More stories

  • in

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).ADS 
    Article 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010). Adaptation of Forests and Forest Management to Changing Climate.Article 

    Google Scholar 
    Franklin, J. F., Mitchell, R. J. & Palik, B. J. Natural disturbance and stand development principles for ecological forestry. General Technical Report. NRS-19. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 44. p. 19 (2007).Westoby, M., Jurado, E. & Leishman, M. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368–372 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: Constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).Article 

    Google Scholar 
    Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).Article 

    Google Scholar 
    Tautenhahn, S. et al. On the biogeography of seed mass in germany – distribution patterns and environmental correlates. Ecography 31, 457–468 (2008).Article 

    Google Scholar 
    Lidgard, S. & Crane, P. R. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988).ADS 
    Article 

    Google Scholar 
    Crisp, M. D. & Cook, L. G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192, 997–1009 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stearns, S. C. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).Article 

    Google Scholar 
    Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Thomas, S. C. Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction, p. 33-64 (Springer Netherlands, 2011).Wenk, E. H. & Falster, D. S. Quantifying and understanding reproductive allocation schedules in plants. Ecol. Evol. 5, 5521–5538 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899–912 (1999).Article 

    Google Scholar 
    Moles, A., Falster, D., Leishman, M. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92, 384–396 (2004).Article 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? the fecundity evidence. Proc. Natl Acad. Sci. USA 118, e2106130118 (2021).Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).Article 

    Google Scholar 
    Turnbull, L. A., Coomes, D., Hector, A. & Rees, M. Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. J. Ecol. 92, 97–109 (2004).Article 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).PubMed 
    Article 

    Google Scholar 
    Hanley, M. E., Cook, B. I. & Fenner, M. Climate variation, reproductive frequency and acorn yield in english oaks. J. Plant Ecol. 12, 542–549 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. Try plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Ran, E., Arnon, D., Alon, B.-G., Amnon, S. & Uri, Y. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 133, 639–647 (2008).Article 

    Google Scholar 
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in european forests. New Phytol. 213, 669–679 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Fortier, R. & Wright, S. J. Nutrient limitation of plant reproduction in a tropical moist forest. Ecology 102, e03469 (2021).Canham, C. D., Ruscoe, W. A., Wright, E. F. & Wilson, D. J. Spatial and temporal variation in tree seed production and dispersal in a new zealand temperate rainforest. Ecosphere 5, art49 (2014).Article 

    Google Scholar 
    Pérez-Ramos, I. M., Aponte, C., García, L. V., Padilla-Díaz, C. M. & Marañón, T. Why is seed production so variable among individuals? a ten-year study with oaks reveals the importance of soil environment. PLoS ONE 9, e115371 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).ADS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Fisher, R. A. et al. Vegetation demographics in earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).ADS 
    Article 

    Google Scholar 
    Hanbury-Brown, A., Ward, R. & Kueppers, L. M. Future forests within earth system models: regeneration processes critical to prediction. New Phytol. in press https://doi.org/10.1111/nph.18131 (2022).Stiles, W. C. & Reid, W. S. Orchard nutrition management. Inf. Bull. (1991). https://ecommons.cornell.edu/bitstream/handle/1813/3305/Orchard%20Nutrition%20Management.pdf?sequence=2&isAllowed=y.Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).Article 

    Google Scholar 
    Neilsen, D. & Neilsen, G. Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 12, 19 (2002).Article 

    Google Scholar 
    Rubio Ames, Z., Brecht, J. K. & Olmstead, M. A. Nitrogen fertilization rates in a subtropical peach orchard: effects on tree vigor and fruit quality. J. Sci. Food Agric. 100, 527–539 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).Article 

    Google Scholar 
    Seyednasrollah, B. & Clark, J. S. Where resource-acquisitive species are located: the role of habitat heterogeneity. Geophys. Res. Lett. 47, e2020GL087626 (2020).Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).Article 

    Google Scholar 
    Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising co2 levels and the fecundity of forest trees. Science 292, 95–8 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan, H. S., Del Fierro, K., Patterson, A. E. & Zafar, H. Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob. Change Biol. 14, 285–293 (2008).ADS 
    Article 

    Google Scholar 
    Lambers, H. & Poorter, H. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences, vol. 23, 187-261 (Academic Press, 1992).Hengl, T. et al. Soilgrids250m: global gridded soil information based on machine learning. PLoS ONE 12, 1–40 (2017).Article 
    CAS 

    Google Scholar 
    Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable x-ray fluorescence spectrometer: 4. cation exchange capacity (cec). Geoderma 239, 130–134 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All The Numbers Mean? (CSIRO publishing, 2016).Chowdhury, S. et al. Chapter Two – Role Of Cultural And Nutrient Management Practices In Carbon Sequestration In Agricultural Soil, vol. 166, 131-196 (Academic Press, 2021).Clark, J. S., Nuñez, C. L. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).Article 

    Google Scholar 
    Burns, R. M. Silvics Of North America (US Department of Agriculture, Forest Service, 1990).Koenig, W. D. & Knops, J. M. H. Seed-crop size and eruptions of north american boreal seed-eating birds. J. Anim. Ecol. 70, 609–620 (2001).Article 

    Google Scholar 
    Greene, D. F. & Johnson, E. A. Estimating the mean annual seed production of trees. Ecology 75, 642–647 (1994).Article 

    Google Scholar 
    Lord, J. M. & Westoby, M. Accessory costs of seed production and the evolution of angiosperms. Evol. Int. J. Org. Evol. 66, 200–210 (2012).Article 

    Google Scholar 
    Hulme, P. & Benkman, C. Granivory. vol. 23, 132-154 (Oxford: Blackwell, 2002).Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).Article 

    Google Scholar 
    Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).PubMed 
    Article 

    Google Scholar 
    Davies, T. J. et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA 101, 1904–1909 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411, 469–472 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to co2. Nature 440, 922–925 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).PubMed 
    Article 

    Google Scholar 
    Elser, J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).Article 

    Google Scholar 
    Niklas, K. J., Owens, T., Reich, P. B. & Cobb, E. D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8, 636–642 (2005).Article 

    Google Scholar 
    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed 
    Article 

    Google Scholar 
    Weinbaum, S. A., Johnson, R. S. & DeJong, T. M. Causes and consequences of overfertilization in orchards. HortTechnology 2, 112b (1992).Article 

    Google Scholar 
    Fernandez-Escobar, R. et al. Olive oil quality decreases with nitrogen over-fertilization. HortScience 41, 215 (2006).CAS 
    Article 

    Google Scholar 
    Han, Q., Kabeya, D., Iio, A. & Kakubari, Y. Masting in fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiol. 28, 1269–1276 (2008).PubMed 
    Article 

    Google Scholar 
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leeper, A. C., Lawrence, B. A. & LaMontagne, J. M. Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees. Oecologia 194, 101–111 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).Article 

    Google Scholar 
    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).PubMed 
    Article 

    Google Scholar 
    Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).Article 

    Google Scholar 
    Clark, J. S., Macklin, E. & Wood, L. Stages and spatial scales of recruitment limitation in southern appalachian forests. Ecol. Monogr. 68, 213–235 (1998).Article 

    Google Scholar 
    McEuen, A. B. & Curran, L. M. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507–518 (2004).Article 

    Google Scholar 
    Emsweller, L. N., Gorchov, D. L., Zhang, Q., Driscoll, A. G. & Hughes, M. R. Seed rain and disturbance impact recruitment of invasive plants in upland forest. Invasive Plant Sci. Manag. 11, 69–81 (2018).Article 

    Google Scholar 
    Lindgren, s, Eriksson, O. & Moen, J. The impact of disturbance and seed availability on germination of alpine vegetation in the scandinavian mountains. Arct. Antarct. Alp. Res. 39, 449–454 (2007).Article 

    Google Scholar 
    Cai, W. H., Liu, Z., Yang, Y. Z. & Yang, J. Does environment filtering or seed limitation determine post-fire forest recovery patterns in boreal larch forests? Front. Plant Sci. 9, 1318 (2018).Darwin, C. On the Origin of Species (John Murray, 1859).Black, M. Darwin and seeds. Seed Sci. Res. 19, 193–199 (2009).Article 

    Google Scholar 
    FAO. Global forest resources assessment 2020-key findings. un food and agriculture organization. Report (2020).Payn, T. et al. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67 (2015).Article 

    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the united states. Glob. Change Biol. 22, 2329–2352 (2016).ADS 
    Article 

    Google Scholar 
    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of northern hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).Article 

    Google Scholar 
    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    North, M. P. et al. Tamm review: reforestation for resilience in dry western u.s. forests. For. Ecol. Manag. 432, 209–224 (2019).Article 

    Google Scholar 
    Seidl, R., Rammer, W. & Spies, T. A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063–2077 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Serra-Diaz, J. M. et al. Averaged 30 year climate change projections mask opportunities for species establishment. Ecography 39, 844–845 (2016).Article 

    Google Scholar 
    Davis, F. W. et al. Shrinking windows of opportunity for oak seedling establishment in southern california mountains. Ecosphere 7, e01573 (2016).
    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature And Properties Of Soils, vol. 13 (Prentice Hall Upper Saddle River, 2008).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007). https://doi.org/10.1029/2005RG000183.Clark, J. S. Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry 11, 1–22 (1990).Article 

    Google Scholar 
    Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).ADS 
    Article 

    Google Scholar 
    Begueria, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (spei) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schneider, R., Calama, R. & Martin-Ducup, O. Understanding tree-to-tree variations in stone pine (pinus pinea l.) cone production using terrestrial laser scanner. Remote Sens. 12, 173 (2020).Article 

    Google Scholar 
    Gavranović, A., Bogdan, S., Lanšćak, M., Čehulić, I. & Ivanković, M. Seed yield and morphological variations of beechnuts in four european beech (fagus sylvatica l.) populations in croatia. South-East Eur. For. 9, 17–27 (2018).Article 

    Google Scholar 
    Maitner, B. S. et al. The bien r package: a tool to access the botanical information and ecology network (bien) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).Article 

    Google Scholar 
    LePage, P. T., Canham, C. D., Coates, K. D. & Bartemucci, P. Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of british columbia. Can. J. For. Res. 30, 415–427 (2000).Article 

    Google Scholar 
    Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).Article 

    Google Scholar 
    Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008).Article 

    Google Scholar 
    Jones, F. A. & Muller-Landau, H. C. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J. Ecol. 96, 642–652 (2008).Article 

    Google Scholar 
    Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, J. S. et al. High-dimensional coexistence based on individual variation: a synthesis of evidence. Ecol. Monogr. 80, 569–608 (2010).Article 

    Google Scholar 
    Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–91 (2014).ADS 
    Article 

    Google Scholar 
    Minor, D. M. & Kobe, R. K. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecol. Evol. 9, 1458–1472 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an r package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).Article 

    Google Scholar 
    Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar 
    Clark, J. S. Data from: continent-wide tree fecundity driven by indirect climate effects https://doi.org/10.7924/r4348ph5t (2020). More

  • in

    Urban-adapted mammal species have more known pathogens

    Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature https://doi.org/10.1038/s41586-020-2562-8 (2020).Loh, E. H. et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 15, 432–437 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host–parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werner, C. S. & Nunn, C. L. Effect of urban habitat use on parasitism in mammals: a meta-analysis. Proc. Biol. Sci. 287, 20200397 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defense. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.10.012 (2021).Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J. & O’Neill, B. C. Mapping global urban land for the twenty-first century with data-driven simulations and shared socioeconomic pathways. Nat. Commun. 11, 2302 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 

    Google Scholar 
    Ostfeld, R. S. et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 9, e107387 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).PubMed 
    Article 

    Google Scholar 
    Teitelbaum, C. S. et al. A comparison of diversity estimators applied to a database of host–parasite associations. Ecography 43, 1316–1328 (2019).Article 

    Google Scholar 
    Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B 285, 20180072 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0427 (2022).Hughes, A. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).Article 

    Google Scholar 
    Estes, L. et al. The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2, 819–826 (2018).PubMed 
    Article 

    Google Scholar 
    Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).PubMed 
    Article 

    Google Scholar 
    Cummings, C. R. et al. Foraging in urban environments increases bactericidal capacity in plasma and decreases corticosterone concentrations in white ibises. Front. Ecol. Evol. 8, 575980 (2020).Article 

    Google Scholar 
    Hwang, J. et al. Anthropogenic food provisioning and immune phenotype: association among supplemental food, body condition, and immunological parameters in urban environments. Ecol. Evol. 8, 3037–3046 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandin, T., Babayan, S. A. & Forbes, K. M. Reviewing the effects of food provisioning on wildlife immunity. Phil. Trans. R. Soc. B 373, 20170088 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Downs, C. J., Dochtermann, N. A., Ball, R., Klasing, K. C. & Martin, L. B. The effects of body mass on immune cell concentrations of mammals. Am. Nat. 195, 107–114 (2020).PubMed 
    Article 

    Google Scholar 
    Downs, C. J. et al. Extreme hyperallometry of mammalian antibacterial defenses. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.242107 (2020).Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, D. A., Britten, H. B., Restani, M. & Washburn, L. R. High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conserv. Genet. 8, 789–795 (2007).CAS 
    Article 

    Google Scholar 
    Gecchele, L. V., Pedersen, A. B. & Bell, M. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecol. Evol. 10, 13796–13809 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F., Sweeny, A. R., Becker, D. J. & Bansal, S. Fine-scale spatial patterns of wildlife disease are common and understudied. Funct. Ecol. https://doi.org/10.1111/1365-2435.13942 (2021).Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).PubMed 
    Article 

    Google Scholar 
    Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. https://doi.org/10.1038/s41467-020-16153-4 (2020).IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.orgBecker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Mason, P. Parasites of deer in New Zealand. N. Zeal. J. Zool. 21, 39–47 (1994).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience https://doi.org/10.1101/2021.01.14.426572 (2021).Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 
    Article 

    Google Scholar 
    Wardeh, M., Risley, C., Mcintyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 
    Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res https://doi.org/10.12688/f1000research.2-191.v2 (2013).Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. mBio 13, e0298521 (2022).Article 

    Google Scholar 
    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Lindgren, F., Rue, H. & Lindstrom, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73, 423–498 (2011).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Winter, D. J. rentrez: an R package for the NCBI eUtils API. R J. 9, 520–526 (2017).Article 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).PubMed 
    Article 

    Google Scholar 
    Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x (2001).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    Toth, L. T. et al. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage. Ecology 100, e02781. https://doi.org/10.1002/ecy.2781 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).ADS 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3, 3486. https://doi.org/10.1038/srep03486 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).Article 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 1970–2012 (2014).Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Ecosystem-based management. Ecology 90, 1478–1484 (2009).PubMed 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Bak, R. P. M., Lambrechts, D. Y. M., Joenje, M., Nieuwland, G. & Van Veghel, M. L. J. Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar. Ecol. Prog. Ser. 133, 303–306 (1996).ADS 
    Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    Lenz, E. A., Bramanti, L., Lasker, H. R. & Edmunds, P. J. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34, 1099–1109 (2015).ADS 
    Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar Sci. 12, 315–337 (2020).PubMed 
    Article 

    Google Scholar 
    Lasker, H. R., Bramanti, L., Tsounis, G. & Edmunds, P. J. in Advances in Marine Biology Vol. 87 (ed. Riegl, B. M.) 361–410 (Academic Press, 2020).
    Google Scholar 
    Pearson, R. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).ADS 
    Article 

    Google Scholar 
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).Article 

    Google Scholar 
    França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B 375, 20190116 (2020).Article 

    Google Scholar 
    Ruzicka, R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).ADS 
    Article 

    Google Scholar 
    Sánchez, J. A. et al. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 729–747 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 29. https://doi.org/10.1007/s00227-018-3286-2 (2018).Article 

    Google Scholar 
    Kinzie, R. A. III. The zonation of West Indian gorgonians. Bull. Mar. Sci. 23, 93–155 (1973).
    Google Scholar 
    Yoshioka, P. M. & Yoshioka, B. B. A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser. 69, 253–260 (1991).ADS 
    Article 

    Google Scholar 
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 255–270 (Springer, 1994).Chapter 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96(5), 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Bellwood, D. R., Stret, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2018).Article 

    Google Scholar 
    Caswell, H. Construction, analysis, and interpretation. Sunderland: Sinauer 585, 258–277 (2001).
    Google Scholar 
    Bayer, F. M. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curacao Caribb. Isl. 12, 1–373 (1961).
    Google Scholar 
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forest (ed. Rossi, S.) 1–25 (Springer, 2017).Chapter 

    Google Scholar 
    Sánchez, J. A. Diversity and evolution of octocoral animal forests at both sides of tropical america. in Marine Animal Forests (eds Rossi, S. et al.) (Springer, 2016).
    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).Article 

    Google Scholar 
    Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).PubMed 
    Article 

    Google Scholar 
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).PubMed 
    Article 

    Google Scholar 
    Webster, N. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 1–14 (2018).Article 

    Google Scholar 
    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 100, e02587 (2019).PubMed 
    Article 

    Google Scholar 
    Clarke, K. & Warwick, R. Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. & Yamada, S. B. The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 64, 249–286 (1994).Article 

    Google Scholar 
    Frost, T. M., Carpenter, S. R., Ives, A. R. & Kratz, T. K. in Linking Species & Ecosystems (eds Jones, C. G. & Lawton, J. H.) 224–239 (Springer, 1995).Chapter 

    Google Scholar 
    Lasker, H., Martínez-Quintana, Á., Bramanti, L. & Edmunds, P. J. Resilience of octocoral forests to catastrophic storms. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Goffredo, S. & Lasker, H. R. Modular growth of a gorgonian coral can generate predictable patterns of colony growth. J. Exp. Mar. Biol. Ecol. 336, 221–229 (2006).Article 

    Google Scholar 
    Grigg, R. W. Growth rings: annual periodicity in two gorgonian corals. Ecology 55, 876–881 (1974).Article 

    Google Scholar 
    Grigg, R. W. Resource management of precious corals a review and application ton shallow water reef building corals. Mar. Ecol. 5, 57–74 (1984).ADS 
    Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial (PRIMER-E Ltd., 2006).
    Google Scholar 
    Schutte, V. G., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).ADS 
    Article 

    Google Scholar 
    Edmunds, P. J. Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123 (2013).ADS 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 
    Article 

    Google Scholar 
    Fowell, S. E. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237. https://doi.org/10.1002/2017GL076496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. & Lasker, H. R. Regulation of population size of arborescent octocorals on shallow Caribbean reefs. Mar. Ecol. Prog. Ser. 615, 1–14 (2019).ADS 
    Article 

    Google Scholar 
    Borgstein, N., Beltrán, D. M. & Prada, C. Variable growth across species and life stages in Caribbean reef octocorals. Front. Mar. Sci. 7, 483 (2020).Article 

    Google Scholar 
    Guizien, K. & Ghisalberti, M. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–22 (Springer International Publishing, 2015).
    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 
    Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D., Coomes, D. A. & Tatem, A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).Article 

    Google Scholar 
    Yang, Z., Ruijven, V. J. & Du, G. The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant Soil 345, 315–324 (2011).CAS 
    Article 

    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosenfeld, J. S. Logical fallacies in the assessment of functional redundancy. Conserv. Biol. 16, 837–839 (2002).Article 

    Google Scholar 
    Loreau, M. Does functional redundancy exist?. Oikos 104, 606–611 (2004).Article 

    Google Scholar 
    Gambrel, B. & Lasker, H. R. Interactions in the canopy among Caribbean reef octocorals. Mar. Ecol. Prog. Ser. 546, 85–95 (2016).ADS 
    Article 

    Google Scholar 
    Zambrano, J. et al. Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. J. Ecol. 107, 887–900 (2019).Article 

    Google Scholar 
    Pescador, et al. 2018 The shape is more important than we ever thought: Plant to plant interactions in a high mountain community. Methods Ecol. Evol. 10, 1584–1593 (2019).Article 

    Google Scholar 
    Cerpovicz, A. F. & Lasker, H. R. Canopy effects of octocoral communities on sedimentation: modern baffles on the shallow-water reefs of St. John, USVI. Coral Reefs 40, 295 (2021).Article 

    Google Scholar 
    Martinez-Quintana, Á. & Lasker, H. R. Early life-history dynamics of Caribbean octocorals: the critical role of larval supply and partial mortality. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.705563 (2021).Article 

    Google Scholar 
    Tsounis, G., Steele, M. A. & Edmunds, P. J. Elevated feeding rates of fishes within octocoral canopies on Caribbean reefs. Coral Reefs 39, 1299–1311 (2020).Article 

    Google Scholar 
    Girard, J. & Edmunds, P.J. Effects of arborescent octocoral assemblages on the understory benthic communities of shallow Caribbean reefs. J. Exp. Mar. Biol. Ecol. (in review).Privitera-Johnson, K., Lenz, E. A. & Edmunds, P. J. Density-associated recruitment in octocoral communities in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 473, 103–109. https://doi.org/10.1016/j.jembe.2015.08.006 (2015).Article 

    Google Scholar 
    Slattery, M. & Lesser, M. P. Gorgonians are foundation species on sponge-dominated Mesophotic Coral Reefs in the Caribbean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.654268 (2021).Article 

    Google Scholar 
    Lasker, H. R. & Porto-Hannes, I. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas. PeerJ 3, e1019. https://doi.org/10.7717/peerj.1019 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, D. A. & Clark, D. B. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology 82, 1460–1472 (2001).Article 

    Google Scholar 
    Birkeland, C. Coral Reefs in the Anthropocene 1–15 (Springer, 2015).Book 

    Google Scholar 
    Petraitis, P. S. & Dudgeon, S. R. Cusps and butterflies: multiple stable states in marine systems as catastrophes. Mar. Freshw. Res. 67, 37–46 (2015).Article 

    Google Scholar  More

  • in

    Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. https://doi.org/10.1146/annurev.arplant.54.031902.134938.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. https://doi.org/10.1126/science.1246843.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hildén K, Hakala TK, Lundell T. Thermotolerant and thermostable laccases. Biotechnol Lett. 2009;31:1117. https://doi.org/10.1007/s10529-009-9998-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2018;1. https://doi.org/10.1038/s41396-018-0279-6.Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705. https://doi.org/10.1111/1758-2229.12597.CAS 
    Article 
    PubMed 

    Google Scholar 
    Singh R, Hu J, Regner MR, Round JW, Ralph J, Saddler JN, et al. Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep. 2017;7:42121. https://doi.org/10.1038/srep42121.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain Chem Eng. 2020;8:831–41. https://doi.org/10.1021/acssuschemeng.9b04912.CAS 
    Article 

    Google Scholar 
    Johnson CW, Salvachúa D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule. 2019;3:1523–37. https://doi.org/10.1016/j.joule.2019.05.011.CAS 
    Article 

    Google Scholar 
    Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00897.Grasby SE, Hutcheon I, Krouse HR. The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem. 2000;15:439–54. https://doi.org/10.1016/S0883-2927(99)00066-9.CAS 
    Article 

    Google Scholar 
    Bauchop T, Elsden SR. The growth of micro-organisms in relation to their energy supply. Microbiology. 1960;23:457–69. https://doi.org/10.1099/00221287-23-3-457.CAS 
    Article 

    Google Scholar 
    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6. https://doi.org/10.1038/nprot.2007.109.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29. https://doi.org/10.1038/s41396-018-0279-6.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.CAS 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175. https://doi.org/10.1038/srep24175.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg J, Bjarnason BS, Bruijn ID, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6. https://doi.org/10.1038/nmeth.3103.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinforma Oxf Engl. 2016;32:605–7. https://doi.org/10.1093/bioinformatics/btv638.CAS 
    Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43. https://doi.org/10.1038/s41564-018-0171-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. https://doi.org/10.1101/gr.186072.114.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. https://doi.org/10.1038/nmeth.3176.CAS 
    Article 
    PubMed 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. https://doi.org/10.1093/nar/gky418.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32. https://doi.org/10.1093/nar/gky995.CAS 
    Article 
    PubMed 

    Google Scholar 
    Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3.CAS 
    Article 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz859.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. https://doi.org/10.1093/nar/gkw290.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210X.12628.Article 

    Google Scholar 
    Brenner AJ, Harris ED. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995;226:80–4. https://doi.org/10.1006/abio.1995.1194.CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown ME, Barros T, Chang MCY. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol. 2012;7:2074–81. https://doi.org/10.1021/cb300383y.CAS 
    Article 
    PubMed 

    Google Scholar 
    Levy-Booth DJ, Hashimi A, Roccor R, Liu L-Y, Renneckar S, Eltis LD, et al. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2021;15:879–93. https://doi.org/10.1038/s41396-020-00820-x.CAS 
    Article 
    PubMed 

    Google Scholar 
    Aston JE, Apel WA, Lee BD, Thompson DN, Lacey JA, Newby DT, et al. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius. J Ind Microbiol Biotechnol. 2016;43:13–23. https://doi.org/10.1007/s10295-015-1700-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Morgan-Lang C, McLaughlin R, Armstrong Z, Zhang G, Chan K, Hallam SJ. TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa588.Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: a small laccase from streptomyces coelicolor with unprecedented activity. Protein Sci Publ Protein Soc. 2004;13:2388–97. https://doi.org/10.1110/ps.04759104.CAS 
    Article 

    Google Scholar 
    Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, et al. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol. 2018;102:2425–39. https://doi.org/10.1007/s00253-018-8785-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Yin Q, Zhou G, Peng C, Zhang Y, Kües U, Liu J, et al. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express. 2019;9:151. https://doi.org/10.1186/s13568-019-0878-2.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech. 2018;8:182. https://doi.org/10.1007/s13205-018-1181-7.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilgers R, Vincken J-P, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu S, Argyropoulos D. An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci. 2003;29:235–40.CAS 

    Google Scholar 
    Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective oxidation of lignin model compounds. ChemSusChem. 2018;11:2045–50. https://doi.org/10.1002/cssc.201800598.CAS 
    Article 
    PubMed 

    Google Scholar 
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc. 2013;135:6415–8. https://doi.org/10.1021/ja401793n.CAS 
    Article 
    PubMed 

    Google Scholar 
    Schutyser W, Renders T, Bosch SV, den, Koelewijn S-F, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl Biochem Biotechnol. 2013;171:1673–80. https://doi.org/10.1007/s12010-013-0463-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hu D, Zang Y, Mao Y, Gao B. Identification of molecular markers that are specific to the class Thermoleophilia. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01185.Chen M-Y, Wu S-H, Lin G-H, Lu C-P, Lin Y-T, Chang W-C, et al. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol. 2004;54:1849–55. https://doi.org/10.1099/ijs.0.63109-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomariguchi N, Miyazaki K. Complete genome sequence of Rubrobacter xylanophilus strain AA3-22, isolated from Arima Onsen in Japan. Microbiol Resour Announc. 2019;8. https://doi.org/10.1128/MRA.00818-19.Ceballos SJ, Yu C, Claypool JT, Singer SW, Simmons BA, Thelen MP, et al. Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochem. 2017;63:193–203. https://doi.org/10.1016/j.procbio.2017.08.018.CAS 
    Article 

    Google Scholar 
    Clark Mason J, Richards M, Zimmermann W, Broda P. Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose. Appl Microbiol Biotechnol. 1988;28:276–80. https://doi.org/10.1007/BF00250455.Article 

    Google Scholar 
    Yin Y-R, Sang P, Xian W-D, Li X, Jiao J-Y, Liu L, et al. Expression and characteristics of two glucose-tolerant GH1 β-glucosidases from Actinomadura amylolytica YIM 77502T for promoting cellulose degradation. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.03149.Zimmermann W, Broda P. Utilization of lignocellulose from barley straw by actinomycetes. Appl Microbiol Biotechnol. 1989;30:103–9. https://doi.org/10.1007/BF00256005.CAS 
    Article 

    Google Scholar 
    Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187:2030–7. https://doi.org/10.1128/JB.187.6.2030-2037.2005.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varman AM, He L, Follenfant R, Wu W, Wemmer S, Wrobel SA, et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc Natl Acad Sci USA. 2016;113:E5802–11. https://doi.org/10.1073/pnas.1606043113.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Studenik S, Vogel M, Diekert G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol. 2012;194:3317–26. https://doi.org/10.1128/JB.00146-12.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23. https://doi.org/10.1099/ijs.0.65342-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Nogi Y, Yoshizumi M, Hamana K, Miyazaki M, Horikoshi K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol. 2014;64:2712–7. https://doi.org/10.1099/ijs.0.062620-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE. 2018;13:e0197448. https://doi.org/10.1371/journal.pone.0197448.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE. 2013;8:e65633. https://doi.org/10.1371/journal.pone.0065633.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res. 2014;2. https://doi.org/10.3389/fenrg.2014.00012.Mate DM, Alcalde M. Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Micro Biotechnol. 2016;10:1457–67. https://doi.org/10.1111/1751-7915.12422.CAS 
    Article 

    Google Scholar 
    Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database J Biol Databases Curation. 2011;2011. https://doi.org/10.1093/database/bar006.Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol. 2011;89:1103–10. https://doi.org/10.1007/s00253-010-2934-3.CAS 
    Article 
    PubMed 

    Google Scholar 
    Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett. 2009;583:1189–95. https://doi.org/10.1016/j.febslet.2009.03.008.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol. 2013;6:588–97. https://doi.org/10.1111/1751-7915.12068CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunne M, Urlacher VB. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLOS ONE. 2012;7:e52360 https://doi.org/10.1371/journal.pone.0052360CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. J Ind Microbiol Biotechnol. 2008;35:1123–9. https://doi.org/10.1007/s10295-008-0391-0CAS 
    Article 
    PubMed 

    Google Scholar 
    Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol. 2008;79:217–24. https://doi.org/10.1007/s00253-008-1417-2CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol. 2010;37:863–9. https://doi.org/10.1007/s10295-010-0734-5CAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol. 2017;101:6261–76. https://doi.org/10.1007/s00253-017-8345-yCAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol. 2015;99:9987–99. https://doi.org/10.1007/s00253-015-6843-3CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics

    Nazli, M. H., Halim, R. A., Abdullah, A. M., Hussin, G. & Samsudin, A. A. Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australas. J. Anim. Sci. 32, 224–232 (2019).PubMed 
    Article 

    Google Scholar 
    Department of Veterinary Services Malaysia. Perangkaan Ternakan Livestock Statistics (Department of Veterinary Services Malaysia, 2021).
    Google Scholar 
    Halim, R. A., Shampazurini, S. & Idris, A. B. Yield and nutritive quality of nine Napier grass varieties in Malaysia. Malays. J. Anim. Sci. 16, 37–44 (2013).
    Google Scholar 
    Ortega-Gãmez, R. et al. Nutritive quality of ten grasses during the rainy season in a hot-humid climate and ultisol soil. Trop. Subtrop. Agroecosyst. 13, 481 (2011).
    Google Scholar 
    Kung, L., Shaver, R. D., Grant, R. J. & Schmidt, R. J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bernardes, T. F. et al. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101, 4001–4019 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koc, F., Ozduven, M., Coskuntuna, L. & Polant, C. The effects of inoculant lactic acid bacteria on the fermentation and aerobic stability of sunflower silage. Poljoprivreda 15, 47–52 (2009).
    Google Scholar 
    Kim, S. C. & Adesogan, A. T. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. J. Dairy Sci. 89, 3122–3132 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel, J. L. P. et al. Effects of homolactic bacterial inoculant on the performance of lactating dairy cows. J. Dairy Sci. 101, 5145–5152 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pahlow, G. et al. Microbiology of ensiling. In Silage Science and Technology (eds Buxton, D. R. et al.) 31–93 (America Society of Agronomy, 2003).
    Google Scholar 
    Li, D., Ni, K., Zhang, Y., Lin, Y. & Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas. J. Anim. Sci. 32, 665–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, D. et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front. Microbiol. 9, 3299 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, H. et al. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 265, 282–290 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guan, H. et al. Screening of natural lactic acid bacteria with potential effect on silage fermentation, aerobic stability and aflatoxin B1 in hot and humid area. J. Appl. Microbiol. 128, 1301–1311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, Z., He, H., Zhang, S. & Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 7, 1–9 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Muck, R. E. et al. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald, P., Henderson, A. R. & Heron, S. J. E. The Biochemistry of Silage (Chalcombe Publications, 1991).
    Google Scholar 
    Nkosi, B. D. et al. The influence of ensiling potato hash waste with enzyme/bacterial inoculant mixtures on the fermentation characteristics, aerobic stability and nutrient digestion of the resultant silages by rams. Small Rumin. Res. 127, 28–35 (2015).Article 

    Google Scholar 
    Muck, R. E. Microbiologia da silagem e seu controle com aditivos. Rev. Bras. Zootec. 39, 183–191 (2010).Article 

    Google Scholar 
    Yan, Y. et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 279, 166–173 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, F. G. et al. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms. Front. Microbiol. 11, 3104 (2020).
    Google Scholar 
    Ni, K., Wang, Y., Li, D., Cai, Y. & Pang, H. Characterization, identification and application of lactic acid bacteria isolated from forage paddy rice silage. PLoS ONE 10, e0121967 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, J. et al. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour. Technol. 257, 76–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ning, P., Peng, Y. & Fritschi, F. B. Carbohydrate dynamics in maize leaves and developing ears in response to nitrogen application. Agronomy 8, 302 (2018).CAS 
    Article 

    Google Scholar 
    Ni, K. et al. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl. Microbiol. Biotechnol. 101, 1385–1394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishino, N. & Touno, E. Ensiling characteristics and aerobic stability of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Sci. Food Agric. 85, 1882–1888 (2005).CAS 
    Article 

    Google Scholar 
    Li, L. et al. Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of Manyflower silvergrass. Bioresour. Technol. 189, 334–340 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McEniry, J., O’Kiely, P., Clipson, N. J. W., Forristal, P. D. & Doyle, E. M. Assessing the impact of various ensilage factors on the fermentation of grass silage using conventional culture and bacterial community analysis techniques. J. Appl. Microbiol. 108, 1584–1593 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 82, 2466–2471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Dov, E., Shapiro, O. H., Siboni, N. & Kushmaro, A. Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72, 6902–6906 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ni, K. et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 238, 706–715 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Y. et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of moringa oleifera leaf silage. Front. Microbiol. 9, 1817 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eikmeyer, F. G. et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. J. Biotechnol. 167, 334–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gagnon, M., Ouamba, A. J. K., LaPointe, G., Chouinard, P. Y. & Roy, D. Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. J. Dairy Sci. 103, 5931–5946 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, R. et al. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 10, 1–14 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Rooke, J. & Hatfield, R. Biochemistry of ensiling. Publ. from USDA-ARS/UNL Fac. (2003).Muck, R. E. Recent advances in silage microbiology. Agric. Food Sci. 22, 3–15 (2013).CAS 
    Article 

    Google Scholar 
    Gharechahi, J. et al. The dynamics of the bacterial communities developed in maize silage. Microb. Biotechnol. 10, 1663–1676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farhana, A. & Lappin, S. L. Biochemistry, Lactate Dehydrogenase (StatPearls, 2021).
    Google Scholar 
    Mandhania, M. H. et al. Diversity and succession of microbiota during fermentation of the traditional Indian food idli. Appl. Environ. Microbiol. 85, e00368 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Mandal, S. et al. Metagenomic analysis and the functional profiles of traditional fermented pork fat ‘sa-um’ of Northeast India. AMB Express 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Varki, A. & Lowe, J. B. Biological roles of glycans. Essentials Glycobiol. https://www.ncbi.nlm.nih.gov/books/NBK1897/ (2009).Ganesan, A. Natural products as a hunting ground for combinatorial chemistry. Curr. Opin. Biotechnol. 15, 584–590 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28(3), 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169 (2015).Article 

    Google Scholar  More

  • in

    Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. (2021).Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed 
    Article 

    Google Scholar 
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. (2021).Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol 24, 581–593 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil. mSystems 6, e00385–21 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, S. M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Y. Q. et al. Microbial biogeography of acid mine drainage sediments at a regional scale across Southern China. FEMS Microbiol. Ecol. 98, fiac002 (2022).PubMed 
    Article 

    Google Scholar 
    Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nayfach, S. et al. CheckV: assessing the quality of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, (2021).Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. et al. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 10, giab056 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).PubMed 
    Article 

    Google Scholar 
    Liang, J. L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stasi, R., Neves, H. I. & Spira, B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 19, 79 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front. Microbiol. 8, 1975 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).CAS 
    PubMed 

    Google Scholar 
    Sun, C. L. et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15, 463–470 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonnain, C., Breitbart, M. & Buck, K. N. The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).Article 

    Google Scholar 
    Muratore, D. & Weitz, J. S. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. Theor. Ecol. 14, 467–487 (2021).Article 

    Google Scholar 
    Kyle, J. E., Pedersen, K. & Ferris, F. G. Virus mineralization at low pH in the Rio Tinto. Spain Geomicrobiol. J. 25, 338–345 (2008).CAS 
    Article 

    Google Scholar 
    Kyle, J. E. & Ferris, F. G. Geochemistry of virus–prokaryote interactions in freshwater and acid mine drainage environments, Ontario, Canada. Geomicrobiol. J. 30, 769–778 (2013).CAS 
    Article 

    Google Scholar 
    Hewson, I., O’Neil, J. M., Fuhrman, J. A. & Dennison, W. C. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746 (2001).ADS 
    Article 

    Google Scholar 
    Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat. Ecol. Evol. 5, 350–359 (2021).PubMed 
    Article 

    Google Scholar 
    Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldsmith, D. B., Parsons, R. J., Beyene, D., Salamon, P. & Breitbart, M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. Peer. J. 3, e997 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goldsmith, D. B. et al. Development of phoH as a novel signature gene for assessing marine phage diversity. Appl. Environ. Microbiol. 77, 7730–7739 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tetu, S. G. et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3, 835–849 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazakov, A. E., Vassieva, O., Gelfand, M. S., Osterman, A. & Overbeek, R. Bioinformatics classification and functional analysis of PhoH homologs. Silico Biol. 3, 3–15 (2003).CAS 

    Google Scholar 
    Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Hill, A. G. et al. Standardized general method for the determination of iron with 1,10-phenanthroline. Analyst 103, 391–396 (1978).Article 

    Google Scholar 
    Chesmin, L. & Yien, C. H. Turbidimetric determination of available sulphate. Soil Sci. Soc. Am. Proc. 15, 149–151 (1951).ADS 
    Article 

    Google Scholar 
    Fang, Y. et al. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment. Front. Environ. Sci. Eng. 9, 444–452 (2015).CAS 
    Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 4, e08490 (2015).PubMed Central 
    Article 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–201 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rho, M., Wu, Y. W., Tang, H., Doak, T. G. & Ye, Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 8, e1002441 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and environment for statistical computing. (2013).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-5. (2019).Harrell, F. E. Jr. & Dupont, M. C. The hmisc package. R. package version 4, 2–0 (2019).
    Google Scholar 
    R Development Core Team. The R Stats Package. R package version 4.0.3 (2013).Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). J. Stat. Soft 48, 1–36 (2012).Article 

    Google Scholar 
    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host-phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

    D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).Article 

    Google Scholar 
    Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).Article 
    PubMed 

    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).CAS 
    Article 

    Google Scholar 
    Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).Article 
    PubMed 

    Google Scholar 
    Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).Article 

    Google Scholar 
    Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).Article 
    PubMed 

    Google Scholar 
    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).Article 
    PubMed 

    Google Scholar 
    Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).ADS 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).ADS 
    Article 

    Google Scholar 
    Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).Article 

    Google Scholar 
    Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).Article 

    Google Scholar 
    Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).Article 

    Google Scholar 
    Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).ADS 

    Google Scholar 
    Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).Article 

    Google Scholar 
    Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).Article 
    PubMed 

    Google Scholar 
    Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).Article 

    Google Scholar 
    Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).
    Google Scholar 
    Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).ADS 
    Article 

    Google Scholar 
    Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).CAS 
    Article 

    Google Scholar 
    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).CAS 
    Article 

    Google Scholar 
    Ross, J. H. A conspectus of African acacia species (1979).Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).Article 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 

    Google Scholar 
    Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).Article 

    Google Scholar 
    Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).ADS 
    Article 

    Google Scholar 
    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).Article 

    Google Scholar 
    Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).Article 
    PubMed 

    Google Scholar 
    Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).Article 

    Google Scholar 
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).Article 

    Google Scholar 
    Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).Article 

    Google Scholar 
    Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).Article 
    PubMed 

    Google Scholar 
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).
    Google Scholar 
    Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).Article 
    PubMed 

    Google Scholar 
    Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).Article 

    Google Scholar 
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).Article 

    Google Scholar 
    Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).Article 

    Google Scholar 
    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).Article 

    Google Scholar 
    Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).Article 

    Google Scholar 
    Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).ADS 
    Article 

    Google Scholar 
    Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).
    Google Scholar 
    Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).Article 

    Google Scholar 
    Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).Article 

    Google Scholar 
    AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).
    Google Scholar 
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).Article 
    PubMed 

    Google Scholar  More

  • in

    Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions

    Fu, C. H. et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. J. Mar. Syst. 148, 101–111 (2015).Article 

    Google Scholar 
    Too, C. C., Ong, K. S., Yule, C. M. & Keller, A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp fores. Basic Appl. Ecol. 52, 109–123 (2020).Article 

    Google Scholar 
    Hou, R. J. et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 194, 104735 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X., Lu, P., Yang, P. L. & Ren, S. M. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland. PeerJ 9, e11674–e11674 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, Z. M., Liu, X. R., Zhang, Q. W. & Li, G. C. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system. Huan Jing Ke Xue 42(3), 1569–1580 (2021).PubMed 

    Google Scholar 
    Kong, Q., Wang, Z. B., Niu, P. F. & Miao, M. S. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Biores. Technol. 210, 94–100 (2016).CAS 
    Article 

    Google Scholar 
    Han, Z. M. et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 244, 106540 (2021).Article 

    Google Scholar 
    Clemens, S. et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci. Rep. 7(1), 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Zhang, D. J. et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. J. Appl. Ecol. 32(5), 1753–1760 (2021).
    Google Scholar 
    Liu, X. C. et al. Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China. J. Arid Land 6(04), 410–422 (2014).Article 

    Google Scholar 
    Hu, Q. Y. et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 20(2), 392–406 (2019).Article 
    CAS 

    Google Scholar 
    Sun, Z. C. et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 26(12), 11710–11718 (2019).CAS 
    Article 

    Google Scholar 
    Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93 (2018).Article 

    Google Scholar 
    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10(21), 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadiq, M., Li, G., Rahim, N. & Tahir, M. M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 13(15), 8177–8177 (2021).CAS 
    Article 

    Google Scholar 
    Nie, Z. G. et al. Evaluating the effects of different sowing dates and tillage methods on dry-land wheat grain dry matter accumulation based on the APSIM model. J. Appl. Ecol. 32(3), 913–920 (2021).
    Google Scholar 
    Alhassan, A. M., Yang, C. J., Ma, W. W. & Li, G. Influence of conservation tillage on Greenhouse gas fluxes and crop productivity in spring-wheat agroecosystems on the Loess Plateau of China. PeerJ 9, e11064–e11064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mou, L. M. et al. Breeding report of a new dryland spring wheat variety Dingxi 42. Gansu Agric. Sci. Technol. 01, 1–3 (2015).ADS 

    Google Scholar 
    Ma, W. W., Li, G., Wu, J. H., Xu, G. R. & Wu, J. Q. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    Wu, J. Q. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10(1), 21271–21271 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Défossez, P. et al. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 480, 118614 (2021).Article 

    Google Scholar 
    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Te Dekker, S. C. infuence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    Huang, T. T., Yang, N., Lu, C., Qin, X. L. & Siddique, K. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 214, 105171 (2021).Article 

    Google Scholar 
    Yang, J. M., Zhang, Z. Q. & Cao, G. J. Soil nitrate and nitrite content determined by Skalar SAN++. Soil Fertil. Sci. China 02, 101–105 (2014).
    Google Scholar 
    Chen, N. et al. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 776, 145970–145970 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Tot. Environ. 741, 140488 (2020).CAS 
    Article 

    Google Scholar 
    Ma, E. et al. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 88(3), 463–469 (2009).Article 
    CAS 

    Google Scholar 
    Yeboah, S. et al. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosyst. 106(1), 77–91 (2016).CAS 
    Article 

    Google Scholar 
    Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12), 1844–1844 (2020).CAS 
    Article 

    Google Scholar 
    Dharmendra, S. et al. Effect of reversal of conservation tillage on soil nutrient availability and crop nutrient uptake in soybean in the vertisols of central India. Sustainability. 12(16), 6608 (2020).Article 
    CAS 

    Google Scholar 
    Orzech, K., Wanic, M. & Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 11(7), 666–666 (2021).CAS 
    Article 

    Google Scholar 
    Fan, B. Q. & Liu, Q. L. Effect of conservation tillage and straw application on the soil microorganism and P-dissolving characteristics. Chin. J. Eco-Agric. 03, 130–132 (2005).
    Google Scholar 
    Liu, X. et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333, 35–42 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. Y. et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J. Clean. Prod. 274, 122854 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Xie, D. T., Ni, J. P. & Zeng, X. B. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 300, 107003 (2020).CAS 
    Article 

    Google Scholar 
    Andrea, F. et al. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 296, 106926 (2020).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid. Land 11(04), 567–578 (2019).Article 

    Google Scholar 
    Niu, Y. N., Shen, Y. Y., Nan, Z. B., Yang, J. & Yang, Z. W. College of Pastoral Agriculture Science & Technology, Lanzhou University, China. Influence of different cultivation managements on organic carbon and nitrate nitrogen of top soil in the Loess Plateau, northwestern China. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volume II) (2008).Wang, Q., Li, F. R., Zhang, E. H., Li, G. & Vance, M. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Aust. J. Crop Sci. 6(4), 662–672 (2012).
    Google Scholar 
    Pisani, O. et al. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 72(5), 519–529 (2017).Article 

    Google Scholar 
    Cao, W. C. et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. J. Nutr. Fertil. 25(10), 1781–1798 (2019).
    Google Scholar 
    Liu, B., Huang, G. B., Gao, Y. Q., Li, Q. P. & Huang, T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. J. Gansu Agric. Univ. 45(01), 82–87 (2010).
    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sina, B., Youngsun, K., Janine, K. & Gerhard, G. Plastic mulching in agriculture: Friend or foe of N2O emissions. Agric. Ecosyst. Environ. 167, 43–51 (2013).Article 
    CAS 

    Google Scholar 
    Seiichi, N., Michio, K., Masako, T., Seiichiro, Y. & Naoto, K. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48(7), 787–795 (2012).Article 
    CAS 

    Google Scholar 
    Wang, J., Cai, L. Q., Zhang, R. Z., Wang, Y. L. & Dong, W. J. Effects of Tillage Measures on soil greenhouse gas (CO2, CH4, N2O) flux in temperate semi-arid area. Chin. J. Eco-Agric. 19(06), 1295–1300 (2011).CAS 
    Article 

    Google Scholar 
    Chen, G. H. et al. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?. Sci. Total Environ. 618, 927–940 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Narendra, K. L. & Rattan, L. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126, 78–89 (2013).Article 

    Google Scholar 
    Liang, W., Shi, Y., Zhang, H., Yue, J. & Huang, G. H. Greenhouse gas emissions from Northeast china rice fields in fallow season. Pedosphere 17(5), 630–638 (2007).CAS 
    Article 

    Google Scholar 
    Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. Geophys. Res. Lett. 7(9), 641–644 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Maag, M. & Vinther, F. P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature. Appl. Soil. Ecol. 4(1), 5–14 (1996).Article 

    Google Scholar 
    Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32(1), 67–72 (2000).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73(1), 134–148 (2010).CAS 
    PubMed 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. Narnia 39(5), 729–749 (2015).CAS 

    Google Scholar 
    Pokharel, P. & Chang, S. X. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J. Environ. Manage. 295, 113080–113080 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shu, X. X. et al. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 11(1), 4396–4396 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76(19), 6387–6396 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More