Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales
Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article
Google Scholar
Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS
Article
Google Scholar
Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article
Google Scholar
Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS
CAS
Article
PubMed
Google Scholar
Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS
CAS
Article
PubMed
Google Scholar
Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS
Article
Google Scholar
Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS
Article
PubMed
Google Scholar
Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS
CAS
Article
PubMed
Google Scholar
Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS
CAS
Article
Google Scholar
Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS
Article
Google Scholar
Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article
Google Scholar
McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS
Article
Google Scholar
Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS
Article
Google Scholar
Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article
PubMed
PubMed Central
Google Scholar
Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article
Google Scholar
Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS
Article
Google Scholar
Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS
Article
PubMed
Google Scholar
Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article
Google Scholar
Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS
Article
PubMed
Google Scholar
Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS
CAS
Article
Google Scholar
Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS
Article
PubMed
Google Scholar
Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article
Google Scholar
Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
Google Scholar
Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS
Article
Google Scholar
Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
Google Scholar
Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS
Article
Google Scholar
Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article
Google Scholar
Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article
Google Scholar
Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article
PubMed
Google Scholar
Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article
PubMed
PubMed Central
Google Scholar
Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article
Google Scholar
Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article
Google Scholar
Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
Google Scholar
Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS
CAS
Article
PubMed
Google Scholar
Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS
Article
Google Scholar
Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article
PubMed
PubMed Central
Google Scholar
Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article
Google Scholar
Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article
Google Scholar
Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article
Google Scholar
Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet
CAS
Article
Google Scholar
Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article
Google Scholar
Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS
Article
Google Scholar
Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS
Article
Google Scholar
Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article
Google Scholar
Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article
PubMed
PubMed Central
Google Scholar
Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS
Article
PubMed
Google Scholar
Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article
Google Scholar More