More stories

  • in

    Assessing placement bias of the global river gauge network

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Ruhi, A., Messager, M. L. & Olden, J. D. Tracking the pulse of the Earth’s fresh waters. Nat. Sustain. 1, 198–203 (2018).Article 

    Google Scholar 
    Pearson, C. Short- and medium-term climate information for water management. World Meteorol. Organ. Bull. 57, 173–177 (2008).
    Google Scholar 
    Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H. & Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 53, 2598–2604 (2017).Article 

    Google Scholar 
    Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2011).Article 

    Google Scholar 
    Shrestha, S., Kazama, F. & Newham, L. T. H. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ. Model. Softw. 23, 182–194 (2008).Article 

    Google Scholar 
    Lepistö, A., Futter, M. N. & Kortelainen, P. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob. Change Biol. 20, 1225–1237 (2014).Article 

    Google Scholar 
    Hester, G., Ford, D., Carsell, K., Vertucci, C. & Stallings, E. A. Flood Management Benefits of USGS Streamgaging Program (National Hydrologic Warning Council, 2006).Xu, H., Xu, C.-Y., Chen, H., Zhang, Z. & Li, L. Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol. 505, 1–12 (2013).Article 

    Google Scholar 
    Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B. & Eng, K. A National Streamflow Network Gap Analysis (USGS, 2013).Deweber, J. T. et al. Importance of understanding landscape biases in USGS gage locations: implications and solutions for managers. Fisheries 39, 155–163 (2014).Article 

    Google Scholar 
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).Article 

    Google Scholar 
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).CAS 
    Article 

    Google Scholar 
    Olden, J. D. et al. Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology. https://doi.org/10.1002/eco.2282 (2021).Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).Article 

    Google Scholar 
    Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).Article 

    Google Scholar 
    Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9,372 catchments. J. Clim. 33, 1299–1315 (2020).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)—part 1: the production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar 
    Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).Article 

    Google Scholar 
    Dobrushin, R. L. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970).Article 

    Google Scholar 
    Schefzik, R., Flesch, J. & Goncalves, A. Fast identification of differential distributions in single-cell RNA-sequencing data with waddR. Bioinformatics 37, 3204–3211 (2021).CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).CAS 
    Article 

    Google Scholar 
    Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem Services. Fisheries 44, 73–91 (2019).Article 

    Google Scholar 
    Chen, K. & Olden, J. D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 26, 4952–4965 (2020).Article 

    Google Scholar 
    Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).CAS 
    Article 

    Google Scholar 
    Sauquet, E. et al. Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: a global perspective. J. Hydrol. 597, 126170 (2021).Article 

    Google Scholar 
    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).CAS 
    Article 

    Google Scholar 
    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).Article 

    Google Scholar 
    Wilhite, D. A. in Coping with Drought Risk in Agriculture and Water Supply Systems: Drought Management and Policy Development in the Mediterranean, Vol. 26 (eds. Iglesias, A. et al.) 3–19 (Springer Science and Business Media, 2009).Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 
    Article 

    Google Scholar 
    Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184 (1995).Article 

    Google Scholar 
    Hammond, J. C. et al. Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).Article 

    Google Scholar 
    Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).CAS 
    Article 

    Google Scholar 
    Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).Article 

    Google Scholar 
    Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).Article 

    Google Scholar 
    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).CAS 
    Article 

    Google Scholar 
    Beaufort, A., Lamouroux, N., Pella, H., Datry, T. & Sauquet, E. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks. Hydrol. Earth Syst. Sci. 22, 3033–3051 (2018).Article 

    Google Scholar 
    Argerich, A. et al. Comprehensive multiyear carbon budget of a temperate headwater stream: carbon budget of a headwater stream. J. Geophys. Res. Biogeosci. 121, 1306–1315 (2016).CAS 
    Article 

    Google Scholar 
    Molden, D. J., Shrestha, A. B., Nepal, S. & Immerzeel, W. W. in Water Security, Climate Change and Sustainable Development (eds. Biswas, A. K. & Tortajada, C.) 65–82 (Springer, 2016).Kaletová, T. et al. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services—a Mediterranean case study. Int. J. Environ. Res. Public Health 16, 2693 (2019).Article 

    Google Scholar 
    Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).Article 

    Google Scholar 
    Wine, M. L. Toward strong science to support equitable water sharing in securitized transboundary watersheds. Biologia 9, 907–915 (2020).Article 

    Google Scholar 
    Alsdorf, D. E. GEOPHYSICS: tracking fresh water from space. Science 301, 1491–1494 (2003).CAS 
    Article 

    Google Scholar 
    Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).CAS 
    Article 

    Google Scholar 
    Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. https://doi.org/10.1086/701483 (2019).Joo, H. et al. Optimal stream gauge network design using entropy theory and importance of stream gauge stations. Entropy 21, 991 (2019).Article 

    Google Scholar 
    Vörösmarty, C. et al. Global water data: a newly endangered species. Eos 82, 54–58 (2001).Article 

    Google Scholar 
    Jordahl, K. et al. Geopandas/geopandas. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).Article 

    Google Scholar 
    Yu, S. et al. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 24, 5279–5295 (2020).CAS 
    Article 

    Google Scholar 
    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193 (2010).Article 

    Google Scholar 
    Flow/No Flow Observations with Discharge Data from Probabilistic Stream Surveys (US EPA Office of Research and Development, 2021).Rosenbaum, P. R. & Rubin, D. B. The bias due to incomplete matching. Biometrics 41, 103–116 (1985).CAS 
    Article 

    Google Scholar  More

  • in

    Transversal criminality at sea

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health

    Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL. Soil and human security in the 21st century. Science. 2015;348:1261071.PubMed 
    Article 
    CAS 

    Google Scholar 
    Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. 2017;8:2013.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6:48–60.Article 

    Google Scholar 
    Santos VB, Araújo ASF, Leite LFC, Nunes LAPL, Melo WJ. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma. 2012;170:227–31.CAS 
    Article 

    Google Scholar 
    Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, et al. Forecasting agriculturally driven global environmental change. Science. 2001;292:281–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tu C, Louws FJ, Creamer NG, Paul Mueller J, Brownie C, Fager K, et al. Responses of soil microbial biomass and N availability to transition strategies from conventional to organic farming systems. Agric Ecosyst Environ. 2006;113:206–15.Article 

    Google Scholar 
    Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants. 2020;6:483–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. N. Phytol. 2010;186:968–79.CAS 
    Article 

    Google Scholar 
    Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 2017;7:2064.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng H, Zhang D, Ren L, Song Z, Li Q, Wu J, et al. Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield. Environ Pollut. 2021;283:117160.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shahi DK, Kachhap S, Kumar A, Agarwal BK. Organic agriculture for plant disease management. In: Singh KP, Jahagirdar S, Sarma BK. (eds). Emerging Trends in Plant Pathology. 2021. Springer, Singapore, pp 643–62.Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T. Mineral vs organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol. 2016;7:1446.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez-Barrios A, Sahib MR, DeBolt S. “I’ve got the magic in me”: the microbiome of conventional vs organic production systems. In: Singh DP, Singh HB, Prabha R. (eds). Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions. 2017. Springer, Singapore, pp 85–95.Chowdhury SP, Babin D, Sandmann M, Jacquiod S, Sommermann L, Sørensen SJ, et al. Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environ Microbiol. 2019;21:2426–39.Article 
    CAS 

    Google Scholar 
    Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 2007;97:250–6.PubMed 
    Article 

    Google Scholar 
    Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 2020;8:137.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent Pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 2009;3:977–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan J, Zhao M, Li R, Huang Q, Rensing C, Shen Q. Lipopeptides produced by B. amyloliquefaciens NJN-6 altered the soil fungal community and non-ribosomal peptides genes harboring microbial community. Appl Soil Ecol. 2017;117–8:96–105.Article 

    Google Scholar 
    Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem. 2020;16:2983–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang Z, Han X, Yan J, Zou W, Wang E, Lu X, et al. Keystone microbiomes revealed by 14 years of field restoration of the degraded agricultural soil under distinct vegetation scenarios. Front Microbiol. 2020;11:1915.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shang X, Cai X, Zhou Y, Han X, Zhang C-S, Ilyas N, et al. Pseudomonas inoculation stimulates endophytic Azospira population and induces systemic resistance to bacterial wilt. Front Plant Sci. 2021;12:1964.Article 

    Google Scholar 
    Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25:280–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cornforth DM, Foster KR. Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol. 2013;11:285–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg G, Mahnert A, Moissl-Eichinger C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol. 2014;5:15.PubMed 
    PubMed Central 

    Google Scholar 
    Straight PD, Willey JM, Kolter R. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. J Bacteriol. 2006;188:4918–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, et al. Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Micro Ecol. 2017;73:616–29.Article 
    CAS 

    Google Scholar 
    Zhao M, Yuan J, Zhang R, Dong M, Deng X, Zhu C, et al. Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. Appl Soil Ecol. 2018;132:83–90.Article 

    Google Scholar 
    Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 2019;10:302.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tambadou F, Lanneluc I, Sablé S, Klein GL, Doghri I, Sopéna V, et al. Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. FEMS Microbiol Lett. 2014;357:123–30.CAS 
    PubMed 

    Google Scholar 
    Prieto C. Characterization of nonribosomal peptide synthetases with NRPSsp. In: Evans BS. (ed). Nonribosomal Peptide and Polyketide Biosynthesis: Methods and Protocols. 2016. Springer, New York, NY, pp 273–8.Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agric Food Chem. 2013;61:3774–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan J, Li B, Zhang N, Waseem R, Shen Q, Huang Q. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J Agric Food Chem. 2012;60:2976–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Song Y, Yang K, Gu Y, Wei Z, Kowalchuk GA, et al. Rhizosphere protists are key determinants of plant health. Microbiome. 2020;8:27.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019;27:771–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller MS, Scheu S, Jousset A. Protozoa drive the dynamics of culturable biocontrol bacterial communities. PLOS ONE. 2013;8:e66200.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: A fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu H, Xiong W, Zhang R, Hang X, Wang D, Li R, et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant Soil. 2018;423:229–40.CAS 
    Article 

    Google Scholar 
    Chen D, Wang X, Zhang W, Zhou Z, Ding C, Liao Y, et al. Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community. Plant Soil. 2020;452:313–28.CAS 
    Article 

    Google Scholar 
    Müller JP, Hauzy C, Hulot FD. Ingredients for protist coexistence: Competition, endosymbiosis and a pinch of biochemical interactions. J Anim Ecol. 2012;81:222–32.PubMed 
    Article 

    Google Scholar 
    Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren F, Sun N, Xu M, Zhang X, Wu L, Xu M. Changes in soil microbial biomass with manure application in cropping systems: a meta-analysis. Soil Tillage Res. 2019;194:104291.Article 

    Google Scholar 
    Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–61.CAS 
    Article 

    Google Scholar 
    Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. The plant endosphere world – bacterial life within plants. Environ Microbiol. 2021;23:1812–29.PubMed 
    Article 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dumack K, Fiore-Donno AM, Bass D, Bonkowski M. Making sense of environmental sequencing data: ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour. 2020;20:398–403.PubMed 
    Article 

    Google Scholar 
    Romdhane S, Spor A, Banerjee S, Breuil M-C, Bru D, Chabbi A, et al. Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environ Microbiome. 2022;17:1.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jousset A, Rochat L, Péchy-Tarr M, Keel C, Scheu S, Bonkowski M. Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. ISME J. 2009;3:666–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem. 2002;34:955–63.CAS 
    Article 

    Google Scholar 
    Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact. 2007;20:430–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep. 2019;29:1192–1202.e5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang J, Wei Z, Tan S, Mei X, Shen Q, Xu Y. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. J Agric Food Chem. 2014;62:10708–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang B, Shen Z, Zhang F, Raza W, Yuan J, Huang R, et al. Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere. 2016;26:733–44.CAS 
    Article 

    Google Scholar 
    Shen Z, Ruan Y, Chao X, Zhang J, Li R, Shen Q. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol Fertil Soils. 2015;51:553–62.CAS 
    Article 

    Google Scholar 
    Jeger MJ, Eden-Green S, Thresh JM, Johanson A, Waller JM, Brown AE. Banana diseases. In: Gowen S. (ed). Bananas and Plantains. 1995. Springer Netherlands, Dordrecht, pp 317–81.Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci. 2015;112:E911–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiménez-Fernández D, Montes-Borrego M, Navas-Cortés JA, Jiménez-Díaz RM, Landa BB. Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Appl Soil Ecol. 2010;46:372–82.Article 

    Google Scholar 
    Mori K, Iriye R, Hirata M, Takamizawa K. Quantification of Bacillus species in a wastewater treatment system by the molecular analyses. Biotechnol Bioprocess Eng. 2004;9:482–9.CAS 
    Article 

    Google Scholar 
    Ayuso-Sacido A, Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Micro Ecol. 2005;49:10–24.CAS 
    Article 

    Google Scholar 
    Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem. 2017;104:39–48.CAS 
    Article 

    Google Scholar 
    Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLOS ONE. 2009;4:e6669.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (eds). PCR Protocols. 1990. Academic Press, San Diego, pp 315–22.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bass D, Silberman JD, Brown MW, Pearce RA, Tice AK, Jousset A, et al. Coprophilic amoebae and flagellates, including Guttulinopsis, Rosculus and Helkesimastix, characterise a divergent and diverse rhizarian radiation and contribute to a large diversity of faecal-associated protists. Environ Microbiol. 2016;18:1604–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    Geisen S, Vaulot D, Mahé F, Lara E, Vargas C de, Bass D. A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses. BioRxiv 2019;850610:1–34.Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Xiong W, Li R, Ren Y, Liu C, Zhao Q, Wu H, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol Biochem. 2017;107:198–207.CAS 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 
    Article 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Revelle W, Revelle MW. Package ‘psych’. Compr R Arch Netw. 2015;337:338.
    Google Scholar 
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 
    Article 

    Google Scholar 
    Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004;134:307–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente Ade, Bloemberg G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol. 2007;103:1950–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Aneja KR. Experiments in microbiology, plant pathology and biotechnology. 2007. New Age International, New Delhi.Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao Z. Soil protists: From traits to ecological functions. 2020. Utrecht University.Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 2017. American Cancer Society, pp 1–15.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community Ecol Package Version. 2013;2:1–295.
    Google Scholar 
    Breiman L. Random forests. Mach Learn. 2001;45:5–32.Article 

    Google Scholar 
    Liaw A, Wiener M. Classification and regression by randomForest. R N. 2002;23:18–22.
    Google Scholar 
    Archer E. rfPermute: Estimate permutation p-values for random forest importance metrics. R Package Version 20 2016.Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils. 2004;39:295–9.CAS 
    Article 

    Google Scholar 
    Mcdonald JH. Handbook of biological statistics. 2009. Baltimore: sparky house publishing, Baltimore. More

  • in

    Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment

    Description of test samples and theirs preparation84 samples of recycled rubber granules with a particle size of 0.5 to 4 mm, produced for the construction of sport field surfaces, were tested. The samples of rubber granules were collected from 17 sport fields and 67 samples rubber granules were supplied by recyclers. Research included 57 samples of SBR granules and 27 samples of EPDM granules. The numbers of samples in relation to their sources of origin are shown in Fig. 1.Figure 1Number of samples of the tested SBR and EPDM granules in relation to their sources of origin.Full size imageThe samples were taken from the surface of sport fields with artificial turf in accordance with the laboratory instructions or delivered to the laboratory by recyclers. The mass of the granulate samples delivered for testing was approx. 0.5 kg. Sampling from sport fields was carried out using a scheme based on 6 sampling points, shown in Fig. 2, in accordance with point 4 of the FIFA guidelines: “Quality Programme for Football Turf. Handbook of Test Methods for Football Turf”. The number and weight of granular samples and the locations of the granular sampling points on the field indicated in the aforementioned guidelines are indicated in order to obtain a representative homogenized granular sample for the tested field42.Figure 2Scheme of distribution of granulate sampling points on a sport field. Designation:
    location and numbers of granulate sampling points.Full size imageAt the designated points (1 ÷ 6), 6 samples of granulate were collected. The collected and secured samples were stabilized in the laboratory conditions of natural drying, in which the moisture of the sample was in equilibrium with the ambient moisture. After stabilization, the samples were purified and homogenized to give a pooled sample. Images of exemplary SBR and EPDM granules used in the study are shown in Fig. 3. The average values of the physical parameters of the tested rubber granules are given in Table 1.Figure 3Samples taken from sport fields: (a) SBR granules, (b) EPDM granules.Full size imageTable 1 Some physical parameters of the tested SBR and EPDM granules (data from the Technical Data Sheets provided by the recyclers).Full size tableSamples weighing at least 100 g were taken from the granulate samples using the quartering method. This way allowed to ensure full qualitative and quantitative compliance of the sample composition with the composition of the analyzed material. Samples for testing the content of PAHs were grounded by grinding in a cryogenic mill 6770 Freezer/Mill, by SPEX SamplePrep LLC. Samples for testing other substances were not crushed.The scope and methods of testing rubber granulesThe scope of the research on rubber granules included: content determination of the PAHs, leached elements, organotin compounds and PAHs. In all samples of rubber granules, the content of 8 polycyclic aromatic hydrocarbons, resulting from the REACH Regulation, was determined: benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBAhA), benzo[e]pyrene (BeP), benz[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbFA), benzo[j]fluoranthene (BjFA) and benzo[k]fluoranthene (BkFA). The content of indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP), phenanthrene, anthracene, fluoranthene, pyrene and naphthalene was determined for 38 samples from recyclers, additionally, that the number of PAHs covered by the requirements of the document43 was increased by 7.The leaching tests of elements and organotin compounds were carried out for 18 samples and the leachability of PAHs and elements were carried out for 4 samples. The tests were carried out with the methods listed below, using the following apparatus.The content and leachability of PAHs from rubber granules was determined by gas chromatography with tandem mass spectrometry (GC–MS/MS) using a gas chromatograph coupled with a mass detector GCMS/MS/7890B/7000C. The method was chosen because of the high sensitivity and selectivity obtained for low PAHs levels when used GC–MS/MS, compared to other commonly used analytical techniques such as high-performance liquid chromatography (HPLC) combined with UV, fluorescence or diode array detector (DAD). In studies carried out with the use of the above-mentioned techniques trace amount of PAHs identification is easily interfered by sample matrix and other components if only based on retention44.Determination of leaching of elements: Al, Sb, As, Ba, B, Cd, Co, Cu, Pb, Mn, Hg, Cr, Ni, Se, Sr, Sn, Zn and elution of the Cd, total Cr, Pb, Sn, Zn from rubber granules was carried out by the inductively coupled plasma mass spectrometry (ICP-MS) method with the use of Agilent 7900 ICP-MS (Agilent Technology, Santa Clara, CA, USA). The selected method is characterized by a low limit of quantification, which stands out among other instrumental methods used in elemental analysis, such as ICP-OES or AAS (Inductively coupled plasma–optical emission spectrometry or atomic absorption spectrometry). It is also characterized by high sensitivity and precision, selectivity enabling the simultaneous determination of many elements in complex matrices in a wide range of concentrations.Leachability of Cr (III) and Cr (VI) and elution of Cr (VI) from rubber granules were determined by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) using Agilent 7700 Series ICP-MS with Agilent 1260 Infinity series HPLC (Agilent Technology, Santa Clara, CA, USA). The decision to use HPLC in conjunction with ICP-MS was dictated by the need to determine chromium in two oxidation states. In the case of the selected method, the speciation separation of Cr (III) and Cr (VI) takes place on the HPLC column, where Cr (III) and Cr (VI) are adsorbed. In the next step it allows for the separation and determination of Cr (III) and Cr (VI) in the ICP-MS spectrometer. The HPLC-ICP-MS method is characterized by a short analysis time and a low detection limit compared to the other spectrophotometric methods used for determination of Cr (VI). The leaching of organotin compounds was assessed on the basis of the results of total Sn leaching.Cold-vapor atomic absorption spectroscopy (CV-AAS) with the PerkinElmer FIMS 100 mercury analyser was selected for the Hg leaching study due to the use of a unique technique of mercury vapour measurement at room temperature. Among other alternative methods of Hg determination in aqueous solutions (ICP-MS or GF-AAS (graphite furnace atomic absorption spectrometry)), the selected method is distinguished by a low limit of quantification, simple preparation of samples for analysis, easy elimination of interference and short analysis time.Tests of the content of PAHsShredded samples of rubber granules were subjected to the ultrasonic extraction process for 1 h with the use of toluene as a solvent. Samples were taken from the obtained extract for chromatographic analysis. The analysis was carried out for the following conditions: dispenser operation mode: splitless, carrier gas: Helium: 1.8 ml/min, DB-EUPAH column with dimensions: 20 m × 180 µm × 0.14 µm (the 20 m column is in the form of a coiled wire), injection temperature: 275 °C. The PAHs were identified on the basis of mass spectra and retention times—Table 2.Table 2 Target and identification ions and retention times for the determined PAHs.Full size tableTests of the leaching of elements and organotin compoundsSamples of rubber granules for the study of the leaching of organotin elements and compounds were extracted in a solution of hydrochloric acid (HCl), with concentration 0.07 ± 0.005 mol/dm3 in temperature 37 ± 2 °C. Solutions for the determination the Cr(VI) and Cr(III) prepared by diluting the extraction solution to obtain the pH equal to 7.0 ± 0.5 by adding 1 ml of 0.07 mol/dm3 ammonia and 60 µL of 0.1 mol/dm3 EDTA solution. In parallel, a reagent blank was prepared, as the test samples were. The obtained extracts were analyzed by ICP-MS and HPLC-ICP-MS. The analyzes were performed for the isotopes of the elements: Al—27, Sb—121, As—75, Ba—137, B—11, Cd—111, 112, Cr—52, 53, Co—59, Cu—63, Pb—206, 207, 208, Mn—55, Hg—201, Ni—60, Se—78, Sr—88, Sn—118, 120, Zn—64, 66.Tests of the leachability of polycyclic aromatic hydrocarbons (PAHs) and elementsDetermination of the dry mass of the rubber granulate samples for the leachability tests was carried out in accordance with ISO 11465:199945, using a drying oven (Pol-Eco-Apparatus SLW-115 Top, Wodzisław Śląski, Poland) and analytical balances (SARTORIUS, Kostrzyn Wlkp. i Radwag, Radom, Poland).The rubber granulate samples were dynamically washed with deionized water according to EN 12457-4:200246 providing a ratio of 1 ml of liquid to 1 g of rubber granulate. The pH value of the water used for dynamic leaching did not exceed 6.7. Elution was performed using a bottle/tube roller mixer (Thermo scientific model, Thermo Fisher Scientific (China) Co., Ltd., Shanghai China). After washing, the effluents were left for 15 min and then filtered through 0.45 mm membrane filters using a pressure filtration device.The leachate obtained from dynamic leaching was subjected to the process of transferring PAHs from the water phase to the organic phase using the algorithm:

    SPE column: C18 bed—6 ml/1000 mg;

    activation: 10 ml of methanol, 10 ml of methanol:water (40:60) (v:v), flow: 1 ml/min;

    sample:eluting solution of methanol (100 ml:10 ml), flow: 0.5 ml/min;

    drying: minimum 15 min, maximum flow;

    elution: 3 × 3 ml of dichloromethane, flow: 0.5 ml/min.

    Collected filtrates were evaporated using a vacuum evaporator (IKA RV 05 basic, IKA WERKE GMBH & CO.KG, Staufen) up to 1 ml. Evaporated filtrates were subjected to the chromatographic analysis performed for the conditions as for the determination of PAHs content. The content of eluted PAHs and elements was related to dry mass of the rubber granulate in each sample.The devices were calibrated and checked on a current basis, including the analysis of control samples, before starting the measurements. Calibrations of the chromatograph, spectrometer and mercury analyzer were performed on solutions of certified reference materials and 2 control samples. The correlation coefficients obtained during the calibration were above 0.995 for all analyzed substances. The analysis of the control samples confirmed the accuracy of the calibration curves, which are the basis for the calculations. Measurements of the content/leachability of the tested substances were carried out for two parallel samples and a reagent blank sample, taking into account the results obtained from it in the analysis of analytical samples. The arithmetic mean of two parallel determinations was assumed as the result of the analytical measurement. Content/leachability conversions of test substances were performed using the GC–MS/MS MassHunter Workstation Software, LCP MHLauncher HPLC-ICP-MS and ACP-MS software and WinLab32 with an AA mercury analyzer FIMS100. More

  • in

    Matamatas Chelus spp. (Testudines, Chelidae) have a remarkable evolutionary history of sex chromosomes with a long-term stable XY microchromosome system

    Ferreira, G. S. & Langer, M. C. A pelomedusoid (Testudines, Pleurodira) plastron from the Lower Cretaceous of Alagoas, Brazil. Cretaceous Res. 46, 267–271 (2013).Article 

    Google Scholar 
    Romano, P. S. R., Gallo, V., Ramos, R. R. C. & Antonioli, L. Atolchelys lepida, a new side-necked turtle from the Early Cretaceous of Brazil and the age of crown Pleurodira. Biol. Lett. 10, 1–10 (2014).Article 

    Google Scholar 
    Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 1–17 (2018).Article 

    Google Scholar 
    de la Fuente, M. S., Umazano, A. M., Sterli, J. & Carballido, J. L. New chelid turtles of the lower section of the Cerro Barcino formation (Aptian-Albian?), Patagonia, Argentina. Cretaceous Res. 32, 527–537 (2011).Article 

    Google Scholar 
    Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. M. & Donoghue, P. C. J. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).Article 

    Google Scholar 
    Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).PubMed 
    Article 

    Google Scholar 
    Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).PubMed 
    Article 

    Google Scholar 
    Rueda-Almonacid, J. Vicente. Las tortugas y los cocodrilianos de los países andinos de trópico (Conservación Internacional, 2007).Georges, A. & Thomson, S. Diversity of Australasian freshwater turtles, with an annotated synonymy and keys to species. Zootaxa 2496, 1–37 (2010).Article 

    Google Scholar 
    TTWG. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status, 9th ed. Vol. 8 (Chelonian Research Foundation and Turtle Conservancy, 2021).Uetz, P., F. P. A. R. & H. J. The Reptile Database. http://www.reptile-database.org/ (2022).Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U.S.A. 115, 6034–6039 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., van Dijk, P. P., Rhodin, A. G. J. & Nash, S. D. Turtle hotspots: An analysis of the occurrence of tortoises and freshwater turtles in biodiversity hotspots, high-biodiversity wilderness areas, and turtle priority areas. Chelonian Conserv. Biol. 14, 2–10 (2015).Article 

    Google Scholar 
    Cunha, F. A. G., Sampaio, I., Carneiro, J. & Vogt, R. C. A New Species of Amazon Freshwater Toad-Headed Turtle in the Genus Mesoclemmys (Testudines: Pleurodira: Chelidae) from Brazil. Chelonian Conserv. Biol. 20, 151–166 (2021).
    Google Scholar 
    Brito, E. S. et al. New records of mesoclemmys raniceps (Testudines, chelidae) for the states of amazonas, pará and Rondônia, north Brazil, including the Tocantins basin. Herpetol. Notes 12, 283–289 (2019).
    Google Scholar 
    Cunha, F. A. G. et al. Distribution of Chelus fimbriata and Chelus orinocensis (Testudines: Chelidae). Chelonian Conserv. Biol. 20, 109–115 (2021).
    Google Scholar 
    Pritchard, P. Chelus fimbriata (Schneider 1783)—Matamata Turtle. In Conservation Biology of Freshwater Turtles and Tortoises 020.1–020.10 (Chelonian Research Foundation, 2008). https://doi.org/10.3854/crm.5.020.fimbriata.v1.2008.Vogt, R. C. Tartarugas da Amazônia (2008).Holmstrom, W. F. Preliminary observations on prey herding in the Matamata turtle, Chelus fimbriatus (Reptilia, Testudines, Chelidae). J. Herpetol. 12, 573 (1978).Article 

    Google Scholar 
    Teran, A. F., Vogt, R. C. & de Fatima Soares Gomez, M. Food Habits of an assemblage of five species of turtles in the Rio Guapore, Rondonia, Brazil. J. Herpetol. 29, 536 (1995).Article 

    Google Scholar 
    Vargas-Ramírez, M. et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148 (2020).Lasso, C. A. et al. Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia. Biota Colombiana 19, 147–159 (2018).Article 

    Google Scholar 
    Barros, R. M., Sampaio, M. M., Assis, M. F., Ayres, M. & Cunha, O. R. General considerations on the karyotypic evolution of chelonia from the Amazon Region of Brazil. Cytologia 41, 559–565 (1976).Article 

    Google Scholar 
    Bull, J. J. & Legler, J. M. Karyotypes of side-necked turtles (Testudines: Pleurodira). Can. J. Zool. 58, 828–841 (1980).Viana, P. F. et al. An optimized protocol for obtaining mitotic chromosomes from cultured reptilian lymphocytes. Nucleus 59,1–5 (2016).Article 

    Google Scholar 
    Mcbee, K., Bickham, J. W., Rhodin, A. G. J. & Mittermeier, R. A. Karyotypic Variation in the Genus Platemys (Testudines: Pleurodira). Copeia 2, 445–449 (1987).
    Google Scholar 
    Mazzoleni, S. et al. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae). Scientific Reports 10, 1–11 (2020).Viana, P. F. et al. The Amazonian red side-necked turtle Rhinemys rufipes (Spix, 1824) (Testudines, Chelidae) Has a GSD sex-determining mechanism with an ancient XY sex microchromosome system. Cells 9, 1–15 (2020).Ewert, M. A., Etcheberger, C. R. & Nelson, C. E. Turtle Sex-determining modes and TSD Patterns, and Some TSD Pattern Correlates 21–32 (Smithsonian Books, Washington, 2004).
    Google Scholar 
    Ferreira-Júnior Paulo. Aspectos Ecológicos da Determinação Sexual em Tartarugas. 39, 139–154 (2009).Martinez, P. A., Ezaz, T., Valenzuela, N., Georges, A. & Marshall Graves, J. A. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: A new piece in the puzzle of sex chromosome evolution in turtles. Chromosom. Res. 16, 815–825 (2008).CAS 
    Article 

    Google Scholar 
    Lee, L. S., Montiel, E. E. & Valenzuela, N. Discovery of putative XX/XY male heterogamety in emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in emydura. Cytogenet. Genome Res. 158, 160–169 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ezaz, T. et al. An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosom. Res. 14, 139–150 (2006).CAS 
    Article 

    Google Scholar 
    van Doorn, G. S. Evolutionary transitions between sex-determining mechanisms: A review of theory. Sex. Dev. 8, 7–19 (2014).PubMed 
    Article 

    Google Scholar 
    van Doorn, G. S. & Kirkpatrick, M. Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909–912 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination (Oxford University Press, Oxford, 2014).Book 

    Google Scholar 
    Bachtrog, D. et al. Sex determination: Why so many ways of doing it?. PLoS Biology 12, e1001899 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Viana, P. F. et al. Landscape of snake’ sex chromosomes evolution spanning 85 MYR reveals ancestry of sequences despite distinct evolutionary trajectories. Sci. Rep. 10, 1–14 (2020).Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valenzuela, N. & Adams, D. C. Chromosome number and sex determination coevolve in turtles. Evolution 65, 1808–1813 (2011).PubMed 
    Article 

    Google Scholar 
    Sabath, N. et al. Sex determination, longevity, and the birth and death of reptilian species. Ecol. Evol. 6, 5207–5220 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Literman, R., Burrett, A., Bista, B. & Valenzuela, N. Putative independent evolutionary reversals from genotypic to temperature-dependent sex determination are associated with accelerated evolution of sex-determining genes in turtles. J. Mol. Evol. 86, 11–26 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bista, B., Wu, Z., Literman, R. & Valenzuela, N. Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera. Philos. Trans. R. Soc. B Biol. Sci. 376, 1–14 (2021).Montiel, E. E., Badenhorst, D., Tamplin, J., Burke, R. L. & Valenzuela, N. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126, 105–113 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, L., Montiel, E. E., Navarro-Domínguez, B. M. & Valenzuela, N. Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination. Cytogenet. Genome Res. 157, 77–88 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bista, B. & Valenzuela, N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11, 1–11 (2020).Zexian, Z. et al. Diversity of reptile sex chromosome evolution revealed by cytogenetic and linked-read sequencing. bioRxiv (2021).Cunha, F. A. G., Fernandes, T., Franco, J. & Vogt, R. C. Reproductive biology and hatchling morphology of the amazon toad-headed turtle (Mesoclemmys raniceps) (Testudines: Chelidae), with notes on species morphology and taxonomy of the mesoclemmys group. Chelonian Conserv. Biol. 18, 195 (2019).Article 

    Google Scholar 
    Matsubara, K. et al. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 125, 111–123 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorman, G. C. The chromosomes of Reptilia, a cytotaxonomic interpretation. In Cytotaxonomy and Vertebrate Evolution 347–424 (1973).Reed, K. M. et al. Cytogenetic analysis of the pleurodine turtle Phrynops hogei and its taxonomic implications. Amphibia Reptilia 12, 203–212 (1991).Article 

    Google Scholar 
    Cavalcante, M. G. et al. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS ONE 13, 1–13 (2018).
    Google Scholar 
    Clemente, L. et al. Interstitial telomeric repeats are rare in turtles. Genes 11, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19, 1–16 (2018).Article 
    CAS 

    Google Scholar 
    Srikulnath, K., Azad, B., Singchat, W. & Ezaz, T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE 14, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    Abramyan, J., Ezaz, T., Graves, J. A. M. & Koopman, P. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosom. Res. 17, 1015–1024 (2009).CAS 
    Article 

    Google Scholar 
    Born, G. G. & Bertollo, L. A. C. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing × chromosome. Chromosom. Res. 8, 111–118 (2000).CAS 
    Article 

    Google Scholar 
    O’Meally, D. et al. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom. Res. 18, 787–800 (2010).Article 
    CAS 

    Google Scholar 
    Ferreira, M., Garcia, C., Matoso, D. A., de Jesus, I. S. & Feldberg, E. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in siluriformes: Cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica 144, 591–599 (2016).PubMed 
    Article 

    Google Scholar 
    Yano, C. F., Bertollo, L. A. C., Liehr, T., Troy, W. P. & de Cioffi, M. B. W. Chromosome dynamics in Triportheus Species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. J. Hered. 107, 342–348 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Symonová, R. Integrative rDNAomics-importance of the oldest repetitive fraction of the eukaryote genome. Genes 10, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Kawai, A. et al. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 117, 92–102 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Badenhorst, D., Stanyon, R., Engstrom, T. & Valenzuela, N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosom. Res. 21, 137–147 (2013).CAS 
    Article 

    Google Scholar 
    Viana, P. F. et al. Genomic organization of repetitive DNAs and differentiation of an XX/XY sex chromosome system in the Amazonian Puffer Fish, Colomesus asellus (Tetraodontiformes). Cytogen. Genome Research 153, 1–9 (2018).Castoe, T. A. et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol. Evol. 3, 641–653 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Castoe, T. A. et al. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol. 12, 1–8 (2011).Article 
    CAS 

    Google Scholar 
    Card, D. C. et al. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies. PLoS ONE 9, e106649 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Adams, R. H. et al. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59, 295–310 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, C. E. & Sinden, R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile × loci. Biochemistry 35, 5041–5053 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181–3186 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sandberg, G. Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. Nucleic Acids Res. 25, 2883–2887 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubinsztein, D. C. et al. Microsatellite evolution—evidence for directionality and variation in rate between species. Nat. Genet. 10, 337–343 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eisen, J. A. Mechanistic basis for microsatellite instability. In Microsatellites: Evolution and Applications (eds Goldstein, D. B. & Schlotterer, C.) 34–48 (Oxford University Press, Oxford, 1999).
    Google Scholar 
    Payseur, B. A. & Nachman, M. W. Microsatellite variation and recombination rate in the human genome. Genetics 156, 1285–1298 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. & Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular ecology 11, 2453–2465 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klintschar, M. et al. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis 25, 3344–3348 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jonika, M., Lo, J. & Blackmon, H. Mode and tempo of microsatellite evolution across 300 million years of insect evolution. Genes 11, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Shedlock, A. M. et al. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc. Natl. Acad. Sci. 104, 2767–2772 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferreira, G. S., Rincón, A. D., Solórzano, A. & Langer, M. C. Review of the fossil matamata turtles: Earliest well-dated record and hypotheses on the origin of their present geographical distribution. Sci. Nat. 103, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gross, M. C., Schneider, C. H., Valente, G. T., Martins, C. & Feldberg, E. Variability of 18S rDNA locus among Symphysodon fishes: Chromosomal rearrangements. J. Fish Biol. 76, 1117–1127 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    IJdo, J. W., Wells, R. A., Baldini, A. & Reeders, S. T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19, 4780–4780 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Viana, P. F. et al. Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS ONE 11, 1–16 (2016).
    Google Scholar 
    Viana, P. F., Ezaz, T., Cioffi, M. D. B., Almeida, B. J. & Feldberg, E. Evolutionary insights of the zw sex chromosomes in snakes: A new chapter added by the amazonian puffing snakes of the genus spilotes. Genes 10, 1–15 (2019).Article 
    CAS 

    Google Scholar 
    Zwick, M. S. et al. A rapid procedure for the isolation of C0t−1 DNA from plants. Genome 40, 138–142 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferreira, A. M. V. et al. Cytogenetic Analysis of Panaqolus tankei Cramer & Sousa, 2016 (Siluriformes, Loricariidae), an Ornamental Fish Endemic to Xingu River, Brazil. Cytogenet. Genome Res. 161, 187–194 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220 (1964).Article 

    Google Scholar  More

  • in

    Allelopathic effects of sesame extracts on seed germination of moso bamboo and identification of potential allelochemicals

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhou, B. Z., Fu, M. Y., Xie, J. Z., Yang, X. S. & Li, Z. C. Ecological functions of bamboo forest: Research and application. J. For. Res. 16, 143–147 (2005).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Lima, R. A. F., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147(1), 32–39 (2012).Article 

    Google Scholar 
    Kobayashi, K., Kitayama, K. & Onoda, Y. A. A simple method to estimate the rate of the bamboo expansion based on one-time measurement of spatial distribution of culms. Ecol. Res. 33(6), 1137–1143 (2018).CAS 
    Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Isagi, Y. & Torii, A. Range expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, Japna. J. Sustain. Forest. 6(1–2), 127–141 (1997).Article 

    Google Scholar 
    Dong, C. L. et al. Effect of new rhizome growth on the fringe of the forest of Phyllostachys heterocycla cv. pubescens by different measure. J. Anhui Agric. Univ. 27(2), 150–153 (2000) (In Chinese with English abstract).
    Google Scholar 
    Bai, S. B. et al. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodivers. Sci. 21(3), 288–295 (2013) (In Chinese with English abstract).Article 

    Google Scholar 
    Lin, Q. Q., Wang, B., Ma, Y. D., Wu, C. Y. & Zhao, M. S. Effects of Phyllostachys pubescens forest expansion on biodiversity in Tianmu Mountain Nature Reserve. J. Northeast Forest Univ. 42(9), 43–47 (2014) (In Chinese with English abstract).
    Google Scholar 
    Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J. Veg. Sci. 7(5), 723–728 (1996).Article 

    Google Scholar 
    Ouyang, M. et al. Effects of the expansion of Phyllostachys edulis on species composition, structure and diversity of the secondary evergreen broad-leaved forests. Biodivers. Sci. 24(6), 649–657 (2016) (In Chinese with English abstract).Article 

    Google Scholar 
    Larpkern, P., Moe, S. R. & Totland, Ø. The effects of environmental variables and human disturbance on woody species richness and diversity in a bamboo-deciduous forest in northeastern Thailand. Ecol. Res. 24(1), 147–156 (2009).Article 

    Google Scholar 
    Larpkern, P., Moe, S. R. & Totland, Ø. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Griscom, B. W. & Ashton, M. S. A self-perpetuating bamboo disturbance cycle in a neotropical forest. J. Trop. Ecol. 22(5), 587–597 (2006).Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Suzuki, S. & Nakagoshi, N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23(4), 641–647 (2008).Article 

    Google Scholar 
    Cai, L., Zhang, R. L., Li, C. F. & Ding, Y. A method to inhabit the expansion of Phyllostachys pubescens stands based on the analysis of underground rhizome. J. Northeast Forest Univ. 31(5), 68–70 (2003) (In Chinese with English abstract).
    Google Scholar 
    Rice, E. L. Allelopathy (Academic Press, 1984).
    Google Scholar 
    Huang, W. et al. Allelopathic effects of Cinnamomum septentrionale leaf litter on Eucalyptus grandis saplings. Glob. Ecol. Conserv. 21, e00872 (2020).Article 

    Google Scholar 
    Turk, M. A. & Tawaha, A. M. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot. 22(4), 673–677 (2003).Article 

    Google Scholar 
    Kong, C. H., Li, H. B., Hu, F., Xu, X. H. & Wang, P. Allelochemicals released by rice roots and residues in soil. Plant Soil 288(1–2), 47–56 (2006).CAS 
    Article 

    Google Scholar 
    Duke, S. O. Weeding with allelochemicals and allelopathy-a commentary. Pest Manag. Sci. 63(4), 307–307 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Braine, J. W., Curcio, G. R., Wachowicz, C. M. & Hansel, F. A. Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. J. For. Res. 17(5), 440–445 (2012).CAS 
    Article 

    Google Scholar 
    Soltys, D., Krasuska, U., Bogatek, R. & Gniazdowska, A. Allelochemicals as bioherbicides-present and perspectives. In Herbicides-current research and case studies in use (eds Price, A. J. & Kelton, J. A.) (IntechOpen, 2013).
    Google Scholar 
    Qin, J. H. et al. Allelopathic effects of the different allelochemical pathways of sesame extracts. J. Foshan Univ. 31(4), 1–5 (2013) (In Chinese with English abstract).
    Google Scholar 
    Khasabulli, B. D., Musyimi, D. M., George, O. & Gichuhi, M. N. Allelopathic effect of Bidens Pilosa on seed germination and growth of Amaranthus Dubius. J. Asian Sci. Res. 8(3), 103–112 (2018).
    Google Scholar 
    Boter, M. et al. An integrative approach to analyze seed germination in Brassica napus. Front. Plant Sci. 10, 1342 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saha, D., Marble, S. C. & Pearson, B. J. Allelopathic effects of common landscape and nursery mulch materials on weed control. Front. Plant Sci. 9, 733 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bachheti, A., Sharma, A., Bachheti, R. K., Husen, A. & Pandey, D. P. Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites Reference Series in Phytochemistry (eds Mérillon, J. M. & Ramawat, K.) (Springer, 2020).
    Google Scholar 
    Duary, B. Effect of leaf extract of sesame (Sesamum indicum L.) on germination and seedling growth of blackgram (Vigna mungo L.) and rice (Oryza sativa L.). Allelopathy J. 10(2), 153–156 (2002).
    Google Scholar 
    Soleymani, A. & Shahrajabian, M. H. Study of allelopathic effects of sesame (Sesamum indicum) on canola (Brassica napus) growth and germination. Intl. J. Agri. Crop Sci. 4(4), 183–186 (2012).
    Google Scholar 
    Gorai, M., Aloui, W. E., Yang, X. & Neffati, M. Toward understanding the ecological role of mucilage in seed germination of a desert shrub Henophyton desert: Interactive effects of temperature, salinity and osmotic stress. Plant Soil 374(1–2), 727–738 (2014).CAS 
    Article 

    Google Scholar 
    Wang, C., Wu, B. & Jiang, K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 28, 103–116 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X. L. et al. Allelopathic effects of exotic mangrove species Laguncularia racemosa on Bruguiera gymnorhiza. J. Xiamen Univ. 56(3), 339–345 (2017) (In Chinese with English abstract).
    Google Scholar 
    Shah, A. N. et al. Allelopathic influence of sesame and green gram intercrops on cotton in a replacement series. Clean: Soil, Air, Water 45(1), 1–10 (2017).
    Google Scholar 
    Amare, T. Allelopathic effect of aqueous extracts of parthenium (Parthenium hysterophorus L.) parts on seed germination and seedling growth of maize (Zea mays L.). J. Agric. Crop 4(12), 157–163 (2018).
    Google Scholar 
    Yan, X. F., Du, Q., Fang, S. & Zhou, L. B. Allelopathic effects of water extraction of Rhus typhina on Zea mays seeds germination. Seed 29(3), 15–18 (2010) (In Chinese with English abstract).
    Google Scholar 
    Yan, X. F., Zhou, Y. F. & Du, Q. Allelopathic effects of water extraction from root and leaf litter of Rhus typhina on the germination of wheat seeds. Seed 30(5), 17–20 (2011) (In Chinese with English abstract).
    Google Scholar 
    Wang, X. et al. Allelopathic effects of aqueous leaf extracts from four shrub specious on seed germination and initial growth of Amygdalus pedunculata Pall. Forests 9, 711 (2018).Article 

    Google Scholar 
    Alencar, N. L. M. et al. Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Funct. Plant Biol. 42(9), 865–874 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozano-Isla, F., Campos, M. L. O., Endres, L., Bezerra-Neto, E. & Pompelli, M. F. Effects of seed storage time and salt stress on the germination of Jatropha curcas L. Ind. Crop Prod. 118, 214–224 (2018).CAS 
    Article 

    Google Scholar 
    Wu, J. R., Chen, Z. Q. & Peng, S. L. Allelopathic potential of invasive weeds: Alternanthera philoxeroide, Ipomoea cairica and Spartina alterniflora. Allelopathy J. 17(2), 279–285 (2006).
    Google Scholar 
    Sahu, A. & Devkota, A. Allelopathic effects of aqueous extract of leaves of Mikania micrantha H.B.K. on seed germination and seedling growth of Oryza sativa L. and Raphanus sativus L. Sci. World 11(11), 70–77 (2013).Article 

    Google Scholar 
    Gatti, A. B., Ferreira, A. G., Arduin, M. & Perez, S. C. G. D. A. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O.Kuntze on development of Sesamum indicum L. seedlings. Acta Bot. Bras. 24(2), 454–461 (2010).Article 

    Google Scholar 
    Hou, Y. P. et al. Effects of litter from dominant tree species on seed germination and seedling growth of exotic plant Rhus typhina in hilly areas in Shandong peninsula. Sci. Silvae Sin. 52(6), 28–34 (2016) (In Chinese with English abstract).
    Google Scholar 
    Jiang, Z. et al. Effects of root exudates from Picea asperata seedlings on the seed germination and seedling growth of two herb species. Sci. Silvae Sin. 55(6), 160–166 (2019) (In Chinese with English abstract).
    Google Scholar 
    Hagan, D. L., Jose, S. & Lin, C. Allelopathic exudates of cogongrass (Imperata cylindrical): Implications for the performance of native pine savanna plant species in the Southeastern US. J. Chem. Ecol. 39, 312–322 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K. & Gawronski, S. W. Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol. Plantarum 50(1), 156–158 (2006).Article 

    Google Scholar 
    Politycka, B. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol. Plant. 18(4), 365–370 (1996).CAS 

    Google Scholar 
    Williamson, G. B. & Richardson, D. Bioassays for allelopathy: Measuring treatment responses with independent controls. J. Chem. Ecol. 14(1), 181–187 (1988).Article 

    Google Scholar  More

  • in

    Machine learning-based global maps of ecological variables and the challenge of assessing them

    The quality of global maps can be assessed in different ways. One way is global assessment where a single statistic is chosen to summarize the quality of the entire map: the map accuracy. For a categorical variable, this can be the probability that for a randomly chosen location on the map, the map value corresponds to the true value. For a continuous variable, it can be the RMSE, describing for a randomly chosen location on the map the expected difference between the mapped value and the true value. When a probability sample, such as a completely spatially random sample, is available for the area for which a global assessment is needed, then map accuracy can be estimated model-free (also called design-based, e.g., by using the unweighted sample mean in case of a completely spatially random sample). This circumvents modeling of spatial correlation because observations are independent by design6,9. This approach is called model-free because no model needs to be assumed about the distribution or correlation of the data: the only source of randomness is the random selection of sample units from a target population. If a probability sample is not available this approach cannot be used, and automatically the accuracy assessment approach becomes model-based10, which involves modeling a spatial process by assuming distributions and taking spatial correlations into account, and choosing estimation methods accordingly.Using naive random n-fold or leave-one-out cross-validation methods (or a simple random train-test split) to assess global model quality (usually equated with map accuracy) makes sense when the data are independent and identically distributed. When this is not the case, dependencies between nearby samples, e.g., in a spatial cluster, are ignored and result in biased, overly optimistic model assessment, as shown in, e.g., Ploton et al.5. Alternative cross-validation approaches such as spatial cross-validation5,11 that control for such dependencies are the only way to overcome this bias. Different spatial cross-validation strategies have been developed in the past few years, all aiming at creating independence between cross-validation folds5,11,12,13. Cross-validation creates prediction situations artificially by leaving out data points and predicting their value from the remaining points. If the aim is to assess the accuracy of a global map, the prediction situations created need to resemble those encountered while predicting the global map from the reference data (see Fig. 1 and discussions in Milà et al.14). This occurs naturally when reference data were obtained by (completely spatially random) probability sampling, but in other cases, this has to be forced for instance by controlling spatial distances (spatial cross-validation). Such forcing, however, is only possible when the distances in space that need to be resembled are available in the reference data. In the extreme case where all reference data come from a single cluster, this is impossible. When all reference data come from a small number of clusters, larger distances are available between clusters but do not provide substantial independent information about variation associated with these distances. Lack of information about larger distances means that we cannot assess the quality of predictions associated with such distances and cannot properly estimate global quality measures. Alternative approaches such as experiments with synthetic data15 or a validation using independent data at a higher level of integration16 would then be options to support confidence in the predictions.Another way of accuracy assessment is local assessment: for every location, a quality measure is reported, again as probability or prediction error. Such a local assessment predicts how close the map value is to newly observed values at particular locations. If the measurement error is quantified explicitly, a smoother, measurement-error-free value may be predicted10. If the model accounts for change of support10,17, predictions errors may refer to average values over larger areas such as 1 × 1, 5 × 5, or 10 × 10 km grid cells. Examples of local assessment in the context of global ecological mapping are modeled prediction errors using Quantile Regression Forests18 or mapped variance of predictions made by ensembles1,2. Neither of these examples quantifies spatial correlation or measurement error, or addresses change of support, as it is known from other modeling frameworks19. By omitting to model the spatial process, the local accuracy estimates as presented in the global studies that motivated this comment are disputable.The difference between global and local assessment is striking, in particular for global maps. A global, single number averages out all variability in prediction errors, and obscures any differences, e.g., between continents or climate zones. It is of little value for interpreting the quality of the map for particular regions. More

  • in

    Author Correction: Recent expansion of oil palm plantations into carbon-rich forests

    In the version of this article initially published, there were mistakes in affiliations 1, 2 and 6. The corrected affiliations should read as follows: 1. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China; 2. Ministry of Education Ecological Field Station for East Asian Migratory Birds, Department of Earth System Science, Tsinghua University, Beijing, China; 6. Department of Geography, Department of Earth Sciences, and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China. The affiliations have been corrected in the HTML and PDF versions of the article. More