More stories

  • in

    Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil

    IPCC (2013) Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D Qin, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V & Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp (2013).Graham, L.P. Projections of Future Anthropogenic Climate Change [in:] Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Bolle H.J., Menenti M., Rasool I. Series Editors Springer-Verlag Berlin Heidelberg s.133–220 (2008).Früchtenich, E., Bock, J., Feucht, V., Früchtenich W. Reactions of three European oak species ( Q. robur, Q. petraea and Q. ilex ) to repetitive summer drought in sandy soil. Trees, Forests and People 5: 100093 (2021).Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).CAS 
    Article 

    Google Scholar 
    Willliams, A. & De Vries, F. T. Plant root exudation under drought: Implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2019).Article 

    Google Scholar 
    Canarini, A., Merchant, A. & Dijkstra, F. A. Drought effects on Helianthus annuus and Glycine max metabolites: From phloem to root exudates. Rhizosphere 2, 85–97 (2016).Article 

    Google Scholar 
    De Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).Article 

    Google Scholar 
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation indu ces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).Article 

    Google Scholar 
    Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity. New Phytol. 226, 583–594 (2020).CAS 
    Article 

    Google Scholar 
    Gianfreda, L. Enzymes of importance to rhizosphere processes. J. Soil Sci. Plant Nutr. 15, 283–306 (2015).
    Google Scholar 
    Małek, S., Ważny, R., Błońska, E., Jasik, M. & Lasota, J. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. Sci. Total Environ. 751, 142335 (2021).ADS 
    Article 

    Google Scholar 
    Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J. & Penuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 26, 3698–3714 (2019).ADS 
    Article 

    Google Scholar 
    Sing, S. et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci. Rep. 11, 10841 (2021).ADS 
    Article 

    Google Scholar 
    Sardans, J. & Penuelas, J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 37, 455–461 (2005).CAS 
    Article 

    Google Scholar 
    Czúcz, B., Gálhidy, L. & Mátyás, C. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann. For. Sci. 68, 99–108. https://doi.org/10.1007/s13595-011-0011-4 (2011).Article 

    Google Scholar 
    Sáenz-Romero, C. et al. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob. Change Biol. 23, 2831–2847 (2018).ADS 
    Article 

    Google Scholar 
    Regulation of the Minister of the Environment. Detailed requirements for the forest reprudactive material (Dz. U. Nr 31, poz. 272) (in Polish) (2004).Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999. https://doi.org/10.1111/j.1365-2435.2008.01495.x (2008).Article 

    Google Scholar 
    Ostonen, I., Lõhmus, K. & Lasn, R. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil 208, 283–292 (1999).CAS 
    Article 

    Google Scholar 
    Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 58, 233–241 (2004).CAS 
    Article 

    Google Scholar 
    Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fert. Soils 52, 505–514 (2016).CAS 
    Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Hartmann, H. Will a 385million year-struggle for light become a struggle for water and for carbon?–how trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 17, 642–655 (2011).ADS 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).Article 

    Google Scholar 
    Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).Article 

    Google Scholar 
    Poorter, L. & Markesteijn, L. Seedling Traits Determine Drought Tolerance of Tropical Tree Species. Biotropica 40, 321–331 (2008).Article 

    Google Scholar 
    Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).Article 

    Google Scholar 
    Lozano, Y. M., Aguilar-Triqueros, C. A., Flaig, I. C. & Rillig, M. C. Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34, 2224–2235 (2020).Article 

    Google Scholar 
    De Vries, F. T., Brown, C. & Stevens, C. J. Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409, 297–312 (2016).Article 

    Google Scholar 
    Sell, M. et al. Responses of fine root exudation, respiration and morphology in three early successional ree species to increased air humidity and different soil nitrogen sources. Tree Physiol. 42, 557–569. https://doi.org/10.1093/treephys/tpab118 (2021).Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593. https://doi.org/10.3389/fpls.2018.01593 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol. 201, 916–927. https://doi.org/10.1111/nph.12569 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696. https://doi.org/10.1038/s41598-018-30150-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Dippold, M. A., Kuzyakov, Y. & Razavi, B. S. Spatial pattern of enzyme activities depends on root exudate composition. Soil Biol. Biochem. 133, 83–93. https://doi.org/10.1016/j.soilbio.2019.02.010 (2019).CAS 
    Article 

    Google Scholar 
    Hommel, R. et al. Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol. 18, 785–796. https://doi.org/10.1111/plb.12461 (2016).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    The dynamical complexity of seasonal soundscapes is governed by fish chorusing

    Data collectionThe acoustic recordings were collected during 2017 off the Changhua coast (24° 4.283 N/120° 19.102 E) (Fig. 5) by deploying a passive acoustic monitoring (PAM) device from Wildlife Acoustics, which was an SM3M recorder moored at a depth of 18–20 m. The hydrophone recorded continuously with a sampling frequency of 48 kHz and a sensitivity of −164.2 dB re:1 v/µPa. The acoustic files were recorded in the.WAV format with a duration of 60 minutes. The hydrophone setup prior to deployment is shown in Fig. 6. Table 2 contains the details for the monitoring period with the corresponding season and the number of hours of recordings each season used in this study. Studies have shown that the presence of seasonal chorusing at this monitoring site in the frequency range of 500–2500 Hz is caused by two types of chorusing15,38, with chorusing starting in early spring, reaching a peak in summer, and starting to decline late autumn, and silencing in winter6. Previous studies6,15,38 at this monitoring site have derived the details of two types of fish calls responsible for chorusing (Type 1 and Type 2); Supplementary Fig. 1 shows the spectrogram, waveform, and power spectrum density of the individual calls. Supplementary Table 1 tabulated are the acoustic features of the two call types. The monitoring region, Changhua, lies in the Eastern Taiwan Strait (ETS). The ETS is ~350 km in length and ~180 km wide64. The ETS experiences diverse oceanographic and climatic variations influenced by monsoons in summer and winter65 and extreme events caused by tropical storms, typhoons in summer, and wind/cold bursts occurring in winter66,67,68.Fig. 5: Study area located off the Taiwan Strait.Map of the Changhua coast located in Taiwan Strait, Taiwan depicting the deployed passive acoustic monitoring recorder at site A1. The map was produced in Matlab 9.11 (The Mathworks, Natick, MA; http://www.mathworks.com/) using mapping toolbox function geobasemap(). Full global basemap composed of high-resolution satellite imagery hosted by Esri (https://www.esri.com/).Full size imageFig. 6: Setup of the SM3M submersible recorder.SM3M recorder fastened to the steel frame (length and breadth = 1.22 m, height = 0.52 m) with plastic cable zip ties prior to deployment.Full size imageTable 2 Passive acoustic monitoring device specifications and monitoring duration during different seasons.Full size tableAcoustic data analysisThe acoustic data were analyzed using the PAMGuide toolbox in Matlab60. The seasonal spectrograms were computed with an FFT size of 1024 points and a 1 s time segment averaged to a 60 s resolution. The sound pressure levels (SPL) were computed in the frequency band of 500–3500 Hz and programmed to provide a single value every hour, thus resulting in 984, 1344, and 1440 data points in spring, summer, and winter, respectively (Supplementary Data 1).Determining the regularity and complexity with the complexity-entropy planeThe complexity-entropy plane was utilized in this study to quantify the structural statistical complexity and the regularity in the hourly acoustical and seasonal SPL time series data. The C-H plane is a 2D plane representation of the permutation entropy on the horizontal axis that quantifies the regularity, and the vertical axis is represented by the statistical complexity quantifying the correlation structure in the temporal series.For a given time series ({{x(t)}}_{t=1}^{N}), the N’ ≡ N − (m − 1) the values of the vectors for the length m  > 1 are ranked as$${X}_{s}=left({x}_{s-(m-1)},{x}_{s-(m-2)},ldots ,{x}_{s}right),s=1,ldots ,,{N}^{{prime} }$$
    (1)
    Within each vector, the values are reordered in the ascending order of their amplitude, yielding the set of ordering symbols (patterns) ({r}_{0},{r}_{1},ldots ,{r}_{m-1}) such that$${x}_{s-{r}_{0}}le {x}_{s-{r}_{1}}le ..,..le {x}_{s-{r}_{(m-1)}}$$
    (2)
    This symbolization scheme was introduced by Bandt and Pompe69. The scheme performs the local ordering of a time series to construct a probability mass function (PMF) of the ordinal patterns of the vector. The corresponding vectors (pi ={r}_{0},{r}_{1},ldots ,{r}_{(m-1)}) may presume any of the m! possible permutations of the set ({{{{{mathrm{0,1}}}}},ldots ,m-1}) and symbolically represent the original vector. For instance, for a given time series {9, 4, 5, 6, 1,…} with length m = 3, provides 3! different order patterns with six mutually exclusive permutation symbols are considered. The first three-dimensional vector is (9, 4, 5), following the Eq. (1), this vector corresponds to ((,{x}_{s-2},{x}_{s-1},{x}_{s})). According to Eq. (2), it yields ({x}_{s-1}le {x}_{s}le {x}_{s-2}). Then, the ordinal pattern satisfying the Eq. (2) will be (1, 0, 2). The second 3-dimensional vector is (4, 5, 6), and (2, 1, 0) will be its associated permutation, and so on.The permutation entropy (H) of order m ≥ 2 is defined as the Shannon entropy of the Brandt-Pompe probability distribution p(π)69$$Hleft(mright)=,-{mathop{sum}limits _{{pi }}}pleft(pi right){{{log }}}_{2}p(pi )$$
    (3)
    where ({pi }) represents the summation over all possible m! permutations of order m, (p(pi )) is the relative frequency of each permutation (pi), and the binary logarithm (base of 2) is evaluated to quantify the entropy in bits. H(m) attains the maximum ({{log }}m!) for (p(pi )=1/m!). Then the normalized Shannon entropy is given by$$0le H(m)/{{{{{rm{ln}}}}}},m!le 1$$
    (4)
    where the lower bound H = 0 corresponds to more predictable signals with fewer fluctuations, an either strictly increasing or decreasing series (with a single permutation), and the upper bound H = 1 corresponds to an unpredictable random series for which all the m! possible permutations are equiprobable. Thus, H quantifies the degree of disorder inherent in the time series. The choice of the pattern length m is essential for calculating the appropriate probability distribution, particularly for m, which determines the number of accessible states given by m!70,71. As a rule of thumb, the length T of the time series must satisfy the condition T (gg) m! in order to obtain reliable statistics, and for practical purposes, Bandt and Pompe suggested choosing m = 3,…,7 69.The statistical complexity measure is defined with the product form as a function of the Bandt and Pompe probability distribution P associated with the time series. (Cleft[Pright]) is represented as33$$Cleft[Pright]=frac{J[P,U]}{{J}_{{max }}}{H}_{s}[P]$$
    (5)
    where ({H}_{s}left[Pright]=Hleft[Pright]/{{log }}m!) is the normalized permutation entropy. (J[P,U]) is the Jensen divergence$$Jleft[P,Uright]=left{Hleft[frac{P+U}{2}right]-frac{H[P]}{2}-frac{H[U]}{2}right}$$
    (6)
    which quantifies the difference between the uniform distributions U and P, and ({J}_{{max }})is the maximum possible value of (Jleft[P,Uright]) that is obtained from one of the components of P = 1, with all the other components being zero:$$Jleft[P,Uright]=-frac{1}{2}left[frac{m!+1}{m!}{{log }}left(m!+1right)-2{{log }}left(2m!right)+{{log }}(m!)right]$$
    (7)
    For each value of the normalized permutation entropy (0le {H}_{s}[P]le 1) there is a corresponding range of possible statistical complexity (Cleft[Pright]) values. Thus, the upper (({C}_{{max }})) and lower ((C_{{min }})) complexity bounds in the C-H plane are formed. The periodic sequences such as sine and series with increasing and decreasing (with ({H}_{s}[P]=0)) and completely random series such as white noise (for which (Jleft[P,Uright]=0) and ({H}_{s}[P]=1)) will have zero complexity. Furthermore, for each given value of the (0le {H}_{s}[P]le 1), there exists a range of possible values of the statistical complexity, ({C}_{{min }}le C[P]le {C}_{{max }}). The procedure for evaluating the complexity bounds ({C}_{{min }}) and ({C}_{{max }}) is given in Martin et al.72. We utilized the R package ‘statcomp’73 to evaluate the statistical complexity (C) and the permutation entropy (H) using the command global-complexity() for the order m = 6, and the command limit_curves(m, fun = ‘min/max’) was utilized to evaluate the complexity boundaries ({C}_{{min }}) and ({C}_{{max }}). In this study, we constructed two C-H planes: (1) C and H was computed for each hourly acoustic file during different seasons. The resulting lengths of C and H during spring, summer, and autumn-winter are similar to the number of hours in the particular season (Table 2). (2) C and H was computed every 4–5 days for the seasonal SPL. The resulting length of C and H obtained during spring was 9 points (each value of C and H for every 109 h), and in summer and autumn-winter was 12 points (each value of C and H for every 112 and 120 h).Determining predictability and dynamics (linear/nonlinear) using EDMIn this study, we utilized EDM to quantify the predictability (forecasting) and distinguish between the linear stochastic and nonlinear dynamics in the seasonal soundscape SPL. EDM involves phase-space reconstruction via delay coordinate embeddings to make forecasts and to determine the ‘predictability portrait’ of time series data40. The first step in EDM is to determine the optimal embedding dimension (E), and this is obtained using a method based on simplex projection41. The simplex projection is carried out by dividing the dataset into two equal parts, of which the first part is called the library and the other part is called the target. The library set is used to build a series of non-parametric models (known as predictors) for the one step ahead predictions for the E varying between 1 and 10. Then the model’s accuracies are determined when the model is applied to the target dataset and the prediction skill (⍴) for the actual and predicted datasets is measured. The embedding dimension with the highest predictive skill is the optimal E.For the appropriate optimal E chosen, the predictability profile of the time series data is obtained by evaluating ⍴ at Tp = 1, 2, 3, … steps ahead. The flat prediction profile of the ⍴–Tp curve indicates that the time series is purely random (low ⍴) or regularly oscillating (high ⍴). In contrast, a decreasing ⍴ as Tp increases may reject the possibility of an underlying uncorrelated stochastic process and indicate the presence of low-dimensional deterministic dynamics. However, the concern with the predictability profile is that it may exhibit predictability even if time series are purely stochastic (such as autocorrelated red noise). Hence, a nonlinear test can be performed by using S-maps (sequential locally weighted global linear maps) to distinguish between linear stochastic and nonlinear dynamics in the time series dataset by fitting a local linear map. S-maps similar to simplex projects provide the forecasts in phase-space by quantifying the degree to which points are weighted when fitting the local linear map, which is given by the nonlinear localization parameter θ. When θ = 0, the entire library set will exhibit equal weights regardless of the target prediction, which mathematically resembles the model of a linear autoregressive process. In contrast, if θ  > 0, the forecasts of the library provided by the S-map depend on the local state of the target prediction, thus producing large weights, and the unique local fittings can vary in phase-space to incorporate nonlinear behavior. Consequently, if the (⍴–θ) dynamics profile shows the highest ⍴ at θ = 0 that is reduced as θ increases, it represents linear stochastic dynamics. If the ⍴ achieves the highest value at θ  > 0, then the dynamics are represented by nonlinear dynamics.In this study, the R package “rEDM”74 was used to evaluate the optimal E, prediction profile (⍴–Tp), and dynamics profile (⍴–θ) for the seasonal SPL dataset. While evaluating these entities, the data points are equally into two parts, and sequentially the first half is chosen as the library set and the other as the target set. The length of the library and the target set for spring, summer, and autumn-winter are 492, 672, and 720. The command EmbedDimension() was used to determine the forecast skill for the E ranging from 1 to 10 and the optimal E with the highest forecast skill (Supplementary Fig. 2) was chosen. In this study, we found that for all seasons, the optimal E was 2. The (⍴–Tp) was evaluated for Tp varying between 1 and 100 using the command PredictInterval() and the (⍴–θ) was evaluated using the command PredictNonlinear() for θ = 0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5,0.75, 1.0, 1.5, 2, and 3 to 20.StatisticsThe nonparametric Kruskal–Wallis test, followed by post hoc Bonferroni’s multiple comparisons, was used to test differences in the seasonal H and C that were obtained directly from the hourly acoustic data during chorusing hours, as well as the H and C obtained for the seasonal SPL and the seasonal forecast skill. The statistical calculations were performed using the R package “agricolae” 75. More

  • in

    Global forest management data for 2015 at a 100 m resolution

    Reference data collectionIn February 2019, we involved forest experts from different regions around the world and organized a workshop to (1) discuss the variety of forest management practices that take place in various parts of the world; (2) explore what types of forest management information could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing Maps, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE); (3) generalize and harmonize the definitions at global scale; (4) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (5) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the participants. Based on the results of this analysis, we launched the crowdsourcing campaigns by involving a broader group of participants, which included people recruited from remote sensing, geography and forest research institutes and universities. After the crowdsourcing campaigns, we collected additional data with the help of experts. Hence, the final reference data consists of two parts: (1) a randomly stratified sample collected by crowdsourcing (49,982 locations); (2) a targeted sample collected by experts (176,340 locations, at those locations where the information collected from the crowdsourcing campaign was not large enough to ensure a robust classification).DefinitionsTable 1 contains the initial classification used for visual interpretation of the reference samples and the aggregated classes presented in the final reference data set. For the Geo-Wiki campaigns, we attempted to collect information (1) related to forest management practices and (2) recognizable from very high-resolution satellite imagery or time series of vegetation indices. The final reference data set and the final map contain an aggregation of classes, i.e., only those that were reliably distinguishable from visual interpretation of satellite imagery.Table 1 Forest management classes and definitions.Full size tableSampling design for the crowdsourcing campaignsInitially, we generated a random stratified sample of 110,000 sites globally. The total number of sample sites was chosen based on experiences from past Geo-Wiki campaigns12, a practical estimation of the potential number of volunteer participants that we could engage in the campaign, and the expected spatial variation in forest management. We used two spatial data sets for the stratification of the sample: World Wildlife Fund (WWF) Terrestrial Ecoregions13 and Global Forest Change14. The samples were stratified into three biomes, based on WWF Terrestrial Ecoregions (Fig. 2): boreal (25 000 sample sites), temperate (35,000 sample sites) and tropical (50,000 sample sites). Within each biome, we used Hansen’s14 Global Forest Change maps to derive areas with “forest remaining forest” 2000–2015, “forest loss or gain”, and “permanent non-forest” areas.Fig. 2Biomes for sampling stratification (1 – boreal, 2 – temperate, 3 – sub-tropical and tropical).Full size imageThe sample size was determined from previous experiences, taking into account the expected spatial variation in forest management within each biome. Tropical forests had the largest sample size because of increasing commodity-driven deforestation15, the wide spatial extent of plantations, and slash and burn agriculture. Temperate forests had a larger sample compared to boreal forests due to their higher fragmentation. Each sample site was classified by at least three different participants, thus accounting for human error and varying expertise16,17,18. At a later stage, following a preliminary analysis of the data collected, we increased the number of sample sites to meet certain accuracy thresholds for every mapped class (aiming to exceed 75% accuracy).The Geo‐Wiki applicationGeo‐Wiki.org is an online application for crowdsourcing and expert visual interpretation of satellite imagery, e.g., to classify land cover and land use. This application has been used in several data collection campaigns over the last decade16,19,20,21,22,23. Here, we implemented a new custom branch of Geo‐Wiki (‘Human impact on Forest’), which is devoted to the collection of forest management data (Fig. 3). Various map overlays (including satellite images from Google Maps, Microsoft Bing Maps and Sentinel 2), campaign statistics and tools to aid interpretation, such as time series profiles of NDVI, were provided as part of this Geo‐Wiki branch, giving users a range of options and choices to facilitate image classification and general data collection. Google Maps and Microsoft Bing Maps include mosaics of very high-resolution satellite and aerial imagery from different time periods and multiple image providers, including the Landsat satellites operated by NASA and USGS as base imagery to commercial image providers such as Digital Globe. More information on the spatial and temporal distribution of very high-resolution satellite imagery can be found in Lesiv et al.24. This collection of images was supplied as guidance for visual interpretation16,20. Participants could analyze time series profiles of NDVI from Landsat, Sentinel 2 and MODIS images, which were derived from Google Earth Engine (GEE). More information on tools can be found in Supplementary file 1.Fig. 3Screenshot of the Geo‐Wiki interface showing a very high-resolution image from Google Maps and a sample site as a 100 mx100 m blue square, which the participants classified based on the forest management classes on the right.Full size imageThe blue box in Fig. 3 corresponds to 100 m × 100 m pixels aligned with the Sentinel grid in UTM projection. It is the same geometry required for the classification workflow that is used to produce the Copernicus Land Cover product for 201511.Before starting the campaign, the participants were shown a series of slides designed to help them gain familiarity with the interface and to train them in how to visually determine and select the most appropriate type of land use and forest management classes at each given location, thereby increasing both consistency and accuracy of the labelling tasks among experts. Once completed, the participants were shown random locations (from the random stratified sample) on the Geo‐Wiki interface and were then asked to select one of the forest management classes outlined in the Definition section (see Table 1 above).Alternatively, if there was either insufficient quality in the available imagery, or if a participant was unable to determine the forest management type, they could skip such a site (Fig. 3). If a participant skipped a sample site because it was too difficult, other participants would then receive this sample site for classification, whereas in the case of the absence of high-resolution satellite imagery, i.e., Google Maps and Microsoft Bing Maps, this sample site was then removed from the pool of available sample sites. The skipped locations were less than 1% of the total amount of locations assigned for labeling. Table 2 shows the distribution of the skipped locations by countries, based on the subset of the crowdsourced data where all the participants agreed.Table 2 Distribution of the skipped locations by countries.Full size tableQuality assurance and data aggregation of the crowdsourced dataBased on the experience gained from previous crowdsourcing campaigns12,19, we invested in the training of the participants (130 persons in total) and overall quality assurance. Specifically, we provided initial guidelines for the participants in the form of a video and a presentation that were shown before the participants could start classifying in the forest management branch (Supplementary file 1). Additionally, the participants were asked to classify 20 training samples before contributing to the campaign. For each of these training samples, they received text‐based feedback regarding how each location should be classified. Summary information about the participants who filled in the survey at the end of the campaign (i.e., gender, age, level of education, and their country of residence) is provided in the Supplementary file 2. We would like to note that 130 participants is a high number, especially taking the complexity of the task into consideration.Furthermore, during the campaign, sample sites that were part of the “control” data set were randomly shown to the participants. The participants received text-based feedback regarding whether the classification had been made correctly or not, with additional information and guidance. By providing immediate feedback, our intention was that participants would learn from their mistakes, increasing the quality and classification accuracy over time. If the text‐based feedback was not sufficient to provide an understanding of the correct classification, the participants were able to submit a request (“Ask the expert”) for a more detailed explanation by email.The control set was independent of the main sample, and it was created using the same random stratified sampling procedure within each biome and the stratification by Global Forest Change maps14 (see “Sample design” section). To determine the size of the control sample, we considered two aspects: (a) the maximum number of sample sites that one person could classify during the entire campaign; (b) the frequency at which control sites would appear among the task sites (defined at 15%, which is a compromise between the classification of as many unknown locations as possible and a sufficient level of quality control, based on previous experience). Our control sample consisted of 5,000 sites. Each control sample site was classified twice by two different experts. When the two experts agreed, these sample sites were added to the final control sample. Where disagreement occurred (in 25% of cases), these sample sites were checked again by the experts and revised accordingly. During the campaign, participants had the option to disagree with the classification of the control site and submit a request with their opinion and arguments. They received an additional quality score in the situation when they were correct, but the experts were not. This procedure also ensured an increase in the quality of the control data set.To incentivize participation and high-quality classifications, we offered prizes as part of the campaign design. The ranking system for the prize competition considered both the quality of the classifications and the number of classifications provided by a participant. The quality measure was based on the control sample discussed above. The participants randomly received a control point, which was classified in advance by the experts. For every control point, a participant could receive a maximum of +30 points (fully correct classification) to a minimum of −30 points (incorrect classification). In the case where the answer was partly correct (e.g., the participant correctly classified that the forest is managed, but misclassified the regeneration type), they received points ranging from 5 to 25.The relative quality score for each participant was then calculated as the total sum of gained points divided by the maximum sum of points that this participant could have earned. For any subsequent data analysis, we excluded classifications from those participants whose relative quality score was less than 70%. This threshold corresponds to an average score of 10 points at each location (out of a maximum of 30 points), i.e., where participants were good at defining the aggregated forest management type but may have been less good at providing the more detailed classification.Unfortunately, we observed some imbalance in the proportion of participants coming from different countries, e.g. there were not so many participants from the tropics. This could have resulted in interpretation errors, even when all the participants agreed on a classification. To address this, we did an additional quality check. We selected only those sample sites where all the participants agreed and then randomly checked 100 sample sites from each class. Table 3 summarizes the results of this check and explains the selection of the final classes presented in Table 1.Table 3 Qualitative analysis of the reference sample sites with full agreement.Full size tableAs a result of the actions outlined in Table 3, we compiled the final reference data set, which consisted of 49,982 consistent sample sites.Additional expert data collectionWe used the reference data set to produce a test map of forest management (the classification algorithm used is described in the next section). By checking visually and comparing against the control data set, we found that the map was of insufficient quality for many locations, especially in the case of heterogeneous landscapes. While several reasons for such an unsatisfactory result are possible, the experts agreed that a larger sample size would likely increase the accuracy of the final map, especially in areas of high heterogeneity and for forest management classes that only cover a small spatial extent. To increase the amount of high-quality training data and hence to improve the map, we collected additional data using a targeted approach. In practice, the map was uploaded to Geo-Wiki, and using the embedded drawing tools, the experts randomly checked locations on the map, focusing on their region of expertise and added classified polygons in locations where the forest management was misclassified. To limit model overfitting and oversampling of certain classes, the experts also added points for correctly mapped classes to keep the density of the points the same. This process involved a few iterations of collecting additional points and training the classification algorithm until the map accuracy reached 75%. In total, we collected an additional 176,340 training points. With the 49,982 consistent training points from the Geo-Wiki campaigns, this resulted in 226,322 (Fig. 4). This two-pronged approach would not have been possible without the exhaustive knowledge obtained from running the initial Geo-Wiki campaigns, including numerous questions raised by the campaign participants. Figure 4 also highlights in yellow the areas of very high sampling density, I.e., those collected by the experts. The sampling intensity of these areas is much higher in comparison with the randomly distributed crowdsourced locations, and these are mainly areas with very mixed forest classes or small patches, in most cases, including plantations.Fig. 4Distribution of reference locations.Full size imageClassification algorithmTo produce the forest management map for the year 2015, we applied a workflow that was developed as part of the production of the Copernicus Global Land Services land cover at 100 m resolution (CGLS-LC100) collection 2 product11. A brief description of the workflow (Fig. 5), focusing on the implemented changes, is given below. A more thorough explanation, including detailed technical descriptions of the algorithms, the ancillary data used, and the intermediate products generated, can be found in the Algorithm Theoretical Basis Document (ATBD) of the CGLS-LC100 collection 2 product25.Fig. 5Workflow overview for the generation of the Copernicus Global Land Cover Layers. Adapted from the Algorithm Theoretical Basis Document25.Full size imageThe CGLS-LC100 collection 2 processing workflow can be applied to any satellite data, as it is unspecific to different sensors or resolutions. While the CGLS-LC100 Collection 2 product is based on PROBA-V sensor data, the workflow has already been tested with Sentinel 2 and Landsat data, thereby using it for regional/continental land cover (LC) mapping applications11,26. For generating the forest management layer, the main Earth Observation (EO) input was the PROBA-V UTM Analysis Ready Data (ARD) archive based on the complete PROBA-V L1C archive from 2014 to 2016. The ARD pre-processing included geometric transformation into a UTM coordinate system, which reduced distortions in high northern latitudes, as well as improved atmospheric correction, which converted the Top-of-Atmosphere reflectance to surface reflectance (Top-of-Canopy). In a further processing step, gaps in the 5-daily PROBA-V UTM multi-spectral image data with a Ground Sampling Distance (GSD) of ~0.001 degrees (~100 m) were filled using the PROBA-V UTM daily multi-spectral image data with a GSD of ~0.003 degrees (~300 m). This data fusion is based on a Kalman filtering approach, as in Sedano et al.27, but was further adapted to heterogonous surfaces25. Outputs from the EO pre-processing were temporally cleaned by using the internal quality flags of the PROBA-V UTM L3 data, a temporal cloud and outlier filter built on a Fourier transformation. This was done to produce consistent and dense 5-daily image stacks for all global land masses at 100 m resolution and a quality indicator, called the Data Density Indicator (DDI), used in the supervised learning process of the algorithm.Since the total time series stack for the epoch 2015 (a three-year period including the reference year 2015 +/− 1 year) would be composed of too many proxies for supervised learning, the time and spectral dimension of the data stack had to be condensed. The spectral domain was condensed by using Vegetation Indices (VIs) instead of the original reflectance values. Overall, ten VIs based on the four PROBA-V reflectance bands were generated, which included: Normalized Difference Vegetation Index (NDVI); Enhanced Vegetation Index (EVI); Structure Intensive Pigment Index (SIPI); Normalized Difference Moisture Index (NDMI); Near-Infrared reflectance of vegetation (NIRv); Angle at NIR; HUE and VALUE of the Hue Saturation Value (HSV) color system transformation. The temporal domain of the time series VI stacks was then condensed by extracting metrics, which are used as general descriptors to enable distinguishing between the different LC classes. Overall, we extracted 266 temporal, descriptive, and textual metrics from the VI times series stacks. The temporal descriptors were derived through a harmonic model, fitted through the time series of each of the VIs based on a Fourier transformation28,29. In addition to the seven parameters of the harmonic model that describe the overall level and seasonality of the VI time series, 11 descriptive statistics (mean, standard deviation, minimum, maximum, sum, median, 10th percentile, 90th percentile, 10th – 90th percentile range, time step of the first minimum appearance, and time step of the first maximum appearance) and one textural metric (median variation of the center pixel to median of the neighbours) were generated for each VI. Additionally, the elevation, slope, aspect, and purity derived at 100 m from a Digital Elevation Model (DEM) were added. Overall, 270 metrics were extracted from the PROBA-V UTM 2015 epoch.The main difference to the original CGLS-LC100 collection 2 algorithms is the use of forest management training data instead of the global LC reference data set, as well as only using the discrete classification branch of the algorithm. The dedicated regressor branch of the CGLS-LC100 collection 2 algorithm, i.e., outputting cover fraction maps for all LC classes, was not needed for generating the forest management layer.In order to adapt the classification algorithm to sub-continental and continental patterns, the classification of the data was carried out per biome cluster, with the 73 biome clusters defined by the combination of several global ecological layers, which include the ecoregions 2017 dataset30, the Geiger-Koeppen dataset31, the global FAO eco-regions dataset32, a global tree-line layer33, the Sentinel-2 tiling grid and the PROBA-V imaging extent;30,31 this, effectively, resulted in the creation of 73 classification models, each with its non-overlapping geographic extent and its own training dataset. Next, in preparation for the classification procedure, the metrics of all training points were analyzed for outliers, as well as screened via an all-relevant feature selection approach for the best metric combinations (i.e., best band selection) for each biome cluster in order to reduce redundancy between parameters used in the classification. The best metrics are defined as those that have the highest separability compared to other metrics. For each metric, the separability is calculated by comparing the metric values of one class to the metric values of another class; more details can be found in the ATBD25. The optimized training data set, together with the quality indicator of the input data (DDI data set) as a weight factor, were used in the training of the Random Forest classifier. Moreover, a 5-fold cross-validation was used to optimize the classifier parameters for each generated model (one per biome).Finally, the Random Forest classification was used to produce a hard classification, showing the discrete class for each pixel, as well as the predicted class probability. In the last step, the discrete classification results (now called the forest management map) are modified by the CGLS-LC100 collection 2 tree cover fraction layer29. Therefore, the tree cover fraction layer, showing the relative distribution of trees within one pixel, was used to remove areas with less than 10% tree cover fraction in the forest management layer, following the FAO definition of forest. Figure 6 shows the class probability layer that illustrates the model behavior, highlighting the areas of class confusion. This layer shows that there is high confusion between forest management classes in heterogeneous landscapes, e.g., in Europe and the Tropics while homogenous landscapes, such as Boreal forests, are mapped with high confidence. It is important to note that a low probability does not mean that the classification is wrong.Fig. 6The predicted class probability by the Random Forest classification.Full size image More

  • in

    My family and other parasites: more worm species are named for loved ones

    Diomedenema dinarctos, a parasitic worm that infests penguins, is named after the Greek deinos, meaning terrible, and arktos, or bear, because of its resemblance to a menacing teddy bear.Credit: Bronwen Presswell and Jerusha Bennett

    What scientists choose to name parasitic worms could say more about the researchers than the organism they are studying.A study1 examining the names of nearly 3,000 species of parasitic worm discovered in the past 20 years reveals a markedly higher proportion named after male scientists than after female scientists — and a growing appetite for immortalizing friends and family members in scientific names.The analysis uncovers ongoing biases in taxonomy — the classification of organisms — and could be used as a jumping-off point for rethinking how scientists name species, says study co-author Robert Poulin, an ecological parasitologist at the University of Otago in Dunedin, New Zealand.“When you name something, it is now named forever. I think it’s worth giving some thought to what names we choose,” he says. The research was published on 11 May in Proceedings of the Royal Society B.As the worm turnsSpecies names often describe how an organism looks or where it was found. But since the nineteenth century, they have also been used to immortalize scientists. The parasite that causes the intestinal disease giardiasis, for instance, was named after French zoologist Alfred Giard.Wondering how naming practices had changed, Poulin and his colleagues combed through papers published between 2000 and 2020 that describe roughly 2,900 new species of parasitic worm. The team found that well over 1,500 species were named after their host organism, where they were found or a prominent feature of their anatomy.Many others were named after people, ranging from technical assistants to prominent politicians (Baracktrema obamai, a species found in Malaysian freshwater turtles, was named after former US president Barack Obama). But just 19% of the 596 species named after eminent scientists were named after women, a percentage that essentially didn’t budge over the decades (see ‘Parasite name game’).

    Source: Ref. 1

    This could be because of a historical dearth of female figures in the field, says Janine Caira, a parasite taxonomist at the University of Connecticut in Storrs. But another possibility is that the work of past female scientists often goes unrecognized, says Tanapan Sukee, a parasitologist at the University of Melbourne in Australia.Sukee has named two species of parasitic worm after now-deceased Australian biologist Patricia Mawson, who was a key player in the characterization of marsupial parasites. For most of her career, Mawson worked part-time as a technician, and she was often designated second author on papers describing species she had discovered, Sukee says. Similar situations could explain why so few parasites are named after women.Poulin and his colleagues also noticed an upward trend in the number of parasites named after friends and family members of the scientists who formally described them. Some researchers even name species after pets: Rhinebothrium corbatai is a freshwater stingray parasite named after the first author’s Welsh terrier, Corbata.Poulin says this should be discouraged. Species are almost never named after the person who described them, and Poulin argues that names honouring parents, children or spouses could be seen as a way to get around this convention.And besides, “I don’t have any friends or family who want a parasite named after them!” says Sukee. More

  • in

    Pollen-mediated transfer of herbicide resistance between johnsongrass (Sorghum halepense) biotypes

    Plant materialsAn ALS-inhibitor-resistant johnsongrass (resistant to nicosulfuron) obtained from the University of Nebraska-Lincoln (source credit: Dr. John Lindquist) was used as the pollen source (male parent), and the natural johnsongrass population present in the experimental field at the Texas A&M University Farm, Somerville (Burleson County), Texas (30° 32′ 15.4″ N 96° 25′ 49.2″ W) with no history of ALS-inhibitor resistance was used as the pollen recipient (female parent). Prior to the initiation of the field experiment, the susceptibility to nicosulfuron of the natural johnsongrass population was verified by spraying Accent Q at the labeled field rate of 63 g ai ha−1 [mixed with 0.25% v/v Crop Oil Concentrate (COC)] on 10 randomly selected 1 m2 johnsongrass patches across the field area at 15–30 cm tall seedling stage. For this purpose, a CO2 pressurized backpack sprayer was calibrated to deliver 140 L ha−1 of spray volume at an operating speed of 4.8 kmph. The natural johnsongrass population was determined to be completely susceptible to nicosulfuron.During spring 2018, the seeds of AR johnsongrass were planted in pots (14-cm diameter and 12-cm tall) filled with potting soil mixture (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA) at the Norman Borlaug Center for Southern Crop Improvement Greenhouse Research Facility at Texas A&M University. The environmental conditions were set at 26/22 °C day/night temperature regime and a 14-h photoperiod. In each pot, 5 seeds were planted and thinned to one healthy seedling at 1-leaf stage. Seedlings were supplied with sufficient water and nutrients (Miracle-Gro Water Soluble All Purpose Plant Food, Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH 43041). A total of 50 seedlings were established in the greenhouse and were maintained until they reached about 10 cm tall, at which point they were sprayed with 2× the field rate of nicosulfuron (63 × 2 = 126 g ai ha−1) (mixed with 0.25% v/v COC). The herbicide was applied using a track-sprayer (Research Track Sprayer, DeVries, Hollandale, MN) fitted with a flat fan nozzle (TeeJet XR110015) that was calibrated to deliver a spray volume of 140 L ha−1 at 276 kPa pressure, and at an operating speed of 4.8 kmph. All treated seedlings that survived the herbicide application at 21 days after treatment (DAT) were then used as the pollen donor in the field gene flow experiment. All plant materials were handled in accordance with relevant guidelines and regulations. No permissions or licenses were required for collecting the johnsongrass samples from the experimental fields.Dose–response assaysThe degree of resistance/susceptibility to nicosulfuron of the AR and AS johnsongrass biotypes were determined using a classical dose–response experiment. The assay consisted of seven rates (0, 0.0625, 0.125, 0.25, 0.5, 1, and 2×) for the AS population and nine rates (0, 0.25, 0.5, 1, 2, 4, 8, 16, and 32×) for the AR population [1 × (field recommended rate) = 63 g ai ha−1 of Accent Q]. The experimental units were arranged in a completely randomized design with four replications. Seeds of AR and AS plants were planted in plastic trays (25 × 25 cm) filled with commercial potting-soil mix (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA) and maintained at 26/22 °C day/night cycle with a 14-h photoperiod in the greenhouse. Seedlings at 1–2 leaf stage were thinned to 20 seedlings per tray; four replications each of 20 seedlings per dose were considered. The seedlings were watered and fertilized as needed. The assay was conducted twice, thus a total of 160 seedlings were screened for each dose.The established seedlings were sprayed with the appropriate herbicide dose at the 10–15 cm tall seedling stage. The herbicide was applied using a track sprayer calibrated to deliver a spray volume of 140 L ha−1 at 4.8 kmph operating speed. Survival (%) and injury (%) were assessed at 28 DAT. Any plant that failed to grow out of the herbicide impact was considered dead. Plant injury was rated for each plot (i.e. on the 20 seedlings per rep) on a scale of 0–100%, where 0 indicates no visible impact compared to the nontreated control and 100 indicates complete death of all plants in the tray. Immediately after the visual ratings were completed, shoot biomass produced by the 20 plants from each tray was determined by harvesting all the tissues at the soil level and drying them in an oven at 60 °C for 72 h. Seedling mortality data were used for fitting dose–response curves that allowed for determining the lethal dose that caused 100% mortality of the susceptible biotype. This dose was used as a discriminant dose to distinguish between a hybrid (that confers resistance to nicosulfuron as a result of gene flow) and a selfed progeny (susceptible to nicosulfuron) in the field gene flow study.Field experimental location and set-upThe field experiment was conducted across two ENVs in 2018 (summer and fall) and one in 2019 (fall) at the Texas A&M University Farm, Somerville (Burleson County), Texas (30° 32′ 15.4″ N 96° 25′ 49.2″ W). The study site is characterized by silty clay loam soil with an average annual rainfall of 98.2 cm. The field experiment followed the Nelder-wheel design40, i.e. concentric donor-receptor design, a widely used method for gene flow studies, wherein the pollen-donors are surrounded by the pollen-receptors (Fig. 1). In this study, the AR plants (planted in the central block of the wheel) served as the pollen-donors, whereas the AS plants (present in the spokes) served as the pollen-receptors.Figure 1Aerial view of the experimental arrangement that was used to quantify pollen-mediated gene flow from ALS-inhibitor resistant (AR) to -susceptible (AS) johnsongrass at the Texas A&M University Research Farm near College Station, Texas. AR johnsongrass plants were transplanted in the pollen-donor block of 5 m diameter at the center of the field. The surrounding pollen-receptor area was divided into four cardinal (N, E, S, W) and four ordinal (NE, SE, SW, NW) directional blocks where naturally-existing AS johnsongrass plants were used as the pollen-recipients. AS panicles exhibiting flowering synchrony with AR plants were tagged at specific distances (5–50 m, at 5 m increments) along the eight directional arms. A tall-growing biomass sorghum border was established in the perimeter of the experimental site to prevent pollen inflow from outside areas.Full size imageThe center of the wheel was 5 m in diameter, and each spoke was 50 m long starting at the periphery of the central circular block. Thirty AR plants (pollen-donors) were transplanted in four concentric rings of 1, 5, 9, and 15 plants in the 5 m diameter central block, surrounded by the pollen-receptors (i.e. AS plants) (Fig. 1). The AR plants were contained within the central block during the 2 years of the field experiment by harvesting and removing all mature seeds and removing any expanding rhizomatous shoots. Further, field cultivation was completely avoided in the central block throughout the study period. Any newly emerging johnsongrass plants (seedling/rhizomatous) other than the transplanted AR plants in the central block were removed periodically by manual uprooting.The wheel consisted of eight spokes (i.e. directional blocks) arranged in four cardinal (N, E, S, W) and four ordinal (NE, SE, NW, SW) directions (Fig. 1). The plots to quantify gene flow frequency were arranged at 0 (border of the central block), 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 m distances from the central block in all eight directions (Fig. 1). Each plot measured 3 × 2 m and the area surrounding the plots was shredded prior to the booting stage with a Rhino® RC flail shredder (RHINOAG, INC., Gibson City, IL 60936).A tall-growing biomass sorghum border (6 m wide) was established surrounding the experimental area in all directions to prevent potential inflow of pollen from other Sorghum spp. in the nearby areas. Additionally, prevailing weather conditions, specifically wind direction, wind speed, relative humidity, and air temperature measured at 5-min intervals were obtained from a nearby weather station located within the Texas A&M research farm (http://afs102.tamu.edu/). The field did not require any specific agronomic management in terms of irrigation, fertilization, or pest management.Flowering synchrony, tagging, and seed harvestingAt peak flowering, when  > 50% of the plants in the AR block started anther dehiscence (i.e., pollen shedding), ten AS panicles (five random plants × 2 panicles per plant) that showed flowering synchrony with AR plants and displayed protruded, receptive stigma were tagged using colored ribbons at each distance and direction. At seed maturity, the tagged AS panicles were harvested separately for each distance and direction. Panicles were threshed, seeds were cleaned manually, and stored under room conditions until used in the herbicide resistance screening to facilitate after-ripening and dormancy release.Resistance screeningThe hybrid progeny produced on AS plants as a result of outcrossing with AR plants would be heterozygous for the allele harboring nicosulfuron resistance, and would exhibit survival upon exposure to the herbicide applied at the discriminant dose at which all wild type (AS) plants would die. The discriminant dose was determined using the dose–response study described above. Thus, the frequency of resistant plants in the progeny would represent outcrossing/gene flow (%).To effectively detect the levels of gene flow from AR to AS biotypes especially at low frequencies, the minimum sample size required for resistance screening was determined based on the following formula (Eq. 1)41:$${text{N }} = {text{ ln}}left( {{1} – P} right)/{text{ln}}left( {{1} – p} right),$$
    (1)
    where P is the probability of detecting a resistant progeny in the least frequent class and p is the probability of the least frequent class. Based on this formula, a minimum of 298 to as high as 916 plants were screened for each distance within each direction, allowing for a 1% detection level (p = 0.01) with a 95% (P = 0.95) confidence interval.Approximately one-year old progeny seeds harvested from the AS plants were scarified using a sandpaper for 15–20 s to release dormancy. The seeds for each distance within each direction were planted in four replicates of plastic trays (50 × 25 cm) filled with potting soil mixture (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA). The plants were raised at the Norman Borlaug Center for Southern Crop Improvement Greenhouse Research Facility at Texas A&M University. The greenhouse was maintained at 28/24 °C day/night temperature regime and a 14-h photoperiod. About 10–15 cm tall seedlings were sprayed with the discriminant dose of the ALS-inhibitor nicosulfuron (Accent Q, 95 g ai ha−1) using a spray chamber (Research Track Sprayer, DeVries, Hollandale, MN) fitted with a flat fan nozzle (TeeJet XR110015) that was calibrated to deliver a spray volume of 140 L ha−1 at 276 kPa pressure, operating at a speed of 4.8 kmph. At 28 DAT, percent seedling survival was determined based on the number of plants that survived the herbicide application out of the total number of plants sprayed. The number of plants in each tray was counted before spraying.Molecular confirmation of hybridsLeaf tissue samples were collected from thirty random surviving plants (putative resistant) in the herbicide resistance screening study for each of the three field ENVs, thus totaling 90 samples. Genomic DNA was extracted from 100 mg of young leaf tissue using the modified CTAB protocol42. The concentration of DNA was determined using a Nanodrop 1000 UV–Vis spectrophotometer (DeNovix DS-II spectrophotometer, DeNovix Inc., Wilmington, DE 19810, USA). DNA was then diluted to a concentration of 20 ng/µl for PCR assay. The nicosulfuron-resistant johnsongrass from Nebraska used in this study possessed the Trp574Leu mutation39. Hence, single nucleotide polymorphism (SNP) primers targeting a unique short-range haplotype of Inzen® sorghum (Val560Ile + Trp574Leu) were performed using the PCR Allele Competitive Extension (PACE) platform to confirm the resistant plants43. The SNP primers and the PACE genotyping master mix were obtained from Integrated DNA Technologies (IDT) Inc. (Coralville, IA) and 3CR Bioscience (Harlow CM20 2BU, United Kingdom), respectively. In addition to the two no-template controls (NTCs), two nicosulfuron-resistant johnsongrass, one wild-type johnsongrass, and one Inzen® sorghum were also used in the PCR.The PCR was performed according to the manufacturer’s protocol (Bio-Rad Laboratories, Inc., Hercules, CA), with denaturation for 15 min at 94 °C, followed by 10 cycles of denaturation at 94 °C for 20 s, annealing and extension at 65–57 °C for 60 s, 30 cycles of denaturation for 20 s at 94 °C, and annealing and extension for 60 s at 57 °C. Fluorescence of the reaction products were detected using a BMG PHERAStar plate reader that uses the FAM (fluorescein amidite) and HEX (hexachloro-fluorescein) fluorophores.Data analysisFor the dose–response assay, three-parameter sigmoidal curves (Eq. 2) were fit on the seedling mortality data for the AS and AR biotypes (with log of herbicide doses), using SigmaPlot version 14.0 (Systat Software Inc., San Jose, CA).$$y=b/[1+{exp}^{left(-(x-eright)/c)}],$$
    (2)
    where, y is the mortality (%), x is the herbicide dose (g ai ha−1), b is the slope around e, c is the lower limit (theoretical minimum for y normalized to 0%), and e = LD50 (inflection point, mid-point or estimated herbicide dose when y = 50%). Windrose plots that represented wind speed and frequency during the flowering window in each of the eight directions were created using a macro in Microsoft Excel. Progeny seedling survival (%) that represents gene flow (%) was determined using Eq. (3).$${text{PMGF }}left( {text{%}} right){ } = { }left( frac{X}{Y} right)_{{i,j{ }}} times { }100,$$
    (3)
    where, X is the number of plants that survived the herbicide application, Y is the total number of plants sprayed for ith distance in jth direction.To test whether gene flow frequencies varied among the directions, ANOVA was conducted using JMP PRO v.14 (SAS Institute, Cary, NC, USA), based on the average gene flow frequency values in each direction; ENVs were considered as replicates in this analysis. A non-linear regression analysis for gene flow rate, describing an exponential decay function (Eq. 4), was fit using SigmaPlot based on the gene flow frequencies observed at different distances pooled across the directions and ENVs.$$y=y0+left[atimes {exp}^{left(-btimes xright)}right],$$
    (4)
    where, y is the PMGF (%), x is the distance (m) from pollen source, y0 is the lower asymptote (theoretical minimum for y normalized to 0%), a is the inflection point, mid-point or estimated distance when y = 50%, and b is the slope around a.A Pearson correlation analysis was conducted to determine potential association between PMGF [overall PMGF, short-distance PMGF (5 m), and long-distance PMGF (50 m)] and the environmental parameters temperature, relative humidity, and dew point. Further, a correlation analysis was also conducted to understand the association between PMGF frequencies and specific wind parameters such as wind frequency, wind speed, and gust speed. The molecular data were analyzed using KlusterCaller 1.1 software (KBioscience). More

  • in

    Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent

    Smith, J., Nicholas, A., & Beresford. Chernobyl-Catastrophe and Consequences. Springer (published in association with Praxis publishing, UK), ISBN 3–540–23866–2 Springer (2005)Rosenthal, H. L. Content of stable strontium in man and animal biota. In C Skoryna (4): Handbook of Common Strontium. New York Plenum, pp. 503–514 (1981)Ujwal, P. Studies on transfer factors and transfer coefficients of cesium and strontium in soil-grass-milk pathway and estimation and radiation dose in the environment of Kaiga. Ph D thesis, Mangalore University. http://hdl.handle.net/10603/131678 (2012).World Health Organization (WHO). Concise international chemical assessment document 77 (strontium and strontium compounds). http://apps.who.int/iris/bitstream/10665/44280/1/9789241530774_ eng.pdf (2010).Jones, S. Wind scale and Kyshtym: a double anniversary. J. Environ. Radioact. 99(1), 1–6. https://doi.org/10.1016/j.jenvrad.2007.10.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000. Vol. I, Annex A (2000)Nabeshi, et al. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident. Shokuhin Eiseigaku Zasshi. 56(4), 133–143. https://doi.org/10.3358/shokueishi.56.133 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abu –Khadra et al. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leaves of Wheat Plant. Radiation Physics & Protection Conference, 15–19 November 2008, Nasr City – Cairo, Egypt (2008)Alexakhin, R. et al. Fluxes of radionuclides in agricultural environments: Main results and still unsolved problems. In The radiological consequences of the Chernobyl Accident (eds Karaoglou, A. et al.) 39–47 (European Commission, 1996).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series (TRS) No. 472 (IAEA-TRS-472). IAEA, Vienna (2010).International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series (TRS) No. 364. IAEA, Vienna (1994).Howard, B. J. et al. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk. J. Environ. Radioact. 167, 254–268 (2017).CAS 
    Article 

    Google Scholar 
    Tagami, et al. Chapter 5 – Terrestrial Radioecology in Tropical Systems, Editor(s): John R. Twining, Radioactivity in the Environment, Elsevier, Vol 18, pp 155–230 (2012).Voigt, G. et al. Measurements of transfer coefficients for 137Cs, 60Co, 54Mn, 22Na, 131I, and 95mTc from feed into milk and beef. Radiat. Environ. Biophys. 27, 143–152. https://doi.org/10.1007/BF01214604 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Popplewell, D. S. & Ham, G. J. Transfer factors for 137Cs and 90Sr from grass to bovine milk under field conditions. J. Radio. Prot. 9(3), 189–193 (1989).CAS 
    Article 

    Google Scholar 
    Schuller, P. et al. 137Cs concentration in soil, prairie plants, and milk from sites in southern Chile. Health Phy. 64(2), 157–161 (1993).CAS 
    Article 

    Google Scholar 
    Kirchner, G. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys. 66(6), 653–665. https://doi.org/10.1097/00004032-199406000-00005 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Assimakopoulos, P. A. et al. Variation of the transfer coefficient for radiocaesium transport to sheep’s milk during a complete lactation period. J. Environ. Radioact. 22, 63–75 (1994).Article 

    Google Scholar 
    Wang, C. J. et al. Transfer of radionuclides from soil to grass in Northern Taiwan. Appl. Radiat. Isot. 48(2), 301–303 (1997).CAS 
    Article 

    Google Scholar 
    Zhu, Y.-G. & Smolders, E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635–1645 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 35 km from the Chernobyl nuclear power plant. J. Environ. Radioact. 47, 157–170 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. Does size matter? In: International conference on the protection of the environment from the effects of ionizing radiation, Stockholm, International Atomic Energy Agency, Vienna, IAEA-CN-109, 182–185 (2003).Howard, B. J. and Beresford, N. A. Advances in animal radioecology. In: Brechignac F, Howard, B.J., (Eds) Proceedings of international symposium in Aix-en-Provence, France, 3–7. EDP Science, Les Ulis, pp. 187–207 (2001).Solecki, J. & Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 252(1), 89–93 (2002).CAS 
    Article 

    Google Scholar 
    Strebl, F. et al. Radiocaesium contamination of meadow vegetation-time-dependent variability and influence of soil characteristics at grassland sites in Austria. J. Environ. Radioact. 58, 143–161 (2002).CAS 
    Article 

    Google Scholar 
    Tsukada, H. S. et al. Transfer of 137Cs and stable Cs in soil–grass–milk pathway in Aomori, Japan. J. Radioanal. Nucl. Chem. 255(3), 455–458 (2003).CAS 
    Article 

    Google Scholar 
    Toki, H. et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 10, 4074. https://doi.org/10.1038/s41598-020-60999-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kubo, K. et al. Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Sci. Rep. 10(3744), 2020. https://doi.org/10.1038/s41598-020-60716-w (2020).CAS 
    Article 

    Google Scholar 
    Saito, R. et al. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joshy, P. J. et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. J. Environ. Radioact. 102, 1070–1077 (2011).Article 

    Google Scholar 
    Joshi, R. M. et al. Baseline radioactivity levels in Kaiga site soil and its migration to biosphere. J. Radioanal. Nucl. Chem. 247(3), 571–574 (2001).CAS 
    Article 

    Google Scholar 
    Sachdev, P. et al. The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants (IAEA-TECDOC–1497). International Atomic Energy Agency (IAEA) (2006)Geetha, P. V. et al. Determination of concentration of iodine in grass and cow milk by NAA methods using reactor neutrons. J. Radioanal. Nucl. Chem. 294, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Geetha, P. V. et al. Grass to cow milk transfer coefficient (Fm) of iodine for equilibrium and emergency situations. Radiat. Prot. Environ. 37(1), 14–20 (2014).Article 

    Google Scholar 
    Karunakara, N. et al. Studies on the soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J. Environ. Radioact. 124, 101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karunakara, N. et al. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J. Environ. Radioact. 2013(118), 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 (2013).CAS 
    Article 

    Google Scholar 
    Ujwal, P. et al. Estimation of grass to milk transfer coefficient for cesium for emergency situations. Radiat Prot Environ [serial online] [cited 2021 Sep 23]; 34: 210–2. Available from: https://www.rpe.org.in/text.asp?2011/34/3/210/101727 (2011).International Atomic Energy Agency (IAEA). Soil–Plant Transfer of Radionuclides in Non-temperate Environments. IAEA-TECDOC No. 1979, IAEA, Vienna (2021a).Iurian, A.-R. et al. Transfer parameters and processes in arid or humid warm climates. J. Environ. Radioact https://doi.org/10.1016/j.jenvrad.2021.106692 (2021).Article 
    PubMed 

    Google Scholar 
    Doering, et al. A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. J. Environ. Radioact., 232, 106570, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106570 (2021).Rout et al. Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review. J. Environ. Radioact., 235–236, 106652, ISSN 0265–931X. https://doi.org/10.1016/j.jenvrad.2021.106652 (2021a).Rout et al. A review of soil to rice transfer of radionuclides in tropical regions of Indian subcontinent. J. Environ. Radioact. 234: 106631. https://doi.org/10.1016/j.jenvrad.2021.106631 (2021b).Twining, J. R. et al. Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia. J. Environ. Radioact. 71(2004), 71 (2004).CAS 
    Article 

    Google Scholar 
    Twining, J. R. et al. Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical northern Australia. Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC-1497, IAEA, Vienna (2006)Mollah, A. et al. Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat. Environ. Biophys. 37, 125–128. https://doi.org/10.1007/s004110050104 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, H. Q. The classification of soil systems on the basis of transfer factors from soil to reference plants, Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC1497 (IAEA, 2006).
    Google Scholar 
    Mahfuza, S., Sultana et al. Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh, Soil Remediation and Plants, Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00012-7 (2015)Nguyen, T. B. et al. Radionuclide transfer factors from air, soil and freshwater to the food chain of man in monsoon tropical condition of Vietnam, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex VIII to this publication (2021).Robison, W.L. & Conrado, C.L. Concentration ratios for foods grown on Bikini Island at Bikini atoll, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex X to this publication9 (2021).Doering, C. & Bollhöfer, A. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province. J. Environ. Radioact. 162–163, 154 (2016).Article 

    Google Scholar 
    Tenpe, S. P. & Parwate, D. V. Evaluation of elemental uptake of Citrus reticulata by nuclear analytical techniques. Int. J. Innov. Res. Sci. Eng. Technol. 4(2015), 2754 (2015).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Approaches for Modelling of Radioecological Data to Identify Key Radionuclides and Associated Parameter Values for Human and Wildlife. Exposure Assessments. IAEA-TECDOC No. 1950, IAEA, Vienna (2021b).Johansen, M. P. & Twining, J. R. Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: Data compilation and analysis. Radiat. Environ. Biophys. 49(4), 603–611. https://doi.org/10.1007/s00411-010-0318-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sotiropoulou, M., & Florou, H. Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece, J. Environ. Radioact., 237, 2021, 106666, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106666 (2021).Howard, B. J. et al. Updating animal product transfer parameter values for cow and goat milk. In: Soil-pant transfer of radionuclides in non-temperate environments, IAEA-TECDOC-1950, IAEA, Vienna (2021)Musatovová, O. & Vavrová, M. Transfer of 137Cs and 90Sr to some Animal Products in the site of Previewed Nuclear Power Plant Construction. Isotopenpraxis Isotopes Environ. Health Stud. 27(7), 339–341. https://doi.org/10.1080/10256019108622561 (1991).Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-No. 1616. IAEA, Vienna (2009).Karunakara, N. et al. Studies on transfer Factors of Iodine, Cesium and Strontium in air→ grass→ cow→ milk pathway and estimation of radiation dose specific to Kaiga region. Final report of the research project, Nuclear Power Corporation of India Ltd. (NPCIL). Grant No. Kaiga–3&4/00000/SD/2007/S/343 dated 27.12.2007, Kaiga –3&4/00000/SD/2007/S/343 (2012).Karunakara, N. et al. Estimation of air-to-grass mass interception factors for iodine, J. Environ. Radioact., 186, 71–77. ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2017.06.018 (2018).Nayak, R. S. et al. Experimental database on water equivalent factor (WEQp) and organically bound tritium activity for tropical monsoonal climate region of South West Coast of India. Appl. Radiat. Isotopes, https://doi.org/10.1016/j.apradiso.2020.109390 (2020).Karunakara, N. et al. 137Cs concentration in environment of Kaiga in the South-West Coast of India. Health Phys. 81(2), 148–155 (2001).CAS 
    Article 

    Google Scholar 
    Karunakara, N. et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga of south-west Coast of India. J. Environ. Radioact. 65, 255–266 (2003).CAS 
    Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Measurement of radionuclides in food and the environment, a guide book. Technical report series No. 295. IAEA, Vienna (1989).Environmental Measurements Laboratory, procedures manual. U.S. Department of Energy. Ed. 26 (1983).Uchida, S. & Tagami, K. Soil-to-plant transfer factors of fallout Cs-137 and native Cs-133 in various crops collected in Japan. J. Radioanal. Nucl. Chem. 273, 205–210 (2007).CAS 
    Article 

    Google Scholar 
    Gavlak, R. D. et al. Plant, soil and water reference methods for the Western Region. Western Regional Extension Publication (WREP) 125, WERA-103 Technical Committee, http://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (2005).Nuclear Power Corporation of India Ltd. (NPCIL). Environmental impact assessment for Kaiga atomic power project (Kaiga unit 5 & 6), 2 x 700 MWe PHWRs at Kaiga, Karnataka volume – I : Main report. NPCIL, Mumbai, India (2018).Siddappa, K. et al. Distribution of natural and artificial radioactivity components in the environs of coastal Karnataka, Kaiga and Goa (1991–94). Final Project Report to Board of Research in Nuclear Sciences (BRNS), Govt. of India, Mangalore University, Mangalore, India (1994).Radhakrishna, A. P. et al. Distribution of some natural and artificial radionuclides in mangalore environment of South India. J. Environ. Radioact. 30(1), 31–54 (1996).CAS 
    Article 

    Google Scholar 
    Patra, A. K. et al. Influence of site characteristics on soil to plant transfer of Strontium. National Symposium on Environment, 2004. pp. 475–480 (2004).Ross, et al. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Protect. Environ., 35(2) 64–68, DOI https://doi.org/10.4103/0972-0464.112340 (2012).National Research Council (NRC), Nutrient requirements of dairy cattle. 5th revised edition, National Academic Press; Washington D.C (1978).Patra, A. K. Studies on The Biological Translocation of Major and Trace elements in Kaiga Environment, Ph.D. Thesis, Mangalore University (2005).Ehlken, S. & Kirchner, G. Seasonal variations in soil to grass transfer of fallout Strontium and Cesium and of Potassium in North German soils. J. Environ. Radioact. 33(2), 147–181 (1996).CAS 
    Article 

    Google Scholar 
    International Union of Radioecology (IUR). 6th report of the working group soil-plant transfer factors. Report of the working group meeting in Guttannen, Grimselpass, Switzerland, May (1989).Lu, et al. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. Journal of Environmental Radioactivity 90(2), 89–99 (2006).Bergeijk, K. E. et al. Influence of pH, Soil Organic Matter Content on Soil-to-Plant Transfer of Radiocesium and Strontium as Analyzed by a Non-Parametric Method. J. of Environ. Radioactivity 15, 265–276 (1992).Article 

    Google Scholar 
    Anderson, R. R. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055 (1992).CAS 
    Article 

    Google Scholar 
    Hurley, W. L. Lactation Biology. Minerals and Vitamins. Ed. by Univ. Urbana. Illinois USA. (1997).Hingorani, S. B. et al. Sr-90 measurements in milk and composite diet samples in India. J. Sci. Indust. Res. 35, 557–579 (1976).CAS 

    Google Scholar 
    Lettner, H. A. et al. 137Cs and 90Sr transfer to milk in Austrian alpine agriculture. J. Environ. Radioact. 98, 69–84 (2007).CAS 
    Article 

    Google Scholar 
    Klemola, S. et al. Monitoring of Radionuclides in the Environs of the Finnish Nuclear Power Stations in 1988. Supplement 3 to Annual Report STUK-A89, Helsinki (1991)Abukawa, J. et al. A Survey of 90Sr and 137Cs Activity Levels of Retail Foods in Japan. J. Environ. Radioact. 41 (3), 287–305. (1998)Green, N. et al. The transfer of Cs and Sr along the soil-pasture-cow’s milk pathway in an area of land reclaimed from the Sea. J. Environ. Radioact. 23, 151–170 (1994).CAS 
    Article 

    Google Scholar 
    Green, N. et al. Factors affecting the transfer of radionuclides to sheep grazing on pastures reclaimed from the Sea. J. Environ. Radioact. 30(2), 173–183 (1996).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of radiocaesium to ewes through a breeding cycle: An illustration of the pitfalls of the transfer coefficient. J. Environ. Radioact. 98, 24–35 (2007).CAS 
    Article 

    Google Scholar 
    Bobovnikova, et al. Chemical forms of occurrence of long-lived radionuclides and their alteration in soils near the Chernobyl Nuclear Power Station. Soviet Soil Sci. 23, 52–57. (1991).Kashparov, V. A. et al. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys. 76, 251–299 (1999).CAS 
    Article 

    Google Scholar 
    Joshy, P. J. Studies on Environmental Transportation of Natural Radionuclides in Kaiga Region. Ph D Thesis, Mangalore University, pp. 105 (2007). More

  • in

    State of ex situ conservation of landrace groups of 25 major crops

    Crops and their landrace study areasFood crops whose genetic resources are researched and conserved by CGIAR international agricultural research centres or by the CePaCT of the SPC were included in this study. Crop landrace distributions were modelled and conservation analyses conducted within recognized primary and, for some crops, secondary regions of diversity, where these crops were domesticated and/or have been cultivated for very long periods, and where they are, thus, expected to feature high genetic diversity and adaptation to local environmental and cultural factors (Supplementary Tables 1 and 2)9,13. These regions were identified through literature review (Supplementary Information) and confirmed by crop experts.Occurrence dataOur crop landrace group distribution modelling and conservation gap analysis rely on occurrence data, including coordinates of locations where landraces were previously collected for ex situ conservation and reference sightings. For ex situ conservation records, occurrences marked as landraces were retrieved from two major online databases: the Genesys Plant Genetic Resources portal33 and the World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) of the Food and Agriculture Organization of the United Nations34. Occurrences were also obtained directly from individual international genebank information systems: AfricaRice, the International Transit Centre and Musa Germplasm Information System of Bioversity International35, CePaCT, International Center for Tropical Agriculture (CIAT), International Maize and Wheat Improvement Center (CIMMYT), International Potato Center (CIP), International Center for Agricultural Research in the Dry Areas (ICARDA), International Crops Research Institute for the Semi-arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA) and International Rice Research Institute (IRRI), as well as from the United States Department of Agriculture (USDA) Genetic Resources Information Network (GRIN)–Global36 and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)37. Occurrences were compiled from the Global Biodiversity Information Facility (GBIF), with ‘living specimen’ records classified as ex situ conservation records and the remaining serving as reference sightings for use in distribution modelling. Reference occurrences were also drawn from published literature (Supplementary Information). Duplicated observations within or between data sources were eliminated, with a preference to utilize the most original data. Coordinates were corrected or removed when latitude and longitude were equal to zero or inverted, located in water bodies or in the wrong country or had poor resolution ( 10 (ref. 60). The predictors and whether they were selected for the modelling of each landrace group are presented in Supplementary Table 4.We generated a random sample of pseudo-absences as background points in areas that (1) were within the same ecological land units61 as the occurrence points, (2) were deemed potentially suitable according to a support vector machine classifier that uses all occurrences and predictor variables and (3) were farther than 5 km from any occurrence62. The number of pseudo-absences generated per crop group was ten times its number of unique occurrences.MaxEnt models were fitted through five-fold (K = 5) cross-validation with 80% training and 20% testing. For each fold, we calculated the area under the receiving operating characteristic curve (AUC), sensitivity, specificity and Cohen’s kappa as measures of model performance. To create a single prediction that represents the probability of occurrence for the landrace group, we computed the median across K models. Geographic areas in the form of pixels with probability values above the maximum sum of sensitivity and specificity were treated as the final area of predicted presence13.Ex situ conservation status and gapsThree separate but complementary metrics were developed to compare the geographic and environmental diversity in current ex situ conservation collections to the total geographic and environmental variation across the crop landrace group distribution model and, thus, to identify and quantify ex situ conservation gaps13.A connectivity gap score (SCON) was calculated for each 2.5-arc-minute pixel within the distribution model by drawing a triangle63,64 around each pixel using the three closest genebank accession occurrence locations as vertices and then deriving normalized values for the pixel based on distance to the triangle centroid and vertices13. The SCON of a pixel is high—closer to 1 on a scale of 0–1—when its corresponding triangle is large, when the pixel is close to the centroid of the triangle or when the distance to the vertices is large. A high SCON represents a greater probability of the pixel location being a gap in existing ex situ collections.An accessibility gap score (SACC) was calculated for each 2.5-arc-minute pixel in the distribution model by computing travel time from each pixel to its nearest genebank accession occurrence location based both on distance and the speed of travel, defined by a friction surface13,45. Travel time scores were normalized by dividing pixel values by the longest travel time within the distribution model, with the final score ranging from 0 to 1. A high SACC value for a pixel reflects long travel times from existing genebank collection occurrences and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.An environmental gap score (SENV) was calculated for each 2.5-arc-minute pixel in the distribution model by conducting a hierarchical clustering analysis using Ward’s method with all the predictor variables from the distribution modelling. The Mahalanobis distance between each pixel and the environmentally closest genebank accession occurrence location was then computed13. Environmental distance scores were normalized between 0 and 1. A high SENV value for a pixel reflects a large distance to areas with similar environments where landraces have previously been collected for genebank conservation and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.Spatial ex situ conservation gaps were determined from the conservation gap scores using a cross-validation procedure to derive a threshold for each score. We created synthetic gaps by removing existing genebank occurrences in five randomly chosen circular areas with a 100 km radius within the distribution model. We then tested whether these artificial gaps could be predicted by our gap analysis, identifying the threshold value of each score that would maximize the prediction of these synthetic gaps. Performance for each of the five gap areas was assessed using AUC, sensitivity and specificity. The average cross-area threshold value was calculated for each score to discern pixels with a high likelihood of finding ex situ conservation gaps and that, thus, were higher priority for further field sampling. These were pixels with combined gap scores above the threshold, assigned a value of 1, as opposed to the relatively well-conserved areas below the threshold, which were assigned a value of 0.The three binary conservation gap scores were then mapped in combination, resulting in pixels across the distribution model with gap values ranging from 0 to 3. Pixels with a value of 0 display no connectivity, accessibility or environmental gaps and are considered well represented ex situ. Pixels with a value of 1 indicate a conservation gap in connectivity, accessibility or the environment; we consider these ‘low-confidence’ gaps. Pixels with a value of 2 indicate gaps in two metrics or ‘medium-confidence’ gaps, and values of 3 indicate gaps across all metrics or ‘high-confidence’ gaps. High-confidence gap areas are displayed on crop-conservation-gap maps (Fig. 2b and Supplementary Information) and conservation hotspot maps across crops (Fig. 4 and Extended Data Figs. 5–8).The representation of crop landrace groups in current ex situ conservation collections was calculated based on the final 1–3 value conservation-gap maps. The complement of the proportion of the modelled distribution considered as a potential conservation gap by any single gap score represents the minimum estimate of current representation; the complement of the proportion considered by all three scores as a gap, which is to say high-confidence gap areas, represents the maximum estimate (Supplementary Tables 1 and 2).While distribution modelling and conservation gap analyses were conducted at the crop landrace group level and results are presented in full in the Supplementary Information, for ease of comparison of results across crops, and to avoid bias towards crops with many landrace groups, we also calculated summary results at the crop level. Crops that had been assessed with geographic differentiations, including maize in Africa and Latin America and yams in the New World and the Old World, were also combined. For spatial results, the pixels in crop landrace group models were summed—that is, constituent landrace group models were combined. The minimum and maximum current conservation representation estimations at the crop level were then calculated based on combined spatial models.GBIF occurrence downloadsThe following occurrence downloads from the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/, 2017−2021) were used: 10.15468/dl.rrntfr, 10.15468/dl.2f2v4h, 10.15468/dl.2ywlb7, 10.15468/dl.lnfelh, 10.15468/dl.ryrmfj, 10.15468/dl.8adf61, 10.15468/dl.nff5ys, 10.15468/dl.erxs6e, 10.15468/dl.vbfgho, 10.15468/dl.mjjk3x, 10.15468/dl.uppz1n, 10.15468/dl.938bgm, 10.15468/dl.hr87hm, 10.15468/dl.k1va80, 10.15468/dl.coqpu2, 10.15468/dl.lkoo9u, 10.15468/dl.e998mp, 10.15468/dl.vfbmm7, 10.15468/dl.tnp478, 10.15468/dl.6zxsea, 10.15468/dl.0lray8, 10.15468/dl.5sjgsw, 10.15468/dl.wkju6h, 10.15468/dl.7xzfvc, 10.15468/dl.autlf5, 10.15468/dl.fe2amw, 10.15468/dl.2zblvz, 10.15468/dl.ddplkj, 10.15468/dl.jbzejg, 10.15468/dl.ej5bha, 10.15468/dl.905pxd, 10.15468/dl.pim1vs, 10.15468/dl.vdridc, 10.15468/dl.b43gyv, 10.15468/dl.nnw3z7, 10.15468/dl.bnt9jc, 10.15468/dl.f5x2cg, 10.15468/dl.ub7zbg, 10.15468/dl.sggf2v, 10.15468/dl.ath5ve, 10.15468/dl.23k3ug, 10.15468/dl.cym376, 10.15468/dl.53bwzk, 10.15468/dl.fsad7h and 10.15468/dl.fm6p7z.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The effect of reducing per capita water and energy uses on renewable water resources in the water, food and energy nexus

    This work formulates a general framework of the WFE Nexus at the national level, which includes all pertinent interactions between water, food, and energy sources and demands. Figure 1 depicts the feedbacks involving resource availability and consumption. The causal loops of the developed model for national-scale assessment are shown in Fig. 2. The model depicted in Fig. 2 proposes reducing consumption to reduce the water crisis to the extent possible. By reducing water use and pollution the environmental water requirement can be reduced, thus alleviating the water crisis. This paper’s objective is sustainable management by reducing per capita water use (in the residential section) and per capita energy use (in the domestic, public, and commercial section). The WFE nexus is modeled as a dynamic system for demand management applied to the stocks of energy, surface water, and groundwater resources to calculate their input and output rates (flows) at the national level while providing for environmental flow requirements (Fig. 3). The national modeling approach is of the lumped type, meaning that inputs and outputs to the stocks of water and energy represent totals over an entire country (in the case study, Iran); therefore, the models does not consider intra-country regional variations. The units of water resources and energy resources are expressed in cubic meters and MWh, respectively.Figure 1Feedbacks between resources and uses in the WFE nexus taking into account environmental considerations.Full size imageFigure 2The causal loops of the model developed for simulating the WFE nexus.Full size imageFigure 3Flow diagram of the WFE Nexus system.Full size imageBalance of water resourcesThe study of water exchanges in a country is based on the law of conservation of matter. The following sections present calculations pertinent to the annual balance of surface and groundwater resources.Surface water resourcesThe national runoff generated in a country’s high-elevation areas (or high terrain) and low-elevation areas (plains) is quantified with the following equations:$${preheight}_{t}=HeightCotimes {Precipitation}_{t}$$
    (1)

    in which ({preheight}_{t}) = volume of precipitation that falls in high-elevation areas during period t, (HeightCo) = the percentage of total precipitation that falls in high-elevation areas, and ({Precipitation}_{t}) = volume of precipitation during period t.$${preplain}_{t}=PlainCotimes {Precipitation}_{t}$$
    (2)

    in which ({preplain}_{t}) = volume of precipitation that falls in the plains during period t, and (PlainCo) = the percentage of total precipitation that falls in plains (low elevation areas).$${SInflow}_{t}=HeighSInflowCotimes {preheight}_{t}+PlainSInflowCotimes {preplain}_{t}+{OutCSW}_{t}+{Dr}_{t}$$
    (3)

    in which ({SInflow}_{t}) = the total volume of surface flows during period t, (HeighSInflowCo) = the runoff coefficient in high-elevation areas, (PlainSInflowCo) = the runoff coefficient in the plains, ({OutCSW}_{t}) = the difference between the volume of surface inflow and outflow through a country’s border during period t; and ({Dr}_{t}) = the flow of groundwater resources to surface water resources (i.e., baseflow) during period t.It is possible to calculate the water use after calculating the annual surface water originating by precipitation. Some of the water use by the agricultural, industrial, and municipal sectors becomes return flows. Equations (4) through (9) show how to calculate the surface water use and the water return flows to the surface water sources.$${DomWD}_{t}={Population}_{t}times PerCapitaWatertimes 365$$
    (4)

    in which ({DomWD}_{t}) = the volume of water use in the municipal sector during period t, ({Population}_{t}) = the population of the country during period t, and (PerCapitaWater) = per capita drinking water use (cubic meters per person per day).$${IndDomWD}_{t}={DomWD}_{t}+{IndWD}_{t}$$
    (5)

    in which ({IndDomWD}_{t}) = the volume of water use in the municipal and industrial sectors during period t, and ({IndWD}_{t}) = the volume of water use in the industrial sector during period t.The water use by the agricultural sector accounts for the water footprint of agricultural products, which measures their water use per mass of produce, and adjusting the water use by including water losses and agricultural return flows. A separate sub-agent (AGR agent) is introduced to perform the calculations related to the agricultural sector to simplify the dynamic-system model (main model), and the required outputs (BWAgr, GWAgr) of the dynamic system model are called by the agent in the main model (see Figs. 3 and 4). The BWAgr is given by the expression within parentheses in Eq. (6).Figure 4Agricultural subsystem modeled in the AGR agent (shows how to calculate the blue and gray water footprints of agricultural products).Full size image$${AgrWD}_{t}=left(sum_{iin A}{BW}_{i}times {Product}_{i,t}right)times frac{1}{{E}_{Agr}}+OtherAgrWD$$
    (6)

    in which ({AgrWD}_{t}) = the volume of agricultural water use during period t, ({BW}_{i}) = blue water footprint of agricultural product i (cubic meters per ton), ({Product}_{i,t}) = the amount of production of agricultural product i during period t (tons), ({E}_{Agr}) = the overall irrigation efficiency, (OtherAgrWD) = the volume of water consumed by agricultural products not included in the set A of agricultural products (in cubic meters). The set A includes those agricultural products with the largest yields and shares of the national food basket.$${AgrReW}_{t}={AgrWD}_{t}times AgrReCo$$
    (7)

    in which ({AgrReW}_{t}) = the volume of water returned from agricultural water use during the period t, and (AgrReCo) = the coefficient of water returned from agricultural water use.$${IndDomReW}_{t}={IndDomWD}_{t}times IndDomReCo$$
    (8)

    in which ({IndDomReW}_{t}) = the volume of water returned from industrial and municipal water use during period t, and (IndDomReCo) = the coefficient of water returned from industrial and municipal water uses.$${ReSW}_{t}=IndDomReSWCotimes {IndDomReW}_{t}+AgrReSWCotimes {AgrReW}_{t}$$
    (9)

    in which ({ReSW}_{t}) = the volume of water returned from water uses to surface water resources during period t, (IndDomReSWCo) = the percentage of water returned from municipal and industrial water use to surface water resources, and (AgrReSWCo) = the percentage of water returned from agricultural water use to surface water resources.Water is applied to produce energy, and Eqs. (10) through (15) perform the related calculations. The ({WEIF}_{t}) variable in Eq. (14) is necessary to account for the volume of water saved as a result of the energy savings. A PR model is introduced to account for such water savings (see Fig. 3).$${Diff}_{t} ={OutputE}_{t}-{OutputE}_{t}^{P}$$
    (10)

    in which ({Diff}_{t})= the difference between the energy used in the main model during period t and the energy used in period t in the PR model, ({OutputE}_{t}) = the sum of energy uses during period t in the main model (the method of calculating ({OutputE}_{t}) is described in detail in “Energy uses”), and ({OutputE}_{t}^{P}) = the sum of energy uses during period t in the PR model. Equations (11) and (12) account for the case when energy use exceeds energy production under current conditions, in which case energy exports are reduced. This prevents additional energy production to meet excess demand, and, consequently, there would not be increases in water use.$${Diff}_{t} le 0,,,{if,,func}_{t}=0$$
    (11)
    $${Diff}_{t} >0,,,{ if,,func}_{t}={Diff}_{t}$$
    (12)

    in which ({ iffunc}_{t}) = the amount of energy saved during period t.Equation (13) calculates the water required to produce energy:$${{TotalWE}_{t}=Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN+{Elec}_{t}times ENwateruseE$$
    (13)

    in which ({TotalWE}_{t}) = the volume of water required to produce the energy demand during period t,({Elec}_{t}) = the amount of electricity production during period t (MWh), and (ENwateruseE) = the water required per unit of energy generated by electricity (cubic meters per MWh), all other terms were previously defined.Equation (14) calculates the water savings:$${WEIF}_{t}=sum_{t=1}^{T}frac{{TotalWE}_{t}}{{OutputE}_{t}^{0}}times {if,,func}_{t}$$
    (14)

    in which ({WEIF}_{t})= the volume of water saved as a result of the energy saved during period t, T = the number of periods of simulation (T = 5 years).Part of the water used to produce energy from coal, oil, petroleum products, and nuclear fuel is accounted for in the industrial sector water use. For this reason, the volume of water to produce energy calculated with Eq. (15) is reduced by that part of water already accounted for in the industrial water use to avoid double accounting.$${WE}_{t}={Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN-INDEtimes {IndWD}_{t}-{WEIF}_{t}$$
    (15)

    in which ({WE}_{t}) = the volume of water required to produce different types of energy (except those included in the industrial sector) during period t, ({Coal}_{t}) = the energy produced with coal during period t (MWh), (ENwateruseC) = the water required per unit of energy produced with coal (cubic meters per MWh),({Gas}_{t}) = the amount of energy produced with natural gas during period t (MWh), (ENwateruseG) = the water required per unit of energy produced with natural gas (cubic meters per MWh), ({OilPetroleumP}_{t}) = the amount of energy produced with crude oil and other petroleum products during period t (MWh), (ENwateruseO) = the water required per unit of energy produced with crude oil and petroleum products (cubic meters per MWh),({Nuclear}_{t}) = the amount of nuclear energy produced during period t (MWh), (ENwateruseN) = the water required per unit of nuclear energy produced (cubic meters per MWh), and (INDE) = the percentage of industrial water use already accounted for in Eq. (5) (which pertains to water used in the coke coal, oil refineries, and nuclear fuel industries).Part of the discharge of springs enters the surface water sources, and this enters the calculation of the input to the surface water-resources stock in Eq. (16):$${InputSW}_{t}= SInflow+{ReSW}_{t}{+ Fountain}_{t}$$
    (16)

    in which ({InputSW}_{t}) = the volume of inflow water to surface water sources during period t, and ({Fountain}_{t}) = discharge of springs to surface water sources during period t, other terms previously defined.The output of the surface water resources includes water use and the infiltration of surface water into groundwater, the latter calculated with Eq. (17):$${SInflowInf}_{t}={SInflow}_{t}times SInflowInfCo$$
    (17)

    in which ({SInflowInf}_{t}) = the infiltration volume of surface water during period t, and (SInflowInfCo) = the infiltration coefficient of surface water.The output of the surface water resources stock is calculated using Eq. (18):$${OutputSW}_{t}={AgrSWDCo}_{t}times {AgrWD}_{t}+{IndSWDCo}_{t}times {IndWD}_{t}+{DomSWDCo}_{t}times {DomWD}_{t}+{mathrm{ WE}}_{t}+{SInflowInf}_{t}-{EvSwSea}_{t}$$
    (18)

    in which ({OutputSW}_{t}) = the output volume of surface water during period t, ({AgrSWDCo}_{t}) = the percentage of gross agricultural water use from surface water resources during period t, ({IndSWDCo}_{t}) = the percentage of industrial water use from surface water resources during period t, ({DomSWDCo}_{t})= the percentage of gross drinking water consumption from surface water sources during period t, and ({EvSwSea}_{t}) = the total volume of evaporation from surface water plus the discharge of surface water to the sea during period t.The balance of surface water resources is calculated based on Eq. (19):$$SWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputSW}_{t}left(Sright)-{OutputSW}_{t}(S)right]dt+SWater(0)$$
    (19)

    in which (SWaterleft(tright)) = the stock of surface water resources at time t, (SWater(0)) denotes the stock of surface water at the initial time (t = 0).Groundwater resourcesGroundwater resources gain water from deep infiltration of precipitation in the plains and elevated areas from (1) inflows from outside of the study area, (2) infiltration from surface flows and return waters. Groundwater output factors also include the discharge of groundwater resources (wells, springs, and aqueducts), groundwater flow that moves outside the study area and evaporation. Infiltration of precipitation in the plains and in high terrain into groundwater resources is calculated with Eq. (20):$${Inf}_{t}=PrePInfCotimes {preplain}_{t}+PreHInfCotimes {preheight}_{t}$$
    (20)

    in which ({Inf}_{t}) = the volume of water entering groundwater sources through infiltration of precipitation during period t, (PrePInfCo) = the infiltration coefficient of precipitation in the plains, and (PreHInfCo) = the infiltration coefficient of rainfall in high terrain.Equation (21) calculates the volume of return water that accrues to groundwater resources:$${ReGW}_{t}=IndDomReGWCotimes {IndDomReW}_{t}+AgrReGWCotimes {AgrReW}_{t}$$
    (21)

    in which ({ReGW}_{t}) = the volume of water returned from water use that accrues to groundwater resources during period t, (IndDomReGWCo) = the percentage of water returned from municipal and industrial water use accruing to groundwater resources, and (AgrReGWCo) = the percentage of water returned from agricultural water use accruing to groundwater resources.The volume of groundwater input is calculated with Eq. (22):$${InputGW}_{t}={Inf}_{t}+{ReGW}_{t}+{SInflowInf}_{t}+{OutCGw }_{t}$$
    (22)

    in which ({InputGW}_{t}) = the volume of groundwater input during period t, and ({OutCGw }_{t}) = the difference between the volume of groundwater leaving and that entering the country during period t.The volume of groundwater output is calculated with Eq. (23):$${OutputGW}_{t}={AgrGWDCo}_{t}times {AgrWD}_{t}+IndGWDCotimes {IndWD}_{t}+DomGWDCotimes {DomWD}_{t}+{EvGwDr}_{t}$$
    (23)

    in which ({OutputGW}_{t}) = the volume of groundwater output during period t, ({AgrGWDCo}_{t}) = the percentage of gross agricultural water use from groundwater resources during period t, IndGWDCo = the percentage of industrial water use from groundwater resources during period t, DomGWDCo = the percentage of municipal water use from groundwater resources during period t, and ({EvGwDr }_{t}) = the total volume of evaporation from groundwater plus the drainage of groundwater resources to surface water resources at time t.Equation (24) calculates the annual balance of groundwater resources:$$GWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputGW}_{t}left(Sright)-{OutputGW}_{t}left(Sright)right]dt+GWater(0)$$
    (24)

    in which GWater(t) = the groundwater resources stock at time t, (GWater(0)) denotes the stock of groundwater at the initial time (t = 0).Energy usesEnergy uses are calculated with Eqs. (25)–(27). The total national energy use includes the agricultural, industrial, transportation, and exports sectors’ energy demands. The energy uses by these sectors do not change during the implementation of the policy, and, consequently do not change the WFE Nexus in that period; therefore, they are not included in the calculations.$${WDTP}_{t}={DomWD}_{t}times {CEIntensity}_{t}$$
    (25)

    in which ({WDTP}_{t}) = the energy used in the extraction, transmission, distribution, and treatment of water in the water and wastewater system during period t, and ({CEIntensity}_{t}) = the energy intensity in the extraction, transmission, distribution, and treatment of water in water and wastewater systems during the period t (MWh per cubic meter).$${ResComPubED}_{t}=ResComPubPerCapitatimes {Population}_{t}$$
    (26)

    in which ({ResComPubED}_{t}) = the energy use by the domestic, commercial, and public sectors during period t, and (ResComPubPerCapita) = the per capita energy consumption by the domestic, commercial, and public sectors (MWh per person per year).$${OutputE}_{t}={ResComPubED}_{t}+{WDTP}_{t}$$
    (27)
    Environmental water needsThe gray water footprint is defined as the volume of freshwater that is required to assimilate the load of pollutants based on natural background concentrations and existing ambient water quality standards. The estimation of the gray water footprint associated with discharges from agricultural production is based on the load of nitrogen fertilizers, which are pervasive in agriculture. The gray water footprint in terms of nitrogen concentration has been estimated by Mekonnen and Hoekstra24,25, as written in Eq. (28):$${GW}_{t}^{Agr}=sum_{iin A}{GW}_{i}times {Product}_{i,t}$$
    (28)

    in which ({GW}_{t}^{Agr})= the volume of gray water in the agricultural sector during period t, and ({GW}_{i}) = the volume of gray water associated with the production of one ton of agricultural product i (cubic meters per ton)(.)There are no accurate estimates of the concentrations of pollutants per unit of industrial production, or of the concentration of pollutants in municipal wastewater. Therefore, the conservative dilution factor (DF), which is equal to 1 for untreated returned water from the municipal and industrial sectors, is applied in this work. Equation (29) is a simplified equation of the gray water footprint26. The fraction appearing on the right-hand side of Eq. (29) is equal to the DF.$${GW}_{t}^{IndDom}= frac{{C}_{eff}-{C}_{nat}}{{C}_{max}-{C}_{nat}}times {IndDomReW}_{t}times IndDomReUT$$
    (29)

    in which ({GW}_{t}^{IndDom}) = the gray water footprint of the municipal and industrial sectors during period t, ({C}_{eff}) = the nitrogen concentration in return water (mg/L), ({C}_{nat}) = the natural concentrations of contaminant in surface water (mg/L), ({C}_{max}) = the maximum allowable concentration contaminant in surface water (mg/L), and (IndDomReUT) = the percentage of untreated returned water from the municipal and industrial sectors.The total gray water footprint is obtained by summing the footprints associated with the municipal/industrial and agricultural sectors:$${TotalGW}_{mathrm{t}}={GW}_{t}^{IndDom}+{GW}_{t}^{Agr}$$
    (30)

    in which ({TotalGW}_{mathrm{t}}) = the volume of gray water from all sectors during period t.This work considers qualitative and quantitative environmental water needs. Equation (31) is used to calculate the total environmental water need. The Tennant method for calculating the riverine environmental flow requirement (or instream flow) stipulates that, based on the conditions of each basin, between 10 to 30% of the average long-term flow of rivers represents the environmental flow requirement27. The sum of these requirements across all the basins equals the environmental requirement of the entire region or country. Yet, by providing 10 to 30% of the average long-term flow of rivers the riverine ecosystem barely emerges from critical conditions, and is far from optimal ecologic functioning. The total environmental water need is equal to the sum of the environmental flow requirement plus the volume of water needed to dilute the contaminants entering the surface water sources:$${ENV}_{t}={TotalGW}_{t}+Tennant$$
    (31)

    in which ({ENV}_{t}) = the environmental flow requirement during period t, and Tennant = the environmental flow requirement calculated by the Tennant (1976) method.The policy evaluation indexThe available renewable water is calculated with Eq. (32):$${IN}_{t}={OutCGW }_{t}+ {SInflow }_{t}+{ Inf}_{t}-{EvGwDr}_{t}$$
    (32)

    in which ({IN}_{t})= the renewable water available before the application of environmental constraints during period t.The volume of manageable water is calculated with Eq. (33):$$REWleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[INleft(tright)-ENVleft(tright)right]dt$$
    (33)

    in which REW (t) = the (cumulative) manageable and exploitable renewable water in the period t-t0.Equation (34) calculates the total water withdrawals by the agricultural, industrial, municipal, and energy production sectors:$${WDW}_{t}={OutputSW }_{t}+ {OutputGW}_{t}- {cheshmeh}_{t}$$
    (34)

    in which ({WDW}_{t}) = the sum of the withdrawals by the agricultural, industrial, municipal, and energy production sectors during period t.The cumulative water withdrawals are calculated with Eq. (35):$$withdleft(tright)=underset{{t}_{0}}{overset{t}{int }}WDWleft(tright)dt$$
    (35)

    in which (withdleft(tright)) = the sum of the withdrawals by the agricultural, industrial, municipal and energy production sectors in the horizon t-t0.Equation (36) calculates the water stress index:$${index}_{{t}_{f}}^{MRW}=frac{withd({t}_{f})}{REWleft({t}_{f}right)}times 100$$
    (36)

    in which ({index}_{{t}_{f}}^{MRW}) = the renewable water stress index at the end of the study period, and ({t}_{f}) = the period marking the end of the study horizon.Once the water and energy model is developed it must be calibrated with observational data prior to its use in predictions, as shown below. More