More stories

  • in

    Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean

    Mackintosh NA. The southern stocks of whalebone whales 1942.Perrin, W. F. & Wursig, B. Thewissen JGM “Hans” (Academic Press, 2009).
    Google Scholar 
    Rizzo, L. Y. & Schulte, D. A review of humpback whales’ migration patterns worldwide and their consequences to gene flow. J. Mar. Biol. Assoc. U.K. 89, 995–1002. https://doi.org/10.1017/S0025315409000332 (2009).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Clapham, P. J. et al. Seasonal occurrence and annual return of humpback whales, Megaptera novaeangliae, in the southern Gulf of Maine. Can J Zool 71, 440–443. https://doi.org/10.1139/z93-063 (1993).Article 

    Google Scholar 
    Dawbin, W. H. The seasonal migratory cycle of humpback whales. Whales Dolphins Porpoises 4, 145–70 (1966).Article 

    Google Scholar 
    Horton, T. W., Zerbini, A. N., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00414 (2020).Article 

    Google Scholar 
    Larsen, A. H., Sigurjónsson, J., Oien, N., Vikingsson, G. & Palsbøll, P. Populations genetic analysis of nuclear and mitochondrial loci in skin biopsies collected from central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): Population identity and migratory destinations. Proc. Biol. Sci. 263, 1611–1618. https://doi.org/10.1098/rspb.1996.0236 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Palsbøll, P. J. et al. Genetic tagging of humpback whales. Nature 388, 767–9. https://doi.org/10.1038/42005 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22. https://doi.org/10.2989/18142321003714203 (2010).Article 

    Google Scholar 
    Best, B. P., Sekiguchi, K. & Findlay, P. K. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Mar. Ecol. Prog. Ser. 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS 
    Article 

    Google Scholar 
    Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234. https://doi.org/10.1098/rspb.1995.0034 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Christensen, I., Haug, T. & Øien, N. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355. https://doi.org/10.1093/icesjms/49.3.341 (1992).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?1. Mar. Mamm. Sci. 15, 1228–1245. https://doi.org/10.1111/j.1748-7692.1999.tb00887.x (1999).Article 

    Google Scholar 
    Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Druskat, A., Ghosh, R., Castrillon, J. & Bengtson Nash, S. M. Sex ratios of migrating southern hemisphere humpback whales: A new sentinel parameter of ecosystem health. Mar. Environ. Res. 151, 104749. https://doi.org/10.1016/j.marenvres.2019.104749 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19. https://doi.org/10.3354/meps09831 (2012).ADS 
    Article 

    Google Scholar 
    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333. https://doi.org/10.1038/s41598-018-30748-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S. & Zerbini, A. N. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2, 150489. https://doi.org/10.1098/rsos.150489 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Riekkola, L., Andrews-Goff, V., Friedlaender, A., Constantine, R. & Zerbini, A. N. Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean. J. Exp. Mar. Biol. Ecol. 517, 1–12. https://doi.org/10.1016/j.jembe.2019.05.008 (2019).Article 

    Google Scholar 
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224. https://doi.org/10.1111/gcb.13171 (2016).ADS 
    Article 

    Google Scholar 
    Nash, S. M. B. et al. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Change Biol. 24, 1500–1510. https://doi.org/10.1111/gcb.14035 (2018).ADS 
    Article 

    Google Scholar 
    Cartwright, R. et al. Fluctuating reproductive rates in Hawaii’s humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. R. Soc. Open Sci. 6, 181463. https://doi.org/10.1098/rsos.181463 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880. https://doi.org/10.1890/04-1852 (2005).Article 

    Google Scholar 
    Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E. & Fryxell, J. M. Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85, 2436–2445. https://doi.org/10.1890/03-0269 (2004).Article 

    Google Scholar 
    Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State–space models of individual animal movement. Trends Ecol. Evol. 23, 87–94. https://doi.org/10.1016/j.tree.2007.10.009 (2008).Article 
    PubMed 

    Google Scholar 
    Jonsen, I. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci. Rep. https://doi.org/10.1038/srep20625 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills Flemming, J., Jonsen, I. D., Myers, R. A. & Field, C. A. Hierarchical state-space estimation of leatherback turtle navigation ability. PLoS ONE 5, e14245. https://doi.org/10.1371/journal.pone.0014245 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).Article 

    Google Scholar 
    Ward, E., Zerbini, A. N., Kinas, P. G., Engel, M. H. & Andriolo, A. Estimates of population growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J Cetacean Res. Manag. 3, 145–149 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227. https://doi.org/10.3354/meps12393 (2017).ADS 
    Article 

    Google Scholar 
    Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).Article 

    Google Scholar 
    Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).Article 

    Google Scholar 
    Engel, M. & Martin, A. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964–969 (2009).Article 

    Google Scholar 
    Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 5, 1253–1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).CAS 
    Article 

    Google Scholar 
    Stevick, P., De Godoy, L. P., McOsker, M., Engel, M. & Allen, J. A note on the movement of a humpback whale from Abrolhos Bank, Brazil to South Georgia. J. Cetac. Res. Manag. 8, 297 (2006).
    Google Scholar 
    Zerbini, A. N. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–8 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295–304. https://doi.org/10.3354/meps313295 (2006).ADS 
    Article 

    Google Scholar 
    de Castro, F. R. et al. Are marine protected areas and priority areas for conservation representative of humpback whale breeding habitats in the western South Atlantic?. Biol. Conserv. 179, 106–114. https://doi.org/10.1016/j.biocon.2014.09.013 (2014).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Kleivane, L., OIen, N., Laidre, K. L. & Jensen, M. V. A new technique for deploying Sa℡lite transmitters on baleen whales: Tracking a blue whale (balaenoptera Musculus) in the North Atlantic. Mar. Mamm. Sci. 17, 949–54. https://doi.org/10.1111/j.1748-7692.2001.tb01309.x (2011).Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. From greenland to Canada in ten days: Tracks of bowhead whales, Balaena mysticetus, across Baffin Bay. Arctic 56, 21–31 (2003).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Laidre, K. L., Jensen, M. V., Dueck, L. & Postma, L. D. Dissolving stock discreteness with Sa℡lite tracking: Bowhead whales in Baffin Bay. Mar. Mamm. Sci. 22, 34–45. https://doi.org/10.1111/j.1748-7692.2006.00004.x (2006).Article 

    Google Scholar 
    Zerbini, A. N., Fernandez, A. A., Andriolo, A., Clapham, P. J., Crespo, E., Gonzalez, R., et al. Satellite tracking of southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. Scientific Committee of the International Whaling Commission SC67b, Bled, Slovenia (2018).Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshwater Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article 

    Google Scholar 
    Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mamm. Sci. 24, 315–325. https://doi.org/10.1111/j.1748-7692.2007.00180.x (2008).Article 

    Google Scholar 
    Lambertsen, R. H. A biopsy system for large whales and its use for cytogenetics. J. Mamm. 68, 443–445. https://doi.org/10.2307/1381495 (1987).Article 

    Google Scholar 
    Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).Chin, T. M., Milliff, R. F. & Large, W. G. Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol. 15, 741–763. https://doi.org/10.1175/1520-0426(1998)015%3c0741:BSHWSS%3e2.0.CO;2 (1998).ADS 
    Article 

    Google Scholar 
    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the antarctic circumpolar current. Deep Sea Res. Part I 42, 641–673. https://doi.org/10.1016/0967-0637(95)00021-W (1995).Article 

    Google Scholar 
    Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215. https://doi.org/10.1890/07-1032.1 (2008).Article 
    PubMed 

    Google Scholar 
    Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClintock, B. T., London, J. M., Cameron, M. F. & Boveng, P. L. Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol. Evol. 6, 266–277. https://doi.org/10.1111/2041-210X.12311 (2015).Article 

    Google Scholar 
    Akaike, H. Theory and an Extension of the Maximum Likelihood Principal. International Symposium on Information Theory (Akademiai Kaiado, 1973).MATH 

    Google Scholar 
    Auger-Méthé, M. et al. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Mar. Ecol. Prog. Ser. 565, 237–249. https://doi.org/10.3354/meps12019 (2017).ADS 
    Article 

    Google Scholar 
    Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566. https://doi.org/10.1002/ecy.2566 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: Automatic differentiation and laplace approximation. J. Stat. Softw. https://doi.org/10.18637/jss.v070.i05 (2016).Article 

    Google Scholar 
    Marcondes, M. C. C. et al. The Southern Ocean Exchange: Porous boundaries between humpback whale breeding populations in southern polar waters. Sci. Rep. 11, 23618. https://doi.org/10.1038/s41598-021-02612-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M. & Garrigue, C. Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. Sci. Rep. 10, 4871. https://doi.org/10.1038/s41598-020-61771-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495. https://doi.org/10.1111/j.1748-7692.2007.02414.x (2007).Article 

    Google Scholar 
    Gabriele, C. M. et al. Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Can. J. Zool. 79, 589–600. https://doi.org/10.1139/z01-014 (2001).Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J., Atkinson, A. & Thorpe, S. E. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment. Mar. Ecol. Progress Ser. 368, 75–91 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J. & Ward, P. SeaWiFS in the southern ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia. Deep Sea Res. Part II 51, 99–116. https://doi.org/10.1016/j.dsr2.2003.04.002 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23. https://doi.org/10.3354/meps07498 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Murphy, E. J. et al. Southern antarctic circumpolar current front to the northeast of South Georgia: Horizontal advection of krill and its role in the ecosystem. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001522 (2004).Article 

    Google Scholar 
    Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36. https://doi.org/10.4319/lo.2014.59.1.0017 (2014).ADS 
    Article 

    Google Scholar 
    Trathan, P. N. et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fish. Oceanogr. 12, 569–583. https://doi.org/10.1046/j.1365-2419.2003.00268.x (2003).Article 

    Google Scholar 
    Venables, H. J. & Meredith, M. P. Theory and observations of Ekman flux in the chlorophyll distribution downstream of South Georgia. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041371 (2009).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968. https://doi.org/10.1007/s00300-010-0774-3 (2010).Article 

    Google Scholar 
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: A review of large-scale links in a krill centred food web. Philos. Trans. R. Soc. B Biol. Sci. 362, 113–48. https://doi.org/10.1098/rstb.2006.1957 (2007).CAS 
    Article 

    Google Scholar 
    Thorpe, S. E., Murphy, E. J. & Watkins, J. L. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: Investigating the roles of ocean and sea ice transport. Deep Sea Res. Part I 54, 792–810. https://doi.org/10.1016/j.dsr.2007.01.008 (2007).Article 

    Google Scholar 
    Mori, M. et al. Modelling dispersal of juvenile krill released from the Antarctic ice edge: Ecosystem implications of ocean movement. J. Mar. Syst. 189, 50–61. https://doi.org/10.1016/j.jmarsys.2018.09.005 (2019).Article 

    Google Scholar 
    Kohlbach, D. et al. Ice algae-produced carbon is critical for overwintering of antarctic krill Euphausia superba. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00310 (2017).Article 

    Google Scholar 
    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861. https://doi.org/10.1038/s41559-017-0368-3 (2017).Article 
    PubMed 

    Google Scholar 
    Meyer, B. et al. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614. https://doi.org/10.4319/lo.2009.54.5.1595 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: A model study. Biogeosciences 6, 2861–2878. https://doi.org/10.5194/bg-6-2861-2009 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Brierley, A. S. et al. Antarctic krill under Sea Ice: Elevated abundance in a narrow band just south of Ice Edge. Science 295, 1890–1892. https://doi.org/10.1126/science.1068574 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidt, K., Atkinson, A., Venables, H. J. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms. Deep Sea Res. Part II 59–60, 159–172. https://doi.org/10.1016/j.dsr2.2011.05.002 (2012).ADS 
    Article 

    Google Scholar 
    Walsh, J., Reiss, C. S. & Watters, G. M. Flexibility in Antarctic krill Euphausia superba decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula. Mar. Ecol. Prog. Ser. 642, 1–19. https://doi.org/10.3354/meps13325 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318. https://doi.org/10.1038/ncomms5318 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS 
    Article 

    Google Scholar 
    Murase, H., Matsuoka, K., Ichii, T. & Nishiwaki, S. Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35° E–145° W). Polar Biol 25, 135–145. https://doi.org/10.1007/s003000100321 (2002).Article 

    Google Scholar 
    Reisinger, R. R. et al. Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern Ocean humpback whales. Remote Sens. 13, 2074. https://doi.org/10.3390/rs13112074 (2021).ADS 
    Article 

    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Whitehouse, M. J. et al. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels. Deep Sea Res. Part I 55, 1218–1228. https://doi.org/10.1016/j.dsr.2008.06.002 (2008).Article 

    Google Scholar 
    Dawson, H. R. S., Strutton, P. G. & Gaube, P. The unusual surface chlorophyll signatures of southern Ocean Eddies. J. Geophys. Res. Oceans 123, 6053–6069. https://doi.org/10.1029/2017JC013628 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D. & Holm-Hansen, O. Eddies enhance biological production in the weddell-scotia confluence of the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030430 (2007).Article 

    Google Scholar 
    Fach, B. A., Hofmann, E. E. & Murphy, E. J. Modeling studies of antarctic krill Euphausia superba survival during transport across the Scotia Sea. Mar. Ecol. Prog. Ser. 231, 187–203. https://doi.org/10.3354/meps231187 (2002).ADS 
    Article 

    Google Scholar 
    Ichii, T., Katayama, K., Obitsu, N., Ishii, H. & Naganobu, M. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: Relationship to environmental parameters. Deep Sea Res. Part I 45, 1235–1262. https://doi.org/10.1016/S0967-0637(98)00011-9 (1998).Article 

    Google Scholar 
    Witek, Z., Kalinowski, J. & Grelowski, A. Formation of Antarctic Krill Concentrations in Relation to Hydrodynamic Processes and Social Behaviour. In Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 237–44 (Springer, 1988). https://doi.org/10.1007/978-3-642-73724-4_21.Chapter 

    Google Scholar 
    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022 (2009).Article 

    Google Scholar 
    Carranza, M. M. & Gille, S. T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J. Geophys. Res. Oceans 120, 304–323. https://doi.org/10.1002/2014JC010203 (2015).ADS 
    Article 

    Google Scholar 
    Luis, A. J. & Pandey, P. C. Seasonal variability of QSCAT-derived wind stress over the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2003GL019355 (2004).Article 

    Google Scholar 
    Fiechter, J. & Moore, A. M. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005140 (2009).Article 

    Google Scholar 
    Cimino, M. A. et al. Essential krill species habitat resolved by seasonal upwelling and ocean circulation models within the large marine ecosystem of the California Current System. Ecography 43, 1536–1549. https://doi.org/10.1111/ecog.05204 (2020).Article 

    Google Scholar 
    Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14. https://doi.org/10.1038/s41467-018-07865-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. PNAS 116, 14414–14423. https://doi.org/10.1073/pnas.1906556116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegel, V. Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol. 35, 1151–1177. https://doi.org/10.1007/s00300-012-1162-y (2012).Article 

    Google Scholar 
    Francis, D., Eayrs, C., Cuesta, J. & Holland, D. Polar cyclones at the origin of the reoccurrence of the maud rise polynya in austral winter 2017. J. Geophys. Res. Atmos. 124, 5251–5267. https://doi.org/10.1029/2019JD030618 (2019).ADS 
    Article 

    Google Scholar 
    Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the maud rise seamount. Geophys. Res. Lett. 46, 4320–4329. https://doi.org/10.1029/2018GL081482 (2019).ADS 
    Article 

    Google Scholar 
    Brandt, A. et al. Maud rise–a snapshot through the water column. Deep Sea Res. Part II 58, 1962–1982. https://doi.org/10.1016/j.dsr2.2011.01.008 (2011).ADS 
    Article 

    Google Scholar 
    Plötz, J., Weidel, H. & Bersch, M. Winter aggregations of marine mammals and birds in the north-eastern Weddell Sea pack ice. Polar Biol 11, 305–309. https://doi.org/10.1007/BF00239022 (1991).Article 

    Google Scholar 
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238. https://doi.org/10.1038/nclimate1686 (2013).ADS 
    Article 

    Google Scholar 
    Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 18, S157–S165. https://doi.org/10.1890/06-0571.1 (2008).Article 
    PubMed 

    Google Scholar  More

  • in

    A common sunscreen ingredient turns toxic in the sea — anemones suggest why

    Sea anemones turn oxybenzone into a light-activated agent that can bleach and kill corals.Credit: Georgette Douwma/Getty

    A common but controversial sunscreen ingredient that is thought to harm corals might do so because of a chemical reaction that causes it to damage cells in the presence of ultraviolet light. Researchers have discovered that sea anemones, which are similar to corals, make the molecule oxybenzone water-soluble by tacking a sugar onto it. This inadvertently turns oxybenzone into a molecule that — instead of blocking UV light — is activated by sunlight to produce free radicals that can bleach and kill corals. “This metabolic pathway that is meant to detoxify is actually making a toxin,” says Djordje Vuckovic, an environmental engineer at Stanford University in California, who was part of the research team. The animals “convert a sunscreen into something that’s essentially the opposite of a sunscreen”.Oxybenzone is the sun-blocking agent in many suncreams. Its chemical structure causes it to absorb UV rays, preventing damage to skin cells. But it has attracted controversy in recent years after studies reported that it can damage coral DNA, interfere with their endocrine systems and cause deformities in their larvae2. These concerns have led to some beaches in Hawaii, Palau and the US Virgin Islands, banning oxybenzone-containing sunscreens. Last year, the US National Academies of Sciences, Engineering, and Medicine convened a committee to review the science on sunscreen chemicals in aquatic ecosystems; its report is expected in the next few months.The latest study, published on 5 May in Science1, highlights that there has been little research into the potentially toxic effects of the by-products of some substances in sunscreens, says Brett Sallach, an environmental scientist at the University of York, UK. “It’s important to track not just the parent compound, but these transformed compounds that can be toxic,” he says. “From a regulatory standpoint, we have very little understanding of what transformed products are out there and their effects on the environment.”But other factors also threaten the health of coral reefs; these include climate change, ocean acidification, coastal pollution and overfishing that depletes key members of reef ecosystems. The study does not show where oxybenzone ranks in the list.Simulated seaTo understand oxybenzone’s effects, Vuckovic, environmental engineer William Mitch at Stanford and their colleagues turned to sea anemones, which are closely related to corals, and similarly harbour symbiotic algae that give them colour.The researchers exposed anemones with and without the algae to oxybenzone in artificial seawater, and illuminated them with light — including the UV spectrum — that mimicked the 24-hour sunlight cycle. All the animals exposed to both the chemical and sunlight died within 17 days. But those exposed to sunlight without oxybenzone or to oxybenzone without UV light lived.Oxybenzone alone did not produce dangerous reactive molecules when exposed to sunlight, as had been expected, so the researchers thought that the molecule might be metabolized in some way. When they analysed anemone tissues, they found that the chemical bound to sugars accumulated in them, where it triggered the formation of oxygen-based free radicals that are lethal to corals. “Understanding this mechanism could help identify sunscreen molecules without this effect,” Mitch says.The sugar-bound form of oxybenzone amassed at higher levels in the symbiotic algae than in the anemones’ own cells. Sea anemones lacking algae died around a week after exposure to oxybenzone and sunlight, compared with 17 days for those with algae. That suggests the algae protected the animals from oxybenzone’s harmful effects.Corals that have been subject to environmental stressors such as changing temperatures often become bleached, losing their symbiotic algae. “If they’re weaker in this state, rising sea water temperature or ocean acidification might make them more susceptible to these local, anthropogenic contaminants,” Mitch says.Greater dangerIt’s not clear how closely these laboratory-based studies mimic the reality of reef ecosystems. The concentration of oxybenzone at a coral reef can vary widely, depending on factors such as tourist activity and water conditions. Sallach points out that the concentrations used in the study are more like “worst-case exposure” than normal environmental conditions.The study lacks “ecological realism”, agrees Terry Hughes, a marine biologist at James Cook University in Townsville, Australia. Coral-bleaching events on Australia’s Great Barrier Reef, for example, have been linked more closely to trends in water temperature than to shifts in tourist activity. “Mass bleaching happens regardless of where the tourists are,” Hughes says. “Even the most remote, most pristine reefs are bleaching because water temperatures are killing them.”Hughes emphasizes that the greatest threats to reefs remain rising temperatures, coastal pollution and overfishing. Changing sunscreens might not do much to protect coral reefs, Hughes says. “It’s ironic that people will change their sunscreens and fly from New York to Miami to go to the beach,” he says. “Most tourists are happy to use a different brand of sunscreen, but not to fly less and reduce carbon emissions.” More

  • in

    Effects of the application of different improved materials on reclaimed soil structure and maize yield of Hollow Village in Loess Area

    Effects of the application of different improved materials on properties of reclaimed soilSoil organic matter (SOM) and total nitrogen (TN)After the application of different improved materials, the SOM and TN contents in both 0–0.15 m and 0.15–0.30 m layers of the hollow village reclaimed soil showed an overall increasing trend (Fig. 1). In the 0–0.15 m layer, the organic matter content increased by 9.6%, 79.0%, 90.0%, 61.4%, 120.1%, and 131.7% respectively under TM, TF, TO, TMF, TMO and TFO treatments compared with CK treatment, indicating that different improved materials all played important roles in improving the organic matter content of reclaimed soil (Fig. 1a). The improvement of organic matter content in the 0–0.15 m layer of reclaimed soil by the treatments of different improved materials showed as follows: TFO  > TMO  > TO  > TF  > TMF  > TM  > CK, and TO, TMO and TFO treatments with organic fertilizer addition could significantly improve the organic matter content of the reclaimed soil (P  2 mm water-stable aggregates was increased by 88.1%, 194.5%, 203.7%, 376.2%, and 781.7% respectively under TF, TO, TMF, TMO and TFO compared with CK. The proportion of water-stable macroaggregates under different treatments showed as follows: TFO (35.8%)  > TMO (20.7%)  > TO (16.9%)  > TMF (16.3%)  > TF (12.3%)  > TM (10.1%)  > CK (9.0%), and the water-stable macroaggregates were increased by 328.2%, 130.0%, 87.8%, 81.1%, 36.7%, and 12.2% respectively compared with CK, with the maximum increase of 328.2%. In general, all six different amendment material treatments increased the proportion of water-stable macroaggregates in reclaimed soil and promoted the aggregation and cementation of water-stable microaggregates ( 0.25 mm). And the TFO showed the best effect on the increase of water-stable macroaggregates, followed by TMO, TO, and TMF, while TF and TM treatments showed little effect.Figure 2Percentage (%) of soil water-stable aggregates under the application of different improved materials at 0.15–0.30 m Depth. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer. Different lowercase letters represent significant differences among different improved material treatments in the same particle-size aggregates.Full size imageFigure 3Percentage (%) of soil water-stable aggregates under the application of different improved materials at 0.15–0.30 m Layer. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer. Different lowercase letters represent significant differences among different improved material treatments in the same particle-size aggregates.Full size imageIn the 0.15–0.30 m layer, the change of water-stable aggregates showed a similar trend to that in the 0–0.15 m layer compared with CK treatment. TF, TO, TMF, TMO and TFO treatments all significantly increased the proportion of  > 2 mm and 1–2 mm water-stable aggregates, and decreased the proportion of water-stable microaggregates (P  2 mm water-stable aggregates by 130.3%, 94.5%, 133.9%, 151.4%, and 309.2% respectively compared with CK, of which TFO treatment showed the most significant effect on the increase of the proportion of water-stable macroaggregates. Compared with the 0–0.15 m layer, the proportion of water-stable macroaggregates in the 0.15–0.30 m layer showed a gradual decrease with the increase of soil depth.Water-stable aggregates structure stabilityThe mean weight diameter (MWD), geometric mean diameter (GMD), unstable aggregate index (ELT), and fractal dimension (D) are important indicators reflecting the structural geometry and stability of soil aggregates, and it has been indicated in this research that the higher the MWD and GMD and the smaller the ELT and D, the better the structural stability of the aggregates and the soil structure27,28. Compared with CK treatment, the MWD and GMD showed a trend of significant increase while the D and ELT showed a trend of significant decrease (P  TF  > TMF  > TM  > CK. The combination of organic–inorganic improved materials can effectively reduce the BD of reclaimed soil, and the BD under TFO treatment was the smallest, 1.19 g cm−3. In the 0.15–0.30 m layer, through variance analysis, the effect of different improved materials on the BD showed a similar decreasing trend to that in the 0–0.15 m layer.Figure 4Effects of the application of different improved materials on BD and SMC. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer; BD, soil bulk density; SMC, soil moisture content. Different lowercase letters represent significant differences among different improved material treatments in the same soil layer.Full size imageThe soil moisture content (SMC) of the reclaimed soil in the 0–0.15 m and 0.15–0.30 m layers increased significantly after the application of different improved materials (P  TMO  > TMF  > TO  > TF≈TM  > CK (Fig. 4b). In the 0–0.15 m soil layer, the SMC under TM, TF, TO, TMF, TMO and TFO treatments was increased by13.5%, 13.8%, 21.4%, 21.9%, 32.4% and 38.3% respectively compared with CK. The TMO and TFO showed the most significant positive effect on the SMC of reclaimed soil, and the mass water content was 17.4% and 18.2% respectively. In conclusion, compared with CK, these improved materials increased the SOM content and porosity, promoted the formation and stability of aggregates, and increased the retention and transmission of water, which was helpful to maintain more water. Among them, the coupling treatment of organic and inorganic improved materials can hold more soil moisture, and the most significant increase was observed under TFO and TMO.Correlation analysis between soil organic matter and water-stable aggregates parametersTo further explore the correlation between the parameters of the reclaimed soil after the application of six different improved materials, a regression analysis was conducted in this paper on the correlation between the parameters of organic matter and water-stable aggregates with different particle sizes. From Table 2, it could be seen that the organic matter content had a highly significant positive correlation with MWD, GMD and  > 2 mm water-stable aggregates content and a highly significant negative correlation with ELT, D and water-stable microaggregates content ( 2 mm, 1–2 mm, and 0.5–1 mm) content had a significant positive correlation with MWD and GMD values and a highly significant negative correlation with ELT and D values; water-stable microaggregates ( TMO  > TO  > TMF  > TF  > TM  > CK, and different improved materials all significantly increased maize yield compared with CK (P  More

  • in

    Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands

    IPBES The IPBES Assessment Report on Land Degradation and Restoration (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).CAS 
    Article 

    Google Scholar 
    The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).Article 

    Google Scholar 
    Geist, H. J. & Lambin, E. F. What Drives Tropical Deforestation? LUCC Report Series 4 (LUCC International Project Office, 2001).Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).Article 

    Google Scholar 
    Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).Article 

    Google Scholar 
    Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).Article 

    Google Scholar 
    Verburg, P. H. et al. Land system science and sustainable development of the Earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).Article 

    Google Scholar 
    Václavík, T. et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 11, 095002 (2016).Article 

    Google Scholar 
    Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).Article 

    Google Scholar 
    Schröder, J. M., Ávila Rodríguez, L. P. & Günter, S. Research trends: tropical dry forests: the neglected research agenda? For. Policy Econ. 122, 102333 (2021).Article 

    Google Scholar 
    Rodrigues, A. S. L. et al. Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324, 1435–1437 (2009).CAS 
    Article 

    Google Scholar 
    de Jong, E. B. P., Knippenberg, L. & Bakker, L. New frontiers: an enriched perspective on extraction frontiers in Indonesia. Crit. Asian Stud. 49, 330–348 (2017).Article 

    Google Scholar 
    Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article 

    Google Scholar 
    Pacheco, P. et al. Deforestation Fronts: Drivers and Responses in a Changing World (WWF, 2021).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Oberlack, C. et al. Archetype analysis in sustainability research: meanings, motivations, and evidence-based policy making. Ecol. Soc. https://doi.org/10.5751/ES-10747-240226 (2019).Sietz, D. et al. Archetype analysis in sustainability research: methodological portfolio and analytical frontiers. Ecol. Soc. https://doi.org/10.5751/ES-11103-240334 (2019).Václavík, T., Lautenbach, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change 23, 1637–1647 (2013).Article 

    Google Scholar 
    Vallejos, M. et al. Social-ecological functional types: connecting people and ecosystems in the Argentine Chaco. Ecosystems 23, 471–484 (2020).Article 

    Google Scholar 
    Oberlack, C., Tejada, L., Messerli, P., Rist, S. & Giger, M. Sustainable livelihoods in the global land rush? Archetypes of livelihood vulnerability and sustainability potentials. Glob. Environ. Change 41, 153–171 (2016).Article 

    Google Scholar 
    Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).Article 

    Google Scholar 
    Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).CAS 
    Article 

    Google Scholar 
    Ribeiro, N. S., Katerere, Y., Chirwa, P. W. & Grundy, I. M. in Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands (eds Ribeiro, N. S. et al.) 1–8 (Springer, 2020).Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).Article 

    Google Scholar 
    Chidumayo, E. & Marunda, C. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 1–9 (Earthscan, 2010).Gasparri, N. I. & Grau, H. R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 258, 913–921 (2009).Article 

    Google Scholar 
    Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).Article 

    Google Scholar 
    Ingalls, M. L., Meyfroidt, P., To, P. X., Kenney-Lazar, M. & Epprecht, M. The transboundary displacement of deforestation under REDD+: problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change 50, 255–267 (2018).Article 

    Google Scholar 
    Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).CAS 
    Article 

    Google Scholar 
    Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).Article 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Article 

    Google Scholar 
    Sunderland, T. et al. Global dry forests: a prologue. Int. For. Rev. 17, 1–9 (2015).
    Google Scholar 
    Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. https://doi.org/10.5751/es-02559-130216 (2008).le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).
    Google Scholar 
    Romero-Muñoz, A. et al. Fires scorching Bolivia’s Chiquitano forest. Science 366, 1082 (2019).Article 
    CAS 

    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).Article 

    Google Scholar 
    Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).Article 

    Google Scholar 
    Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).Article 

    Google Scholar 
    Volante, J. N. & Seghezzo, L. Can’t see the forest for the trees: can declining deforestation trends in the Argentinian Chaco region be ascribed to efficient law enforcement? Ecol. Econ. 146, 408–413 (2018).Article 

    Google Scholar 
    Chirwa, P. W. & Adeyemi, O. in Zero Hunger: Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) 1–15 (Springer, 2019).Pacheco, P. Actor and frontier types in the Brazilian Amazon: assessing interactions and outcomes associated with frontier expansion. Geoforum 43, 864–874 (2012).Article 

    Google Scholar 
    García, A. K., Meyfroidt, P., Abeygunawardane, D. & Sitoe, A. Waves and legacies: the making of an investment frontier in Niassa, Mozambique. Ecol. Soc. 27, 40 (2022).Leal, I. R., Da Silva, J. M. C., Tabarelli, M. & Lacher, T. E.Jr Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19, 701–706 (2005).Article 

    Google Scholar 
    Osabuohien, E. S. & Karakara, A. A. in The Palgrave Handbook of Agricultural and Rural Development in Africa (ed. Osabuohien, E. S.) 627–640 (Springer, 2020).Gautier, D., Garcia, C., Negi, S. & Wardell, D. A. The limits and failures of existing forest governance standards in semi-arid contexts. Int. For. Rev. 17, 114–126 (2015).
    Google Scholar 
    Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).Article 
    CAS 

    Google Scholar 
    Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    Article 

    Google Scholar 
    Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).CAS 
    Article 

    Google Scholar 
    Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. https://doi.org/10.1088/2515-7620/ac26ab (2021).Harris, N., Goldman, E. D. & Gibbes, S. Spatial Database of Planted Trees (SDPT Version 1.0) (World Resources Institute, accessed 21 November 2021).Timberlake, W. J., Chidumayo, E. & Sawadogo, L. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 11–41 (Earthscan, 2010).Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143, 144–155 (2010).Article 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).Article 

    Google Scholar 
    Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).Article 

    Google Scholar 
    Lock, J. M. in Neotropical Savannas and Seasonally Dry Forests (eds Pennington, R. T. & Ratter, J. A.) 449–467 (CRC Press, 2006).Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).CAS 
    Article 

    Google Scholar 
    Baldi, G., Veron, S. R. & Jobbagy, E. G. The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Glob. Change Biol. 19, 441–458 (2013).Article 

    Google Scholar 
    Lahsen, M., Bustamante, M. M. C. & Dalla-Nora, E. L. Undervaluing and overexploiting the Brazilian Cerrado at our peril. Environ. Sci. Policy Sustain. Dev. 58, 4–15 (2016).Article 

    Google Scholar 
    Sitoe, A., Chidumayo, E. & Alberto, M. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 131–153 (Earthscan, 2010).Ozdogan, M. & Woodcock, C. E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 103, 203–217 (2006).Article 

    Google Scholar 
    Estes, L. et al. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses. Glob. Change Biol. 24, 322–337 (2018).Article 

    Google Scholar 
    Dlamini, W. M. Mapping forest and woodland loss in Swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 5, 45–53 (2017).
    Google Scholar 
    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).Article 

    Google Scholar 
    Walker, R. Mapping process to pattern in the landscape change of the Amazonian frontier. Ann. Assoc. Am. Geogr. 93, 376–398 (2003).Article 

    Google Scholar 
    Baumann, M. et al. Frontier metrics for a process-based understanding of deforestation dynamics. Preprint at EarthArXiv https://doi.org/10.31223/X55S7J (2022).Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Lesiv, M. et al. Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol. 25, 174–186 (2019).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).CAS 
    Article 

    Google Scholar 
    Global Agro-Ecological Zones (GAEZ v3. 0) (IIASA and FAO, accessed 24 July 2020).Heinimann, A. et al. A global view of shifting cultivation: recent, current, and future extent. PLoS ONE 12, e0184479 (2017).Article 
    CAS 

    Google Scholar 
    Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647 (2015).Article 

    Google Scholar  More

  • in

    A whole-ecosystem experiment reveals flow-induced shifts in a stream community

    Study areaThe study was conducted in the headwaters of the Chalpi Grande River watershed, 95 km2, located inside the Cayambe-Coca National Park in the northern Andes of Ecuador at an elevation range of 3789 to 3835 m (S 0°16′ 45″, W 78° 4′49″). This watershed harbors the primary water supply system for Quito. The system includes two reservoirs and 10 water intakes placed on first and second-order streams that, altogether, provide 39% of Quito’s water supply28. We monitored the Chalpi Norte stream for ~1.5 years prior to conducting our experiment for ~0.5 years (176 days), and ~0.4 years after the manipulation. Further, in the nearby area, we monitored 21 stream sites distributed upstream and downstream water intakes from the supply system (Fig. S4).Experiment for flow manipulation and monitoring flow reduction and recoveryWe conducted our experimental flow manipulation between October 2018 and April 2019 in a mainly rain-fed stream45. The experiment manipulated natural flows encompassing stable low flows and sporadic spates characterizing the high temporal variability of headwaters45,28 (Figs. 2a, b and S1). We set up a full Before-After/Control- Impact (BACI) experiment29 to evaluate ecosystem variables under natural and manipulated flow conditions. We identified a free-flowing stream reach on the Chalpi Norte that was above any water intakes that allowed us to divert flow with an ecohydraulic structure31. The structure was located above a meander, which we used to divert flow and return it to the stream below the meander (Fig. S4). The experimental site was comprised of an upstream/free-flowing reach (L = 25 m) (reference conditions), located ~32 m above the ecohydraulic structure and a downstream/regulated reach (L = 97 m) located immediately below the flow manipulation structure (Fig. 1b–d)31. The control site was located in a free-flowing stream, a tributary of the Chalpi Norte stream, with an upstream reach separated from a downstream reach by a distance of 16 m. We manipulated the instantaneous flow of the Chalpi Norte stream through a series of fixed percentages using different v-notch weir pairs31. We started diversions to maintain in the meander 100, 80, 60, 50, 40, 30, and 20% of the incoming flow for 7-day periods (based on local observations of benthic algal colonization); then we maintained 10% of the upstream flow for 36 days. We started to return flow gradually to recover 20, 30, 40, 50, 60, 80, and 100% of the upstream flow. In response to a natural spate while we maintained the 10% of upstream flow, the manipulated flow briefly (during ~9 h) increased above the targeted reduction (i.e., 54% instead of 10%) (Fig. 2a). We registered the spate of flow on the upstream reach of the experimental site (Figs. 2b and S1).Stream monitoring in adjacent streamsWe monitored 21 stream sites between July 2017 and July 2019. We selected seven streams with water intakes placed on the main channel (Chalpi Norte, Gonzalito, Quillugsha 1, 2, 3, Venado, and Guaytaloma). We sampled one site upstream of the water intake and two sites (i.e., 10 m and 500 m) downstream to obtain a wide range of flow reduction levels (Fig. S4) (see, 30 for further details on stream sites).Global literature surveyWe performed a systematic literature review to explore benthic algae responses to flow alterations (increase or decrease), focusing on cyanobacteria in streams. We used ISI Web of Science, Google Scholar, and Google Search for the entries: “benthic cyanobacteria” + “stream”, and “river”, “benthic algal bloom” + “flow” and all available combinations (Table S1). We selected papers containing information on benthic cyanobacteria and algae biomass and flow or water level measurements; specifically, we explored detailed information regarding experiments, spatial studies with upstream and downstream sites, and temporal replicates, as well seasonal associated benthic cyanobacteria blooms. We used published and/or publicly available data to calculate the percent of flow alteration in streams and calculated a factor on cyanobacteria biomass increase or decrease (quantitative studies) according to reported baseline conditions (either temporal or spatial). Only three out of 53 study sites reported a qualitative decrease in benthic cyanobacteria biomass attributable to flow reduction (Fig. 1d). Most studies (94%, n = 50) reported biomass increases with flow reductions. Among these studies sites, 44% reported qualitative observations where low flows were proposed as one of the environmental drivers responsible for benthic cyanobacteria blooms. While 66% of study sites (n = 33) related cyanobacterium biomass increase in time or space due to flow reductions caused by droughts, extreme low flow events, water abstractions, and experimental flumes manipulations.Abiotic and biotic variables sampling and analysesWater level sensors recording every 30 min (HOBO U40L, Onset USA) were installed at both upstream and downstream sites of water intakes, and on the experimental and control stream reaches (BACI desing), where we conducted multiple wading-rod flow measurements to convert water level into discharge via stage-discharge relationships (ADC current meter, OTT Hydromet, Germany). Streamwater’s physical and chemical in situ parameters (i.e., pH, temperature, conductivity, dissolved oxygen) were measured three times during biotic sampling on both stream sites and adjacent streams using a portable sonde (YSI, Xylem, USA). We collected water samples (500 ml) during in situ samplings to analyze nutrients (i.e., nitrate and phosphate) at the water supply company’s (EPMAPS) laboratory. We also measured precipitation from a rain gauge (HOBO Onset USA) installed in the Chalpi Norte stream.Our biotic variables included three benthic algae: cyanobacteria, diatoms, and green algae), and aquatic invertebrates biomass (Table 1). To measure Chl-a from cyanobacteria and benthic algae on artificial substrates, we used a BenthoTorch® (bbe Moldaenke GmbH, Germany) on unglazed ceramic plates (200 mm × 400 mm) with a grid of 25 squares of 2500 mm2 to allow algal accrual on a standardized surface. We allowed 21 days for colonization (based on previous observations) and then we placed all substrates5 at the beginning of the experiment. We performed five readings on five squares randomly selected within each plate. To consider the effect of benthic invertebrates to flow variations, we sampled stream sites using a Surber net (mesh size = 250 µm, area = 0.0625 m2). On the experimental and control sites we measured biotic, physical, and chemical in situ parameters every two days (n = 1760), and nutrients and invertebrates every seven days (n = 500) for the duration of the flow manipulation (~0.5 years). On the monitored sites, we measured biotic, physical, and chemical in situ parameters every seven days (n = 1456) and nutrients and invertebrates every 30 days (n = 336). To evaluate differences we calculated mean abiotic and biotic variables during the different phases (BL: baseline, FR: flow reduction, FI: gradual reset to initial flow) in the four-stream reaches to apply the BACI design29: upstream and downstream reaches on the experimental and control sites. We applied a paired one-tail t-test at α = 0.05 to compare FR and FI phases to baseline conditions, based on the expected direction of the response 1,14.Statistics and reproducibilityTo quantify the relationships between environmental variables and cyanobacteria biomass under manipulated and natural flow conditions, including interaction among algae and with invertebrates, we used multivariate autoregressive state-space modeling (MARSS)14,30. We fitted models with Gaussian errors for flow, conductivity, pH, water temperature, nitrate, phosphate, cyanobacteria, benthic algae, and invertebrate biomass time series via maximum likelihood (MARSS R-package)48. The state processes Xt includes state measurements for all four benthic components (cyanobacteria, diatoms, green algae, and invertebrates’ biomasses) considering the interactions between benthic components and environmental covariates (flow, conductivity, pH, water temperature, nitrate, phosphate) evolving through time, as follows:$${X}_{t}={{BX}}_{t-1}+U+{C}_{{Ct}}+{W}_{t}; {W}_{t} sim {MVN}(0,Q)$$
    (1)
    $${Y}_{t}={{ZX}}_{t}+{V}_{t} ; {V}_{t} sim {MVN}(0,R)$$
    (2)
    with Xt a matrix of states at time t, Yt a matrix of observations at time t, Wt a matrix of process errors (multivariate normally distributed with mean 0 and variance Q), Vt is a matrix of observation errors (normally distributed with mean 0 and variance R). Z is a matrix linking the observations Yt and the correspondent state Xt. B is an interaction matrix with inter-specific interaction (diatom and green algae) and with invertebrate strengths, Ct is a matrix of environmental variables (flow, conductivity, pH, water temperature, nitrate, phosphate) at time t. C is a matrix of coefficients indicating the effect of Ct to states Xt. U describes the mean trend. We computed a total of 12 models from the most complete to the simplest, the best-fitting model was identified as having the lowest Akaike Information Criterion adjusted for small sample sizes (AICc)14,30. To detect structural breaks in cyanobacteria biomass time series we calculated the differences between the smoothed state estimates at time t and t-1 based on the multivariate models. Sudden changes in the level were detected when the standardized smoothed state residuals exceed the 95% confidence interval for a t-distribution. We estimated the strength of environmental variables on cyanobacteria biomass and fitted models independently for each stream reach.To analyze cyanobacteria biomass across a gradient of flow alterations we compared weekly paired data (n = 1456) from upstream and downstream sites (i.e., at 10 m and 500 m). We thus calculated how much downstream site(s) biomass changed in comparison to upstream site biomass and assigned a factor for the increase or decrease. We determined the relative fraction of the instantaneous upstream flow in the downstream site measured within a 30-min time-step. We applied the same analysis to data from experiments obtained on the web search. We applied the Ramer–Douglas–Peucker (RDP) algorithm to find a breakpoint (ε lower distance to breakpoint) and the best line of fit for the local and global survey data distribution, we used the kmlShape-R package 48.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Carbon benefits of enlisting nature for crop protection

    Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).Article 

    Google Scholar 
    Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Labrie, G. et al. PLoS ONE 15, e0229136 (2020).CAS 
    Article 

    Google Scholar 
    Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).Article 

    Google Scholar 
    Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).Article 

    Google Scholar 
    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).ADS 
    Article 

    Google Scholar 
    Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).CAS 
    Article 

    Google Scholar 
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    Article 

    Google Scholar 
    Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).ADS 
    Article 

    Google Scholar 
    Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).ADS 
    Article 

    Google Scholar 
    Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).Article 

    Google Scholar 
    Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).CAS 
    Article 

    Google Scholar 
    van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).Article 

    Google Scholar 
    Herrero, M. et al. Nat. Food 1, 266–272 (2020).Article 

    Google Scholar 
    Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).Article 

    Google Scholar 
    Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).Article 

    Google Scholar  More

  • in

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Richardson, D.M., & Rundel, P.W. Ecology and biogeography of Pinus: An introduction. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 3–40. (Cambridge Press, 1998).Keeley, J. E. Ecology and evolution of pine life histories. Ann. For. Sci. 69, 445–453 (2012).Article 

    Google Scholar 
    Agee, J.K. Fire and pine ecosystems. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 193–217. (Cambridge Press, 1998).Keeley, J.E., & Zedler, P.H. Evolution of life histories in Pinus. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 219–251. (Cambridge Press, 1998).Pausas, J. G., Bradstock, R., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Hare, R. C. Contribution of bark to fire resistance of southern trees. J. For. 63, 248–251 (1965).
    Google Scholar 
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).PubMed 
    Article 

    Google Scholar 
    Stephens, S. L. & Libby, W. J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. J. Biogeogr. 33, 648–652 (2006).Article 

    Google Scholar 
    Chapman, H. H. Is the longleaf type a climax?. Ecology 13, 328–334 (1932).Article 

    Google Scholar 
    Pile, L. S., Wang, G. G., Knapp, B. O., Liu, G. & Yu, D. Comparing morphology and physiology of southeastern US Pinus seedlings: Implications for adaptation to surface fire regimes. Ann. For. Sci. 74, 68 (2017).Article 

    Google Scholar 
    Rodríguez-Trejo, D. A. & Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildl. Fire 12, 23–37 (2003).Article 

    Google Scholar 
    Pausas, J. G. Bark thickness and fire regime. Funct. Ecol. 29, 315–327 (2015).Article 

    Google Scholar 
    Little, S. & Mergen, F. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. For. Sci. 12, 268–275 (1966).
    Google Scholar 
    Kolström, T. & Kellomäki, S. Tree survival in wildfires. Silva Fenn. 27, 277–281 (1993).Article 

    Google Scholar 
    Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94, 326–236 (2001).Article 

    Google Scholar 
    Reyes, O. & Casal, M. Effect of high temperatures on cone opening and on the release and viability of Pinus pinaster and P. radiata seeds in NW Spain. Ann. For. Sci. 59, 327–334 (2002).Article 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fonda, R. W., Bellanger, L. A. & Burley, L. L. Burning characteristics of western conifer needles. Northwest Sci. 72, 1–9 (1998).
    Google Scholar 
    Fonda, R. W. Burning characteristics of needles from eight pine species. For. Sci. 47, 390–396 (2001).
    Google Scholar 
    Anderson, H. E. Forest fuel ignitability. Fire Tech. 6, 312–319 (1970).CAS 
    Article 

    Google Scholar 
    Martin, R.E., et al. Assessing the flammability of domestic and wildland vegetation. in Proceedings of the 12th Conference Fire and Forest Meteorology. Jekyll Island. 130–137. (1993)Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and wildland litter: A synthesis. Curr. For. Rep. 1, 91–99 (2015).
    Google Scholar 
    Fernandes, P. M. & Cruz, M. G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 194, 606–609 (2012).PubMed 
    Article 

    Google Scholar 
    Wenk, E. S., Wang, G. G. & Walker, J. L. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills. Int. J. Wildl. Fire 20, 866–875 (2012).Article 

    Google Scholar 
    Whelan, A. W., Bigelow, S. W. & O’Brien, J. J. Overstory longleaf pines and hardwoods create diverse patterns of energy release and fire effects during prescribed fire. Front. For. Glob. Change. 4, 25 (2021).Article 

    Google Scholar 
    Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).Article 

    Google Scholar 
    Troumbis, A. S. & Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. 10, 167–175 (1989).
    Google Scholar 
    Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).Article 

    Google Scholar 
    Snyder, J. R. The role of fire: Mutch ado about nothing?. Oikos 43, 404–405 (1984).Article 

    Google Scholar 
    Bond, W. J. & Midgley, J. J. Kill thy neighbour: An individualistic argument for theevolution of flammability. Oikos 73, 79–85 (1995).Article 

    Google Scholar 
    Gagnon, P. R. et al. Does pyrogenicity protect burning plants?. Ecology 91, 3481–3486 (2010).PubMed 
    Article 

    Google Scholar 
    Vines, R. G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 16, 499–514 (1968).Article 

    Google Scholar 
    Harmon, M. E. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65, 796–802 (1984).Article 

    Google Scholar 
    Schwilk, D. W., Gaetani, M. S. & Poulos, H. M. Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8, e79285 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, J., Kling, M., Schwilk, D., Varner, J. M. & Kane, J. M. Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob. Ecol. Biogeogr. 29, 944–955 (2020).Article 

    Google Scholar 
    Rosell, J. A. Bark thickness across the angiosperms: More than just fire. New Phytol. 211, 90–102 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kane, J. M., Varner, J. M. & Hiers, J. K. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For. Ecol. Manag. 256, 2039–2045 (2008).Article 

    Google Scholar 
    Engber, E. A. & Varner, J. M. Patterns of flammability of the California oaks: The role of leaf traits. Can. J. For. Res. 42, 1965–1975 (2012).Article 

    Google Scholar 
    Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).Article 

    Google Scholar 
    Stambaugh, M.C., Varner, J.M., & Jackson, S.T. Biogeography: An interweave of climate, fire, and humans. in Ecological Restoration and Management of Longleaf Pine Forests (Kirkman, K., Jack, S. B. Eds.). 17–38. (CRC Press, 2017).Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).Article 

    Google Scholar 
    Schwilk, D. W. & Caprio, A. C. Scaling from leaf traits to fire behavior: community composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980 (2011).Article 

    Google Scholar 
    Ormeño, E. et al. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 257, 471–482 (2009).Article 

    Google Scholar 
    Mirov, N. T. The terpenes (in relation to the biology of genus Pinus). Ann. Rev. Biochem. 17, 521–540 (1948).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitić, Z. S. et al. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 14, e1600453 (2017).Article 

    Google Scholar 
    Baradat, P. & Yazdani, R. Genetic expression for monoterpenes in clones of Pinus sylvestris grown on different sites. Scand. J. For. Res. 3, 25–36 (1987).Article 

    Google Scholar 
    Hanover, J. W. Applications of terpene analysis in forest genetics. New For. 6, 159–178 (1992).Article 

    Google Scholar 
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).PubMed 
    Article 

    Google Scholar 
    Saladin, B. et al. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. Evol. Biol. 17, 95 (2017).
    Google Scholar 
    Kreye, J. K. et al. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 48, 1331–1342 (2018).Article 

    Google Scholar 
    Ganteaume, A., Jappiot, M., Curt, T., Lampin, C. & Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildl. Fire 23, 1061–1075 (2014).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    Orme, D., et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R. Version 1.0.1. https://CRAN.R-project.org/package=caper. (2018).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn. (2019).Little, E.L. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. 1–320. (Miscellaneous Publication 1146, USDA, Forest Service, 1971).Prasad, A.M. & Iverson, L.R. Little’s Range and FIA Importance Value Database for 135 Eastern US Tree Species. http://www.fs.fed.us/ne/delaware/4153/global/littlefia/index.html. (Northeastern Research Station, USDA Forest Service). More

  • in

    Novel passive detection approach reveals low breeding season survival and apparent lactation cost in a critically endangered cave bat

    Odonnell, C. Population dynamics and survivorship in bats. In Ecology and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 158–176 (The Johns University Press, 2009).
    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Gibbons, J. W. & Andrews, K. M. PIT tagging: Simple technology at its best. Bioscience 54, 447–454 (2004).Article 

    Google Scholar 
    Ellison, L. E. et al. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus). Acta Chiropterologica 9, 149–160 (2007).Article 

    Google Scholar 
    van Harten, E. et al. High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats. Ecol. Evol. 9, 10916–10928 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schorr, R. A., Ellison, L. E. & Lukacs, P. M. Estimating sample size for landscape-scale mark-recapture studies of North American migratory tree bats. Acta Chiropterologica 16, 231–239 (2014).Article 

    Google Scholar 
    Baker, G. B. et al. The effect of forearm bands on insectivorous bats (Microchiroptera) in Australia. Wildl. Res. 28, 229–237 (2001).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Survival estimation in bats: Historical overview, critical appraisal, and suggestions for new approaches. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson, W. L.) 297–336 (Island Press, 2004).
    Google Scholar 
    O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). J. Mammal. 92, 433–443 (2011).Article 

    Google Scholar 
    Schorr, R. A. & Siemers, J. L. Population dynamics of little brown bats (Myotis lucifugus) at summer roosts: Apparent survival, fidelity, abundance, and the influence of winter conditions. Ecol. Evol. 11, 7427–7438 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J., Edmonds, H. & Hoare, J. M. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through a pest control operation using the toxin pindone in bait stations. N. Z. J. Ecol. 35, 291–295 (2011).
    Google Scholar 
    Edmonds, H., Pryde, M. & O’Donnell, C. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through an aerial 1080 pest control operation. N. Z. J. Ecol. 41, 186–192 (2017).
    Google Scholar 
    Reusch, C. et al. Differences in seasonal survival suggest species-specific reactions to climate change in two sympatric bat species. Ecol. Evol. 9, 7957–7965 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020-2. http://www.iucnredlist.org (2020).Lentini, P. E., Bird, T. J., Griffiths, S. R., Godinho, L. N. & Wintle, B. A. A global synthesis of survival estimates for microbats. Biol. Lett. 11, 20150371 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A., Linton, D. M. & Macdonald, D. W. Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community. Glob. Ecol. Conserv. 12, 263–271 (2017).Article 

    Google Scholar 
    Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    Schorcht, W., Bontadina, F. & Schaub, M. Variation of adult survival drives population dynamics in a migrating forest bat. J. Anim. Ecol. 78, 1182–1190 (2009).PubMed 
    Article 

    Google Scholar 
    Sendor, T. & Simon, M. Population dynamics of the pipistrelle bat: Effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol. 72, 308–320 (2003).Article 

    Google Scholar 
    Sripathi, K., Raghuram, H., Rajasekar, R., Karuppudurai, T. & Abraham, S. G. Population size and survival in the indian false vampire bat Megaderma lyra. Acta Chiropterologica 6, 145–154 (2004).Article 

    Google Scholar 
    Papadatou, E., Butlin, R. K., Pradel, R. & Altringham, J. D. Sex-specific roost movements and population dynamics of the vulnerable long-fingered bat, Myotis capaccinii. Biol. Conserv. 142, 280–289 (2009).Article 

    Google Scholar 
    López-Roig, M. & Serra-Cobo, J. Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul. Ecol. 56, 471–480 (2014).Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DELWP. National Recovery Plan for the Southern Bent-wing Bat Miniopterus orianae bassanii (2020).Lumsden, L. & Gray, P. Longevity record for a southern bent-wing bat Miniopterus schreibersii bassanii. Australas. Bat Soc. Newsl. 16, 43–44 (2001).
    Google Scholar 
    Holz, P. H. et al. Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses. PLoS ONE 13, e0197625 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Marenda, M. S., Browning, G. F. & Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 13, e0204282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F. & Hufschmid, J. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in south-eastern Australia. Int. J. Parasitol. Parasites Wildl. 7, 423–428 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Legione, A. R. & Hufschmid, J. Polychromophilus melanipherus and haemoplasma infections not associated with clinical signs in southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Int. J. Parasitol. Parasites Wildl. 8, 10–18 (2019).PubMed 
    Article 

    Google Scholar 
    Holz, P. H., Clark, P., McLelland, D. J., Lumsden, L. F. & Hufschmid, J. Haematology of southern bent-winged bats (Miniopterus orianae bassanii) from the Naracoorte Caves National Park, South Australia. Comp. Clin. Pathol. 29, 231–237 (2020).CAS 
    Article 

    Google Scholar 
    Dwyer, P. D. The population pattern of Miniopterus schreibersii (Chiroptera) in north-eastern New South Wales. Aust. J. Zool. 14, 1073–1137 (1966).Article 

    Google Scholar 
    Dwyer, P. D. Mortality factors of the bent-winged bat. Vic. Nat. 83, 31–36 (1966).
    Google Scholar 
    Dwyer, P. D. Seasonal changes in activity and weight of Miniopterus schreibersii blepotis (Chiroptera) in north-eastern NSW. Aust. J. Zool. 12, 52–69 (1964).Article 

    Google Scholar 
    Bureau of Meteorology. Drought archive. http://www.bom.gov.au/climate/drought/archive.shtml (2019).Dwyer, P. D. Population ranges of Miniopterus schreibersii (Chiroptera) in south-eastern Australia. Aust. J. Zool. 17, 665–686 (1969).Article 

    Google Scholar 
    Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 7370 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mammal. 76, 940–946 (1995).Article 

    Google Scholar 
    Reeder, D. M. et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE 7, e38920 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 3355–3363 (2011).Article 

    Google Scholar 
    van Harten, E. Population Dynamics of the Critically Endangered, Southern Bent-Winged Bat Miniopterus orianae bassanii (La Trobe University, 2020).
    Google Scholar 
    PIRSA. History of the south east drainage system – summary. https://www.pir.sa.gov.au/aghistory/natural_resources/water_resources_ag_dev/history_of_the_south_east_drainage_system_-_summary/history_of_the_south_east_drainage_system_-_summary#_ftnref2 (2017).Harding, C., Herpich, D. & Cranswick, R. H. Examining temporal and spatial changes in surface water hydrology of groundwater dependent ecosystems using WOfS (Water Observations from Space): Southern Border Groundwaters Agreement area, South East South Australia. (2018).Holz, P. H., Lumsden, L. F., Reardon, T., Gray, P. & Hufschmid, J. Does size matter? Morphometrics of southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Aust. Zool. AZ https://doi.org/10.7882/AZ.2019.019 (2020).Article 

    Google Scholar 
    Rashid, M. M. & Beecham, S. Characterization of meteorological droughts across South Australia. Meteorol. Appl. 26, 556–568 (2019).Article 

    Google Scholar 
    Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade-offs in long-lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunz, T. H., Whitaker, J. O. & Wadanoli, M. D. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia 101, 407–415 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J. Anim. Ecol. 77, 1115–1121 (2008).PubMed 
    Article 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).Article 

    Google Scholar 
    Lučan, R. & Radil, J. Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia (Bratisl.) 65 (2010).Amorim, F., Jorge, I., Beja, P. & Rebelo, H. Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecol. Evol. 8, 5801–5814 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J. Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. J. Zool. 257, 311–323 (2002).Article 

    Google Scholar 
    Holz, P. H., Stent, A., Lumsden, L. F. & Hufschmid, J. Trauma found to be a significant cause of death in a pathological investigation of bent-winged bats (Miniopterus orianae). J. Zoo Wildl. Med. 50, 966–971 (2020).PubMed 
    Article 

    Google Scholar 
    Hughes, P. M., Rayner, J. M. V. & Jonesg, G. Ontogeny of ‘true’ flight and other aspects of growth in the bat Pipistrellus pipistrellus. J. Zool. 236, 291–318 (1995).Article 

    Google Scholar 
    Wund, M. A. Learning and the development of habitat-specific bat echolocation. Anim. Behav. 70, 441–450 (2005).Article 

    Google Scholar 
    McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99, 1065–1071 (2018).Article 

    Google Scholar 
    Mispagel, C. et al. DDT and metabolites residues in the southern bent-wing bat (Miniopterus schreibersii bassanii) of south-eastern Australia. Chemosphere 55, 997–1003 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allinson, G. et al. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64, 1464–1471 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. https://doi.org/10.1002/ece3.5901 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherwin, H. A., Montgomery, W. I. & Lundy, M. G. The impact and implications of climate change for bats. Mammal Rev. 43, 171–182 (2013).Article 

    Google Scholar 
    O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: A global review. Mammal Rev. 46, 175–190 (2016).Article 

    Google Scholar 
    Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Assemblage-level analysis of sex-ratios in Coloradan bats in relation to climate variables: A model for future expectations. Glob. Ecol. Conserv. 14, e00379 (2018).Article 

    Google Scholar 
    Crichton, E. G., Seamark, R. F. & Krutzsch, P. H. The status of the corpus luteum during pregnancy in Miniopterus schreibersii (Chiroptera: Vespertilionidae) with emphasis on its role in developmental delay. Cell Tissue Res. 258, 183–201 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, I. C. The analysis of continuous mark-recapture data (Norwegian University of Science and Technology, 2006).
    Google Scholar 
    Barbour, A. B., Ponciano, J. M. & Lorenzen, K. Apparent survival estimation from continuous mark-recapture/resighting data. Methods Ecol. Evol. 4, 846–853 (2013).Article 

    Google Scholar 
    van Harten, E. et al. Recovery of southern bent-winged bats (Miniopterus orianae bassanii) after PIT-tagging and the use of surgical adhesive. Aust. Mammal. 42, 216–219 (2020).Article 

    Google Scholar 
    McDonald, T. L., Amstrup, S. C. & Manly, B. F. Tag loss can bias Jolly-Seber capture-recapture estimates. Wildl. Soc. Bull. 31, 814–822 (2003).
    Google Scholar 
    van Harten, E. et al. Low rates of PIT-tag loss in an insectivorous bat species. J. Wildl. Manag. 85, 1739–1743 (2021).Article 

    Google Scholar 
    Lebl, K. & Ruf, T. An easy way to reduce PIT-tag loss in rodents. Ecol. Res. 25, 251–253 (2010).Article 

    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Locatelli, A. G., Ciuti, S., Presetnik, P., Toffoli, R. & Teeling, E. Long-term monitoring of the effects of weather and marking techniques on body condition in the Kuhl’s pipistrelle bat, Pipistrellus kuhlii. Acta Chiropterologica 21, 87–102 (2019).Article 

    Google Scholar 
    Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).PubMed 
    Article 

    Google Scholar 
    Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 1469, 5–25 (2020).PubMed 
    Article 

    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Churchill, S. Australian Bats (Allen and Unwin, 2008).
    Google Scholar 
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. 25 (2013).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Caswell, H. Matrix population models. In Encyclopedia of Environmetrics (eds El-Shaarawi, A. H. & Piegorsch, W. W.) (Wiley, Berlin, 2006). https://doi.org/10.1002/9780470057339.vam006m.Chapter 

    Google Scholar 
    Dwyer, P. D. The breeding biology of Miniopterus schreibersii blepotis (Termminck) (Chiroptera) in north-eastern NSW. Aust. J. Zool. 11, 219–240 (1963).Article 

    Google Scholar 
    Richardson, E. G. The biology and evolution of the reproductive cycle of Miniopterus schreibersii and M. australis (Chiroptera: Vespertilionidae). J. Zool. 183, 353–375 (1977).Article 

    Google Scholar  More