Turner, A. & Antón, M. The Big Cats and Their Fossil Relatives (Columbia University Press, 1997).
Google Scholar
Werdelin, L., Yamaguchi, N., Johnson, W. E. & O’Brien, S. J. Phylogeny and evolution of cats (Felidae). In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 59–82 (Oxford University Press, 2011).
Google Scholar
Antón, M. Sabertooth (Indiana University Press, 2013).
Google Scholar
Ewer, R. F. The Carnivores (Cornell University Press, 1973).
Google Scholar
Terborgh, J. W. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926. https://doi.org/10.1126/science.1064397 (2001).ADS
CAS
Article
PubMed
Google Scholar
Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290. https://doi.org/10.1038/nature01934 (2003).ADS
CAS
Article
PubMed
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS
CAS
PubMed
Article
Google Scholar
Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the Pleistocene megafaunal extinctions. Bioscience 60, 516–526. https://doi.org/10.1525/bio.2010.60.7.7 (2010).Article
Google Scholar
Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc Natl Acad Sci USA 113, 862–867. https://doi.org/10.1073/pnas.1502554112 (2016).ADS
CAS
Article
PubMed
Google Scholar
Lewis, M. E. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. J. Hum. Evol. 32, 257–288. https://doi.org/10.1006/jhev.1996.0103 (1997).CAS
Article
PubMed
Google Scholar
Lewis, M. E. The postcranial morphology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 171–195 (Johns Hopkins University Press, 2018).
Google Scholar
Antón, M., Galobart, A. & Turner, A. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Q. Sci. Rev. 24, 1287–1301. https://doi.org/10.1016/j.quascirev.2004.09.008 (2005).ADS
Article
Google Scholar
Hartstone-Rose, A. & Wahl, S. Using radii-of-curvature for the reconstruction of extinct South African carnivoran masticatory behavior. C.R. Palevol 7, 629–643. https://doi.org/10.1016/j.crpv.2008.09.015 (2008).Article
Google Scholar
Andersson, K., Norman, D. & Werdelin, L. Sabretoothed carnivores and the killing of large prey. PLoS ONE 6, e24971. https://doi.org/10.1371/journal.pone.0024971 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the Late Pleistocene. Science 261, 456–459 (1993).ADS
Article
Google Scholar
DeSantis, L. R. G., Schubert, B. W., Scott, J. R. & Ungar, P. S. Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE 7, e52453. https://doi.org/10.1371/journal.pone.0052453 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Bocherens, H. et al. Paleobiology of sabretooth cat Smilodon populator in the Pampean Region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 463–474. https://doi.org/10.1016/j.palaeo.2016.02.017 (2016).Article
Google Scholar
DeSantis, L. R. G. et al. Causes and consequences of Pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr. Biol. 29, 2488-2495.e2. https://doi.org/10.1016/j.cub.2019.06.059 (2019).CAS
Article
PubMed
Google Scholar
DeSantis, L. R. G., Feranec, R. S., Antón, M. & Lundelius, E. L. Dietary ecology of the scimitar-toothed cat Homotherium serum. Curr. Biol. 31, 1–8. https://doi.org/10.1016/j.cub.2021.03.061 (2021).CAS
Article
Google Scholar
Christiansen, P. & Adolfssen, J. S. Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the Late Pliocene—Early Pleistocene of Senéze, France. Zool. J. Linn. Soc. 151, 833–884 (2007).Article
Google Scholar
Van Valkenburgh, B. Predation in sabre-tooth cats. In Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 420–423 (Wiley, 2001). https://doi.org/10.1002/9780470999295.ch101.Chapter
Google Scholar
DeSantis, L. R. G. Dietary ecology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 153–170 (Johns Hopkins University Press, 2018).
Google Scholar
Palmqvist, P., Torregrosa, V., Pérez-Claros, J. A., Martínez-Navarro, B. & Turner, A. A re-evaluation of the diversity of Megantereon (Mammalia, Carnivora, Machairodontinae) and the problem of species identification in extinct carnivores. J. Vertebr. Paleontol. 27, 160–175. https://doi.org/10.1671/0272-4634(2007)27[160:AROTDO]2.0.CO;2 (2007).Article
Google Scholar
Van Valkenburgh, B. & Ruff, C. B. Canine tooth strength and killing behaviour in large carnivores. J. Zool. 212, 379–397 (1987).Article
Google Scholar
Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554. https://doi.org/10.1007/BF00790026 (1985).ADS
Article
PubMed
Google Scholar
Hemmer, H. Saber-tooth cats and cave lions—from fossils to felid performance and former living communities. In Late Neogene and Quaternary Biodiversity and Evolution: Regional Developments and Interregional Correlations, Courier Forschungsinstitut Senckenberg (eds Kahlke, R.-D. et al.) 1–12 (E. Schweizerbart’sche Verlagsbuchhandlung, 2007).
Google Scholar
Domingo, L., Domingo, M. S., Koch, P. L., Morales, J. & Alberdi, M. T. Carnivoran resource and habitat use in the context of a Late Miocene faunal turnover episode. Palaeontology 60, 461–483. https://doi.org/10.1111/pala.12296 (2017).Article
Google Scholar
Marean, C. W. & Ehrhardt, C. L. Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. J. Hum. Evol. 29, 515–547 (1995).Article
Google Scholar
Spencer, L. M., Van Valkenburgh, B. & Harris, J. M. Taphonomic analysis of large mammals recovered from the Pleistocene Rancho La Brea tar seeps. Paleobiology 29, 561–575. https://doi.org/10.1666/0094-8373(2003)029%3c0561:TAOLMR%3e2.0.CO;2 (2003).Article
Google Scholar
Chahud, A. Occurrence of the sabretooth cat Smilodon populator (Felidae, Machairodontinae) in the Cuvieri cave, eastern Brazil. Palaeontol. Electron. 23, a24. https://doi.org/10.26879/1056 (2020).Article
Google Scholar
Prevosti, F. J. & Martín, F. M. Paleoecology of the mammalian predator guild of southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quat. Int. 305, 74–84. https://doi.org/10.1016/j.quaint.2012.12.039 (2013).Article
Google Scholar
Lindsey, E. L. & Seymour, K. L. “Tar Pits” of the western neotropics: paleoecology, taphonomy, and mammalian biogeography. In La Brea and Beyond: The Palaeontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 111–123 (Natural History Museum of Los Angeles County, 2015).
Google Scholar
Hulbert, R. C. The Fossil Vertebrates of Florida (University of Florida Press, 2001).
Google Scholar
Domingo, M. S., Alberdi, M. T., Azanza, B., Silva, P. G. & Morales, J. Origin of an assemblage massively dominated by carnivorans from the Miocene of Spain. PLoS ONE 8, e63046. https://doi.org/10.1371/journal.pone.0063046 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Brain, C. K. The Hunters or the Hunted: An Introduction to African Cave Taphonomy (University of Chicago Press, 1981).
Google Scholar
Palmqvist, P., Martínez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534. https://doi.org/10.1017/S009483730001650X (1996).Article
Google Scholar
Morgan, G. S. & Hulbert, R. C. Overview of the geology and vertebrate biochronology of the Leisey Shell Pit Local Fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 1–92 (1995).
Google Scholar
Martin, L. D., Babiarz, J. P., Naples, V. L. & Hearst, J. Three ways to be a saber-toothed cat. Naturwissenschaften 87, 41–44 (2000).ADS
CAS
PubMed
Article
Google Scholar
M. Domínguez-Rodrigo, C.P. Egeland, T.R. Pickering, Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging by early hominid. In: Breathing Life into Fossils: Taphonomic Studies in Honor of C.K. (Bob) Brain, Stone Age Institute Press, Gosport, Indiana, 2007, pp. 255–267.Gidna, A. O., Kisui, B., Mabulla, A. Z. P., Musiba, C. & Domínguez-Rodrigo, M. An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quat. Int. 322–323, 167–180. https://doi.org/10.1016/j.quaint.2013.08.059 (2014).Article
Google Scholar
Gidna, A. O., Domínguez-Rodrigo, M. & Pickering, T. R. Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. J. Archaeol. Sci. Rep. 2, 302–309. https://doi.org/10.1016/j.jasrep.2015.03.003 (2015).Article
Google Scholar
Yravedra, J., Lagos, L. & Bárcena, F. A taphonomic study of wild wolf (Canis lupus) modification of horse bones in northwestern Spain. J. Taphon. 9, 37–65 (2011).
Google Scholar
Fosse, P. et al. Bone modification by modern wolf (Canis lupus): a taphonomic study from their natural feeding places. J. Taphon. 10, 197–217 (2012).
Google Scholar
Domínguez-Rodrigo, M. & Pickering, T. R. A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from East and southern Africa. J. Taphon. 8, 155–179 (2010).
Google Scholar
Domínguez-Rodrigo, M., Gidna, A. O., Yravedra, J. & Musiba, C. A comparative neo-taphonomic study of felids, hyaenids and canids: an analogical framework based on long bone modification patterns. J. Taphon. 10, 151–170 (2012).
Google Scholar
Gidna, A., Yravedra, J. & Domínguez-Rodrigo, M. A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J. Archaeol. Sci. 40, 1903–1910. https://doi.org/10.1016/j.jas.2012.11.023 (2013).Article
Google Scholar
Parkinson, J. A., Plummer, T. & Hartstone-Rose, A. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J. Hum. Evol. 80, 114–134. https://doi.org/10.1016/j.jhevol.2014.10.011 (2015).Article
PubMed
Google Scholar
Domínguez-Rodrigo, M. et al. A 3D taphonomic model of long bone modification by lions in medium-sized ungulate carcasses. Sci. Rep. 11, 4944. https://doi.org/10.1038/s41598-021-84246-1 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Arriaza, M. C. et al. Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeol. Anthropol. Sci. 11, 3187–3199. https://doi.org/10.1007/s12520-018-0747-y (2019).Article
Google Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J. & Capaldo, S. D. Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. J. Archaeol. Sci. 19, 101–121. https://doi.org/10.1016/0305-4403(92)90009-R (1992).Article
Google Scholar
Woodruff, A. L. & Schubert, B. W. Seasonal denning behavior and population dynamics of the late Pleistocene peccary Platygonus compressus (Artiodactyla: Tayassuidae) from Bat Cave, Missouri. PeerJ 7, 1–18. https://doi.org/10.7717/peerj.7161 (2019).Article
Google Scholar
de Ruiter, D. J. & Berger, L. R. Leopards as taphonomic agents in dolomitic caves—implications for bone accumulations in the hominid-bearing deposits of South Africa. J. Archaeol. Sci. 27, 665–684. https://doi.org/10.1006/jasc.1999.0470 (2000).Article
Google Scholar
Domínguez-Rodrigo, M. Dinámica trófica, estrategias de consumo y alteraciones óseas en la sabana africana: resumen de un proyecto de investigación etoarqueológico (1991–1993). Trab. Prehist. 51, 15–37 (1994).Article
Google Scholar
Arriaza, M. C., Domínguez-Rodrigo, M., Yravedra, J. & Baquedano, E. Lions as bone accumulators? Paleontological and ecological implications of a modern bone assemblage from Olduvai Gorge. PLoS ONE 11, e0153797. https://doi.org/10.1371/journal.pone.0153797 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Schaller, G. B. The Serengeti Lion: A Study of Predator-Prey Relations (University of Chicago Press, 1972).
Google Scholar
Brain, C. K. Some suggested procedures in the analysis of bone accumulations from southern African Quaternary sites. Ann. Transvaal Mus. 29, 1–8 (1974).
Google Scholar
Christiansen, P. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29, 543–559. https://doi.org/10.1111/cla.12008 (2013).Article
PubMed
Google Scholar
Rawn-Schatzinger, V. Development and eruption sequence of deciduous and permanent teeth in the saber-tooth cat Homotherium serum Cope. J. Vertebr. Paleontol. 3, 49–57. https://doi.org/10.1080/02724634.1983.10011958 (1983).Article
Google Scholar
Rawn-Schatzinger,V. The Scimitar Cat Homotherium serum Cope: Osteology, Functional Morphology, and Predatory Behavior, Illinois State Museum, Springfield, IL, 1992.White, P. A. & Diedrich, C. G. Taphonomy story of a modern African elephant Loxodonta africana carcass on a lakeshore in Zambia (Africa). Quat. Int. 276–277, 287–296 (2012).Article
Google Scholar
Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359–360, 19–37. https://doi.org/10.1016/j.quaint.2013.12.040 (2015).Article
Google Scholar
Biknevicius, A. R., Van Valkenburgh, B. & Walker, J. Incisor size and shape: implications for feeding behaviors in saber-toothed “cats”. J. Vertebr. Paleontol. 16, 510–521 (1996).Article
Google Scholar
Van Valkenburgh, B. Incidence of tooth breakage among large, predatory mammals. Am. Nat. 131, 291–302. https://doi.org/10.1086/284790 (1988).Article
Google Scholar
DeSantis, L. R. G. et al. Dental microwear textures of carnivorans from the La Brea Tar Pits, California, and potential extinction implications. In La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 37–52 (Natural History Museum of Los Angeles County, 2015).
Google Scholar
Paijmans, J. L. A. et al. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 27, 3330-3336.e5. https://doi.org/10.1016/j.cub.2017.09.033 (2017).CAS
Article
PubMed
Google Scholar
Antón, M., Salesa, M. J., Galobart, A. & Tseng, Z. J. The Plio-Pleistocene scimitar-toothed felid genus Homotherium Fabrini, 1890 (Machairodontinae, Homotherini): diversity, palaeogeography and taxonomic implications. Quat. Sci. Rev. 96, 259–268. https://doi.org/10.1016/j.quascirev.2013.11.022 (2014).ADS
Article
Google Scholar
Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23. https://doi.org/10.1086/701477 (2019).Article
Google Scholar
Plummer, T. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164. https://doi.org/10.1002/ajpa.20157 (2004).Article
Google Scholar
Turner, A. Relative scavenging opportunities for East and South African Plio-Pleistocene hominids. J. Archaeol. Sci. 15, 327–341 (1988).Article
Google Scholar
Turner, A. The evolution of the guild of larger terrestrial carnivores during the Plio-Pleistocene in Africa. Geobios 23, 349–368 (1990).Article
Google Scholar
Turner, A. Large carnivores and earliest European hominids: changing determinants of resource availability during the Lower and Middle Pleistocene. J. Hum. Evol. 22, 109–126 (1992).Article
Google Scholar
Van Valkenburgh, B. The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 101–121 (Oxford University Press, 2001).
Google Scholar
Werdelin, L. & Lewis, M. E. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zool. J. Linn. Soc. 144, 121–144. https://doi.org/10.1111/j.1096-3642.2005.00165.x (2005).Article
Google Scholar
Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944. https://doi.org/10.1371/journal.pone.0057944 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Lewis, M. E. Carnivore guilds and the impact of hominin dispersals. In Human Dispersal and Species Movement: From Prehistory to the Present (eds Boivin, N. et al.) 29–61 (Cambridge University Press, 2017). https://doi.org/10.1017/9781316686942.003.Chapter
Google Scholar
Stiner, M. C. Competition theory and the case for Pleistocene hominin-carnivore co-evolution. J. Taphon. 10, 129–145 (2012).
Google Scholar
Marean, C. W. Sabertooth cats and their relevance for early hominid diet and evolution. J. Hum. Evol. 18, 559–582 (1989).Article
Google Scholar
Martínez-Navarro, B. & Palmqvist, P. Presence of the African saber-toothed felid Megantereon whitei (Broom, 1937) (Mammalia, Carnivora, Machairodontinae) in Apollonia-1 (Mygdonia Basin, Macedonia, Greece). J. Archaeol. Sci. 23, 869–872. https://doi.org/10.1006/jasc.1996.0081 (1996).Article
Google Scholar
Arribas, A. & Palmqvist, P. On the ecological connection between sabre-tooths and hominids: Faunal dispersal events in the Lower Pleistocene and a review of the evidence for the first human arrival in Europe. J. Archaeol. Sci. 26, 571–585. https://doi.org/10.1006/jasc.1998.0346 (1999).Article
Google Scholar
Blumenschine, R. J. Characteristics of an early hominid scavenging niche. Curr. Anthropol. 28, 383–407. https://doi.org/10.1086/203544 (1987).Article
Google Scholar
Ewer, R. F. Sabre-toothed tigers. N. Biol. 17, 27–40 (1954).
Google Scholar
Dominguez-Rodrigo, M. Flesh availability and bone modifications in carcasses consumed by lions: palaeoecological relevance in hominid foraging patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 149, 373–388. https://doi.org/10.1016/S0031-0182(98)00213-2 (1999).Article
Google Scholar
Pobiner, B. L. & Blumenschine, R. J. A taphonomic perspective on Oldowan hominid encroachment on the carnivores paleoguild. J. Taphon. 1, 115–141 (2003).
Google Scholar
Pobiner, B. L., Dumouchel, L. & Parkinson, J. A new semi-quantitative method for coding carnivore chewing damage with an application to modern African lion-damaged bones. Palaios 35, 302–315 (2020).ADS
Article
Google Scholar
Arribas, A. & Palmqvist, P. Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the Lower Pleistocene site at Venta Micena (Orce, Guadix-Baza Basin, Granada, Spain). Geobios 31, 3–47. https://doi.org/10.1016/S0016-6995(98)80056-9 (1998).Article
Google Scholar
Palmqvist, P. et al. The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quat. Int. 243, 61–79. https://doi.org/10.1016/j.quaint.2010.12.035 (2011).Article
Google Scholar
Coca-Ortega, C. & Pérez-Claros, J. A. Characterizing ecomorphological patterns in hyenids: a multivariate approach using postcanine dentition. PeerJ 6, e6238. https://doi.org/10.7717/peerj.6238 (2019).Article
PubMed
PubMed Central
Google Scholar
Pobiner, B. L. The zooarchaeology and paleoecology of early hominin scavenging. Evol. Anthropol. 29, 68–82. https://doi.org/10.1002/evan.21824 (2020).Article
PubMed
Google Scholar
Domínguez-Rodrigo, M., Pickering, T. R., Semaw, S. & Rogers, M. J. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. J. Hum. Evol. 48, 109–121. https://doi.org/10.1016/j.jhevol.2004.09.004 (2005).Article
PubMed
Google Scholar
Domínguez-Rodrigo, M. & Barba, R. The behavioral meaning of cut marks at the FLK Zinj level: the carnivore-hominid-carnivore hypothesis falsified (II). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Domínguez-Rodrigo, M. et al.) 75–100 (Springer, 2007).Chapter
Google Scholar
Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174. https://doi.org/10.1371/journal.pone.0062174 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Oliver, J. S., Plummer, T. W., Hertel, F. & Bishop, L. C. Bovid mortality patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: evidence for habitat mediated variability in Oldowan hominin hunting and scavenging behavior. J. Hum. Evol. 131, 61–75. https://doi.org/10.1016/j.jhevol.2019.03.009 (2019).Article
PubMed
Google Scholar
Bunn, H. T. Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 199–218 (Oxford University Press, 2001).
Google Scholar
Landeck, G. & García Garriga, J. New taphonomic data of the 1 Myr hominin butchery at Untermassfeld (Thuringia, Germany). Quat. Int. 436, 138–161. https://doi.org/10.1016/j.quaint.2016.11.016 (2017).Article
Google Scholar
Domínguez-Rodrigo, M. et al. On meat eating and human evolution: a taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quat. Int. 322–323, 129–152. https://doi.org/10.1016/j.quaint.2013.08.015 (2014).Article
Google Scholar
Organista, E. et al. Taphonomic analysis of the level 3b fauna at BK, Olduvai Gorge. Quat. Int. 526, 116–128 (2019).Article
Google Scholar
Haynes, G. Prey bones and predators: potential ecologic information from analysis of bone sites. OSSA 7, 75–97 (1980).
Google Scholar
Haynes, G. Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6, 341–351. https://doi.org/10.1017/S0094837300006849 (1980).Article
Google Scholar
Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).Article
Google Scholar
Sala, N., Arsuaga, J. L. & Haynes, G. Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus). Quat. Int. 330, 126–135. https://doi.org/10.1016/j.quaint.2013.08.017 (2014).Article
Google Scholar
Berta, A. The Plio-Pleistocene hyaena Chasmaporthetes ossifragus from Florida. J. Vertebr. Paleontol. 1, 341–356. https://doi.org/10.1080/02724634.1981.10011905 (1981).Article
Google Scholar
Anyonge, W. N. & Baker, A. Craniofacial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. J. Zool. 269, 309–316. https://doi.org/10.1111/j.1469-7998.2006.00043.x (2006).Article
Google Scholar
Figueirido, B., Pérez-Claros, J. A., Torregrosa, V., Martín-Serra, A. & Palmqvist, P. Demythologizing Arctodus simus, the ‘short-faced’ long-legged and predaceous bear that never was. J. Vertebr. Paleontol. 30, 262–275. https://doi.org/10.1080/02724630903416027 (2010).Article
Google Scholar
Pobiner, B. L. New actualistic data on the ecology and energetics of hominin scavenging opportunities. J. Hum. Evol. 80, 1–16 (2015).PubMed
Article
Google Scholar
Lautenschlager, S., Figueirido, B., Cashmore, D. D., Bendel, E.-M. & Stubbs, T. L. Morphological convergence obscures functional diversity in sabre-toothed carnivores. Proc. R. Soc. B. 287, 20201818. https://doi.org/10.1098/rspb.2020.1818 (2020).Article
PubMed
PubMed Central
Google Scholar
Figueirido, B., Lautenschlager, S., Pérez-Ramos, A. & Van Valkenburgh, B. Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats. Curr. Biol. 28, 3260-3266.e3. https://doi.org/10.1016/j.cub.2018.08.012 (2018).CAS
Article
PubMed
Google Scholar
Hartstone-Rose, A. Reconstructing the diets of extinct South African carnivorans from premolar ‘intercuspid notch’ morphology. J. Zool. 285, 119–127. https://doi.org/10.1111/j.1469-7998.2011.00821.x (2011).Article
Google Scholar
Van Valkenburgh, B. Costs of carnivory: tooth fracture in Pleistocene and recent carnivorans. Biol. J. Lin. Soc. 96, 68–81. https://doi.org/10.1111/j.1095-8312.2008.01108.x (2009).Article
Google Scholar
Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 385, 807–810. https://doi.org/10.1038/385807a0 (1997).ADS
CAS
Article
PubMed
Google Scholar
Conard, N. J., Serangeli, J., Gerlinde, B. & Veerle, R. A 300,000-year-old throwing stick from Schöningen, northern Germany, documents the evolution of human hunting. Nat. Ecol. Evol. 4, 690–693 (2020).PubMed
Article
Google Scholar
Austin, L. A., Bergman, C. A., Roberts, M. B. & Wilhelmsen, K. H. Archaeology of the excavated areas. In Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry (eds Roberts, M. B. & Parfitt, S. A.) 312–378 (Boxgrove, 1999).
Google Scholar
Domínguez-Rodrigo, M., Baquedano, E., Organista, E. et al. Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology. Sci Rep 11, 16135 (2021). https://doi.org/10.1038/s41598-021-94783-4ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Gohn, G. S. Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida. In The Geology of North America, Volume I-2, The Atlantic Continental Margin (eds Sheridan, R. E. & Grow, J. A.) 107–130 (Geological Society of America, Boulder, CO, 1988).
Google Scholar
Pirkle, E. C. Notes on physiographic features of Alachua County, Florida. Q. J. Fla. Acad. Sci. 19, 168–182 (1956).
Google Scholar
Beck, B. F. A generalized genetic framework for the development of sinkholes and karst in Florida, U.S.A. Environ. Geol. Water Sci. 8, 5–18. https://doi.org/10.1007/BF02525554 (1986).ADS
Article
Google Scholar
Beck, B. F. & Sinclair, W. C. Sinkholes in Florida: An Introduction (The Florida Sinkhole Research Institute, 1986).
Google Scholar
Brinkman, R. Florida Sinkholes: Science and Policy (University of Florida Press, 2013).Book
Google Scholar
Hines, A. C. Geologic History of Florida: Major Events that Formed the Sunshine State (University of Florida Press, 2013).
Google Scholar
Bader, R. S. Two Pleistocene mammalian faunas from Alachua County, Florida. Bull. Fla State Mus. 2, 53–75 (1957).
Google Scholar
Patton, T. H. An Oligocene land vertebrate fauna from Florida. J. Paleontol. 43, 543–546 (1969).
Google Scholar
Pratt, A. E. Taphonomy of the large vertebrate fauna from the Thomas Farm Locality (Miocene, Hemingfordian), Gilchrist County, Florida, Bulletin of the Florida Museum of. Nat. Hist. 35, 35–130 (1990).
Google Scholar
Ruez, D. R. Jr. Mammalian taphonomy of the Early Irvingtonian (Late Pliocene) Inglis 1C fauna (Citrus County, Florida). Southeast. Geol. 41, 159–168 (2002).
Google Scholar
Hansen, B. C. S., Grimm, E. C. & Watts, W. A. Palynology of the Peace Creek site, Polk County, Florida. Geol. Soc. Am. Bull. 113, 682–692 (2001).ADS
Article
Google Scholar
Morgan, G. S. & Emslie, S. D. Tropical and western influences in vertebrate faunas from the Pliocene and Pleistocene of Florida. Quat. Int. 217, 143–158. https://doi.org/10.1016/j.quaint.2009.11.030 (2010).Article
Google Scholar
Yann, L. T. & DeSantis, L. R. G. Effects of Pleistocene climates on local environments and dietary behavior of mammals in Florida. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 370–381. https://doi.org/10.1016/j.palaeo.2014.09.020 (2014).Article
Google Scholar
Perrotti, A. G., Winsborough, B., Halligan, J. J. & Waters, M. R. Reconstructing terminal Pleistocene-early Holocene environmental change at Page-Ladson, Florida using diatom evidence. PaleoAmerica 6, 181–193. https://doi.org/10.1080/20555563.2019.1689010 (2020).Article
Google Scholar
Tanner, B. R., Work, K. A. & Evans, J. M. The potential of organic sediments in Florida spring runs as records of environmental change. Southeast. Geogr. 60, 200–214. https://doi.org/10.1353/sgo.2020.0017 (2020).Article
Google Scholar
Simpson, G. G. The Extinct Land Mammals of Florida (Florida Geological Survey, 1928).
Google Scholar
Simpson, G. G. Tertiary land mammals of Florida. Bull. Am. Mus. Nat. Hist. 59, 149–211 (1930).
Google Scholar
Olsen, S. J. Fossil Mammals of Florida (Florida Geological Survey, 1959).
Google Scholar
Webb, S. D. Pleistocene Mammals of Florida (University of Florida Press, 1974).
Google Scholar
Tihen, J. A. Rana grylio from the Pleistocene of Florida. Herpetologica 8, 107 (1952).
Google Scholar
Brodkorb, P. Pleistocene birds from Haile, Florida. Wilson Bull. 65, 49–50 (1953).
Google Scholar
Brodkorb, P. Another new rail from the Pleistocene of Florida. The Condor. 56, 103–104 (1954).
Google Scholar
Brodkorb, P. Fossil birds from the Alachua clay of Florida, Florida Geological Survey, Contributions to Florida Vertebrate Paleontology. Spec. Publ. 2, 1–17 (1963).
Google Scholar
Auffenburg, W. Additional specimens of Gavialosuchus americanus (Sellards) from a new locality in Florida. Q. J. Fla. Acad. Sci. 17, 185–209 (1954).
Google Scholar
Auffenburg, W. Glass lizards (Ophisaurus) in the Pleistocene and Pliocene of Florida. Herpetologica 11, 133–136 (1955).
Google Scholar
Auffenburg, W. Additional records of Pleistocene lizards from Florida. Q. J. Fla. Acad. Sci. 19, 157–167 (1956).
Google Scholar
Auffenburg, W. A new species of Bufo from the Pliocene of Florida. Q. J. Fla. Acad. Sci. 20, 14–20 (1957).
Google Scholar
Goin, C. J. & Auffenburg, W. The fossil salamanders of the Family Sirenidae, Bulletin of the Museum of Comparative. Zoology 113, 497–514 (1955).
Google Scholar
Ligon, J. D. A Pleistocene avifauna from Haile, Florida. Bull. Fla. State Mus. 10, 127–158 (1965).
Google Scholar
Kinsey, P. E. A new species of Mylohyus peccary from the Florida early Pleistocene. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 158–169 (University of Florida Press, 1974).
Google Scholar
Martin, R. A. Fossil vertebrates from the Haile XIVA fauna, Alachua County. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 100–113 (University of Florida Press, 1974).
Google Scholar
Robertson, J. S. Fossil Bison of Florida. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 214–246 (University of Florida Press, 1974).
Google Scholar
Robertson, J. S. Late Pliocene mammals from Haile XV A, Alachua County, Florida. Bull. Fla. State Mus. 20, 111–186 (1976).ADS
Google Scholar
Webb, S. D. Pleistocene llamas of Florida, with a brief review of the Lamini. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 170–213 (University of Florida Press, 1974).
Google Scholar
Campbell, K. E. An early Pleistocene avifauna from Haile XVA, Florida. Wilson Bull. 88, 345–347 (1976).
Google Scholar
Morgan, G. S., Linares, O. J. & Ray, C. E. New species of fossil vampire bats (Mammalia, Chiroptera, Desmodontidae) from Florida and Venezuela. Proc. Biol. Soc. Wash. 101, 912–928 (1988).
Google Scholar
Hulbert, R. C. A new late Pliocene porcupine (Rodentia: Erethizontidae) from Florida. J. Vertebr. Paleontol. 17, 623–626. https://doi.org/10.1080/02724634.1997.10011010 (1997).Article
Google Scholar
de Iuliis, G. & Cartelle, C. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zool. J. Linn. Soc. 127, 495–515 (1999).Article
Google Scholar
Portell, R. W. & Hulbert, R. C. Haile Quarries Fieldguide Newberry (Southeastern Geological Society, 2011).
Google Scholar
Morgan, G. S. Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull. Am. Mus. Nat. Hist. 206, 176–213 (1991).
Google Scholar
Hulbert, R. C., Morgan, G. S. & Webb, S. D. Paleontology and geology of the Leisey shell pits, early Pleistocene of Florida. Bull. Fla. Mus. Nat. Hist. 37, 1–660 (1995).
Google Scholar
Berta, A. Fossil carnivores from the Leisey Shell Pits, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 463–499 (1995).
Google Scholar
Hulbert, R. C. The giant tapir, Tapirus haysii, from Leisey Shell Pit 1A and other Florida Invingtonian localities. Bull. Am. Mus. Nat. Hist. 37, 515–551 (1995).
Google Scholar
Wright, D. B. Tayassuidae of the Irvingtonian Leisey Shell Pit local fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 603–619 (1995).
Google Scholar
Martin, L. D., Babiarz, J. P. & Naples, V. L. The osteology of a cookie-cutter cat, Xenosmilus hodsonae. In The Other Saber-Tooths: Scimitar-Tooth Cats of the Western Hemisphere (eds Naples, V. L. et al.) 43–97 (Johns Hopkins University Press, 2011).
Google Scholar
Gifford-Gonzalez, D. Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. J. Anthropol. Archaeol. 10, 215–254. https://doi.org/10.1016/0278-4165(91)90014-O (1991).Article
Google Scholar
Capaldo, S. D. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J. Hum. Evol. 33, 555–597. https://doi.org/10.1006/jhev.1997.0150 (1997).CAS
Article
PubMed
Google Scholar
Johnson, E. Current developments in bone technology. Adv. Archeol. Method Theory 8, 157–235. https://doi.org/10.1016/B978-0-12-003108-5.50010-5 (1985).Article
Google Scholar
Binford, L. R. Bones: Ancient Men and Modern Myths (Academic Press, 1981).
Google Scholar
Dominguez-Rodrigo, M. & Barba, R. New estimates of tooth-mark and percussion-mark frequencies at the FLK Zinjanthropus level: the carnivore–hominid–carnivore hypothesis falsified (I). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Dominguez-Rodrigo, M. et al.) 39–74 (Springer, 2007).Chapter
Google Scholar
Domínguez-Rodrigo, M. et al. A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 59, 35–53. https://doi.org/10.1016/j.jas.2015.04.007 (2015).Article
Google Scholar
Andrés, M., Gidna, A. O., Yravedra, J. & Domínguez-Rodrigo, M. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol. Anthropol. Sci. 4, 209–219. https://doi.org/10.1007/s12520-012-0093-4 (2012).Article
Google Scholar
Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162. https://doi.org/10.1017/S0094837300005820 (1978).Article
Google Scholar
Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).ADS
Article
Google Scholar
Egeland, C. P. et al. The taphonomy of fallow deer (Dama dama) skeletons from Denmark and its bearing on the pre-Weichselian occupation of northern Europe by humans. Archaeol. Anthropol. Sci. 6, 31–61 (2014).Article
Google Scholar
H.T. Bunn, Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa, Ph.D. Dissertation, University of California, 1982. More