More stories

  • in

    eDNA-based detection of the invasive crayfish Pacifastacus leniusculus in streams with a LAMP assay using dependent replicates to gain higher sensitivity

    Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. https://doi.org/10.1093/nar/28.12.e63 (2000).Article 

    Google Scholar 
    Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).CAS 
    Article 

    Google Scholar 
    Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T. & Notomi, T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem. 47, 1742–1743 (2001).CAS 
    Article 

    Google Scholar 
    Thai, H. T. C. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1956–1961. https://doi.org/10.1128/jcm.42.5.1956-1961.2004 (2004).CAS 
    Article 

    Google Scholar 
    Geojith, G., Dhanasekaran, S., Chandran, S. P. & Kenneth, J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J. Microbiol. Methods 84, 71–73. https://doi.org/10.1016/j.mimet.2010.10.015 (2011).CAS 
    Article 

    Google Scholar 
    Saengsawang, N. et al. Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine. Analyst 145, 8077–8086. https://doi.org/10.1039/d0an01306d (2020).CAS 
    Article 

    Google Scholar 
    Yoshikawa, R. et al. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. Plos Neglect. Trop. Dis. 14, 14. https://doi.org/10.1371/journal.pntd.000885 (2021).Article 

    Google Scholar 
    Kim, J. et al. Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS ONE 16, 11. https://doi.org/10.1371/journal.pone.0244753 (2021).CAS 
    Article 

    Google Scholar 
    Hongjaisee, S. et al. Rapid visual detection of hepatitis C virus using a reverse transcription loop-mediated isothermal ampli fi cation assay. Int. J. Infect. Dis. 102, 440–445. https://doi.org/10.1016/j.ijid.2020.10.082 (2021).CAS 
    Article 

    Google Scholar 
    Niessen, L. & Vogel, R. F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 140, 183–191. https://doi.org/10.1016/j.ijfoodmicro.2010.03.036 (2010).CAS 
    Article 

    Google Scholar 
    Ren, W. C., Liu, N. & Li, B. H. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop Prot. 141, 6. https://doi.org/10.1016/j.cropro.2020.105452 (2021).CAS 
    Article 

    Google Scholar 
    Kong, G. H. et al. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 139, 6. https://doi.org/10.1016/j.cropro.2020.105370 (2021).CAS 
    Article 

    Google Scholar 
    Zhou, Q. J. et al. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. J. Fish Dis. https://doi.org/10.1111/jfd.13325 (2020).Article 

    Google Scholar 
    Huang, H. L. et al. Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay, China. J. Microbiol. Methods 168, 7. https://doi.org/10.1016/j.mimet.2019.105801 (2020).CAS 
    Article 

    Google Scholar 
    Sridapan, T. et al. Rapid detection of Clostridium perfringens in food by loop-mediated isothermal amplification combined with a lateral flow biosensor. PLoS ONE 16, 14. https://doi.org/10.1371/journal.pone.0245144 (2021).CAS 
    Article 

    Google Scholar 
    Xiong, X. et al. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar). J. Food Compos. Anal. 95, 7. https://doi.org/10.1016/j.jfca.2020.103659 (2021).CAS 
    Article 

    Google Scholar 
    Huang, C. G., Hsu, J. C., Haymer, D. S., Lin, G. C. & Wu, W. J. Rapid identification of the Mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239–1246 (2009).CAS 
    Article 

    Google Scholar 
    Ide, T., Kanzaki, N., Ohmura, W. & Okabe, K. Molecular identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 109, 1410–1414. https://doi.org/10.1093/jee/tow030 (2016).CAS 
    Article 

    Google Scholar 
    Stainton, K., Hall, J., Budge, G. E., Boonham, N. & Hodgetts, J. Rapid molecular methods for in-field and laboratory identification of the yellow-legged Asian hornet (Vespa velutina nigrithorax). J. Appl. Entomol. 142, 610–616. https://doi.org/10.1111/jen.12506 (2018).CAS 
    Article 

    Google Scholar 
    Agarwal, A., Cunningham, J. P., Valenzuela, I. & Blacket, M. J. A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci. Rep. 10, 10. https://doi.org/10.1038/s41598-020-77928-9 (2020).CAS 
    Article 

    Google Scholar 
    Rizzo, D. et al. Molecular identification of Anoplophora glabripennis (Coleoptera: Cerambycidae) from frass by loop-mediated isothermal amplification. J. Econ. Entomol. 113, 2911–2919. https://doi.org/10.1093/jee/toaa206 (2020).CAS 
    Article 

    Google Scholar 
    Hsieh, C. H., Wang, H. Y., Chen, Y. F. & Ko, C. C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 68, 1206–1213. https://doi.org/10.1002/ps.3298 (2012).CAS 
    Article 

    Google Scholar 
    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, 18. https://doi.org/10.1371/journal.pone.0186462 (2017).CAS 
    Article 

    Google Scholar 
    Ponting, S., Tomkies, V. & Stainton, K. Rapid identification of the invasive small hive beetle (Aethina tumida) using LAMP. Pest Manag. Sci. 77, 1476–1481. https://doi.org/10.1002/ps.6168 (2020).CAS 
    Article 

    Google Scholar 
    Davis, C. N. et al. Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasites Vectors 13, 11. https://doi.org/10.1186/s13071-020-04371-0 (2020).CAS 
    Article 

    Google Scholar 
    Carvalho, J. et al. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. Sci. Rep. 11, 10. https://doi.org/10.1038/s41598-021-89574-w (2021).CAS 
    Article 

    Google Scholar 
    Treguier, A. et al. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51, 871–879. https://doi.org/10.1111/1365-2664.12262 (2014).CAS 
    Article 

    Google Scholar 
    Cai, W. et al. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PLoS ONE https://doi.org/10.1371/journal.pone.0177724 (2017).Article 

    Google Scholar 
    Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216. https://doi.org/10.1016/j.biocon.2015.12.023 (2016).Article 

    Google Scholar 
    Hunter, M. E., Ferrante, J. A., Meigs-Friend, G. & Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. https://doi.org/10.1038/s41598-019-40977-w (2019).Article 

    Google Scholar 
    Twardochleb, L. A., Olden, J. D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 32, 1367–1382. https://doi.org/10.1899/12-203.1 (2013).Article 

    Google Scholar 
    Andruszkiewicz, A. E., Zhang, W. G. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    Stedtfeld, R. D. et al. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed. Microdev. 17, 89. https://doi.org/10.1007/s10544-015-9994-1 (2015).CAS 
    Article 

    Google Scholar 
    Koloren, Z., Sotiriadou, I. & Karanis, P. Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of Ordu, Middle Black Sea, Turkey. Ann. Trop. Med. Parasitol. 105, 607–615. https://doi.org/10.1179/2047773211y.0000000011 (2011).CAS 
    Article 

    Google Scholar 
    Sabike, I. I. et al. Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Front. Microbiol. 7, 1582. https://doi.org/10.3389/fmicb.2016.01582 (2016).Article 

    Google Scholar 
    Gahlawat, S. K., Ellis, A. E. & Collet, B. A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonids. J. Fish Dis. 32, 491–497. https://doi.org/10.1111/j.1365-2761.2009.01005.x (2009).CAS 
    Article 

    Google Scholar 
    Levy, J. et al. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’ from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. J. Econ. Entomol. 106, 1440–1445. https://doi.org/10.1603/ec12419 (2013).CAS 
    Article 

    Google Scholar 
    Kaneko, H., Kawana, T., Fukushima, E. & Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70, 499–501. https://doi.org/10.1016/j.jbbm.2006.08.008 (2007).CAS 
    Article 

    Google Scholar 
    Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A. & Larson, E. R. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers. Distrib. 27, 1918–1931. https://doi.org/10.1111/ddi.13196 (2020).Article 

    Google Scholar 
    Mauvisseau, Q. et al. Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805, 163–175. https://doi.org/10.1007/s10750-017-3288-y (2018).CAS 
    Article 

    Google Scholar 
    RStudioTeam. Boston (ed. PBC) (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar  More

  • in

    Eukaryogenesis and oxygen in Earth history

    Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor, F. J. R. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23, 229–258 (1974).Article 

    Google Scholar 
    Margulis, L. Serial endosymbiotic theory (SET) and composite individuality. Microbiol. Today 31, 172–175 (2004).
    Google Scholar 
    Mereschkowsky, C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25, 593–604 (1905).
    Google Scholar 
    Wallin, I. E. On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. Am. J. Anat. 36, 131–149 (1925).Article 

    Google Scholar 
    Martin, W. F. Physiology, anaerobes, and the origin of mitosing cells 50 years on. J. Theor. Biol. 434, 2–10 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. in The Origin and Evolution of Eukaryotes (eds. Keeling, P. J. & Koonin, E. V.) 165–180 (Cold Spring Harbor Perspectives in Biology, 2014).Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agić, H. in Prebiotic Chemistry and the Origin of Life (eds. Neubeck, A. & McMahon, S.) 255–289 (Springer International, 2021).Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Ann. Rev. Mar. Sci. 9, 31–58 (2017).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. On the use of models in understanding the rise of complex life. Interface Focus 10, 20200018 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B 363, 2717–2729 (2008).Article 

    Google Scholar 
    Zimorski, V., Mentel, M., Tielens, A. G. M. & Martin, W. F. Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 140, 279–294 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M. & Mentel, M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution (Walter de Gruyter, 2020).Hall, J. B. The nature of the host in the origin of the eukaryote cell. J. Theor. Biol. 38, 413–418 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanier, R. Y. in Organization and Control in Prokaryotic and Eukaryotic Cells (eds. Charles, H. P. & Knight, B. C. J. G.) vol. 20, 1–38 (Cambridge Univ. Press, 1970).De Duve, C. Origin of mitochondria. Science 182, 85 (1973).PubMed 
    Article 

    Google Scholar 
    Andersson, S. G. & Kurland, C. G. Origins of mitochondria and hydrogenosomes. Curr. Opin. Microbiol. 2, 535–541 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Duve, C. The origin of eukaryotes: a reappraisal. Nat. Rev. Genet. 8, 395–403 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F. & Müller, M. Origin of Mitochondria and Hydrogenosomes (Springer, 2007).Lindmark, D. G. & Müller, M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724–7728 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 1–10 (Springer, 2007).Zillig, W. et al. Did eukaryotes originate by a fusion event? Endocytobiosis Cell Res. 6, 1–25 (1989).
    Google Scholar 
    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B 370, 20140326 (2015).Article 
    CAS 

    Google Scholar 
    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2018).Article 
    CAS 

    Google Scholar 
    Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F. Too much eukaryote LGT. Bioessays 39, 1700115 (2017).Article 

    Google Scholar 
    Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (response to Martin 2017 https://doi.org/10.1002/bies.201700115). Bioessays 40, e1700242 (2018).Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21, 99–104 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagies, F. S. P., Brueckner, J., Tria, F. D. K. & Martin, W. F. A spectrum of verticality across genes. PLoS Genet. 16, e1009200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).PubMed 
    Article 

    Google Scholar 
    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. Cultured Asgard archaea shed light on eukaryogenesis. Cell 181, 232–235 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berkner, L. V. & Marshall, L. C. History of major atmospheric components. Proc. Natl Acad. Sci. USA 53, 1215–1226 (1965).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Stolper, D. A., Revsbech, N. P. & Canfield, D. E. Aerobic growth at nanomolar oxygen concentrations. Proc. Natl Acad. Sci. USA 107, 18755–18760 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Degli Esposti, M., Mentel, M., Martin, W. & Sousa, F. L. Oxygen reductases in alphaproteobacterial genomes: physiological evolution from low to high oxygen environments. Front. Microbiol. 10, 499 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berg, J. et al. How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuac006 (2022).Cloud, P. Cosmos, Earth, and Man: A Short History of the Universe (Yale Univ. Press, 1978).Pichler, H. & Riezman, H. Where sterols are required for endocytosis. Biochim. Biophys. Acta 1666, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valentine, D. L. in Symbiosis: Mechanisms and Model Systems (ed. Seckbach, J.) 147–161 (Springer, 2002).Canfield, D. E. & Thamdrup, B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7, 385–392 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7, 568–577 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Embley, T. M., van der Giezen, M., Horner, D. S., Dyal, P. L. & Foster, P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos. Trans. R. Soc. Lond. B 358, 191–201 (2003). discussion 201–2.CAS 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Purnell, M. A. Distinguishing heat from light in debate over controversial fossils. Bioessays 31, 178–189 (2009).PubMed 
    Article 

    Google Scholar 
    Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 141 (2017).PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).Article 

    Google Scholar 
    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).Article 

    Google Scholar 
    Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Modes of pre-Ediacaran multicellularity. Precambrian Res. 173, 201–211 (2009).CAS 
    Article 

    Google Scholar 
    Peng, Y., Bao, H. & Yuan, X. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223–232 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J. in Origins and Evolution of Life: An Astrobiological Perspective (eds Gargaud, M., López-García, P. & Martin, H.) 414–449 (Cambridge Univ. Press, 2011).Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlisle, E. M., Jobbins, M., Pankhania, V., Cunningham, J. A. & Donoghue, P. C. J. Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci. Adv. 7, eabe9487 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, T. M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science 257, 232–235 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Javaux, E. J. & Lepot, K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2018).CAS 
    Article 

    Google Scholar 
    Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).Article 
    CAS 

    Google Scholar 
    Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).CAS 
    PubMed 

    Google Scholar 
    Bengtson, S., Belivanova, V., Rasmussen, B. & Whitehouse, M. The controversial ‘Cambrian’ fossils of the Vindhyan are real but more than a billion years older. Proc. Natl Acad. Sci. USA 106, 7729–7734 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bykova, N. et al. Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).CAS 
    Article 

    Google Scholar 
    Maloney, K. M. et al. New multicellular marine macroalgae from the early Tonian of northwestern Canada. Geology 49, 743–747 (2021).CAS 
    Article 

    Google Scholar 
    Tang, Q. et al. The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110485 (2021).Article 

    Google Scholar 
    Sforna, M. C. et al. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 146 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strother, P. K. et al. A possible billion-year-old holozoan with differentiated multicellularity. Curr. Biol. 31, 2658–2665.e2 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).CAS 
    Article 

    Google Scholar 
    Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).Article 

    Google Scholar 
    Husson, J. M. & Peters, S. E. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg. Top. Life Sci. 2, 125–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Yang, Z. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R. Soc. Lond. B 371, 20160020 (2016).Article 

    Google Scholar 
    Berney, C. & Pawlowski, J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. Biol. Sci. 273, 1867–1872 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernikova, D., Motamedi, S., Csürös, M., Koonin, E. V. & Rogozin, I. B. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shih, P. M. & Matzke, N. J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).CAS 
    Article 

    Google Scholar 
    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland, H. D. When did the Earth’s atmosphere become oxic? A reply. Geochem. N. 100, 20–22 (1999).
    Google Scholar 
    Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).CAS 
    Article 

    Google Scholar 
    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–759 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodgskiss, M. S. W. & Sperling, E. A. A prolonged, two-step oxygenation of Earth’s early atmosphere: support from confidence intervals. Geology https://doi.org/10.1130/g49385.1 (2021).Article 

    Google Scholar 
    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).CAS 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and Cyanobacteria. N. Phytol. 225, 1440–1446 (2020).Article 

    Google Scholar 
    Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. Biol. Sci. 288, 20210675 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA 103, 15759–15764 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).CAS 
    Article 

    Google Scholar 
    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).CAS 
    Article 

    Google Scholar 
    Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Slotznick, S. P. et al. Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jabłońska, J. & Tawfik, D. S. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448 (2021).PubMed 
    Article 

    Google Scholar 
    Mentel, M., Röttger, M., Leys, S., Tielens, A. G. M. & Martin, W. F. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays 36, 924–932 (2014).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).CAS 
    Article 

    Google Scholar 
    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).CAS 
    Article 

    Google Scholar 
    Wang, C. et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic. Proc. Natl Acad. Sci. USA 119, e2116101119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth’s oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).CAS 
    Article 

    Google Scholar 
    Gilleaudeau, G. J. et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521, 150–157 (2019).CAS 
    Article 

    Google Scholar 
    Cole, D. B. et al. On the co-evolution of surface oxygen levels and animals. Geobiology 319, 55 (2020).
    Google Scholar 
    Friese, A. et al. Organic matter mineralization in modern and ancient ferruginous sediments. Nat. Commun. 12, 2216 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46, 215–235 (2015).Article 

    Google Scholar 
    Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cohen, P. A. & Kodner, R. B. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.11.005 (2021).Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).PubMed 
    Article 

    Google Scholar 
    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Theissen, U., Hoffmeister, M., Grieshaber, M. & Martin, W. Single eubacterial origin of eukaryotic sulfide: quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol. Biol. Evol. 20, 1564–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. et al. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55, 193–204 (2003).Gould, S. B. et al. Adaptation to life on land at high O2 via transition from ferredoxin-to NADH-dependent redox balance. Proc. Biol. Sci. 286, 20191491 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, D. B. The origin of phagocytosis in Earth history. Interface Focus 10, 20200019 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213–1219 (2020).PubMed 
    Article 

    Google Scholar 
    Richards, T. A. & van der Giezen, M. Evolution of the Isd11–IscS complex reveals a single α-proteobacterial endosymbiosis for all eukaryotes. Mol. Biol. Evol. 23, 1341–1344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sapp, J. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 57–83 (Springer, 2007).Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cavalier-Smith, T. in Endocytobiology II (eds Schenk, H. E. A. & Schwemmler, W. S.) 1027–1034 (de Gruyter, 1983).Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canfield, D. E. Oxygen: a Four Billion Year History (Princeton Univ. Press, 2014).Holland, H. D. in Petrologic Studies: a Volume in Honor of A. F. Buddington (eds Engel, A. E. J., James, H. L. & Leonard, B. F.) 447–477 (Geological Society of America, 1962).Cloud, P. E. Jr. Significance of the Gunflint (Precambrian) microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science 148, 27–35 (1965).PubMed 
    Article 

    Google Scholar 
    Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Esser, C., Martin, W. & Dagan, T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol. Lett. 3, 180–184 (2007).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation

    A summary describing all plant architecture, flower, fruit, and yield, and phenological traits for each of the thirteen Phaseolus sp. and Vigna sp. landraces in the open field and the greenhouse conditions is provided in Supporting Tables S3, S4 and S5. Main effects Kruskal–Wallis tests are summarised in Table 1, and the interactions between treatment conditions (open field and greenhouse) and species, and landrace and climatic background are summarised in Table 2.Table 1 Main effects Kruskal–Wallis H tests for treatment (open field vs greenhouse conditions), species, landrace, and climatic background of the landraces.Full size tableTable 2 Kruskal–Wallis H tests for the interactions between treatment (open field and greenhouse) and species, landrace, or the climatic background.Full size tableI. Plant architecturePlants under high temperatures and low humidity in the greenhouse exhibited significant higher overall mean rank values than field plants for stem diameter, the degree of branch orientation, composite sheet length and width, and the terminal leaflet length. The size of the angle of the base of the terminal leaflet, however, was bigger in the field (Supporting Tables S3 and Table 1). There were overall significant differences for species and landrace for all studied characters (Table 1). The Kruskal–Wallis analyses of the interactions between treatment (open field vs greenhouse conditions) and species, climatic background, and landrace were significant for all the traits (p-value  More

  • in

    We could still limit global warming to just 2˚C — but there's an 'if'

    Vote for our episode What’s the isiZulu for dinosaur? to win a People’s Voice Award in this year’s Webbys

    Listen to the latest from the world of science, with Benjamin Thompson, Nick Petrić Howe and Shamini Bundell.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:46 What COP26 promises will do for climateAt COP26 countries made a host of promises and commitments to tackle global warming. Now, a new analysis suggests these pledges could limit warming to below 2˚C – if countries stick to them.BBC News: Climate change: COP26 promises will hold warming under 2C03:48 Efficiency boost for energy storage solutionStoring excess energy is a key obstacle preventing wider adoption of renewable power. One potential solution has been to store this energy as heat before converting it back into electricity, but to date this process has been inefficient. Last week, a team reported the development of a new type of ‘photothermovoltaic’ that increases the efficiency of converting stored heat back into electricity, potentially making the process economically viable.Science: ‘Thermal batteries’ could efficiently store wind and solar power in a renewable grid07:56 Leeches’ lunches help ecologists count wildlifeBlood ingested by leeches may be a way to track wildlife, suggests new research. Using DNA from the blood, researchers were able to detect 86 different species in China’s Ailaoshan Nature Reserve. Their results also suggest that biodiversity was highest in the high-altitude interior of the reserve, suggesting that human activity had pushed wildlife away from other areas.ScienceNews: Leeches expose wildlife’s whereabouts and may aid conservation efforts11:05 How communication evolved in underground cave fishResearch has revealed that Mexican tetra fish are very chatty, and capable of making six distinct sounds. They also showed that fish populations living in underground caves in north-eastern Mexico have distinct accents.New Scientist: Blind Mexican cave fish are developing cave-specific accents14:36 Declassified data hints at interstellar meteorite strikeIn 2014 a meteorite hit the Earth’s atmosphere that may have come from far outside the solar system, making it the first interstellar object to be detected. However, as some of the data needed to confirm this was classified by the US Government, the study was never published. Now the United States Space Command have confirmed the researchers’ findings, although the work has yet to be peer reviewed.LiveScience: An interstellar object exploded over Earth in 2014, declassified government data revealVice: Secret Government Info Confirms First Known Interstellar Object on Earth, Scientists SaySubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

    Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.CAS 
    Article 

    Google Scholar 
    Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.CAS 
    Article 

    Google Scholar 
    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    Article 

    Google Scholar 
    Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.Article 

    Google Scholar 
    Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.Article 

    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.Article 

    Google Scholar 
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.Article 

    Google Scholar 
    Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.Article 

    Google Scholar 
    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    Article 

    Google Scholar 
    Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.Article 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.CAS 
    Article 

    Google Scholar 
    Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.CAS 
    Article 

    Google Scholar 
    Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.CAS 
    Article 

    Google Scholar 
    Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.CAS 
    Article 

    Google Scholar 
    Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.Article 

    Google Scholar 
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.CAS 
    Article 

    Google Scholar 
    Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.Article 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.Article 

    Google Scholar 
    Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.Article 

    Google Scholar 
    DFO Canada. AZMP Bulletin PMZA. 2006. DFO.Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.Article 

    Google Scholar 
    El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.Article 

    Google Scholar 
    Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.CAS 
    Article 

    Google Scholar 
    Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.CAS 
    Article 

    Google Scholar 
    Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.CAS 
    Article 

    Google Scholar 
    Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.Article 

    Google Scholar 
    Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.CAS 
    Article 

    Google Scholar 
    Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.Article 

    Google Scholar 
    Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    Article 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.CAS 
    Article 

    Google Scholar 
    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.
    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS 
    Article 

    Google Scholar 
    Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    Article 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.Article 

    Google Scholar 
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.CAS 
    Article 

    Google Scholar 
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 
    Article 

    Google Scholar 
    Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.Article 

    Google Scholar 
    Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.Article 

    Google Scholar 
    Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.CAS 
    Article 

    Google Scholar 
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.CAS 
    Article 

    Google Scholar 
    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.Article 

    Google Scholar 
    Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.CAS 
    Article 

    Google Scholar 
    Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.Article 

    Google Scholar 
    Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.CAS 
    Article 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.Article 

    Google Scholar 
    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.CAS 
    Article 

    Google Scholar 
    Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.CAS 
    Article 

    Google Scholar 
    Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.
    Google Scholar 
    Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.Article 

    Google Scholar 
    Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.Article 

    Google Scholar 
    Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.Article 

    Google Scholar 
    Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.
    Google Scholar 
    Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.CAS 
    Article 

    Google Scholar 
    Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.CAS 
    Article 

    Google Scholar 
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.CAS 
    Article 

    Google Scholar 
    Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.Article 

    Google Scholar 
    Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.Article 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.Article 

    Google Scholar 
    Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.Article 

    Google Scholar 
    Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.Article 

    Google Scholar 
    Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.Article 

    Google Scholar 
    Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.Article 

    Google Scholar 
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.Article 

    Google Scholar 
    Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.Article 

    Google Scholar 
    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.CAS 
    Article 

    Google Scholar 
    Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.CAS 
    Article 

    Google Scholar 
    Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.Article 

    Google Scholar  More

  • in

    Home range size and habitat quality affect breeding success but not parental investment in barn owl males

    Stearns, S. C. The Evolution of Life Histories (Oxford University, 1992).
    Google Scholar 
    Roff, D. A., Mostowy, S. & Fairbairn, D. J. The evolution of trade-offs: Testing predictions on response to selection and environmental variation. Evolution (N. Y.). 56, 84–95 (2002).
    Google Scholar 
    Lack, D. The Significance of Clutch-size. Ibis (Lond. 1859). 89, 302–352 (1947).Article 

    Google Scholar 
    Drent, R. H. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Adrea 68, 225–263 (1980).
    Google Scholar 
    Harshman, L. G. & Zera, A. J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 22, 80–86 (2007).Article 

    Google Scholar 
    Dijkstra, C., Daan, S. & Tinbergen, J. M. Family planning in the Kestrel (Falco Tinnunculus): The ultimate control of covariation of laying date and clutch size. Behaviour 114, 83–116 (1990).Article 

    Google Scholar 
    Cox, R. M. et al. Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct. Ecol. 24, 1262–1269 (2010).Article 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 277, 963–969 (2010).Article 

    Google Scholar 
    Rivalan, P. et al. Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle. Oecologia 145, 564–574 (2005).ADS 
    Article 

    Google Scholar 
    Perrins, C. M. Population Fluctuations and Clutch-Size in the Great Tit, Parus major. J. Anim. Ecol. 34, 601 (1965).Article 

    Google Scholar 
    Walker, R. S., Gurven, M., Burger, O. & Hamilton, M. J. The trade-off between number and size of offspring in humans and other primates. Proc. R. Soc. B Biol. Sci. 275, 827–833 (2008).Article 

    Google Scholar 
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).Article 

    Google Scholar 
    Charnov, E. L. & Krebs, J. R. On clutch-size and fitness. Ibis (Lond. 1859). 116, 217–219 (1974).Article 

    Google Scholar 
    Ricklefs, R. E. On the evolution of reproductive strategies in birds: Reproductive effort. Am. Nat. 111, 453–478 (1977).Article 

    Google Scholar 
    Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Syst. 18, 435–487 (1987).Article 

    Google Scholar 
    Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123 (2012).Article 

    Google Scholar 
    Kouba, M., Bartoš, L., Sindelář, J. & St’astny, K. Alloparental care and adoption in Tengmalm’s Owl (Aegolius funereus). J. Ornithol. 158, 185–191 (2017).Article 

    Google Scholar 
    Redpath, S. M. Habitat fragmentation and the individual: Tawny owls Strix aluco in woodland patches. J. Anim. Ecol. 64, 652 (1995).Article 

    Google Scholar 
    Bruun, M. & Smith, H. G. Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biol. Conserv. 114, 179–187 (2003).Article 

    Google Scholar 
    Frey-Roos, F., Brodmann, P. A. & Reyer, H. U. Relationships between food resources, foraging patterns, and reproductive success in the water pipit, Anthus sp. Spinoletta. Behav. Ecol. 6, 287–295 (1995).Article 

    Google Scholar 
    Saïd, S. et al. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118, 1299–1306 (2009).Article 

    Google Scholar 
    Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Hakkarainen, H., Koivunen, V. & Korpimäki, E. Reproductive success and parental effort of Tengmalm’s owls: Effects of spatial and temporal variation in habitat quality. Ecoscience 4, 35–42 (1997).Article 

    Google Scholar 
    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).Article 

    Google Scholar 
    Trembley, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2004).Article 

    Google Scholar 
    Turcotte, Y. & Desrochers, A. Landscape-dependent response to predation risk by forest birds. Oikos 100, 614–618 (2003).Article 

    Google Scholar 
    Hinsley, S. A., Rothery, P. & Bellamy, P. E. Influence of woodland area on breeding success in great tits parus major and blue tits Parus caeruleus. J. Avian Biol. 30, 271 (1999).Article 

    Google Scholar 
    Hinam, H. L. & Clair, C. C. S. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of Northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).Article 

    Google Scholar 
    Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the Kestrel. J. Anim. Ecol. 65, 539 (1996).Article 

    Google Scholar 
    Slagsvold, T., Sandvik, J., Rofstad, G., Lorentsen, O. & Husby, M. On the adaptive value of intraclutch egg-size variation in birds. Auk 101, 685–697 (1984).Article 

    Google Scholar 
    Tripet, F., Richner, H. & Tripet, F. Host responses to ectoparasites: Food compensation by parent blue tits. Oikos 78, 557 (1997).Article 

    Google Scholar 
    Budden, A. E. & Beissinger, S. R. Resource allocation varies with parental sex and brood size in the asynchronously hatching green-rumped parrotlet (Forpus passerinus). Behav. Ecol. Sociobiol. 63, 637–647 (2009).Article 

    Google Scholar 
    Bókony, V. et al. Stress response and the value of reproduction: Are birds prudent parents?. Am. Nat. 173, 589–598 (2009).Article 

    Google Scholar 
    McGinley, M. A., Temme, D. H. & Geber, M. A. Parental investment in offspring in variable environments: Theoretical and empirical considerations. Am. Nat. 130, 370–398 (1987).Article 

    Google Scholar 
    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science (80-.). 292, 494–497 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Caro, S. M., Griffin, A. S., Hinde, C. A. & West, S. A. Unpredictable environments lead to the evolution of parental neglect in birds. Nat. Commun. 7, 1–10 (2016).Article 

    Google Scholar 
    Roulin, A. Barn Owls: Evolution and Ecology (Cambridge University Press, 2020).
    Google Scholar 
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan avian predator. J. Biogeogr. 47, 1467–1481 (2020).Article 

    Google Scholar 
    Arlettaz, R., Krähenbühl, M., Almasi, B., Roulin, A. & Schaub, M. Wildflower areas within revitalized agricultural matrices boost small mammal populations but not breeding Barn Owls. J. Ornithol. 151, 553–564 (2010).Article 

    Google Scholar 
    Hindmarch, S., Elliott, J. E., Mccann, S. & Levesque, P. Habitat use by barn owls across a rural to urban gradient and an assessment of stressors including, habitat loss, rodenticide exposure and road mortality. Landsc. Urban Plan. 164, 132–143 (2017).Article 

    Google Scholar 
    Castañeda, X. A., Huysman, A. E. & Johnson, M. D. Barn Owls select uncultivated habitats for hunting in a winegrape growing region of California. Ornithol. Appl. 123, 1–15 (2021).
    Google Scholar 
    Séchaud, R. et al. Behaviour-specific habitat selection patterns of breeding barn owls. Mov. Ecol. 9, 18 (2021).Article 

    Google Scholar 
    Roulin, A., Ducrest, A.-L. & Dijkstra, C. Effect of brood size manipulations on parents and offspring in the barn owl Tyto alba. Ardea 87, 91–100 (1999).
    Google Scholar 
    Béziers, P. & Roulin, A. Double brooding and offspring desertion in the barn owl Tyto alba. J. Avian Biol. 47, 235–244 (2016).Article 

    Google Scholar 
    Laaksonen, T., Hakkarainen, H. & Korpimäki, E. Lifetime reproduction of a forest-dwelling owl increases with age and area of forests. Proc. R. Soc. B Biol. Sci. 271, 10058 (2004).Article 

    Google Scholar 
    Bryant, D. M. Energy expenditure and body mass changes as measures of reproductive costs in birds. Funct. Ecol. 2, 23 (1988).Article 

    Google Scholar 
    Merilä, J. & Wiggins, D. A. Mass loss in breeding blue tits: The role of energetic stress. J. Anim. Ecol. 66, 452 (1997).Article 

    Google Scholar 
    Frey, C., Sonnay, C., Dreiss, A. & Roulin, A. Habitat, breeding performance, diet and individual age in Swiss Barn Owls (Tyto alba). J. Ornithol. 152, 279–290 (2010).Article 

    Google Scholar 
    Aschwanden, J., Holzgang, O. & Jenni, L. Importance of ecological compensation areas for small mammals in intensively farmed areas. Wildlife Biol. 13, 150–158 (2007).Article 

    Google Scholar 
    Roulin, A. Tyto alba Barn Owl. BWP Updat. 4, 115–138 (2002).
    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Taylor, I. Barn Owls: Predator-Prey Relationships and Conservation (Cambridge University Press, 1994).
    Google Scholar 
    van den Brink, V., Dreiss, A. N. & Roulin, A. Melanin-based coloration predicts natal dispersal in the barn owl, Tyto alba. Anim. Behav. 84, 805–812 (2012).Article 

    Google Scholar 
    Dreiss, A. N. & Roulin, A. Divorce in the barn owl: Securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate. J. Evol. Biol. 27, 1114–1124 (2014).CAS 
    Article 

    Google Scholar 
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation-maximization binary clustering for behavioural annotation. PLoS One 11, e0151984 (2016).Article 

    Google Scholar 
    San-Jose, L. M. et al. Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat. Ecol. Evol. 3, 1331–1340 (2019).Article 

    Google Scholar 
    Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography (Cop.) 41, 1801–1811 (2018).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. Data Visualization for Statistics in Social Science [R package sjPlot version 2.8.9]. (2021).Rutz, C. & Bijlsma, R. G. Food-limitation in a generalist predator. Proc. R. Soc. B Biol. Sci. 273, 2069–2076 (2006).Article 

    Google Scholar 
    Altmann, S. A. The impact of locomotor energetics on mammalian foraging. J. Zool. 211, 215–225 (1987).Article 

    Google Scholar 
    Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Pfeiffer, T. & Meyburg, B. U. GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J. Ornithol. 156, 963–975 (2015).Article 

    Google Scholar 
    Romano, A. et al. Nestling sex and plumage color predict food allocation by barn swallow parents. Behav. Ecol. 27, 1198–1205 (2016).Article 

    Google Scholar 
    Bryant, D. M. & Tatner, P. Hatching asynchrony, sibling competition and siblicide in nestling birds: Studies of swiftlets and bee-eaters. Anim. Behav. 39, 657–671 (1990).Article 

    Google Scholar 
    Mock, D. W. & Parker, G. A. Advantages and disadvantages of egret and heron brood reduction. Evolution (N. Y.). 40, 459–470 (1986).
    Google Scholar 
    Stenning, M. J. Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol. Evol. 11, 243–246 (1996).CAS 
    Article 

    Google Scholar 
    Roulin, A., Colliard, C., Russier, F., Fleury, M. & Grandjean, V. Sib-sib communication and the risk of prey theft in the barn owl Tyto alba. J. Avian Biol. 39, 593–598 (2008).Article 

    Google Scholar 
    Korpimaki, E. Costs of reproduction and success of manipulated broods under varying food conditions in Tengmalm’s owl. J. Anim. Ecol. 57, 1879 (1988).
    Google Scholar 
    Tolonen, P. & Korpimäki, E. Do kestrels adjust their parental effort to current or future benefit in a temporally varying environment?. Écoscience 3, 165–172 (1996).Article 

    Google Scholar 
    Harrison, F., Barta, Z., Cuthill, I. & Székely, T. How is sexual conflict over parental care resolved? A meta-analysis. J. Evol. Biol. 22, 1800–1812 (2009).CAS 
    Article 

    Google Scholar 
    Osorno, J. L. & Székely, T. Sexual conflict and parental care in magnificent frigatebirds: Full compensation by deserted females. Anim. Behav. 68, 337–342 (2004).Article 

    Google Scholar 
    Paredes, R., Jones, I. L. & Boness, D. J. Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behaviour 143, 451–481 (2006).Article 

    Google Scholar 
    Kleijn, D. et al. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol. Lett. 9, 243–254 (2006).CAS 
    Article 

    Google Scholar 
    Zingg, S., Ritschard, E., Arlettaz, R. & Humbert, J. Y. Increasing the proportion and quality of land under agri-environment schemes promotes birds and butterflies at the landscape scale. Biol. Conserv. 231, 39–48 (2019).Article 

    Google Scholar  More

  • in

    Coupling reconstruction of atmospheric hydrological profile and dry-up risk prediction in a typical lake basin in arid area of China

    Coupling accuracy analysisPrecipitation simulation accuracyThe comparison between annual precipitation simulated by WRF-Hydro and measured precipitation is shown in the following Fig. 3a. From the Fig. 3a, we can get that the correlation between simulated precipitation and measured precipitation is 0.783, which is relatively high and the simulation is good. In addition, the simulated precipitation is less than the measured precipitation value in time. We guess that this error is caused by the precision and quality of precipitation products. WRF-Hydro can easily underestimate the duration of heavy rain when simulating precipitation, so the simulated precipitation is slightly smaller than the measured precipitation in long-term sequence, but the overall accuracy is good.Figure 3(a) Comparison between WRF-HYDRO simulation and measured annual precipitation in Daihai; (b) Comparison of runoff simulation and remote sensing estimation in Daihai Lake; (c) Modified runoff simulation and remote sensing estimation in Daihai Lake.Full size imageThe comparison between the simulated spatial distribution of annual precipitation and the verified products in the study area is shown in the Fig. 4. Generally speaking, the precipitation of interpolation products is slightly higher than the simulation value, which is consistent with the above analysis. In addition, the spatial distribution law of the two is consistent with each other, and the spatial variation law is basically the same. However, the transition of simulation results in areas with severe precipitation changes is relatively gentle, while the transition of interpolation products is more severe. The coverage of the maximum value in the simulation results is smaller than that of interpolation products. The guess is caused by the error of setting the precipitation boundary line. The boundary of interpolation products is China as a whole, and the boundary of simulation results is only Daihai Basin, which fundamentally determines that the precipitation simulation results will be slightly smaller than the interpolation products. Because the climate and hydrology mutual chamber is defined in the model setting from the surrounding grid points, the smaller the area causes some areas with mutual chamber cannot enter the boundary line, resulting in the precipitation simulation results less than the interpolation products. But in terms of the overall spatial differentiation law, the distribution of simulation results in interpolation products is not very different, which has good practical value.Figure 4Spatial comparison of WRF-HYDRO simulation and interpolation of annual precipitation in Daihai.Full size imageSimulation accuracy of runoff into LakeThe comparison between the WRF-Hydro simulation results and remote sensing estimation results of the runoff from Daihai Lake for many years is shown in the Fig. 3b. It can be seen from the figure that the correlation between simulation results and remote sensing estimation results is 0.629, which is better. But it is obvious that the simulation results are higher than those of remote sensing. The reason may be that the model does not set up the parameters of man-made water from the river entering the lake, including agricultural irrigation water and industrial water intake. So the simulation results are overestimated to the runoff into the lake. Therefore, the simulated runoff into the lake is modified in this study to reduce the water consumption ignored by the model.The comparison between the revised simulated runoff and remote sensing estimation is shown in the Fig. 3c. As can be seen from the figure, the correlation is increased to 0.650. Although not much improvement, the simulation results and remote sensing results are distributed evenly around the boundary.Analysis of coupling resultsPrecipitation analysisThe precipitation in Daihai Basin is relatively abundant. Except for some extreme drought years and humid years, the average annual precipitation is 300–600 mm (see Fig. 5a), and the average annual precipitation is about 400 mm. It can be seen from the figure that the minimum annual precipitation is less than 250 mm; The maximum annual diameter is higher than 750 mm. The difference between extreme dry year and extreme wet year is three times.Figure 5(a) Distribution curve of annual precipitation in Daihai Basin; (b) Distribution curve of annual mean monthly precipitation in Daihai Basin.Full size imageThe monthly average of precipitation in the Daihai Basin for many years is shown in the Fig. 5b. It can be seen from the figure that the precipitation in the Daihai Basin is unevenly distributed throughout the year, with the least in January at 1.73 mm and the most in July at 112.10 mm. The precipitation in July–August accounts for more than 50% of the total annual precipitation. In addition, it can be seen from the figure that the precipitation in the Daihai Basin is mainly concentrated in June to September, which is also the flood season in the Daihai Basin, accounting for more than 70% of the total annual precipitation.Combined with Table 3, overall, the average precipitation from 1980 to 1994 is 401.75 mm, with little fluctuation; During the period from 1995 to 2011, except for extreme precipitation in some years (more than 600 mm in both 1995 and 2003), the precipitation decrease, with an average value of 371.39 mm. There are several dry years and wet years, and the fluctuation range was sharp; From 2012 to 2020, the fluctuation range is small, and the average value rises to 451.75 mm.Table 3 Average precipitation (mm) in different periods in Dahai BasinFull size tableThe spatial distribution of annual precipitation in Daihai Basin is shown in the Fig. 6. It is obvious from the figure that the precipitation in 1990, 1995 and 2020 is abundant compared with other years. In addition, it is found that although the annual precipitation in Daihai Basin varies in size, its spatial distribution is basically the same.Figure 6Spatial distribution of annual precipitation in Daihai Basin.Full size imageThe spatial pattern of annual precipitation in Daihai Basin is as follows: the southeast of Liangcheng County and the north of Zuoyun County, the northwest of Liangcheng County and the northwest of Fengzhen county are the three precipitation centers, which gradually decrease outward. And the central effect of Fengzhen county is not obvious in some years. In addition, it is found that the area around Daihai Lake has the least precipitation in the whole Daihai Basin. This may be related to the terrain surrounding the Daihai Basin.In the whole study area, the annual precipitation in the north of Zuoyun County is larger than that in other regions. In some years, the annual precipitation reaches 800 mm, and the extension area is wide. In some years, it extends to the southeast of Liangcheng County. Therefore, it is speculated that mountain torrents, debris flows, rainstorms, snowstorms and other natural disasters are prone to occur here.In addition, combined with the topographic map, it is found that the southeast and northwest of Liangcheng County are the highest elevation in the study area, which coincides with the extreme precipitation. At the same time, it is found that the spatial consistency of precipitation distribution in the whole study area is higher than that of terrain distribution in the study area. Therefore, it is speculated that the precipitation in the study area is seriously affected by the terrain, in other words, the precipitation in the study area is mostly terrain rain or mountain convective rain.Runoff analysisThe Runoff Curve of Daihai Lake is shown in the Fig. 7a. It can be seen from the figure that the flow into the lake shows a downward trend from 1980 to 2020. Although it rebounded in 1996–1999 and 2005–2007, after 2010, the runoff into the lake decreased sharply below 8 × 106m3. From 1980 to 1990, the runoff into the lake decreased linearly with a larger slope and a faster speed; However, from 1990 to 2000, the runoff into the lake appeared the first vibration wave peak, and from 2000 to 2007, the second vibration wave peak. From 2008 to 2012, the decline rate was sharp, and the runoff into the lake had been reduced to 3.95 × 106m3 in 2012; Since 2013, the runoff into the lake tends to be flat, but it has not exceeded 10 × 106m3.Figure 7(a) Change of runoff in Daihai Lake over the years; (b) Changes of lake area in Daihai over the years; (c) Changes of lake water level in Daihai over the years; (d) Changes of volume water in Daihai Lake over the years.Full size imageThe change curve of Daihai Lake area is shown in the Fig. 7b. It can be seen from the figure that the area of Daihai Lake is declining in a straight line. In a short period of 40 years, the lake area has shrunk nearly 100 km2. In addition, we found that the shrinkage rate of Daihai Lake area slowed down from 1980 to 1985, but the lake area shrank sharply from 1995 to 2000. After 2005, the atrophy curve almost coincided with the fitting curve, and the overall fitting R2 was as high as 0.958.The water level variation curve of Daihai Lake is shown in the Fig. 7c. As can be seen from the figure, the variation trend of water level in Daihai Lake is very similar to that of lake area. However, the slope of lake water level change is less than the change rate of lake area. In the 40 years since 1975, the water level in Daihai has dropped by nearly 10 m. In addition, the water level rose slightly in 1995–1996 and 2003–2006. And after 2006, Daihai water level decline rate also accelerated. Since 2006, the water level of Daihai has dropped nearly 6 m, with a rate of 0.45 m/year.The trend of the volume water volume of the Daihai Lake is shown in the Fig. 7d. It can be clearly seen from the figure that the decline curve of the Daihai Lake water volume is close to a straight line, especially from 2005 to the present, the fitting degree is as high as 0.981. There should be some geometrical relationship among the lake area, water level and water volume, and this relationship should be related to the digital elevation model of the lake bottom. In addition, the changes of lake bottom topography are not linear, so there are still subtle differences between the three changes.The annual surface runoff of Daihai Basin is shown in the Fig. 8. It can be seen from the figure that the Gongba River, the Wuhao River, the Buliang River and the Tiancheng River in the south of Daihai Lake supply the Daihai Lake for a long time, and the Bantanzi River in the West also flows into the Dai sea in some years. Combined with the spatial distribution of annual precipitation, it can be concluded that surface runoff is seriously affected by precipitation. The annual distribution is uneven. The surface runoff from the southeast of Liangcheng County generally flows into Daihai Lake to the north, but in some drought years, it will be stopped and cannot flow into Daihai Lake. Bantanzi River in the west of Daihai Lake also supplies Daihai Lake in the year of more precipitation.Figure 8Spatial distribution of surface runoff in Daihai Basin.Full size imageTaking the surface runoff of Daihai Basin in January, April, July and October 2015 as an example, the distribution of surface runoff in different seasons of the year is analyzed, as shown in the Fig. 9. It can be seen from the figure that the rivers in Daihai Basin are seasonal rivers, which are prone to be cut off in autumn and winter. In winter (December–February), there will be different degrees of snowfall events in Daihai Basin, but due to the river freezing period and small snowfall, there will be no runoff. In spring (March to May), the precipitation in Daihai Basin began to increase, and the surface runoff also began to increase, mainly from the southeast and northwest of Liangcheng County. Gongba River, Wuhao River, buliang River, Tiancheng River and Bantanzi River in the south of Daihai Lake will supply Daihai Lake, but these rivers have small flow in spring, which is easy to break. Summer (June–August) is the main period of precipitation in Daihai Basin, and the surface runoff will also surge. In July 2015, the runoff in some areas reached 2000 mm, which was prone to flood disaster. The rivers in the west and south of Daihai Lake will supply it, but the runoff into Daihai Lake is not high, and most of the runoff is concentrated in the upper and middle reaches. In autumn (from September to November), the precipitation in Daihai Basin decreases. Before the freezing period, the precipitation may form runoff, but it is difficult to flow into Daihai Lake due to the small flow.Figure 9Spatial distribution of surface runoff in different seasons in Daihai Basin.Full size imageStatistical analysis of other factorsClimatic factors

    (1)

    Evaporation capacity

    The variation curve of annual evaporation in Daihai is shown in the Fig. 10a. It can be seen from the figure that although the evaporation in Daihai Basin fluctuates, it shows an upward trend, with an upward slope of 8.855 and R2 of 0.560. From 1980 to 1986, the annual evaporation fluctuated around 1000 mm; From 1987 to 1992, the annual evaporation of Daihai Basin decreased sharply, but from 1993 to 2000, the annual evaporation increased sharply with a very high rate of increase; But after 2000, the annual evaporation fluctuated and remained at 1250 mm.

    (2)

    Average temperature

    Figure 10Perennial (a) evaporation (b) annual average temperature (c) annual average wind speed change in Daihai Basin.Full size imageThe variation curve of annual average temperature in Daihai is shown in the Fig. 10b. It can be seen from the figure that the annual average temperature in Daihai Basin presents an obvious fluctuating upward trend, and the fitting upward slope is 0.040, R2 is 0.406. In addition, it can be observed that in a 10-year cycle, there will be two small fluctuations and one large fluctuation, and the fluctuation will rise.

    (3)

    Wind speed

    The curve of annual average wind speed in Daihai is shown in the Fig. 10c. It can be seen from the figure that the annual average wind speed of Daihai Basin presents a fluctuating downward trend, and the fitting downward slope is 0.036, R2 is 0.368. In addition, it can be observed that the annual average wind speed fluctuated with a mean line of 6.2 from 1980 to 1987; In 1988 and 1990, it dropped sharply with a large slope; From 1990 to 2003, the fluctuation decreased. From 2003 to 2011, the fluctuation was stable at 4.5, and rose sharply in 2012. So far, the fluctuation has been stable at 5.2.Human factors

    (1)

    Cultivated land area

    The change curve of cultivated land area in Daihai Basin is shown in the figure. It can be seen from the Fig. 11a that the annual average wind speed in Daihai Basin presents an upward trend, with the fitting rising rate of 0.017 and R2 of 0.970, almost in a straight line. In addition, it can be observed that from 1996 to 2005, the rising rate appeared a trough, that is, the rising rate first increased rapidly and then decreased. From 2000 to 2005, the rising rate was very slow and approached zero; But since 2006, it has returned to a straight-line rise.

    (2)

    Industrial water consumption

    Figure 11Perennial (a) cultivated land area (b) industrial water consumption (c) total population change curve in Daihai Basin.Full size imageThe change curve of industrial water consumption in Daihai Basin is shown in the Fig. 11b. It can be seen from the figure that the industrial water consumption of Daihai Basin presents an upward trend, and the fitting rising rate is 0.433, R2 is 0.794. In addition, it can be observed that from 1975 to 1993, the industrial water consumption of Daihai Basin was below 3 × 106m3; From 1994 to 2005, except for the decrease in 1998–2000, it has been on the rise, and the rising speed is fast, which has increased five times in ten years; Since 2005, the industrial water consumption in Daihai Basin has been stable at about 15 × 106m3.

    (3)

    Total population

    The change curve of total population in Daihai Basin is shown in the Fig. 11c. It can be seen from the figure that the total population of Daihai Basin presents an upward trend, and the fitting rising rate is 0.074, R2 is 0.864. In addition, it can be observed that the total population of Daihai Basin increased slowly from 1975 to 1985; From 1986 to 1990, the total population remained flat; It fluctuated from 1990 to 2000; Since 2000, the total population has risen sharply.Analysis of driving factors of hydrological informationIn this study, the average temperature, annual precipitation, annual evaporation, average wind speed in natural factors and cultivated land area, agricultural water consumption, industrial water consumption and population in human factors are considered as the influencing factors of runoff change in Daihai Lake. Therefore, the flow into the lake and the above elements constitute a variable sequence, and the correlation matrix is calculated. See the Table 4 for details.Table 4 Correlation matrix between lake inflow and influencing factors.Full size tableIt can be seen from the Table 4 that the cultivated land area has the highest correlation with the runoff into the lake, with a correlation of − 0.777, which is highly significant, followed by the wind speed, with a correlation of 0.690, which is highly significant; In addition, the total population, industrial water consumption, evaporation and average temperature were significantly correlated. Therefore, the discharge of Daihai Lake is influenced by both nature and human. It can be seen from the table that industrial water consumption, total population, cultivated land area, evaporation and annual average temperature have a negative impact on the flow into the lake, while wind speed has a positive impact.At the same time, the correlation between different factors can be obtained from the Table. For example, the correlation between industrial water consumption and population, cultivated land area and evaporation is as high as 0.8, which is highly significant; The correlation between population and cultivated land, cultivated land and wind speed and evaporation is also about 0.8, which is highly significant; In addition, the correlations between industrial water consumption and annual average temperature, population and annual average temperature, wind speed, evaporation, cultivated land, cultivated land and annual average temperature, evaporation and wind speed, wind speed and annual average temperature are all over 0.5.It can be clearly observed from the table that except for agricultural water consumption, precipitation and evaporation, the annual average temperature is significantly correlated with other factors, and the correlation is more than 0.5. The correlation between annual precipitation and other factors is small and not significant. Therefore, it can be determined that there is data redundancy between different elements. In order to eliminate the data redundancy and get the determinants of the discharge into the lake, the correlation analysis of the variable sequence is carried out, as shown in the table.It can be seen from the Table 5 that the cumulative variance of the first three principal components has reached 87.016%, and the eigenvalues of the first two principal components are greater than 1, which has met the standard. The variance contribution rate of the first principal component was 59.641%, and the order of load rate was cultivated land (0.967), industrial water (0.950), population (0.859), evaporation (0.856), wind speed (0.841), and the load rate was greater than 0.8; In the first principal component, the influence of human factors is greater than that of natural factors. In the second principal component, the variance contribution rate is 18.821%, in which the annual precipitation (− 0.875) and agricultural water consumption (0.736) have higher load rate, and the influence of natural factors is greater than that of human factors.Table 5 Component matrix of principal component analysis of different influencing factorsFull size tableFuture forecastAccording to the analysis in Sect. 3.4, we find that human factors have a huge impact on the lake inflow. In lake water balance, precipitation and evaporation are determined by climate. Now, the Inner Mongolian government has taken a series of measures to protect the Daihai Lake. Therefore, when we predict the future lake water volume, we consider two situations: (1) the future lake water volume in the natural state without any interference (protection or destruction) measures; (2) keeping the existing water volume unchanged future lake water volume in the case.Situation IFor the Situation I, we use two forecasting methods. Method I is to directly predict the future lake water volume by using the variation law of lake volume water volume with time. Method II is to use the lake water balance equation to estimate the change in lake water volume, and then estimate the future lake water volume. The results obtained by these two calculation methods are shown in the Table 6.Table 6 Future prediction of Daihai Lake in situation I.Full size tableWhen estimating the dry years of the Daihai Lake, the results obtained by using the time-varying laws of lake area, water volume and lake depth are inconsistent. Among them, the dry year of the Daihai Lake obtained by using the water volume is 2031, the lake area is 2047, and the water depth is 2096. The three are vastly different. The reason is the uncertainty of our modeling data. As Daihai Lake is a lake in an arid area, data is extremely scarce, and there is almost no continuous measurement of water level, depth, and water volume. The lake area is interpreted from remote sensing images and is an annual average, which results in neglect of inter-annual hydrological changes. Similarly, the water depth is also obtained by remote sensing. The resolution of the remote sensing image is 30 m. We use the interpolation method to control the accuracy to about 5 m. However, in the later stage of the prediction, when the lake depth is lower than 10 m, the results begin to become inaccurate. The modeling data of lake water volume were obtained from WRF-Hydro simulations, so the uncertainty of the data led to the inconsistency of the results. We choose the most recent year as the final result of method I, that is, the forecast result of water volume.From the Table 6, we can observe that the calculation results of the two methods are quite different. The reason is that in method I, we assume that the volume of water in the lake changes linearly, and there is only one variable; in method II, the number of variables increases and the uncertainty increases. However, the years when the Daihai Lake is predicted to dry up are basically the same. Method I predicts that the Daihai Lake will be depleted in 2031, and method II is 2033, which is not much different.Situation IIFor the situation II, we control the agricultural water consumption and industrial water consumption to remain unchanged, estimate the change of volume water at this time, and then estimate the future lake water volume. Among them, the change in water consumption is only evaporation, and the change in water replenishment is precipitation and runoff. The future lake inflow and lake water volume calculated by using the water balance equation are shown in the Table 7:Table 7 Future prediction of Daihai Lake in situation II.Full size tableFrom the Table 7, we can see that under human control, although the of lake inflow will continue to decline compared with no measures, the rate of decline will be significantly slower. And the lake inflow will drop to 0 in 2060. Similarly, the water volume in the Daihai Lake will decline. But the rate is significantly slower compared with situation I. And the water volume will drop to 0 in 2140, nearly 110 years later than 2032–3033 without any control. This shows that man-made protection of the Daihai Lake is extremely important. More