Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi
Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).CAS
PubMed
Article
Google Scholar
Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).CAS
Article
Google Scholar
Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).PubMed
Article
Google Scholar
Krull, E. S., Baldock, J. A. & Skjemstad, J. O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 30, 207–222 (2003).PubMed
Article
Google Scholar
Langley, J. A. & Hungate, B. A. Mycorrhizal controls on belowground litter quality. Ecology 84, 2302–2312 (2003).Article
Google Scholar
Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article
Google Scholar
Cou ̂teaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10, 63–66 (1995).Article
Google Scholar
Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).CAS
Article
Google Scholar
Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3, 395–398 (2013).CAS
Article
Google Scholar
Fernandez, C. W., Heckman, K., Kolka, R. & Kennedy, P. G. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett. 22, 498–505 (2019).PubMed
Article
Google Scholar
Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).CAS
Article
Google Scholar
Aponte, C., García, L. V., & Marañón, T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems 15, 1204–1218 (2012).CAS
Article
Google Scholar
Hättenschwiler, S. & Jørgensen, H. B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763 (2010).Article
CAS
Google Scholar
van der Heijden, M. G., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).Article
CAS
Google Scholar
Lin, G., McCormack, M. L., Ma, C. & Guo, D. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. N. Phytol. 213, 1440–1451 (2017).CAS
Article
Google Scholar
Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. N. Phytol. 154, 791–795 (2002).Article
Google Scholar
Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article
Google Scholar
Bååth, E., Nilsson, L. O., Göransson, H. & Wallander, H. Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biol. Biochem. 36, 2105–2109 (2004).Article
CAS
Google Scholar
Kaiser, C. et al. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. N. Phytol. 205, 1537–1551 (2015).CAS
Article
Google Scholar
Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).Article
CAS
Google Scholar
Ouimette, A. P. et al. Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets. Ecosystems 23, 715–729 (2019).Article
CAS
Google Scholar
Wallander, H., Nilsson, L. O., Hagerberg, D. & Bååth, E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. N. Phytol. 151, 753–760 (2001).CAS
Article
Google Scholar
Allen, M. F. & Kitajima, K. Net primary production of ectomycorrhizas in a California forest. Fungal Ecol. 10, 81–90 (2014).Article
Google Scholar
Godbold, D. L. et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281, 15–24 (2006).CAS
Article
Google Scholar
Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).Article
Google Scholar
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).Article
Google Scholar
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS
Article
Google Scholar
Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Harley, J. L. Fungi in ecosystems. J. Ecol. 59, 653 (1971).Article
Google Scholar
Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).CAS
Article
Google Scholar
Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).CAS
Article
Google Scholar
Trofymow, J. A. The Canadian Institute Decomposition Experiment (CIDET): project and site establishment report / J.A. Trofymow and the CIDET Working Group. (1998).Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E. & Parton, W. J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 6, 751–765 (2000).Article
Google Scholar
Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem 34, 139–162 (2002).Article
Google Scholar
Zeglin, L. H. & Myrold, D. D. Fate of decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci. Soc. Am. J. 77, 489–500 (2013).CAS
Article
Google Scholar
Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. in. Adv. Agron. 130, 1–140 (2015).Article
Google Scholar
Fortin, J. A. et al. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80, 1–20 (2002).CAS
Article
Google Scholar
Declerck, S., Séguin, S. & Dalpé, Y. The monoxenic culture of Arbuscular Mycorrhizal fungi as a tool for germplasm collections. in In Vitro Culture of Mycorrhizas 17–30 (Springer-Verlag, 2005).Lalaymia, I. & Declerck, S. The Mycorrhizal Donor Plant (MDP) in vitro culture system for the efficient colonization of whole plants. 2146, (Springer US, 2020).Crous, P. W., Verkley, G. J. M., Groenewald, J. Z. & Houbraken, J. Westerdijk Laboratory Manual Series 1: Fungal Biodiversity. (2019).Tuomi, M. et al. Leaf litter decomposition-Estimates of global variability based on Yasso07 model. Ecol. Modell. 220, 3362–3371 (2009).CAS
Article
Google Scholar
Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015).CAS
Article
Google Scholar
Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS
PubMed
Article
Google Scholar
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300, 1138–1140 (2003).CAS
PubMed
Article
Google Scholar
Adamczyk, B., Sietiö, O., Biasi, C. & Heinonsalo, J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. N. Phytol. 223, 16–21 (2019).Article
Google Scholar
Davison, J. et al. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. N. Phytol. 226, 1117–1128 (2020).Article
Google Scholar
Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Modell. 189, 168–182 (2005).CAS
Article
Google Scholar
Guendehou, G. H. S. et al. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop. Ecol. 55, 207–220 (2014).
Google Scholar
Paterson, E. et al. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol. Biochem. 40, 1103–1113 (2008).CAS
Article
Google Scholar
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).PubMed
Article
Google Scholar
Xia, J. et al. Global patterns in Net Primary Production allocation regulated by environmental conditions and forest stand age: a model‐data comparison. J. Geophys. Res. Biogeosciences 124, 2039–2059 (2019).Article
Google Scholar
Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 366, 3225–3245 (2011).CAS
Article
Google Scholar
Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).PubMed
Article
Google Scholar
Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33, 1–45 (2008).
Google Scholar
Krüger, M., Krüger, C., Walker, C., Stockinger, H. & Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. N. Phytol. 193, 970–984 (2012).Article
Google Scholar
Lee, E.-H., Eo, J.-K., Ka, K.-H. & Eom, A.-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41, 121–125 (2013).PubMed
PubMed Central
Article
Google Scholar
Schüβler, A., Schwarzott, D. & Walker, C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413–1421 (2001).Article
Google Scholar
Declerck, S., Strullu, D. G. & Plenchette, C. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90, 579 (1998).Article
Google Scholar
Voets, L. et al. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19, 347–356 (2009).PubMed
Article
Google Scholar
von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207 (2007).Article
CAS
Google Scholar
Davidson, E. A., Galloway, L. F. & Strand, M. K. Assessing available carbon: Comparison of techniques across selected forest soils. Commun. Soil Sci. Plant Anal. 18, 45–64 (1987).CAS
Article
Google Scholar
Trumbore, S. E., Vogel, J. S. & Southon, J. R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon 31, 644–654 (1989).Article
Google Scholar
Henriksen, T. & Breland, T. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biol. Biochem 31, 1135–1149 (1999).CAS
Article
Google Scholar
Schnitzer, M. & Schuppli, P. Method for the sequential extraction of organic matter from soils and soil fractions. Soil Sci. Soc. Am. J. 53, 1418–1424 (1989).CAS
Article
Google Scholar
Ryan, M. G., Melillo, J. M. & Ricca, A. A comparison of methods for determining proximate carbon fractions of forest litter. Can. J . Res. 20, 166–171 (1990).Article
Google Scholar
Wieder, R. K. & Starr, S. T. Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci. Plant Anal. 29, 847–857 (1998).CAS
Article
Google Scholar
Xu, G. et al. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci. Total Environ. 716, 136414 (2020).CAS
PubMed
Article
Google Scholar
Viskari, T. et al. Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation. Geosci. Model Dev. 13, 5959–5971 (2020). https://doi.org/10.5194/gmd-13-5959-2020.CAS
Article
Google Scholar
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, https://doi.org/10.1002/9781118445112.stat07841 (2014).Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).PubMed
Article
Google Scholar
Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).
Google Scholar
Kattge, J. et al. TRY – a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).PubMed Central
Article
Google Scholar
Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).CAS
PubMed
Article
Google Scholar More