The importance of form: Differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. Exp. Mar. Biol. Ecol. 79(2), 105–127 (1984).Article 

    Google Scholar 
    Kesler, D. H., Jokinen, E. H. & Munns, W. R. Jr. Trophic preferences and feeding morphology of two pulmonate snail species from a small New England pond, USA. Can. J. Zool. 64, 2570–2575 (1986).Article 

    Google Scholar 
    Blinn, W., Truitt, R. E. & Pickart, A. Feeding ecology and radular morphology of the freshwater limpet Ferrissia fragilis. J. N. Am. Benthol. Soc. 8(3), 237–242 (1989).Article 

    Google Scholar 
    Hawkins, S. J. et al. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. J. Molluscan Stud. 55(2), 151–165 (1989).Article 

    Google Scholar 
    Franz, C. J. Feeding patterns of Fissurella species on Isla de Margarita, Venezuela: Use of radulae and food passage rates. J. Molluscan Stud. 56(1), 25–35 (1990).Article 

    Google Scholar 
    Thompson, R. C., Johnson, L. E. & Hawkins, S. J. A method for spatial and temporal assessment of gastropod grazing intensity in the field: The use of radula scrapes on wax surfaces. J. Exp. Mar. Biol. Ecol. 218(1), 63–76 (1997).Article 

    Google Scholar 
    Iken, K. Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J. Exp. Mar. Biol. Ecol. 236(1), 133–148 (1999).Article 

    Google Scholar 
    Forrest, R. E., Chapman, M. G. & Underwood, A. J. Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J. Exp. Mar. Biol. Ecol. 258(2), 155–171 (2001).PubMed 
    Article 

    Google Scholar 
    Dimitriadis, V. K. Structure and function of the digestive system in Stylommatophora. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 237–258 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Speiser, B. Food and feeding behaviour. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 259–288 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Sitnikova, T. et al. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682, 75–90 (2012).CAS 
    Article 

    Google Scholar 
    Bergmeier, F. S., Ostermair, L. & Jörger, K. M. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Curr. Biol. 31(13), R836–R837 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodheart, J. A., Bazinet, A. L., Valdés, Á., Collins, A. G. & Cummings, M. P. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol. Biol. 17, 221 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Padilla, D. K. Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90, 103–109 (1985).Article 

    Google Scholar 
    Padilla, D. K. Algal structural defenses: Form and calcification in resistance to tropical limpets. Ecology 70(4), 835–842 (1989).Article 

    Google Scholar 
    Wilson, A. B., Glaubrecht, M. & Meyer, A. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proc. R. Soc. B 271(1538), 529–536 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponder, W. & Lindberg, D. R. Phylogeny and Evolution of the Mollusca (University of California Press, Berkeley, California, 2008).Book 

    Google Scholar 
    Jörger, K. M. et al. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452–456 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M. & Schrödl, M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci. Rep. 10, 101 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364–367 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haszprunar, G. & Wanninger, A. Molluscs. Curr Biol. 22(13), R510-514 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. 94, 102–115 (2019).Article 

    Google Scholar 
    Irisarri, I., Uribe, J. E., Eernisse, D. J. & Zardoya, R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol. Biol. 20, 22 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Clark, D. A. & Clark, D. B. Spacing dynamics of a Tropical rain forest tree: Evaluation of the Janzen-Connell model. Am. Nat. 124, 769–788 (1984).Article 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and dendity-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jansen, P. A. & Forget, P.-M. Scatterhoarding rodents and tree regeneration. in Nouragues (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) vol. 80 pp. 275–288 (Springer Netherlands, 2001).Janzen, D. H. Herbivores and the number of tree species in Tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Hammond, D. S. Tropical forests of the Guiana shield: ancient forests in a modern world. (CABI Publishing, 2005).Forget, P.-M. et al. Frugivores and seed dispersal (1985–2010); the ‘seeds’ dispersed, established and matured. Acta Oecologica 37, 517–520 (2011).ADS 
    Article 

    Google Scholar 
    Levey, D. J., Silva, W. R. & Galetti, M. Seed dispersal and frugivory: Ecology, evolution and conservation. (CABI Publishing, 2002).Boissier, O., Feer, F., Henry, P. & Forget, P. Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecol. Appl. 30, (2020).Ducrettet, M. et al. Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biol. Conserv. 245, 108574 (2020).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: Implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Holbrook, K. M. & Loiselle, B. A. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal?. Ecology 90, 1449–1455 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. The role of frugivores in determining seed removal and dispersal in the neotropical nutmeg. Trop. Conserv. Sci. 6, 690–704 (2013).Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. Frugivores and seed removal at Tetragastris altissima (Burseraceae) in a fragmented forested landscape of French Guiana. J. Trop. Ecol. 21, 501–508 (2005).Article 

    Google Scholar 
    Stevenson, P. R., Link, A., González-Caro, S. & Torres-Jiménez, M. F. Frugivory in canopy plants in a western Amazonian forest: Dispersal systems, phylogenetic ensembles and keystone plants. PLoS ONE 10, e0140751 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todeschini, F., de Toledo, J. J., Rosalino, L. M. & Hilário, R. R. Niche differentiation mechanisms among canopy frugivores and zoochoric trees in the northeastern extreme of the Amazon. Acta Amaz 50, 263–272 (2020).Article 

    Google Scholar 
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shanee, N. Trends in local wildlife hunting, trade and control in the Tropical Andes Biodiversity Hotspot, northeastern Peru. Endanger. Species Res. 19, 177–186 (2012).Article 

    Google Scholar 
    Muscarella, R. & Fleming, T. H. The role of frugivorous bats in Tropical forest succession. Biol. Rev. 82, 573–590 (2007).PubMed 
    Article 

    Google Scholar 
    Willig, M. R. et al. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica 39, 737–746 (2007).Article 

    Google Scholar 
    Charles-Dominique, P. et al. Les mammifères frugivores arboricoles nocturnes d’une forêt guyanaise: Inter-relation plantes-animaux. Rev. Ecol. Terre Vie 35, (1981).Stevenson, P. R., Cardona, L., Cárdenas, S. & Link, A. Oilbirds disperse large seeds at longer distance than extinct megafauna. Sci. Rep. 11, 420 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by Binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 
    Nakashima, Y., Inoue, E., Inoue-Murayama, M. & Abd. Sukor, J. R. Functional uniqueness of a small carnivore as seed dispersal agents: A case study of the common palm civets in the Tabin Wildlife Reserve, Sabah, Malaysia. Oecologia 164, 721–730 (2010).Kays, R. W. Food preferences of kinkajous (Potos flavus): A frugivorous carnivore. J. Mammal. 80, 589–599 (1999).Article 

    Google Scholar 
    Julien-Laferrière, D. Frugivory and Seed Dispersal by Kinkajous. in Nouragues: Dynamics and Plant-Animal Interactions in a Neotropical Rainforest (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) 217–226 (Springer, 2001).Helgen, K. M. et al. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324, 1–83 (2013).Article 

    Google Scholar 
    Nascimento, F. F. et al. The evolutionary history and genetic diversity of kinkajous, Potos flavus (Carnivora, Procyonidae). J. Mamm. Evol. 24, 439–451 (2017).MathSciNet 
    Article 

    Google Scholar 
    Picart, L. et al. The CAFOTROP method: An improved rope-climbing method for access and movement in the canopy to study biodiversity. Ecotropica 20, 45–52 (2014).
    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. 12, 1768–1779 (2021).Article 

    Google Scholar 
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate Tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 3892 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queenborough, S. A. & Forget, P. M. Adding spice to life: A special issue on the Myristicaceae. Trop. Conserv. Sci. 3 (2013).Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    Russo, S. E. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136, 80–87 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Howe, H. F. & Vande Kerckhove, G. A. Removal of wild nutmeg (Virola Surinamensis) crops by birds. Ecology 62, 1093–1106 (1981).Laurance, W. F. et al. Averting biodiversity collapse in Tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    de Thoisy, B., Renoux, F. & Julliot, C. Hunting in northern French Guiana and its impact on primate communities. Oryx 39, 149–157 (2005).Article 

    Google Scholar 
    de Thoisy, B. et al. Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).Article 

    Google Scholar 
    Peres, C. A. & Dolman, P. M. Density compensation in Neotropical primate communities: Evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122, 175–189 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178 (2019).Article 

    Google Scholar 
    Harrison, R. D. et al. Consequences of defaunation for a Tropical tree community. Ecol. Lett. 16, 687–694 (2013).PubMed 
    Article 

    Google Scholar 
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).PubMed 
    Article 

    Google Scholar 
    Boissier, O., Bouiges, A., Mendoza, I., Feer, F. & Forget, P.-M. Rapid assessment of seed removal and frugivore activity as a tool for monitoring the health status of Tropical forests. Biotropica 46, 633–641 (2014).Article 

    Google Scholar 
    Howe, H. F. Fruit production and animal activity at two Tropical trees. Ecol. Trop. For. Seas. Rhythms Long-Term Chang. 189–199 (1982).Julien-Laferriere, D. Foraging strategies and food partitioning in the Neotropical frugivorous mammals Caluromys philander and Potos flavus. J. Zool. 247, 71–80 (1999).Article 

    Google Scholar 
    Julien-Laferriere, D. Radio-tracking observations on ranging and foraging patterns by kinkajous (Potos flavus) in French Guiana. J. Trop. Ecol. 9, 19–32 (1993).Article 

    Google Scholar 
    Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P. & Anderson, M. J. Estimating mammalian species richness and occupancy in Tropical forest canopies with arboreal camera traps. Remote Sens. Ecol. Conserv. 3, 146–157 (2017).Article 

    Google Scholar 
    Debruille, A., Kayser, P., Veron, G., Vergniol, M. & Perrigon, M. Improving the detection rate of binturongs (Arctictis binturong) in Palawan Island, Philippines, through the use of arboreal camera-trapping. Mammalia 84, 563–567 (2020).Article 

    Google Scholar 
    Gregory, T., Carrasco Rueda, F., Deichmann, J., Kolowski, J. & Alonso, A. Arboreal camera trapping: taking a proven method to new heights. Methods Ecol. Evol. 5, 443–451 (2014).Article 

    Google Scholar 
    Whitworth, A., Braunholtz, L. D., Huarcaya, R. P., MacLeod, R. & Beirne, C. Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals. Trop. Conserv. Sci. 9, 675–698 (2016).Article 

    Google Scholar 
    Laughlin, M. M., Martin, J. G. & Olson, E. R. Arboreal camera trapping reveals seasonal behaviors of Peromyscus spp. in Pinus strobus canopies. 14 (2020).Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. South Afr. J. Wildl. Res. 39, 1–10 (2009).Article 

    Google Scholar 
    Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).Article 

    Google Scholar 
    Mendoza, I. et al. Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): Insights from hierarchical Bayesian analyses. Biotropica 50, 431–441 (2018).Article 

    Google Scholar 
    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Rev. Ecol. Terre Vie 40, 289–320 (1985).
    Google Scholar 
    Coutant, O. et al. Roads disrupt frugivory and seed removal in tropical animal-dispersed plants in French Guiana. Front. Ecol. Evol. 10, 805376 (2022)Article 

    Google Scholar 
    Chapman, C. A. & Russo, S. E. Primate seed dispersal: Linking behavioral ecology with forest community structure. in Primates in Perspective 510–525 (Oxford University Press, 2006).Zhang, S.-Y. Activity and ranging patterns in relation to fruit utilization by brown capuchins (Cebus apella) in French Guiana. Int. J. Primatol. 16, 489–507 (1995).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the Tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).Article 

    Google Scholar 
    Coutant, O. et al. Amazonian mammal monitoring using aquatic environmental DNA. Mol. Ecol. Resour. 21, 1875–1888 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert, J. E., Fellner, V., McKenney, E. & Hartstone-Rose, A. Binturong (Arctictis binturong) and Kinkajou (Potos flavus) Digestive Strategy: Implications for Interpreting Frugivory in Carnivora and Primates. PLoS ONE 9, e105415 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Youlatos, D. Osteological correlates of tail prehensility in carnivorans. J. Zool. 259, 423–430 (2003).Article 

    Google Scholar 
    Lemelin, P. & Cartmill, M. The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus) – Lemelin – 2010 – Journal of Experimental Zoology Part A: Ecological Genetics and Physiology – Wiley Online Library. J. Exp. Zool. 313A, 157–168 (2010).
    Google Scholar 
    McClearn, D. Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J. Mammal. 73, 245–261 (1992).Article 

    Google Scholar 
    Rensch, B. & Dücker, G. Manipulierfähigkeit eines Wickelbären bei längeren Handlungsketten. Z. Für Tierpsychol. 26, 104–112 (1969).
    Google Scholar 
    Kays, R. W. The behavior and ecology of olingos (Bassaricyon gabbii) and their competition with kinkajous (Potos flavus) in central Panama. 64, 1–10 (2000).Alves-Costa, C. P. & Eterovick, P. C. Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica 32, 77–92 (2007).ADS 
    Article 

    Google Scholar 
    Bonaccorso, F. J., Glanz, W. E. & Sandford, C. M. Feeding assemblages of mammals at fruiting Dipteryx panamensis (Papilionaceae) trees in Panama: Seed predation, dispersal, and parasitism. Rev. Biol. Trop. 28, 61–72 (1980).
    Google Scholar 
    Julien-Laferrière, D. Organisation du peuplement de marsupiaux en Guyane française. Rev. Ecol. Terre Vie 46, 125–144 (1991).
    Google Scholar 
    Atramentowicz, M. The opportunistic frugivory of three Diphelphid marsupials of French Guiana. Rev. Ecol. Terre Vie 43, 47–57 (1988).
    Google Scholar 
    Carreira, D. C. et al. Small vertebrates are key elements in the frugivory networks of a hyperdiverse Tropical forest. Sci. Rep. 10, 10594 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erard, C., Théry, M. & Sabatier, D. Fruit characters in the diet of syntopic large frugivorous forest bird species in French Guiana. Rev. Ecol. Terre Vie 62, 323–350 (2007).
    Google Scholar 
    Théry, M., Erard, C. & Sabatier, D. Les fruits dans le régime alimentaire de Penelope marail (Aves, Cracidae) en forêt guyanaise: Frufivorie stricte et sélective? Rev. Ecol. Terre Vie 47, (1992).Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv.Schipper, J. Camera-trap avoidance by kinkajous Potos flavus: rethinking the “non-invasive” paradigm. 36, 5 (2007).Ratiarison, S. Frugivorie dans la canopée de la forêt guyanaise : conséquences pour la pluie de graines. (Paris 6, 2003).Sabatier, D. Fructification et dissémination en forêt guyanaise : l’exemple de quelques espèces ligneuses. (Université de Montpellier, 1983).Sabatier, D. Description et biologie d’une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia 19, 273–278 (1997).
    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bello, C. et al. Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic forest. Ecology 98, 1729–1729 (2017).PubMed 
    Article 

    Google Scholar 
    Galetti, M., Laps, R. & Pizo, M. A. Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica 32, 842–850 (2000).Article 

    Google Scholar 
    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. https://CRAN.R-project.org/package=rstatix (2021). More

  • in

    Individualism versus collective movement during travel

    Study siteSocial hermit crabs (Coenobita compressus) were studied in Osa Peninsula, Costa Rica, at a long-term field site (Osa Conservation’s Piro Biological Station), where the population has been under study since 200817. Experiments were carried out from January to March 2019 at the beach-forest interface (Fig. 1A), an area where ‘fission–fusion’ social groupings30 continuously form and dissolve31 and where free-roaming individuals regularly travel17. All studies were undertaken during daylight hours (06:30–11:30 h) during periods of peak social activity.Figure 1Study site and experimental areas. (A) Satellite view of study site: a section of Piro beach, Osa Peninsula, Costa Rica. Dashed red squares indicate areas where experiments were carried out and schematic versions are shown below in (B) and (C) (Satellite image: created using Google Earth Version 9, https://earth.google.com/). (B) Overhead view of the section of the beach where free-roam experiments were carried out. Arrows denoting left and right correspond to stimulus directions during free-roam experiments. (C) Overhead view of the beach-forest interface where the handled experiments were carried out. Arrows denoting left, right, forest, and ocean correspond to stimulus directions during handled experiments. The solid red box represents the platform on which the artificial beach was created. For (B) and (C), environment is color coded: blue = ocean, yellow = beach sand, dark green = rainforest, light green = open grassy area with sparse trees. Compass in the bottom left of each panel shows cardinal directions.Full size imageWe conducted two separate sets of experiments, both involving a similar stimulus design (below). First, to determine whether free-roaming individuals were biased in their movement decisions by a collective, we performed a set of free-roam experiments (see “Experiment 1: Free-roam”). The free-roam experiments were conducted directly on the beach (Fig. 1B; 8° 23′ 39.5″ N, 83° 20′ 10.2″ W). Second, to determine whether an increase in danger influenced the relative independence versus social bias in individual movement, we performed a set of handled experiments (see “Experiment 2: Handled”). The handled experiments were conducted on a platform (Fig. 1C; 8° 23′ 33.2″ N, 83° 19′ 50.6″ W), which was immediately adjacent to the beach and situated within the range of the crabs’ normal daily movements. All reported compass bearings are relative to magnetic North (0°) unless otherwise specified.Stimulus designAs conspecific ‘stand-ins’, we used N = 60 Nerita scabricosta shells (C. compressus’ preferred shell species23), spanning a natural range of sizes (9–32 mm) within this population (Table S1; Fig. S1). To create a group of these stand-ins that we could manoeuvre as a collective, each shell was affixed using epoxy to one of four strands of clear fishing line, which were each 4 m long. These lines were spaced approximately 30 cm apart on a long wooden dowel (Figs. 2A,B, 3A,B). An equal number of shells (N = 15 shells per line) were distributed randomly along the 2 m of each fishing line furthest from the dowel. To allow the experimenter to manoeuvre the stimuli, without disturbing live crabs’ behaviour, another fishing line (4 m in length) was attached to the top of the dowel. With this line, the entire apparatus could be pulled by the experimenter from a distance, thereby simulating synchronised movement of the entire collective. To control for any influence the apparatus might have on focal individuals (other than that produced by the movement of the shell ‘stand-ins’), the entire apparatus—dowels and fishing lines—was replicated, just without any attached shells, for use as a control (Figs. 2C, 3C).Figure 2Free-roam experiments: stimuli and experimental design. (A) Photograph of a free-roam experiment in progress, with a drone hovering above and one of the authors (CD) pulling the simulated collective (Photo: Jakob Krieger). Schematics of stimuli are shown in B and C, with N = 3 free-roaming crabs also pictured. (B) Experimental stimuli: consisting of N = 60 shells arranged in four lines of fifteen shells each, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. An experimenter moved the stimuli from a distance, by pulling another clear fishing line along an open strip of sandy beach in the presence of free roaming crabs. Each experiment was video recorded from above by an overhead drone.Full size imageFigure 3Handled experiments: stimuli and experimental design. (A) Photograph of the artificial beach created on a platform adjacent to the natural beach (Photo: Mark Laidre). Photo shows experimental stimulus and an opaque plastic cup in the center, under which a focal crab was placed prior to the start of each experiment. Schematics of stimuli are shown in (B) and (C). (B) Experimental stimuli: consisting of 60 shells arranged in four lines of fifteen, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. The cup was removed by one experimenter from a distance via an attached clear fishing line on a pulley system; the stimulus was then maneuvered by a second experimenter, also from a distance, via another clear fishing line.Full size imageExperiment 1: Free-roamTo test whether the movement of the collective influenced free-roaming individuals’ travel direction, the stimuli were pulled across the beach at a uniform speed (1 m per min), within the natural range of the walking speed of social hermit crabs17,22,23. Each trial lasted 1 min. A total of N = 80 free-roam trials were conducted, N = 40 experimental (with the full collective, represented by all the shells) and N = 40 controls (with only the raw materials, but no shell collective). For each of the N = 80 trials, the movement of a single free-roaming focal individual was recorded.It is not uncommon to see multiple crabs moving parallel to (or perpendicular to) the shore, since many individuals will often be collectively attracted to eviction sites, injured conspecifics, or food items, with all the attracted individuals travelling in a roughly parallel formation16,17. For each trial in the free-roam experiments, the stimuli were pulled parallel to the shore (Fig. 1B), either to the right (116.1°) or to the left (296.1°). We did not pull the stimuli perpendicular to the shore, given the substantial slope from the forest down to the ocean, which would have confounded any such comparisons. Condition (experimental or control) and stimulus direction (right or left) were selected randomly, with balanced sample sizes (N = 20 for each). To ensure there was a free-roaming focal individual, whose movement we could measure in response to the stimulus, a trial was only carried out when at least one live crab was walking within approximately 30 cm of the stationary stimulus. Then pulling was initiated.To avoid disturbing live individuals by moving through or near the vicinity, we gathered overhead video footage of all experiments using a drone (Phantom advanced model GL300C). Drone video recorded all interactions between the focal individual and the simulated collective while the drone hovered at a height of approximately 2 m above the beach. At this height, there was no disturbance to natural behaviour or movement of the crabs, and the drone remained positioned overhead for at least 1 min prior to the start of a trial. Minor adjustments to position were then made between trials due to drone drift (i.e., slight movement of the drone due to wind).To randomly select focal individuals for video coding, we first split an image of the starting frame of each video file into a 4 × 4 matrix, with N = 16 equally-sized sections, and then used a random number generator to choose one section (repeating this step if no crabs were present in the selected section). Second, we numbered all individuals in the selected section and again used a random number generator to select the individual.To calculate bearings relative to magnetic North for the direction each focal crab moved, we first measured the angle of divergence (°) between the stimulus trajectory and the focal crabs’ trajectory. Focal crab trajectory—a proxy for the overall direction of the crab’s movement—was measured by drawing a straight line from the start-to-end position of that individual (see Fig. S2 and Vid. S1 for further explanation). Stimulus trajectory was measured in the same manner, using the shell closest to the focal at the beginning of the trial. Using Google Maps and the IGIS Map bearing angle calculator, we calculated the bearing of our stimuli (right and left) relative to true North (right: 114°, left: 294°). To determine bearings for our stimuli relative to magnetic North, we then used the Enhanced Magnetic Model (EMM) magnetic field calculator, provided by NOAA, to calculate the relevant declination (− 2.1°) for our coordinates on the dates the experiments were carried out, subtracting this value from true North. Thus, for the free-roam experiments, the bearing of a stimulus moving to the right, relative to magnetic North, was 116.1°, and the bearing of a stimulus moving to the left, relative to magnetic North, was 296.1°. Lastly, bearings for focal crabs’ directions, relative to magnetic North, could then be calculated using the new bearings of the stimuli and the angle of divergence between stimulus and crab trajectories.To gauge the level of interaction that focal individuals had with the collective, we recorded whether or not individuals initiated contact with shells in the experimental condition. An individual was classed as having initiated contact if it climbed onto a shell or touched a shell with its claws (Vid. S2). Additionally, we noted whether individuals were bumped by passing shells. An individual was classed as having been bumped if a moving shell hit it while the individual was withdrawn, stationary, or facing away from the moving shell (Vid. S3).To assess whether drone drift during experiments was a problem, we examined a random sample (N = 20) of the videos, both control (N = 10) and experimental (N = 10). We took N = 40 images from these 20 videos (i.e., two images from each video: one at the start of the 1-min trial and one at the end of the 1-min trial) and used a system wherein we marked the same two distinguishable fixed points on the landscape in each pair of images. We then overlaid the images in each pair, allowing us to see any longitudinal or latitudinal movement as well as any potential rotation of the drone. Nineteen of the N = 20 pairs of images showed virtually identical overlap of the markers, with just one image showing a minor gap between 1 of the 2 landmarks, suggesting slight rotation of the drone. We were therefore confident that drone drift was not an issue in our analyses.All videos were coded by CD. To measure inter-observer reliability for the angle of divergence (°) between stimulus trajectory and focal crabs’ trajectory (see Fig. S2), a random sample of videos (N = 41 total, N = 22 of experimental and N = 19 of control) were also coded by a second observer (MP) who was naïve to the competing hypotheses. There was strong inter-observer reliability in the measurements (F1,39 = 142.8, p  More

  • in

    The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis)

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
    Google Scholar 
    Le Couteur, D. G. et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).PubMed 

    Google Scholar 
    Levin, E., Mitra, C. & Davidowitz, G. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. Anim. Behav. 112, 111–118 (2016).
    Google Scholar 
    Baker, H. G. & Baker, I. Amino-acids in nectar and their evolutionary significance. Nature 241, 543–545 (1973).CAS 

    Google Scholar 
    Nepi, M. et al. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 475–481 (2012).
    Google Scholar 
    Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 102, 108–115 (2014).CAS 

    Google Scholar 
    Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27, 2545–2558 (2001).CAS 
    PubMed 

    Google Scholar 
    Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8, 349–356 (1977).
    Google Scholar 
    Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75 (2017).
    Google Scholar 
    Alm, J., Ohnmeiss, T. E., Lanza, J. & Vriesenga, L. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84, 53–57 (1990).PubMed 

    Google Scholar 
    Petanidou, T., Laere, A. V., Ellis, W. N. & Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115, 155–169 (2006).CAS 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vrzal, E. M., Allan, S. A. & Hahn, D. A. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J. Insect Physiol. 56, 1659–1664 (2010).CAS 
    PubMed 

    Google Scholar 
    Mustard, J. A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod-Plant Interact. 14, 151–159 (2020).
    Google Scholar 
    Smith-Pardo, A. H., Carpenter, J. M. & Kimsey, L. The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States. Insect Syst. Divers. 4, 2 (2020).
    Google Scholar 
    Cott, H. B. The edibility of birds. Nature 156, 736–737 (1945).CAS 
    PubMed 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).CAS 
    PubMed 

    Google Scholar 
    Takashi, A., Yoshiya, T., Hiromitsu, M. & Yasuko, Y. K. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 99, 79–84 (1991).
    Google Scholar 
    Hunt, J. H. Nourishment and the evolution of the social Vespidae. Soc. Biol. Wasps 426, 450 (1991).
    Google Scholar 
    Ishay, J. Comb bulding by the oriental hornet (Vespa orientalis). Anim. Behav. 24, 72–83 (1976).
    Google Scholar 
    Ganor, E. & Ishay, J. The cement in hornet combs. J. Ethol. 10, 31–39 (1992).
    Google Scholar 
    Brull, L. Project ISIAH—Experiment on the effects of micro-gravity on hornets’ nest building and activity. Isr. Space Res. Technol. Inf. Bull. 9, 2–21 (1992).
    Google Scholar 
    Ishay, J. et al. Exposure to an additional alternating magnetic field affects comb building by worker hornets. Physiol. Chem. Phys. Med. NMR 39, 83–88 (2007).PubMed 

    Google Scholar 
    Kisliuk, M. & Ishay, J. Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35, 1041–1042 (1979).
    Google Scholar 
    Nepi, M. et al. Nectar and pollination drops: How different are they?. Ann. Bot. 104, 205–219 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wyatt, G. R. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 6, 75–102 (1961).CAS 

    Google Scholar 
    Jeong, H. et al. Nutritional value of the larvae of the alien invasive wasp Vespa velutina nigrithorax and amino acid composition of the larval saliva. Foods 9, 885 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Hermosín, I., Chicón, R. M. & DoloresCabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 83, 263–268 (2003).
    Google Scholar 
    Baquet, A., Lavoinne, A. & Hue, L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teulier, L., Weber, J.-M., Crevier, J. & Darveau, C.-A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333 (2016).
    Google Scholar 
    Li, Y. et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    Koštál, V., Korbelová, J., Poupardin, R., Moos, M. & Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367 (2016).PubMed 

    Google Scholar 
    Hrassnigg, N., Leonhard, B. & Crailsheim, K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212 (2003).CAS 
    PubMed 

    Google Scholar 
    Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G. & Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006).CAS 
    PubMed 

    Google Scholar 
    Inouye, D. W. & Waller, G. D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65, 618–625 (1984).CAS 

    Google Scholar 
    Bogo, G. et al. Effects of non-protein amino acids in nectar on bee survival and behavior. J. Chem. Ecol. 45, 278–285 (2019).CAS 
    PubMed 

    Google Scholar 
    Felicioli, A. et al. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 27, 556–563 (2018).CAS 
    PubMed 

    Google Scholar 
    Mevi-Schütz, J. & Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 165, 411–419 (2005).PubMed 

    Google Scholar 
    Ramputh, A. I. & Bown, A. W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349–1352 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F. & Mithöfer, A. Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front. Plant Sci. 6, 1128 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    Altaye, S. Z., Pirk, C. W. W., Crewe, R. M. & Nicolson, S. W. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol. 213, 3311–3318 (2010).CAS 
    PubMed 

    Google Scholar 
    Pirk, C. W. W., Boodhoo, C., Human, H. & Nicolson, S. W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72 (2010).CAS 

    Google Scholar 
    Archer, C. R., Pirk, C. W. W., Wright, G. A. & Nicolson, S. W. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. 28, 913–923 (2014).
    Google Scholar 
    Mustard, J. A., Jones, L. & Wright, G. A. GABA signaling affects motor function in the honey bee. J. Insect Physiol. 120, 103989 (2020).CAS 
    PubMed 

    Google Scholar 
    Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).CAS 
    PubMed 

    Google Scholar 
    Biswas, B. & Carlsson, A. Effect of intraperitoneally administered GABA on the locomotor activity of mice. Psychopharmacology 59, 91–94 (1978).CAS 
    PubMed 

    Google Scholar 
    Śmiałowski, A., Śmiałowska, M., Reichenberg, K., Byrska, B. & Vetulani, J. Motor depression and head twitches induced by IP injection of GABA. Psychopharmacology 69, 295–298 (1980).PubMed 

    Google Scholar 
    Tomonaga, S. et al. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res. Bull. 63, 75–82 (2004).CAS 
    PubMed 

    Google Scholar 
    Mena Gomez, M. A., Carlsson, A. & Garcia de Yebenes, J. The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J. Neural Transm. 43, 1–9 (1978).CAS 
    PubMed 

    Google Scholar 
    Hamasu, K. et al. l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37, 377–382 (2009).CAS 
    PubMed 

    Google Scholar 
    Barton-Browne, L. B. Water regulation in insects. Annu. Rev. Entomol. 9, 63–82 (1964).
    Google Scholar 
    Borycz, J., Borycz, J. A., Edwards, T. N., Boulianne, G. L. & Meinertzhagen, I. A. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp. Biol. 215, 1399–1411 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2, 75–98 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–1061 (1980).CAS 
    PubMed 

    Google Scholar 
    Wu, G. et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 40, 1053–1063 (2011).CAS 
    PubMed 

    Google Scholar 
    Boonstra, E. et al. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Harris, R. C. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30, 279–289 (2006).CAS 
    PubMed 

    Google Scholar 
    Hoffman, J. R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47, 627–636 (2015).CAS 
    PubMed 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B Biol. Sci. 284, 20162126 (2017).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017). More

  • in

    7000-year-old evidence of fruit tree cultivation in the Jordan Valley, Israel

    Garfinkel, Y., Ben-Shlomo, D. & Kuperman, T. Large-scale storage of grain surplus in the sixth millennium BC: The silos of Tel Tsaf. Antiquity 83, 309–325 (2009).Article 

    Google Scholar 
    Rosenberg, D., Garfinkel, Y. & Klimscha, F. Large-scale storage and storage symbolism in the Ancient Near East—a unique clay model of a silo from Tel Tsaf, Israel. Antiquity 91, 885–900 (2017).Article 

    Google Scholar 
    Ben-Shlomo, D., Hill, A. C. & Garfinkel, Y. Feasting between the revolutions: Evidence from chalcolithic Tel Tsaf, Israel. J. Mediterr. Archaeol. 22, 129–150 (2009).
    Google Scholar 
    Garfinkel, Y., Ben-Shlomo, D., Freikman, M. & Vered, A. Tel Tsaf: The 2004–2006 excavation seasons. Isr. Explor. J. 57, 1–33 (2007).
    Google Scholar 
    Freikman, M. & Garfinkel, Y. Sealings before cities: New evidence on the beginnings of administration in the Ancient Near East. Levant 49, 1–22 (2017).Article 

    Google Scholar 
    Freikman, M., Ben-Shlomo, D. & Garfinkel, Y. A. Stamped sealing from Middle Chalcolithic Tel Tsaf: Implications for the rise of administrative practices in the Levant. Levant 53, 1–12 (2021).Article 

    Google Scholar 
    Garfinkel, Y., Klimscha, F., Shalev, S. & Rosenberg, D. The beginning of metallurgy in the Southern Levant: A late 6th millennium calBC copper awl from Tel Tsaf, Israel. PLoS One 9, 1–6 (2014).
    Google Scholar 
    Graham, P. Archaeobotanical remains from late 6th/early 5th millennium BC Tel Tsaf, Israel. J. Archaeol. Sci. 43, 105–110 (2014).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. PNAS 106, 10966–10970 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: The archaeobotanical evidence from PPNA Dhra. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Palmisano, A. et al. Holocene landscape dynamics and long-term population trends in the Levant. Holocene 29, 708–727 (2019).ADS 
    Article 

    Google Scholar 
    Gophna, R. & Kislev, M. Finds at Tel-Saf (1977–1978). Rev. Bib. 86, 112–114 (1979).
    Google Scholar 
    Rosenberg, D. et al. Back to Tel Tsaf: A preliminary report on the 2013 season of the renewed project. J. Isr. Prehist. Soc. 44, 148–179 (2014).
    Google Scholar 
    Lipshchitz, N. Analysis of the botanical remains from Tel Tsaf. Tel Aviv 15, 52–54 (1988).Article 

    Google Scholar 
    Vita-Finzi, C. et al. Prehistoric economy in the Mount Carmel area of Palestine: Site catchment analysis. In Proceedings of the Prehistoric Society, Vol. 36 (Cambridge University Press, 1970) pp. 1–37.Prior, J. & Price-Williams, D. An investigation of climate change in the Holocene Epoch using archaeological charcoal from Swaziland, South Africa. J. Archaeol. Sci. 12, 457–475 (1985).Article 

    Google Scholar 
    Shackleton, C. M. & Prins, F. Charcoal analysis and the “Principle of Least Effort”—a conceptual model. J. Archaeol. Sci. 19, 631–637 (1992).Article 

    Google Scholar 
    Asouti, E. & Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 10, 11–18 (2005).Article 

    Google Scholar 
    Deckers, K. et al. Characteristics and changes in archaeology-related environmental data during the Third Millennium BC in Upper Mesopotamia. Collective comments to the data discussed during the Symposium. Publ. Inst. Français Études Anatoliennes 19, 573–580 (2007).
    Google Scholar 
    Marston, J. M. Modeling wood acquisition strategies from archaeological charcoal remains. J. Archaeol. Sci. 36, 2192–2200 (2009).Article 

    Google Scholar 
    Lev-Yadun, S. Wood remains from archaeological excavations: A review with a Near Eastern perspective. Isr. J. Earth Sci. 56, 139–162 (2007).CAS 
    Article 

    Google Scholar 
    Liphschitz, N. Timber in Ancient Israel Dendroarchaeology and Dendrochronology. Monograph Series of the Institute of Archaeology of Tel Aviv University 26 (Tel Aviv, 2007).Sitry, I. & Langgut, D. Wooden objects from the colt collection—Shivta. Michmanim 28, 31–46 (2019).
    Google Scholar 
    Srebro, H. & Soffer, T. The New Atlas of Israel: The National Atlas (Survey of Israel; The Hebrew University of Jerusalem, 2011).
    Google Scholar 
    Gophna, R. & Sadeh, S. Excavations at Tel Tsaf: An early Chalcolithic site in the Jordan Valley. Tel Aviv. 15–16, 3–36 (1988–89).Garfinkel, Y., Ben-Shlomo, D. & Freikman, M. Excavations at Tel Tsaf 2004–2007: Final Report, Volume 1 (Ariel University Press, 2020).
    Google Scholar 
    Rosenberg, D., Pinsky, S. & Klimscha, F. “The renewed research project at Tel Tsaf, Jordan Valley—2013–2019” in Hadashot Arkeologiyot—Excavations and Surveys in Israel, p. 133 (2021).Gopher, A. The Pottery Neolithic in the southern Levant—a second Neolithic revolution. In Village Communities of the Pottery Neolithic Period in the Menashe Hills, Israel (ed. Gopher, A.) 1525–1611 (Tel Aviv University, 2012).
    Google Scholar 
    Streit, K. & Garfinkel, Y. Tel Tsaf and the impact of the Ubaid Culture on the Southern Levant: Interpreting the radiocarbon evidence. Radiocarbon 57, 865–880 (2015).Article 

    Google Scholar 
    Streit, K. & Garfinkel, Y. A specialized ceramic assemblage for water pulling: The Middle Chalcolithic well of Tel Tsaf, Israel. BASOR 374, 61–73 (2015).
    Google Scholar 
    Garfinkel, Y. Proto-historic courtyard buildings in the southern Levant. In Neolithic and Chalcolithic Archaeology in Eurasia: Building Techniques and Spatial Organization (ed. Gheorghiu, D.) 35–41 (BAR International Series, 2010).
    Google Scholar 
    Zohary, M. Geobotanical Foundations of the Middle East (Gustav Gischer Verlag, 1973).
    Google Scholar 
    Bar-Matthews, M. & Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21, 163–171 (2011).ADS 
    Article 

    Google Scholar 
    Fahn, A., Werker, E. & Baas, P. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions (The Israel Academy of Sciences and Humanities, 1986).
    Google Scholar 
    Schweingruber, F. H. Anatomy of European Woods (Verlag Paul Haupt, 1990).
    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Zohary, M. Plant Life of Palestine: Israel and Jordan (Ronald Press Co, 1962).
    Google Scholar 
    Asouti, E. & Hather, J. Charcoal analysis and the reconstruction of ancient woodland vegetation in the Konya Basin, south-central Anatolia, Turkey: Results from the Neolithic site of Çatalhöyük East. Veg. Hist. Archaeobot. 10, 23–32 (2001).Article 

    Google Scholar 
    Thery-Parisot, I., Chabal, L. & Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclim. Palaeoecol. 291, 142–153 (2010).ADS 
    Article 

    Google Scholar 
    Langgut, D. et al. The earliest near-eastern wooden spinning implements. Antiquity 90, 973–990 (2016).Article 

    Google Scholar 
    Langgut, D., Tepper, Y., Benzaquen, M., Erickson-Gini, T. & Bar-Oz, G. Environment and horticulture in the Byzantine Negev Desert, Israel: Sustainability, prosperity and enigmatic decline. Quat. Int. 593, 160–177 (2021).Article 

    Google Scholar 
    Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).Book 

    Google Scholar 
    Weiss, E. Beginnings of fruit growing in the Old World two generations later. Isr. J. Plant Sci. 62, 75–85 (2015).Article 

    Google Scholar 
    Benzaquen, M., Finkelstein, I. & Langgut, D. Vegetation history and human Impact on the environs of Tel Megiddo in the Bronze and Iron Ages (ca 3,500–500 BCE): A dendroarchaeological analysis. Tel Aviv. 49, 1–23 (2019).
    Google Scholar 
    Carrión, Y., Ntinou, M. & Bada, E. Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).ADS 
    Article 

    Google Scholar 
    Lavee, S. & Zohary, D. The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr. J. Plant Sci. 59, 3–13 (2011).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 602–922 (2019).Article 

    Google Scholar 
    Neef, R. Introduction, development and environmental implications of olive culture: The evidence from Jordan. In Man’s Role in the Shaping of the Eastern Mediterranean Landscape (eds Bottema, S. et al.) 295–306 (Rotterdam, 1990).
    Google Scholar 
    Meadows, J. Olive domestication at Teleilat Ghassul. In Archaeology of the Near East: An Australian Perspective (eds Hopkins, L. & Parker, A.) 13–18 (University of Sydney, 2001).
    Google Scholar 
    Dighton, A., Fairbairn, A., Bourke, S., Faith, J. T. & Habgood, P. Bronze Age olive domestication in the north Jordan valley: New morphological evidence for regional complexity in early arboricultural practice from Pella in Jordan. Veg. Hist. Archaeobot. 26, 403–413 (2017).Article 

    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Coastal paleoenvironments and prehistory of the Submerged Pottery Neolithic Settlement of Kfar Samir (Israel). Paléorient 44, 113–132 (2018).
    Google Scholar 
    Namdar, D., Amrani, A., Getzov, N. & Milevski, I. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, northern Israel. Isr. J. Plant Sci. 62, 65–74 (2015).Article 

    Google Scholar 
    Galili, E. et al. Early production of Table Olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Epstein, C. Oil production in the Golan Heights during the Chalcolithic period. Tel Aviv. 20, 133–146 (1993).Article 

    Google Scholar 
    Eitam, D. Between the [olive] rows, oil will be produced, presses will be trod…. (Job 24, 11). In La Production du Vin et l’Huile en Mediterranée:[Actes du Symposium International, (Aix-en-Provence et Toulon, 20-22 Novembre 1991 (Bulletin de correspondence hellénique, Supplementary 26) (eds Amouretti, M. C. & Brun, J. P.) 65–90 (Ecole Francaise d’Athènes, 1993).
    Google Scholar 
    Schiebel, V. Vegetation and Climate History of the Southern Levant During the Last 30000 Years Based on Palynological Investigation (University of Bonn, 2013) PhD Dissertation.Litt, T., Ohlwein, C., Neumann, F. H., Hense, A. & Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).ADS 
    Article 

    Google Scholar 
    Van Zeist, W., Baruch, U. & Bottema, S. Holocene palaeoecology of the Hula area, Northeastern Israel. In A Timeless Vale, Archaeological and Related Essays on the Jordan Valley (eds Kaptijn, K. & Petit, L. P.) 29–64 (Leiden University Press, 2009).
    Google Scholar 
    Neumann, F., Schölzel, C., Litt, T., Hense, A. & Stein, M. Holocene vegetation and climate history of the northern Golan heights (Near East). Veg. Hist. Archaeobot. 16, 329–346 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).PubMed 
    Article 

    Google Scholar 
    Moriondo, M. et al. Olive trees as bio-indicators of climate evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 22, 818–833 (2013).Article 

    Google Scholar 
    Langgut, D., Cheddadi, R. & Sharon, G. Climate and environmental reconstruction of the Epipaleolithic Mediterranean Levant (22.0-11.9 ka cal. BP). Quat. Sci. Rev. 270, 107170 (2021).Article 

    Google Scholar 
    Zinger, A. Olive Cultivation 145th edn. (Israel Ministry of Agriculture, 1995) (in Hebrew).
    Google Scholar 
    Miller, N. F. Sweeter than wine? The use of the grape in early western Asia. Antiquity 82, 937–946 (2008).Article 

    Google Scholar 
    Fuller, D. Q. & Stevens, C. J. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Veg. Hist. Archaeobot. 28, 263–282 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lev-Yadun, S. The common fig (Ficus carica) remains in the archaeological record and its domestication processes. In The Fig: Advances in Research and Sustainable Production (eds Flaishman, M. A. & Aksoy, U.) 11–25 (CABI, 2022).
    Google Scholar 
    Flaishman, M., Rodov, V. & Stover, E. The fig: Botany, horticulture and breeding. Hortic. Rev. 34, 113–196 (2008).CAS 
    Article 

    Google Scholar 
    Langgut, D., Lev-Yadun, S. & Finkelstein, I. The Impact of olive orchard abandonment and rehabilitation on pollen signature: An experimental approach to evaluating fossil pollen data. Ethnoarchaeology 6, 121–135 (2014).Article 

    Google Scholar 
    Hobbs, J. J. Bedouin Life in the Egyptian Wilderness (University of Texas Press, 1989).
    Google Scholar 
    Andersen, G. L. et al. Traditional nomadic tending of trees in the Red Sea Hills. J. Arid Environ. 106, 36–44 (2014).ADS 
    Article 

    Google Scholar 
    Mor, E. Reconstructing Tel Bet Yerah’s Natural and Anthropogenic Environment During the Early Bronze Age Through Wood Remains (Tel Aviv University, 2022) MA Thesis, in Hebrew with English abstract.Kislev, M. E., Hartman, A. & Bar-Yosef, O. Early domesticated fig in the Jordan Velley. Science 312, 1372–1374 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lev-Yadun, S., Neeman, G., Abbo, S. & Flaishman, M. A. Comment on “Early Domesticated Fig in the Jordan Valley”.. Science 314, 1683a (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Denham, T. Early fig domestication, or gathering of wild parthenocarpic figs?. Antiquity 81, 457–461 (2007).Article 

    Google Scholar 
    Abbo, S., Gopher, A. & Lev-Yadun, S. Fruit domestication in the near east. Plant Breed. Rev. 39, 325–377 (2015).
    Google Scholar 
    Gopher, A., Lev-Yadun, S. & Abbo, S. Breaking Ground. Plant Domestication in the Neolithic Levant: The “Core-Area—One-Event” Model Emery and Claire Yass Publications in Archaeology (Tel Aviv University, Tel Aviv, The Institute of Archaeology, 2021).
    Google Scholar 
    Shennan, S. Property and wealth inequality as cultural niche construction. Philos. Trans. R. Soc. B. Biol. Sci. 366, 918–926 (2011).Article 

    Google Scholar 
    Twiss, K. The archaeology of food and social diversity. J. Archaeol. Res. 20, 357–395 (2012).Article 

    Google Scholar 
    Bowles, S. & Choi, J. K. Coevolution of farming and private property during the early Holocene. Proc. Natl. Acad. Sci. 110, 8830–8835 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).Article 

    Google Scholar 
    Khalil, E. L. Symbolic products: Prestige, pride and identity goods. Theory Decis. 49, 53–77 (2000).MATH 
    Article 

    Google Scholar 
    Nelissen, R. M. & Meijers, M. H. Social benefits of luxury brands as costly signals of wealth and status. Evol. Hum. Behav. 32, 343–355 (2011).Article 

    Google Scholar 
    Plourde, A. M. The origins of prestige goods as honest signals of skill and knowledge. Hum. Nat. 19, 374–388 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, B. The proof is in the pudding: Feasting and the origins of domestication. Curr. Anthropolac. 50, 597–601 (2009).Article 

    Google Scholar 
    Yahalom-Mack, N. et al. The earliest lead object in the levant. PLoS One 10, e0142948 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mayshar, J., Moav, M., Neeman, Z. & Pascali, L. The origin of the state: Land productivity or appropriability. J. Polit. Econ. 130, 1091–1144 (2022).Article 

    Google Scholar 
    Langgut, D. & Sasi, A. The emergence of fruit tree horticulture in Chalcolithic southern Levant. In (Ben-Yosef, E., Jones, I. Eds) And in Length of Days Understanding” (Job 12:12)—Essays on Archaeology in the 21st Century in Honor of Thomas E. Levy (In Press). More

  • in

    Spatial distribution and identification of potential risk regions to rice blast disease in different rice ecosystems of Karnataka

    RBD severity in different rice ecosystems of KarnatakaBased on the observations made during the exploratory surveys of 2018 and 2019 (Table 1 and Fig. 1), it was found that RBD severity significantly varied across studied areas and districts (Fig. 2). The disease severity was highest in Chikmagalur, followed by Kodagu, Shivamogga, Mysore, and Mandya districts which belong to Hilly and Kaveri ecosystems. At the same time, the lowest severity was documented in Udupi, Gulbarga, Gadag, Dakshin Kannad, Raichur, and Bellary districts of coastal, UKP, and TBP ecosystems (Fig. 3A).Table 1 Details of diverse rice-growing ecosystems selected for the study.Full size tableFigure 1Featured map of South-East Asia (A), India (B), and Karnataka (C). A total of 18 administrative districts of Karnataka were considered to gather data on rice blast disease. The area of different districts under study is shown (D). The maps were created using R software (version R-4.0.3).Full size imageFigure 2Distribution map indicating the sampling sites and the severity of rice blast disease in different rice ecosystems of Karnataka during 2018 and 2019. The maps were created using R software (version R-4.0.3).Full size imageFigure 3(A) Bar graph repressing the severity of rice blast disease (RBD) in different districts of Karnataka during 2018 and 2019. (B) Clustering of districts based on the severity of RBD in different districts of Karnataka by hclust method.Full size imageHierarchical cluster analysis using the average linkage method for RBD severity among the 18 administrative districts of diverse rice ecosystems of Karnataka identified two main clusters, namely, cluster I and cluster II (Fig. 3B). Cluster I consist of two subclusters, cluster IA and IB. Subcluster IA consists of Mandya, Dharwad, Mysore, Hassan, Shivamogga, Haveri, and Belgaum; While, Kodagu, and Chikmagalur districts were clustered in IB. Similarly, Cluster II was divided into cluster IIA and cluster IIB. Subcluster IIA comprises Udupi, Gulbarga, Gadag, Raichur, Dakshin Kannad, Uttar Kannad, Koppal and Bellary, and Davanagere district was grouped under cluster IIB.Spatial point pattern analysis of RBDThe cluster and outlier analysis was done using Local Moran’s I and p-values. The analyses have identified RBD cluster patterns at the district level during 2018 and 2019, representing dispersed and aggregated clusters of severity (Fig. 4). Based on positive I value, most of the districts were clustered together (at I  > 0), except the coastal districts such as Uttar Kannad, Udupi, Dakshin Kannad, and interior districts such as Dharwad, Davanagere, and Chikmagalur, which exhibited negative I value (at I  More