Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)
Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).Article
Google Scholar
García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).Article
Google Scholar
Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).Article
Google Scholar
Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).
Google Scholar
Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).
Google Scholar
Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).
Google Scholar
Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).Article
Google Scholar
Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).Article
Google Scholar
Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).Article
PubMed Central
Google Scholar
El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).Article
Google Scholar
Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).CAS
Article
PubMed
Google Scholar
Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).CAS
Article
PubMed
Google Scholar
Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).CAS
Article
Google Scholar
Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).
Google Scholar
Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).Article
Google Scholar
Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).Article
Google Scholar
da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).Article
Google Scholar
Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).Article
Google Scholar
Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).Article
Google Scholar
El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).CAS
Article
Google Scholar
El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).Article
Google Scholar
El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).CAS
Article
Google Scholar
Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).CAS
Article
PubMed
Google Scholar
Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).Article
Google Scholar
Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).CAS
Article
Google Scholar
Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).Article
Google Scholar
Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).
Google Scholar
Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).
Google Scholar
Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).Article
Google Scholar
Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).Article
Google Scholar
Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).Article
Google Scholar
Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).Article
Google Scholar
Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).
Google Scholar
De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).
Google Scholar
Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).CAS
Article
PubMed
Google Scholar
Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).Article
PubMed
Google Scholar
Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).
Google Scholar
Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).CAS
Article
PubMed
Google Scholar
Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).Article
PubMed
Google Scholar
Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).Article
PubMed
PubMed Central
Google Scholar
Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).Article
PubMed
Google Scholar
Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).Article
PubMed Central
Google Scholar
Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).Article
Google Scholar
Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).CAS
Article
PubMed
Google Scholar
Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).Article
Google Scholar
Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).CAS
Article
Google Scholar
Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).
Google Scholar
Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).
Google Scholar
Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).
Google Scholar
Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).CAS
Article
Google Scholar
Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).Article
Google Scholar
Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).CAS
Article
Google Scholar
Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).Article
Google Scholar
Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).Article
Google Scholar
Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).Article
Google Scholar
Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).Article
Google Scholar
Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).Article
Google Scholar
Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).Article
Google Scholar
Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).Article
Google Scholar
Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).Chapter
Google Scholar
Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).Article
PubMed
Google Scholar
Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).Article
Google Scholar
Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).Article
Google Scholar
Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).Article
Google Scholar
Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).Article
Google Scholar
Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).CAS
Article
PubMed
Google Scholar
Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).
Google Scholar
Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).Chapter
Google Scholar
White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).ADS
CAS
Article
PubMed
Google Scholar
Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).Chapter
Google Scholar
Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS
Article
Google Scholar
Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).Article
Google Scholar
Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).MATH
Google Scholar
Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).
Google Scholar
Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011). More