More stories

  • in

    An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

    Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
    Google Scholar 
    Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).CAS 
    Article 

    Google Scholar 
    Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).CAS 
    Article 

    Google Scholar 
    IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).CAS 
    Article 

    Google Scholar 
    Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).CAS 
    Article 

    Google Scholar 
    Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).CAS 
    Article 

    Google Scholar 
    Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).Article 

    Google Scholar 
    UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).Article 

    Google Scholar 
    Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).CAS 
    Article 

    Google Scholar 
    Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).Article 

    Google Scholar 
    Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).CAS 
    Article 

    Google Scholar 
    Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).Article 

    Google Scholar 
    Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).Article 

    Google Scholar 
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).Article 

    Google Scholar 
    Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).CAS 
    Article 

    Google Scholar 
    Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).Article 

    Google Scholar 
    Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
    Google Scholar 
    Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).Article 

    Google Scholar 
    Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).Article 

    Google Scholar 
    Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).Article 

    Google Scholar 
    Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).Article 

    Google Scholar 
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).Article 

    Google Scholar 
    Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
    Google Scholar 
    IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).Article 

    Google Scholar 
    Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).Article 

    Google Scholar 
    Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).Article 

    Google Scholar 
    Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).Article 

    Google Scholar 
    Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).Article 

    Google Scholar 
    Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).Article 

    Google Scholar 
    Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).Article 

    Google Scholar 
    Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).Article 

    Google Scholar 
    Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).CAS 
    Article 

    Google Scholar 
    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).CAS 
    Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).Article 

    Google Scholar 
    Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).CAS 

    Google Scholar 
    Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).Article 

    Google Scholar 
    Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).Article 

    Google Scholar 
    Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).CAS 
    Article 

    Google Scholar 
    Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
    Google Scholar 
    Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
    Google Scholar 
    Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Culling corallivores improves short-term coral recovery under bleaching scenarios

    Our model focused on the trophic interactions among CoTS and two groups of coral within a feedback loop with natural and anthropogenic forcing. Our model draws on accepted features of the published dynamics described by Morello et al.37, Condie et al.28 and Condie et al.17, but is a substantial advance in terms of adding spatial structure and coupling with climate variables. Here we have resolved a fine spatiotemporal model structure, developed a novel recruitment formulation for CoTS, integrated tactical management control dynamics and incorporated the impact of broad-scale drivers upon the population dynamics of corals and CoTS at the local scale. Our model is formally fitted to a subset of the CoTS control program data described by Westcott et al.12. We operationalised our model as a tactical and strategic tool to inform how CoTS management strategies interact with alternative disturbance and ecological realisations at the sub-reef scale, the scale at which management operates.DataWe fitted our model to a subset of four reefs from the dataset described by Westcott et al.12, which were consistently and intensively managed (for a map with reef locations see Fig. 2). We restricted our focus to a subset to avoid parametrisation of reef and management site dynamics. Thus, ~39% of site visits were concentrated over the 13 management sites we considered, with a mean of 20.73 ± 5.5 (mean ± standard deviation) visits across the time series relative to a mean visitation rate of 12.23 ± 4.7 (mean ± standard deviation) for the rest of the sites. Each reef in the subset contained two or more management sites where each site was visited at least 18 times. The subset was used because it contained sufficient data for estimating the 11 model parameters for each management site. Across included sites were a range of CoTS densities, coral abundances and disturbance histories12,72,73. Given the intensity with which these sites were managed, they therefore provided us with a valuable opportunity to formally fit the interactions between management intervention, coral abundance and CoTS dynamics in the presence of regional sequential bleaching events.Model spatial structure and ecological componentsSpatially, we considered a circular 300 km region of the Great Barrier Reef centred between Cairns and Cape Tribulation, and resolved at a daily timescale and a sub-reef spatial scale, matching the scale at which observed data were resolved12,19. Reefs were randomly generated as points to capture possible spatial correlation in disturbance impacts between nearby reefs, as well as to allow variability in reef locations. Coral, CoTS and disturbance dynamics within the management sites of each reef were resolved relative to a 1 ha focal region. That is, each management site was captured as a 1 ha area representative of the whole site. In the Pacific, Acanthaster spp. disproportionally target faster-growing corals, predominantly Acropora, Pocillopora and Montipora22. Coral taxa characterised by slow growth rates and massive morphologies, such as Porites, are generally consumed less than expected based on their abundance22 and are thus non-preferred prey. The two modelled coral groups were the fast-growing favoured prey items of CoTS, and the slower-growing non-preferred prey. Processes resolved in the model included reproduction, density dependence, the effect of bleaching and cyclonic disturbances on corals and the impact of manual control (culling) upon CoTS and coral dynamics.CoTS population structureWe used an age-structured approach to model CoTS population dynamics. We defined our age classes to encapsulate plausible size-at-age variation due to plastic growth. This was achieved through linking catch size classes of the management control program19 to age classes through size-age relationships developed from observations spanning multiple environmental realisations, manipulated scenarios and methodologies55,70,74,75. Delayed growth in juvenile CoTS due to deferral of their switch to coral prey or composition of their pre-coral diet, may induce variability in the size-at-age of juveniles52,53. However, the population-level consequences of prolonged juvenile phases are not easily observed nor understood. For example, juveniles are subject to high mortality rates in situ, delayed growth may reduce lifetime fitness and there have been no observations of juveniles during spawning periods that would indicate protracted juvenile phases55,56,57. Consequently, suggests size-at-age is—due to an early life history mortality bottleneck or otherwise—predominantly concordant with growth curves of the literature55,70,74,75 and the size classes we have used here. Age classes comprised annual 0, 1, 2 and 3+ groups, with 3+ being an absorbing class – once there, they stay there. Age-0 ( ; 32.5)). This induced a slope change in the relationship between maximum wind velocity and its radius at a wind velocity of 32.5 m.s−1 (≥ category 3 intensities). However, whilst maximum wind velocity was modelled to determine ({d}_{{{{{{rm{m}}}}}}}), the overall size of the cyclone was uncorrelated with its intensity. The overall size was uniformly sampled from 130 to 460 km diameter which allowed for the potential of complete focal area coverage and for a range of intensity-size relationships to be captured. Given a cyclone footprint of radius ({d}_{0}) (km), wind velocity, (V) (m.s−1), at a distance, (d) (km), was interpolated104 through:$$Vleft(dright)=left{begin{array}{c}{V}_{0}+left({V}_{{{{{{rm{m}}}}}}}-{V}_{0}right){left(frac{sqrt{{d}_{0}}-sqrt{d}}{sqrt{{d}_{0}}-sqrt{{d}_{{{{{{rm{m}}}}}}}}}right)}^{alpha },,dge {d}_{{{{{{rm{m}}}}}}}\ {V}_{{{{{{rm{m}}}}}}}, , d ; < ; {d}_{{{{{{rm{m}}}}}}}end{array}right.$$ (32) The distance from the cyclone centre to the reef perimeter, (D) (km), is calculated through:$$D=sqrt{{left({x}_{{{{{{rm{rf}}}}}}}-{r}_{1}-{x}_{{{{{{rm{cyc}}}}}}}right)}^{2}+{left({x}_{{{rm{rf}}}}-{r}_{1}-{y}_{{{{{{rm{cyc}}}}}}}right)}^{2}}$$ (33) Thus, given a reef strike occurs ((sqrt{{d}_{0}}-sqrt{d}ge 0) required from non-integer (alpha)), the wind velocity experienced at said reef due to the tropical cyclone was calculated as (Vleft(Dright)). Wind velocity was subsequently categorised and damage to reef zone corals calculated as per Supplementary Table 4.We resolved stochasticity in cyclone dynamics in projection scenarios. In projected scenarios cyclone arrivals, locations and intensities were probabilistically sampled and their inflicted damage upon coral communities sampled from damage ranges. Cyclone locations, their footprints, intensity ranges and corresponding damage ranges were sampled from uniform distributions. Cyclone arrivals were sampled from a Poisson distribution and considered in scenarios from 2018 to 2029. Projections were averaged over 80 simulations to capture mean dynamics and bound trajectory uncertainty due to said stochasticity.Our cyclone model was calibrated to parameters sourced from the literature (Supplementary Tables 4-5). This was necessary since our data time series did not encompass a cyclone event and/or impacts upon a reef and cyclone-induced mortality is typically a key coral mortality source30. Consequently, we were unable to validate the impacts of cyclones through formal estimation in our model. However, our endeavours to source parameters from empirical and modelling studies in conjunction with our formulation allowed us to plausibly capture the cumulative outcomes of a cyclone event at discrete locations. Our cyclone model offers a limited complexity approach that is empirically grounded to simply resolve cyclone impacts in local-scale models without the need to be coupled to a regional-scale model.Cyclones, induced thermal stress and tactical managementThe occurrence of cyclone events was modelled to directly interact with both management interventions and thermal stress events. Cyclones were assumed to realistically preclude co-occurring co-located management interventions. This was such that a management site control visit was abandoned if a cyclone preceded or was forecast within five days of a control voyage. The later interaction of cyclones with thermal stress events operated through an induced thermal cooling of sea surface temperatures (SST) at impacted locations.In the case of the overlapping cyclone and thermally induced bleaching events, we first accounted for cyclone impacts. This was because, in addition to physical damage to corals, cyclones have the potential for regional-scale cooling of SST which can reduce coral bleaching43,107. To capture this interaction, we resolved the duration108,109 and amplitude107 of tropical cyclone-induced cooling. We captured this interaction through Degree Heating Weeks (DHW) which is a useful metric for the accumulated thermal stress experienced by corals94.The duration of tropical cyclone-induced cooling was modelled through a temporal-SST response curve consistent with the work of Lloyd and Vecchi108 and Vincent et al.109. Cooling rapidly occurs once a tropical cyclone arrives at a location and decays in an asymptotic manner over a period of ~40–60 days108,109. Temperatures however do not return to pre-cyclone levels and plateau at ~1/4 of the cooling signal amplitude below pre-cyclone levels108,109. We expressed this cooling response curve as it related to bleaching-induced coral mortality through DHWs.We based the average expected DHW cooling signal on the work of Carrigan and Puotinen107. This was achieved through scaling the difference in amplitude of overlapping thermal stress-tropical cyclone events and thermal stress only events—a cooling signal amplitude of ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}} sim 1.5) DHW. Consistent with the model of Carrigan and Puotinen107, we then resolved cooling within the radius of gale-force winds (category 1, 17 m.s−1) to model tropical cyclone-induced cooling. Depending on the size of the tropical cyclone, this meant that an individual cyclone would not necessarily cool all reefs within the model region. However, the culmination of multiple cyclones may have limited bleaching exposure for corals across the region107.We did not treat the cooling consequences of multiple cyclones additively nor the complex interplay of oceanic feedbacks upon cyclone intensity and cooling. Such processes were beyond the scope of our study and model. If multiple cyclones occurred within our model, then the cooling signal timeline was re-initialised at impacted reefs for the last tropical cyclone at said location. Non-impacted reefs maintained the timeline for the decay of the cooling signal originating from their previous tropical cyclone interaction.Once a tropical cyclone impacted a reef, the duration of the induced cooling signal was modelled. Price et al.110 found that cooling decays exponentially which is reflective of the recovery of SST following tropical cyclones as demonstrated by Lloyd and Vecchi108 and Vincent et al.109. We operationalised the exponential functional form in conjunction with the decay timelines of Lloyd and Vecchi108 and Vincent et al.109 and the DHW amplitude of Carrigan and Puotinen107. We modelled the level of cooling ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}) after ({d}_{{{{{{rm{postTC}}}}}}}) days post-cyclone event by:$${{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}left({d}_{{{{{{rm{postTC}}}}}}}right)=frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}+frac{frac{3}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}}{{e}^{{d}_{{{{{{rm{postTC}}}}}}}/10}}$$ (34) This ensured that once a reef experienced a tropical cyclone event, the cooling signal initialised at ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) and decayed to (sim frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) after 40–60 days108,109. The rate of decay was given by the e-folding time (days required for the cooling signal to be reduced by a factor of (e)) which we took to be 10. This is consistent with the results of Price et al.110, Lloyd and Vecchi108 and Vincent et al.109 who found e-folding times ranging from 5 through to 20 days. Thermally induced bleaching mortality of corals was computed after cyclone physical damage and cooling had been accounted for.Formal model fittingWe formally fitted our coral-CoTS model simultaneously to coral cover data, catch-per-unit-effort data and catch numbers obtained from the management control program with dive effort (minutes) treated as an input (visits summarised in Supplementary Table 7)12. Simultaneously fitting CoTS and coral dynamics at concurrent locations was useful here as it allowed for coral cover trajectories to help inform local CoTS abundance (sensu CoTS feeding vs. coral trajectories63,79 and local site fidelity24). Our model also used Long Term Monitoring Program (LTMP) data (based on manta tows and provided by the Australian Institute of Marine Science) which provides an independent index of relative abundance of CoTS. This was such that our model here was developed and parametrised based on an earlier version37,111 which did not use CPUE information but was fitted to the LTMP data on CoTS relative abundance, as well as the corresponding coral cover, to estimate a number of CoTS-coral interaction parameters used in the present model (Supplementary Table 3).Fitting and estimation of our model were achieved through Maximum Likelihood Estimation (MLE). Our objective function was the outcome of combining the negative log-likelihood contributions arising from fitting the model to multiple sets of location-specific data, across a range of environmental and ecological realisations, in conjunction with penalty terms. Specifically, we fitted coral cover (data series ({x}^{{{{{{rm{Coral}}}}}}})) and CoTS CPUEs (data series ({x}^{{{{{{rm{CoTS}}}}}}})) at each management site which contained ({n}_{{{{{{rm{Coral}}}}}}}) and ({n}_{{{{{{rm{CoTS}}}}}}}) data points respectively. This involved fitting parameters that were specific to management sites (e.g. thermal stress - DHW), reefs (e.g. recruitment variability) as well as those that were common amongst reefs (e.g. CoTS consumption rates). A parametrisation that optimised one contribution was unlikely to optimise all contributions and hence we obtained a parametrisation across all reefs and sub-regions. For a modelled catch of (N) (sum of catches across age classes), a catchability coefficient (a constant of proportionality) of ({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}), and data standard deviation of ({sigma }_{{{{{{rm{LL}}}}}}}) our likelihood contribution arising from a management site CPUEs was given by:$$-{{log }}{{{{{rm{L}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}N,{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{CoTS}}}}}}}right) = {n}_{{{{{{rm{CoTS}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{LL}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}frac{{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}{N}_{i}right)right)}^{2}}{2{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}}$$ (35) From which the data series variance and catchability coefficient were computed for the maximum likelihood estimate. The derived variance and the catchability were respectively computed as per:$${sigma }_{{{{{{rm{LL}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}right)right)}^{2}}$$ (36) and$${q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}=frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({N}_{i}right)right)$$ (37) Similarly, the likelihood contribution arising from fitting to a management site coral cover with standard deviation ({sigma }_{{Coral}}) was described by:$$-{{log }}{{{{{rm{L}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}}}+{C}_{y,d}^{{{{{{rm{s}}}}}}}}{{K}^{{{{{{rm{coral}}}}}}}},{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{Coral}}}}}}}right) = {n}_{{{{{{rm{Coral}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{Coral}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}frac{{left({ln}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}{2{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}}$$ (38) Where the standard deviation was given by:$${sigma }_{{{{{{rm{Coral}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{Coral}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-{{{{{rm{ln}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}$$ (39) We computed the negative log-likelihood objective function by summing the contributions from all management sites across considered reefs.Fitting was conducted through the modelling language Automatic Differentiation Model Builder (ADMB) which implements a Quasi-Newton optimisation algorithm for estimation of parameters and provides Hessian based estimation of standard errors112. Penalty terms were added to our likelihood function to integrate a prior understanding of system dynamics and to reduce model variability. Penalty terms encompassed recruitment variability and the magnitude of catches observed in the data.Recruitment was expressed through recruitment deviations, ({r}_{y}), given a standard deviation of ({sigma }_{{{{{{rm{R}}}}}}}) about underlying modelled recruitment (sum of self-recruitment and immigration sources described previously). The recruitment variability negative log-likelihood penalty contribution was given by:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{R}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{rec}}}}}}}right)={sum }_{y=1}^{{{{{{rm{#Years}}}}}}}{sum }_{{{{{{rm{reef}}}}}}=1}^{{{{{{rm{#Reefs}}}}}}}{r}_{y,{{{{{rm{reef}}}}}}}^{{rec}}/2{sigma }_{{{{{{rm{R}}}}}}}^{2}$$ (40) An additional penalty term for model deviations from the magnitude of observed catches was encompassed. This was such that a constant of proportionality relating modelled catches to observed catches tended to one. For an allowed standard deviation of ({sigma }_{{{{{{rm{CM}}}}}}}), the likelihood function was penalised for deviations from unity proportionality, ({r}^{{{{{{rm{CM}}}}}}}), through:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{CM}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{CM}}}}}}}right)={sum }_{{{{{{rm{zone}}}}}}=1}^{{{{{{rm{#Zones}}}}}}}{r}_{{{{{{rm{zone}}}}}}}^{{{{{{rm{CM}}}}}}}/2{sigma }_{{{{{{rm{CM}}}}}}}^{2}$$ (41) Model simulations were conducted in ADMB with output analysis and visualisation conducted in MATLAB.Sensitivity to CoTS controlTo test whether our projected scenarios were consistent with the period over which data were collected, we conducted a model-based before and after comparison to the impact of control. Specifically, we used the fitted trajectory for sites, including both the coral data and CoTS control data (voyages and time spent), and compared this to the model-suggested coral trajectories if CoTS control had not taken place. These were modelled over the fitted period (2013–2018) and, unlike the projected scenarios (2019–2029), were variable in terms of the timing of control (amount of time between visits was variable), the amount of time spent at sites (not a consistent number of dive minutes per visit), CoTS dynamics (recruitment was fitted and hence different annually and between reefs), and in the level of thermal stress they experienced (different sites experienced different effective levels and some sites experience back-to-back events).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Gentle-giant sharks are on a collision course with mighty ships

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Clark, D. A. & Clark, D. B. Spacing dynamics of a Tropical rain forest tree: Evaluation of the Janzen-Connell model. Am. Nat. 124, 769–788 (1984).Article 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and dendity-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jansen, P. A. & Forget, P.-M. Scatterhoarding rodents and tree regeneration. in Nouragues (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) vol. 80 pp. 275–288 (Springer Netherlands, 2001).Janzen, D. H. Herbivores and the number of tree species in Tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Hammond, D. S. Tropical forests of the Guiana shield: ancient forests in a modern world. (CABI Publishing, 2005).Forget, P.-M. et al. Frugivores and seed dispersal (1985–2010); the ‘seeds’ dispersed, established and matured. Acta Oecologica 37, 517–520 (2011).ADS 
    Article 

    Google Scholar 
    Levey, D. J., Silva, W. R. & Galetti, M. Seed dispersal and frugivory: Ecology, evolution and conservation. (CABI Publishing, 2002).Boissier, O., Feer, F., Henry, P. & Forget, P. Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecol. Appl. 30, (2020).Ducrettet, M. et al. Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biol. Conserv. 245, 108574 (2020).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: Implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Holbrook, K. M. & Loiselle, B. A. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal?. Ecology 90, 1449–1455 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. The role of frugivores in determining seed removal and dispersal in the neotropical nutmeg. Trop. Conserv. Sci. 6, 690–704 (2013).Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. Frugivores and seed removal at Tetragastris altissima (Burseraceae) in a fragmented forested landscape of French Guiana. J. Trop. Ecol. 21, 501–508 (2005).Article 

    Google Scholar 
    Stevenson, P. R., Link, A., González-Caro, S. & Torres-Jiménez, M. F. Frugivory in canopy plants in a western Amazonian forest: Dispersal systems, phylogenetic ensembles and keystone plants. PLoS ONE 10, e0140751 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todeschini, F., de Toledo, J. J., Rosalino, L. M. & Hilário, R. R. Niche differentiation mechanisms among canopy frugivores and zoochoric trees in the northeastern extreme of the Amazon. Acta Amaz 50, 263–272 (2020).Article 

    Google Scholar 
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shanee, N. Trends in local wildlife hunting, trade and control in the Tropical Andes Biodiversity Hotspot, northeastern Peru. Endanger. Species Res. 19, 177–186 (2012).Article 

    Google Scholar 
    Muscarella, R. & Fleming, T. H. The role of frugivorous bats in Tropical forest succession. Biol. Rev. 82, 573–590 (2007).PubMed 
    Article 

    Google Scholar 
    Willig, M. R. et al. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica 39, 737–746 (2007).Article 

    Google Scholar 
    Charles-Dominique, P. et al. Les mammifères frugivores arboricoles nocturnes d’une forêt guyanaise: Inter-relation plantes-animaux. Rev. Ecol. Terre Vie 35, (1981).Stevenson, P. R., Cardona, L., Cárdenas, S. & Link, A. Oilbirds disperse large seeds at longer distance than extinct megafauna. Sci. Rep. 11, 420 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by Binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 
    Nakashima, Y., Inoue, E., Inoue-Murayama, M. & Abd. Sukor, J. R. Functional uniqueness of a small carnivore as seed dispersal agents: A case study of the common palm civets in the Tabin Wildlife Reserve, Sabah, Malaysia. Oecologia 164, 721–730 (2010).Kays, R. W. Food preferences of kinkajous (Potos flavus): A frugivorous carnivore. J. Mammal. 80, 589–599 (1999).Article 

    Google Scholar 
    Julien-Laferrière, D. Frugivory and Seed Dispersal by Kinkajous. in Nouragues: Dynamics and Plant-Animal Interactions in a Neotropical Rainforest (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) 217–226 (Springer, 2001).Helgen, K. M. et al. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324, 1–83 (2013).Article 

    Google Scholar 
    Nascimento, F. F. et al. The evolutionary history and genetic diversity of kinkajous, Potos flavus (Carnivora, Procyonidae). J. Mamm. Evol. 24, 439–451 (2017).MathSciNet 
    Article 

    Google Scholar 
    Picart, L. et al. The CAFOTROP method: An improved rope-climbing method for access and movement in the canopy to study biodiversity. Ecotropica 20, 45–52 (2014).
    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. 12, 1768–1779 (2021).Article 

    Google Scholar 
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate Tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 3892 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queenborough, S. A. & Forget, P. M. Adding spice to life: A special issue on the Myristicaceae. Trop. Conserv. Sci. 3 (2013).Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    Russo, S. E. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136, 80–87 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Howe, H. F. & Vande Kerckhove, G. A. Removal of wild nutmeg (Virola Surinamensis) crops by birds. Ecology 62, 1093–1106 (1981).Laurance, W. F. et al. Averting biodiversity collapse in Tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    de Thoisy, B., Renoux, F. & Julliot, C. Hunting in northern French Guiana and its impact on primate communities. Oryx 39, 149–157 (2005).Article 

    Google Scholar 
    de Thoisy, B. et al. Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).Article 

    Google Scholar 
    Peres, C. A. & Dolman, P. M. Density compensation in Neotropical primate communities: Evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122, 175–189 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178 (2019).Article 

    Google Scholar 
    Harrison, R. D. et al. Consequences of defaunation for a Tropical tree community. Ecol. Lett. 16, 687–694 (2013).PubMed 
    Article 

    Google Scholar 
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).PubMed 
    Article 

    Google Scholar 
    Boissier, O., Bouiges, A., Mendoza, I., Feer, F. & Forget, P.-M. Rapid assessment of seed removal and frugivore activity as a tool for monitoring the health status of Tropical forests. Biotropica 46, 633–641 (2014).Article 

    Google Scholar 
    Howe, H. F. Fruit production and animal activity at two Tropical trees. Ecol. Trop. For. Seas. Rhythms Long-Term Chang. 189–199 (1982).Julien-Laferriere, D. Foraging strategies and food partitioning in the Neotropical frugivorous mammals Caluromys philander and Potos flavus. J. Zool. 247, 71–80 (1999).Article 

    Google Scholar 
    Julien-Laferriere, D. Radio-tracking observations on ranging and foraging patterns by kinkajous (Potos flavus) in French Guiana. J. Trop. Ecol. 9, 19–32 (1993).Article 

    Google Scholar 
    Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P. & Anderson, M. J. Estimating mammalian species richness and occupancy in Tropical forest canopies with arboreal camera traps. Remote Sens. Ecol. Conserv. 3, 146–157 (2017).Article 

    Google Scholar 
    Debruille, A., Kayser, P., Veron, G., Vergniol, M. & Perrigon, M. Improving the detection rate of binturongs (Arctictis binturong) in Palawan Island, Philippines, through the use of arboreal camera-trapping. Mammalia 84, 563–567 (2020).Article 

    Google Scholar 
    Gregory, T., Carrasco Rueda, F., Deichmann, J., Kolowski, J. & Alonso, A. Arboreal camera trapping: taking a proven method to new heights. Methods Ecol. Evol. 5, 443–451 (2014).Article 

    Google Scholar 
    Whitworth, A., Braunholtz, L. D., Huarcaya, R. P., MacLeod, R. & Beirne, C. Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals. Trop. Conserv. Sci. 9, 675–698 (2016).Article 

    Google Scholar 
    Laughlin, M. M., Martin, J. G. & Olson, E. R. Arboreal camera trapping reveals seasonal behaviors of Peromyscus spp. in Pinus strobus canopies. 14 (2020).Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. South Afr. J. Wildl. Res. 39, 1–10 (2009).Article 

    Google Scholar 
    Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).Article 

    Google Scholar 
    Mendoza, I. et al. Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): Insights from hierarchical Bayesian analyses. Biotropica 50, 431–441 (2018).Article 

    Google Scholar 
    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Rev. Ecol. Terre Vie 40, 289–320 (1985).
    Google Scholar 
    Coutant, O. et al. Roads disrupt frugivory and seed removal in tropical animal-dispersed plants in French Guiana. Front. Ecol. Evol. 10, 805376 (2022)Article 

    Google Scholar 
    Chapman, C. A. & Russo, S. E. Primate seed dispersal: Linking behavioral ecology with forest community structure. in Primates in Perspective 510–525 (Oxford University Press, 2006).Zhang, S.-Y. Activity and ranging patterns in relation to fruit utilization by brown capuchins (Cebus apella) in French Guiana. Int. J. Primatol. 16, 489–507 (1995).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the Tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).Article 

    Google Scholar 
    Coutant, O. et al. Amazonian mammal monitoring using aquatic environmental DNA. Mol. Ecol. Resour. 21, 1875–1888 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert, J. E., Fellner, V., McKenney, E. & Hartstone-Rose, A. Binturong (Arctictis binturong) and Kinkajou (Potos flavus) Digestive Strategy: Implications for Interpreting Frugivory in Carnivora and Primates. PLoS ONE 9, e105415 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Youlatos, D. Osteological correlates of tail prehensility in carnivorans. J. Zool. 259, 423–430 (2003).Article 

    Google Scholar 
    Lemelin, P. & Cartmill, M. The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus) – Lemelin – 2010 – Journal of Experimental Zoology Part A: Ecological Genetics and Physiology – Wiley Online Library. J. Exp. Zool. 313A, 157–168 (2010).
    Google Scholar 
    McClearn, D. Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J. Mammal. 73, 245–261 (1992).Article 

    Google Scholar 
    Rensch, B. & Dücker, G. Manipulierfähigkeit eines Wickelbären bei längeren Handlungsketten. Z. Für Tierpsychol. 26, 104–112 (1969).
    Google Scholar 
    Kays, R. W. The behavior and ecology of olingos (Bassaricyon gabbii) and their competition with kinkajous (Potos flavus) in central Panama. 64, 1–10 (2000).Alves-Costa, C. P. & Eterovick, P. C. Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica 32, 77–92 (2007).ADS 
    Article 

    Google Scholar 
    Bonaccorso, F. J., Glanz, W. E. & Sandford, C. M. Feeding assemblages of mammals at fruiting Dipteryx panamensis (Papilionaceae) trees in Panama: Seed predation, dispersal, and parasitism. Rev. Biol. Trop. 28, 61–72 (1980).
    Google Scholar 
    Julien-Laferrière, D. Organisation du peuplement de marsupiaux en Guyane française. Rev. Ecol. Terre Vie 46, 125–144 (1991).
    Google Scholar 
    Atramentowicz, M. The opportunistic frugivory of three Diphelphid marsupials of French Guiana. Rev. Ecol. Terre Vie 43, 47–57 (1988).
    Google Scholar 
    Carreira, D. C. et al. Small vertebrates are key elements in the frugivory networks of a hyperdiverse Tropical forest. Sci. Rep. 10, 10594 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erard, C., Théry, M. & Sabatier, D. Fruit characters in the diet of syntopic large frugivorous forest bird species in French Guiana. Rev. Ecol. Terre Vie 62, 323–350 (2007).
    Google Scholar 
    Théry, M., Erard, C. & Sabatier, D. Les fruits dans le régime alimentaire de Penelope marail (Aves, Cracidae) en forêt guyanaise: Frufivorie stricte et sélective? Rev. Ecol. Terre Vie 47, (1992).Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv.Schipper, J. Camera-trap avoidance by kinkajous Potos flavus: rethinking the “non-invasive” paradigm. 36, 5 (2007).Ratiarison, S. Frugivorie dans la canopée de la forêt guyanaise : conséquences pour la pluie de graines. (Paris 6, 2003).Sabatier, D. Fructification et dissémination en forêt guyanaise : l’exemple de quelques espèces ligneuses. (Université de Montpellier, 1983).Sabatier, D. Description et biologie d’une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia 19, 273–278 (1997).
    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bello, C. et al. Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic forest. Ecology 98, 1729–1729 (2017).PubMed 
    Article 

    Google Scholar 
    Galetti, M., Laps, R. & Pizo, M. A. Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica 32, 842–850 (2000).Article 

    Google Scholar 
    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. https://CRAN.R-project.org/package=rstatix (2021). More

  • in

    Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa

    Runham, N. A study of the replacement mechanism of the pulmonate radula. J. Cell Sci. 3(66), 271–277 (1963).Article 

    Google Scholar 
    Runham, N. & Isarankura, K. Studies on radula replacement. Malacologia 5, 73 (1966).
    Google Scholar 
    Mackenstedt, U. & Märkel, K. Radular structure and function. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 213–236 (CABI Publishing, Oxon, United Kingdom, 2001).Chapter 

    Google Scholar 
    Crampton, D. M. Functional anatomy of the buccal apparatus of Onchidoris bilamellata (Mollusca: Opisthobranchia). Trans. Zool. Soc. Lond. 34(1), 45–86 (1977).Article 

    Google Scholar 
    Steneck, R. S. & Watling, L. Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar. Biol. 68(3), 299–319 (1982).Article 

    Google Scholar 
    Jensen, K. R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 11, 301–335 (1997).Article 

    Google Scholar 
    Nishi, M. & Kohn, A. J. Radular teeth of Indo-Pacific molluscivorous species of Conus: A comparative analysis. J. Molluscan Stud. 65(4), 483–497 (1999).Article 

    Google Scholar 
    Duda, T. F., Kohn, A. J. & Palumbi, S. R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. Lond. 73, 391–409 (2001).Article 

    Google Scholar 
    von Rintelen, T., Wilson, A. B., Meyer, A. & Glaubrecht, M. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc. R. Soc. B 271, 2541–2549 (2004).Article 

    Google Scholar 
    Ekimova, I. et al. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 141, 106609 (2019).PubMed 
    Article 

    Google Scholar 
    Mikhlina, A., Ekimova, I. & Vortsepneva, E. Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidia: Fionidae). Zoology 143, 125850 (2020).PubMed 
    Article 

    Google Scholar 
    Krings, W. Trophic specialization of paludomid gastropods from ‘ancient’ Lake Tanganyika reflected by radular tooth morphologies and material properties, Thesis, Universität Hamburg (2020).Krings, W., Brütt, J.-O., Gorb, S. N. & Glaubrecht, M. Tightening it up: Diversity of the chitin anchorage of radular-teeth in paludomid freshwater-gastropods. Malacologia 63(1), 77–94 (2020).Article 

    Google Scholar 
    Bleakney, J. S. Indirect evidence of a morphological response in the radula of Placida dendritica (Alder & Hancock, 1843) (Opisthobranchia: Ascoglossa/ Sacoglossa) to different algae prey. Veliger 33(1), 111–115 (1990).
    Google Scholar 
    Jensen, K. R. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. Lond. 48, 135–155 (1993).Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littorina species (Gastropoda: Littorinidae). J. Molluscan Stud. 65, 355–370 (1999).Article 

    Google Scholar 
    Padilla, D. K., Dilger, E. K. & Dittmann, D. E. Phenotypic plasticity of feeding structures in species of Littorina. Am. Zool. 40, 1161 (2000).
    Google Scholar 
    Ito, A., Ilano, A. S., Goshima, S. & Nakao, S. Seasonal and tidal height variations in body weight and radular length in Nodilittorina radiata (Eydoux and Souleyet, 1852). J. Molluscan Stud. 68, 197–203 (2002).Article 

    Google Scholar 
    Padilla, D. K. Form and function of radular teeth of herbivorous molluscs: Focus on the future. Am. Malacol. Bull. 18(1/2), 163–168 (2003).
    Google Scholar 
    Krings, W. & Gorb, S. N. Substrate roughness induced wear pattern in gastropod radulae. Biotribology 26, 100164 (2021).Article 

    Google Scholar 
    Krings, W., Hempel, C., Siemers, L., Neiber, M. T. & Gorb, S. N. Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci. Rep. 11, 9556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, D. & Barber, A. H. Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9(71), 1318–1324 (2012).PubMed 
    Article 

    Google Scholar 
    Grunenfelder, L. K. et al. Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri. Adv. Funct. Mater. 24(39), 6093–6104 (2014).CAS 
    Article 

    Google Scholar 
    Barber, A. H., Lu, D. & Pugno, N. M. Extreme strength observed in limpet teeth. J. R. Soc. Interface 12(105), 20141326 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herrera, S. A., Grunenfelder, L., Escobar, E., Wang, Q., Salinas, C., Yaraghi, N., Geiger, J., Wuhrer, R., Zavattieri, P. & Kisailus, D. Stylus support structure and function of radular teeth. In Cryptochiton Stelleri, 20th International Conference on Composite Materials Copenhagen, 19–24th July, 2015.Ukmar-Godec, T. et al. Materials nanoarchitecturing via cation-mediated protein assembly: Making limpet teeth without mineral. Adv. Mater. 29(27), 1701171 (2017).Article 
    CAS 

    Google Scholar 
    Pohl, A. et al. Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. J. Mech. Behav. Biomed. Mater. 111, 103991 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stegbauer, L. et al. Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. PNAS 118(23), e2020160118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13(1–2), 42–52 (2010).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri. Adv. Fun. Mater. 23, 2908–2917 (2013).CAS 
    Article 

    Google Scholar 
    Ukmar-Godec, T. Mineralization of goethite in limpet radular teeth. In Iron Oxides: From Nature to Applications (eds Faivre, D. & Frankel, R. B.) 207–224 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Krings, W., Brütt, J.-O. & Gorb, S. N. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Under review at Frontiers in Zoology (2022).Brooker, L. R. & Shaw, J. A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization (ed. Seto, J.) 65–84 (Intech Open, Rijeka, Croatia, 2012).
    Google Scholar 
    Joester, D. & Brooker, L. R. The chiton radula: A model system for versatile use of iron oxides. In Iron Oxides: From Nature to Applications (ed. Seto, J.) 177–205 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Kisailus, D. & Nemoto, M. Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Biological Magnetic Materials and Applications (eds Matsunaga, T. et al.) 53–73 (Springer, Singapore, 2018).Chapter 

    Google Scholar 
    Moura, H. M. & Unterlass, M. M. Biogenic metal oxides. Biomimetics 5(2), 29 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A., Glaubrecht, M. & Gorb, S. N. Differences in the Young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology 137, 125713 (2019).PubMed 
    Article 

    Google Scholar 
    Krings, W., Neiber, M. T., Kovalev, A., Gorb, S. N. & Glaubrecht, M. Trophic specialisation reflected by radular tooth material properties in an ‘ancient’ Lake Tanganyikan gastropod species flock. BMC Ecol. Evol. 21, 35 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Marcé-Nogué, J. & Gorb, S. N. Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci. Rep. 11, 22775 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorb, S. N. & Krings, W. Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomater. 134, 513–530 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Troschel, F. H. Das Gebiss Der Schnecken Zur Begründung Einer Natürlichen Classification (Nicolaische Verlagsbuchhandlung, Berlin, Germany, 1863).
    Google Scholar 
    Sollas, I. B. The molluscan radula: Its chemical composition, and some points in its development. Q. J. Microsc. Sci. 51, 115–136 (1907).
    Google Scholar 
    Jones, E., McCance, R. & Shackleton, L. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. J. Exp. Biol. 12(1), 59–64 (1935).CAS 
    Article 

    Google Scholar 
    Tillier, S. & Cuif, J.-P. L’animal-conodonte est-il un Mollusque Aplacophore. C. R. Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univ. Sci. Terre 303(7), 627–632 (1986).Cruz, R., Lins, U. & Farina, M. Minerals of the radular apparatus of Falcidens sp. (Caudofoveata) and the evolutionary implications for the phylum mollusca. Biol. Bull. 194(2), 224–230 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, I. F. Lepidochitona cinerea, identification and biology, 2020. https://doi.org/10.13140/RG.2.2.28288.58889.Smith, I. F. Acanthochitona fascicularis (Linnaeus, 1767), identification and biology, 2020. https://doi.org/10.13140/RG.2.2.10640.64005.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 57, 999–1008 (2010).ADS 
    Article 

    Google Scholar 
    Coelho, M., Domingues, P., Balguerias, E., Fernandez, M. & Andrade, J. P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (Central-East Atlantic). Fish. Res. 29(3), 245–255 (1997).Article 

    Google Scholar 
    Notman, G. M., McGill, R. A., Hawkins, S. J. & Burrows, M. T. Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar. Ecol. Prog. Ser. 549, 113–123 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Marchais, V. et al. New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Mar. Biol. 164, 71 (2017).Article 

    Google Scholar 
    Eichhorst, T. E. Neritidae of the World: Volume 1 and 2 (ConchBooks, 2016).Bourguignat, M. J. R. Notice Prodromique sur les Mollusques Terrestres et Fluviatiles (Savy, Paris, 1885).
    Google Scholar 
    Bourguignat, M. J. R. Iconographie Malacologiques des Animaux Mollusques Fluviatiles du Lac Tanganika (Corbeil, Crété, 1888).Book 

    Google Scholar 
    West, K., Michel, E., Todd, J., Brown, D. & Clabaugh, J. The gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna (Special publications: Societas Internationalis Limnologiae – Int. Assoc. of Theoretical and Applied Limnology, 2003)Glaubrecht, M. Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosyst. Evol. 84, 71–122 (2008).Article 

    Google Scholar 
    Moore, J. E. S. The Tanganyika Problem (Burst and Blackett, London, 1903).Book 

    Google Scholar 
    Leloup, E. Exploration Hydrobiologique du Lac Tanganika (1946–1947) (Bruxelles, 1953).Brown, D. Freshwater Snails of Africa and their Medical Importance (Taylor and Francis, London, 1994).Book 

    Google Scholar 
    Germain, L. Mollusques du Lac Tanganyika et de ses environs. Extrait des resultats secientifiques des voyages en Afrique d’Edouard Foa. Bull. Mus. Natl. Hist. Nat. 14, 1–612 (1908).
    Google Scholar 
    Coulter, G. W. Lake Tanganyika and its Life (Oxford University Press, Oxford, 1991).
    Google Scholar 
    Bandel, K. Evolutionary history of East African fresh water gastropods interpreted from the fauna of Lake Tanganyika and Lake Malawi. Zent. Geol. Paläontol. Teil I, 233–292 (1997).
    Google Scholar 
    Pilsbry, H. A. & Bequaert, J. The aquatic mollusks of the Begian Congo. With a geographical and ecological account of Congo malacology. Bull. Am. Mus. Nat. Hist. 53, 69–602 (1927).
    Google Scholar 
    Lok, A. F. S. L., Ang, W. F., Ng, P. X., Ng, B. Y. Q. & Tan, S. K. Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore. NiS 4, 115–121 (2011).
    Google Scholar 
    Das, R. R. et al. Limited distribution of devil snail Faunus ater (Linnaeus, 1758) in tropical mangrove habitats of India. IJMS 47(10), 2002–2007 (2018).
    Google Scholar 
    Watson, D. C. & Norton, T. A. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88, 193–211 (1985).Article 

    Google Scholar 
    Imrie, D. W., McCrohan, C. R. & Hawkins, S. J. Feeding behaviour in Littorina littorea: A study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. Hydrobiologia 193, 191–198 (1990).Article 

    Google Scholar 
    Olsson, M., Svärdh, L. & Toth, G. B. Feeding behaviour in Littorina littorea: The red seaweed Osmundea ramosissima may not prevent trematode infection. Mar. Ecol. Prog. Ser. 348, 221–228 (2007).ADS 
    Article 

    Google Scholar 
    Lauzon-Guay, J. S. & Scheibling, R. E. Food-dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581–587 (2009).Article 

    Google Scholar 
    Bogan, A. E. & Hanneman, E. H. A carnivorous aquatic gastropod in the pet trade in North America: The next threat to freshwater gastropods?. Ellipsaria 15, 18–19 (2013).
    Google Scholar 
    Strong, E. E., Galindo, L. A. & Kantor, Y. I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 11(5), e3638 (2017).Article 

    Google Scholar 
    Himmelman, J. H. & Hamel, J. R. Diet behaviour and reproduction of the whelk Buccinum undatum in the northern Gulf of St Lawrence, eastern Canada. Mar. Biol. 116, 423–430 (1993).Article 

    Google Scholar 
    Barnes, H. & Powell, H. T. Onchidoris fusca (Müller); A predator of barnacles. J. Anim. Ecol. 23(2), 361–363 (1954).Article 

    Google Scholar 
    Waters, V. L. Food-preference of the nudibranch Aeolidia papillosa, and the effect of the defenses of the prey on predation. Veliger 15(3), 174–192 (1973).
    Google Scholar 
    Edmunds, M., Potts, G., Swinfen, R. & Waters, V. The feeding preferences of Aeolidia papillosa (L.) (Mollusca, Nudibranchia). J. Mar. Biol. Assoc. U. K. 54(4), 939–947 (1974).Article 

    Google Scholar 
    Edmunds, M. Advantages of food specificity in Aeolidia papillosa. J. Molluscan Stud. 49(1), 80–81 (1983).Article 

    Google Scholar 
    Sørensen, C. G., Rauch, C., Pola, M. & Malaquias, M. A. E. Integrative taxonomy reveals a cryptic species of the nudibranch genus Polycera (Polyceridae) in European waters. J. Mar. Biol. Assoc. U. K. 100(5), 733–752 (2020).Article 
    CAS 

    Google Scholar 
    Forrest, J. E. On the feeding habits and the morphology and mode of functioning of the alimentary canal in some littoral dorid nudibranchiate. Mollusca. Proc. Linn. Soc. Lond. 164(2), 225–235 (1953).Article 

    Google Scholar 
    Rose, R. M. Functional morphology of the buccal mass of the nudibranch Archidoris pseudoargus. J. Zool. 165(3), 317–336 (1971).Article 

    Google Scholar 
    Faivre, D. & Ukmar-Godec, T. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54(16), 4728–4747 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Towe, K. M. & Lowenstam, H. A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastruct. Res. 17(1–2), 1–13 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Distribution and composition of the matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Mar. Biol. 109, 281–286 (1991).CAS 
    Article 

    Google Scholar 
    Macey, D. J. & Brooker, L. R. The junction zone: Initial site of mineralization in radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). J. Morphol. 230, 33–42 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, A. P. et al. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3, 614–619 (1998).CAS 
    Article 

    Google Scholar 
    Brooker, L. R. & Macey, D. J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 16(1/2), 203–215 (2001).
    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., Webb, J. & van Bronswijk, W. A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. J. Biol. Inorg. Chem. 8(3), 256–262 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, J. A. et al. The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. J. Morphol. 270(5), 588–600 (2009).PubMed 
    Article 

    Google Scholar 
    Gordon, L. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194–198 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmanuel, S., Schuessler, J. A., Vinther, J., Matthews, A. & von Blanckenburg, F. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments. Biogeosciences 11(19), 5493–5502 (2014).ADS 
    Article 

    Google Scholar 
    Shaw, J. A., Macey, D. J. & Brooker, L. R. Radula synthesis by three species of iron mineralizing molluscs: Production rate and elemental demand. J. Mar. Biol. Assoc. U. K. 88(3), 597–601 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., van Bronswijk, W. & Webb, J. Multiple-front iron-mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Mar. Biol. 142, 447–454 (2003).CAS 
    Article 

    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., van Bronswijk, W. & Webb, J. Apatite mineralization in teeth of the chiton Acanthopleura echinata. Calcif. Tissue Int. 67, 408–415 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., Webb, J. & van Bronswijk, W. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder Chitonina. Venus 65(1–2), 71–80 (2006).
    Google Scholar 
    van der Wal, P. Structure and formation of the magnetite-bearing cap of the polyplacophoran tricuspid radula teeth. In Iron Biominerals (eds Frankel, R. B. & Blakemore, R. P.) 221–229 (Plenum Press, New York, 1990).
    Google Scholar 
    Saunders, M., Kong, C., Shaw, J. A. & Clode, P. L. Matrix-mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microsc. Microanal. 17, 220–225 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. Phosphatic hard tissues of marine invertebrates, their nature and mechanical function, and some fossil implications. Chem. Geol. 9, 153–166 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Macey, D. J., Webb, J. & Brooker, L. R. The structure and synthesis of biominerals in chiton teeth. Bull. Inst. Océanogr. (Monaco) 4(1), 191–197 (1994).
    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radula teeth of chitons. Science 227, 51–52 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Mollusca. In On biomineralization (eds Lowenstam, H. A. & Weiner, S.) 88–305 (Oxford University Press, Oxford, 1989).Chapter 

    Google Scholar 
    Evans, L. A. & Alvarez, R. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis. J. Biol. Inorg. Chem. 4(2), 166–170 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radula teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78–82 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, K. S., Webb, J., Macey, D. J. & Cohen, D. D. Compositional changes during biomineralization of the radula of the chiton Clavarizona hirtosa. J. Inorg. Biochem. 28(2–3), 337–345 (1986).CAS 
    Article 

    Google Scholar 
    Runham, N. W. The histochemistry of the radula of Patella vulgata. Q. J. Microsc. Sci. 102(3), 371–380 (1961).
    Google Scholar 
    Runham, N. W., Thronton, P. R., Shaw, D. A. & Wayte, R. C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Z. Zellforsch. 99, 608–626 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grime, G. et al. Biological applications of the Oxford scanning proton microprobe. Trends Biochem. Sci. 10(1), 6–10 (1985).CAS 
    Article 

    Google Scholar 
    St Pierre, T. G. et al. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata; Mössbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. B 228, 31–42 (1986).ADS 
    CAS 

    Google Scholar 
    Mann, S., Perry, C. C., Webb, J., Luke, B. & Williams, R. J. P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc. R. Soc. B 227(1247), 179–190 (1986).ADS 
    CAS 

    Google Scholar 
    van der Wal, P. Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). J. Ultrastruct. Mol. Struct. Res. 102(2), 147–161 (1989).Article 

    Google Scholar 
    Huang, C., Li, C.-W., Deng, M. & Chin, T. Magnetic properties of goethite in radulae of limpets. IEEE Trans. Magn. 28(5), 2409–2411 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Rinkevich, B. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantea. Mar. Biol. 117, 269–277 (1993).Article 

    Google Scholar 
    Liddiard, K. J., Hockridge, J. G., Macey, D. J., Webb, J. & van Bronswijk, W. Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Res. 24, 21–31 (2004).CAS 
    Article 

    Google Scholar 
    Cruz, R. & Farina, M. Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar. Biol. 147, 163–168 (2005).CAS 
    Article 

    Google Scholar 
    Davies, M. S., Proudlock, D. J. & Mistry, A. Metal concentrations in the radula of the common limpet, Patella vulgata L., from 10 sites in the UK. Ecotoxicology 14(4), 465–475 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, E. D., Weiner, S. & Addadi, L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hua, T.-E. & Li, C.-W. Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zool. Stud. 46(4), 379–388 (2007).CAS 

    Google Scholar 
    Krings, W. et al. In slow motion: Radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding. R. Soc. Open Sci. 6(7), 2054–5703 (2019).Article 
    CAS 

    Google Scholar 
    Mikovari, A. et al. Radula development in the giant key-hole limpet Megathura crenulate. J. Shellfish Res. 34(3), 893–902 (2015).Article 

    Google Scholar 
    Ukmar-Godec, T., Kapun, G., Zaslansky, P. & Faivre, D. The giant keyhole limpet radular teeth: A naturally-grown harvest machine. J. Struct. Biol. 192, 392–402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macey, D. J., Brooker, L. R. & Cameron, V. Mineralisation in the teeth of the gastropod mollusc Nerita atramentosa. Molluscan Res. 18(1), 33–41 (1997).Article 

    Google Scholar 
    Barkalova, V. O., Fedosov, A. E. & Kantor, Y. I. Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res. 36, 54–73 (2016).Article 

    Google Scholar 
    Ponte, G. & Modica, M. V. Salivary glands in predatory mollusks: Evolutionary considerations. Front. Physiol. 8, 580 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haszprunar, G. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367–441 (1988).Article 

    Google Scholar 
    Sasaki, T. Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). Univ. Tokyo Bull. 38, 1–224 (1998).
    Google Scholar 
    Simone, L. R. L. Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arq. Zool. 42(4), 161–323 (2011).Article 

    Google Scholar 
    Meirelles, C. A. & Matthews-Cascon, H. Relations between shell size and radula size in marine prosobranchs (Mollusca: Gastropoda). Thalassas 19(2), 45–53 (2003).
    Google Scholar 
    Peile, A. J. Some radula problems. J. Conchol. 20, 292–304 (1937).
    Google Scholar 
    Marcus, E. & Marcus, E. Mesogastropoden von der Küste São Paulos. Abh Math Naturwissenschaftlichen Kl Akad Wiss Lit Mainz 1963(1), 1–105 (1963).
    Google Scholar 
    Reid, D. G. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: The Genus LITTORARIA (British Museum Natural History, London, 1986).
    Google Scholar 
    Reid, D. G. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B 324, 1–110 (1989).ADS 
    Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littoraria species (Gastropoda: Littorinidae). J. Molluscan Stud. 65(3), 355–370 (1999).Article 

    Google Scholar 
    Fretter, V. & Graham, A. British Prosobranch Molluscs (The Ray Society, London, 1994).
    Google Scholar 
    Cabral, J. P. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival. Web Ecol. 7, 11–21 (2007).Article 

    Google Scholar 
    Nesson, M. H. Studies on radula tooth mineralization in the Polyplacophora, thesis, California Institute of Technology, Pasadena, USA (1969).Shaw, J. A., Brooker, L. R. & Macey, D. J. Radular tooth turnover in the chiton Acanthopleura hirtosa (Blainville, 1825) (Mollusca: Polyplacophora). Molluscan Res. 22, 93–99 (2002).Article 

    Google Scholar 
    Isarankura, K. & Runham, N. Studies on the replacement of the gastropod radula. Malacologia 7(1), 71–91 (1968).
    Google Scholar 
    Padilla, D. K., Dittman, D. E., Franz, J. & Sladek, R. Radular production rates in two species of Lacuna Turton (Gastropoda: Littorinidae). J. Molluscan Stud. 62(3), 275–280 (1996).Article 

    Google Scholar 
    Runham, N. W. Rate of replacement of the molluscan radula. Nature 194, 992–993 (1962).ADS 
    Article 

    Google Scholar 
    Mackenstedt, U. & Märkel, K. Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology 107(4), 209–239 (1987).Article 

    Google Scholar 
    Mischor, B. & Märkel, K. Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia). Zoomorphology 104, 42–66 (1984).Article 

    Google Scholar 
    Fujioka, Y. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (Küster) (Gastropoda: Muricidae). J. Exp. Mar. Biol. Ecol. 90(1), 43–54 (1985).Article 

    Google Scholar 
    Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progr. Mater. Sci. 88, 467–498 (2017).CAS 
    Article 

    Google Scholar 
    Vincent, J. F. V. The hardness of the tooth of Patella vulgata L. Radula: A Reappraisal. J. Molluscan Stud. 46, 129–133 (1980).
    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa. Philos. Trans. R. Soc. Lond. B 329, 87–96 (1990).ADS 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa. Acta Zool. 75(1), 75–79 (1994).Article 

    Google Scholar 
    Wealthall, R. J., Brooker, L. R., Macey, D. J. & Griffin, B. J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J. Morphol. 265, 165–175 (2005).PubMed 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proc. R. Soc. B 288, 20203173 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater. 135, 458–472 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Radwin, G. E. & Wells, H. W. Comparative radular morphology and feeding habits of muricid gastropods from the Gulf of Mexico. Bull. Mar. Sci. 18(1), 72–85 (1968).
    Google Scholar 
    Grünbaum, D. & Padilla, D. K. An integrated modeling approach to assessing linkages between environment, organism, and phenotypic plasticity. Integr. Comp. Biol. 54(2), 323–335 (2014).PubMed 
    Article 

    Google Scholar 
    Scheel, C., Gorb, S. N., Glaubrecht, M. & Krings, W. Not just scratching the surface: Distinct radular motion patterns in Mollusca. Biol. Open 9, bio055699 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. On the division of ctenobranchous gasteropodous Mollusca into larger groups and families. Ann. Mag. Nat. Hist. 11(2), 124–133 (1853).Article 

    Google Scholar 
    Hyman, L. H. Mollusca I. Aplacophora polyplacophora monoplacophora. Gastropoda, the coelomate bilateria. The invertebrates 6 (McGraw-Hill Book Company, New York, 1967).
    Google Scholar 
    Nixon, M. A nomenclature for the radula of the Cephalopoda (Mollusca) – living and fossil. J. Zool. 236, 73–81 (1995).Article 

    Google Scholar 
    Haszprunar, G. & Götting, K. J. Mollusca, Weichtiere. In Spezielle Zoologie Teil Einzeller und wirbellose Tiere (eds Westheide, W. & Rieger, R.) 305–362 (Springer, Berlin, Germany, 2007).
    Google Scholar 
    Lowenstam, H. A. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. Am. Bull. 73, 435–438 (1962).ADS 
    CAS 
    Article 

    Google Scholar 
    Kirschvink, J. L. & Lowenstam, H. A. Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. EPSL 44, 193–204 (1979).ADS 
    Article 

    Google Scholar 
    Han, Y. et al. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus. Bioelectromagnetics 32, 226–233 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemoto, M. et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci. Rep. 9, 856 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McCoey, J. M. et al. Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa. Small Methods 4, 1900754 (2020).CAS 
    Article 

    Google Scholar 
    Lowenstam, H. A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 56, 1373–1375 (1967).ADS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J. & Webb, J. Molluscan and other marine teeth. In Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) 5186–5189 (Elsevier Science Ltd., Oxford, 2001).Chapter 

    Google Scholar 
    Shaw, J. A. et al. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc. Microanal. 15(2), 154–165 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Creighton, T. E. Protein folding coupled to disulphide bond formation. Biol. Chem. 378(8), 731–744 (1997).CAS 
    PubMed 

    Google Scholar 
    Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Cryst. D 58, 872–874 (2002).Article 
    CAS 

    Google Scholar 
    Hayes, T. The influence of diet on local distributions of Cypraea. Pac. Sci. 37(1), 27–36 (1983).
    Google Scholar 
    Padilla, D. K. The importance of form: Differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. Exp. Mar. Biol. Ecol. 79(2), 105–127 (1984).Article 

    Google Scholar 
    Kesler, D. H., Jokinen, E. H. & Munns, W. R. Jr. Trophic preferences and feeding morphology of two pulmonate snail species from a small New England pond, USA. Can. J. Zool. 64, 2570–2575 (1986).Article 

    Google Scholar 
    Blinn, W., Truitt, R. E. & Pickart, A. Feeding ecology and radular morphology of the freshwater limpet Ferrissia fragilis. J. N. Am. Benthol. Soc. 8(3), 237–242 (1989).Article 

    Google Scholar 
    Hawkins, S. J. et al. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. J. Molluscan Stud. 55(2), 151–165 (1989).Article 

    Google Scholar 
    Franz, C. J. Feeding patterns of Fissurella species on Isla de Margarita, Venezuela: Use of radulae and food passage rates. J. Molluscan Stud. 56(1), 25–35 (1990).Article 

    Google Scholar 
    Thompson, R. C., Johnson, L. E. & Hawkins, S. J. A method for spatial and temporal assessment of gastropod grazing intensity in the field: The use of radula scrapes on wax surfaces. J. Exp. Mar. Biol. Ecol. 218(1), 63–76 (1997).Article 

    Google Scholar 
    Iken, K. Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J. Exp. Mar. Biol. Ecol. 236(1), 133–148 (1999).Article 

    Google Scholar 
    Forrest, R. E., Chapman, M. G. & Underwood, A. J. Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J. Exp. Mar. Biol. Ecol. 258(2), 155–171 (2001).PubMed 
    Article 

    Google Scholar 
    Dimitriadis, V. K. Structure and function of the digestive system in Stylommatophora. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 237–258 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Speiser, B. Food and feeding behaviour. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 259–288 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Sitnikova, T. et al. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682, 75–90 (2012).CAS 
    Article 

    Google Scholar 
    Bergmeier, F. S., Ostermair, L. & Jörger, K. M. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Curr. Biol. 31(13), R836–R837 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodheart, J. A., Bazinet, A. L., Valdés, Á., Collins, A. G. & Cummings, M. P. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol. Biol. 17, 221 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Padilla, D. K. Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90, 103–109 (1985).Article 

    Google Scholar 
    Padilla, D. K. Algal structural defenses: Form and calcification in resistance to tropical limpets. Ecology 70(4), 835–842 (1989).Article 

    Google Scholar 
    Wilson, A. B., Glaubrecht, M. & Meyer, A. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proc. R. Soc. B 271(1538), 529–536 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponder, W. & Lindberg, D. R. Phylogeny and Evolution of the Mollusca (University of California Press, Berkeley, California, 2008).Book 

    Google Scholar 
    Jörger, K. M. et al. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452–456 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M. & Schrödl, M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci. Rep. 10, 101 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364–367 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haszprunar, G. & Wanninger, A. Molluscs. Curr Biol. 22(13), R510-514 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. 94, 102–115 (2019).Article 

    Google Scholar 
    Irisarri, I., Uribe, J. E., Eernisse, D. J. & Zardoya, R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol. Biol. 20, 22 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Individualism versus collective movement during travel

    Study siteSocial hermit crabs (Coenobita compressus) were studied in Osa Peninsula, Costa Rica, at a long-term field site (Osa Conservation’s Piro Biological Station), where the population has been under study since 200817. Experiments were carried out from January to March 2019 at the beach-forest interface (Fig. 1A), an area where ‘fission–fusion’ social groupings30 continuously form and dissolve31 and where free-roaming individuals regularly travel17. All studies were undertaken during daylight hours (06:30–11:30 h) during periods of peak social activity.Figure 1Study site and experimental areas. (A) Satellite view of study site: a section of Piro beach, Osa Peninsula, Costa Rica. Dashed red squares indicate areas where experiments were carried out and schematic versions are shown below in (B) and (C) (Satellite image: created using Google Earth Version 9, https://earth.google.com/). (B) Overhead view of the section of the beach where free-roam experiments were carried out. Arrows denoting left and right correspond to stimulus directions during free-roam experiments. (C) Overhead view of the beach-forest interface where the handled experiments were carried out. Arrows denoting left, right, forest, and ocean correspond to stimulus directions during handled experiments. The solid red box represents the platform on which the artificial beach was created. For (B) and (C), environment is color coded: blue = ocean, yellow = beach sand, dark green = rainforest, light green = open grassy area with sparse trees. Compass in the bottom left of each panel shows cardinal directions.Full size imageWe conducted two separate sets of experiments, both involving a similar stimulus design (below). First, to determine whether free-roaming individuals were biased in their movement decisions by a collective, we performed a set of free-roam experiments (see “Experiment 1: Free-roam”). The free-roam experiments were conducted directly on the beach (Fig. 1B; 8° 23′ 39.5″ N, 83° 20′ 10.2″ W). Second, to determine whether an increase in danger influenced the relative independence versus social bias in individual movement, we performed a set of handled experiments (see “Experiment 2: Handled”). The handled experiments were conducted on a platform (Fig. 1C; 8° 23′ 33.2″ N, 83° 19′ 50.6″ W), which was immediately adjacent to the beach and situated within the range of the crabs’ normal daily movements. All reported compass bearings are relative to magnetic North (0°) unless otherwise specified.Stimulus designAs conspecific ‘stand-ins’, we used N = 60 Nerita scabricosta shells (C. compressus’ preferred shell species23), spanning a natural range of sizes (9–32 mm) within this population (Table S1; Fig. S1). To create a group of these stand-ins that we could manoeuvre as a collective, each shell was affixed using epoxy to one of four strands of clear fishing line, which were each 4 m long. These lines were spaced approximately 30 cm apart on a long wooden dowel (Figs. 2A,B, 3A,B). An equal number of shells (N = 15 shells per line) were distributed randomly along the 2 m of each fishing line furthest from the dowel. To allow the experimenter to manoeuvre the stimuli, without disturbing live crabs’ behaviour, another fishing line (4 m in length) was attached to the top of the dowel. With this line, the entire apparatus could be pulled by the experimenter from a distance, thereby simulating synchronised movement of the entire collective. To control for any influence the apparatus might have on focal individuals (other than that produced by the movement of the shell ‘stand-ins’), the entire apparatus—dowels and fishing lines—was replicated, just without any attached shells, for use as a control (Figs. 2C, 3C).Figure 2Free-roam experiments: stimuli and experimental design. (A) Photograph of a free-roam experiment in progress, with a drone hovering above and one of the authors (CD) pulling the simulated collective (Photo: Jakob Krieger). Schematics of stimuli are shown in B and C, with N = 3 free-roaming crabs also pictured. (B) Experimental stimuli: consisting of N = 60 shells arranged in four lines of fifteen shells each, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. An experimenter moved the stimuli from a distance, by pulling another clear fishing line along an open strip of sandy beach in the presence of free roaming crabs. Each experiment was video recorded from above by an overhead drone.Full size imageFigure 3Handled experiments: stimuli and experimental design. (A) Photograph of the artificial beach created on a platform adjacent to the natural beach (Photo: Mark Laidre). Photo shows experimental stimulus and an opaque plastic cup in the center, under which a focal crab was placed prior to the start of each experiment. Schematics of stimuli are shown in (B) and (C). (B) Experimental stimuli: consisting of 60 shells arranged in four lines of fifteen, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. The cup was removed by one experimenter from a distance via an attached clear fishing line on a pulley system; the stimulus was then maneuvered by a second experimenter, also from a distance, via another clear fishing line.Full size imageExperiment 1: Free-roamTo test whether the movement of the collective influenced free-roaming individuals’ travel direction, the stimuli were pulled across the beach at a uniform speed (1 m per min), within the natural range of the walking speed of social hermit crabs17,22,23. Each trial lasted 1 min. A total of N = 80 free-roam trials were conducted, N = 40 experimental (with the full collective, represented by all the shells) and N = 40 controls (with only the raw materials, but no shell collective). For each of the N = 80 trials, the movement of a single free-roaming focal individual was recorded.It is not uncommon to see multiple crabs moving parallel to (or perpendicular to) the shore, since many individuals will often be collectively attracted to eviction sites, injured conspecifics, or food items, with all the attracted individuals travelling in a roughly parallel formation16,17. For each trial in the free-roam experiments, the stimuli were pulled parallel to the shore (Fig. 1B), either to the right (116.1°) or to the left (296.1°). We did not pull the stimuli perpendicular to the shore, given the substantial slope from the forest down to the ocean, which would have confounded any such comparisons. Condition (experimental or control) and stimulus direction (right or left) were selected randomly, with balanced sample sizes (N = 20 for each). To ensure there was a free-roaming focal individual, whose movement we could measure in response to the stimulus, a trial was only carried out when at least one live crab was walking within approximately 30 cm of the stationary stimulus. Then pulling was initiated.To avoid disturbing live individuals by moving through or near the vicinity, we gathered overhead video footage of all experiments using a drone (Phantom advanced model GL300C). Drone video recorded all interactions between the focal individual and the simulated collective while the drone hovered at a height of approximately 2 m above the beach. At this height, there was no disturbance to natural behaviour or movement of the crabs, and the drone remained positioned overhead for at least 1 min prior to the start of a trial. Minor adjustments to position were then made between trials due to drone drift (i.e., slight movement of the drone due to wind).To randomly select focal individuals for video coding, we first split an image of the starting frame of each video file into a 4 × 4 matrix, with N = 16 equally-sized sections, and then used a random number generator to choose one section (repeating this step if no crabs were present in the selected section). Second, we numbered all individuals in the selected section and again used a random number generator to select the individual.To calculate bearings relative to magnetic North for the direction each focal crab moved, we first measured the angle of divergence (°) between the stimulus trajectory and the focal crabs’ trajectory. Focal crab trajectory—a proxy for the overall direction of the crab’s movement—was measured by drawing a straight line from the start-to-end position of that individual (see Fig. S2 and Vid. S1 for further explanation). Stimulus trajectory was measured in the same manner, using the shell closest to the focal at the beginning of the trial. Using Google Maps and the IGIS Map bearing angle calculator, we calculated the bearing of our stimuli (right and left) relative to true North (right: 114°, left: 294°). To determine bearings for our stimuli relative to magnetic North, we then used the Enhanced Magnetic Model (EMM) magnetic field calculator, provided by NOAA, to calculate the relevant declination (− 2.1°) for our coordinates on the dates the experiments were carried out, subtracting this value from true North. Thus, for the free-roam experiments, the bearing of a stimulus moving to the right, relative to magnetic North, was 116.1°, and the bearing of a stimulus moving to the left, relative to magnetic North, was 296.1°. Lastly, bearings for focal crabs’ directions, relative to magnetic North, could then be calculated using the new bearings of the stimuli and the angle of divergence between stimulus and crab trajectories.To gauge the level of interaction that focal individuals had with the collective, we recorded whether or not individuals initiated contact with shells in the experimental condition. An individual was classed as having initiated contact if it climbed onto a shell or touched a shell with its claws (Vid. S2). Additionally, we noted whether individuals were bumped by passing shells. An individual was classed as having been bumped if a moving shell hit it while the individual was withdrawn, stationary, or facing away from the moving shell (Vid. S3).To assess whether drone drift during experiments was a problem, we examined a random sample (N = 20) of the videos, both control (N = 10) and experimental (N = 10). We took N = 40 images from these 20 videos (i.e., two images from each video: one at the start of the 1-min trial and one at the end of the 1-min trial) and used a system wherein we marked the same two distinguishable fixed points on the landscape in each pair of images. We then overlaid the images in each pair, allowing us to see any longitudinal or latitudinal movement as well as any potential rotation of the drone. Nineteen of the N = 20 pairs of images showed virtually identical overlap of the markers, with just one image showing a minor gap between 1 of the 2 landmarks, suggesting slight rotation of the drone. We were therefore confident that drone drift was not an issue in our analyses.All videos were coded by CD. To measure inter-observer reliability for the angle of divergence (°) between stimulus trajectory and focal crabs’ trajectory (see Fig. S2), a random sample of videos (N = 41 total, N = 22 of experimental and N = 19 of control) were also coded by a second observer (MP) who was naïve to the competing hypotheses. There was strong inter-observer reliability in the measurements (F1,39 = 142.8, p  More

  • in

    Spatial distribution and identification of potential risk regions to rice blast disease in different rice ecosystems of Karnataka

    RBD severity in different rice ecosystems of KarnatakaBased on the observations made during the exploratory surveys of 2018 and 2019 (Table 1 and Fig. 1), it was found that RBD severity significantly varied across studied areas and districts (Fig. 2). The disease severity was highest in Chikmagalur, followed by Kodagu, Shivamogga, Mysore, and Mandya districts which belong to Hilly and Kaveri ecosystems. At the same time, the lowest severity was documented in Udupi, Gulbarga, Gadag, Dakshin Kannad, Raichur, and Bellary districts of coastal, UKP, and TBP ecosystems (Fig. 3A).Table 1 Details of diverse rice-growing ecosystems selected for the study.Full size tableFigure 1Featured map of South-East Asia (A), India (B), and Karnataka (C). A total of 18 administrative districts of Karnataka were considered to gather data on rice blast disease. The area of different districts under study is shown (D). The maps were created using R software (version R-4.0.3).Full size imageFigure 2Distribution map indicating the sampling sites and the severity of rice blast disease in different rice ecosystems of Karnataka during 2018 and 2019. The maps were created using R software (version R-4.0.3).Full size imageFigure 3(A) Bar graph repressing the severity of rice blast disease (RBD) in different districts of Karnataka during 2018 and 2019. (B) Clustering of districts based on the severity of RBD in different districts of Karnataka by hclust method.Full size imageHierarchical cluster analysis using the average linkage method for RBD severity among the 18 administrative districts of diverse rice ecosystems of Karnataka identified two main clusters, namely, cluster I and cluster II (Fig. 3B). Cluster I consist of two subclusters, cluster IA and IB. Subcluster IA consists of Mandya, Dharwad, Mysore, Hassan, Shivamogga, Haveri, and Belgaum; While, Kodagu, and Chikmagalur districts were clustered in IB. Similarly, Cluster II was divided into cluster IIA and cluster IIB. Subcluster IIA comprises Udupi, Gulbarga, Gadag, Raichur, Dakshin Kannad, Uttar Kannad, Koppal and Bellary, and Davanagere district was grouped under cluster IIB.Spatial point pattern analysis of RBDThe cluster and outlier analysis was done using Local Moran’s I and p-values. The analyses have identified RBD cluster patterns at the district level during 2018 and 2019, representing dispersed and aggregated clusters of severity (Fig. 4). Based on positive I value, most of the districts were clustered together (at I  > 0), except the coastal districts such as Uttar Kannad, Udupi, Dakshin Kannad, and interior districts such as Dharwad, Davanagere, and Chikmagalur, which exhibited negative I value (at I  More

  • in

    The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis)

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
    Google Scholar 
    Le Couteur, D. G. et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).PubMed 

    Google Scholar 
    Levin, E., Mitra, C. & Davidowitz, G. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. Anim. Behav. 112, 111–118 (2016).
    Google Scholar 
    Baker, H. G. & Baker, I. Amino-acids in nectar and their evolutionary significance. Nature 241, 543–545 (1973).CAS 

    Google Scholar 
    Nepi, M. et al. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 475–481 (2012).
    Google Scholar 
    Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 102, 108–115 (2014).CAS 

    Google Scholar 
    Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27, 2545–2558 (2001).CAS 
    PubMed 

    Google Scholar 
    Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8, 349–356 (1977).
    Google Scholar 
    Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75 (2017).
    Google Scholar 
    Alm, J., Ohnmeiss, T. E., Lanza, J. & Vriesenga, L. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84, 53–57 (1990).PubMed 

    Google Scholar 
    Petanidou, T., Laere, A. V., Ellis, W. N. & Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115, 155–169 (2006).CAS 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vrzal, E. M., Allan, S. A. & Hahn, D. A. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J. Insect Physiol. 56, 1659–1664 (2010).CAS 
    PubMed 

    Google Scholar 
    Mustard, J. A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod-Plant Interact. 14, 151–159 (2020).
    Google Scholar 
    Smith-Pardo, A. H., Carpenter, J. M. & Kimsey, L. The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States. Insect Syst. Divers. 4, 2 (2020).
    Google Scholar 
    Cott, H. B. The edibility of birds. Nature 156, 736–737 (1945).CAS 
    PubMed 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).CAS 
    PubMed 

    Google Scholar 
    Takashi, A., Yoshiya, T., Hiromitsu, M. & Yasuko, Y. K. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 99, 79–84 (1991).
    Google Scholar 
    Hunt, J. H. Nourishment and the evolution of the social Vespidae. Soc. Biol. Wasps 426, 450 (1991).
    Google Scholar 
    Ishay, J. Comb bulding by the oriental hornet (Vespa orientalis). Anim. Behav. 24, 72–83 (1976).
    Google Scholar 
    Ganor, E. & Ishay, J. The cement in hornet combs. J. Ethol. 10, 31–39 (1992).
    Google Scholar 
    Brull, L. Project ISIAH—Experiment on the effects of micro-gravity on hornets’ nest building and activity. Isr. Space Res. Technol. Inf. Bull. 9, 2–21 (1992).
    Google Scholar 
    Ishay, J. et al. Exposure to an additional alternating magnetic field affects comb building by worker hornets. Physiol. Chem. Phys. Med. NMR 39, 83–88 (2007).PubMed 

    Google Scholar 
    Kisliuk, M. & Ishay, J. Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35, 1041–1042 (1979).
    Google Scholar 
    Nepi, M. et al. Nectar and pollination drops: How different are they?. Ann. Bot. 104, 205–219 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wyatt, G. R. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 6, 75–102 (1961).CAS 

    Google Scholar 
    Jeong, H. et al. Nutritional value of the larvae of the alien invasive wasp Vespa velutina nigrithorax and amino acid composition of the larval saliva. Foods 9, 885 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Hermosín, I., Chicón, R. M. & DoloresCabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 83, 263–268 (2003).
    Google Scholar 
    Baquet, A., Lavoinne, A. & Hue, L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teulier, L., Weber, J.-M., Crevier, J. & Darveau, C.-A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333 (2016).
    Google Scholar 
    Li, Y. et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    Koštál, V., Korbelová, J., Poupardin, R., Moos, M. & Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367 (2016).PubMed 

    Google Scholar 
    Hrassnigg, N., Leonhard, B. & Crailsheim, K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212 (2003).CAS 
    PubMed 

    Google Scholar 
    Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G. & Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006).CAS 
    PubMed 

    Google Scholar 
    Inouye, D. W. & Waller, G. D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65, 618–625 (1984).CAS 

    Google Scholar 
    Bogo, G. et al. Effects of non-protein amino acids in nectar on bee survival and behavior. J. Chem. Ecol. 45, 278–285 (2019).CAS 
    PubMed 

    Google Scholar 
    Felicioli, A. et al. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 27, 556–563 (2018).CAS 
    PubMed 

    Google Scholar 
    Mevi-Schütz, J. & Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 165, 411–419 (2005).PubMed 

    Google Scholar 
    Ramputh, A. I. & Bown, A. W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349–1352 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F. & Mithöfer, A. Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front. Plant Sci. 6, 1128 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    Altaye, S. Z., Pirk, C. W. W., Crewe, R. M. & Nicolson, S. W. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol. 213, 3311–3318 (2010).CAS 
    PubMed 

    Google Scholar 
    Pirk, C. W. W., Boodhoo, C., Human, H. & Nicolson, S. W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72 (2010).CAS 

    Google Scholar 
    Archer, C. R., Pirk, C. W. W., Wright, G. A. & Nicolson, S. W. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. 28, 913–923 (2014).
    Google Scholar 
    Mustard, J. A., Jones, L. & Wright, G. A. GABA signaling affects motor function in the honey bee. J. Insect Physiol. 120, 103989 (2020).CAS 
    PubMed 

    Google Scholar 
    Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).CAS 
    PubMed 

    Google Scholar 
    Biswas, B. & Carlsson, A. Effect of intraperitoneally administered GABA on the locomotor activity of mice. Psychopharmacology 59, 91–94 (1978).CAS 
    PubMed 

    Google Scholar 
    Śmiałowski, A., Śmiałowska, M., Reichenberg, K., Byrska, B. & Vetulani, J. Motor depression and head twitches induced by IP injection of GABA. Psychopharmacology 69, 295–298 (1980).PubMed 

    Google Scholar 
    Tomonaga, S. et al. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res. Bull. 63, 75–82 (2004).CAS 
    PubMed 

    Google Scholar 
    Mena Gomez, M. A., Carlsson, A. & Garcia de Yebenes, J. The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J. Neural Transm. 43, 1–9 (1978).CAS 
    PubMed 

    Google Scholar 
    Hamasu, K. et al. l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37, 377–382 (2009).CAS 
    PubMed 

    Google Scholar 
    Barton-Browne, L. B. Water regulation in insects. Annu. Rev. Entomol. 9, 63–82 (1964).
    Google Scholar 
    Borycz, J., Borycz, J. A., Edwards, T. N., Boulianne, G. L. & Meinertzhagen, I. A. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp. Biol. 215, 1399–1411 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2, 75–98 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–1061 (1980).CAS 
    PubMed 

    Google Scholar 
    Wu, G. et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 40, 1053–1063 (2011).CAS 
    PubMed 

    Google Scholar 
    Boonstra, E. et al. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Harris, R. C. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30, 279–289 (2006).CAS 
    PubMed 

    Google Scholar 
    Hoffman, J. R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47, 627–636 (2015).CAS 
    PubMed 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B Biol. Sci. 284, 20162126 (2017).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017). More