More stories

  • in

    7000-year-old evidence of fruit tree cultivation in the Jordan Valley, Israel

    Garfinkel, Y., Ben-Shlomo, D. & Kuperman, T. Large-scale storage of grain surplus in the sixth millennium BC: The silos of Tel Tsaf. Antiquity 83, 309–325 (2009).Article 

    Google Scholar 
    Rosenberg, D., Garfinkel, Y. & Klimscha, F. Large-scale storage and storage symbolism in the Ancient Near East—a unique clay model of a silo from Tel Tsaf, Israel. Antiquity 91, 885–900 (2017).Article 

    Google Scholar 
    Ben-Shlomo, D., Hill, A. C. & Garfinkel, Y. Feasting between the revolutions: Evidence from chalcolithic Tel Tsaf, Israel. J. Mediterr. Archaeol. 22, 129–150 (2009).
    Google Scholar 
    Garfinkel, Y., Ben-Shlomo, D., Freikman, M. & Vered, A. Tel Tsaf: The 2004–2006 excavation seasons. Isr. Explor. J. 57, 1–33 (2007).
    Google Scholar 
    Freikman, M. & Garfinkel, Y. Sealings before cities: New evidence on the beginnings of administration in the Ancient Near East. Levant 49, 1–22 (2017).Article 

    Google Scholar 
    Freikman, M., Ben-Shlomo, D. & Garfinkel, Y. A. Stamped sealing from Middle Chalcolithic Tel Tsaf: Implications for the rise of administrative practices in the Levant. Levant 53, 1–12 (2021).Article 

    Google Scholar 
    Garfinkel, Y., Klimscha, F., Shalev, S. & Rosenberg, D. The beginning of metallurgy in the Southern Levant: A late 6th millennium calBC copper awl from Tel Tsaf, Israel. PLoS One 9, 1–6 (2014).
    Google Scholar 
    Graham, P. Archaeobotanical remains from late 6th/early 5th millennium BC Tel Tsaf, Israel. J. Archaeol. Sci. 43, 105–110 (2014).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. PNAS 106, 10966–10970 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: The archaeobotanical evidence from PPNA Dhra. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Palmisano, A. et al. Holocene landscape dynamics and long-term population trends in the Levant. Holocene 29, 708–727 (2019).ADS 
    Article 

    Google Scholar 
    Gophna, R. & Kislev, M. Finds at Tel-Saf (1977–1978). Rev. Bib. 86, 112–114 (1979).
    Google Scholar 
    Rosenberg, D. et al. Back to Tel Tsaf: A preliminary report on the 2013 season of the renewed project. J. Isr. Prehist. Soc. 44, 148–179 (2014).
    Google Scholar 
    Lipshchitz, N. Analysis of the botanical remains from Tel Tsaf. Tel Aviv 15, 52–54 (1988).Article 

    Google Scholar 
    Vita-Finzi, C. et al. Prehistoric economy in the Mount Carmel area of Palestine: Site catchment analysis. In Proceedings of the Prehistoric Society, Vol. 36 (Cambridge University Press, 1970) pp. 1–37.Prior, J. & Price-Williams, D. An investigation of climate change in the Holocene Epoch using archaeological charcoal from Swaziland, South Africa. J. Archaeol. Sci. 12, 457–475 (1985).Article 

    Google Scholar 
    Shackleton, C. M. & Prins, F. Charcoal analysis and the “Principle of Least Effort”—a conceptual model. J. Archaeol. Sci. 19, 631–637 (1992).Article 

    Google Scholar 
    Asouti, E. & Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 10, 11–18 (2005).Article 

    Google Scholar 
    Deckers, K. et al. Characteristics and changes in archaeology-related environmental data during the Third Millennium BC in Upper Mesopotamia. Collective comments to the data discussed during the Symposium. Publ. Inst. Français Études Anatoliennes 19, 573–580 (2007).
    Google Scholar 
    Marston, J. M. Modeling wood acquisition strategies from archaeological charcoal remains. J. Archaeol. Sci. 36, 2192–2200 (2009).Article 

    Google Scholar 
    Lev-Yadun, S. Wood remains from archaeological excavations: A review with a Near Eastern perspective. Isr. J. Earth Sci. 56, 139–162 (2007).CAS 
    Article 

    Google Scholar 
    Liphschitz, N. Timber in Ancient Israel Dendroarchaeology and Dendrochronology. Monograph Series of the Institute of Archaeology of Tel Aviv University 26 (Tel Aviv, 2007).Sitry, I. & Langgut, D. Wooden objects from the colt collection—Shivta. Michmanim 28, 31–46 (2019).
    Google Scholar 
    Srebro, H. & Soffer, T. The New Atlas of Israel: The National Atlas (Survey of Israel; The Hebrew University of Jerusalem, 2011).
    Google Scholar 
    Gophna, R. & Sadeh, S. Excavations at Tel Tsaf: An early Chalcolithic site in the Jordan Valley. Tel Aviv. 15–16, 3–36 (1988–89).Garfinkel, Y., Ben-Shlomo, D. & Freikman, M. Excavations at Tel Tsaf 2004–2007: Final Report, Volume 1 (Ariel University Press, 2020).
    Google Scholar 
    Rosenberg, D., Pinsky, S. & Klimscha, F. “The renewed research project at Tel Tsaf, Jordan Valley—2013–2019” in Hadashot Arkeologiyot—Excavations and Surveys in Israel, p. 133 (2021).Gopher, A. The Pottery Neolithic in the southern Levant—a second Neolithic revolution. In Village Communities of the Pottery Neolithic Period in the Menashe Hills, Israel (ed. Gopher, A.) 1525–1611 (Tel Aviv University, 2012).
    Google Scholar 
    Streit, K. & Garfinkel, Y. Tel Tsaf and the impact of the Ubaid Culture on the Southern Levant: Interpreting the radiocarbon evidence. Radiocarbon 57, 865–880 (2015).Article 

    Google Scholar 
    Streit, K. & Garfinkel, Y. A specialized ceramic assemblage for water pulling: The Middle Chalcolithic well of Tel Tsaf, Israel. BASOR 374, 61–73 (2015).
    Google Scholar 
    Garfinkel, Y. Proto-historic courtyard buildings in the southern Levant. In Neolithic and Chalcolithic Archaeology in Eurasia: Building Techniques and Spatial Organization (ed. Gheorghiu, D.) 35–41 (BAR International Series, 2010).
    Google Scholar 
    Zohary, M. Geobotanical Foundations of the Middle East (Gustav Gischer Verlag, 1973).
    Google Scholar 
    Bar-Matthews, M. & Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21, 163–171 (2011).ADS 
    Article 

    Google Scholar 
    Fahn, A., Werker, E. & Baas, P. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions (The Israel Academy of Sciences and Humanities, 1986).
    Google Scholar 
    Schweingruber, F. H. Anatomy of European Woods (Verlag Paul Haupt, 1990).
    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Zohary, M. Plant Life of Palestine: Israel and Jordan (Ronald Press Co, 1962).
    Google Scholar 
    Asouti, E. & Hather, J. Charcoal analysis and the reconstruction of ancient woodland vegetation in the Konya Basin, south-central Anatolia, Turkey: Results from the Neolithic site of Çatalhöyük East. Veg. Hist. Archaeobot. 10, 23–32 (2001).Article 

    Google Scholar 
    Thery-Parisot, I., Chabal, L. & Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclim. Palaeoecol. 291, 142–153 (2010).ADS 
    Article 

    Google Scholar 
    Langgut, D. et al. The earliest near-eastern wooden spinning implements. Antiquity 90, 973–990 (2016).Article 

    Google Scholar 
    Langgut, D., Tepper, Y., Benzaquen, M., Erickson-Gini, T. & Bar-Oz, G. Environment and horticulture in the Byzantine Negev Desert, Israel: Sustainability, prosperity and enigmatic decline. Quat. Int. 593, 160–177 (2021).Article 

    Google Scholar 
    Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).Book 

    Google Scholar 
    Weiss, E. Beginnings of fruit growing in the Old World two generations later. Isr. J. Plant Sci. 62, 75–85 (2015).Article 

    Google Scholar 
    Benzaquen, M., Finkelstein, I. & Langgut, D. Vegetation history and human Impact on the environs of Tel Megiddo in the Bronze and Iron Ages (ca 3,500–500 BCE): A dendroarchaeological analysis. Tel Aviv. 49, 1–23 (2019).
    Google Scholar 
    Carrión, Y., Ntinou, M. & Bada, E. Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).ADS 
    Article 

    Google Scholar 
    Lavee, S. & Zohary, D. The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr. J. Plant Sci. 59, 3–13 (2011).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 602–922 (2019).Article 

    Google Scholar 
    Neef, R. Introduction, development and environmental implications of olive culture: The evidence from Jordan. In Man’s Role in the Shaping of the Eastern Mediterranean Landscape (eds Bottema, S. et al.) 295–306 (Rotterdam, 1990).
    Google Scholar 
    Meadows, J. Olive domestication at Teleilat Ghassul. In Archaeology of the Near East: An Australian Perspective (eds Hopkins, L. & Parker, A.) 13–18 (University of Sydney, 2001).
    Google Scholar 
    Dighton, A., Fairbairn, A., Bourke, S., Faith, J. T. & Habgood, P. Bronze Age olive domestication in the north Jordan valley: New morphological evidence for regional complexity in early arboricultural practice from Pella in Jordan. Veg. Hist. Archaeobot. 26, 403–413 (2017).Article 

    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Coastal paleoenvironments and prehistory of the Submerged Pottery Neolithic Settlement of Kfar Samir (Israel). Paléorient 44, 113–132 (2018).
    Google Scholar 
    Namdar, D., Amrani, A., Getzov, N. & Milevski, I. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, northern Israel. Isr. J. Plant Sci. 62, 65–74 (2015).Article 

    Google Scholar 
    Galili, E. et al. Early production of Table Olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Epstein, C. Oil production in the Golan Heights during the Chalcolithic period. Tel Aviv. 20, 133–146 (1993).Article 

    Google Scholar 
    Eitam, D. Between the [olive] rows, oil will be produced, presses will be trod…. (Job 24, 11). In La Production du Vin et l’Huile en Mediterranée:[Actes du Symposium International, (Aix-en-Provence et Toulon, 20-22 Novembre 1991 (Bulletin de correspondence hellénique, Supplementary 26) (eds Amouretti, M. C. & Brun, J. P.) 65–90 (Ecole Francaise d’Athènes, 1993).
    Google Scholar 
    Schiebel, V. Vegetation and Climate History of the Southern Levant During the Last 30000 Years Based on Palynological Investigation (University of Bonn, 2013) PhD Dissertation.Litt, T., Ohlwein, C., Neumann, F. H., Hense, A. & Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).ADS 
    Article 

    Google Scholar 
    Van Zeist, W., Baruch, U. & Bottema, S. Holocene palaeoecology of the Hula area, Northeastern Israel. In A Timeless Vale, Archaeological and Related Essays on the Jordan Valley (eds Kaptijn, K. & Petit, L. P.) 29–64 (Leiden University Press, 2009).
    Google Scholar 
    Neumann, F., Schölzel, C., Litt, T., Hense, A. & Stein, M. Holocene vegetation and climate history of the northern Golan heights (Near East). Veg. Hist. Archaeobot. 16, 329–346 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).PubMed 
    Article 

    Google Scholar 
    Moriondo, M. et al. Olive trees as bio-indicators of climate evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 22, 818–833 (2013).Article 

    Google Scholar 
    Langgut, D., Cheddadi, R. & Sharon, G. Climate and environmental reconstruction of the Epipaleolithic Mediterranean Levant (22.0-11.9 ka cal. BP). Quat. Sci. Rev. 270, 107170 (2021).Article 

    Google Scholar 
    Zinger, A. Olive Cultivation 145th edn. (Israel Ministry of Agriculture, 1995) (in Hebrew).
    Google Scholar 
    Miller, N. F. Sweeter than wine? The use of the grape in early western Asia. Antiquity 82, 937–946 (2008).Article 

    Google Scholar 
    Fuller, D. Q. & Stevens, C. J. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Veg. Hist. Archaeobot. 28, 263–282 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lev-Yadun, S. The common fig (Ficus carica) remains in the archaeological record and its domestication processes. In The Fig: Advances in Research and Sustainable Production (eds Flaishman, M. A. & Aksoy, U.) 11–25 (CABI, 2022).
    Google Scholar 
    Flaishman, M., Rodov, V. & Stover, E. The fig: Botany, horticulture and breeding. Hortic. Rev. 34, 113–196 (2008).CAS 
    Article 

    Google Scholar 
    Langgut, D., Lev-Yadun, S. & Finkelstein, I. The Impact of olive orchard abandonment and rehabilitation on pollen signature: An experimental approach to evaluating fossil pollen data. Ethnoarchaeology 6, 121–135 (2014).Article 

    Google Scholar 
    Hobbs, J. J. Bedouin Life in the Egyptian Wilderness (University of Texas Press, 1989).
    Google Scholar 
    Andersen, G. L. et al. Traditional nomadic tending of trees in the Red Sea Hills. J. Arid Environ. 106, 36–44 (2014).ADS 
    Article 

    Google Scholar 
    Mor, E. Reconstructing Tel Bet Yerah’s Natural and Anthropogenic Environment During the Early Bronze Age Through Wood Remains (Tel Aviv University, 2022) MA Thesis, in Hebrew with English abstract.Kislev, M. E., Hartman, A. & Bar-Yosef, O. Early domesticated fig in the Jordan Velley. Science 312, 1372–1374 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lev-Yadun, S., Neeman, G., Abbo, S. & Flaishman, M. A. Comment on “Early Domesticated Fig in the Jordan Valley”.. Science 314, 1683a (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Denham, T. Early fig domestication, or gathering of wild parthenocarpic figs?. Antiquity 81, 457–461 (2007).Article 

    Google Scholar 
    Abbo, S., Gopher, A. & Lev-Yadun, S. Fruit domestication in the near east. Plant Breed. Rev. 39, 325–377 (2015).
    Google Scholar 
    Gopher, A., Lev-Yadun, S. & Abbo, S. Breaking Ground. Plant Domestication in the Neolithic Levant: The “Core-Area—One-Event” Model Emery and Claire Yass Publications in Archaeology (Tel Aviv University, Tel Aviv, The Institute of Archaeology, 2021).
    Google Scholar 
    Shennan, S. Property and wealth inequality as cultural niche construction. Philos. Trans. R. Soc. B. Biol. Sci. 366, 918–926 (2011).Article 

    Google Scholar 
    Twiss, K. The archaeology of food and social diversity. J. Archaeol. Res. 20, 357–395 (2012).Article 

    Google Scholar 
    Bowles, S. & Choi, J. K. Coevolution of farming and private property during the early Holocene. Proc. Natl. Acad. Sci. 110, 8830–8835 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).Article 

    Google Scholar 
    Khalil, E. L. Symbolic products: Prestige, pride and identity goods. Theory Decis. 49, 53–77 (2000).MATH 
    Article 

    Google Scholar 
    Nelissen, R. M. & Meijers, M. H. Social benefits of luxury brands as costly signals of wealth and status. Evol. Hum. Behav. 32, 343–355 (2011).Article 

    Google Scholar 
    Plourde, A. M. The origins of prestige goods as honest signals of skill and knowledge. Hum. Nat. 19, 374–388 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, B. The proof is in the pudding: Feasting and the origins of domestication. Curr. Anthropolac. 50, 597–601 (2009).Article 

    Google Scholar 
    Yahalom-Mack, N. et al. The earliest lead object in the levant. PLoS One 10, e0142948 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mayshar, J., Moav, M., Neeman, Z. & Pascali, L. The origin of the state: Land productivity or appropriability. J. Polit. Econ. 130, 1091–1144 (2022).Article 

    Google Scholar 
    Langgut, D. & Sasi, A. The emergence of fruit tree horticulture in Chalcolithic southern Levant. In (Ben-Yosef, E., Jones, I. Eds) And in Length of Days Understanding” (Job 12:12)—Essays on Archaeology in the 21st Century in Honor of Thomas E. Levy (In Press). More

  • in

    A common sunscreen ingredient turns toxic in the sea — anemones suggest why

    Sea anemones turn oxybenzone into a light-activated agent that can bleach and kill corals.Credit: Georgette Douwma/Getty

    A common but controversial sunscreen ingredient that is thought to harm corals might do so because of a chemical reaction that causes it to damage cells in the presence of ultraviolet light. Researchers have discovered that sea anemones, which are similar to corals, make the molecule oxybenzone water-soluble by tacking a sugar onto it. This inadvertently turns oxybenzone into a molecule that — instead of blocking UV light — is activated by sunlight to produce free radicals that can bleach and kill corals. “This metabolic pathway that is meant to detoxify is actually making a toxin,” says Djordje Vuckovic, an environmental engineer at Stanford University in California, who was part of the research team. The animals “convert a sunscreen into something that’s essentially the opposite of a sunscreen”.Oxybenzone is the sun-blocking agent in many suncreams. Its chemical structure causes it to absorb UV rays, preventing damage to skin cells. But it has attracted controversy in recent years after studies reported that it can damage coral DNA, interfere with their endocrine systems and cause deformities in their larvae2. These concerns have led to some beaches in Hawaii, Palau and the US Virgin Islands, banning oxybenzone-containing sunscreens. Last year, the US National Academies of Sciences, Engineering, and Medicine convened a committee to review the science on sunscreen chemicals in aquatic ecosystems; its report is expected in the next few months.The latest study, published on 5 May in Science1, highlights that there has been little research into the potentially toxic effects of the by-products of some substances in sunscreens, says Brett Sallach, an environmental scientist at the University of York, UK. “It’s important to track not just the parent compound, but these transformed compounds that can be toxic,” he says. “From a regulatory standpoint, we have very little understanding of what transformed products are out there and their effects on the environment.”But other factors also threaten the health of coral reefs; these include climate change, ocean acidification, coastal pollution and overfishing that depletes key members of reef ecosystems. The study does not show where oxybenzone ranks in the list.Simulated seaTo understand oxybenzone’s effects, Vuckovic, environmental engineer William Mitch at Stanford and their colleagues turned to sea anemones, which are closely related to corals, and similarly harbour symbiotic algae that give them colour.The researchers exposed anemones with and without the algae to oxybenzone in artificial seawater, and illuminated them with light — including the UV spectrum — that mimicked the 24-hour sunlight cycle. All the animals exposed to both the chemical and sunlight died within 17 days. But those exposed to sunlight without oxybenzone or to oxybenzone without UV light lived.Oxybenzone alone did not produce dangerous reactive molecules when exposed to sunlight, as had been expected, so the researchers thought that the molecule might be metabolized in some way. When they analysed anemone tissues, they found that the chemical bound to sugars accumulated in them, where it triggered the formation of oxygen-based free radicals that are lethal to corals. “Understanding this mechanism could help identify sunscreen molecules without this effect,” Mitch says.The sugar-bound form of oxybenzone amassed at higher levels in the symbiotic algae than in the anemones’ own cells. Sea anemones lacking algae died around a week after exposure to oxybenzone and sunlight, compared with 17 days for those with algae. That suggests the algae protected the animals from oxybenzone’s harmful effects.Corals that have been subject to environmental stressors such as changing temperatures often become bleached, losing their symbiotic algae. “If they’re weaker in this state, rising sea water temperature or ocean acidification might make them more susceptible to these local, anthropogenic contaminants,” Mitch says.Greater dangerIt’s not clear how closely these laboratory-based studies mimic the reality of reef ecosystems. The concentration of oxybenzone at a coral reef can vary widely, depending on factors such as tourist activity and water conditions. Sallach points out that the concentrations used in the study are more like “worst-case exposure” than normal environmental conditions.The study lacks “ecological realism”, agrees Terry Hughes, a marine biologist at James Cook University in Townsville, Australia. Coral-bleaching events on Australia’s Great Barrier Reef, for example, have been linked more closely to trends in water temperature than to shifts in tourist activity. “Mass bleaching happens regardless of where the tourists are,” Hughes says. “Even the most remote, most pristine reefs are bleaching because water temperatures are killing them.”Hughes emphasizes that the greatest threats to reefs remain rising temperatures, coastal pollution and overfishing. Changing sunscreens might not do much to protect coral reefs, Hughes says. “It’s ironic that people will change their sunscreens and fly from New York to Miami to go to the beach,” he says. “Most tourists are happy to use a different brand of sunscreen, but not to fly less and reduce carbon emissions.” More

  • in

    Ungulates on the move

    Joly, K. et al. Sci. Rep. 9, 15333 (2019).Article 

    Google Scholar 
    Shaw, A. K. Evol. Ecol 30, 991–1007 (2016).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Science 344, 1242552 (2014).CAS 
    Article 

    Google Scholar 
    Abraham, J. O., Upham, N. S., Damian-Serrano, A. & Jesmer, B. R. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01749-4 (2022).Article 

    Google Scholar 
    Middleton, A. D. et al. Oikos 127, 1060–1068 (2018).Article 

    Google Scholar 
    Hein, A. M., Hou, C. & Gillooly, J. F. Ecol. Lett. 15, 104–110 (2012).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Science 292, 686–693 (2001).CAS 
    Article 

    Google Scholar 
    Edwards, E. J. et al. Science 328, 587–591 (2010).CAS 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Curr. Biol. 30, 3444–3449 (2020).CAS 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Ecol. Lett. 22, 1797–1805 (2019).Article 

    Google Scholar 
    Jesmer, B. R. et al. Science 361, 1023–1025 (2018).CAS 
    Article 

    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. & Berger, J. Endanger. Species Res. 7, 55–76 (2009).Article 

    Google Scholar 
    Aikens, E. O. et al. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Doughty, C. E. et al. Ecography 43, 1107–1117 (2020).Article 

    Google Scholar 
    Kauffman, M. J. et al. Science 372, 566–569 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Elevated fires during COVID-19 lockdown and the vulnerability of protected areas

    Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdfCorlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).Article 

    Google Scholar 
    Singh, R. et al. Impact of the COVID-19 pandemic on rangers and the role of rangers as a planetary health service. Parks 27, 119–134 (2021).Article 

    Google Scholar 
    Hockings, M. et al. COVID‐19 and protected and conserved areas. Parks 26, 7–24 (2020).Article 

    Google Scholar 
    Waithaka, J. The Impact of COVID-19 Pandemic on Africa’s Protected Areas Operations and Programmes (IUCN, 2020); https://www.iucn.org/sites/dev/files/content/documents/2020/report_on_the_impact_of_covid_19_doc_july_10.pdfLindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Amador-Jiménez, M., Millner, N., Palmer, C., Pennington, R. T. & Sileci, L. The unintended impact of Colombia’s COVID-19 lockdown on forest fires. Environ. Resour. Econ. 76, 1081–1105 (2020).Article 

    Google Scholar 
    Poulter, B., Freeborn, P. H., Matt Jolly, W. & Morgan Varner, J. COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc. Natl Acad. Sci. USA 118, e2015666118 (2021).Article 
    CAS 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    CAS 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    Tabor, K. et al. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny–Zahemena Corridor, Madagascar. PLoS ONE 12, e0190119 (2017).Article 
    CAS 

    Google Scholar 
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 
    Article 

    Google Scholar 
    Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).CAS 
    Article 

    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).CAS 
    Article 

    Google Scholar 
    Turco, M. et al. Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9, 2718 (2018).Article 
    CAS 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    Article 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    Jones, J. P. G. et al. Last chance for Madagascar’s biodiversity. Nat. Sustain. 2, 350–352 (2019).Article 

    Google Scholar 
    Gardner, C. J. et al. The rapid expansion of Madagascar’s protected area system. Biol. Conserv. 220, 29–36 (2018).Article 

    Google Scholar 
    Hockley, N., Mandimbiniaina, R. & Rakotonarivo, O. S. Fair and equitable conservation: do we really want it, and if so, do we know how to achieve it? Madag. Conserv. Dev. 13, 3–5 (2018).Article 

    Google Scholar 
    Corson, C. in Conservation and Environmental Management in Madagascar (ed. Scales, I. R.) 193–215 (Routledge, 2014).Davies, B. et al. Community factors and excess mortality in first wave of the COVID-19 pandemic in England. Nat. Commun. 12, 3755 (2021).CAS 
    Article 

    Google Scholar 
    Kull, C. A. & Lehmann, C. E. R. in The New Natural History of Madagascar (ed. Goodman, S. M.) 197–203 (Princeton Univ. Press, in the press).Razafindrakoto, M., Roubaud, F. & Wachsberger, J.-M. Puzzle and Paradox: A Political Economy of Madagascar (Cambridge Univ. Press, 2020).Ruggiero, P. G. C., Pfaff, A., Nichols, E., Rosa, M. & Metzger, J. P. Election cycles affect deforestation within Brazil’s Atlantic Forest. Conserv. Lett. 14, e12818 (2021).Article 

    Google Scholar 
    Morpurgo, J., Kissling, W. D., Tyrrell, P., Negret, P. J. & Allan, J. R. The role of elections as drivers of tropical deforestation. Preprint at bioRxiv https://doi.org/10.1101/2021.05.04.442551 (2021).Tourism in Madagascar (WorldData, 2021); https://www.worlddata.info/africa/madagascar/tourism.phpRapport annuel d’activites 2018 (Madagascar National Parks, 2018).Vyawahare, M. As minister and activists trade barbs, Madagascar’s forests burn. Mongabay (17 December 2020).Cochrane, M. A. in Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (ed. Cochrane, M. A.) 389–426 (Springer-Verlag, 2009); https://doi.org/10.1007/978-3-540-77381-8_14Cochrane, M. A. in Tropical Rainforest Responses to Climatic Change (eds Bush, M. et al.) 213–240 (Springer, 2011); https://doi.org/10.1007/978-3-642-05383-2_7Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE 11, e0159691 (2016).Article 
    CAS 

    Google Scholar 
    Madagascar Economic Update: COVID-19 Increases Poverty, a New Reform Momentum is Needed to Build Back Stronger (World Bank, 2020); https://www.worldbank.org/en/country/madagascar/publication/madagascar-economic-update-covid-19-increases-poverty-a-new-reform-momentum-is-needed-to-build-back-strongerBaker, A. Climate, not conflict. Madagascar’s famine is the first in modern history to be solely caused by global warming. Time (20 July 2021).Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in Madagascar. Conserv. Sci. Pract. 1, e107 (2019).
    Google Scholar 
    Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest. Conserv. Biol. 27, 155–165 (2013).Article 

    Google Scholar 
    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: how important is management? Conserv. Lett. 12, e12650 (2019).Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The new VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).Article 

    Google Scholar 
    Forest Monitoring Designed for Action (Global Forest Watch, 2021); https://www.globalforestwatch.org/Musinsky, J. et al. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv 4, 189–196 (2018).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, e2011160118 (2021).CAS 
    Article 

    Google Scholar 
    Global Economic Prospects, June 2021 (World Bank, 2021).Razanatsoa, E. et al. Fostering local involvement for biodiversity conservation in tropical regions: lessons from Madagascar during the COVID‐19 pandemic. Biotropica 53, 994–1003 (2021).Article 

    Google Scholar 
    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).CAS 
    Article 

    Google Scholar 
    ArcGIS 10.8 for Desktop (ESRI, 2021).Python Language Reference v.3.8.5 (Python Software Foundation, 2021); http://www.python.orgR Core Team R: A Language and Environment for Statistical Computing. R version 4.0.2 (R Foundation for Statistical Computing, 2020); https://www.R-project.org/Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.netGoodman, S. M., Raherilalao, J. M. & Wohlhauser, S. The Terrestrial Protected Areas of Madagascar: Their History, Description, and Biota (Association Vahatra, 2018).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    NRT VIIRS 375 m Active Fire Product VNP14IMGT (NASA, 2020); https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002Chen, D., Shevade, V., Baer, A. E. & Loboda, T. V. Missing burns in the high northern latitudes: the case for regionally focused burned area products. Remote Sens. 13, 4145 (2021).Article 

    Google Scholar 
    Schroeder, W. & Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4 (NASA, 2018).Global Precipitation Measurement: Precipitation Data Directory (NASA, 2020); https://gpm.nasa.gov/data/directoryGlobal Precipitation Measurement: The Tropical Rainfall Measuring Mission (TRMM) (NASA, 2020) https://gpm.nasa.gov/missions/trmmHantson, S. et al. Rare, intense, big fires dominate the global tropics under drier conditions. Sci. Rep. 7, 14374 (2017).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).Joseph, M. B. et al. Spatiotemporal prediction of wildfire extremes with Bayesian finite sample maxima. Ecol. Appl. 29, e01898 (2019).Article 

    Google Scholar 
    Guo, F. et al. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. J. For. Res. 27, 379–388 (2016).Article 

    Google Scholar 
    Garay, A. M., Hashimoto, E. M., Ortega, E. M. M. & Lachos, V. H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 55, 1304–1318 (2011).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).
    Google Scholar 
    Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).Article 

    Google Scholar 
    Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28 (2021). More

  • in

    Publisher Correction: Healing the land and the academy

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A whole-ecosystem experiment reveals flow-induced shifts in a stream community

    Study areaThe study was conducted in the headwaters of the Chalpi Grande River watershed, 95 km2, located inside the Cayambe-Coca National Park in the northern Andes of Ecuador at an elevation range of 3789 to 3835 m (S 0°16′ 45″, W 78° 4′49″). This watershed harbors the primary water supply system for Quito. The system includes two reservoirs and 10 water intakes placed on first and second-order streams that, altogether, provide 39% of Quito’s water supply28. We monitored the Chalpi Norte stream for ~1.5 years prior to conducting our experiment for ~0.5 years (176 days), and ~0.4 years after the manipulation. Further, in the nearby area, we monitored 21 stream sites distributed upstream and downstream water intakes from the supply system (Fig. S4).Experiment for flow manipulation and monitoring flow reduction and recoveryWe conducted our experimental flow manipulation between October 2018 and April 2019 in a mainly rain-fed stream45. The experiment manipulated natural flows encompassing stable low flows and sporadic spates characterizing the high temporal variability of headwaters45,28 (Figs. 2a, b and S1). We set up a full Before-After/Control- Impact (BACI) experiment29 to evaluate ecosystem variables under natural and manipulated flow conditions. We identified a free-flowing stream reach on the Chalpi Norte that was above any water intakes that allowed us to divert flow with an ecohydraulic structure31. The structure was located above a meander, which we used to divert flow and return it to the stream below the meander (Fig. S4). The experimental site was comprised of an upstream/free-flowing reach (L = 25 m) (reference conditions), located ~32 m above the ecohydraulic structure and a downstream/regulated reach (L = 97 m) located immediately below the flow manipulation structure (Fig. 1b–d)31. The control site was located in a free-flowing stream, a tributary of the Chalpi Norte stream, with an upstream reach separated from a downstream reach by a distance of 16 m. We manipulated the instantaneous flow of the Chalpi Norte stream through a series of fixed percentages using different v-notch weir pairs31. We started diversions to maintain in the meander 100, 80, 60, 50, 40, 30, and 20% of the incoming flow for 7-day periods (based on local observations of benthic algal colonization); then we maintained 10% of the upstream flow for 36 days. We started to return flow gradually to recover 20, 30, 40, 50, 60, 80, and 100% of the upstream flow. In response to a natural spate while we maintained the 10% of upstream flow, the manipulated flow briefly (during ~9 h) increased above the targeted reduction (i.e., 54% instead of 10%) (Fig. 2a). We registered the spate of flow on the upstream reach of the experimental site (Figs. 2b and S1).Stream monitoring in adjacent streamsWe monitored 21 stream sites between July 2017 and July 2019. We selected seven streams with water intakes placed on the main channel (Chalpi Norte, Gonzalito, Quillugsha 1, 2, 3, Venado, and Guaytaloma). We sampled one site upstream of the water intake and two sites (i.e., 10 m and 500 m) downstream to obtain a wide range of flow reduction levels (Fig. S4) (see, 30 for further details on stream sites).Global literature surveyWe performed a systematic literature review to explore benthic algae responses to flow alterations (increase or decrease), focusing on cyanobacteria in streams. We used ISI Web of Science, Google Scholar, and Google Search for the entries: “benthic cyanobacteria” + “stream”, and “river”, “benthic algal bloom” + “flow” and all available combinations (Table S1). We selected papers containing information on benthic cyanobacteria and algae biomass and flow or water level measurements; specifically, we explored detailed information regarding experiments, spatial studies with upstream and downstream sites, and temporal replicates, as well seasonal associated benthic cyanobacteria blooms. We used published and/or publicly available data to calculate the percent of flow alteration in streams and calculated a factor on cyanobacteria biomass increase or decrease (quantitative studies) according to reported baseline conditions (either temporal or spatial). Only three out of 53 study sites reported a qualitative decrease in benthic cyanobacteria biomass attributable to flow reduction (Fig. 1d). Most studies (94%, n = 50) reported biomass increases with flow reductions. Among these studies sites, 44% reported qualitative observations where low flows were proposed as one of the environmental drivers responsible for benthic cyanobacteria blooms. While 66% of study sites (n = 33) related cyanobacterium biomass increase in time or space due to flow reductions caused by droughts, extreme low flow events, water abstractions, and experimental flumes manipulations.Abiotic and biotic variables sampling and analysesWater level sensors recording every 30 min (HOBO U40L, Onset USA) were installed at both upstream and downstream sites of water intakes, and on the experimental and control stream reaches (BACI desing), where we conducted multiple wading-rod flow measurements to convert water level into discharge via stage-discharge relationships (ADC current meter, OTT Hydromet, Germany). Streamwater’s physical and chemical in situ parameters (i.e., pH, temperature, conductivity, dissolved oxygen) were measured three times during biotic sampling on both stream sites and adjacent streams using a portable sonde (YSI, Xylem, USA). We collected water samples (500 ml) during in situ samplings to analyze nutrients (i.e., nitrate and phosphate) at the water supply company’s (EPMAPS) laboratory. We also measured precipitation from a rain gauge (HOBO Onset USA) installed in the Chalpi Norte stream.Our biotic variables included three benthic algae: cyanobacteria, diatoms, and green algae), and aquatic invertebrates biomass (Table 1). To measure Chl-a from cyanobacteria and benthic algae on artificial substrates, we used a BenthoTorch® (bbe Moldaenke GmbH, Germany) on unglazed ceramic plates (200 mm × 400 mm) with a grid of 25 squares of 2500 mm2 to allow algal accrual on a standardized surface. We allowed 21 days for colonization (based on previous observations) and then we placed all substrates5 at the beginning of the experiment. We performed five readings on five squares randomly selected within each plate. To consider the effect of benthic invertebrates to flow variations, we sampled stream sites using a Surber net (mesh size = 250 µm, area = 0.0625 m2). On the experimental and control sites we measured biotic, physical, and chemical in situ parameters every two days (n = 1760), and nutrients and invertebrates every seven days (n = 500) for the duration of the flow manipulation (~0.5 years). On the monitored sites, we measured biotic, physical, and chemical in situ parameters every seven days (n = 1456) and nutrients and invertebrates every 30 days (n = 336). To evaluate differences we calculated mean abiotic and biotic variables during the different phases (BL: baseline, FR: flow reduction, FI: gradual reset to initial flow) in the four-stream reaches to apply the BACI design29: upstream and downstream reaches on the experimental and control sites. We applied a paired one-tail t-test at α = 0.05 to compare FR and FI phases to baseline conditions, based on the expected direction of the response 1,14.Statistics and reproducibilityTo quantify the relationships between environmental variables and cyanobacteria biomass under manipulated and natural flow conditions, including interaction among algae and with invertebrates, we used multivariate autoregressive state-space modeling (MARSS)14,30. We fitted models with Gaussian errors for flow, conductivity, pH, water temperature, nitrate, phosphate, cyanobacteria, benthic algae, and invertebrate biomass time series via maximum likelihood (MARSS R-package)48. The state processes Xt includes state measurements for all four benthic components (cyanobacteria, diatoms, green algae, and invertebrates’ biomasses) considering the interactions between benthic components and environmental covariates (flow, conductivity, pH, water temperature, nitrate, phosphate) evolving through time, as follows:$${X}_{t}={{BX}}_{t-1}+U+{C}_{{Ct}}+{W}_{t}; {W}_{t} sim {MVN}(0,Q)$$
    (1)
    $${Y}_{t}={{ZX}}_{t}+{V}_{t} ; {V}_{t} sim {MVN}(0,R)$$
    (2)
    with Xt a matrix of states at time t, Yt a matrix of observations at time t, Wt a matrix of process errors (multivariate normally distributed with mean 0 and variance Q), Vt is a matrix of observation errors (normally distributed with mean 0 and variance R). Z is a matrix linking the observations Yt and the correspondent state Xt. B is an interaction matrix with inter-specific interaction (diatom and green algae) and with invertebrate strengths, Ct is a matrix of environmental variables (flow, conductivity, pH, water temperature, nitrate, phosphate) at time t. C is a matrix of coefficients indicating the effect of Ct to states Xt. U describes the mean trend. We computed a total of 12 models from the most complete to the simplest, the best-fitting model was identified as having the lowest Akaike Information Criterion adjusted for small sample sizes (AICc)14,30. To detect structural breaks in cyanobacteria biomass time series we calculated the differences between the smoothed state estimates at time t and t-1 based on the multivariate models. Sudden changes in the level were detected when the standardized smoothed state residuals exceed the 95% confidence interval for a t-distribution. We estimated the strength of environmental variables on cyanobacteria biomass and fitted models independently for each stream reach.To analyze cyanobacteria biomass across a gradient of flow alterations we compared weekly paired data (n = 1456) from upstream and downstream sites (i.e., at 10 m and 500 m). We thus calculated how much downstream site(s) biomass changed in comparison to upstream site biomass and assigned a factor for the increase or decrease. We determined the relative fraction of the instantaneous upstream flow in the downstream site measured within a 30-min time-step. We applied the same analysis to data from experiments obtained on the web search. We applied the Ramer–Douglas–Peucker (RDP) algorithm to find a breakpoint (ε lower distance to breakpoint) and the best line of fit for the local and global survey data distribution, we used the kmlShape-R package 48.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Carbon benefits of enlisting nature for crop protection

    Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).Article 

    Google Scholar 
    Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Labrie, G. et al. PLoS ONE 15, e0229136 (2020).CAS 
    Article 

    Google Scholar 
    Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).Article 

    Google Scholar 
    Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).Article 

    Google Scholar 
    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).ADS 
    Article 

    Google Scholar 
    Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).CAS 
    Article 

    Google Scholar 
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    Article 

    Google Scholar 
    Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).ADS 
    Article 

    Google Scholar 
    Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).ADS 
    Article 

    Google Scholar 
    Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).Article 

    Google Scholar 
    Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).CAS 
    Article 

    Google Scholar 
    van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).Article 

    Google Scholar 
    Herrero, M. et al. Nat. Food 1, 266–272 (2020).Article 

    Google Scholar 
    Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).Article 

    Google Scholar 
    Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).Article 

    Google Scholar  More

  • in

    Novel passive detection approach reveals low breeding season survival and apparent lactation cost in a critically endangered cave bat

    Odonnell, C. Population dynamics and survivorship in bats. In Ecology and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 158–176 (The Johns University Press, 2009).
    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Gibbons, J. W. & Andrews, K. M. PIT tagging: Simple technology at its best. Bioscience 54, 447–454 (2004).Article 

    Google Scholar 
    Ellison, L. E. et al. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus). Acta Chiropterologica 9, 149–160 (2007).Article 

    Google Scholar 
    van Harten, E. et al. High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats. Ecol. Evol. 9, 10916–10928 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schorr, R. A., Ellison, L. E. & Lukacs, P. M. Estimating sample size for landscape-scale mark-recapture studies of North American migratory tree bats. Acta Chiropterologica 16, 231–239 (2014).Article 

    Google Scholar 
    Baker, G. B. et al. The effect of forearm bands on insectivorous bats (Microchiroptera) in Australia. Wildl. Res. 28, 229–237 (2001).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Survival estimation in bats: Historical overview, critical appraisal, and suggestions for new approaches. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson, W. L.) 297–336 (Island Press, 2004).
    Google Scholar 
    O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). J. Mammal. 92, 433–443 (2011).Article 

    Google Scholar 
    Schorr, R. A. & Siemers, J. L. Population dynamics of little brown bats (Myotis lucifugus) at summer roosts: Apparent survival, fidelity, abundance, and the influence of winter conditions. Ecol. Evol. 11, 7427–7438 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J., Edmonds, H. & Hoare, J. M. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through a pest control operation using the toxin pindone in bait stations. N. Z. J. Ecol. 35, 291–295 (2011).
    Google Scholar 
    Edmonds, H., Pryde, M. & O’Donnell, C. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through an aerial 1080 pest control operation. N. Z. J. Ecol. 41, 186–192 (2017).
    Google Scholar 
    Reusch, C. et al. Differences in seasonal survival suggest species-specific reactions to climate change in two sympatric bat species. Ecol. Evol. 9, 7957–7965 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020-2. http://www.iucnredlist.org (2020).Lentini, P. E., Bird, T. J., Griffiths, S. R., Godinho, L. N. & Wintle, B. A. A global synthesis of survival estimates for microbats. Biol. Lett. 11, 20150371 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A., Linton, D. M. & Macdonald, D. W. Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community. Glob. Ecol. Conserv. 12, 263–271 (2017).Article 

    Google Scholar 
    Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    Schorcht, W., Bontadina, F. & Schaub, M. Variation of adult survival drives population dynamics in a migrating forest bat. J. Anim. Ecol. 78, 1182–1190 (2009).PubMed 
    Article 

    Google Scholar 
    Sendor, T. & Simon, M. Population dynamics of the pipistrelle bat: Effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol. 72, 308–320 (2003).Article 

    Google Scholar 
    Sripathi, K., Raghuram, H., Rajasekar, R., Karuppudurai, T. & Abraham, S. G. Population size and survival in the indian false vampire bat Megaderma lyra. Acta Chiropterologica 6, 145–154 (2004).Article 

    Google Scholar 
    Papadatou, E., Butlin, R. K., Pradel, R. & Altringham, J. D. Sex-specific roost movements and population dynamics of the vulnerable long-fingered bat, Myotis capaccinii. Biol. Conserv. 142, 280–289 (2009).Article 

    Google Scholar 
    López-Roig, M. & Serra-Cobo, J. Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul. Ecol. 56, 471–480 (2014).Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DELWP. National Recovery Plan for the Southern Bent-wing Bat Miniopterus orianae bassanii (2020).Lumsden, L. & Gray, P. Longevity record for a southern bent-wing bat Miniopterus schreibersii bassanii. Australas. Bat Soc. Newsl. 16, 43–44 (2001).
    Google Scholar 
    Holz, P. H. et al. Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses. PLoS ONE 13, e0197625 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Marenda, M. S., Browning, G. F. & Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 13, e0204282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F. & Hufschmid, J. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in south-eastern Australia. Int. J. Parasitol. Parasites Wildl. 7, 423–428 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Legione, A. R. & Hufschmid, J. Polychromophilus melanipherus and haemoplasma infections not associated with clinical signs in southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Int. J. Parasitol. Parasites Wildl. 8, 10–18 (2019).PubMed 
    Article 

    Google Scholar 
    Holz, P. H., Clark, P., McLelland, D. J., Lumsden, L. F. & Hufschmid, J. Haematology of southern bent-winged bats (Miniopterus orianae bassanii) from the Naracoorte Caves National Park, South Australia. Comp. Clin. Pathol. 29, 231–237 (2020).CAS 
    Article 

    Google Scholar 
    Dwyer, P. D. The population pattern of Miniopterus schreibersii (Chiroptera) in north-eastern New South Wales. Aust. J. Zool. 14, 1073–1137 (1966).Article 

    Google Scholar 
    Dwyer, P. D. Mortality factors of the bent-winged bat. Vic. Nat. 83, 31–36 (1966).
    Google Scholar 
    Dwyer, P. D. Seasonal changes in activity and weight of Miniopterus schreibersii blepotis (Chiroptera) in north-eastern NSW. Aust. J. Zool. 12, 52–69 (1964).Article 

    Google Scholar 
    Bureau of Meteorology. Drought archive. http://www.bom.gov.au/climate/drought/archive.shtml (2019).Dwyer, P. D. Population ranges of Miniopterus schreibersii (Chiroptera) in south-eastern Australia. Aust. J. Zool. 17, 665–686 (1969).Article 

    Google Scholar 
    Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 7370 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mammal. 76, 940–946 (1995).Article 

    Google Scholar 
    Reeder, D. M. et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE 7, e38920 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 3355–3363 (2011).Article 

    Google Scholar 
    van Harten, E. Population Dynamics of the Critically Endangered, Southern Bent-Winged Bat Miniopterus orianae bassanii (La Trobe University, 2020).
    Google Scholar 
    PIRSA. History of the south east drainage system – summary. https://www.pir.sa.gov.au/aghistory/natural_resources/water_resources_ag_dev/history_of_the_south_east_drainage_system_-_summary/history_of_the_south_east_drainage_system_-_summary#_ftnref2 (2017).Harding, C., Herpich, D. & Cranswick, R. H. Examining temporal and spatial changes in surface water hydrology of groundwater dependent ecosystems using WOfS (Water Observations from Space): Southern Border Groundwaters Agreement area, South East South Australia. (2018).Holz, P. H., Lumsden, L. F., Reardon, T., Gray, P. & Hufschmid, J. Does size matter? Morphometrics of southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Aust. Zool. AZ https://doi.org/10.7882/AZ.2019.019 (2020).Article 

    Google Scholar 
    Rashid, M. M. & Beecham, S. Characterization of meteorological droughts across South Australia. Meteorol. Appl. 26, 556–568 (2019).Article 

    Google Scholar 
    Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade-offs in long-lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunz, T. H., Whitaker, J. O. & Wadanoli, M. D. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia 101, 407–415 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J. Anim. Ecol. 77, 1115–1121 (2008).PubMed 
    Article 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).Article 

    Google Scholar 
    Lučan, R. & Radil, J. Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia (Bratisl.) 65 (2010).Amorim, F., Jorge, I., Beja, P. & Rebelo, H. Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecol. Evol. 8, 5801–5814 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J. Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. J. Zool. 257, 311–323 (2002).Article 

    Google Scholar 
    Holz, P. H., Stent, A., Lumsden, L. F. & Hufschmid, J. Trauma found to be a significant cause of death in a pathological investigation of bent-winged bats (Miniopterus orianae). J. Zoo Wildl. Med. 50, 966–971 (2020).PubMed 
    Article 

    Google Scholar 
    Hughes, P. M., Rayner, J. M. V. & Jonesg, G. Ontogeny of ‘true’ flight and other aspects of growth in the bat Pipistrellus pipistrellus. J. Zool. 236, 291–318 (1995).Article 

    Google Scholar 
    Wund, M. A. Learning and the development of habitat-specific bat echolocation. Anim. Behav. 70, 441–450 (2005).Article 

    Google Scholar 
    McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99, 1065–1071 (2018).Article 

    Google Scholar 
    Mispagel, C. et al. DDT and metabolites residues in the southern bent-wing bat (Miniopterus schreibersii bassanii) of south-eastern Australia. Chemosphere 55, 997–1003 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allinson, G. et al. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64, 1464–1471 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. https://doi.org/10.1002/ece3.5901 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherwin, H. A., Montgomery, W. I. & Lundy, M. G. The impact and implications of climate change for bats. Mammal Rev. 43, 171–182 (2013).Article 

    Google Scholar 
    O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: A global review. Mammal Rev. 46, 175–190 (2016).Article 

    Google Scholar 
    Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Assemblage-level analysis of sex-ratios in Coloradan bats in relation to climate variables: A model for future expectations. Glob. Ecol. Conserv. 14, e00379 (2018).Article 

    Google Scholar 
    Crichton, E. G., Seamark, R. F. & Krutzsch, P. H. The status of the corpus luteum during pregnancy in Miniopterus schreibersii (Chiroptera: Vespertilionidae) with emphasis on its role in developmental delay. Cell Tissue Res. 258, 183–201 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, I. C. The analysis of continuous mark-recapture data (Norwegian University of Science and Technology, 2006).
    Google Scholar 
    Barbour, A. B., Ponciano, J. M. & Lorenzen, K. Apparent survival estimation from continuous mark-recapture/resighting data. Methods Ecol. Evol. 4, 846–853 (2013).Article 

    Google Scholar 
    van Harten, E. et al. Recovery of southern bent-winged bats (Miniopterus orianae bassanii) after PIT-tagging and the use of surgical adhesive. Aust. Mammal. 42, 216–219 (2020).Article 

    Google Scholar 
    McDonald, T. L., Amstrup, S. C. & Manly, B. F. Tag loss can bias Jolly-Seber capture-recapture estimates. Wildl. Soc. Bull. 31, 814–822 (2003).
    Google Scholar 
    van Harten, E. et al. Low rates of PIT-tag loss in an insectivorous bat species. J. Wildl. Manag. 85, 1739–1743 (2021).Article 

    Google Scholar 
    Lebl, K. & Ruf, T. An easy way to reduce PIT-tag loss in rodents. Ecol. Res. 25, 251–253 (2010).Article 

    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Locatelli, A. G., Ciuti, S., Presetnik, P., Toffoli, R. & Teeling, E. Long-term monitoring of the effects of weather and marking techniques on body condition in the Kuhl’s pipistrelle bat, Pipistrellus kuhlii. Acta Chiropterologica 21, 87–102 (2019).Article 

    Google Scholar 
    Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).PubMed 
    Article 

    Google Scholar 
    Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 1469, 5–25 (2020).PubMed 
    Article 

    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Churchill, S. Australian Bats (Allen and Unwin, 2008).
    Google Scholar 
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. 25 (2013).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Caswell, H. Matrix population models. In Encyclopedia of Environmetrics (eds El-Shaarawi, A. H. & Piegorsch, W. W.) (Wiley, Berlin, 2006). https://doi.org/10.1002/9780470057339.vam006m.Chapter 

    Google Scholar 
    Dwyer, P. D. The breeding biology of Miniopterus schreibersii blepotis (Termminck) (Chiroptera) in north-eastern NSW. Aust. J. Zool. 11, 219–240 (1963).Article 

    Google Scholar 
    Richardson, E. G. The biology and evolution of the reproductive cycle of Miniopterus schreibersii and M. australis (Chiroptera: Vespertilionidae). J. Zool. 183, 353–375 (1977).Article 

    Google Scholar  More