More stories

  • in

    Culling corallivores improves short-term coral recovery under bleaching scenarios

    Our model focused on the trophic interactions among CoTS and two groups of coral within a feedback loop with natural and anthropogenic forcing. Our model draws on accepted features of the published dynamics described by Morello et al.37, Condie et al.28 and Condie et al.17, but is a substantial advance in terms of adding spatial structure and coupling with climate variables. Here we have resolved a fine spatiotemporal model structure, developed a novel recruitment formulation for CoTS, integrated tactical management control dynamics and incorporated the impact of broad-scale drivers upon the population dynamics of corals and CoTS at the local scale. Our model is formally fitted to a subset of the CoTS control program data described by Westcott et al.12. We operationalised our model as a tactical and strategic tool to inform how CoTS management strategies interact with alternative disturbance and ecological realisations at the sub-reef scale, the scale at which management operates.DataWe fitted our model to a subset of four reefs from the dataset described by Westcott et al.12, which were consistently and intensively managed (for a map with reef locations see Fig. 2). We restricted our focus to a subset to avoid parametrisation of reef and management site dynamics. Thus, ~39% of site visits were concentrated over the 13 management sites we considered, with a mean of 20.73 ± 5.5 (mean ± standard deviation) visits across the time series relative to a mean visitation rate of 12.23 ± 4.7 (mean ± standard deviation) for the rest of the sites. Each reef in the subset contained two or more management sites where each site was visited at least 18 times. The subset was used because it contained sufficient data for estimating the 11 model parameters for each management site. Across included sites were a range of CoTS densities, coral abundances and disturbance histories12,72,73. Given the intensity with which these sites were managed, they therefore provided us with a valuable opportunity to formally fit the interactions between management intervention, coral abundance and CoTS dynamics in the presence of regional sequential bleaching events.Model spatial structure and ecological componentsSpatially, we considered a circular 300 km region of the Great Barrier Reef centred between Cairns and Cape Tribulation, and resolved at a daily timescale and a sub-reef spatial scale, matching the scale at which observed data were resolved12,19. Reefs were randomly generated as points to capture possible spatial correlation in disturbance impacts between nearby reefs, as well as to allow variability in reef locations. Coral, CoTS and disturbance dynamics within the management sites of each reef were resolved relative to a 1 ha focal region. That is, each management site was captured as a 1 ha area representative of the whole site. In the Pacific, Acanthaster spp. disproportionally target faster-growing corals, predominantly Acropora, Pocillopora and Montipora22. Coral taxa characterised by slow growth rates and massive morphologies, such as Porites, are generally consumed less than expected based on their abundance22 and are thus non-preferred prey. The two modelled coral groups were the fast-growing favoured prey items of CoTS, and the slower-growing non-preferred prey. Processes resolved in the model included reproduction, density dependence, the effect of bleaching and cyclonic disturbances on corals and the impact of manual control (culling) upon CoTS and coral dynamics.CoTS population structureWe used an age-structured approach to model CoTS population dynamics. We defined our age classes to encapsulate plausible size-at-age variation due to plastic growth. This was achieved through linking catch size classes of the management control program19 to age classes through size-age relationships developed from observations spanning multiple environmental realisations, manipulated scenarios and methodologies55,70,74,75. Delayed growth in juvenile CoTS due to deferral of their switch to coral prey or composition of their pre-coral diet, may induce variability in the size-at-age of juveniles52,53. However, the population-level consequences of prolonged juvenile phases are not easily observed nor understood. For example, juveniles are subject to high mortality rates in situ, delayed growth may reduce lifetime fitness and there have been no observations of juveniles during spawning periods that would indicate protracted juvenile phases55,56,57. Consequently, suggests size-at-age is—due to an early life history mortality bottleneck or otherwise—predominantly concordant with growth curves of the literature55,70,74,75 and the size classes we have used here. Age classes comprised annual 0, 1, 2 and 3+ groups, with 3+ being an absorbing class – once there, they stay there. Age-0 ( ; 32.5)). This induced a slope change in the relationship between maximum wind velocity and its radius at a wind velocity of 32.5 m.s−1 (≥ category 3 intensities). However, whilst maximum wind velocity was modelled to determine ({d}_{{{{{{rm{m}}}}}}}), the overall size of the cyclone was uncorrelated with its intensity. The overall size was uniformly sampled from 130 to 460 km diameter which allowed for the potential of complete focal area coverage and for a range of intensity-size relationships to be captured. Given a cyclone footprint of radius ({d}_{0}) (km), wind velocity, (V) (m.s−1), at a distance, (d) (km), was interpolated104 through:$$Vleft(dright)=left{begin{array}{c}{V}_{0}+left({V}_{{{{{{rm{m}}}}}}}-{V}_{0}right){left(frac{sqrt{{d}_{0}}-sqrt{d}}{sqrt{{d}_{0}}-sqrt{{d}_{{{{{{rm{m}}}}}}}}}right)}^{alpha },,dge {d}_{{{{{{rm{m}}}}}}}\ {V}_{{{{{{rm{m}}}}}}}, , d ; < ; {d}_{{{{{{rm{m}}}}}}}end{array}right.$$ (32) The distance from the cyclone centre to the reef perimeter, (D) (km), is calculated through:$$D=sqrt{{left({x}_{{{{{{rm{rf}}}}}}}-{r}_{1}-{x}_{{{{{{rm{cyc}}}}}}}right)}^{2}+{left({x}_{{{rm{rf}}}}-{r}_{1}-{y}_{{{{{{rm{cyc}}}}}}}right)}^{2}}$$ (33) Thus, given a reef strike occurs ((sqrt{{d}_{0}}-sqrt{d}ge 0) required from non-integer (alpha)), the wind velocity experienced at said reef due to the tropical cyclone was calculated as (Vleft(Dright)). Wind velocity was subsequently categorised and damage to reef zone corals calculated as per Supplementary Table 4.We resolved stochasticity in cyclone dynamics in projection scenarios. In projected scenarios cyclone arrivals, locations and intensities were probabilistically sampled and their inflicted damage upon coral communities sampled from damage ranges. Cyclone locations, their footprints, intensity ranges and corresponding damage ranges were sampled from uniform distributions. Cyclone arrivals were sampled from a Poisson distribution and considered in scenarios from 2018 to 2029. Projections were averaged over 80 simulations to capture mean dynamics and bound trajectory uncertainty due to said stochasticity.Our cyclone model was calibrated to parameters sourced from the literature (Supplementary Tables 4-5). This was necessary since our data time series did not encompass a cyclone event and/or impacts upon a reef and cyclone-induced mortality is typically a key coral mortality source30. Consequently, we were unable to validate the impacts of cyclones through formal estimation in our model. However, our endeavours to source parameters from empirical and modelling studies in conjunction with our formulation allowed us to plausibly capture the cumulative outcomes of a cyclone event at discrete locations. Our cyclone model offers a limited complexity approach that is empirically grounded to simply resolve cyclone impacts in local-scale models without the need to be coupled to a regional-scale model.Cyclones, induced thermal stress and tactical managementThe occurrence of cyclone events was modelled to directly interact with both management interventions and thermal stress events. Cyclones were assumed to realistically preclude co-occurring co-located management interventions. This was such that a management site control visit was abandoned if a cyclone preceded or was forecast within five days of a control voyage. The later interaction of cyclones with thermal stress events operated through an induced thermal cooling of sea surface temperatures (SST) at impacted locations.In the case of the overlapping cyclone and thermally induced bleaching events, we first accounted for cyclone impacts. This was because, in addition to physical damage to corals, cyclones have the potential for regional-scale cooling of SST which can reduce coral bleaching43,107. To capture this interaction, we resolved the duration108,109 and amplitude107 of tropical cyclone-induced cooling. We captured this interaction through Degree Heating Weeks (DHW) which is a useful metric for the accumulated thermal stress experienced by corals94.The duration of tropical cyclone-induced cooling was modelled through a temporal-SST response curve consistent with the work of Lloyd and Vecchi108 and Vincent et al.109. Cooling rapidly occurs once a tropical cyclone arrives at a location and decays in an asymptotic manner over a period of ~40–60 days108,109. Temperatures however do not return to pre-cyclone levels and plateau at ~1/4 of the cooling signal amplitude below pre-cyclone levels108,109. We expressed this cooling response curve as it related to bleaching-induced coral mortality through DHWs.We based the average expected DHW cooling signal on the work of Carrigan and Puotinen107. This was achieved through scaling the difference in amplitude of overlapping thermal stress-tropical cyclone events and thermal stress only events—a cooling signal amplitude of ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}} sim 1.5) DHW. Consistent with the model of Carrigan and Puotinen107, we then resolved cooling within the radius of gale-force winds (category 1, 17 m.s−1) to model tropical cyclone-induced cooling. Depending on the size of the tropical cyclone, this meant that an individual cyclone would not necessarily cool all reefs within the model region. However, the culmination of multiple cyclones may have limited bleaching exposure for corals across the region107.We did not treat the cooling consequences of multiple cyclones additively nor the complex interplay of oceanic feedbacks upon cyclone intensity and cooling. Such processes were beyond the scope of our study and model. If multiple cyclones occurred within our model, then the cooling signal timeline was re-initialised at impacted reefs for the last tropical cyclone at said location. Non-impacted reefs maintained the timeline for the decay of the cooling signal originating from their previous tropical cyclone interaction.Once a tropical cyclone impacted a reef, the duration of the induced cooling signal was modelled. Price et al.110 found that cooling decays exponentially which is reflective of the recovery of SST following tropical cyclones as demonstrated by Lloyd and Vecchi108 and Vincent et al.109. We operationalised the exponential functional form in conjunction with the decay timelines of Lloyd and Vecchi108 and Vincent et al.109 and the DHW amplitude of Carrigan and Puotinen107. We modelled the level of cooling ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}) after ({d}_{{{{{{rm{postTC}}}}}}}) days post-cyclone event by:$${{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}left({d}_{{{{{{rm{postTC}}}}}}}right)=frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}+frac{frac{3}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}}{{e}^{{d}_{{{{{{rm{postTC}}}}}}}/10}}$$ (34) This ensured that once a reef experienced a tropical cyclone event, the cooling signal initialised at ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) and decayed to (sim frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) after 40–60 days108,109. The rate of decay was given by the e-folding time (days required for the cooling signal to be reduced by a factor of (e)) which we took to be 10. This is consistent with the results of Price et al.110, Lloyd and Vecchi108 and Vincent et al.109 who found e-folding times ranging from 5 through to 20 days. Thermally induced bleaching mortality of corals was computed after cyclone physical damage and cooling had been accounted for.Formal model fittingWe formally fitted our coral-CoTS model simultaneously to coral cover data, catch-per-unit-effort data and catch numbers obtained from the management control program with dive effort (minutes) treated as an input (visits summarised in Supplementary Table 7)12. Simultaneously fitting CoTS and coral dynamics at concurrent locations was useful here as it allowed for coral cover trajectories to help inform local CoTS abundance (sensu CoTS feeding vs. coral trajectories63,79 and local site fidelity24). Our model also used Long Term Monitoring Program (LTMP) data (based on manta tows and provided by the Australian Institute of Marine Science) which provides an independent index of relative abundance of CoTS. This was such that our model here was developed and parametrised based on an earlier version37,111 which did not use CPUE information but was fitted to the LTMP data on CoTS relative abundance, as well as the corresponding coral cover, to estimate a number of CoTS-coral interaction parameters used in the present model (Supplementary Table 3).Fitting and estimation of our model were achieved through Maximum Likelihood Estimation (MLE). Our objective function was the outcome of combining the negative log-likelihood contributions arising from fitting the model to multiple sets of location-specific data, across a range of environmental and ecological realisations, in conjunction with penalty terms. Specifically, we fitted coral cover (data series ({x}^{{{{{{rm{Coral}}}}}}})) and CoTS CPUEs (data series ({x}^{{{{{{rm{CoTS}}}}}}})) at each management site which contained ({n}_{{{{{{rm{Coral}}}}}}}) and ({n}_{{{{{{rm{CoTS}}}}}}}) data points respectively. This involved fitting parameters that were specific to management sites (e.g. thermal stress - DHW), reefs (e.g. recruitment variability) as well as those that were common amongst reefs (e.g. CoTS consumption rates). A parametrisation that optimised one contribution was unlikely to optimise all contributions and hence we obtained a parametrisation across all reefs and sub-regions. For a modelled catch of (N) (sum of catches across age classes), a catchability coefficient (a constant of proportionality) of ({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}), and data standard deviation of ({sigma }_{{{{{{rm{LL}}}}}}}) our likelihood contribution arising from a management site CPUEs was given by:$$-{{log }}{{{{{rm{L}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}N,{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{CoTS}}}}}}}right) = {n}_{{{{{{rm{CoTS}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{LL}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}frac{{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}{N}_{i}right)right)}^{2}}{2{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}}$$ (35) From which the data series variance and catchability coefficient were computed for the maximum likelihood estimate. The derived variance and the catchability were respectively computed as per:$${sigma }_{{{{{{rm{LL}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}right)right)}^{2}}$$ (36) and$${q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}=frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({N}_{i}right)right)$$ (37) Similarly, the likelihood contribution arising from fitting to a management site coral cover with standard deviation ({sigma }_{{Coral}}) was described by:$$-{{log }}{{{{{rm{L}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}}}+{C}_{y,d}^{{{{{{rm{s}}}}}}}}{{K}^{{{{{{rm{coral}}}}}}}},{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{Coral}}}}}}}right) = {n}_{{{{{{rm{Coral}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{Coral}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}frac{{left({ln}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}{2{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}}$$ (38) Where the standard deviation was given by:$${sigma }_{{{{{{rm{Coral}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{Coral}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-{{{{{rm{ln}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}$$ (39) We computed the negative log-likelihood objective function by summing the contributions from all management sites across considered reefs.Fitting was conducted through the modelling language Automatic Differentiation Model Builder (ADMB) which implements a Quasi-Newton optimisation algorithm for estimation of parameters and provides Hessian based estimation of standard errors112. Penalty terms were added to our likelihood function to integrate a prior understanding of system dynamics and to reduce model variability. Penalty terms encompassed recruitment variability and the magnitude of catches observed in the data.Recruitment was expressed through recruitment deviations, ({r}_{y}), given a standard deviation of ({sigma }_{{{{{{rm{R}}}}}}}) about underlying modelled recruitment (sum of self-recruitment and immigration sources described previously). The recruitment variability negative log-likelihood penalty contribution was given by:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{R}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{rec}}}}}}}right)={sum }_{y=1}^{{{{{{rm{#Years}}}}}}}{sum }_{{{{{{rm{reef}}}}}}=1}^{{{{{{rm{#Reefs}}}}}}}{r}_{y,{{{{{rm{reef}}}}}}}^{{rec}}/2{sigma }_{{{{{{rm{R}}}}}}}^{2}$$ (40) An additional penalty term for model deviations from the magnitude of observed catches was encompassed. This was such that a constant of proportionality relating modelled catches to observed catches tended to one. For an allowed standard deviation of ({sigma }_{{{{{{rm{CM}}}}}}}), the likelihood function was penalised for deviations from unity proportionality, ({r}^{{{{{{rm{CM}}}}}}}), through:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{CM}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{CM}}}}}}}right)={sum }_{{{{{{rm{zone}}}}}}=1}^{{{{{{rm{#Zones}}}}}}}{r}_{{{{{{rm{zone}}}}}}}^{{{{{{rm{CM}}}}}}}/2{sigma }_{{{{{{rm{CM}}}}}}}^{2}$$ (41) Model simulations were conducted in ADMB with output analysis and visualisation conducted in MATLAB.Sensitivity to CoTS controlTo test whether our projected scenarios were consistent with the period over which data were collected, we conducted a model-based before and after comparison to the impact of control. Specifically, we used the fitted trajectory for sites, including both the coral data and CoTS control data (voyages and time spent), and compared this to the model-suggested coral trajectories if CoTS control had not taken place. These were modelled over the fitted period (2013–2018) and, unlike the projected scenarios (2019–2029), were variable in terms of the timing of control (amount of time between visits was variable), the amount of time spent at sites (not a consistent number of dive minutes per visit), CoTS dynamics (recruitment was fitted and hence different annually and between reefs), and in the level of thermal stress they experienced (different sites experienced different effective levels and some sites experience back-to-back events).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria

    Biological control in IPM systems in Africa. (CABI, 2002). https://doi.org/10.1079/9780851996394.0000Kvakkestad, V., Sundbye, A., Gwynn, R. & Klingen, I. Authorization of microbial plant protection products in the Scandinavian countries: A comparative analysis. Environ. Sci. Policy 106, 115–124 (2020).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33, 243–255 (2013).Article 

    Google Scholar 
    Bale, J., van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 363, 761–776 (2008).CAS 
    Article 

    Google Scholar 
    Vacante, V. & Bonsignore, C. P. Natural enemies and pest control. In Handbook of Pest Management in Organic Farming 60–77 (CABI, 2018). https://doi.org/10.1079/9781780644998.0060Eilenberg, J., Hajek, A. & Lomer, C. Suggestions for unifying the terminology in biological control. Biocontrol 46, 387–400 (2001).Article 

    Google Scholar 
    Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatting, J. L., Moore, S. D. & Malan, A. P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 165, 54–66 (2019).PubMed 
    Article 

    Google Scholar 
    Karimi, S., Askari Seyahooei, M., Izadi, H., Bagheri, A. & Khodaygan, P. Effect of arsenophonus endosymbiont elimination on fitness of the date palm hopper, ommatissus lybicus (Hemiptera: Tropiduchidae). Environ. Entomol. 48, 614–622 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, K. K. et al. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 165, 74–81 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mascarin, G. M. et al. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 165, 46–53 (2019).PubMed 
    Article 

    Google Scholar 
    Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of epizootiology and microbial control. Insect Pathol. https://doi.org/10.1016/B978-0-12-384984-7.00003-8 (2012).Article 

    Google Scholar 
    Hawkins, B. A. & Cornell, H. V. Theoretical Approaches to Biological Control. https://doi.org/10.1017/CBO9780511542077 (Cambridge University Press, 2009).Tonnang, H. E. Z., Nedorezov, L. V., Ochanda, H., Owino, J. & Löhr, B. Assessing the impact of biological control of Plutella xylostella through the application of Lotka—Volterra model. Ecol. Model. 220, 60–70 (2009).Article 

    Google Scholar 
    Hesketh, H., Roy, H. E., Eilenberg, J., Pell, J. K. & Hails, R. S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. Biocontrol 55, 55–73 (2010).Article 

    Google Scholar 
    Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1987).
    Google Scholar 
    Lacey, L. A. Manual of Techniques in Insect Pathology. Manual of Techniques in Insect Pathology (Academic, 1997). https://doi.org/10.1016/b978-0-12-432555-5.x5000-3.Book 

    Google Scholar 
    Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J. & Thomas, M. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46, 667–702 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Sci. Technol. 10, 321–329 (2000).Article 

    Google Scholar 
    Jiang, W. et al. Effects of the entomopathogenic fungus Metarhizium anisopliae on the mortality and immune response of Locusta migratoria. Insects 11, 36 (2020).Article 

    Google Scholar 
    Thomas, M. B. & Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18, 344–350 (2003).Article 

    Google Scholar 
    Douthwaite, M. B. Development and Commercialization of the Green Muscle Biopesticide 21 (2001).Douthwaite, B., Langewald, J., & Harris, J. Development and commercialization of the Green Muscle biopesticide. (International Institute of Tropical Agriculture, 2002).CABI. Green Muscle providing strength against devastating locusts in the horn of Africa—CABI.org. CABI.org https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Geoff, G. & Steve, W. Biological Control (Springer, 1996). https://doi.org/10.1007/978-1-4613-1157-7.Book 

    Google Scholar 
    Fargues, J., Ouedraogo, A., Goettel, M. S. & Lomer, C. J. Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol Sci. Technol. 7, 345–356 (1997).Article 

    Google Scholar 
    Aragón, P., Coca-Abia, M. M., Llorente, V. & Lobo, J. M. Estimation of climatic favourable areas for locust outbreaks in Spain: Integrating species’ presence records and spatial information on outbreaks. J. Appl. Entomol. 137, 610–623 (2013).Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effect of dose, pre-mortem host incubation temperature and thermal behaviour on host mortality, mycosis and sporulation of Metarhizium anisopliae var. acridum in Schistocerca gregaria. Biocontrol Sci. Technol. 11, 411–420 (2001).Article 

    Google Scholar 
    van der Valk, H. Review of the efficacy of Metarhizium anisopliae var. acridum. FAO—U.N. Publ. (2007).Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).Article 

    Google Scholar 
    Devi, K. U., Sridevi, V., Mohan, C. M. & Padmavathi, J. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 88, 181–189 (2005).PubMed 
    Article 

    Google Scholar 
    Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).Article 

    Google Scholar 
    Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).Article 

    Google Scholar 
    Thomas, M. B. & Jenkins, N. E. Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper Zonocerus variegatus. Mycol. Res. 101, 1469–1474 (1997).Article 

    Google Scholar 
    Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).Article 

    Google Scholar 
    Castro, T., Moral, R., Demétrio, C., Delalibera, I. & Klingen, I. Prediction of sporulation and germination by the spider mite pathogenic fungus Neozygites floridana (Neozygitomycetes: Neozygitales: Neozygitaceae) based on temperature, humidity and time. Insects 9, 69 (2018).PubMed Central 
    Article 

    Google Scholar 
    Hajek, A. E., Larkin, T. S., Carruthers, R. I. & Soper, R. S. Modelling the dynamics of Entomophaga maimaga (Zygomycetes: Entomophtorales) epizootics in gypsy moth (Lepidoptera: Lymantridae) populations. Environ. Entomol. 22, 1172–1187 (1993).Article 

    Google Scholar 
    Gul, H. T., Saeed, S. & Khan, F. A. Z. Entomopathogenic fungi as effective insect pest management tactic: A review. Appl. Sci. Bus. Econ. 1, 10–18 (2014).
    Google Scholar 
    Davidson, G. et al. Study of temperature—Growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J. Appl. Microbiol. 94, 816–825 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallsworth, J. E. & Magan, N. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J. Invertebr. Pathol. 74, 261–266 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fargues, J. et al. Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biol. Control 28, 320–331 (2003).Article 

    Google Scholar 
    Boulard, T. et al. Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agric. For. Meteorol. 125, 225–239 (2004).ADS 
    Article 

    Google Scholar 
    Mishra, S., Kumar, P. & Malik, A. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. J. Parasit. Dis. 39, 697–704 (2015).PubMed 
    Article 

    Google Scholar 
    Klingen, I., Westrum, K. & Meyling, N. V. Effect of Norwegian entomopathogenic fungal isolates against Otiorhynchus sulcatus larvae at low temperatures and persistence in strawberry rhizospheres. Biol. Control 81, 1–7 (2015).Article 

    Google Scholar 
    Thaochan, N., Benarlee, R., Shekhar Prabhakar, C. & Hu, Q. Impact of temperature and relative humidity on effectiveness of Metarhizium guizhouense PSUM02 against longkong bark eating caterpillar Cossus chloratus Swinhoe under laboratory and field conditions. J. Asia. Pac. Entomol. 23, 285–290 (2020).Article 

    Google Scholar 
    Kryukov, V. et al. Ecological preferences of Metarhizium spp. from Russia and neighboring territories and their activity against Colorado potato beetle larvae. J. Invertebr. Pathol. 149, 1–7 (2017).PubMed 
    Article 

    Google Scholar 
    Saldarriaga Ausique, J. J., D’Alessandro, C. P., Conceschi, M. R., Mascarin, G. M. & Delalibera Júnior, I. Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. J. Pest Sci. 2017 903 90, 947–960 (2017).
    Google Scholar 
    Dwyer, G. Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143, 533–562 (1994).ADS 
    Article 

    Google Scholar 
    Dwyer, G., Elkinton, J. & Hajek, A. Spatial scale and the spread of a fungal pathogen of gypsy moth. Am. Nat. 152, 485–494 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knudsen, G. R. & Schotzko, D. J. Spatial simulation of epizootics caused by Beauveria bassiana in Russian wheat aphid populations. Biol. Control 16, 318–326 (1999).Article 

    Google Scholar 
    Weseloh, R. M. Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol. Control 29, 138–144 (2004).Article 

    Google Scholar 
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Chang. Biol. 23, 4739–4749 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious diseases of humans: Dynamics and control. Aust. J. Public Health 16, 208–212 (1991).
    Google Scholar 
    Cáceres, C. E. et al. Complex Daphnia interactions with parasites and competitors. Math. Biosci. 258, 148–161 (2014).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Briggs, C. J. & Godfray, H. C. J. The dynamics of insect-pathogen interactions stage-structured populations c. J. Am. Nat. 145, 855–887 (1995).Article 

    Google Scholar 
    Rapti, Z. & Cáceres, C. E. Effects of intrinsic and extrinsic host mortality on disease spread. Bull. Math. Biol. 78, 235–253 (2016).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R0 for tick-borne infections. Am. Nat. 171, 743–754 (2014).Article 

    Google Scholar 
    Arthur, F. H. Toxicity of diatomaceous earth to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): Effects of temperature and relative humidity. J. Econ. Entomol. 93, 526–532 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J. Invertebr. Pathol. 78, 59–65 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whipps, J. M. & Davies, K. G. Success in Biological Control of Plant Pathogens and Nematodes by Microorganisms. In Biological Control: Measures of Success 1st edn, (eds Gurr, G. & Wratten, S.) 429. https://doi.org/10.1007/978-94-011-4014-0_8 (Springer, Dordrecht, 2000).Gilchrist, M. A., Sulsky, D. L. & Pringle, A. Identifying fitness and optimal life-history strategies for an asexual filamentous fungus. Evolution 60, 970–979 (2006).PubMed 
    Article 

    Google Scholar 
    Frank, S. A. Spatial processes in host-parasite genetics. In Metapopulation Biology, 1st edn, (eds Hanski, I. A. & Gilpin, M. E.) 325–352. https://doi.org/10.1016/B978-012323445-2/50018-3 (Elsevier, 1997).Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H.M. & Chang, K.T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).Article 

    Google Scholar 
    Inglis, G. D., Johnson, D. L. & Goettel, M. S. Effects of temperature and thermoregulation on mycosis by Beauveria bassianain grasshoppers. Biol. Control 7, 131–139 (1996).Article 

    Google Scholar 
    Lactin, D. J. & Johnson, D. L. Temperature-dependent feeding rates of Melanoplus sanguinipes nymphs (Orthoptera: Acrididae) laboratory trials. Environ. Entomol. 24, 1291–1296 (1995).Article 

    Google Scholar 
    FAO. Biopesticides for locust control | FAO Stories | Food and Agriculture Organization of the United Nations. Food and Agriculture Organisation of the UN http://www.fao.org/fao-stories/article/en/c/1267098/ (2021).Kimathi, E. et al. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 10, 11937 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordovez, J. M., Rendon, L. M., Gonzalez, C. & Guhl, F. Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia. Acta Trop. 129, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Hartemink, N. A. et al. Mapping the basic reproduction number ( R 0) for vector-borne diseases: A case study on bluetongue virus. EPIDEM 1, 153–161 (2009).CAS 
    Article 

    Google Scholar 
    Jamison, A., Tuttle, E., Jensen, R., Bierly, G. & Gonser, R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl. Geogr. 63, 418–426 (2015).Article 

    Google Scholar 
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 2 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ngarakana-Gwasira, E. T., Bhunu, C. P., Masocha, M. & Mashonjowa, E. Transmission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS approach. Commun. Nonlinear Sci. Numer. Simul. 35, 137–147 (2016).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ogden, N. H. & Radojevic, M. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis. Environ. Health Perspect. 122, 631–639 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 
    Article 

    Google Scholar 
    Phillips, J. Climate change and surface mining: A review of environment-human interactions & their spatial dynamics. Appl. Geogr. 74, 95–108 (2016).Article 

    Google Scholar 
    Rogers, D. J. & Randolphz, S. E. The global spread of malaria in a future. Warmer World Sci. 2, 1763–1766 (2000).
    Google Scholar 
    Wu, X. et al. Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J. Theor. Biol. 319, 50–61 (2013).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    CABI. Green Muscle providing strength against devastating locusts in the horn of Africa. https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Piou, C. et al. Mapping the spatiotemporal distributions of the Desert Locust in Mauritania and Morocco to improve preventive management. Basic Appl. Ecol. 25, 37–47 (2017).Article 

    Google Scholar 
    FAO. FAO Locust Hub. https://locust-hub-hqfao.hub.arcgis.com/ (2021).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeJesus, E. X. & Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Qgisorg (2014).RCoreTeam. R: A language and environment for statistical computing. The R Foundation for Statistical Computing. (2020).Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar  More

  • in

    Differences in phenology, daily timing of activity, and associations of temperature utilization with survival in three threatened butterflies

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai214 (2017).Article 
    CAS 

    Google Scholar 
    Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).PubMed 
    Article 

    Google Scholar 
    Forsman, A., Betzholtz, P.-E. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voelkl, B. et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci. 21, 384–393 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rödder, D., Schmitt, T., Gros, P., Ulrich, W. & Habel, J. C. Climate change drives mountain butterflies towards the summits. Sci. Rep. 11, 14382 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Habel, J. C., Teucher, M., Gros, P., Schmitt, T. & Ulrich, W. Land use and climate change affects butterfly diversity across northern Austria. Landscape Ecol. 36, 1741–1754 (2021).Article 

    Google Scholar 
    Hill, J. K. et al. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. Biol. Sci. 269, 2163–2171 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, I. C. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. 106, 1479–1483 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).ADS 
    Article 

    Google Scholar 
    Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).ADS 
    Article 

    Google Scholar 
    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl. Acad. Sci. 117, 18557–18565 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pruett, J. E. & Warner, D. A. Spatial and temporal variation in phenotypes and fitness in response to developmental thermal environments. Funct. Ecol. 35, 2635–2646 (2021).Article 

    Google Scholar 
    Hall, M., Nordahl, O., Larsson, P., Forsman, A. & Tibblin, P. Intra-population variation in reproductive timing covaries with thermal plasticity of offspring performance in perch Perca fluviatilis. J. Animal Ecol 90, 2236–2347 (2021).Article 

    Google Scholar 
    Ehrlich, P. R. & Hanski, I. On the Wings of Checkerspots: A Model System for Population Biology (Oxford University Press, 2004).
    Google Scholar 
    Warren, M. S. et al. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. 118, e2002551117 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kristensen, N. P. Lepidoptera: Moths and Butterflies. 1. Evolution, Systematics, and Biogeography. Handbook of Zoology Vol. IV, Part 35 (De Gruyter, 1999).
    Google Scholar 
    Forsman, A. & Wennersten, L. Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography 39, 630–648 (2016).Article 

    Google Scholar 
    Zografou, K. et al. Species traits affect phenological responses to climate change in a butterfly community. Sci. Rep. 11, 3283 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heinrich, B. The Thermal Warriors (Harvard University Press, 2013).
    Google Scholar 
    Bladon, A. J. et al. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 89, 2440–2450 (2020).PubMed 
    Article 

    Google Scholar 
    Tsai, C.-C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahnesjö, J. & Forsman, A. Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol. Ecol. 20, 235–257 (2006).Article 

    Google Scholar 
    Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: Insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: Butterflies and moths as a case study. Biol. Rev. Camb. Philos. Soc. 96, 2113–2126 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, A. L. & Miles, D. B. Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc. R. Soc. B Biol. Sci. 284, 20170536 (2017).Article 

    Google Scholar 
    Eliasson, C. U., Ryrholm, N., Holmér, M., Gilg, K. & Gärdenfors, U. Nationalnyckeln till Sveriges flora och fauna. Fjärilar: Dagfjärilar. Hesperidae – Nymphalidae. (ArtDatabanken, SLU, 2005).Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91, 101–109 (1992).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilbas, M. et al. Habitat use of the endangered parasitic butterfly Phengaris arion close to its northern distribution limit. Insect Conserv. Divers. 8, 252–260 (2015).Article 

    Google Scholar 
    Johansson, V., Kindvall, O., Askling, J. & Franzén, M. Extreme weather affects colonization–extinction dynamics and the persistence of a threatened butterfly. J. Appl. Ecol. 57, 1068–1077 (2020).Article 

    Google Scholar 
    Johansson, V., Kindvall, O., Askling, J. & Franzén, M. Intense grazing of calcareous grasslands has negative consequences for the threatened marsh fritillary butterfly. Biol. Cons. 239, 108280 (2019).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical. R version 4.1.1. (2021).Eubank, R. L. & Speckman, P. Curve fitting by polynomial-trigonometric regression. Biometrika 77, 1–9 (1990).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Allen, J. C. A modified sine wave method for calculating degree days. Environ. Entomol. 5, 388–396 (1976).Article 

    Google Scholar 
    Wickham, H. & Wickham, M. H. The ggplot package. Google Scholar. http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/ggplot.pdf, (2007).Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 
    Article 

    Google Scholar 
    Forsman, A. Some like it hot: Intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evol. Ecol. 14, 25–38 (2000).Article 

    Google Scholar 
    Forsman, A., Ringblom, K., Civantos, E. & Ahnesjo, J. Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata. Evolution 56, 349–360 (2002).PubMed 
    Article 

    Google Scholar 
    Ahnesjö, J. & Forsman, A. Correlated evolution of colour pattern and body size in polymorphic pygmy grasshoppers, Tetrix undulata. J. Evol. Biol. 16, 1308–1318 (2003).PubMed 
    Article 

    Google Scholar 
    Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Heidrich, L. et al. The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 27, 407–416 (2018).MathSciNet 
    Article 

    Google Scholar 
    Porter, K. Basking behaviour in larvae of the butterfly Euphydryas aurinia. Oikos 38, 308–312 (1982).Article 

    Google Scholar 
    Rolff, J., Johnston, P. R. & Reynolds, S. Complete metamorphosis of insects. Philos. Trans. R. Soc. B 374, 20190063 (2019).Article 

    Google Scholar 
    Thomas, J. A., Simcox, D. J. & Clarke, R. T. Successful conservation of a threatened Maculinea butterfly. Science 325, 80–83 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, M. & Forsman, A. Evolution of conspicuous colouration, body size and gregariousness: A comparative analysis of lepidopteran larvae. Evol. Ecol. 17, 51–66 (2003).Article 

    Google Scholar 
    Mappes, J., Kokko, H., Ojala, K. & Lindström, L. Seasonal changes in predator community switch the direction of selection for prey defences. Nat. Commun. 5, 5016 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10, 1–13 (2010).Article 

    Google Scholar 
    Galarza, J. A. et al. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis). Philos. Trans. R. Soc. B 374, 20190295 (2019).CAS 
    Article 

    Google Scholar 
    Kingsolver, J. G. The well-temperatured biologist: (American Society of Naturalists Presidential Address). Am. Nat. 174, 755–768 (2009).PubMed 
    Article 

    Google Scholar 
    Lafuente, E. & Beldade, P. Genomics of developmental plasticity in animals. Front. Genet. 10, 720 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angilletta, M. J. Jr., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268 (2002).Article 

    Google Scholar 
    Posledovich, D., Toftegaard, T., Wiklund, C., Ehrlén, J. & Gotthard, K. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. J. Anim. Ecol. 87, 150–161 (2018).PubMed 
    Article 

    Google Scholar 
    Adams, A. Succisa pratensis Moench. J. Ecol. 43, 709–718 (1955).Article 

    Google Scholar 
    Lawton, J. H. & Strong, D. J. Community patterns and competition in folivorous insects. Am. Nat. 118, 317–338 (1981).Article 

    Google Scholar 
    Forsman, A. Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc. Natl. Acad. Sci. 111, 302–307 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Forsman, A., Betzholtz, P.-E. & Franzén, M. Variable coloration is associated with dampened population fluctuations in noctuid moths. Proc. R. Soc. B 282, 1–9 (2015).Article 

    Google Scholar 
    Betzholtz, P. E., Franzén, M. & Forsman, A. Colour pattern variation can inform about extinction risk in moths. Anim. Conserv. 20, 72–79 (2017).Article 

    Google Scholar 
    Klemme, I. & Hanski, I. Heritability of and strong single gene (Pgi) effects on life-history traits in the Glanville fritillary butterfly. J. Evol. Biol. 22, 1944–1953 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattila, A. L. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions. Ecol. Evol. 5, 5539–5551 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Russell, B. D. et al. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol. Let. 8, 164–166 (2012).Article 

    Google Scholar 
    van Bergen, E. et al. The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation. Conserv. Biol. 34, 1503–1511 (2020).PubMed 
    Article 

    Google Scholar 
    Thomas, J. A., Clarke, R. T., Elmes, G. W. & Hochberg, M. E. in Insect Populations in theory and in practice: 19th Symposium of the Royal Entomological Society 10–11 September 1997 at the University of Newcastle (eds J. P. Dempster & I. F. G. McLean) 261–290 (Springer Netherlands, 1998).Nakonieczny, M., Kedziorski, A. & Michalczyk, K. Apollo butterfly (Parnassius apollo L.) in Europe—Its history, decline and perspectives of conservation. Funct. Ecosyst. Communities 1, 56–79 (2007).
    Google Scholar 
    Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).Article 

    Google Scholar 
    Ashton, S., Gutierrez, D. & Wilson, R. J. Effects of temperature and elevation on habitat use by a rare mountain butterfly: Implications for species responses to climate change. Ecological Entomology 34, 437–446 (2009).Article 

    Google Scholar 
    Klockmann, M. & Fischer, K. Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change?. Ecol. Evol. 7, 10871–10879 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent

    Smith, J., Nicholas, A., & Beresford. Chernobyl-Catastrophe and Consequences. Springer (published in association with Praxis publishing, UK), ISBN 3–540–23866–2 Springer (2005)Rosenthal, H. L. Content of stable strontium in man and animal biota. In C Skoryna (4): Handbook of Common Strontium. New York Plenum, pp. 503–514 (1981)Ujwal, P. Studies on transfer factors and transfer coefficients of cesium and strontium in soil-grass-milk pathway and estimation and radiation dose in the environment of Kaiga. Ph D thesis, Mangalore University. http://hdl.handle.net/10603/131678 (2012).World Health Organization (WHO). Concise international chemical assessment document 77 (strontium and strontium compounds). http://apps.who.int/iris/bitstream/10665/44280/1/9789241530774_ eng.pdf (2010).Jones, S. Wind scale and Kyshtym: a double anniversary. J. Environ. Radioact. 99(1), 1–6. https://doi.org/10.1016/j.jenvrad.2007.10.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000. Vol. I, Annex A (2000)Nabeshi, et al. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident. Shokuhin Eiseigaku Zasshi. 56(4), 133–143. https://doi.org/10.3358/shokueishi.56.133 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abu –Khadra et al. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leaves of Wheat Plant. Radiation Physics & Protection Conference, 15–19 November 2008, Nasr City – Cairo, Egypt (2008)Alexakhin, R. et al. Fluxes of radionuclides in agricultural environments: Main results and still unsolved problems. In The radiological consequences of the Chernobyl Accident (eds Karaoglou, A. et al.) 39–47 (European Commission, 1996).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series (TRS) No. 472 (IAEA-TRS-472). IAEA, Vienna (2010).International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series (TRS) No. 364. IAEA, Vienna (1994).Howard, B. J. et al. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk. J. Environ. Radioact. 167, 254–268 (2017).CAS 
    Article 

    Google Scholar 
    Tagami, et al. Chapter 5 – Terrestrial Radioecology in Tropical Systems, Editor(s): John R. Twining, Radioactivity in the Environment, Elsevier, Vol 18, pp 155–230 (2012).Voigt, G. et al. Measurements of transfer coefficients for 137Cs, 60Co, 54Mn, 22Na, 131I, and 95mTc from feed into milk and beef. Radiat. Environ. Biophys. 27, 143–152. https://doi.org/10.1007/BF01214604 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Popplewell, D. S. & Ham, G. J. Transfer factors for 137Cs and 90Sr from grass to bovine milk under field conditions. J. Radio. Prot. 9(3), 189–193 (1989).CAS 
    Article 

    Google Scholar 
    Schuller, P. et al. 137Cs concentration in soil, prairie plants, and milk from sites in southern Chile. Health Phy. 64(2), 157–161 (1993).CAS 
    Article 

    Google Scholar 
    Kirchner, G. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys. 66(6), 653–665. https://doi.org/10.1097/00004032-199406000-00005 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Assimakopoulos, P. A. et al. Variation of the transfer coefficient for radiocaesium transport to sheep’s milk during a complete lactation period. J. Environ. Radioact. 22, 63–75 (1994).Article 

    Google Scholar 
    Wang, C. J. et al. Transfer of radionuclides from soil to grass in Northern Taiwan. Appl. Radiat. Isot. 48(2), 301–303 (1997).CAS 
    Article 

    Google Scholar 
    Zhu, Y.-G. & Smolders, E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635–1645 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 35 km from the Chernobyl nuclear power plant. J. Environ. Radioact. 47, 157–170 (2000).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. Does size matter? In: International conference on the protection of the environment from the effects of ionizing radiation, Stockholm, International Atomic Energy Agency, Vienna, IAEA-CN-109, 182–185 (2003).Howard, B. J. and Beresford, N. A. Advances in animal radioecology. In: Brechignac F, Howard, B.J., (Eds) Proceedings of international symposium in Aix-en-Provence, France, 3–7. EDP Science, Les Ulis, pp. 187–207 (2001).Solecki, J. & Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 252(1), 89–93 (2002).CAS 
    Article 

    Google Scholar 
    Strebl, F. et al. Radiocaesium contamination of meadow vegetation-time-dependent variability and influence of soil characteristics at grassland sites in Austria. J. Environ. Radioact. 58, 143–161 (2002).CAS 
    Article 

    Google Scholar 
    Tsukada, H. S. et al. Transfer of 137Cs and stable Cs in soil–grass–milk pathway in Aomori, Japan. J. Radioanal. Nucl. Chem. 255(3), 455–458 (2003).CAS 
    Article 

    Google Scholar 
    Toki, H. et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 10, 4074. https://doi.org/10.1038/s41598-020-60999-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kubo, K. et al. Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Sci. Rep. 10(3744), 2020. https://doi.org/10.1038/s41598-020-60716-w (2020).CAS 
    Article 

    Google Scholar 
    Saito, R. et al. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joshy, P. J. et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. J. Environ. Radioact. 102, 1070–1077 (2011).Article 

    Google Scholar 
    Joshi, R. M. et al. Baseline radioactivity levels in Kaiga site soil and its migration to biosphere. J. Radioanal. Nucl. Chem. 247(3), 571–574 (2001).CAS 
    Article 

    Google Scholar 
    Sachdev, P. et al. The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants (IAEA-TECDOC–1497). International Atomic Energy Agency (IAEA) (2006)Geetha, P. V. et al. Determination of concentration of iodine in grass and cow milk by NAA methods using reactor neutrons. J. Radioanal. Nucl. Chem. 294, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Geetha, P. V. et al. Grass to cow milk transfer coefficient (Fm) of iodine for equilibrium and emergency situations. Radiat. Prot. Environ. 37(1), 14–20 (2014).Article 

    Google Scholar 
    Karunakara, N. et al. Studies on the soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J. Environ. Radioact. 124, 101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karunakara, N. et al. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J. Environ. Radioact. 2013(118), 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 (2013).CAS 
    Article 

    Google Scholar 
    Ujwal, P. et al. Estimation of grass to milk transfer coefficient for cesium for emergency situations. Radiat Prot Environ [serial online] [cited 2021 Sep 23]; 34: 210–2. Available from: https://www.rpe.org.in/text.asp?2011/34/3/210/101727 (2011).International Atomic Energy Agency (IAEA). Soil–Plant Transfer of Radionuclides in Non-temperate Environments. IAEA-TECDOC No. 1979, IAEA, Vienna (2021a).Iurian, A.-R. et al. Transfer parameters and processes in arid or humid warm climates. J. Environ. Radioact https://doi.org/10.1016/j.jenvrad.2021.106692 (2021).Article 
    PubMed 

    Google Scholar 
    Doering, et al. A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. J. Environ. Radioact., 232, 106570, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106570 (2021).Rout et al. Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review. J. Environ. Radioact., 235–236, 106652, ISSN 0265–931X. https://doi.org/10.1016/j.jenvrad.2021.106652 (2021a).Rout et al. A review of soil to rice transfer of radionuclides in tropical regions of Indian subcontinent. J. Environ. Radioact. 234: 106631. https://doi.org/10.1016/j.jenvrad.2021.106631 (2021b).Twining, J. R. et al. Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia. J. Environ. Radioact. 71(2004), 71 (2004).CAS 
    Article 

    Google Scholar 
    Twining, J. R. et al. Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical northern Australia. Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC-1497, IAEA, Vienna (2006)Mollah, A. et al. Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat. Environ. Biophys. 37, 125–128. https://doi.org/10.1007/s004110050104 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, H. Q. The classification of soil systems on the basis of transfer factors from soil to reference plants, Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC1497 (IAEA, 2006).
    Google Scholar 
    Mahfuza, S., Sultana et al. Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh, Soil Remediation and Plants, Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00012-7 (2015)Nguyen, T. B. et al. Radionuclide transfer factors from air, soil and freshwater to the food chain of man in monsoon tropical condition of Vietnam, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex VIII to this publication (2021).Robison, W.L. & Conrado, C.L. Concentration ratios for foods grown on Bikini Island at Bikini atoll, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex X to this publication9 (2021).Doering, C. & Bollhöfer, A. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province. J. Environ. Radioact. 162–163, 154 (2016).Article 

    Google Scholar 
    Tenpe, S. P. & Parwate, D. V. Evaluation of elemental uptake of Citrus reticulata by nuclear analytical techniques. Int. J. Innov. Res. Sci. Eng. Technol. 4(2015), 2754 (2015).
    Google Scholar 
    International Atomic Energy Agency (IAEA). Approaches for Modelling of Radioecological Data to Identify Key Radionuclides and Associated Parameter Values for Human and Wildlife. Exposure Assessments. IAEA-TECDOC No. 1950, IAEA, Vienna (2021b).Johansen, M. P. & Twining, J. R. Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: Data compilation and analysis. Radiat. Environ. Biophys. 49(4), 603–611. https://doi.org/10.1007/s00411-010-0318-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sotiropoulou, M., & Florou, H. Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece, J. Environ. Radioact., 237, 2021, 106666, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106666 (2021).Howard, B. J. et al. Updating animal product transfer parameter values for cow and goat milk. In: Soil-pant transfer of radionuclides in non-temperate environments, IAEA-TECDOC-1950, IAEA, Vienna (2021)Musatovová, O. & Vavrová, M. Transfer of 137Cs and 90Sr to some Animal Products in the site of Previewed Nuclear Power Plant Construction. Isotopenpraxis Isotopes Environ. Health Stud. 27(7), 339–341. https://doi.org/10.1080/10256019108622561 (1991).Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-No. 1616. IAEA, Vienna (2009).Karunakara, N. et al. Studies on transfer Factors of Iodine, Cesium and Strontium in air→ grass→ cow→ milk pathway and estimation of radiation dose specific to Kaiga region. Final report of the research project, Nuclear Power Corporation of India Ltd. (NPCIL). Grant No. Kaiga–3&4/00000/SD/2007/S/343 dated 27.12.2007, Kaiga –3&4/00000/SD/2007/S/343 (2012).Karunakara, N. et al. Estimation of air-to-grass mass interception factors for iodine, J. Environ. Radioact., 186, 71–77. ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2017.06.018 (2018).Nayak, R. S. et al. Experimental database on water equivalent factor (WEQp) and organically bound tritium activity for tropical monsoonal climate region of South West Coast of India. Appl. Radiat. Isotopes, https://doi.org/10.1016/j.apradiso.2020.109390 (2020).Karunakara, N. et al. 137Cs concentration in environment of Kaiga in the South-West Coast of India. Health Phys. 81(2), 148–155 (2001).CAS 
    Article 

    Google Scholar 
    Karunakara, N. et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga of south-west Coast of India. J. Environ. Radioact. 65, 255–266 (2003).CAS 
    Article 

    Google Scholar 
    International Atomic Energy Agency (IAEA). Measurement of radionuclides in food and the environment, a guide book. Technical report series No. 295. IAEA, Vienna (1989).Environmental Measurements Laboratory, procedures manual. U.S. Department of Energy. Ed. 26 (1983).Uchida, S. & Tagami, K. Soil-to-plant transfer factors of fallout Cs-137 and native Cs-133 in various crops collected in Japan. J. Radioanal. Nucl. Chem. 273, 205–210 (2007).CAS 
    Article 

    Google Scholar 
    Gavlak, R. D. et al. Plant, soil and water reference methods for the Western Region. Western Regional Extension Publication (WREP) 125, WERA-103 Technical Committee, http://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (2005).Nuclear Power Corporation of India Ltd. (NPCIL). Environmental impact assessment for Kaiga atomic power project (Kaiga unit 5 & 6), 2 x 700 MWe PHWRs at Kaiga, Karnataka volume – I : Main report. NPCIL, Mumbai, India (2018).Siddappa, K. et al. Distribution of natural and artificial radioactivity components in the environs of coastal Karnataka, Kaiga and Goa (1991–94). Final Project Report to Board of Research in Nuclear Sciences (BRNS), Govt. of India, Mangalore University, Mangalore, India (1994).Radhakrishna, A. P. et al. Distribution of some natural and artificial radionuclides in mangalore environment of South India. J. Environ. Radioact. 30(1), 31–54 (1996).CAS 
    Article 

    Google Scholar 
    Patra, A. K. et al. Influence of site characteristics on soil to plant transfer of Strontium. National Symposium on Environment, 2004. pp. 475–480 (2004).Ross, et al. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Protect. Environ., 35(2) 64–68, DOI https://doi.org/10.4103/0972-0464.112340 (2012).National Research Council (NRC), Nutrient requirements of dairy cattle. 5th revised edition, National Academic Press; Washington D.C (1978).Patra, A. K. Studies on The Biological Translocation of Major and Trace elements in Kaiga Environment, Ph.D. Thesis, Mangalore University (2005).Ehlken, S. & Kirchner, G. Seasonal variations in soil to grass transfer of fallout Strontium and Cesium and of Potassium in North German soils. J. Environ. Radioact. 33(2), 147–181 (1996).CAS 
    Article 

    Google Scholar 
    International Union of Radioecology (IUR). 6th report of the working group soil-plant transfer factors. Report of the working group meeting in Guttannen, Grimselpass, Switzerland, May (1989).Lu, et al. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. Journal of Environmental Radioactivity 90(2), 89–99 (2006).Bergeijk, K. E. et al. Influence of pH, Soil Organic Matter Content on Soil-to-Plant Transfer of Radiocesium and Strontium as Analyzed by a Non-Parametric Method. J. of Environ. Radioactivity 15, 265–276 (1992).Article 

    Google Scholar 
    Anderson, R. R. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055 (1992).CAS 
    Article 

    Google Scholar 
    Hurley, W. L. Lactation Biology. Minerals and Vitamins. Ed. by Univ. Urbana. Illinois USA. (1997).Hingorani, S. B. et al. Sr-90 measurements in milk and composite diet samples in India. J. Sci. Indust. Res. 35, 557–579 (1976).CAS 

    Google Scholar 
    Lettner, H. A. et al. 137Cs and 90Sr transfer to milk in Austrian alpine agriculture. J. Environ. Radioact. 98, 69–84 (2007).CAS 
    Article 

    Google Scholar 
    Klemola, S. et al. Monitoring of Radionuclides in the Environs of the Finnish Nuclear Power Stations in 1988. Supplement 3 to Annual Report STUK-A89, Helsinki (1991)Abukawa, J. et al. A Survey of 90Sr and 137Cs Activity Levels of Retail Foods in Japan. J. Environ. Radioact. 41 (3), 287–305. (1998)Green, N. et al. The transfer of Cs and Sr along the soil-pasture-cow’s milk pathway in an area of land reclaimed from the Sea. J. Environ. Radioact. 23, 151–170 (1994).CAS 
    Article 

    Google Scholar 
    Green, N. et al. Factors affecting the transfer of radionuclides to sheep grazing on pastures reclaimed from the Sea. J. Environ. Radioact. 30(2), 173–183 (1996).CAS 
    Article 

    Google Scholar 
    Beresford, N. A. et al. The transfer of radiocaesium to ewes through a breeding cycle: An illustration of the pitfalls of the transfer coefficient. J. Environ. Radioact. 98, 24–35 (2007).CAS 
    Article 

    Google Scholar 
    Bobovnikova, et al. Chemical forms of occurrence of long-lived radionuclides and their alteration in soils near the Chernobyl Nuclear Power Station. Soviet Soil Sci. 23, 52–57. (1991).Kashparov, V. A. et al. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys. 76, 251–299 (1999).CAS 
    Article 

    Google Scholar 
    Joshy, P. J. Studies on Environmental Transportation of Natural Radionuclides in Kaiga Region. Ph D Thesis, Mangalore University, pp. 105 (2007). More

  • in

    An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

    Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
    Google Scholar 
    Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).CAS 
    Article 

    Google Scholar 
    Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).CAS 
    Article 

    Google Scholar 
    IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).CAS 
    Article 

    Google Scholar 
    Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).CAS 
    Article 

    Google Scholar 
    Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).CAS 
    Article 

    Google Scholar 
    Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).Article 

    Google Scholar 
    UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).Article 

    Google Scholar 
    Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).CAS 
    Article 

    Google Scholar 
    Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).Article 

    Google Scholar 
    Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).CAS 
    Article 

    Google Scholar 
    Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).Article 

    Google Scholar 
    Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).Article 

    Google Scholar 
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).Article 

    Google Scholar 
    Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).CAS 
    Article 

    Google Scholar 
    Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).Article 

    Google Scholar 
    Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
    Google Scholar 
    Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).Article 

    Google Scholar 
    Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).Article 

    Google Scholar 
    Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).Article 

    Google Scholar 
    Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).Article 

    Google Scholar 
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).Article 

    Google Scholar 
    Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
    Google Scholar 
    IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).Article 

    Google Scholar 
    Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).Article 

    Google Scholar 
    Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).Article 

    Google Scholar 
    Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).Article 

    Google Scholar 
    Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).Article 

    Google Scholar 
    Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).Article 

    Google Scholar 
    Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).Article 

    Google Scholar 
    Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).Article 

    Google Scholar 
    Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).CAS 
    Article 

    Google Scholar 
    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).CAS 
    Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).Article 

    Google Scholar 
    Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).CAS 

    Google Scholar 
    Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).Article 

    Google Scholar 
    Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).Article 

    Google Scholar 
    Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).CAS 
    Article 

    Google Scholar 
    Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
    Google Scholar 
    Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
    Google Scholar 
    Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

    Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).Article 

    Google Scholar 
    García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).Article 

    Google Scholar 
    Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).Article 

    Google Scholar 
    Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).
    Google Scholar 
    Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).
    Google Scholar 
    Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).
    Google Scholar 
    Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).Article 

    Google Scholar 
    Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).Article 

    Google Scholar 
    Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).Article 
    PubMed Central 

    Google Scholar 
    El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).Article 

    Google Scholar 
    Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).CAS 
    Article 

    Google Scholar 
    Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).
    Google Scholar 
    Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).Article 

    Google Scholar 
    Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).Article 

    Google Scholar 
    da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).Article 

    Google Scholar 
    Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).Article 

    Google Scholar 
    Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).Article 

    Google Scholar 
    El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).CAS 
    Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).CAS 
    Article 

    Google Scholar 
    Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).Article 

    Google Scholar 
    Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).CAS 
    Article 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).Article 

    Google Scholar 
    Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).
    Google Scholar 
    Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).
    Google Scholar 
    Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).Article 

    Google Scholar 
    Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).Article 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).Article 

    Google Scholar 
    Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).Article 

    Google Scholar 
    Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).
    Google Scholar 
    De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).
    Google Scholar 
    Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).Article 
    PubMed 

    Google Scholar 
    Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).
    Google Scholar 
    Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).Article 
    PubMed 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).Article 
    PubMed 

    Google Scholar 
    Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).Article 
    PubMed Central 

    Google Scholar 
    Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).Article 

    Google Scholar 
    Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).Article 

    Google Scholar 
    Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).CAS 
    Article 

    Google Scholar 
    Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).
    Google Scholar 
    Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).
    Google Scholar 
    Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).
    Google Scholar 
    Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).CAS 
    Article 

    Google Scholar 
    Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).Article 

    Google Scholar 
    Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).CAS 
    Article 

    Google Scholar 
    Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).Article 

    Google Scholar 
    Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).Article 

    Google Scholar 
    Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).Article 

    Google Scholar 
    Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).Article 

    Google Scholar 
    Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).Article 

    Google Scholar 
    Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).Article 

    Google Scholar 
    Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).Article 

    Google Scholar 
    Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).Chapter 

    Google Scholar 
    Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).Article 
    PubMed 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).Article 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).Article 

    Google Scholar 
    Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).
    Google Scholar 
    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).Chapter 

    Google Scholar 
    White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).Chapter 

    Google Scholar 
    Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).Article 

    Google Scholar 
    Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).
    Google Scholar 
    Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011). More

  • in

    State of ex situ conservation of landrace groups of 25 major crops

    Crops and their landrace study areasFood crops whose genetic resources are researched and conserved by CGIAR international agricultural research centres or by the CePaCT of the SPC were included in this study. Crop landrace distributions were modelled and conservation analyses conducted within recognized primary and, for some crops, secondary regions of diversity, where these crops were domesticated and/or have been cultivated for very long periods, and where they are, thus, expected to feature high genetic diversity and adaptation to local environmental and cultural factors (Supplementary Tables 1 and 2)9,13. These regions were identified through literature review (Supplementary Information) and confirmed by crop experts.Occurrence dataOur crop landrace group distribution modelling and conservation gap analysis rely on occurrence data, including coordinates of locations where landraces were previously collected for ex situ conservation and reference sightings. For ex situ conservation records, occurrences marked as landraces were retrieved from two major online databases: the Genesys Plant Genetic Resources portal33 and the World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) of the Food and Agriculture Organization of the United Nations34. Occurrences were also obtained directly from individual international genebank information systems: AfricaRice, the International Transit Centre and Musa Germplasm Information System of Bioversity International35, CePaCT, International Center for Tropical Agriculture (CIAT), International Maize and Wheat Improvement Center (CIMMYT), International Potato Center (CIP), International Center for Agricultural Research in the Dry Areas (ICARDA), International Crops Research Institute for the Semi-arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA) and International Rice Research Institute (IRRI), as well as from the United States Department of Agriculture (USDA) Genetic Resources Information Network (GRIN)–Global36 and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)37. Occurrences were compiled from the Global Biodiversity Information Facility (GBIF), with ‘living specimen’ records classified as ex situ conservation records and the remaining serving as reference sightings for use in distribution modelling. Reference occurrences were also drawn from published literature (Supplementary Information). Duplicated observations within or between data sources were eliminated, with a preference to utilize the most original data. Coordinates were corrected or removed when latitude and longitude were equal to zero or inverted, located in water bodies or in the wrong country or had poor resolution ( 10 (ref. 60). The predictors and whether they were selected for the modelling of each landrace group are presented in Supplementary Table 4.We generated a random sample of pseudo-absences as background points in areas that (1) were within the same ecological land units61 as the occurrence points, (2) were deemed potentially suitable according to a support vector machine classifier that uses all occurrences and predictor variables and (3) were farther than 5 km from any occurrence62. The number of pseudo-absences generated per crop group was ten times its number of unique occurrences.MaxEnt models were fitted through five-fold (K = 5) cross-validation with 80% training and 20% testing. For each fold, we calculated the area under the receiving operating characteristic curve (AUC), sensitivity, specificity and Cohen’s kappa as measures of model performance. To create a single prediction that represents the probability of occurrence for the landrace group, we computed the median across K models. Geographic areas in the form of pixels with probability values above the maximum sum of sensitivity and specificity were treated as the final area of predicted presence13.Ex situ conservation status and gapsThree separate but complementary metrics were developed to compare the geographic and environmental diversity in current ex situ conservation collections to the total geographic and environmental variation across the crop landrace group distribution model and, thus, to identify and quantify ex situ conservation gaps13.A connectivity gap score (SCON) was calculated for each 2.5-arc-minute pixel within the distribution model by drawing a triangle63,64 around each pixel using the three closest genebank accession occurrence locations as vertices and then deriving normalized values for the pixel based on distance to the triangle centroid and vertices13. The SCON of a pixel is high—closer to 1 on a scale of 0–1—when its corresponding triangle is large, when the pixel is close to the centroid of the triangle or when the distance to the vertices is large. A high SCON represents a greater probability of the pixel location being a gap in existing ex situ collections.An accessibility gap score (SACC) was calculated for each 2.5-arc-minute pixel in the distribution model by computing travel time from each pixel to its nearest genebank accession occurrence location based both on distance and the speed of travel, defined by a friction surface13,45. Travel time scores were normalized by dividing pixel values by the longest travel time within the distribution model, with the final score ranging from 0 to 1. A high SACC value for a pixel reflects long travel times from existing genebank collection occurrences and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.An environmental gap score (SENV) was calculated for each 2.5-arc-minute pixel in the distribution model by conducting a hierarchical clustering analysis using Ward’s method with all the predictor variables from the distribution modelling. The Mahalanobis distance between each pixel and the environmentally closest genebank accession occurrence location was then computed13. Environmental distance scores were normalized between 0 and 1. A high SENV value for a pixel reflects a large distance to areas with similar environments where landraces have previously been collected for genebank conservation and, thus, represents a higher probability of the pixel location being a gap in existing ex situ collections.Spatial ex situ conservation gaps were determined from the conservation gap scores using a cross-validation procedure to derive a threshold for each score. We created synthetic gaps by removing existing genebank occurrences in five randomly chosen circular areas with a 100 km radius within the distribution model. We then tested whether these artificial gaps could be predicted by our gap analysis, identifying the threshold value of each score that would maximize the prediction of these synthetic gaps. Performance for each of the five gap areas was assessed using AUC, sensitivity and specificity. The average cross-area threshold value was calculated for each score to discern pixels with a high likelihood of finding ex situ conservation gaps and that, thus, were higher priority for further field sampling. These were pixels with combined gap scores above the threshold, assigned a value of 1, as opposed to the relatively well-conserved areas below the threshold, which were assigned a value of 0.The three binary conservation gap scores were then mapped in combination, resulting in pixels across the distribution model with gap values ranging from 0 to 3. Pixels with a value of 0 display no connectivity, accessibility or environmental gaps and are considered well represented ex situ. Pixels with a value of 1 indicate a conservation gap in connectivity, accessibility or the environment; we consider these ‘low-confidence’ gaps. Pixels with a value of 2 indicate gaps in two metrics or ‘medium-confidence’ gaps, and values of 3 indicate gaps across all metrics or ‘high-confidence’ gaps. High-confidence gap areas are displayed on crop-conservation-gap maps (Fig. 2b and Supplementary Information) and conservation hotspot maps across crops (Fig. 4 and Extended Data Figs. 5–8).The representation of crop landrace groups in current ex situ conservation collections was calculated based on the final 1–3 value conservation-gap maps. The complement of the proportion of the modelled distribution considered as a potential conservation gap by any single gap score represents the minimum estimate of current representation; the complement of the proportion considered by all three scores as a gap, which is to say high-confidence gap areas, represents the maximum estimate (Supplementary Tables 1 and 2).While distribution modelling and conservation gap analyses were conducted at the crop landrace group level and results are presented in full in the Supplementary Information, for ease of comparison of results across crops, and to avoid bias towards crops with many landrace groups, we also calculated summary results at the crop level. Crops that had been assessed with geographic differentiations, including maize in Africa and Latin America and yams in the New World and the Old World, were also combined. For spatial results, the pixels in crop landrace group models were summed—that is, constituent landrace group models were combined. The minimum and maximum current conservation representation estimations at the crop level were then calculated based on combined spatial models.GBIF occurrence downloadsThe following occurrence downloads from the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/, 2017−2021) were used: 10.15468/dl.rrntfr, 10.15468/dl.2f2v4h, 10.15468/dl.2ywlb7, 10.15468/dl.lnfelh, 10.15468/dl.ryrmfj, 10.15468/dl.8adf61, 10.15468/dl.nff5ys, 10.15468/dl.erxs6e, 10.15468/dl.vbfgho, 10.15468/dl.mjjk3x, 10.15468/dl.uppz1n, 10.15468/dl.938bgm, 10.15468/dl.hr87hm, 10.15468/dl.k1va80, 10.15468/dl.coqpu2, 10.15468/dl.lkoo9u, 10.15468/dl.e998mp, 10.15468/dl.vfbmm7, 10.15468/dl.tnp478, 10.15468/dl.6zxsea, 10.15468/dl.0lray8, 10.15468/dl.5sjgsw, 10.15468/dl.wkju6h, 10.15468/dl.7xzfvc, 10.15468/dl.autlf5, 10.15468/dl.fe2amw, 10.15468/dl.2zblvz, 10.15468/dl.ddplkj, 10.15468/dl.jbzejg, 10.15468/dl.ej5bha, 10.15468/dl.905pxd, 10.15468/dl.pim1vs, 10.15468/dl.vdridc, 10.15468/dl.b43gyv, 10.15468/dl.nnw3z7, 10.15468/dl.bnt9jc, 10.15468/dl.f5x2cg, 10.15468/dl.ub7zbg, 10.15468/dl.sggf2v, 10.15468/dl.ath5ve, 10.15468/dl.23k3ug, 10.15468/dl.cym376, 10.15468/dl.53bwzk, 10.15468/dl.fsad7h and 10.15468/dl.fm6p7z.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The effect of reducing per capita water and energy uses on renewable water resources in the water, food and energy nexus

    This work formulates a general framework of the WFE Nexus at the national level, which includes all pertinent interactions between water, food, and energy sources and demands. Figure 1 depicts the feedbacks involving resource availability and consumption. The causal loops of the developed model for national-scale assessment are shown in Fig. 2. The model depicted in Fig. 2 proposes reducing consumption to reduce the water crisis to the extent possible. By reducing water use and pollution the environmental water requirement can be reduced, thus alleviating the water crisis. This paper’s objective is sustainable management by reducing per capita water use (in the residential section) and per capita energy use (in the domestic, public, and commercial section). The WFE nexus is modeled as a dynamic system for demand management applied to the stocks of energy, surface water, and groundwater resources to calculate their input and output rates (flows) at the national level while providing for environmental flow requirements (Fig. 3). The national modeling approach is of the lumped type, meaning that inputs and outputs to the stocks of water and energy represent totals over an entire country (in the case study, Iran); therefore, the models does not consider intra-country regional variations. The units of water resources and energy resources are expressed in cubic meters and MWh, respectively.Figure 1Feedbacks between resources and uses in the WFE nexus taking into account environmental considerations.Full size imageFigure 2The causal loops of the model developed for simulating the WFE nexus.Full size imageFigure 3Flow diagram of the WFE Nexus system.Full size imageBalance of water resourcesThe study of water exchanges in a country is based on the law of conservation of matter. The following sections present calculations pertinent to the annual balance of surface and groundwater resources.Surface water resourcesThe national runoff generated in a country’s high-elevation areas (or high terrain) and low-elevation areas (plains) is quantified with the following equations:$${preheight}_{t}=HeightCotimes {Precipitation}_{t}$$
    (1)

    in which ({preheight}_{t}) = volume of precipitation that falls in high-elevation areas during period t, (HeightCo) = the percentage of total precipitation that falls in high-elevation areas, and ({Precipitation}_{t}) = volume of precipitation during period t.$${preplain}_{t}=PlainCotimes {Precipitation}_{t}$$
    (2)

    in which ({preplain}_{t}) = volume of precipitation that falls in the plains during period t, and (PlainCo) = the percentage of total precipitation that falls in plains (low elevation areas).$${SInflow}_{t}=HeighSInflowCotimes {preheight}_{t}+PlainSInflowCotimes {preplain}_{t}+{OutCSW}_{t}+{Dr}_{t}$$
    (3)

    in which ({SInflow}_{t}) = the total volume of surface flows during period t, (HeighSInflowCo) = the runoff coefficient in high-elevation areas, (PlainSInflowCo) = the runoff coefficient in the plains, ({OutCSW}_{t}) = the difference between the volume of surface inflow and outflow through a country’s border during period t; and ({Dr}_{t}) = the flow of groundwater resources to surface water resources (i.e., baseflow) during period t.It is possible to calculate the water use after calculating the annual surface water originating by precipitation. Some of the water use by the agricultural, industrial, and municipal sectors becomes return flows. Equations (4) through (9) show how to calculate the surface water use and the water return flows to the surface water sources.$${DomWD}_{t}={Population}_{t}times PerCapitaWatertimes 365$$
    (4)

    in which ({DomWD}_{t}) = the volume of water use in the municipal sector during period t, ({Population}_{t}) = the population of the country during period t, and (PerCapitaWater) = per capita drinking water use (cubic meters per person per day).$${IndDomWD}_{t}={DomWD}_{t}+{IndWD}_{t}$$
    (5)

    in which ({IndDomWD}_{t}) = the volume of water use in the municipal and industrial sectors during period t, and ({IndWD}_{t}) = the volume of water use in the industrial sector during period t.The water use by the agricultural sector accounts for the water footprint of agricultural products, which measures their water use per mass of produce, and adjusting the water use by including water losses and agricultural return flows. A separate sub-agent (AGR agent) is introduced to perform the calculations related to the agricultural sector to simplify the dynamic-system model (main model), and the required outputs (BWAgr, GWAgr) of the dynamic system model are called by the agent in the main model (see Figs. 3 and 4). The BWAgr is given by the expression within parentheses in Eq. (6).Figure 4Agricultural subsystem modeled in the AGR agent (shows how to calculate the blue and gray water footprints of agricultural products).Full size image$${AgrWD}_{t}=left(sum_{iin A}{BW}_{i}times {Product}_{i,t}right)times frac{1}{{E}_{Agr}}+OtherAgrWD$$
    (6)

    in which ({AgrWD}_{t}) = the volume of agricultural water use during period t, ({BW}_{i}) = blue water footprint of agricultural product i (cubic meters per ton), ({Product}_{i,t}) = the amount of production of agricultural product i during period t (tons), ({E}_{Agr}) = the overall irrigation efficiency, (OtherAgrWD) = the volume of water consumed by agricultural products not included in the set A of agricultural products (in cubic meters). The set A includes those agricultural products with the largest yields and shares of the national food basket.$${AgrReW}_{t}={AgrWD}_{t}times AgrReCo$$
    (7)

    in which ({AgrReW}_{t}) = the volume of water returned from agricultural water use during the period t, and (AgrReCo) = the coefficient of water returned from agricultural water use.$${IndDomReW}_{t}={IndDomWD}_{t}times IndDomReCo$$
    (8)

    in which ({IndDomReW}_{t}) = the volume of water returned from industrial and municipal water use during period t, and (IndDomReCo) = the coefficient of water returned from industrial and municipal water uses.$${ReSW}_{t}=IndDomReSWCotimes {IndDomReW}_{t}+AgrReSWCotimes {AgrReW}_{t}$$
    (9)

    in which ({ReSW}_{t}) = the volume of water returned from water uses to surface water resources during period t, (IndDomReSWCo) = the percentage of water returned from municipal and industrial water use to surface water resources, and (AgrReSWCo) = the percentage of water returned from agricultural water use to surface water resources.Water is applied to produce energy, and Eqs. (10) through (15) perform the related calculations. The ({WEIF}_{t}) variable in Eq. (14) is necessary to account for the volume of water saved as a result of the energy savings. A PR model is introduced to account for such water savings (see Fig. 3).$${Diff}_{t} ={OutputE}_{t}-{OutputE}_{t}^{P}$$
    (10)

    in which ({Diff}_{t})= the difference between the energy used in the main model during period t and the energy used in period t in the PR model, ({OutputE}_{t}) = the sum of energy uses during period t in the main model (the method of calculating ({OutputE}_{t}) is described in detail in “Energy uses”), and ({OutputE}_{t}^{P}) = the sum of energy uses during period t in the PR model. Equations (11) and (12) account for the case when energy use exceeds energy production under current conditions, in which case energy exports are reduced. This prevents additional energy production to meet excess demand, and, consequently, there would not be increases in water use.$${Diff}_{t} le 0,,,{if,,func}_{t}=0$$
    (11)
    $${Diff}_{t} >0,,,{ if,,func}_{t}={Diff}_{t}$$
    (12)

    in which ({ iffunc}_{t}) = the amount of energy saved during period t.Equation (13) calculates the water required to produce energy:$${{TotalWE}_{t}=Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN+{Elec}_{t}times ENwateruseE$$
    (13)

    in which ({TotalWE}_{t}) = the volume of water required to produce the energy demand during period t,({Elec}_{t}) = the amount of electricity production during period t (MWh), and (ENwateruseE) = the water required per unit of energy generated by electricity (cubic meters per MWh), all other terms were previously defined.Equation (14) calculates the water savings:$${WEIF}_{t}=sum_{t=1}^{T}frac{{TotalWE}_{t}}{{OutputE}_{t}^{0}}times {if,,func}_{t}$$
    (14)

    in which ({WEIF}_{t})= the volume of water saved as a result of the energy saved during period t, T = the number of periods of simulation (T = 5 years).Part of the water used to produce energy from coal, oil, petroleum products, and nuclear fuel is accounted for in the industrial sector water use. For this reason, the volume of water to produce energy calculated with Eq. (15) is reduced by that part of water already accounted for in the industrial water use to avoid double accounting.$${WE}_{t}={Coal}_{t}times ENwateruseC+{Gas}_{t}times ENwateruseG+{OilPetroleumP}_{t }times ENwateruseO+{Nuclear}_{t}times ENwateruseN-INDEtimes {IndWD}_{t}-{WEIF}_{t}$$
    (15)

    in which ({WE}_{t}) = the volume of water required to produce different types of energy (except those included in the industrial sector) during period t, ({Coal}_{t}) = the energy produced with coal during period t (MWh), (ENwateruseC) = the water required per unit of energy produced with coal (cubic meters per MWh),({Gas}_{t}) = the amount of energy produced with natural gas during period t (MWh), (ENwateruseG) = the water required per unit of energy produced with natural gas (cubic meters per MWh), ({OilPetroleumP}_{t}) = the amount of energy produced with crude oil and other petroleum products during period t (MWh), (ENwateruseO) = the water required per unit of energy produced with crude oil and petroleum products (cubic meters per MWh),({Nuclear}_{t}) = the amount of nuclear energy produced during period t (MWh), (ENwateruseN) = the water required per unit of nuclear energy produced (cubic meters per MWh), and (INDE) = the percentage of industrial water use already accounted for in Eq. (5) (which pertains to water used in the coke coal, oil refineries, and nuclear fuel industries).Part of the discharge of springs enters the surface water sources, and this enters the calculation of the input to the surface water-resources stock in Eq. (16):$${InputSW}_{t}= SInflow+{ReSW}_{t}{+ Fountain}_{t}$$
    (16)

    in which ({InputSW}_{t}) = the volume of inflow water to surface water sources during period t, and ({Fountain}_{t}) = discharge of springs to surface water sources during period t, other terms previously defined.The output of the surface water resources includes water use and the infiltration of surface water into groundwater, the latter calculated with Eq. (17):$${SInflowInf}_{t}={SInflow}_{t}times SInflowInfCo$$
    (17)

    in which ({SInflowInf}_{t}) = the infiltration volume of surface water during period t, and (SInflowInfCo) = the infiltration coefficient of surface water.The output of the surface water resources stock is calculated using Eq. (18):$${OutputSW}_{t}={AgrSWDCo}_{t}times {AgrWD}_{t}+{IndSWDCo}_{t}times {IndWD}_{t}+{DomSWDCo}_{t}times {DomWD}_{t}+{mathrm{ WE}}_{t}+{SInflowInf}_{t}-{EvSwSea}_{t}$$
    (18)

    in which ({OutputSW}_{t}) = the output volume of surface water during period t, ({AgrSWDCo}_{t}) = the percentage of gross agricultural water use from surface water resources during period t, ({IndSWDCo}_{t}) = the percentage of industrial water use from surface water resources during period t, ({DomSWDCo}_{t})= the percentage of gross drinking water consumption from surface water sources during period t, and ({EvSwSea}_{t}) = the total volume of evaporation from surface water plus the discharge of surface water to the sea during period t.The balance of surface water resources is calculated based on Eq. (19):$$SWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputSW}_{t}left(Sright)-{OutputSW}_{t}(S)right]dt+SWater(0)$$
    (19)

    in which (SWaterleft(tright)) = the stock of surface water resources at time t, (SWater(0)) denotes the stock of surface water at the initial time (t = 0).Groundwater resourcesGroundwater resources gain water from deep infiltration of precipitation in the plains and elevated areas from (1) inflows from outside of the study area, (2) infiltration from surface flows and return waters. Groundwater output factors also include the discharge of groundwater resources (wells, springs, and aqueducts), groundwater flow that moves outside the study area and evaporation. Infiltration of precipitation in the plains and in high terrain into groundwater resources is calculated with Eq. (20):$${Inf}_{t}=PrePInfCotimes {preplain}_{t}+PreHInfCotimes {preheight}_{t}$$
    (20)

    in which ({Inf}_{t}) = the volume of water entering groundwater sources through infiltration of precipitation during period t, (PrePInfCo) = the infiltration coefficient of precipitation in the plains, and (PreHInfCo) = the infiltration coefficient of rainfall in high terrain.Equation (21) calculates the volume of return water that accrues to groundwater resources:$${ReGW}_{t}=IndDomReGWCotimes {IndDomReW}_{t}+AgrReGWCotimes {AgrReW}_{t}$$
    (21)

    in which ({ReGW}_{t}) = the volume of water returned from water use that accrues to groundwater resources during period t, (IndDomReGWCo) = the percentage of water returned from municipal and industrial water use accruing to groundwater resources, and (AgrReGWCo) = the percentage of water returned from agricultural water use accruing to groundwater resources.The volume of groundwater input is calculated with Eq. (22):$${InputGW}_{t}={Inf}_{t}+{ReGW}_{t}+{SInflowInf}_{t}+{OutCGw }_{t}$$
    (22)

    in which ({InputGW}_{t}) = the volume of groundwater input during period t, and ({OutCGw }_{t}) = the difference between the volume of groundwater leaving and that entering the country during period t.The volume of groundwater output is calculated with Eq. (23):$${OutputGW}_{t}={AgrGWDCo}_{t}times {AgrWD}_{t}+IndGWDCotimes {IndWD}_{t}+DomGWDCotimes {DomWD}_{t}+{EvGwDr}_{t}$$
    (23)

    in which ({OutputGW}_{t}) = the volume of groundwater output during period t, ({AgrGWDCo}_{t}) = the percentage of gross agricultural water use from groundwater resources during period t, IndGWDCo = the percentage of industrial water use from groundwater resources during period t, DomGWDCo = the percentage of municipal water use from groundwater resources during period t, and ({EvGwDr }_{t}) = the total volume of evaporation from groundwater plus the drainage of groundwater resources to surface water resources at time t.Equation (24) calculates the annual balance of groundwater resources:$$GWaterleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[{InputGW}_{t}left(Sright)-{OutputGW}_{t}left(Sright)right]dt+GWater(0)$$
    (24)

    in which GWater(t) = the groundwater resources stock at time t, (GWater(0)) denotes the stock of groundwater at the initial time (t = 0).Energy usesEnergy uses are calculated with Eqs. (25)–(27). The total national energy use includes the agricultural, industrial, transportation, and exports sectors’ energy demands. The energy uses by these sectors do not change during the implementation of the policy, and, consequently do not change the WFE Nexus in that period; therefore, they are not included in the calculations.$${WDTP}_{t}={DomWD}_{t}times {CEIntensity}_{t}$$
    (25)

    in which ({WDTP}_{t}) = the energy used in the extraction, transmission, distribution, and treatment of water in the water and wastewater system during period t, and ({CEIntensity}_{t}) = the energy intensity in the extraction, transmission, distribution, and treatment of water in water and wastewater systems during the period t (MWh per cubic meter).$${ResComPubED}_{t}=ResComPubPerCapitatimes {Population}_{t}$$
    (26)

    in which ({ResComPubED}_{t}) = the energy use by the domestic, commercial, and public sectors during period t, and (ResComPubPerCapita) = the per capita energy consumption by the domestic, commercial, and public sectors (MWh per person per year).$${OutputE}_{t}={ResComPubED}_{t}+{WDTP}_{t}$$
    (27)
    Environmental water needsThe gray water footprint is defined as the volume of freshwater that is required to assimilate the load of pollutants based on natural background concentrations and existing ambient water quality standards. The estimation of the gray water footprint associated with discharges from agricultural production is based on the load of nitrogen fertilizers, which are pervasive in agriculture. The gray water footprint in terms of nitrogen concentration has been estimated by Mekonnen and Hoekstra24,25, as written in Eq. (28):$${GW}_{t}^{Agr}=sum_{iin A}{GW}_{i}times {Product}_{i,t}$$
    (28)

    in which ({GW}_{t}^{Agr})= the volume of gray water in the agricultural sector during period t, and ({GW}_{i}) = the volume of gray water associated with the production of one ton of agricultural product i (cubic meters per ton)(.)There are no accurate estimates of the concentrations of pollutants per unit of industrial production, or of the concentration of pollutants in municipal wastewater. Therefore, the conservative dilution factor (DF), which is equal to 1 for untreated returned water from the municipal and industrial sectors, is applied in this work. Equation (29) is a simplified equation of the gray water footprint26. The fraction appearing on the right-hand side of Eq. (29) is equal to the DF.$${GW}_{t}^{IndDom}= frac{{C}_{eff}-{C}_{nat}}{{C}_{max}-{C}_{nat}}times {IndDomReW}_{t}times IndDomReUT$$
    (29)

    in which ({GW}_{t}^{IndDom}) = the gray water footprint of the municipal and industrial sectors during period t, ({C}_{eff}) = the nitrogen concentration in return water (mg/L), ({C}_{nat}) = the natural concentrations of contaminant in surface water (mg/L), ({C}_{max}) = the maximum allowable concentration contaminant in surface water (mg/L), and (IndDomReUT) = the percentage of untreated returned water from the municipal and industrial sectors.The total gray water footprint is obtained by summing the footprints associated with the municipal/industrial and agricultural sectors:$${TotalGW}_{mathrm{t}}={GW}_{t}^{IndDom}+{GW}_{t}^{Agr}$$
    (30)

    in which ({TotalGW}_{mathrm{t}}) = the volume of gray water from all sectors during period t.This work considers qualitative and quantitative environmental water needs. Equation (31) is used to calculate the total environmental water need. The Tennant method for calculating the riverine environmental flow requirement (or instream flow) stipulates that, based on the conditions of each basin, between 10 to 30% of the average long-term flow of rivers represents the environmental flow requirement27. The sum of these requirements across all the basins equals the environmental requirement of the entire region or country. Yet, by providing 10 to 30% of the average long-term flow of rivers the riverine ecosystem barely emerges from critical conditions, and is far from optimal ecologic functioning. The total environmental water need is equal to the sum of the environmental flow requirement plus the volume of water needed to dilute the contaminants entering the surface water sources:$${ENV}_{t}={TotalGW}_{t}+Tennant$$
    (31)

    in which ({ENV}_{t}) = the environmental flow requirement during period t, and Tennant = the environmental flow requirement calculated by the Tennant (1976) method.The policy evaluation indexThe available renewable water is calculated with Eq. (32):$${IN}_{t}={OutCGW }_{t}+ {SInflow }_{t}+{ Inf}_{t}-{EvGwDr}_{t}$$
    (32)

    in which ({IN}_{t})= the renewable water available before the application of environmental constraints during period t.The volume of manageable water is calculated with Eq. (33):$$REWleft(tright)=underset{{t}_{0}}{overset{t}{int }}left[INleft(tright)-ENVleft(tright)right]dt$$
    (33)

    in which REW (t) = the (cumulative) manageable and exploitable renewable water in the period t-t0.Equation (34) calculates the total water withdrawals by the agricultural, industrial, municipal, and energy production sectors:$${WDW}_{t}={OutputSW }_{t}+ {OutputGW}_{t}- {cheshmeh}_{t}$$
    (34)

    in which ({WDW}_{t}) = the sum of the withdrawals by the agricultural, industrial, municipal, and energy production sectors during period t.The cumulative water withdrawals are calculated with Eq. (35):$$withdleft(tright)=underset{{t}_{0}}{overset{t}{int }}WDWleft(tright)dt$$
    (35)

    in which (withdleft(tright)) = the sum of the withdrawals by the agricultural, industrial, municipal and energy production sectors in the horizon t-t0.Equation (36) calculates the water stress index:$${index}_{{t}_{f}}^{MRW}=frac{withd({t}_{f})}{REWleft({t}_{f}right)}times 100$$
    (36)

    in which ({index}_{{t}_{f}}^{MRW}) = the renewable water stress index at the end of the study period, and ({t}_{f}) = the period marking the end of the study horizon.Once the water and energy model is developed it must be calibrated with observational data prior to its use in predictions, as shown below. More