More stories

  • in

    Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

    Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).Article 
    PubMed 

    Google Scholar 
    Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).Article 
    PubMed 

    Google Scholar 
    Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).Article 

    Google Scholar 
    Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).Article 

    Google Scholar 
    Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).Book 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).Article 

    Google Scholar 
    Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).Article 

    Google Scholar 
    Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).Article 

    Google Scholar 
    Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).Article 

    Google Scholar 
    Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).Article 

    Google Scholar 
    Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).Article 

    Google Scholar 
    Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).Article 

    Google Scholar 
    Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).
    Google Scholar 
    Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).
    Google Scholar 
    Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).Article 

    Google Scholar 
    Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).Article 

    Google Scholar 
    Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).Article 

    Google Scholar 
    Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).Article 

    Google Scholar 
    Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).Article 

    Google Scholar 
    Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).Article 

    Google Scholar 
    Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).Article 

    Google Scholar 
    Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).Article 

    Google Scholar 
    Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).
    Google Scholar 
    Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).Article 

    Google Scholar 
    Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).Article 

    Google Scholar 
    Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).Article 
    PubMed 

    Google Scholar 
    Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).
    Google Scholar 
    Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).Article 

    Google Scholar 
    Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).Article 

    Google Scholar 
    Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).Article 

    Google Scholar 
    Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).Article 

    Google Scholar 
    Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).Article 

    Google Scholar 
    Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).Article 

    Google Scholar 
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).Article 

    Google Scholar 
    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).Article 

    Google Scholar 
    Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).Article 

    Google Scholar 
    Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).Article 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).Article 

    Google Scholar 
    Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).Article 

    Google Scholar 
    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).Article 

    Google Scholar 
    Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).Article 

    Google Scholar 
    Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).Article 

    Google Scholar 
    Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).
    Google Scholar 
    Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).
    Google Scholar  More

  • in

    The rising moon promotes mate finding in moths

    The moon increases mate finding in mothsTo investigate the impact of natural and artificial light sources on mate finding, we analyzed flight behavior in male moths, which were reliably attracted by caged virgin females (see Materials and Methods for details). Since we used these females specifically to exploit their attraction effect, we refer to them as ‘traps’ in the following. To establish a choice scenario (see below), males were released equidistantly from the traps, which were located north and south of the core release site in central Germany. Besides the stars, the moon creates the natural light environment that moths might use for visual orientation. We therefore first tested if the moon affects mate finding. We found that the percentage of males arriving within the experimental time (8 min from release, 58.6% of flights) at a trap increased significantly with the appearance of the moon (logistic regression: z = −2.06, p = 0.04, n = 58) and did not depend on the presence of clouds in front of the moon (z = −0.83, p = 0.406, n = 58). A few males reached the females later during the experimental night (13.8% of flights) and were released again on the next day. Some males never reached a trap and could therefore not be tested again in the next days (27.6% of flights). Furthermore, the time that successful males needed to reach a trap was significantly influenced by the height of the moon above or below the horizon (Fig.1; Cox PH survival model, z = 2.46, p = 0.014, n = 34): the higher the moon was above the horizon, the faster males were able to locate and reach the females. The presence of clouds in front of the moon did not play a significant role in this context either (z = −0.65, p = 0.519, n = 34), leading to the conclusion that the moon was equally well perceived if covered partly by clouds and used for effective orientation towards the females. Although the lunar phase changed during the period of the experiment from full moon to new moon, flight duration was not significantly affected by the percentage of the lit moon disk (z = 0.44, p = 0.66, n = 34). Thus, the properties of the moon that affected the flight duration of males were independent of the lunar phase.Fig. 1: Expected flight duration of a moth.Flight duration (black line) was calculated as the median flight duration predicted by the Cox PH model (p = 0.014, n = 34) for arrivals within 8 minutes after release and averaged over all individuals. Circles represent the actual measured values. Dashed lines indicate the confidence interval of the predicted duration at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageIt is important to emphasize that the results were not significantly affected by traits on the individual level like body size or origin of the animal (see Supplementary Results and Discussion for details). Furthermore, a possible learning effect of animals that were released more than once was not detectable since flight duration did not decrease depending on ‘experience’ but only with the elevation of the moon (Fig. S1). Thus, the moon as an easily perceivable orientation cue increased mate finding in general but also depended on its elevation. Despite two exceptions of long flight durations at moon elevations > 20° that go back to the same animal probably for individual reasons (Fig. S1), the variance in flight duration was highest at low moon elevations (Fig. 1). This relatively high variance at low moon elevations emphasizes the question if artificial lights affected mate finding, particularly whenever the moon as a natural light cue was not yet prominent.Linking flight behavior to the light environmentWe used a calibrated digital all-sky camera to track changes in the natural and artificial components of the night sky brightness24 (Fig. 2 a–c). A similar camera system was recently used to study dung beetle behavior21. Although the impact of light pollution on the site was not strong, the night sky was also not completely pristine. Luminance (LVv) values were about 0.34 mcd/m² at zenith and 1.6 mcd/m² near the horizon under clear sky conditions when the moon was not visible. A natural (unpolluted) sky brightness is 0.25 mcd/m² at zenith and can be used as the reference value “Natural Sky Unit” (NSU) for easy comparison (see also Materials and Methods). The analysis of specific sky sectors revealed that the moon was the strongest factor determining the ambient brightness, brightening every sector of the sky as soon as it appeared above the horizon (Fig. 2d). During observation times, the course of the moon mainly progressed through the eastern part of the sky, affecting particularly the LvV values in the corresponding sectors (Fig. 2d). Furthermore, light conditions never corresponded to a non-light polluted sky, as NSU values were always greater than one. Most sectors in the south, west and north (sectors seven to 12 and one) were hardly subjected to fluctuations. Nevertheless, it is recognizable that the moon made a decisive contribution to the light environment in all directions since images with the moon above the horizon were always brighter than those with the moon below the horizon (Fig. 2d).Fig. 2: Quantification of the light environment with all-sky imagery and its impact on flight behavior of moths.a Raw RGB all-sky image with clear sky and a visible moon 26° above the horizon at 119° azimuth angle, South-east (24 July 2019, 03:23). b Same image as in a with processed luminance values. c Processed all-sky image in luminance with clear sky, a visible milky way (green patches in a ‘ribbon-shape’ across the (blue) night sky), skyglow near the horizon, and a non-visible moon 0° above the horizon at 87° azimuth angle, East (24 July 2019, 0:25). The colors of the processed image correspond to the legend in b. The black lines mark the sky segments used to quantify the light environment. The outer ring covers 5° above the horizon (85°−90° zenith angle), the inner ring 20° above the outer ring (65°−85° zenith angle). Furthermore, the sky was divided into 12 sectors of 30° width along the azimuth direction (extension by dashed line), starting with the sector marked with the small circle (counting clockwise). d Luminance in natural sky units (NSU) for each full sector of 30°. The moon icons indicate sectors in which the moon was visible, regardless of its phase. The size of each symbol encodes the rank of the frequency (n = 33). e Trap choice of arrived males depending on the position of the moon at the moment of release on the north-south axis (north = 0°). The y-axis displays choice of the southern trap at 0.0 and of the northern trap at 1.0. p = 0.022, n = 42. f Male moth affinity to northern trap in response to the direction of maximum luminance measured in the outer ring of 5°. Each circle indicates an observed arrival, p = 0.753, n = 41. g Male moth affinity to northern trap as in f but with luminance measured in the inner ring of 20°, p = 0.065, n = 41. e–g The line represents the prediction of the logistic model, providing a probability value for arriving at the northern trap (north prone = 1; south prone = 0). Dashed lines indicate the confidence interval of the prediction at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageDue to the design of the experiment with one trap located in the north and the other in the south of a central release site, we were able to investigate the choice behavior of males, especially in respect of the possible influence of the cardinal position of the moon as it was almost exclusively visible in the southern hemisphere of the sky (Fig. 2d). Although the moon continued to move south during the night, the moon’s cardinal position never overlapped with the exact direction of the southern trap. The only parameter that had a significant effect on choice behavior was indeed the cardinal position of the moon (Fig. 2e, logistic regression, z = −2.3, p = 0.022, n = 42). The more southern the moon’s position was, the more likely males flew to the southern trap. However, while some clouds in front of the moon had no significant effect on choice behavior (z = 0, p = 1, n = 42), moon above the horizon showed a tendency to affect males (z = −1.82, p = 0.069, n = 42). The results indicate that despite the general increase of ambient brightness by the moon, it is its position that mainly influenced the flight direction of males. Thus, moths preferred a flight direction with the prominent compass cue ahead to steer their flight towards the females but it is important to emphasize that moon and trap had an angular difference of at least 23° (80.8° to the moon’s mean cardinal direction). Therefore, males that chose to fly towards the southern trap did not fly directly towards the direction of the moon.As the moon represents a natural distant light source, we tested whether distant artificial light sources or skyglow might elicit a comparable effect on the behavior of male moths and if such light sources might mask the moon. To evaluate the light environment with regards to these aspects, we defined sky segments of particular interest that occurred due to the location of the experimental field (Fig. 2c). For each arrival at a trap, the brightest sector of the environment was determined and placed on a north-south axis of maximum 180 degrees (Fig. 2f, g). If we look at the brightest sector of the environment and distinguish between the area close to the horizon, i.e. “outer ring” (Fig. 2f) and the one above, i.e. “inner ring” (Fig. 2g), we can observe differences in trap choice. The line indicates the logistic regression model and provides the probability of arriving at the northern trap. For the Lv in the area close to the horizon no effect of maximum Lv on trap choice could be found (logistic regression, z = 0.31, p = 0.753, n = 41). For the segment further above the horizon the probability of flying to the southern trap increased with maximum Lv but the results are marginally not significant (z = −1.85, p = 0.065, n = 41). Our results for trap selection indicate that distant artificial lights of the surroundings did not attract males and support the hypothesis that the moon, once it appears above the horizon and stands out from the general light (pollution) near the horizon (above five degrees), is used as an effective visual cue with moths rather flying towards than away from.Digital cameras are suitable to measure the dynamics of night-time lighting conditions25,26, and allow researchers to track changes in artificial lighting conditions and brightness of the sky simultaneously27. However, it is not straightforward to distinguish between ALAN and natural light sources like the moon with luminance images when the moon is close to the horizon and thus in the section of the sky where most light pollution occurred. Yet, once the moon rose higher than 5° and thus stood out distinctly from the light-polluted horizon, it could be clearly identified on the images (Fig. 2b). In this context, it is particularly remarkable that the speed at which the females were reached increased reliably only above a similar threshold (Fig. 1), with the only exceptions of two flights with long durations at a moon elevation greater than 20° (Fig. 1); both flights originated from the same individual (Fig. S1). Thus, the high variance of flight durations at low moon elevations (Fig. 1) supports our hypothesis that the moon, as an orientation cue, can be masked by artificial light for the animals as well. Yet, this hypothesis needs to be explicitly tested in future experiments. In general, the possible consequences of light pollution are still uncertain28, especially because the amount of artificial light emitted during the night continues to increase exponentially worldwide18. But regardless of this, the moon is the decisive orientation cue as soon as it is visibly silhouetted against the horizon despite possible diffuse light pollution.Another interesting next research project would be to investigate the relevance of polarized light, as this could provide an explanation for the occasional fast flights at times of low lunar elevations (cf. Figure 1). Furthermore, it might explain why flight duration was not significantly affected by clouds in front of the moon since the polarization pattern extends over the whole sky and is therefore not shielded completely by scattered clouds29. For dung beetles it has been already shown that they are capable of using the polarization signal for navigation16,30,31 and it has been proposed that moths might be capable of utilizing the same signal32. At the same time, it has already been demonstrated that urban skyglow can diminish the lunar polarization signal33, making a detailed investigation of the interplay between these two factors and the significance for moth orientation particularly exciting to understand underlying mechanisms.Our results confirm that moths use the moon as an orientation cue, supporting the notion of Vickers & Baker34 that pheromones alone are not sufficient for successful (and fast) orientation. Since flight duration decreased as a function of lunar elevation, we conclude that the moon contributes to mating success, especially when it can be easily perceived. Since nocturnal landscapes around the world have been drastically restructured in terms of light intensity and light spectrum due to the rapid spread and increase of electrical lighting18, a deeper understanding of orientation mechanisms even in the absence of the moon as an easily perceivable cue could provide a valuable contribution to counteract insect decline. More

  • in

    The relationship between ecosystem services and human modification displays decoupling across global delta systems

    Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).CAS 
    Article 

    Google Scholar 
    Cumming, G. S. & Von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Natl. Acad. Sci.115, 9533–9538 (2018).CAS 
    Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS 
    Article 

    Google Scholar 
    de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).Article 

    Google Scholar 
    Clapp, J. Financialization, distance and global food politics. J. Peasant Stud. 41, 797–814 (2014).Article 

    Google Scholar 
    Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).Article 

    Google Scholar 
    United Nations Environment Programme International Resource Panel. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth (2011).Srinivasana, U. T. et al. The debt of nations and the distribution of ecological impacts from human activities. Proc. Natl. Acad. Sci. 105, 1768–1773 (2008).Article 

    Google Scholar 
    Rist, L. et al. Applying resilience thinking to production ecosystems. Ecosphere 5, 1–11 (2014).Article 

    Google Scholar 
    Dermody, B. J. et al. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 18, 5025–5040 (2014).Article 

    Google Scholar 
    Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).Article 

    Google Scholar 
    Potschin, M. B. & Haines-Young, R. H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 35, 575–594 (2011).Article 

    Google Scholar 
    Peng, J. et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 607–608, 706–714 (2017).Article 
    CAS 

    Google Scholar 
    Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (2005). https://doi.org/10.1057/9780230625600Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Wallace, K. J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139, 235–246 (2007).Article 

    Google Scholar 
    Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article 

    Google Scholar 
    Saidi, N. & Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 13, 113001 (2018).Cord, A. F. et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264–272 (2017).Article 

    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35, 25–33 (2000).Article 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).CAS 
    Article 

    Google Scholar 
    Hamann, M., Biggs, R. & Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 34, 218–226 (2015).Article 

    Google Scholar 
    Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).Article 

    Google Scholar 
    Santos, M. J. & Dekker, S. C. Locked‑in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020).Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).Article 

    Google Scholar 
    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).Article 

    Google Scholar 
    Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the mekong basin. Ambio 39, 344–348 (2010).Article 

    Google Scholar 
    Notebaert, B., Broothaerts, N. & Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 164, 27–38 (2018).Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947 (2007).CAS 
    Article 

    Google Scholar 
    Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).CAS 
    Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    FAO. AQUASTAT Database. (2022). Available at: https://www.fao.org/aquastat/statistics/query/index.html. (Accessed: 14th February 2022)Chau, N. D. G., Sebesvari, Z., Amelung, W. & Renaud, F. G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058 (2015).CAS 
    Article 

    Google Scholar 
    Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).Article 

    Google Scholar 
    Käkönen, M. Mekong Delta at the crossroads: more control or adaptation? Ambio 37, 205–212 (2008).Article 

    Google Scholar 
    Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).Article 

    Google Scholar 
    Schneider, P. & Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206, 491–503 (2020).Article 

    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 
    Article 

    Google Scholar 
    Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    Arowolo, A. O., Deng, X., Olatunji, O. A. & Obayelu, A. E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 636, 597–609 (2018).CAS 
    Article 

    Google Scholar 
    Lang, Y. & Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 102, 186–198 (2019).Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).CAS 
    Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    Article 

    Google Scholar 
    Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. 109, 5989–5994 (2012).CAS 
    Article 

    Google Scholar 
    Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: A global meta-analysis. PLoS One 8, e81292 (2013).Davidson, N. C., Fluet-Chouinard, E. & Finlayson, C. M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article 

    Google Scholar 
    Gordon, L. J., Finlayson, C. M. & Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 97, 512–519 (2010).Article 

    Google Scholar 
    Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).Article 

    Google Scholar 
    Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).CAS 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS 
    Article 

    Google Scholar 
    Stott, I., Soga, M., Inger, R. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).Article 

    Google Scholar 
    Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation. Earth Surf. Dyn. Discuss. 7, 773–787 (2019).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 89, 93–94 (2008).USGS. HYDRO1k Elevation Derivative Database. https://doi.org/10.5066/F77P8WN0 (2000).CIESIN – Center for International Earth Science Information Network Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H4JW8BX5 (2018).Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center https://doi.org/10.7927/H46T0JQ4 (2018).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).Article 

    Google Scholar 
    Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).Article 

    Google Scholar 
    Reader, M. O. et al. Zenodo. https://doi.org/10.5281/zenodo.6346472 (2022).QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019).R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Assessment of acute toxicity and developmental transformation impacts of polyethylene microbead exposure on larval daggerblade grass shrimp (Palaemon pugio)

    Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 24(27), 21530–21547 (2017).Article 

    Google Scholar 
    Gray, A. D., Wertz, H., Leads, R. R. & Weinstein, J. E. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. Mar. Pollut. Bull. 128, 223–233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weinstein, J. E., Dekle, J. L., Leads, R. R. & Hunter, R. A. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Mar. Pollut. Bull. 160, 111518 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robin, R. S. et al. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India. Sci. Total Environ. 703, 134947 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kwon, O. Y., Kang, J. H., Hong, S. H. & Shim, W. J. Spatial distribution of microplastic in the surface waters along the coast of Korea. Mar. Pollut. Bull. 155, 110729 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58(8), 1225–1228 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hantoro, I., Löhr, A. J., Van Belleghem, F. G., Widianarko, B. & Ragas, A. M. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A 36(5), 674–711 (2019).CAS 
    Article 

    Google Scholar 
    Retama, I. et al. Microplastics in tourist beaches of Huatulco Bay, Pacific coast of southern Mexico. Mar. Pollut. Bull. 113(1–2), 530–535 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosseini, R., Sayadi, M. H., Aazami, J. & Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 160, 111682 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andrady, A. L. Persistence of Plastic Litter in the Oceans. Marine Anthropogenic Litter 57–72 (Springer, 2015).Leads, R. R. & Weinstein, J. E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 145, 569–582 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79(1–2), 278–283 (2014).PubMed 

    Google Scholar 
    Plastics Europe. Plastics—The Facts 2017. (Plastics Europe, 2017).Lusher, A. L., Welden, N. A., Sobral, P., & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In Analysis of Nanoplastics and Microplastics in Food 119–148. (CRC Press, 2020).Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62(6), 1207–1217 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gray, A. D. & Weinstein, J. E. Size-and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ. Toxicol. Chem. 36(11), 3074–3080 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34(11), 2564–2572 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12), 6646–6655 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D. & Matrai, P. A. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Mar. Pollut. Bull. 137, 638–645 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scott, N. et al. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 146, 125–133 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10e17 (2015).
    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129(1), 179–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quanbin, L. et al. Uptake and elimination of microplastics by Tigriopus japonicus and its impact on feeding behavior. Asian J. Ecotoxicol. 4, 184–191. https://doi.org/10.7524/AJE.1673-5897.20191216002 (2020).Article 

    Google Scholar 
    Galloway, T. S. & Lewis, C. N. Marine microplastics spell big problems for future generations. Proc. Natl. Acad. Sci. U.S.A. 113(9), 2331e2333 (2016).Article 
    CAS 

    Google Scholar 
    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116. https://doi.org/10.1038/s41559-017-0116 (2017).Article 

    Google Scholar 
    Carlos de Sá, L., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Chung, K. W., West, J. B., Pennington, P. L. & DeLorenzo, M. E. Developmental and reproductive effects in grass shrimp (Palaemon pugio) following acute larval exposure to a thin oil sheen and ultraviolet light. Aquat. Toxicol. 228, 105651 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, D. M., Harding, J. M., Stroud, K. B. & Yozzo, K. L. Movements and site fidelity of grass shrimp (Palaemonetes pugio and P. vulgaris) in salt marsh intertidal creeks. Mar. Biol. 162(6), 1275–1285 (2015).Article 

    Google Scholar 
    Kunz, A. K., Ford, M. & Pung, O. J. Behavior of the grass shrimp Palaemonetes pugio and its response to the presence of the predatory fish Fundulus heteroclitus. Am. Midl. Nat. 155, 286–294. https://doi.org/10.1674/0003-0031 (2006).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Cozar, A. et al. Plastic debris in the open ocean. PNAS 111, 10239e10244. https://doi.org/10.1073/pnas.1314705111 (2014).CAS 
    Article 

    Google Scholar 
    Leads, R. R., Burnett, K. G. & Weinstein, J. E. The effect of microplastic ingestion on survival of the grass shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environ. Toxicol. Chem. 38(10), 2233–2242 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beiras, R., Duran, I., Bellas, J. & Sanchez-Marín, P. Biological effects of contaminants: Paracentrotus lividus sea urchin embryo test with marine sediment elutriates. Int. Counc. Explor. Sea. Technol. Environ. Mar. Sci. 51, 113 (2012).
    Google Scholar 
    Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 709, 136050 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lindeque, P. K. et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ Pollut. 265(Pt A), 114721. https://doi.org/10.1016/j.envpol.2020.114721 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8), 1596e1605 (2011).Article 
    CAS 

    Google Scholar 
    Leight, A. K., Scott, G. I., Fulton, M. H. & Daugomah, J. W. Long term monitoring of grass shrimp Palaemonetes spp. Population metrics at sites with agricultural runoff influences 1, 2. Integr. Comp. Biol. 45(1), 143–150 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weinstein, J. E. & Garner, T. R. Piperonyl butoxide enhances the bioconcentration and photoinduced toxicity of fluoranthene and benzo [a] pyrene to larvae of the grass shrimp (Palaemonetes pugio). Aquat. Toxicol. 87(1), 28–36 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Chung, K. W., Hoguet, J., Sapozhnikova, Y. & DeLorenzo, M. E. Toxicity of the mosquito control insecticide phenothrin to three life stages of the grass shrimp (Palaemonetes pugio). J. Environ. Sci. Health B 46(5), 426–431 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broad, A. C. Larval development of Palaemonetes pugio Holthuis. Biol. Bull. 112, 144–161 (1957).Article 

    Google Scholar 
    Broad, A. C. The relationship between diet and larval development of Palaemonetes. Biol. Bull. 112, 162–170 (1957).Article 

    Google Scholar 
    Sandifer, P. A. Effects of temperature and salinity on larval development of grass shrimp, Palaemonetes vulgaris (Decapoda, Caridea). Fish. Bull. 71(1), 115 (1973).
    Google Scholar 
    Boston, M. A. & Provenzano, A. J. Attempted hybridization of the grass shrimp Palaemonetes (Caridea, palaemonidae) with an evaluation of taxonomic characters of juveniles. Estuaries 5(3), 165–174 (1982).Article 

    Google Scholar 
    Anderson, G. S. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Grass shrimp (No. 4). The Service. (1985).Vikas, P. A. et al. Unraveling the effects of live microalgal enrichment on Artemia nauplii. Indian J. Fish. 59(4), 111–121 (2012).
    Google Scholar 
    Provenzano, A. J., Schmitz, K. B. & Boston, M. A. Survival, duration of larval stages, and size of postlarvae of grass shrimp, Palaemonetes pugio, reared from Kepone® contaminated and uncontaminated populations in Chesapeake Bay. Estuaries 1(4), 239–244 (1978).Article 

    Google Scholar 
    Johnson, W. S., & Allen, D. M. Zooplankton of the Atlantic and Gulf Coasts: A Guide to Their Identification and Ecology. (JHU Press, 2012).Hubschman, J. H. The development and function of neurosecretory sites in the eyestalks of larval Palaemonetes (Decapoda: Natantia) (Doctoral dissertation, The Ohio State University, 1962).Wheeler, M. W., Park, R. M. & Bailer, A. J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. Int. J. 25(5), 1441–1444 (2006).CAS 
    Article 

    Google Scholar 
    Isobe, A., Kubo, K., Tamura, Y., Nakashima, E. & Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89(1–2), 324–330 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Syakti, A. D. et al. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Mar. Pollut. Bull. 122(1–2), 217–225. https://doi.org/10.1016/j.marpolbul.2017.06.046 (2017) (Epub 2017 Jun 20 PMID: 28645761).CAS 
    Article 
    PubMed 

    Google Scholar 
    Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS One 8(11), e80466 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Järlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 729, 138950. https://doi.org/10.1016/j.scitotenv.2020.138950 (2020) (Epub 2020 Apr 26. PMID: 32371211).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Key, P. B., Fulton, M. H., Scott, G. I., Layman, S. L. & Wirth, E. F. Lethal and sublethal effects of malathion on three life stages of the grass shrimp, Palaemonetes pugio. Aquat. Toxicol. 40(4), 311–322 (1998).CAS 
    Article 

    Google Scholar 
    DeLorenzo, M. E., Serrano, L., Chung, K. W., Hoguet, J. & Key, P. B. Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio. Ecotoxicol. Environ. Saf. 64(2), 122–127 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Meyer, S. L. & Chung, K. W. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health B 38(5), 539–549 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    Key, P. B., Chung, K. W., Hoguet, J., Shaddrix, B. & Fulton, M. H. Toxicity and physiological effects of brominated flame retardant PBDE-47 on two life stages of grass shrimp, Palaemonetes pugio. Sci. Total Environ. 399(1–3), 28–32 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52(4), 2278–2286 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehtiniemi, M. et al. Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus. Mar. Pollut. Bull. 173, 113103 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez-Gómez, C., León, V. M., Calles, S., Gomáriz-Olcina, M. & Vethaak, A. D. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar. Environ. Res. 130, 69–76 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Khosrovyan, A., Gabrielyan, B. & Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 259, 127456 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar Pollut Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020) (Epub 2020 Mar 31 PMID: 32319895).CAS 
    Article 
    PubMed 

    Google Scholar 
    LeMoine, C. M. et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ. Pollut. 243, 591–600 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, J. A. Regulation of tissue growth in crustacean larvae by feeding regime. Biol. Bull. 178(3), 217–221 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, H. et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 261, 114089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Recovery at sea of abandoned, lost or discarded drifting fish aggregating devices

    Relevance for design of dFAD recovery programmesOur results provide guidance for implementing effective dFAD recovery programmes. More than 40% of dFAD trajectories in the Indian and Atlantic oceans drifted away from fishing grounds never to return, potentially later stranding in coastal areas (Imzilen et al.5 estimated that 10–20% of all French dFADs eventually strand, whereas 16.0% of our trajectories that definitively leave fishing zones strand). This loss represents at least 529 tonnes yr−1 of marine litter for the French fleet5,14 and probably 2–3 times that weight including all purse seiners in the two oceans28. More than 20% of dFAD trajectories that drifted away from fishing grounds passed within 50 km of a port (ranging from 3.3% to 31.6% for cut-off distances from 10 to 100 km; potentially underestimated due to remote deactivation of GPS buoys by purse seiners). This result suggests that coastal dFAD recovery programmes could be complementary to other mitigation measures, such as dFAD buoy limits already implemented by tRFMOs and spatio-temporal dFAD deployment closures proposed by Imzilen et al.5. Indeed, Imzilen et al.5 showed that prohibiting dFAD deployments in areas that would probably lead to strandings would principally protect coastal areas of the southwestern Indian Ocean and the eastern Gulf of Guinea, whereas we found that dFADs exiting fishing grounds from other areas, such as the northwestern Indian Ocean and the northern Gulf of Guinea, passed close to regional ports and could potentially be recovered at sea. Although our results are specific to the French and associated purse-seine fleet (representing ~1/3–1/2 of catch and dFAD deployments of all fleets28), available data indicate that other purse-seine fleets have similar spatio-temporal patterns of deployments28, suggesting that our results are applicable to the entire tropical tuna purse-seine fishery in the Indian and Atlantic oceans.These results contrast somewhat with existing analyses from the western and central Pacific Ocean, where it was estimated that 36% of dFADs ended up outside fishing grounds, but that the final recorded position of these abandoned dFADs were typically far from ports (502–952 km)29. Although these differences may be related to the larger spatial scales of the Pacific Ocean, additional analyses based on examinations of entire trajectories are needed to assess viability of recovery programmes based on ports.Consequences of spatial and temporal variation of dFAD lossHigh seas recovery could also be structured around our results on where important percentages of buoys exit fishing grounds towards the high seas. In the Indian Ocean, dFADs definitively leaving from the eastern border (70° E) end up stranded in or transiting through the Maldives and the eastern Indian Ocean. This happens relatively less frequently in the period from June to August and becomes much more frequent from October to December. Low loss rates during June to August are consistent with known seasonal patterns in dFAD deployment and fishing during this period4,25. At that time of the year, dFADs are deployed by fishers with the intent that they drift along the eastern African coast until they reach the main dFAD fishing grounds off Somalia, avoiding strong monsoon-driven currents favourable to eastward export of dFADs from July to December27. This is followed by a more intense dFAD fishing season during August–October. Finally, starting in October/November, a period of transition towards fishing further south in the Indian Ocean occurs, with relatively more focus on free-swimming school sets25,30, probably contributing to abandonment of dFADs in the northern Indian Ocean in the last quarter of the year.In the Atlantic Ocean, dFADs lost to the high seas exit fishing grounds mostly from the northwestern border (between 10° and 20° N) and southwestern border (2°–5° S), which is consistent with transport by the North Equatorial and South Equatorial Currents26. Although the seasonality of loss is less marked in the Atlantic Ocean than in the Indian Ocean, the peak months of July and December are associated with transitions in the spatio-temporal distribution of deployments from principally deploying just north of the equator off of West Africa to focusing on the Gulf of Guinea further east30. These transitions could lead to increased dFAD abandonment in areas highly susceptible to export of dFADs, although seasonality in currents may also play a role.Challenges facing recovery programmesWhile the information provided in this paper on spatio-temporal patterns of dFAD loss provides an essential foundation for implementing dFAD recovery strategies, there are several important practical challenges to the success of such efforts. Most efforts towards reducing or removing marine debris after it has been created have so far focused on beach clean-ups31,32. Such operations are costly, time-consuming and only capture a fraction of the overall debris18,33. Recovery at sea is a promising alternative solution34, but this requires consolidating systems to observe these debris35 and understanding their drift36, as well as putting in place appropriate incentives and socio-economic and political frameworks37. Broadly, data availability (for example, access to near-real-time location data from all fleets), equipment availability (for example, appropriately sized and equipped vessels for collecting large debris such as dFADs)32, recovery programme structure (for example, collaboration with local fishers, NGOs and/or nation-states; use of support vessels, and/or chartering of dFAD recovery vessels) and funding sources (for example, reuse of recovered tracking buoys or dFAD plastic floats, and/or polluter-payer systems collected at dFAD deployment or manufacturing) need to be optimized to recover a maximum number of dFADs while minimizing costs and fishing impacts. These considerations highlight the importance of identifying areas leading to losses and multiple ports of different sizes from which operations could potentially be conducted, as we have done above, as well as careful analysis of the possible impediments to implementation of recovery programmes.Some possible impediments to dFAD recovery programmes are environmental, strategic or geopolitical. For instance, although the Somali coast is identified as a dFADs stranding hotspot in winter5 and has potential for a port-based recovery programme as we show here, recovering dFADs along this coast is unlikely to be a priority due to the area’s relatively limited number of sensitive habitats, such as coral reefs, and because of the difficult and dangerous socio-political situation in the country and its adjacent waters. On the other hand, the Maldives archipelago is likely to be a priority given that it is an area with high dFAD stranding rates on coral reefs5 and also has many dFADs that leave fishing grounds and never return. Implementing a recovery programme in this area could be particularly valuable, especially given that the Maldives is well integrated into regional maritime transport and tuna fisheries. However, implementing such a programme for a large island chain composed of >1,000 individual islands will probably be complex. Extensive collaboration with regional stakeholders, such as research institutes, fisher associations and NGOs, as well as buoy manufacturers, would be essential to operationalize a recovery programme in the Maldives and elsewhere.Another major challenge for at-sea dFAD recovery is availability of appropriate vessels to remove dFADs from the water. The vertical subsurface structure of dFADs generally stretches from 50 to 80 m below the surface. The weight of the materials used to build dFADs and the numerous sessile organisms that attach to the ‘dFAD tail’ eventually make dFADs very heavy (up to hundreds of kilograms) and therefore difficult to remove from the water. Complete removal is probably only possible for medium to large vessels with an appropriate crane or winch for hauling heavy material. Purse-seine vessels themselves could participate in dFAD recovery efforts, but this would be costly and disruptive to fishing. For smaller vessels, it may only be possible to remove some parts of the dFAD, potentially aided by natural breakdown of the object or acoustic release systems, such as the GPS buoy, plastic flotation devices and/or surface raft metallic or plastic structural elements. However, this could still be extremely useful as the remaining material will normally sink before reaching coastal environments, thereby potentially avoiding the most important environmental impacts. This strategy would be particularly valuable if the subsurface structure can be made of biodegradable materials9,23,38. Imzilen et al.5 suggested that the removal of GPS buoys by artisanal fishers is already occurring in coastal areas. Therefore, if dFAD tracking information can be made accessible and appropriate incentive mechanisms are put in place to encourage recovery of dFAD elements, this strategy could substantially reduce marine debris from dFADs. Other practical considerations should be taken into account once at port, such as the availability of infrastructure for shipping, disposing of, recycling and/or reusing tracking buoys and other dFAD components. All of these potential impediments can be addressed, but they will require active engagement from fishers, tRFMOs, NGOs and coastal nations.Complementary measuresIn addition to such recovery programmes, existing complementary measures controlling the numbers of dFADs present at sea (for example, limits on the number of operational GPS-tracking buoys and limits on the use of support vessels) may need to be strengthened, as a higher number of dFADs obviously contributes to higher risks of marine debris and stranding. Lowering limits on the number of dFADs may also encourage vessels to increase sharing of buoy information, thereby maximizing use of dFADs and potentially reducing dFAD loss. However, oddly enough, such measures may aggravate problems of ALD dFADs if their consequences are not accurately anticipated. For example, limits on the number of tracked dFADs implemented by tRFMOs have modified the strategy of some components of the purse-seine fishery, encouraging them to remotely deactivate satellite-transmitting GPS-tracking buoys when dFADs leave fishing grounds to maintain the number of operational buoys below authorized limits. The loss of position information prevents the tracking of dFADs outside fishing grounds and may result in under-estimation and spatial bias in estimates of the risks of stranding and loss5,39. A potential solution would be to consider ALD dFADs as part of a stock of ‘recoverable dFADs’ that are not counted as part of the individual vessel’s quota of operational buoys, but for which position information is transmitted and made available to partners involved in recovery programmes39. Other useful options to facilitate the recovery of buoys include limiting the per vessel number of deployments instead of limiting the number of tracked dFADs and/or making new deployments contingent on recovery of an equivalent number of already deployed dFADs. The current tRFMO-implemented reduction in the number of support vessels in the Indian Ocean is also likely to increase the loss of dFADs because these vessels may be used to recover dFADs before they leave fishing grounds, highlighting the urgent need for complementary dFAD management and recovery approaches.Financial considerationsA final question about dFAD recovery programmes is how they could be financed. The logistical challenges described above, such as chartering appropriate recovery vessels, involve substantial costs that cannot be ignored. The most simple and logical financing scheme would be a polluter-payer programme whereby vessels, dFAD manufacturers and/or fishing nations pay some monetary amount per ALD dFAD, potentially in proportion to its expected negative impacts, into an independently run and verified clean-up fund. The basic elements for identifying which vessels, fishing companies and/or nations are deploying dFADs are largely in place via tRFMO reporting requirements, dFAD vessel logbooks and purse-seine observer programmes. The detailed spatio-temporal maps provided here and in Imzilen et al.5 identify where the losses and impacts are occurring, thereby providing a blueprint for apportioning such funds geographically.Missing elementsThe missing elements for reducing dFAD loss are mostly political: facilitating access to tracking and activation-deactivation information for all ALD dFADs (for example, the EU recently objected at the 2nd Indian Ocean Tuna Commission (IOTC) ad hoc working group on dFADs to making dFAD data publicly available for scientific purposes); implementing requirements for appropriate disposal of ALD dFADs; and improving collaboration between industry and regional stakeholders concerned with clean-up programmes. Although these missing elements may seem formidable, there are very promising precedents for rapidly addressing these types of issues. Throughout the 2010s, various initiatives of purse-seine fleets, national scientists, tRFMOs and organizations such as the International Sustainable Seafood Foundation (ISSF) have allowed the rapid adoption of mitigation measures. This was the case for non-entangling dFADs40, best practices guidelines for the release of sensitive species41,42,43, exhaustive observer coverage44,45 and dFAD management plans46, which are all required for ISSF-participating fishing companies if they wish tuna from their fishing vessels to be accepted by ISSF member canneries. A similar approach could be used to address dFAD loss, using the fulcrums of the ISSF, Marine Stewardship Council certification and European Union (EU) environmental regulations to extend the commitments already made by some of the fleets (for example regarding data availability and tests of recovery mechanisms) to other fleets and other areas, and therefore rapidly transform industry behaviour for the benefit of all. More

  • in

    Forest degradation drives widespread avian habitat and population declines

    The Acadian Forest of eastern Canada has shown a pervasive signal of forest degradation since 1985 (Fig. 1). Since 1985, >3 million ha have been clear-cut (Fig. 1d), with most of this area now occupied by either tree plantations and thinnings (Fig. 1c–e), which are dominated by single tree species20, or a mix of early successional tree species (Fig. 1a,d,e). Despite some ingrowth due to succession, old forest has declined by 39% during the period observed (Extended Data Fig. 1a,b; Supplementary Methods). The pattern of extensive harvest of old forest, followed by rapid regeneration of young forest appears to be common across many forest regions of North America (for example, central Canada, southeastern United States, western United States; Fig. 1b) (ref. 10) and can be considered ‘forest degradation’ in that these practices simplify forest structure, reduce tree species diversity and truncate old-forest age classes6. During the same 35-year time period, forest cover remained relatively stable, increasing by a net 6.5% (Fig. 3a, red line)21.Fig. 3: Forest degradation rather than loss drives habitat declines in old forest-associated bird species.a, Habitat trends (1985–2020) for the seven bird species exhibiting the greatest population declines according to SDMs; all of these species are old forest associated. During the same time interval, total forest cover did not decline (red line, right axis), indicating that habitat loss is a function of forest degradation rather than loss. b,c, Predicted habitat loss (pink) and gain (blue) between 1985 and 2020 for two example species: Blackburnian warbler (33% habitat loss; b) and golden-crowned kinglet (38% habitat loss; c). Habitat loss was quantified using SDMs with Landsat data as independent variables strongly predicted population trends for forest bird species.Full size imageOverall, SDMs using Landsat reflectance bands as predictors performed well for most forest bird species when tested on 50% spatially discrete hold-out data (Extended Data Fig. 2; (bar x) area under the curve (AUC) = 0.73 [range: 0.60–0.90]). SDMs therefore provided reliable estimates of habitat suitability and distribution for most of the 54 species. Species with lower model-prediction success tended to be associated with fine-scale forest structure (for example, individual tall trees, standing and fallen dead wood) which are poorly captured by satellite imagery.We back cast SDMs to quantify habitat change for all 54 forest bird species from 1985 to 2020. Habitat declines occurred for 66% of species during 1985–2020; 93% of species exhibited habitat reductions over the past decade (Fig. 3 and Extended Data Fig. 3). Species showing the greatest decreases in habitat were golden-crowned kinglet (Regulus satrapa; −38%) and Blackburnian warbler (Setophaga fusca; −33%; Supplementary Video 1) with seven species showing habitat declines >25% (Fig. 3). Most species with strongly declining habitat are associated with old forests22 (Fig. 4a,b), which is consistent with forest degradation due to harvesting of old forest. Indeed, clear-cut harvest alone was strongly associated with habitat declines for all old forest-associated species (Fig. 4c and Extended Data Figs. 4 and 5). Forest succession into old age classes was apparently insufficient to compensate for this rate of loss. Fifteen species exhibited habitat increases, but most (14 out of 15) of these tend to be associated with young or immature forests (Fig. 4a,b).Fig. 4: Evidence for the effect of forest degradation on mature-forest bird species.a, The relationship between habitat change, estimated from SDMs and independently derived population change estimates from the BBS for the Acadian forest. Bird species of mature (old) forests (M; dark green dots) exhibit the greatest habitat loss; this is generally reflected in strongly negative population trends. Bird species associated with regenerating forest (R; red dots) tend to have stable or increasing habitat but still show BBS population declines. b, The relationship between quantitatively derived estimates of mature-forest association and habitat change from 1985 to 2020. Mature forest-associated species tend to be losing the most habitat in relation to immature- (I; light-green dots) and regeneration-associated species. Successional stage categorizations (R, I, M) are from Birds of the World (BOW). The regression line was fit using a hierarchical Bayesian model (Supplementary Methods) and grey shading in b shows 95% credible intervals. Only a subset of species is shown in b (those with quantitative data for mature-forest associations; Supplementary Methods). c, The relationship between area clear-cut occurring from 1985 to 2020 in each species’ habitat within a 200 m-diameter buffer surrounding BBS routes (N = 90) and habitat loss (1985–2020) at the same scale for six mature forest-associated species. Black lines are regression lines and grey bands are 95% confidence intervals (regression estimates in Supplementary Table 3). As expected, clear-cutting is strongly associated with habitat loss, which indicates that ingrowth of new habitat is rarely compensated for by habitat loss (a signature of forest degradation via old age–class truncation).Full size imageSeveral lines of evidence support forest management as the primary driver of forest degradation rather than alternative mechanisms (for example, climate-mediated forest decline, natural disturbance, permanent deforestation). First, our SDMs did not include climate data so the reflectance changes from satellite imagery used in our SDMs were predominantly due to forest compositional changes. Although climate (for example, inter-annual differences in precipitation) can cause subtle differences in reflectance (leaf colour) over time, most changes in the magnitude of reflectance are due to changes in forest composition or cover rather than effects of climate23 (Supplementary Figs. 1 and 2). Indeed, if the observed habitat declines were due to climate effects or natural disturbance, we would expect to see parallel habitat declines in protected areas, which we did not (Extended Data Figs. 6 and 7). Second, species exhibiting the greatest declines in habitat are those most strongly associated with old forest (Fig. 4a,b), which is the primary target of timber harvest. Indeed, the amount of area clear-cut was strongly associated with habitat loss for old forest-associated bird species (Fig. 4c and Extended Data Figs. 4 and 5). Third, deforestation (defined as permanent conversion to another land-cover type)24 was not a primary driver of habitat loss in our region; deforestation contributed 0.95, and 20 species had posterior probabilities >0.8. Importantly, most of the species showing an effect of habitat loss along routes on changes in population decline have lost substantial habitat over the time period and are associated with old forest (for example, Blackburnian warbler, northern parula [Setophaga americana], red-breasted nuthatch [Sitta canadensis], boreal chickadee [Poecile hudsonicus], dark-eyed junco [Junco hyemalis]; Extended Data Fig. 8), which would be expected with the harvest of old forest—a component of forest degradation. It is important to note that this test is highly challenging because many factors can drive annual fluctuations in bird abundance (for example, weather, phenology, conditions during migration or on the wintering grounds). Also, in any given year, habitat change along BBS routes can be quite small for some species; this low inter-annual variation in a predictor variable can preclude high statistical power to detect effects.We estimated the net number of breeding individuals that have probably disappeared due to habitat loss from 1985 to 2020 using published accounts of territory sizes for each species22 (Supplementary Table 5). This calculation assumes that available habitat is consistently occupied, which is supported by strong associations between habitat amount along BBS routes and bird abundance over the long term. Across all species, back-cast SDMs indicate that a net 28,215,247 ha (282,153 km2) of habitat has been lost, equating to a loss of between 16,779,704 and 52,243,938 breeding pairs (33,559,408–104,487,876 individuals; Supplementary Methods and Supplementary Table 5). One might expect that forest degradation, rather than resulting in broad-scale declines across species, is simply causing species turnover from old forest-associated bird species to young-forest associates. However, it is important to note that we quantified net bird decline from an unbiased list of the 54 most common forest bird species in eastern Canada. This list included both early and late successional species. Such net bird declines could be due to the fact that (1) even some early seral species are losing habitat (probably due to conversion from diverse early successional forest to species-poor plantations and thinnings)26 and (2) in this region, more species occupy older forests than regenerating forests27.We also quantified overall population trends for 54 species of forest birds using data from the BBS (Fig. 6). These estimates give the total magnitude of population changes which include, but are not limited to, habitat loss or gain effects. Thirty-nine of the 54 species examined (72%) are in population decline (defined as having 95% credible intervals that do not bound zero). The magnitude of the declines for 15 forest bird species is severe ( >5% per year). It is notable that most species exhibiting both habitat loss and population declines are old-forest associates (Fig. 4a; bottom left quadrant, dark green dots), with old-forest species exhibiting the greatest habitat losses (Fig. 4b and Supplementary Methods; hierarchical regression, (hat beta) = −16.66 [6.32 SE]).Fig. 6: Population trends for forest-associated birds in eastern Canada.a, Population trend parameter estimates and posterior distributions for 54 species of forest birds derived from Bayesian models. Seventy-two percent of species that are sufficiently common to model experienced population declines from 1985 to 2019. Colour key is provided in Fig. 5. The vertical green line indicates a population trend of zero. Dashed vertical lines coincide with trends of −15% (−0.15), −10% (−0.10) and −5% (−0.05) annual population trends. b, Predicted linear population trends for 1985–2019 (regression lines are mean trends derived from Bayesian Poisson models, Supplementary Methods) including annual variation estimated from BBS data. Shaded purple areas reflect 95% credible intervals and reflect the magnitude of species population declines shown in a. Populations of these eight old forest-associated species have declined 60–90% over the period observed.Full size imageBBS declines are not restricted to old-forest species; several species in rapid population decline are early seral species (for example, Lincoln’s sparrow [Melospiza lincolnii], mourning warbler [Geothlypis philadelphia]; Fig. 4a, bottom right quadrant). Despite the fact that these species have gained habitat over 35 years, their populations continue to decline. Only three species (black-capped chickadee [Poecile atricapillus], hairy woodpecker [Leuconotopicus villosus] and ruby-throated hummingbird [Archilochus colubris]) are increasing in abundance. Populations of these species increased despite evidence of habitat decline (Fig. 4a, top left quadrant)—perhaps because each benefit from anthropogenic habitats and supplemental food. Importantly, habitat changes from 1985 to 2019 along BBS routes were representative of changes at the scale of the entire region for most species (Extended Data Fig. 9), so BBS population trends are highly likely to reflect population trends at the regional scale. This contrasts to the 1965–1985 period when mature-forest loss along routes was slower than in the broader region28.We also modelled BBS population trends over the past ten years, as this is the period of importance for informing listing decisions under the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Nine species have exhibited population declines >30% over ten years (Supplementary Fig. 3), which meets the criterion for consideration as ‘threatened’ under COSEWIC Criterion A (ref. 29). More

  • in

    Complexity–stability trade-off in empirical microbial ecosystems

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    May, R. M. & Mac Arthur, R. H. Niche overlap as a function of environmental variability. Proc. Natl Acad. Sci. USA 69, 1109–1113 (1972).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).Sinha, S. Complexity vs. stability in small-world networks. Phys. A 346, 147–153 (2005).Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).Article 

    Google Scholar 
    Qian, J. J. & Akçay, E. The balance of interaction types determines the assembly and stability of ecological communities. Nat. Ecol. Evol. 4, 356–365 (2020).Article 
    PubMed 

    Google Scholar 
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. in Systems Analysis Approach for Complex Global Challenges (eds Mensah, P. et al.) 209–248 (Springer, 2018).Townsend, S. E., Haydon, D. T. & Matthews, L. On the generality of stability–complexity relationships in Lotka–Volterra ecosystems. J. Theor. Biol. 267, 243–251 (2010).Article 
    PubMed 

    Google Scholar 
    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).Article 

    Google Scholar 
    Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).Article 

    Google Scholar 
    Winemiller, K. O. Must connectance decrease with species richness? Am. Naturalist 134, 960–968 (1989).Article 

    Google Scholar 
    Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).Article 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).Article 
    PubMed 

    Google Scholar 
    Schmid-Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).Article 

    Google Scholar 
    Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    James, A. et al. Constructing random matrices to represent real ecosystems. Am. Nat. 185, 680–692 (2015).Article 
    PubMed 

    Google Scholar 
    Jacquet, C. et al. No complexity–stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207 (2012).CAS 
    Article 

    Google Scholar 
    Fricker, A. M., Podlesny, D. & Fricke, W. F. What is new and relevant for sequencing-based microbiome research? A mini-review. J. Adv. Res. 19, 105–112 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sander, E. L., Wootton, J. T. & Allesina, S. Ecological network inference from long-term presence-absence data. Sci. Rep. 7, 7154 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinway, S. N., Biggs, M. B., Loughran Jr, T. P., Papin, J. A. & Albert, R. Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput. Biol. 11, e1004338 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucci, V. et al. Mdsine: microbial dynamical systems inference engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PloS ONE 9, e102451 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerber, G. K., Onderdonk, A. B. & Bry, L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput. Biol. 8, e1002624 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao, H.-T., Gibson, T. E., Bashan, A. & Liu, Y.-Y. Inferring human microbial dynamics from temporal metagenomics data: pitfalls and lessons. BioEssays 39, 1600188 (2017).Article 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dohlman, A. B. & Shen, X. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp. Biol. Med. 244, 445–458 (2019).CAS 
    Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. Open challenges for microbial network construction and analysis. ISME J. 15, 3111–3118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila, J. C., Liu, Y.-Y. & Sanchez, A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 14, 2505–2513 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, gix077 (2017).Article 
    PubMed Central 

    Google Scholar 
    Swierts, T., Cleary, D. & de Voogd, N. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol. Ecol. 94, fiy194 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Suweis, S., Grilli, J., Banavar, J. R., Allesina, S. & Maritan, A. Effect of localization on the stability of mutualistic ecological networks. Nat. Commun. 6, 10179 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allesina, S. & Grilli, J. in Theoretical Ecology: Concepts and Applications (eds McCann, K. & Gellner, G.) Ch. 6 (Oxford Univ. Press, 2020).Jayant, P. & Shnerb, N. M. How temporal environmental stochasticity affects species richness: destabilization neutralization and the storage effect. J. Theor. Biol. 539, 111053 (2022).Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52–132ra52 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).
    Google Scholar 
    Bunin, G. Ecological communities with Lotka-Volterra dynamics. Phys. Rev. E 95, 042414 (2017).Article 
    PubMed 

    Google Scholar  More

  • in

    Empirical evidence for recent global shifts in vegetation resilience

    Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).Article 

    Google Scholar 
    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).Article 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    Article 

    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    Article 

    Google Scholar 
    Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).CAS 
    Article 

    Google Scholar 
    Boers, N., Marwan, N. & Barbosa, H. M. J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 49, 41489 (2017).Article 
    CAS 

    Google Scholar 
    Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire–vegetation feedback. Geophys. Res. Lett. 43, 6324–6331 (2016).Article 

    Google Scholar 
    Abis, B. & Brovkin, V. Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 14, 511–527 (2017).CAS 
    Article 

    Google Scholar 
    Bastiaansen, R. et al. Multistability of model and real dryland ecosystems through spatial self-organization. Proc. Natl Acad. Sci. USA 115, 11256–11261 (2018).CAS 
    Article 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Arani, B. M., Carpenter, S. R., Lahti, L., van Nes, E. H. & Scheffer, M. Exit time as a measure of ecological resilience. Science 372, eaay4895 (2021).CAS 
    Article 

    Google Scholar 
    Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. der Phys. 322, 549–560 (1905).Article 

    Google Scholar 
    Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).CAS 
    Article 

    Google Scholar 
    Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).CAS 
    Article 

    Google Scholar 
    Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008).Article 

    Google Scholar 
    Groth, A., Ghil, M., Hallegatte, S. & Dumas, P. The role of oscillatory modes in US business cycles. J. Bus. Cycle Meas. Anal. https://doi.org/10.1787/jbcma-2015-5jrs0lv715wl (2015).Groth, A., Dumas, P., Ghil, M. & Hallegatte, S. in Extreme Events: Observations, Modeling, and Economics (eds Chavez, M. et al.) 343–360 (Wiley, 2015).Gritsun, A. & Branstator, G. Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci. 64, 2558–2575 (2007).Article 

    Google Scholar 
    Majda, A. J., Abramov, R. & Gershgorin, B. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl Acad. Sci. USA 107, 581–586 (2010).CAS 
    Article 

    Google Scholar 
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).CAS 
    Article 

    Google Scholar 
    Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).CAS 
    Article 

    Google Scholar 
    van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).Article 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).Article 

    Google Scholar 
    Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007).Article 

    Google Scholar 
    Dakos, V., Van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    Article 

    Google Scholar 
    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).CAS 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    Article 

    Google Scholar 
    Rypdal, M. Early-warning signals for the onsets of Greenland interstadials and the Younger Dryas-preboreal transition. J. Clim. 29, 4047–4056 (2016).Article 

    Google Scholar 
    Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H. & Scheffer, M. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Phil. Trans. R. Soc. A 370, 1185–204 (2012).CAS 
    Article 

    Google Scholar 
    Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).CAS 
    Article 

    Google Scholar 
    De Keersmaecker, W. et al. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Change Biol. 20, 2149–2161 (2014).Article 

    Google Scholar 
    De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).Article 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (vodca). Earth Syst. Sci. Data 12, 177–196 (2020).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).Article 

    Google Scholar 
    Feng, Y. et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ. 2, 88 (2021).Article 

    Google Scholar 
    Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05 Deg Version 006 (NASA, 2015).Wang, W., Chen, Y., Becker, S. & Liu, B. Linear trend detection in serially dependent hydrometeorological data based on a variance correction Spearman rho method. Water 7, 7045–7065 (2015).CAS 
    Article 

    Google Scholar 
    Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).Article 

    Google Scholar 
    Box, E. O., Holben, B. N. & Kalb, V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80, 71–89 (1989).Article 

    Google Scholar 
    Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).Article 
    CAS 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).CAS 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. Stl: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
    Google Scholar 
    Donner, R. et al. Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability. Nonlinear Process. Geophys. 19, 95–111 (2012).Article 

    Google Scholar 
    Smith, T. & Bookhagen, B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009). Sci. Adv. 4, e1701550 (2018).Article 

    Google Scholar 
    Smith, T., Boers, N. & Traxl, D. Global vegetation resilience estimation. Zenodo https://doi.org/10.5281/zenodo.5816934 (2022).Rousseau, D.-D. et al. (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records—a paleosol perspective. Quat. Sci. Rev. 196, 99–113 (2017).Article 

    Google Scholar 
    Boulton, C. A. & Lenton, T. M. A new method for detecting abrupt shifts in time series. F1000Research 8, 746 (2019).Article 

    Google Scholar 
    Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).CAS 
    Article 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).Article 

    Google Scholar 
    Djikstra, H. Nonlinear Climate Dynamics (Cambridge Univ. Press, 2013).Book 

    Google Scholar 
    Kendall, M. G. Rank Correlation Methods (Griffin, 1948). More