More stories

  • in

    Expanding ocean food production under climate change

    United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (2011).Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).Article 

    Google Scholar 
    IPCC. IPCC Special Report on Climate Change and Land (2019).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (2020).Bryndum‐Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).ADS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).PubMed 
    Article 

    Google Scholar 
    Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).Article 

    Google Scholar 
    Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305 (2016).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).Article 

    Google Scholar 
    Barange, M., Bahri, T., Beveridge, M. & Cochrane, K. L. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).Article 

    Google Scholar 
    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).ADS 
    Article 

    Google Scholar 
    Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24, 1287–1307 (2016).Article 

    Google Scholar 
    Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).PubMed 
    Article 

    Google Scholar 
    European Union. Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. http://data.europa.eu/eli/reg/2009/710/oj (2009).Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).Article 

    Google Scholar 
    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).Article 

    Google Scholar 
    Troell, M. et al. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9 (2009).Article 

    Google Scholar 
    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 99, 13–24 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).Article 

    Google Scholar 
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture (FAO, 2017).Soto, D. et al. In Impacts Of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options Ch. 26 (FAO, 2018).Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).Article 

    Google Scholar 
    Antonello, J. et al. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).Article 

    Google Scholar 
    Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147 (2006).Article 

    Google Scholar 
    Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture development and livelihood diversification in the Philippines. Mar. Policy 36, 867–881 (2012).Article 

    Google Scholar 
    Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2017).Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).Article 

    Google Scholar 
    Leape, J. et al. Technology, Data and New Models for Sustainably Managing Ocean Resources (World Resources Institute, 2020).Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 6, 250 (2019).Article 

    Google Scholar 
    Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    FAO. Aquaculture Development: 7. Aquaculture Governance and Sector Development (2017).Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE 13, e0191086 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jackson, A. Fish in-fish out ratio explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).CAS 
    Article 

    Google Scholar 
    World Bank. Population, Total (2020); https://data.worldbank.org/indicator/SP.POP.TOTLEdwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).Article 

    Google Scholar 
    Roberts, P. Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products (The Food and Agriculture Organization of the United Nations, 1998).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species https://www.aquamaps.org/ (2019).García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).ADS 
    Article 

    Google Scholar 
    Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).Article 

    Google Scholar 
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).FAO. Cultured Aquatic Species (2019).Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 
    Article 

    Google Scholar 
    Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 7, 226 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).PubMed 
    Article 

    Google Scholar 
    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25, 146–159 (2015).Article 

    Google Scholar 
    Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4, 154 (2017).Article 

    Google Scholar 
    World Bank. Adjusted Net National Income per Capita (Current US$) (2019); https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CDWorld Bank. Pump Price for Diesel Fuel (US$ per liter) (2019); https://data.worldbank.org/indicator/EP.PMP.DESL.CDPiburn, J. wbstats: programmatic access to the World Bank API. R package v.1.0.4 https://cran.r-project.org/web/packages/wbstats/index.html (2018).Rubino, M. (ed.) Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities NOAA Technical Memorandum NMFS F/SPO-103 (US Department of Commerce, 2008).Jackson, A. & Newton, R. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients, with Special Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, University Of Stirling And IFFO, 2016). More

  • in

    Insight into impact of sewage discharge on microbial dynamics and pathogenicity in river ecosystem

    Zhang, Y., Wu, J. & Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 77, 273 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, D. et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 741, 140445 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmed, W. et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 728, 138764 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haramoto, E., Malla, B., Thakali, O. & Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 737, 140405 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naddeo, V. & Liu, H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond?. Environ. Sci. Water Res. Technol. 6, 1213–1216 (2020).CAS 
    Article 

    Google Scholar 
    Cornelisen, C. D., Gillespie, P. A., Kirs, M., Young, R. G. & Harwood, V. J. Motueka River plume facilitates transport of ruminant faecal contaminants into shellfish growing waters, Tasman Bay, New Zealand. N. Z. J. Mar. Freshw. Res. 45, 477–495 (2011).Article 

    Google Scholar 
    Devane, M. L., Moriarty, E. M., Wood, D., Webster-Brown, J. & Gilpin, B. J. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river. Sci. Total Environ. 485–486, 666–680 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Duttagupta, S. et al. Achieving sustainable development goal for clean water in India: Influence of natural and anthropogenic factors on groundwater microbial pollution. Environ. Manag. 66, 42–755 (2020).Article 

    Google Scholar 
    Huelsen, T. et al. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res. 100, 486–495 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, D. R. et al. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ. Microbiol. 17(12), 4851–4860 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lei, Z. J. M. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44(1), 31–38 (2012).Article 
    CAS 

    Google Scholar 
    Jian, L. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol. Fertil. Soils 51, 207–215 (2015).Article 
    CAS 

    Google Scholar 
    Yu, S. X., Pang, Y. L., Wang, Y. C., Li, J. L. & Qin, S. Spatial variation of microbial communities in sediments along the environmental gradients from Xiaoqing River to Laizhou Bay. Mar. Pollut. Bull. 76, 1048–1056 (2017).
    Google Scholar 
    Reidl, J. & Klose, K. E. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 26(2), 125–139 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chin, C.-S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minoru, K., Miho, F., Mao, T., Yoko, S. & Kanae, M. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucl. Acids Res. 45, D353–D361 (2017).Article 
    CAS 

    Google Scholar 
    Zieliński, W. et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ. Int. 143, 105914 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dietrich, J. E. S. & Doherty, T. M. Interaction of Mycobacterium tuberculosis with the host: Consequences for vaccine development. APMIS 117, 440–457 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Velayati, A. A. et al. Identification and genotyping of Mycobacterium tuberculosis isolated from water and soil samples of a metropolitan city. Chest 147, 1094–1102 (2015).PubMed 
    Article 

    Google Scholar 
    Pereira, M. I. & Medeiros, J. A. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J. Gastroenterol. 20, 684–698 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    West, A. P., Millar, M. R. & Tompkins, D. S. Effect of physical environment on survival of Helicobacter pylori. J. Clin. Pathol. 45, 228–231 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, W. A. et al. Salmonella spp., Vibrio spp., Clostridium perfringens, and Plesiomonas shigelloides in marine and freshwater invertebrates from coastal California ecosystems. Microb. Ecol. 52, 198–206 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCarthy, S. A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microb Ecol 31, 167–175 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heaney, N. et al. Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicol. Environ. Saf. 166, 383–389 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Z. B., Miao, M. S., Kong, Q. & Ni, S. Q. Evaluation of microbial diversity of activated sludge in a municipal wastewater treatment plant of northern China by high-throughput sequencing technology. Desalin. Water Treat. 57, 1–6 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Weak magnetic field: A powerful strategy to enhance partial nitrification. Water Res. 120, 190–198 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, X. et al. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). Bioresour. Technol. 218, 789–795 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. N2O emission and bacterial community dynamics during realization of the partial nitrification process. RSC Adv. 8, 24305–24311 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lv, L., Ren, L. F., Ni, S. Q., Gao, B. Y. & Wang, Y. N. The effect of magnetite on the start-up and N2O emission reduction of the anammox process. RSC Adv. 6, 99989–99996 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S., Liebner, S., Alawi, M., Ebenhöh, O. & Wagner, D. Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J. Microbiol. Methods 103, 3–5 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, F. et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 339, 479–486 (2018).CAS 
    Article 

    Google Scholar 
    Bu, C. et al. Dissimilatory nitrate reduction to ammonium in the yellow river estuary: Rates, abundance, and community diversity. Sci. Rep. 7, 6830 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, J., Fries, M. R., Cheesanford, J. C. & Tiedje, J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov.. Int. J. Syst. Bacteriol. 194, 500–506 (1995).Article 

    Google Scholar 
    Casanova, L., Rutala, W. A., Weber, D. J. & Sobsey, M. D. Survival of surrogate coronaviruses in water. Water Res. 43, 1893–1898 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elreedy, A. et al. Unraveling the capability of graphene nanosheets and γ-Fe2O3 nanoparticles to stimulate anammox granular sludge. J. Environ. Manag. 277, 111495 (2021).CAS 
    Article 

    Google Scholar 
    Ismail, S. et al. Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep. Purif. Technol. 266, 118539 (2021).CAS 
    Article 

    Google Scholar 
    Shen, X., Xu, M., Li, M., Zhao, Y. & Shao, X. Response of sediment bacterial communities to the drainage of wastewater from aquaculture ponds in different seasons. Sci. Total Environ. 717, 137180 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. et al. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. J. Hazard. Mater. 414, 125533 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. F., Li, B. Z., Wang, E. T., Yang, J. S. & Yuan, H. L. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination 286, 242–247 (2012).CAS 
    Article 

    Google Scholar 
    Xia, J., Ye, L., Ren, H. & Zhang, X. X. Microbial community structure and function in aerobic granular sludge. Appl. Microbiol. Biotechnol. 102(9), 3967–3979 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Akizuki, S. et al. Effects of substrate COD/NO2-N ratio on simultaneous methanogenesis and short-cut denitrification in the treatment of blue mussel using acclimated sludge. Biochem. Eng. J. 99, 16–23 (2015).CAS 
    Article 

    Google Scholar 
    Liao, K. et al. Use of convertible flow cells to simulate the impacts of anthropogenic activities on river biofilm bacterial communities. Sci. Total Environ. 653, 148–156 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marassi, R. J. et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater. J. Clean. Prod. 259, 120882 (2020).CAS 
    Article 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medema, G. J., Schets, F. M., Teunis, P. F. M. & Havelaar, A. H. Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water. Appl. Environ. Microbiol. 64, 4460–4466 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Igbinosa, E. O., Obi, L. C. & Okoh, A. I. Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Res. Microbiol. 160, 531–537 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goh, S. G., Bayen, S., Burger, D., Kelly, B. C. & Gin, Y. H. Occurrence and distribution of bacteria indicators, chemical tracers and pathogenic vibrios in Singapore coastal waters. Mar. Pollut. Bull. 114, 627–634 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, Q., Huang, Y., Wang, H. & Fang, T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ. Pollut. 249, 24–35 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suzuki, Y. et al. Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. Sci. Total Environ. 690, 696–704 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, D. C. V. R. et al. Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river. Environ. Pollut. 266, 115325 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, I. & Zalewski, M. Temporal changes in the abiotic/biotic drivers of selfpurification in a temperate river. Ecol. Eng. 94, 275–285 (2016).Article 

    Google Scholar 
    Clements, W. H. & Rohr, J. R. Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. & Tawfik, A. Comprehensive study for Anammox process via multistage anaerobic baffled reactors. E3S Web Conf. 22, 4–11 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    A perspective of scale differences for studying the green total factor productivity of Chinese laying hens

    Minimum distance to weak efficient frontierBriec and Charnes et al. first proposed the Minimum distance to weak efficient frontier (MinDW) model39,40, which can be expressed as (m + n) linear programming ((m) is the number of input indicators and (n) is the number of output indicators), assuming that the input variable is (x) and the output variable is (y). The specific formula is shown in Eq. (1):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} + beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (1)
    (e_{r}) and (e_{i}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (2):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if}}; , i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ end{aligned} $$
    (2)
    The efficiency value of model is expressed as Eq. (3):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n}sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} }} $$
    (3)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n)), and the maximum efficiency value corresponds to the minimum (beta^{*}), that is the nearest distance to the frontier.This paper uses the MinDW model with negative output to conduct empirical analysis. The method can be expressed as (m + n + d) linear programming ((m) is the number of inputs, (n) is the number of desirable output, (d) is the number of unexpected output), assuming that the input variable is (x), the desirable output variable is (y), and the undesirable output variable is (f). The specific formula is shown in Eq. (4):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n + d \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (4)
    (e_{r}), (e_{i}) and (e_{l}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (5):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if }};i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ & e_{l} = 1 , ;{text{if}}; , l = z – m – n; , e_{l} = 0 , ;{text{if}}; , l ne z – m – n \ end{aligned} $$
    (5)
    The efficiency value of model is expressed as Eq. (6):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z}^{*} e_{l} }}{{f_{lk} }}} } right)}} $$
    (6)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n + d)), and the maximum efficiency value corresponds to the minimum (beta^{*}), which means the nearest distance to the frontier.The efficiency value of MinDW model will not be less than the efficiency value of directional distance function model with any direction vector or other distance types (such as radial model and SBM model). In other words, the efficiency value of MinDW model is the largest. Combined with the above process, we can define the common boundary ((beta^{meta*})) and the model is as Eq. (7):$$ begin{aligned} & beta^{meta*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, cdots ,m} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, cdots ,n} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, cdots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (7)
    Similarly, the efficiency value of DMU relative to the scale frontier ((beta^{scale*})) can be obtained by the Eq. (8):$$ begin{aligned} & beta^{scale*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (8)
    Finally, in the common frontier model, the technology gap ratio (TGR) is equal to the ratio of the efficiency value of the common frontier to the scale frontier41. The formula is as Eq. (9):$$ TGR^{MinDW} = frac{{beta^{meta*} }}{{beta^{scale*} }} $$
    (9)
    (beta^{meta*}) and (beta^{scale*}) represent the optimal solution of formula (7) and formula (8), respectively. Obviously, (0 le TGR le 1). TGR is used to measure the distance between the optimal production technology and the potential optimal technology of a group, and identify whether there are any differences in LHG under different groups. The closer the TGR is to 1, the closer the technology level is to the optimal potential technology level. Conversely, it shows the larger gap between the technology level and the potential optimal technology level.Metafrontier-Malmquist–Luenberger indexMalmquist productivity index is widely used in the study of dynamic efficiency change trend, and has good adaptability to multiple input–output data and panel data analysis. The actual production process often contains unexpected output. After Chung et al. proposed Malmquist–Luenberger (ML) index, any Malmquist index with undesired output can be called ML index42. Oh constructed the Global-Malmquist–Luenberger index43. All the evaluated DMUs are included in the global reference set, which avoids the phenomenon of infeasible solution in VRS. The global reference set constructed in this paper is as Eqs. (10)–(11):$$ Q^{G} left( x right) = Q^{1} left( {x^{1} } right) cup Q^{2} left( {x^{2} } right) cup cdots cup Q^{T} left( {x^{T} } right) $$
    (10)
    $$ Q^{t} left( {x^{t} } right) = left{ {left( {y^{t} ,f^{t} } right)left| {x^{t} ;can;produce} right.;left( {y^{t} ,f^{t} } right)} right} $$
    (11)
    This paper takes MML index as the LHG.$$ begin{aligned} MML_{t – 1}^{t} & = sqrt {frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} \ & = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} \ & ;;;;; times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} \ end{aligned} $$
    (12)
    Next, it further decompose the MML index into efficiency change (EC) and technology change (TC). The specific formula is shown in Eqs. (13)–(14):$$ TC_{t – 1}^{t} = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} $$
    (13)
    $$ EC_{t – 1}^{t} = frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} $$
    (14)
    where (left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} } right)) and (left( {x^{t} ,y^{t} ,f^{t} } right)) represent the input, expected output and unexpected output of t-1 and t, respectively. (TC_{t – 1}^{t}) is the devotion to LHG raise of DMU’s technical progress from (t – 1) to (t). And (EC_{t – 1}^{t}) represents the devotion to LHG raise of DMU’s efficiency improvement from (t – 1) to (t). The higher the value is, the larger the devotion is. The (MML) index is recorded as (MI). The value of (MI) is the LHG. The green total factor productivity index of laying hens breeding under the common frontier and scale frontier are as Eqs. (15)–(16):$$ metaMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (15)
    $$ groupMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (16)
    For the DMUs with scale heterogeneity, we can measure the technology gap between the group frontier and the common frontier, which is caused by the specific group structure.Data and variablesBased on the research of the existing literature36, this paper selects five indexes to build the input–output indicator system. Details are as below:

    1.

    Input variables:

    (1)

    Quantity of concentrated forage. Mainly includes seeds of crops and their by-products.

    (2)

    Quantity of grain consumption. Quantity of grain consumed is the quantity of grain consumed by laying hens when they are raised. For example: corn, sorghum, broken rice, wheat, barley, wheat bran, etc.

    (3)

    Material expenses. The sum of water and fuel power costs, labor costs, and medical epidemic prevention fees. Water and fuel power costs include water, electricity, coal and other fuel power costs; labor costs mean the human management cost of each laying hen from the brood stage to the laying stage; medical and epidemic prevention costs include the cost of disease prevention and control.

    2.

    Positive output Main product production, which is the egg production per layer.

    3.

    Negative output Total discharge. According to the calculation method of The Manual of Pollutant Discharge Coefficient, Eq. (17) is used to calculate the COD, TN, and the TP of each layer. Then, according to the calculation method of class GB3838-2002 water quality standard in V, Eq. (18) is used to calculate the total discharge.

    $$ POLLUTANTS = FP(FD) times Days $$
    (17)
    $$ TOTAL , POLLUTANTS = frac{COD}{{40}} + frac{TN}{2} + frac{TP}{{0.4}} $$
    (18)
    where, (FP(FD)) is the pollution discharge coefficient and the (Days) is the average raising days. Descriptive statistics of input and output indicators are shown in Table 1.Table 1 Descriptive statistics of input and output indicators.Full size tableThe quantity of concentrate, the quantity of food consumed, the cost of labor, the cost of medical treatment all come from “National Agricultural Product Cost and Benefit Data Compilation”. The pollutant discharge coefficient of laying hens is derived from “The Manual of Pollutant Discharge Coefficient”. According to the definition of scale in above two materials, a small scale 300–1000 laying hens, a medium scale 1000–10,000 laying hens, and a large scale greater than 10,000 laying hens are grouped to calculate cost efficiency.From 2004 to 2018, this paper selects 24 major egg-producing provinces (municipalities) in China as samples, after eliminating singular data in the three scales and averaging the missing data, the final small-scale group is left with 7 provinces including Liaoning, Shandong, Henan, Heilongjiang, Jilin, Shanxi, and Shaanxi; the medium-scale group is the remaining 21 provinces of Beijing, Hebei, Jiangsu, Liaoning, Shandong, Tianjin, Zhejiang, Anhui, Henan, Heilongjiang, Jilin, Hubei, Inner Mongolia, Shanxi, Yunnan, Gansu, Ningxia, Shaanxi, Sichuan, Xinjiang, Chongqing; the large-scale group has 18 provinces, including Beijing, Fujian, Guangdong, Henan, Jiangsu, Liaoning, Shandong, Tianjin, Anhui, Henan, Heilongjiang, Hubei, Jilin, Shanxi, Yunnan, Gansu, Sichuan and Chongqing.As is shown in Table 2, after dividing the provinces by region, the eastern region has 10 provinces (municipalities): Liaoning, Shandong, Beijing, Hebei, Jiangsu, Tianjin, Zhejiang, Fujian, Guangdong, Henan. The central region has 7 provinces (autonomous region): Henan, Heilongjiang, Jilin, Shanxi, Anhui, Hubei, Inner Mongolia. The western region has 7 provinces (municipalities): Shaanxi, Gansu, Ningxia, Sichuan, Xinjiang, Chongqing, Yunnan.Table 2 Samples selected from 2004–2018.Full size table More

  • in

    Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel

    Atkinson, C. T. & Van Riper, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. Bird-Parasite Interact. 2, 19–48 (1991).
    Google Scholar 
    Sorci, G. & Moller, A. P. Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J. Evol. Biol. 10, 731–741 (1997).
    Google Scholar 
    Merino, S., Moreno, J., Sanz, J. J. & Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc. Biol. Sci. 267, 2507–2510 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Asghar, M. et al. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436–438 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Quillfeldt, P., Arriero, E., Martínez, J., Masello, J. F. & Merino, S. Prevalence of blood parasites in seabirds – A review. Front. Zool. 8, 26 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Piersma, T. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?. Oikos 80, 623 (1997).
    Google Scholar 
    Mendes, L., Piersma, T., Lecoq, M., Spaans, B. & Ricklefs, R. E. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396–404 (2005).
    Google Scholar 
    Martínez-Abraín, A., Esparza, B. & Oro, D. Lack of blood parasites in bird species: Does absence of blood parasite vectors explain it all?. Ardeola 51, 225–232 (2004).
    Google Scholar 
    Campioni, L. et al. Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: Evidence from molecular analyses and review of the literature. Parasitol. Res. 117, 323–329 (2018).PubMed 

    Google Scholar 
    Osorio-Beristain, M. & Drummond, H. Non-aggressive mate guarding by the blue-footed booby: A balance of female and male control. Behav. Ecol. Sociobiol. 43, 307–315 (1998).
    Google Scholar 
    Nelson, J. B. Pelicans, Cormorants and Their Relatives: The Pelecaniformes (Oxford University Press, 2006).
    Google Scholar 
    Kim, S. Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: A longitudinal study. Behav. Ecol. 18, 1132–1138 (2007).
    Google Scholar 
    Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lee-Cruz, L. et al. Prevalence of Haemoproteus sp. in Galápagos blue-footed boobies: Effects on health and reproduction. Parasitol. Open 2 (2016).Santiago-Alarcon, D., Palinauskas, V. & Schaefer, H. M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 87, 928–964 (2012).PubMed 

    Google Scholar 
    Bond, J. G. et al. Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico. Parasit. Vectors 7, 41 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ibañez-Bernal, S. Informe Final del Proyecto Actualización del Catálogo de Autoridad Taxonómica del Orden Diptera (Insecta) de México CONABIO (JE006). (2017).Levin, I. I. et al. Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: Evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int. J. Parasitol. 41, 1019–1027 (2011).PubMed 

    Google Scholar 
    Madsen, V. et al. Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): Variation with age-class, visited status and blood parasite infection. Horm. Behav. 51, 156–163 (2007).CAS 
    PubMed 

    Google Scholar 
    Clark, G. W. & Swinehart, B. Avian haematozoa from the offshore islands of northern Mexico. Wildl. Dis. 5, 111–112 (1969).CAS 
    PubMed 

    Google Scholar 
    Quillfeldt, P. et al. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97, 809–817 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Merino, S. et al. Infection by haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). J. Parasitol. 98, 388–397 (2012).PubMed 

    Google Scholar 
    Svensson, L. M. E. & Ricklefs, R. E. Low diversity and high intra-island variation in prevalence of avian Haemoproteus parasites on Barbados, Lesser Antilles. Parasitology 136, 1121–1131 (2009).PubMed 

    Google Scholar 
    Loiseau, C. et al. Spatial variation of haemosporidian parasite infection in african rainforest bird species. J. Parasitol. 96, 21–29 (2010).PubMed 

    Google Scholar 
    Madsen, V. Female Mate Choice in the Magnificent Frigatebird (Fregata magnificens) (Universidad Nacional Autónoma de México, 2004).
    Google Scholar 
    Super, P. E. & van Riper, C. A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J. Wildl. Dis. 31, 447–461 (1995).CAS 
    PubMed 

    Google Scholar 
    CONANP. Programa de Conservación y Manejo del Parque Nacional Isla Isabel. (2005).Ancona, S., Drummond, H., Rodríguez, C. & Zúñiga-Vega, J. J. Long-term population dynamics reveal that survival and recruitment of tropical boobies improve after a hurricane. J. Avian Biol. 48, 320–332 (2017).
    Google Scholar 
    Martínez-de la Puente, J., Martinez, J., Rivero-de Aguilar, J., Herrero, J. & Merino, S. On the specificity of avian blood parasites: Revealing specific and generalist relationships between haemosporidians and biting midges. Mol. Ecol. 20, 3275–3287 (2011).PubMed 

    Google Scholar 
    Bastien, M., Jaeger, A., Le Corre, M., Tortosa, P. & Lebarbenchon, C. Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean. PLoS ONE 9, e97185 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maa, T. C. Records of Hippoboscidae (diptera) from the Central Pacific. J. Med. Ent. 3, 325–328 (1968).
    Google Scholar 
    Levin, I. I. & Parker, P. G. Comparative host–parasite population genetic structures: Obligate fly ectoparasites on Galapagos seabirds. Parasitology 140, 1061–1069 (2013).CAS 
    PubMed 

    Google Scholar 
    Ramos-González, A. Hábitat y Edad de los Bobos de Patas Azules: Factores Importantes Para la Paternidad y Abundancia de Garrapatas. Primera edición. 88. (Universidad Nacional Autónoma de México, 2019). Print ISBN 978-607-30-1489-2.Bensch, S. et al. Contaminations contaminate common databases. Mol. Ecol. Resour. 21, 355–362 (2021).CAS 
    PubMed 

    Google Scholar 
    Taylor, S. A., Maclagan, L., Anderson, D. J. & Friesen, V. L. Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J. Biogeogr. 38, 883–893 (2011).
    Google Scholar 
    Kalbe, M. & Kurtz, J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132, 105–116 (2006).CAS 
    PubMed 

    Google Scholar 
    Martin, L. B., Gilliam, J., Han, P., Lee, K. & Wikelski, M. Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows Passer domesticus. Gen. Comp. Endocrinol. 140, 126–135 (2005).CAS 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ting, J. et al. Malaria parasites and related haemosporidians cause mortality in cranes: A study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malar. J. 17, 234 (2018).
    Google Scholar 
    Grilo, M. L. et al. Malaria in penguins – Current perceptions. Avian Pathol. 45, 393–407 (2016).CAS 
    PubMed 

    Google Scholar 
    Jovani, R. & Tella, J. L. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 22, 214–218 (2006).PubMed 

    Google Scholar 
    Bensch, S. et al. Temporal dynamics and diversity of avian malaria parasites in a single host species. J. Anim. Ecol. 76, 112–122 (2007).MathSciNet 
    PubMed 

    Google Scholar 
    Lachish, S., Knowles, S. C., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: Parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).PubMed 

    Google Scholar 
    Lopes, V. L. et al. High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem. Sci. Rep. 10, 16839 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valkiunas, G. et al. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 94, 1395–1401 (2008).CAS 
    PubMed 

    Google Scholar 
    Santiago-Alarcon, D. et al. Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. Int. J. Parasitol. 49, 235–246 (2019).PubMed 

    Google Scholar 
    Ancona, S., Sánchez-Colón, S., Rodríguez, C. & Drummond, H. E. Niño in the warm tropics: Local sea temperature predicts breeding parameters and growth of blue-footed boobies. J. Anim. Ecol. 80, 799–808 (2011).PubMed 

    Google Scholar 
    Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: Resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807 (2003).PubMed 

    Google Scholar 
    Merino, S. & Potti, J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112, 1041–1043 (1995).
    Google Scholar 
    Gutiérrez-López, R. et al. Low prevalence of blood parasites in a long-distance migratory raptor: The importance of host habitat. Parasit. Vectors 8, 189 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).CAS 
    PubMed 

    Google Scholar 
    Bensch, S. et al. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. Biol. Sci. 267, 1583–1589 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A global reptile assessment highlights shared conservation needs of tetrapods

    We used the IUCN Red List criteria34,35 and methods developed in other global status-assessment efforts36,37 to assess 10,078 reptile species for extinction risk. We additionally include recommended Red List categories for 118 turtle species38, for a total of 10,196 species covered, representing 89% of the 11,341 described reptile species as of August 202039.Data compilationWe compiled assessment data primarily through regional in-person and remote (that is, through phone and email) workshops with species experts (9,536 species) and consultation with IUCN Species Survival Commission Specialist Groups and stand-alone Red List Authorities (442 species, primarily marine turtles, terrestrial and freshwater turtles, iguanas, sea snakes, mainland African chameleons and crocodiles). We conducted 48 workshops between 2004 and 2019 (Supplementary Table 1). Workshop participants provided information to complete the required species assessment fields (geographical distribution, population abundance and trends, habitat and ecological requirements, threats, use and trade, literature) and draw a distribution map. We then applied the Red List criteria34 to this information to assign a Red List category: extinct, extinct in the wild, critically endangered, endangered, vulnerable, near threatened, least concern and data deficient. Threatened species are those categorized as critically endangered, endangered and vulnerable.TaxonomyWe used The Reptile Database39 as a taxonomic standard, diverging only to follow well-justified taxonomic standards from the IUCN Species Survival Commission40. We could not revisit new descriptions for most regions after the end of the original assessment, so the final species list is not fully consistent with any single release of The Reptile Database.Distribution mapsWhere data allowed, we developed distribution maps in Esri shapefile format using the IUCN mapping guidelines41 (1,003 species). These maps are typically broad polygons that encompass all known localities, with provisions made to show obvious discontinuity in areas of unsuitable habitat. Each polygon is coded according to species’ presence (extant, possibly extant or extinct) and origin (native, introduced or reintroduced)41. For some regions covered in workshops (Caucasus, Southeast Asia, much of Africa, Australia and western South America), we collaborated with the Global Assessment of Reptile Distributions (GARD) (http://www.gardinitiative.org/) to provide contributing experts with a baseline species distribution map for review. Although refined maps were returned to the GARD team, not all of these maps have been incorporated into the GARD.Habitat preferencesWhere known, species habitats were coded using the IUCN Habitat Classification Scheme (v.3.1) (https://www.iucnredlist.org/resources/habitat-classification-scheme). Species were assigned to all habitat classes in which they are known to occur. Where possible, habitat suitability (suitable, marginal or unknown) and major importance (yes or no) was recorded. Habitat data were available for 9,484 reptile species.ThreatsAll known historical, current and projected (within 10 years or 3 generations, whichever is the longest; generation time estimated, when not available, from related species for which it is known; generation time recorded for 76.3% of the 186 species categorized as threatened under Red List criteria A and C1, the only criteria using generation length) threats were coded using the IUCN Threats Classification Scheme v.3.2 (https://www.iucnredlist.org/resources/threat-classification-scheme), which follows a previously published study42. Where possible, the scope (whole ( >90%), majority (50–90%), minority (30%), rapid ( >20%), slow but notable ( More

  • in

    Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand

    Stibig, H. J., Achard, F., Carboni, S., Raši, R. & Miettinen, J. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258. https://doi.org/10.5194/bg-11-247-2014 (2014).ADS 
    Article 

    Google Scholar 
    Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540. https://doi.org/10.1016/j.tree.2013.04.005 (2013).Article 
    PubMed 

    Google Scholar 
    Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562. https://doi.org/10.1038/s41561-018-0166-9 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Imai, N., Furukawa, T., Tsujino, R., Kitamura, S. & Yumoto, T. Correction: Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS ONE 13, e0199908. https://doi.org/10.1371/journal.pone.0199908 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300. https://doi.org/10.1038/nclimate2873 (2015).ADS 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbeta, A. et al. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biol. 21, 1213–1225. https://doi.org/10.1111/gcb.12785 (2015).ADS 
    Article 

    Google Scholar 
    Mueller, R. C. et al. Differential tree mortality in response to severe drought: Evidence for long-term vegetation shifts. J. Ecol. 93, 1085–1093. https://doi.org/10.1111/j.1365-2745.2005.01042.x (2005).Article 

    Google Scholar 
    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 108, 1474–1478. https://doi.org/10.1073/pnas.1010070108 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest Inventory and Analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands?. J. For. 103, 280–285 (2005).
    Google Scholar 
    Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489. https://doi.org/10.1017/s0266467411000253 (2011).Article 

    Google Scholar 
    Lee, Y. K. et al. Differences of tree species composition and microclimate between a mahogany(swietenia macrophyllaking) plantation and a secondary forest in Mt. Makiling, Philippines. For. Sci. Technol. 2, 1–12. https://doi.org/10.1080/21580103.2006.9656293 (2006).CAS 
    Article 

    Google Scholar 
    Lebrija-Trejos, E., Perez-Garcia, E. A., Meave, J. A., Bongers, F. & Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398. https://doi.org/10.1890/08-1449.1 (2010).Article 
    PubMed 

    Google Scholar 
    Heithecker, T. D. & Halpern, C. B. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For. Ecol. Manag. 248, 163–173. https://doi.org/10.1016/j.foreco.2007.05.003 (2007).Article 

    Google Scholar 
    Marthews, T. R., Burslem, D. F. R. P., Paton, S. R., Yangüez, F. & Mullins, C. E. Soil drying in a tropical forest: Three distinct environments controlled by gap size. Ecol. Model. 216, 369–384. https://doi.org/10.1016/j.ecolmodel.2008.05.011 (2008).Article 

    Google Scholar 
    Pineda-Garcia, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).Article 
    PubMed 

    Google Scholar 
    Bretfeld, M., Ewers, B. E. & Hall, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Nino drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).Article 
    PubMed 

    Google Scholar 
    Matheny, A. M. et al. Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology https://doi.org/10.1002/eco.1815 (2016).Article 

    Google Scholar 
    Pineda-Garcia, F., Paz, H., Meinzer, F. C. & Angeles, G. Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol. 36, 208–217. https://doi.org/10.1093/treephys/tpv124 (2016).Article 
    PubMed 

    Google Scholar 
    Powell, T. L. et al. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biol. 23, 4280–4293. https://doi.org/10.1111/gcb.13731 (2017).ADS 
    Article 

    Google Scholar 
    Ruiz-Benito, P. et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biol. 23, 4162–4176. https://doi.org/10.1111/gcb.13728 (2017).ADS 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539. https://doi.org/10.1038/s41586-018-0240-x (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161. https://doi.org/10.1111/pce.12141 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x (2008).Article 
    PubMed 

    Google Scholar 
    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122. https://doi.org/10.1038/nature15539 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lazar, T., Taiz, L. & Zeiger, E. Plant physiology. 3rd edn. Ann. Bot. 91, 750–751. https://doi.org/10.1093/aob/mcg079 (2003).Article 
    PubMed Central 

    Google Scholar 
    Steppe, K. The potential of the tree water potential. Tree Physiol. 38, 937–940. https://doi.org/10.1093/treephys/tpy064 (2018).Article 
    PubMed 

    Google Scholar 
    Johnson, D., Katul, G. G. & Domec, J. C. Catastrophic hydraulic failure and tipping points in plants. Plant Cell Environ. (2022).Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291. https://doi.org/10.1038/s41559-017-0248-x (2017).Article 
    PubMed 

    Google Scholar 
    Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. USA 112, 5744–5749. https://doi.org/10.1073/pnas.1503376112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Domec, J.-C. et al. Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. For. Ecol. Manag. 355, 58–71. https://doi.org/10.1016/j.foreco.2015.04.012 (2015).Article 

    Google Scholar 
    Maherali, H., Pockman, W. T. & Jackson, R. B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199. https://doi.org/10.1890/02-0538 (2004).Article 

    Google Scholar 
    Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New Phytol. 223, 1253–1266. https://doi.org/10.1111/nph.15909 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Global Change Biol. 26, 3569–3584. https://doi.org/10.1111/gcb.15040 (2020).ADS 
    Article 

    Google Scholar 
    Nolf, M. et al. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environ. 38, 2652–2661. https://doi.org/10.1111/pce.12581 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Trueba, S. et al. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell Environ. 40, 277–289. https://doi.org/10.1111/pce.12859 (2017).CAS 
    Article 

    Google Scholar 
    Zhu, S. D., Chen, Y. J., Fu, P. L. & Cao, K. F. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiol. 37, 1469–1477. https://doi.org/10.1093/treephys/tpx094 (2017).Article 
    PubMed 

    Google Scholar 
    Chen, Y. J. et al. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Funct. Ecol. 31, 306–317. https://doi.org/10.1111/1365-2435.12724 (2016).Article 

    Google Scholar 
    Tan, F.-S. et al. Hydraulic safety margins of co-occurring woody plants in a tropical karst forest experiencing frequent extreme droughts. Agr. Forest Meteorol. https://doi.org/10.1016/j.agrformet.2020.108107 (2020).Article 

    Google Scholar 
    Markesteijn, L., Iraipi, J., Bongers, F. & Poorter, L. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J. Trop. Ecol. 26, 497–508. https://doi.org/10.1017/s0266467410000271 (2010).Article 

    Google Scholar 
    Mitchell, P. J., Veneklaas, E. J., Lambers, H. & Burgess, S. S. Leaf water relations during summer water deficit: Differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ. 31, 1791–1802. https://doi.org/10.1111/j.1365-3040.2008.01882.x (2008).Article 
    PubMed 

    Google Scholar 
    Baltzer, J. L., Davies, S. J., Bunyavejchewin, S. & Noor, N. S. M. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct. Ecol. 22, 221–231. https://doi.org/10.1111/j.1365-2435.2007.01374.x (2008).Article 

    Google Scholar 
    Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x (2009).Article 

    Google Scholar 
    Engelbrecht, B. M. J., Tyree, M. T. & Kursar, T. A. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J. Trop. Ecol. 23, 497–500. https://doi.org/10.1017/s026646740700421x (2007).Article 

    Google Scholar 
    Blackman, C. J. et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiol. 39, 910–924. https://doi.org/10.1093/treephys/tpz016 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bucci, S. J. et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees 19, 296–304. https://doi.org/10.1007/s00468-004-0391-2 (2004).Article 

    Google Scholar 
    Prado, C. H. B. A., Wenhui, Z., Cardoza Rojas, M. H. & Souza, G. M. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Braz. J. Plant Physiol. 16, 7–16. https://doi.org/10.1590/s1677-04202004000100002 (2004).Article 

    Google Scholar 
    Fetcher, N., Oberbauer, S. F. & Strain, B. R. Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int. J. Biometeorol. 29, 145–155. https://doi.org/10.1007/bf02189035 (1985).ADS 
    Article 

    Google Scholar 
    McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1–59. https://doi.org/10.1139/a00-012 (2001).Article 

    Google Scholar 
    Zhu, S.-D. & Cao, K.-F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 204, 295–304. https://doi.org/10.1007/s11258-009-9592-5 (2009).Article 

    Google Scholar 
    Sperry, J. S., Hacke, U. G., Oren, R. & Comstock, J. P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 25, 251–263. https://doi.org/10.1046/j.0016-8025.2001.00799.x (2002).Article 
    PubMed 

    Google Scholar 
    Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).Article 
    PubMed 

    Google Scholar 
    Vinya, R. et al. Xylem cavitation vulnerability influences tree species’ habitat preferences in miombo woodlands. Oecologia 173, 711–720. https://doi.org/10.1007/s00442-013-2671-2 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vander Willigen, C., Sherwin, H. W. & Pammenter, N. W. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytol. 145, 51–59. https://doi.org/10.1046/j.1469-8137.2000.00549.x (2000).Article 

    Google Scholar 
    Domec, J. C. et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: Impact on stomatal control of plant water status. Plant Cell Environ. 29, 26–35. https://doi.org/10.1111/j.1365-3040.2005.01397.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnard, D. M. et al. Climate-related trends in sapwood biophysical properties in two conifers: Avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ. 34, 643–654. https://doi.org/10.1111/j.1365-3040.2010.02269.x (2011).Article 
    PubMed 

    Google Scholar 
    Rosner, S., Heinze, B., Savi, T. & Dalla-Salda, G. Prediction of hydraulic conductivity loss from relative water loss: New insights into water storage of tree stems and branches. Physiol. Plant. 165, 843–854. https://doi.org/10.1111/ppl.12790 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).Article 
    PubMed 

    Google Scholar 
    Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J. & Dobrowski, S. Z. Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Sci. Rep. 10, 18486. https://doi.org/10.1038/s41598-020-75273-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2004).Article 

    Google Scholar 
    Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum–a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211. https://doi.org/10.1371/journal.pone.0109211 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brockelman, W. Y., Nathalang, A. & Maxwell, J. F. Mo Singto Forest Dynamics Plot: Flora and Ecology (National Science and Technology Development Agency, 2017).
    Google Scholar 
    Zhang, Q. W., Zhu, S. D., Jansen, S., Cao, K. F. & McCulloh, K. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Funct. Ecol. 35, 566–577. https://doi.org/10.1111/1365-2435.13731 (2020).Article 

    Google Scholar 
    Ishida, A. et al. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand. Tree Physiol. 30, 935–945. https://doi.org/10.1093/treephys/tpq025 (2010).Article 
    PubMed 

    Google Scholar 
    Nardini, A., Battistuzzo, M. & Savi, T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200, 322–329. https://doi.org/10.1111/nph.12288 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. https://doi.org/10.1038/nature11688 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brodribb, T. J. Progressing from “functional” to mechanistic traits. New Phytol. 215, 9–11. https://doi.org/10.1111/nph.14620 (2017).Article 
    PubMed 

    Google Scholar 
    Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221, 1457–1465. https://doi.org/10.1111/nph.15463 (2019).Article 
    PubMed 

    Google Scholar 
    Popradit, A. et al. Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep. 5, 14689. https://doi.org/10.1038/srep14689 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hérault, B. & Gourlet-Fleury, S. In Climate Change and Agriculture Worldwide (ed. Torquebiau, E.) 183–196 (Springer, 2016).Chapter 

    Google Scholar 
    Elliott, S. et al. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. For. Ecol. Manag. 184, 177–191. https://doi.org/10.1016/s0378-1127(03)00211-1 (2003).Article 

    Google Scholar 
    Vieira, D. L. M. & Scariot, A. Principles of natural regeneration of tropical dry forests for restoration. Restor. Ecol. 14, 11–20. https://doi.org/10.1111/j.1526-100X.2006.00100.x (2006).Article 

    Google Scholar 
    Hérault, B. & Piponiot, C. Key drivers of ecosystem recovery after disturbance in a neotropical forest. For. Ecosyst. 5, 2. https://doi.org/10.1186/s40663-017-0126-7 (2018).Article 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907. https://doi.org/10.1016/j.biocon.2020.108907 (2021).Article 

    Google Scholar 
    Chanthorn, W. et al. Viewing tropical forest succession as a three-dimensional dynamical system. Theor. Ecol. 9, 163–172. https://doi.org/10.1007/s12080-015-0278-4 (2015).Article 

    Google Scholar 
    Chanthorn, W., Hartig, F. & Brockelman, W. Y. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 404, 100–107. https://doi.org/10.1016/j.foreco.2017.08.001 (2017).Article 

    Google Scholar 
    Rodtassana, C. et al. Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecol. Evol. 11, 15430–15443. https://doi.org/10.1002/ece3.8248 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tor-ngern, P. et al. Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119101 (2021).Article 

    Google Scholar 
    Zhu, S. D., Song, J. J., Li, R. H. & Ye, Q. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ. 36, 879–891. https://doi.org/10.1111/pce.12024 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin-StPaul, N. K. et al. How reliable are methods to assess xylem vulnerability to cavitation? The issue of “open vessel” artifact in oaks. Tree Physiol. 34, 894–905. https://doi.org/10.1093/treephys/tpu059 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ennajeh, M., Simoes, F., Khemira, H. & Cochard, H. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?. Physiol. Plant. 142, 205–210. https://doi.org/10.1111/j.1399-3054.2011.01470.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716. https://doi.org/10.1071/bt12225_co (2016).Article 

    Google Scholar 
    Ewers, F. W. & Fisher, J. B. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot. 76, 645–656. https://doi.org/10.1002/j.1537-2197.1989.tb11360.x (1989).Article 

    Google Scholar 
    Gao, H. et al. Vessel-length determination using silicone and air injection: Are there artifacts?. Tree Physiol. 39, 1783–1791. https://doi.org/10.1093/treephys/tpz064 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sperry, J. S. & Saliendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 17, 1233–1241. https://doi.org/10.1111/j.1365-3040.1994.tb02021.x (1994).Article 

    Google Scholar 
    Melcher, P. J. et al. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol. Evol. 3, 685–694. https://doi.org/10.1111/j.2041-210X.2012.00204.x (2012).Article 

    Google Scholar 
    Edwards, W. R. N. & Jarvis, P. G. Relations between water content, potential and permeability in stems of conifers. Plant Cell Environ. 5, 271–277. https://doi.org/10.1111/1365-3040.ep11572656 (1982).Article 

    Google Scholar 
    Sperry, J. S. & Ikeda, T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol. 17, 275–280. https://doi.org/10.1093/treephys/17.4.275 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pammenter, N. W. & Vander Willigen, C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589–593. https://doi.org/10.1093/treephys/18.8-9.589 (1998).Article 
    PubMed 

    Google Scholar 
    Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214. https://doi.org/10.1007/s004680100095 (2001).Article 

    Google Scholar  More

  • in

    Changes to the gut microbiota of a wild juvenile passerine in a multidimensional urban mosaic

    Szulkin, M. et al. How to quantify urbanization when testing for urban evolution?. Urban Evol. Biol. https://doi.org/10.1093/oso/9780198836841.003.0002 (2020).Article 

    Google Scholar 
    Slabbekoorn, H. Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. https://doi.org/10.1016/j.anbehav.2013.01.021 (2013).Article 

    Google Scholar 
    Christiansen, N. A., Fryirs, K. A., Green, T. J. & Hose, G. C. The impact of urbanisation on community structure, gene abundance and transcription rates of microbes in upland swamps of Eastern Australia. PLoS ONE https://doi.org/10.1371/journal.pone.0213275 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1606034114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McFall-Ngai, M. M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1218525110 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. https://doi.org/10.1111/j.1574-6976.2008.00123.x (2008).Article 
    PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2448 (2019).Article 

    Google Scholar 
    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia https://doi.org/10.1007/s00442-020-04678-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zollinger, S. A. et al. Traffic noise exposure depresses plasma corticosterone and delays offspring growth in breeding zebra finches. Conserv. Physiol. https://doi.org/10.1093/conphys/coz056 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprau, P., Mouchet, A. & Dingemanse, N. J. Multidimensional environmental predictors of variation in avian forest and city life histories. Behav. Ecol. https://doi.org/10.1093/beheco/arw130 (2017).Article 

    Google Scholar 
    Teyssier, A. et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.09.035 (2018).Article 
    PubMed 

    Google Scholar 
    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE https://doi.org/10.1371/journal.pone.0220926 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. & Thorne, L. H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE https://doi.org/10.1371/journal.pone.0209200 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: An exploration into the gut of urban and rural white-crowned sparrows. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00148 (2018).Article 

    Google Scholar 
    Berlow, M., Phillips, J. N. & Derryberry, E. P. Effects of urbanization and landscape on gut microbiomes in white-crowned sparrows. Microb. Ecol. https://doi.org/10.1007/s00248-020-01569-8 (2020).Article 
    PubMed 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell https://doi.org/10.1016/j.cell.2014.05.052 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Sudyka, J., Di Lecce, I., Wojas, L., Rowiński, P. & Szulkin, M. Nest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way. https://doi.org/10.32942/OSF.IO/WP9MN.
    Maziarz, M., Broughton, R. K. & Wesołowski, T. Microclimate in tree cavities and nest-boxes: Implications for hole-nesting birds. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2017.01.001 (2017).Article 

    Google Scholar 
    Thompson, M. J., Capilla-Lasheras, P., Dominoni, D. M., Réale, D. & Charmantier, A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).CAS 
    Article 

    Google Scholar 
    Salmón, P. et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 12, 1–14 (2021).ADS 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sackey, B. A., Mensah, P., Collison, E. & Sakyi-Dawson, E. Campylobacter, Salmonella, Shigella and Escherichia coli in live and dressed poultry from metropolitan Accra. Int. J. Food Microbiol. https://doi.org/10.1016/S0168-1605(01)00595-5 (2001).Article 
    PubMed 

    Google Scholar 
    Benskin, C. M. W. H., Wilson, K., Jones, K. & Hartley, I. R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2008.00076.x (2009).Article 
    PubMed 

    Google Scholar 
    Hansell, M. & Overhill, R. Bird nests and construction behaviour. Bird Nests Constr. Behav. https://doi.org/10.1017/cbo9781139106788 (2000).Article 

    Google Scholar 
    Siddiqui, S. H., Khan, M., Kang, D., Choi, H. W. & Shim, K. Meta-analysis and systematic review of the thermal stress response: Gallus gallus domesticus show low immune responses during heat stress. Front. Physiol. 13, 31 (2022).Article 

    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13255 (2016).Article 
    PubMed 

    Google Scholar 
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).Article 

    Google Scholar 
    Benskin, C. M. W. H., Rhodes, G., Pickup, R. W., Wilson, K. & Hartley, I. R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2010.04892.x (2010).Article 
    PubMed 

    Google Scholar 
    Garrett, W. S. et al. Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe https://doi.org/10.1016/j.chom.2010.08.004 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Videvall, E. et al. Early-life gut dysbiosis linked to juvenile mortality in ostriches. BMC Microbiome 8, 1–13 (2020).Article 

    Google Scholar 
    Hooper, L. V. & MacPherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. https://doi.org/10.1038/nri2710 (2010).Article 
    PubMed 

    Google Scholar 
    Borre, Y. E. et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. https://doi.org/10.1016/j.molmed.2014.05.002 (2014).Article 
    PubMed 

    Google Scholar 
    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. https://doi.org/10.14411/eje.2012.060 (2012).Article 

    Google Scholar 
    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L. et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. https://doi.org/10.1038/s41598-020-77256-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodawatta, K. H. et al. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Anim. Microbiome 2021(3), 1–14 (2021).
    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 1–20 (2021).Article 

    Google Scholar 
    Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05552.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro1341 (2006).Article 
    PubMed 

    Google Scholar 
    Lucass, C., Eens, M. & Müller, W. When ambient noise impairs parent-offspring communication. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.03.015 (2016).Article 
    PubMed 

    Google Scholar 
    Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: An integrative, mechanistic review. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2011.01664.x (2011).Article 
    PubMed 

    Google Scholar 
    Cui, B., Gai, Z., She, X., Wang, R. & Xi, Z. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci. Rep. https://doi.org/10.1038/srep36693 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campo, J. L., Gil, M. G. & Dávila, S. G. Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl. Anim. Behav. Sci. https://doi.org/10.1016/j.applanim.2004.08.028 (2005).Article 

    Google Scholar 
    Injaian, A. S., Taff, C. C. & Patricelli, G. L. Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Anim. Behav. https://doi.org/10.1016/j.anbehav.2017.12.003 (2018).Article 

    Google Scholar 
    Cui, B. et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J. Neuroinflammation https://doi.org/10.1186/s12974-018-1223-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, L. et al. Constant light exposure alters gut microbiota and promotes the progression of steatohepatitis in high fat diet rats. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01975 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chatelain, M. et al. Replicated, urban-driven exposure to metallic trace elements in two passerines. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Rosenfeld, C. S. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell. Infect. Microbiol. 7, 396 (2017).Article 

    Google Scholar 
    Sommer, F. & Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro2974 (2013).Article 
    PubMed 

    Google Scholar 
    Tomiałojć, L. & Wesołowski, T. Diversity of the Białowieza forest avifauna in space and time. J. Ornithol. https://doi.org/10.1007/s10336-003-0017-2 (2004).Article 

    Google Scholar 
    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. https://doi.org/10.1111/eva.13081 (2021).Article 
    PubMed 

    Google Scholar 
    Teyssier, A., Lens, L., Matthysen, E. & White, J. Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01524 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond 1859). 147, 17–24 (2005).Article 

    Google Scholar 
    Corsini, M., Marrot, P. & Szulkin, M. Quantifying human presence in a heterogeneous urban landscape. Behav. Ecol. https://doi.org/10.1093/beheco/arz128 (2019).Article 

    Google Scholar 
    Corsini, M., Dubiec, A., Marrot, P. & Szulkin, M. Humans and tits in the city: Quantifying the effects of human presence on great tit and blue tit reproductive trait variation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00082 (2017).Article 

    Google Scholar 
    Kyba, C. C. M. et al. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. https://doi.org/10.3390/rs70100001 (2015).Article 

    Google Scholar 
    Maraci, Ö. et al. The gut microbial composition is species-specific and individual-specific in two species of estrildid finches, the Bengalese finch and the zebra finch. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.619141 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engel, K. et al. Individual- and species-specific skin microbiomes in three different estrildid finch species revealed by 16S amplicon sequencing. Microb. Ecol. https://doi.org/10.1007/s00248-017-1130-8 (2017).Article 
    PubMed 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01541-09 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics https://doi.org/10.1093/bioinformatics/btq461 (2010).Article 
    PubMed 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Clarke, K. R., Gorley, R., Somerfield, P. & Warwick, R. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation 3rd edn (Prim. Plymouth, 2014).Shannon, C. E. The mathematical theory of communication. MD Comput. https://doi.org/10.2307/410457 (1997).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. https://doi.org/10.1016/0006-3207(92)91201-3 (1992).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. et al. The car Package. R (2012).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. https://doi.org/10.1111/j.2041-210x.2009.00001.x (2010).Article 

    Google Scholar 
    DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).Article 
    MATH 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains Oregon and California. Ecol. Monogr. https://doi.org/10.2307/1948435 (1960).Article 

    Google Scholar 
    Paulson, J. metagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp (2014).Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. https://doi.org/10.2307/1942268 (1957).Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01996-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-6. cran.ism.ac.jp (2019).Anderson, M. J. & Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. https://doi.org/10.1046/j.1442-9993.2001.01070.x (2001).Article 

    Google Scholar 
    Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps092205 (1993).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2019).
    Google Scholar  More

  • in

    Collegiality pays and biodiversity struggles

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Funding battles stymie plan to protect global biodiversityScientists are frustrated with slow progress towards a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the United Nations Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades.Many who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up in negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough.Negotiators say they will now have to meet again before a highly anticipated UN biodiversity summit later this year, where the deal was to be signed.‘Collegiality’ influences researchers’ promotion prospectsUniversities in North America often consider how well researchers interact with each other when making decisions about who gets promoted, a study has found, even though these factors are not formally acknowledged in review guidelines.A researcher’s performance is usually assessed according to three pillars: research, teaching and service. But in recent years, there has been a push from some academics to add another pillar: collegiality. Many say that the concepts of cooperation, collaboration and respect, which broadly fall under the definition of collegiality, are important to the functioning of laboratories and research teams.DeDe Dawson, an academic librarian at the University of Saskatchewan in Saskatoon, Canada, and colleagues analysed more than 860 review, promotion and tenure documents from different departments at 129 universities in the United States and Canada to get a sense of how often collegiality is taken into account.The study, published on 6 April (D. Dawson et al. PLoS ONE 17, e0265506; 2022), found that the concept of collegiality was widespread: the word ‘collegiality’ and related terms, such as ‘citizenship’ or ‘professionalism’, appeared 507 times in 213 of the documents, suggesting that it was often taken into account in evaluations. But just 85 documents included a definition of the term, and fewer still explained how it was measured or used in assessments.

    Source: D. Dawson et al. PLoS ONE 17, e0265506 (2022)

    Collegiality was mentioned most often in research-intensive institutions (see ‘Academia’s fourth pillar’). The authors say that this could be because the behaviour involved is valued in research groups.Dawson and her colleagues warn that relying on collegiality in performance reviews without adequate guidance could introduce bias, as those in charge fill in the blanks with their own definitions.“We need to make sure that we don’t use collegiality to exclude others that may communicate or interact differently,” says Sujay Kaushal, a geologist at the University of Maryland in College Park, who has previously studied collegiality. More