More stories

  • in

    Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia

    Data collection of flowering and fruiting phenologyMonthly reproductive phenology data recorded over 35 years (from April 1976 to September 2010) were collected from the Bulletin Fenologi Biji Benih dan Anak Benih (Bulletin of Seed and Seedling Phenology), which was deposited at the FRIM library. The bulletin reported seed and seedling availabilities and the flowering and fruiting phenology of trees at several research stations in Malaysia. The present study collected flowering and fruiting records of trees grown in FRIM arboretums located approximately 12 km northwest of Kuala Lumpur, Malaysia (latitude 3°24 ‘N, longitude 101°63 ‘E, elevation 80 m). There are both dipterocarp and non-dipterocarp arboretums in FRIM, both of which were founded in 1929. These arboretums preserve and maintain living trees for research and other purposes. Each month, three research staff members of FRIM with sufficient phenology monitoring training made observations with binoculars to record the presence of flowers and fruits on trees of each species on the forest floor from April 1976 to September 2010. The phenological status of the trees was recorded as flowering during the developmental stages from flower budding to blooming and as fruiting during the developmental stages from the occurrence of immature fruit to fruit ripening. Because only one or two individuals per species are grown at the FRIM arboretums, the flowering and fruiting phenology were monitored using these individuals. The resultant flowering and fruiting phenology data included a time series of binary data (1 for presence and 0 for absence) with a length of 417 months.The original data included 112 dipterocarp and 240 non-dipterocarp species. We excluded 17 dipterocarps and 125 non-dipterocarp species based on the following five criteria for data accuracy.

    1.

    Percentage of missing values is ≤50%: If the monthly flowering or fruiting phenology data of a species included a substantially large number of missing values ( >50%), the species was excluded.

    2.

    Stable flowering period: We considered an observation to be unreliable if the flowering period was significantly different among flowering events (if the coefficient of variation in the flowering period was larger or equal to 1.0).

    3.

    Flowering period is shorter than or equal to 12 months: we considered an observation to be unreliable if the flowering period was longer than 12 months because it was unlikely that the same tree would flower continuously for longer than 1 year.

    4.

    The flowering and fruiting frequencies were not significantly different between the first and second half of the census period: when the flowering frequency was zero for the first half of the observation period but was larger than 0.1 for the second half of the observation period, or when the flowering frequency was zero for the second half of the observation period but was larger than 0.1 for the first half of the observation period, we removed these species because data are not reliable (e.g., physiological conditions may have changed significantly). We adopted the same criteria for the fruiting phenology data.

    5.

    We removed overlapping species, herb species, and specimens with unknown species names.

    After removing unreliable species based on the five criteria explained above, we obtained 95 dipterocarp and 115 non-dipterocarp species (Supplementary Data 1). We used these species for further analyses. It is unlikely that our final data includes trees that were replaced by young trees during the census period because newly planted seedlings do not flower over 20–30 years until they are fully grown to the reproductive stage ( >20–30 cm DBH)45.Detection of seasonality in reproductive phenologyTo compare the flowering and fruiting phenology seasonality among different families, nine families that included at least five species were used. The number of flowering or fruiting events was counted for each month from January to December during a census, and then the frequency distribution was drawn as a histogram. Similarly, we also generated a histogram for the seed dispersal month, which was calculated as the month when fruiting ended (i.e., when the binary fruiting phenology data changed from one to zero).Classification of phenological patternsTo classify the phenological patterns, we performed time-series clustering using the R package TSclust46 with the hierarchical clustering method based on the Dynamic Time Warping distance of the flowering phenology data of each species. For this analysis, time points at which there were missing values for at least one species were excluded. Because of the large number of missing values in non-Dipterocarpaceae species, we performed time-series clustering only for the Dipterocarpaceae species based on 394 time points in total. The number of phenological clusters was estimated based on AIC, as explained below.Climate dataDaily minimum, mean, and maximum temperatures and precipitation data monitored at the FRIM KEPONG (3° 14’ N, 101° 42’ E, elevation 97 m) weather station were provided by the Malaysian Meteorological Department. We used the daily minimum temperature for our analysis because there were fewer missing values compared to the numbers of missing daily mean and daily maximum temperature values. The periods in which climate data were available were from 1 March 1973 to 31 March 1996, and from 23 July 1997 to 20 April 2005. We removed periods in which there were missing values spanning longer than 5 days. When the range of missing values spanned a period shorter than 3 days, we approximated these missing values using the mean minimum temperatures recorded on the adjacent three days. Although solar radiation data were not available for our study, the use of precipitation is sufficient for model fitting because there is a significant negative correlation between solar radiation and precipitation in Southeast Asia47.Climate data generated by GCMsAs the future climate inputs, we used bias-corrected climate input data from 1 January 2050 to 31 December 2099, with a daily temporal resolution and a 0.5° spatial resolution, provided by the ISI-MIP project48; these data are based on the Coupled Model Intercomparison Project Phase 5 outputs from three GCMs: GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5. To compare the flowering phenology between 1976–1996 and 2050–2099, bias-corrected GCM data from 1 May 1976 to 31 March 1996, were also used. This period (1 May 1976–31 March 1996) is consistent with the period used for model fitting. We selected daily minimum temperature and precipitation time series from the 0.5° grid cells corresponding to the study site for phenology monitoring at FRIM. To compare flowering phenology among regions, we also used the same set of data from three other regions in Southeast Asia: Trang Province in Thailand (7° 4’ N, 99° 47’ E), Lambir Hills National Park in Malaysia (4° 2’ N, 113° 50’ E), and central Kalimantan in Indonesia (0° 06’ S, 114° 0’ E). Because the study site in FRIM was not in the center of a 0.5° grid cell, we interpolated the data using four grid cells in the vicinity of the observation site. We used the weighted average according to the distance between each observation site and the center of each corresponding grid cell.Although the climate input data provided by ISI-MIP were already bias-corrected, we conducted additional bias correction at FRIM using a historical scenario for each GCM data set and the observed weather data from 1 January 1976 to 31 December 2004 based on previously presented protocol49. We did not implement any bias correction for the frequency of dry days or precipitation intensity of wet days49 because we only focused on the average precipitation.The variances in the annual fluctuation of the monthly mean precipitation were not the same between the observation data and historical GCM runs at FRIM. For all three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5), the variances in the yearly fluctuation output by the GCMs tended to be larger than that of the observed data at the FRIM KEPONG weather station during winter and spring. On the other hand, during summer and fall, the variances output by the GCMs tended to be smaller than that of the observed data. These biases could not be corrected using the previous method49. Therefore, we conducted the following bias correction for these data:$${p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }={r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}cdot left[{F}_{Gamma }^{-1}left({F}_{Gamma }left({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}|{k}_{m,y},{theta }_{m,y}right)|{k}_{m,y}^{* },{theta }_{m,y}^{* }right)cdot {rho }_{m,y}^{{{{{{rm{GCM}}}}}}}right],$$
    (1)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }) is the bias-corrected precipitation value of the target GCM at year y, month m, and date i. In the equation, ({r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the ratio of the precipitation value of the GCM relative to the monthly mean value. Then, the following equation is used:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (2)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation value (not bias-corrected) of the GCM at year (y), month (m), and date i and ({bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}) is the monthly mean precipitation value of the GCM at year (y) and month (m). In Eq. 1, ({F}_{Gamma }) represents the cumulative distribution function of a gamma distribution, ({F}_{Gamma }^{-1}) represents the inverse function of the cumulative distribution function of the gamma distribution, and ({k}_{m,y}) and ({theta }_{m,y}) are the shape parameters. In Eq. 1, ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) indicates the deviation of the monthly mean from the normal climate value of the corresponding period, and this value is calculated as follows:$${delta }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}}{{rho }_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (3)
    where ({rho }_{m,y}^{{{{{{rm{GCM}}}}}}}) is the normal climate value during the target period. In this method, we defined the normal climate value as the mean of the monthly mean precipitation values over 31 years.$${rho }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{1}{31}mathop{sum }limits_{j=y-15}^{y+15}{bar{p}}_{m,j}^{{{{{{rm{GCM}}}}}}}.$$
    (4)
    When the mean of a gamma distribution is fixed at one, the shape parameters are represented as follows:$${k}_{m,y}=frac{1}{Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)},$$
    (5)
    $${theta }_{m,y}=frac{1}{{k}_{m,y}},$$
    (6)
    where (Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)) indicates the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) at month (m) over 31 years.In this method, we assumed that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance of ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance of ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Here, ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) represents the deviation of the monthly mean in the observation data from the normal climate value.$${delta }_{m,y}^{{{{{{rm{obs}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}}{{rho }_{m}^{{{{{{rm{obs}}}}}}}},$$
    (7)
    $${rho }_{m}^{{{{{{rm{obs}}}}}}}=frac{1}{28}mathop{sum }limits_{j=1976}^{2004}{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}.$$
    (8)
    In the above equations, ({bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}) indicates the monthly mean precipitation value in the observed data. As mentioned above, because we assume that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained, ({k}_{m,y}^{* }) and ({theta }_{m,y}^{* }) are calculated as follows:$${k}_{m,y}^{* }=frac{{k}_{m,y}}{alpha },$$
    (9)
    $${theta }_{m,y}^{* }=frac{1}{{k}_{m,y}^{* }},$$
    (10)
    where$$alpha =frac{Vleft({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}right)}{Vleft({delta }_{m,y}^{{{{{{rm{obs}}}}}}}right)}.$$
    (11)
    In Eq. 11, ({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}) is the deviation of the monthly mean of the historical GCM precipitation data from the normal climate value. Here, we defined the normal climate value as the average monthly mean during 1976–2004.The method proposed here is an original bias correction method, but the above equations are easily derived if we assume that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Notably, because we combined this method with the bias correction method described previously49, Eq. 2 should be expressed as follows:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (12)
    where ({widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation data that are bias-corrected using the method described previously49. Bias-corrected data were compared with the data without bias correction (Supplementary Figs. 8–11).Statistical analyses and reproducibilityWe adopted previously presented models in which environmental triggers for floral induction accumulate for n1 days prior to the onset of floral induction21 (Supplementary Fig. 2). Flowers then develop for n2 days before opening (Supplementary Fig. 2). The model assumption of the time lag between floral induction and anthesis, which is denoted as n2, was validated by a previous finding in which the expression peaks of flowering-time genes, which are used as molecular markers of floral induction, were shown to occur at least one month before anthesis in Shorea curtisii19. S. curtissi is included in our data set. The CU at time t, ({{{{{rm{CU}}}}}}left(t|{theta }^{C}right)), is calculated as follows:$${{{{{rm{CU}}}}}}left(t|{theta }^{C}right)=mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}{{{{{rm{max }}}}}}{bar{C}-xleft(t-nright),0},$$
    (13)
    where ({theta }^{C}=left{{n}_{1},{n}_{2},bar{C}right}) is the set of parameters and x(t) is the temperature at time t. Here, (bar{C}) indicates the threshold temperature. The term max{x1, x2} is a function that returns a larger value for the two arguments. Similarly, given ({theta }^{D}={{n}_{1},{n}_{2},bar{D}},) the DU at time t, ({{{{{rm{DU}}}}}}left(t|{theta }^{D}right)), is defined as the difference between the mean daily accumulation of rainfall over n1 days and a threshold rainfall level ((bar{D})):$${{{{{rm{DU}}}}}}left(t|{theta }^{D}right)={{{{{rm{max }}}}}}left{bar{D}-mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}yleft(t-nright)/{n}_{1},0right},$$
    (14)
    where y(t) is the rainfall value at time t. The term max{x1, x2} is defined similarly as in Eq. 13.Logistic regression was performed using only the DU and using the product of CU and DU (CU × DU) as the explanatory variables and using the presence or absence of a first flowering event as the dependent variable for each phenological cluster. Because the number of phenological clusters is unknown, we performed forward selection on the cluster number based on the AIC. Let m be the number of phenological clusters based on the dendrogram drawn from the time-series clustering explained above (Supplementary Fig. 5). Given m phenological clusters, let ({G}_{k}^{m}) be the kth set of clusters in which the DU model is adopted for model fitting. Here, ({G}_{k}^{m}) indicates the set of cluster IDs, and k ranges from 0 to m(m+1)/2. For example, when m = 2 (i.e., there are two clusters, clusters 1 and 2), there are four cluster sets, calculated as follows:$${G}_{0}^{m=2}={},{G}_{1}^{m=2}={1},{G}_{2}^{m=2}={2},{G}_{3}^{m=2}={1,2},$$
    (15)
    where the element in the bracket indicates the ID of the cluster in which the DU model is adopted for model fitting. When k = 0, the DU model is not used; instead, the CU × DU model is adopted for model fitting for both clusters 1 and 2. Let i be the ith element of the vector E, which is defined as follows:$${{{{{bf{E}}}}}}={{t}_{1}^{1},,{t}_{2}^{1},…,,,{t}_{n}^{1},,…,,,{t}_{1}^{m},,{t}_{2}^{m},…,,{t}_{n}^{m}},$$
    (16)
    where n is the length of the time-series data for each cluster. Notably, n = 223 is the same for all species and clusters. The term ({t}_{1}^{m}) in the above equation denotes the first time point of the time series of length n for the species included in cluster m. Given m and k, let ({p}^{(m,k)}(i)) be the flowering probability of element i of vector E. The term ({p}^{(m,k)}(i)) is expressed as follows:$${{log }}left[frac{{p}^{left(m,kright)}left(iright)}{1-{p}^{left(m,kright)}left(iright)}right]= mathop{sum }limits_{j=1}^{m}{alpha }_{m,j}cdot {Z}_{m,j}left(iright)+mathop{sum }limits_{jin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right)\ +mathop{sum }limits_{jnotin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{rm{CU}}}}}}left(i|{theta }_{j}^{C}right)times {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right),$$
    (17)
    where ({Z}_{m,j}(i)) is the dummy variable indicating a cluster for i; ({Z}_{m,j}(i)) equals 1 if the ith element of E belongs to the jth cluster, otherwise it is zero, and ({alpha }_{m,j}) and ({beta }_{m,j}) in Eq. (5) are regression coefficients for the jth cluster when the species are grouped into m clusters. We estimate the parameters and the number of clusters based on a finite number of observations. Given the number of clusters m, for each of m clusters, the parameters were estimated by maximizing the loglikelihood value calculated for all combinations of potential parameter values for ({n}_{1},{n}_{2},bar{C},) and (bar{D}) within the ranges of [1 (min), 50 (max)] for n1, [1,50] for n2, [19,25] for (bar{C}), and [1,9] for (bar{D}). We varied the days (n1 and n2) by integers, temperature ((bar{C})) by tenths of a degree C, and daily precipitation ((bar{D})) by tenths of a mm. Regression coefficients (({alpha }_{m,j}), ({beta }_{m,j})) for all j values under a given m value and associated likelihoods were determined using generalized linear models with binomial error structures.With the results of the parameter estimations, we determined the number of clusters in two steps. For the first step, for a given m, we obtained (hat{k}(m)) according to the following equation:$$hat{k}(m)={arg }mathop{{min }}limits_{k}{{{{{{rm{AIC}}}}}}{m,k(m)},,k(m),=,0,,…,{2}^{m}}.$$
    (18)
    For the second step, with the results of (hat{k}) obtained from the first step, we obtained the estimate of the number of clusters according to forward selection by searching for the (hat{m}) value that satisfies the following inequalities:$${{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}+1,,hat{k}(hat{m}+1))cap {{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}-1,,hat{k}(hat{m}-1)).$$ (19) For model fitting, the first flowering month was extracted from the flowering phenology data. When flowering lasted more than 1 month, the month after the first flowering month was replaced by a value of zero (absence of flowering). If the month before the first flowering month was a missing value, the first flowering month was treated as a missing value and was not used for further analyses. We assumed that phenology monitoring was performed on the first date of each month.Projections of 21st-century changes in flowering phenologyWe used two scenarios (RCP2.6 and RCP8.5) to forecast future reproductive phenology in dipterocarp species for each of the three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5). We predicted the flowering probability per month for each phenological cluster during the periods from 1 May 1976–31 March 1996 and from 1 January 2050–31 December 2099 based on the best model (Supplementary Table 2). The predicted flowering probability during the 2050–2099 period was normalized to that during the 1976–1996 period for each climate scenario and for each of three GCMs. To compare the seasonal patterns between 1976–1996 and 2050–2099, the predicted flowering probability was averaged for each month from January to December and plotted for each month in Fig. 6. R version 3.6.3 was used for all analyses.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Evaluation of hair cortisol as an indicator of long-term stress responses in dogs in an animal shelter and after subsequent adoption

    Beerda, B., Schilder, M. B. H., Van Hooff, J. A., De Vries, H. W. & Mol, J. A. Chronic stress in dogs subjected to social and spatial restriction I. Behavioral responses. Physiol. Behav. 66, 233–242 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rooney, N. J., Gaines, S. A. & Bradshaw, J. W. Behavioural and glucocorticoid responses of dogs (Canis familiaris) to kennelling: investigating mitigation of stress by prior habituation. Physiol. Behav. 92, 847–854. https://doi.org/10.1016/j.physbeh.2007.06.011 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stephen, J. M. & Ledger, R. A. A longitudinal evaluation of urinary cortisol in kennelled dogs Canis familiaris. Physiol. Behav. 87, 911–916. https://doi.org/10.1016/j.physbeh.2006.02.015 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mills, D., Karagiannis, C., Zulch, H. Stress its effects on health and behavior. Vet. Clin. North Am. Small Anim. Pract. 44, 525–541 (2014).Mormède, P. et al. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 92, 317–339 (2007).PubMed 
    Article 

    Google Scholar 
    Hennessy, M. B. Using hypothalamic–pituitary–adrenal measures for assessing and reducing the stress of dogs in shelters: A review. Appl. Anim. Behav. Sci. 149, 1–12 (2013).Article 

    Google Scholar 
    Cobb, M. L., Iskandarani, K., Chinchilli, V. M. & Dreschel, N. A. A systematic review and meta-analysis of salivary cortisol measurement in domestic canines. Domest. Anim. Endocrinol. 57, 31–42 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wester, V. L. & van Rossum, E. F. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol. 173, M1–M10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E. & Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 270, 10–17 (2019).PubMed 
    Article 

    Google Scholar 
    Meyer, J. S. & Novak, M. A. Minireview: hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153, 4120–4127 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khoury, J. E., Bosquet Enlow, M., Plamondon, A. & Lyons-Ruth, K. The association between adversity and hair cortisol levels in humans: A meta-analysis. Psychoneuroendocrinology 103, 104–117 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 147, 255–261 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Greff, M. J. E. et al. Hair cortisol analysis: An update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    del Rosario, G. et al. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. Can. J. Vet. Res. 75, 216–221 (2011).
    Google Scholar 
    Macbeth, B. J., Cattet, M., Stenhouse, G. B., Gibeau, M. L. & Janz, D. M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): considerations with implications for other wildlife. Can. J. Zool. 88, 935–949 (2010).CAS 
    Article 

    Google Scholar 
    Accorsi, P. A. et al. Cortisol determination in hair and faeces from domestic cats and dogs. Gen. Comp. Endocrinol. 155, 398–402 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. & Hayssen, V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domest. Anim. Endocrinol. 39, 171–180 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bryan, H. M., Adams, A. G., Invik, R. M., Wynne-Edwards, K. E. & Smits, J. E. Hair as a meaningful measure of baseline cortisol levels over time in dogs. J. Am. Assoc. Lab. Anim. Sci. 52, 189–196 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., McFarlane, J. R., Kauter, K. G., Quaranta, A. & Rogers, L. J. Cortisol levels in hair reflect behavioural reactivity of dogs to acoustic stimuli. Res. Vet. Sci. 94, 49–54 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stella, J., Shreyer, T., Ha, J. & Croney, C. Improving canine welfare in commercial breeding (CB) operations: Evaluating rehoming candidates. Appl. Anim. Behav. Sci. 220, 104861. https://doi.org/10.1016/j.applanim.2019.104861 (2019).Article 

    Google Scholar 
    Nicholson, S. L. & Meredith, J. E. Should stress management be part of the clinical care provided to chronically ill dogs?. J. Vet. Behav. 10, 489–495 (2015).Article 

    Google Scholar 
    Maxwell, N., Buchanan, C. & Evans, N. Hair cortisol concentrations, as a measure of chronic activity within the hypothalamic-pituitary-adrenal axis, is elevated in dogs farmed for meat, relative to pet dogs South Korea. Anim. Welf. 28, 389–395 (2019).Article 

    Google Scholar 
    Roth, L. S., Faresjö, Å, Theodorsson, E., Jensen, P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Sci. Rep. 6, 19631; https://doi.org/10.1038/srep19631 (2016).Packer, R. M. et al. What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol. PLoS ONE 14, e0216000. https://doi.org/10.1371/journal.pone.0216000 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sundman, A. et al. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 9, 7391; https://doi.org/10.1038/s41598-019-43851-x (2019).Höglin, A. et al. Long-term stress in dogs is related to the human-dog relationship and personality traits. Sci. Rep. 11, 8612; https://doi.org/10.1038/s41598-021-88201-y (2021).Bowland, G. B. et al. Fur color and nutritional status predict hair cortisol concentrations of dogs in Nicaragua. Front. Vet. Sci. 7, 565346. https://doi.org/10.3389/fvets.2020.565346 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronesi, M. C. et al. Coat and claws as new matrices for noninvasive long-term cortisol assessment in dogs from birth up to 30 days of age. Theriogenology 84, 791–796 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davenport, M. D., Lutz, C. K., Tiefenbacher, S., Novak, M. A. & Meyer, J. S. A rhesus monkey model of self-injury: Effects of relocation stress on behavior and neuroendocrine function. Biol. Psychiatry 63, 990–996 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van der Laan, J. E., Vinke, C. M., van der Borg, J. A. M. & Arndt, S. S. Restless nights? Nocturnal activity as a useful indicator of adaptability of shelter housed dogs. Appl. Anim. Behav. Sci. 241, 105377. https://doi.org/10.1016/j.applanim.2021.105377 (2021).Article 

    Google Scholar 
    Pollinger, J. P. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voith, V. L., Ingram, E., Mitsouras, K. & Irizarry, K. Comparison of adoption agency breed identification and DNA breed identification of dogs. J. Appl. Anim. Welf. Sci. 12, 253–262 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gunter, L. M., Barber, R. T. & Wynne, C. D. L. A canine identity crisis: Genetic breed heritage testing of shelter dogs. PLoS ONE 13, e0202633. https://doi.org/10.1371/journal.pone.0202633 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R Core Team. Nlme: linear and nonlinear mixed effects models. R package version 3. 1–148 (2020).Protopopova, A. & Gunter, L. Adoption and relinquishment interventions at the animal shelter: a review. Anim. Welf. 26, 35–48 (2017).Article 

    Google Scholar 
    Müntener, T., Doherr, M. G., Guscetti, F., Suter, M. M. & Welle, M. M. The canine hair cycle – a guide for the assessment of morphological and immunohistochemical criteria. Vet. Dermatol. 22, 383–395 (2011).PubMed 
    Article 

    Google Scholar 
    Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 107, 5–12 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Within a hair’s breadth – Factors influencing hair cortisol levels in pigs and cattle. Gen. Comp. Endocrinol. 288, 113359. https://doi.org/10.1016/j.ygcen.2019.113359 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S. F., Torres, S. M., Dunstan, R. W. & Lekcharoensuk, C. An analysis of canine hair re-growth after clipping for a surgical procedure. Vet. Dermatol. 15, 25–30 (2004).PubMed 
    Article 

    Google Scholar 
    Zeugswetter, F., Bydzovsky, N., Kampner, D. & Schwendenwein, I. Tailored reference limits for urine corticoid:creatinine ratio in dogs to answer distinct clinical questions. Vet. Rec. 167, 997–1001 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, S. et al. Use of accelerometers to measure stress levels in shelter dogs. J. Appl. Anim. Welf. Sci. 17, 18–28 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gunter, L. M., Feuerbacher, E. N., Gilchrist, R. J. & Wynne, C. D. Evaluating the effects of a temporary fostering program on shelter dog welfare. PeerJ 7, e6620. https://doi.org/10.7717/peerj.6620 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van den Brom, W. E. & Biewenga, W. J. Assessment of glomerular filtration rate in normal dogs: analysis of the 51Cr-EDTA clearance and its relation to several endogenous parameters of glomerular filtration. Res. Vet. Sci. 30, 152–157 (1981).PubMed 
    Article 

    Google Scholar 
    Sandri, M., Colussi, A., Perrotta, M. G. & Stefanon, B. Salivary cortisol concentration in healthy dogs is affected by size, sex, and housing context. J. Vet. Behav. 10, 302–306 (2015).Article 

    Google Scholar 
    Haase, C. G., Long, A. K. & Gillooly, J. F. Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol. Lett. 12, 20150867. https://doi.org/10.1098/rsbl.2015.0867 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garnier, F., Benoit, E., Virat, M., Ochoa, R. & Delatour, P. Adrenal cortical response in clinically normal dogs before and after adaptation to a housing environment. Lab. Anim. 24, 40–43 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beerda, B. et al. Chronic stress in dogs subjected to social and spatial restriction. II. Hormonal and immunological responses. Physiol. Behav. 66, 243–254 (1999).Rincón-Cortés, M., Herman, J. P., Lupien, S., Maguire, J. & Shansky, R. M. Stress: Influence of sex, reproductive status and gender. Neurobiol. Stress 10, 100155. https://doi.org/10.1016/j.ynstr.2019.100155 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oyola, M. G. & Handa, R. J. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. Stress 20, 476–494 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Willen, R. M., Mutwill, A., MacDonald, L. J., Schiml, P. A. & Hennessy, M. B. Factors determining the effects of human interaction on the cortisol levels of shelter dogs. Appl. Anim. Behav. Sci. 186, 41–48 (2017).Article 

    Google Scholar 
    Protopopova, A. Effects of sheltering on physiology, immune function, behavior, and the welfare of dogs. Physiol. Behav. 159, 95–103 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mesarcova, L., Kottferova, J., Skurkova, L., Leskova, L. & Kmecova, N. Analysis of cortisol in dog hair-a potential biomarker of chronic stress: a review. Vet. Med. (Praha) 62, 363–376 (2017).CAS 
    Article 

    Google Scholar 
    Neumann, A. et al. Predicting hair cortisol levels with hair pigmentation genes: a possible hair pigmentation bias. Sci. Rep. 7, 8529 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. A. Ecol. Integr. Physiol. https://doi.org/10.1002/jez.2459 (2021).PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Is it getting in the hair? – Cortisol concentrations in native, regrown and segmented hairs of cattle and pigs after repeated ACTH administrations. Gen. Comp. Endocrinol. 295, 113534. https://doi.org/10.1016/j.ygcen.2020.113534 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Ockenburg, S. L. et al. The relationship between 63 days of 24-h urinary free cortisol and hair cortisol levels in 10 healthy individuals. Psychoneuroendocrinology 73, 142–147 (2016).PubMed 
    Article 

    Google Scholar 
    Short, S. J. et al. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology 71, 12–18 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mack, Z. & Fokidis, H. B. A novel method for assessing chronic cortisol concentrations in dogs using the nail as a source. Domest. Anim. Endocrinol. 59, 53–57 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Potential negative effects of ocean afforestation on offshore ecosystems

    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    N‘Yeurt, A. D. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 90, 467–474 (2012).Article 
    CAS 

    Google Scholar 
    Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).Article 

    Google Scholar 
    Woody, T. Seaweed ‘forests’ can help fight climate change. National Geographic https://www.nationalgeographic.co.uk/environment-and-conservation/2019/08/seaweed-forests-can-help-fight-climate-change (2019).Godin, M. The ocean farmers trying to save the world with seaweed. Time https://time.com/5848994/seaweed-climate-change-solution/ (2020).Marshall, M. Kelp is coming: how seaweed could prevent catastrophic climate change. New Scientist https://www.newscientist.com/article/mg24632821-100-kelp-is-coming-how-seaweed-could-prevent-catastrophic-climate-change/ (2020).Bever, F. ‘Run the oil industry in reverse’: fighting climate change by farming kelp. NPR https://www.npr.org/2021/03/01/970670565/run-the-oil-industry-in-reverse-fighting-climate-change-by-farming-kelp (2021).Running Tide. https://www.runningtide.com/ (2022).IPCC: Summary for Policymakers. In Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press) (in the press).GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (eds Boyd, P. W. & Vivian, C. M. G.) GESAMP Working Group 41 (International Maritime Organization, 2019).Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Law, C. S. Predicting and monitoring the impact of large-scale iron fertilisation on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).CAS 
    Article 

    Google Scholar 
    Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, C., Fries, L. & Gaines, S. Transformational opportunities in ocean-based food & nutrition. Zenodo https://zenodo.org/record/4646319#.YkBFxhPMLAw (2021).Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Cullen, J. J. & Boyd, P. W. Predicting and verifying the intended and uninterested consequence of large-scale iron fertilization. Mar. Ecol. Prog. Ser. 364, 295–301 (2008).CAS 
    Article 

    Google Scholar 
    Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. https://doi.org/10.3389/fclim.2019.00007 (2019).Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Suchet, P. A., Probst, J.-L. & Ludwig, L. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).
    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2011).PubMed 

    Google Scholar 
    Fraser, C. I., Davies, I. D., Bryant, D. & Waters, J. M. How disturbance and dispersal influence intraspecific structure. J. Ecol. 106, 1298–1306 (2018).Article 

    Google Scholar 
    Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article 

    Google Scholar 
    Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol., https://doi.org/10.1111/jpy.13249 (2022).Stripe commits $8M to six new carbon removal companies. Stripe https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases (2021).General application. Stripe https://github.com/stripe/carbon-removal-source-materials/blob/master/Project%20Applications/Spring2021/Running%20Tide%20-%20Stripe%20Spring21%20CDR%20Purchase%20Application.pdf (2021).Coston-Clements, L. Utilization of the Sargassum Habitat by Marine Invertebrates and Vertebrates: a Review. NOAA Technical Memorandum NMFS-SEFSC, 296 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center & Beaufort Laboratory, 1991).Egan, S. et al. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37, 462–476 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Califano, G., Kwantes, M., Abreu, M. H., Costa, R. & Wichard, T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta)Front. Mar. Sci. 7, 52 (2020).Article 

    Google Scholar 
    Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonthond, G. et al. The role of host promiscuity in the invasion process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269 (2020).Article 

    Google Scholar 
    Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harrison, P. J., Druehl, L. D., Lloyd, K. E. & Thompson, P. A. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93, 29–35 (1986).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. & Dring, M. L. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107, 281–289 (1990).Article 

    Google Scholar 
    Ohtake, M. et al. Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquat. Bot. 163, 103208 (2020).Article 

    Google Scholar 
    MacFarlane, J. J. & Raven, J. A. C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. Plant Cell Environ. 13, 1–13 (1990).CAS 
    Article 

    Google Scholar 
    Wu, J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Preprint at Earth System Dynamics Discuss https://doi.org/10.5194/esd-2021-104 (2022).Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS 
    Article 

    Google Scholar 
    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).CAS 
    Article 

    Google Scholar 
    Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2, 3269–3280 (2017).Article 

    Google Scholar 
    Lapointe, B. E. et al. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 12, 3060 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fan, W. et al. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 101, 102260 (2020).Article 

    Google Scholar 
    Karl, D. M. & Letelier, R. M. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar. Ecol. Prog. Ser. 364, 257–268 (2008).CAS 
    Article 

    Google Scholar 
    Oschlies, A. S., Pahlow, M., Yool, A. & Matear, R. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).Article 
    CAS 

    Google Scholar 
    Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., Sebastián, M., Pedrós-Alió, C. & Estrada, M. Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol. Oceanogr. 51, 1791–1800 (2006).Article 

    Google Scholar 
    Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49, 1652–1666 (2004).Article 

    Google Scholar 
    Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. 57, 1375–1391 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220 (1977).Article 

    Google Scholar 
    Sieburth, J. M. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969).CAS 
    Article 

    Google Scholar 
    Hanson, R. B. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29, 107–118 (1977).CAS 
    Article 

    Google Scholar 
    Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y., Liu, X., Wang, M. & Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26–37 (2013).Article 
    CAS 

    Google Scholar 
    Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. & Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coast. Shelf Sci. 84, 147–153 (2009).CAS 
    Article 

    Google Scholar 
    Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Huang, X. & Macreadie, P. I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 54, 14750–14760 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, H. C. et al. Ocean warming may enhance biochemical alterations induced by an invasive seaweed exudate in the mussel Mytilus galloprovincialis. Toxics 9, 121 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, S. D. & Thornton, D. C. O. Marine aerosols and clouds. Ann. Rev. Mar. Sci. 10, 289–313 (2018).PubMed 
    Article 

    Google Scholar 
    Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).Article 

    Google Scholar 
    Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res. 93, 10749–10768 (1988).Article 

    Google Scholar 
    Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R. & Kwon, M. Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl Acad. Sci. USA 112, 5921–5926 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denaro, G. et al. Dynamics of two picophytoplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE 8, e66765 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol. Oceanogr. 54, 276–288 (2009).Article 

    Google Scholar 
    Omand, M. M., Steinberg, D. K. & Stamies, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. Proc. Natl Acad. Sci. USA 118, e2022977118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bach, L. T. & Boyd, P. W. Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proc. Natl Acad. Sci. USA 118, e2106147118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Donk, E. & van de Bund, W. J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72, 261–274 (2002).Article 

    Google Scholar 
    Jin, Q., Dong, S. & Wang, C. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31–37 (2005).Article 

    Google Scholar 
    Wallace, R. B. & Gobler, C. J.Factors controlling blooms of microalgae and macroalgae (Ulva rigida) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries Coast 38, 519–533 (2015).CAS 
    Article 

    Google Scholar 
    Tang, Y. Z. & Gobler, C. J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10, 480–488 (2011).Article 

    Google Scholar 
    Cagle, S. E., Roelke, D. L. & Muhl, R. W. Allelopathy and micropredation paradigms reconcile with system stoichiometry. Ecosphere 12, e03372 (2021).Article 

    Google Scholar 
    Hein, M., Pedersen, M. F. & Sand-Jensen, K. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118, 247–253 (1995).Article 

    Google Scholar 
    Stevens, C. L., Hurd, C. L. & Smith, M. J. Water motion relative to subtidal kelp fronds. Limnol. Oceanogr. 46, 668–678 (2001).Article 

    Google Scholar 
    Raut, Y., Morando, M. & Capone, D. G. Diazotrophic macroalgal associations with living and decomposing Sargassum. Front. Microbiol. 9, 3127 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Villareal, T. A., Woods, S., Moore, J. K. & CulverRymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).Article 

    Google Scholar 
    Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Thiel, M. & Gutow, L. in Oceanography and Marine Biology: an Annual Review Vol. 43 (eds Gibson, R. et al.) 279–418 (Taylor & Francis, 2005).Rech, S., Borrell Pichs, Y. J. & García-Vazquez, E. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS ONE 13, e0191859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).Schell, J. M., Goodwin, D. S. & Siuda, A. N. S. Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E. et al. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. Peer J. 8, e8667 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flannery, T. How farming giant seaweed can feed fish and fix the climate. The Conversation Trust https://theconversation.com/how-farming-giant-seaweed-can-feed-fish-and-fix-the-climate-81761 (2017).GESAMP. Methodology for the Evaluation of Ballast Water Management Systems Using Active Substances. GESAMP No. 101 (eds Linders, J. & Dock, A.) (International Maritime Organization, 2019).Lenton, A., Boyd, P. W., Thatcher, M. & Emmerson, K. M. Foresight must guide geoengineering research and development. Nat. Clim. Change 9, 342 (2019).Article 

    Google Scholar 
    Sumaila, U. R. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article 

    Google Scholar 
    Rech, S., Salmina, S., Borrell Pichs, Y. J. & García-Vazquez, E. Dispersal of alien invasive species on anthropogenic litter from European mariculture areas. Mar. Pollut. Bull. 131, 10–16 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Therriault, T. W. et al. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 132, 82–89 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, J. A., Carlton, J. T., Chapman, J. W., Geller, J. B. & Ruiz, G. M. Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: an approach for evaluating rafting of a coastal species at sea. Mar. Pollut. Bull. 132, 60–69 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunt, G. L. Jr et al. Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).Article 

    Google Scholar 
    Hallegraeff, G. M. & Bolch, C. J. Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14, 1067–1084 (1992).Article 

    Google Scholar 
    Russell, L. K., Hepburn, C. D., Hurd, C. L. & Stuart, M. D. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol. Invasions 10, 103–115 (2008).Article 

    Google Scholar 
    Uwai, S. et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45, 687–695 (2006).Article 

    Google Scholar  More

  • in

    eDNA-based detection of the invasive crayfish Pacifastacus leniusculus in streams with a LAMP assay using dependent replicates to gain higher sensitivity

    Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. https://doi.org/10.1093/nar/28.12.e63 (2000).Article 

    Google Scholar 
    Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).CAS 
    Article 

    Google Scholar 
    Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T. & Notomi, T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem. 47, 1742–1743 (2001).CAS 
    Article 

    Google Scholar 
    Thai, H. T. C. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1956–1961. https://doi.org/10.1128/jcm.42.5.1956-1961.2004 (2004).CAS 
    Article 

    Google Scholar 
    Geojith, G., Dhanasekaran, S., Chandran, S. P. & Kenneth, J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J. Microbiol. Methods 84, 71–73. https://doi.org/10.1016/j.mimet.2010.10.015 (2011).CAS 
    Article 

    Google Scholar 
    Saengsawang, N. et al. Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine. Analyst 145, 8077–8086. https://doi.org/10.1039/d0an01306d (2020).CAS 
    Article 

    Google Scholar 
    Yoshikawa, R. et al. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. Plos Neglect. Trop. Dis. 14, 14. https://doi.org/10.1371/journal.pntd.000885 (2021).Article 

    Google Scholar 
    Kim, J. et al. Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS ONE 16, 11. https://doi.org/10.1371/journal.pone.0244753 (2021).CAS 
    Article 

    Google Scholar 
    Hongjaisee, S. et al. Rapid visual detection of hepatitis C virus using a reverse transcription loop-mediated isothermal ampli fi cation assay. Int. J. Infect. Dis. 102, 440–445. https://doi.org/10.1016/j.ijid.2020.10.082 (2021).CAS 
    Article 

    Google Scholar 
    Niessen, L. & Vogel, R. F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 140, 183–191. https://doi.org/10.1016/j.ijfoodmicro.2010.03.036 (2010).CAS 
    Article 

    Google Scholar 
    Ren, W. C., Liu, N. & Li, B. H. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop Prot. 141, 6. https://doi.org/10.1016/j.cropro.2020.105452 (2021).CAS 
    Article 

    Google Scholar 
    Kong, G. H. et al. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 139, 6. https://doi.org/10.1016/j.cropro.2020.105370 (2021).CAS 
    Article 

    Google Scholar 
    Zhou, Q. J. et al. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. J. Fish Dis. https://doi.org/10.1111/jfd.13325 (2020).Article 

    Google Scholar 
    Huang, H. L. et al. Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay, China. J. Microbiol. Methods 168, 7. https://doi.org/10.1016/j.mimet.2019.105801 (2020).CAS 
    Article 

    Google Scholar 
    Sridapan, T. et al. Rapid detection of Clostridium perfringens in food by loop-mediated isothermal amplification combined with a lateral flow biosensor. PLoS ONE 16, 14. https://doi.org/10.1371/journal.pone.0245144 (2021).CAS 
    Article 

    Google Scholar 
    Xiong, X. et al. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar). J. Food Compos. Anal. 95, 7. https://doi.org/10.1016/j.jfca.2020.103659 (2021).CAS 
    Article 

    Google Scholar 
    Huang, C. G., Hsu, J. C., Haymer, D. S., Lin, G. C. & Wu, W. J. Rapid identification of the Mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239–1246 (2009).CAS 
    Article 

    Google Scholar 
    Ide, T., Kanzaki, N., Ohmura, W. & Okabe, K. Molecular identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 109, 1410–1414. https://doi.org/10.1093/jee/tow030 (2016).CAS 
    Article 

    Google Scholar 
    Stainton, K., Hall, J., Budge, G. E., Boonham, N. & Hodgetts, J. Rapid molecular methods for in-field and laboratory identification of the yellow-legged Asian hornet (Vespa velutina nigrithorax). J. Appl. Entomol. 142, 610–616. https://doi.org/10.1111/jen.12506 (2018).CAS 
    Article 

    Google Scholar 
    Agarwal, A., Cunningham, J. P., Valenzuela, I. & Blacket, M. J. A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci. Rep. 10, 10. https://doi.org/10.1038/s41598-020-77928-9 (2020).CAS 
    Article 

    Google Scholar 
    Rizzo, D. et al. Molecular identification of Anoplophora glabripennis (Coleoptera: Cerambycidae) from frass by loop-mediated isothermal amplification. J. Econ. Entomol. 113, 2911–2919. https://doi.org/10.1093/jee/toaa206 (2020).CAS 
    Article 

    Google Scholar 
    Hsieh, C. H., Wang, H. Y., Chen, Y. F. & Ko, C. C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 68, 1206–1213. https://doi.org/10.1002/ps.3298 (2012).CAS 
    Article 

    Google Scholar 
    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, 18. https://doi.org/10.1371/journal.pone.0186462 (2017).CAS 
    Article 

    Google Scholar 
    Ponting, S., Tomkies, V. & Stainton, K. Rapid identification of the invasive small hive beetle (Aethina tumida) using LAMP. Pest Manag. Sci. 77, 1476–1481. https://doi.org/10.1002/ps.6168 (2020).CAS 
    Article 

    Google Scholar 
    Davis, C. N. et al. Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasites Vectors 13, 11. https://doi.org/10.1186/s13071-020-04371-0 (2020).CAS 
    Article 

    Google Scholar 
    Carvalho, J. et al. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. Sci. Rep. 11, 10. https://doi.org/10.1038/s41598-021-89574-w (2021).CAS 
    Article 

    Google Scholar 
    Treguier, A. et al. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51, 871–879. https://doi.org/10.1111/1365-2664.12262 (2014).CAS 
    Article 

    Google Scholar 
    Cai, W. et al. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PLoS ONE https://doi.org/10.1371/journal.pone.0177724 (2017).Article 

    Google Scholar 
    Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216. https://doi.org/10.1016/j.biocon.2015.12.023 (2016).Article 

    Google Scholar 
    Hunter, M. E., Ferrante, J. A., Meigs-Friend, G. & Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. https://doi.org/10.1038/s41598-019-40977-w (2019).Article 

    Google Scholar 
    Twardochleb, L. A., Olden, J. D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 32, 1367–1382. https://doi.org/10.1899/12-203.1 (2013).Article 

    Google Scholar 
    Andruszkiewicz, A. E., Zhang, W. G. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    Stedtfeld, R. D. et al. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed. Microdev. 17, 89. https://doi.org/10.1007/s10544-015-9994-1 (2015).CAS 
    Article 

    Google Scholar 
    Koloren, Z., Sotiriadou, I. & Karanis, P. Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of Ordu, Middle Black Sea, Turkey. Ann. Trop. Med. Parasitol. 105, 607–615. https://doi.org/10.1179/2047773211y.0000000011 (2011).CAS 
    Article 

    Google Scholar 
    Sabike, I. I. et al. Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Front. Microbiol. 7, 1582. https://doi.org/10.3389/fmicb.2016.01582 (2016).Article 

    Google Scholar 
    Gahlawat, S. K., Ellis, A. E. & Collet, B. A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonids. J. Fish Dis. 32, 491–497. https://doi.org/10.1111/j.1365-2761.2009.01005.x (2009).CAS 
    Article 

    Google Scholar 
    Levy, J. et al. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’ from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. J. Econ. Entomol. 106, 1440–1445. https://doi.org/10.1603/ec12419 (2013).CAS 
    Article 

    Google Scholar 
    Kaneko, H., Kawana, T., Fukushima, E. & Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70, 499–501. https://doi.org/10.1016/j.jbbm.2006.08.008 (2007).CAS 
    Article 

    Google Scholar 
    Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A. & Larson, E. R. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers. Distrib. 27, 1918–1931. https://doi.org/10.1111/ddi.13196 (2020).Article 

    Google Scholar 
    Mauvisseau, Q. et al. Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805, 163–175. https://doi.org/10.1007/s10750-017-3288-y (2018).CAS 
    Article 

    Google Scholar 
    RStudioTeam. Boston (ed. PBC) (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar  More

  • in

    Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).US Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2018 (EPA, 2020).Lu, C. et al. Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16061 (2022).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    Article 

    Google Scholar 
    2004 National Crop Residue Management Survey (Conservation Technology Information Center, 2004); www.ctic.purdue.eduClaassen, R., Bowman, M., Wallander, J., David, M. & Steven, S. Tillage Intensity and Conservation Cropping in the United States, EIB-197 (United States Department of Agriculture, Economic Research Service, 2018).Grant, R. F. Changes in soil organic matter under different tillage and rotation: mathematical modeling in ecosystems. Soil Sci. Soc. Am. J. 61, 1159–1175 (1997).CAS 
    Article 

    Google Scholar 
    Claassen, R., Langpap, C. & Wu, J. Impacts of federal crop insurance on land use and environmental quality. Am. J. Agric. Econ. 99, 592–613 (2017).Article 

    Google Scholar 
    Davis, A. S. Cover-crop roller–crimper contributes to weed management in no-till soybean. Weed Sci. 58, 300–309 (2010).CAS 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Nitrogen management and methane emissions in direct-seeded rice systems. Agron. J. 106, 968–980 (2014).CAS 
    Article 

    Google Scholar 
    Weber, J. F., Kunz, C., Peteinatos, G. G., Zikeli, S. & Gerhards, R. Weed control using conventional tillage, reduced tillage, no-tillage, and cover crops in organic soybean. Agric 7, 43 (2017).
    Google Scholar 
    Triplett, G. B. & Dick, W. A. No-tillage crop production: a revolution in agriculture!. Agron. J. 100, 153–165 (2008).Article 

    Google Scholar 
    Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region, EIB-147, 40 (United States Department of Agriculture, Economic Research Service, 2015).Perry, E. D., Ciliberto, F., Hennessy, D. A. & Moschini, G. Genetically engineered crops and pesticide use in US maize and soybeans. Sci. Adv. https://doi.org/10.1126/sciadv.1600850 (2016).Article 

    Google Scholar 
    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Science 74, 1040–1049 (2018).CAS 
    Article 

    Google Scholar 
    Owen, M. D. K. Diverse approaches to herbicide-resistant weed management. Weed Sci. 64, 570–584 (2016).Article 

    Google Scholar 
    Van Deynze, B., Swinton, S. M. & Hennessy, D. A. Are glyphosate-resistant weeds a threat to conservation agriculture? Evidence from tillage practices in soybeans. Am. J. Agric. Econ. https://doi.org/10.1111/ajae.12243 (2021).Eagle, A. et al. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States. A Synthesis of the Literature (Technical Working Group on Agricultural Greenhouse Gases, 2010).Parton, W. J. et al. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000. Proc. Natl. Acad. Sci. USA 112, E4681–E4688 (2015).CAS 
    Article 

    Google Scholar 
    Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).Article 

    Google Scholar 
    Glenk, K., Eory, V., Colombo, S. & Barnes, A. Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ perceptions and adoption behaviour. Ecol. Econ. 108, 49–58 (2014).Article 

    Google Scholar 
    Galik, C., Murray, B. & Parish, M. Near-term pathways for achieving forest and agricultural greenhouse gas mitigation in the US Climate 5, 69 (2017).Article 

    Google Scholar 
    Pape, D. et al. Managing Agricultural Land for Greenhouse Gas Mitigation within the United States (ICF/USDA, 2016); https://www.usda.gov/sites/default/files/documents/White_Paper_WEB71816.pdfCooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).CAS 
    Article 

    Google Scholar 
    Baker, N. T. Tillage Practices in the Conterminous United States, 1989–2004—Datasets Aggregated by Watershed (No. 573), U.S. Geological Survey, 2011; https://pubs.usgs.gov/ds/ds573/pdf/dataseries573final.pdfPrice, A. et al. Glyphosate-resistant Palmer amaranth: a threat to conservation agriculture. J. Soil Water Conserv. 66, 265–275 (2011).Article 

    Google Scholar 
    Livingston, M., Fernandez-Cornejo, J. & Frisvold, G. B. Economic returns to herbicide resistance management in the short and long run: the role of neighbor effects. Weed Sci. 64, 595–608 (2016).Article 

    Google Scholar 
    Cao, P., Lu, C. & Yu, Z. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth Syst. Sci. Data 10, 969–984 (2018).Article 

    Google Scholar 
    US Greenhouse Gas Emissions and Sinks, 1990–2016, Epa 430-R-18-003 (EPA, 2018).Deng, Q. et al. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J. Geophys. Res. Biogeosciences https://doi.org/10.1002/2015JG003239 (2016).Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).CAS 
    Article 

    Google Scholar 
    Yu, Z., Lu, C., Cao, P. & Tian, H. Long-term terrestrial carbon dynamics in the Midwestern United States during 1850–2015: roles of land use and cover change and agricultural management. Glob. Chang. Biol. 12, 3218–3221 (2018).
    Google Scholar 
    Lu, C. et al. Increasing carbon footprint of grain crop production in the US western Corn Belt. Environ. Res. Lett. 13, 124007 (2018).CAS 
    Article 

    Google Scholar 
    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).Article 

    Google Scholar 
    Adler, P. R., Del Grosso, S. J. & Parton, W. J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 17, 675–691 (2007).Article 

    Google Scholar 
    Halvorson, A. D., Schweissing, F. C., Bartolo, M. E. & Reule, C. A. Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agron. J. 97, 1222–1229 (2005).Article 

    Google Scholar 
    Al-Kaisi, M. M., Archontoulis, S. V., Kwaw-Mensah, D. & Miguez, F. Tillage and crop rotation effects on corn agronomic response and economic return at seven Iowa locations. Agron. J. 107, 1411–1424 (2015).Article 

    Google Scholar 
    Jarecki, M. et al. Long-term trends in corn yields and soil carbon under diversified crop rotations. J. Environ. Qual. 47, 635–643 (2018).CAS 
    Article 

    Google Scholar 
    Gelfand, I. et al. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl Acad. Sci. USA 108, 13864–13869 (2011).CAS 
    Article 

    Google Scholar 
    West, T. O. & Post, W. M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 66, 1930–1946 (2002).CAS 
    Article 

    Google Scholar 
    Ogle, S. M. et al. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob. Chang. Biol. 16, 810–822 (2010).Article 

    Google Scholar 
    Al-Kaisi, M. M., Yin, X. & Licht, M. A. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105, 635–647 (2005).CAS 
    Article 

    Google Scholar 
    Perry, E. D., Moschini, G. C. & Hennessy, D. A. Testing for complementarity: glyphosate tolerant soybeans and conservation tillage. Am. J. Agric. Econ. https://doi.org/10.1093/ajae/aaw001 (2016).Perry, E. D., Hennessy, D. A. & Moschini, G. C. Product concentration and usage: behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 158, 543–559 (2019).Article 

    Google Scholar 
    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental US during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).Article 

    Google Scholar 
    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14768 (2019).Yu, Z., Lu, C., Hennessy, D. A., Feng, H. & Tian, H. Impacts of tillage practices on soil carbon stocks in the US corn–soybean cropping system during 1998 to 2016. Environ. Res. Lett. 15, 014008 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M. et al. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour. Res. 49, 1988–2012 (2013).Article 

    Google Scholar 
    Lu, C. & Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Glob. Chang. Biol. 19, 571–588 (2013).Article 

    Google Scholar 
    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).CAS 
    Article 

    Google Scholar 
    Chen, G. et al. Drought in the southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Change 114, 379–397 (2012).CAS 
    Article 

    Google Scholar 
    Lu, C. et al. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes. Ecol. Appl. 22, 53–75 (2012).Article 

    Google Scholar 
    Ren, W. et al. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus 63, 222–240 (2011).CAS 
    Article 

    Google Scholar 
    Tian, H. et al. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Biogeosci. 116, 1–13 (2011).
    Google Scholar 
    Ren, W., Tian, H., Tao, B., Huang, Y. & Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 18, 2945–2957 (2012).Article 

    Google Scholar 
    Residue Management Choices: A Guide to Managing Crop Residues in Corn and Soybeans (USDA Natural Resources Conservation Service and University of Wisconsin, 2019). More

  • in

    Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation

    A summary describing all plant architecture, flower, fruit, and yield, and phenological traits for each of the thirteen Phaseolus sp. and Vigna sp. landraces in the open field and the greenhouse conditions is provided in Supporting Tables S3, S4 and S5. Main effects Kruskal–Wallis tests are summarised in Table 1, and the interactions between treatment conditions (open field and greenhouse) and species, and landrace and climatic background are summarised in Table 2.Table 1 Main effects Kruskal–Wallis H tests for treatment (open field vs greenhouse conditions), species, landrace, and climatic background of the landraces.Full size tableTable 2 Kruskal–Wallis H tests for the interactions between treatment (open field and greenhouse) and species, landrace, or the climatic background.Full size tableI. Plant architecturePlants under high temperatures and low humidity in the greenhouse exhibited significant higher overall mean rank values than field plants for stem diameter, the degree of branch orientation, composite sheet length and width, and the terminal leaflet length. The size of the angle of the base of the terminal leaflet, however, was bigger in the field (Supporting Tables S3 and Table 1). There were overall significant differences for species and landrace for all studied characters (Table 1). The Kruskal–Wallis analyses of the interactions between treatment (open field vs greenhouse conditions) and species, climatic background, and landrace were significant for all the traits (p-value  More

  • in

    Eukaryogenesis and oxygen in Earth history

    Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor, F. J. R. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23, 229–258 (1974).Article 

    Google Scholar 
    Margulis, L. Serial endosymbiotic theory (SET) and composite individuality. Microbiol. Today 31, 172–175 (2004).
    Google Scholar 
    Mereschkowsky, C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25, 593–604 (1905).
    Google Scholar 
    Wallin, I. E. On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. Am. J. Anat. 36, 131–149 (1925).Article 

    Google Scholar 
    Martin, W. F. Physiology, anaerobes, and the origin of mitosing cells 50 years on. J. Theor. Biol. 434, 2–10 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. in The Origin and Evolution of Eukaryotes (eds. Keeling, P. J. & Koonin, E. V.) 165–180 (Cold Spring Harbor Perspectives in Biology, 2014).Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agić, H. in Prebiotic Chemistry and the Origin of Life (eds. Neubeck, A. & McMahon, S.) 255–289 (Springer International, 2021).Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Ann. Rev. Mar. Sci. 9, 31–58 (2017).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. On the use of models in understanding the rise of complex life. Interface Focus 10, 20200018 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B 363, 2717–2729 (2008).Article 

    Google Scholar 
    Zimorski, V., Mentel, M., Tielens, A. G. M. & Martin, W. F. Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 140, 279–294 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M. & Mentel, M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution (Walter de Gruyter, 2020).Hall, J. B. The nature of the host in the origin of the eukaryote cell. J. Theor. Biol. 38, 413–418 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanier, R. Y. in Organization and Control in Prokaryotic and Eukaryotic Cells (eds. Charles, H. P. & Knight, B. C. J. G.) vol. 20, 1–38 (Cambridge Univ. Press, 1970).De Duve, C. Origin of mitochondria. Science 182, 85 (1973).PubMed 
    Article 

    Google Scholar 
    Andersson, S. G. & Kurland, C. G. Origins of mitochondria and hydrogenosomes. Curr. Opin. Microbiol. 2, 535–541 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Duve, C. The origin of eukaryotes: a reappraisal. Nat. Rev. Genet. 8, 395–403 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F. & Müller, M. Origin of Mitochondria and Hydrogenosomes (Springer, 2007).Lindmark, D. G. & Müller, M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724–7728 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 1–10 (Springer, 2007).Zillig, W. et al. Did eukaryotes originate by a fusion event? Endocytobiosis Cell Res. 6, 1–25 (1989).
    Google Scholar 
    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B 370, 20140326 (2015).Article 
    CAS 

    Google Scholar 
    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2018).Article 
    CAS 

    Google Scholar 
    Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F. Too much eukaryote LGT. Bioessays 39, 1700115 (2017).Article 

    Google Scholar 
    Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (response to Martin 2017 https://doi.org/10.1002/bies.201700115). Bioessays 40, e1700242 (2018).Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21, 99–104 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagies, F. S. P., Brueckner, J., Tria, F. D. K. & Martin, W. F. A spectrum of verticality across genes. PLoS Genet. 16, e1009200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).PubMed 
    Article 

    Google Scholar 
    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. Cultured Asgard archaea shed light on eukaryogenesis. Cell 181, 232–235 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berkner, L. V. & Marshall, L. C. History of major atmospheric components. Proc. Natl Acad. Sci. USA 53, 1215–1226 (1965).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Stolper, D. A., Revsbech, N. P. & Canfield, D. E. Aerobic growth at nanomolar oxygen concentrations. Proc. Natl Acad. Sci. USA 107, 18755–18760 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Degli Esposti, M., Mentel, M., Martin, W. & Sousa, F. L. Oxygen reductases in alphaproteobacterial genomes: physiological evolution from low to high oxygen environments. Front. Microbiol. 10, 499 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berg, J. et al. How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuac006 (2022).Cloud, P. Cosmos, Earth, and Man: A Short History of the Universe (Yale Univ. Press, 1978).Pichler, H. & Riezman, H. Where sterols are required for endocytosis. Biochim. Biophys. Acta 1666, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valentine, D. L. in Symbiosis: Mechanisms and Model Systems (ed. Seckbach, J.) 147–161 (Springer, 2002).Canfield, D. E. & Thamdrup, B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7, 385–392 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7, 568–577 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Embley, T. M., van der Giezen, M., Horner, D. S., Dyal, P. L. & Foster, P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos. Trans. R. Soc. Lond. B 358, 191–201 (2003). discussion 201–2.CAS 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Purnell, M. A. Distinguishing heat from light in debate over controversial fossils. Bioessays 31, 178–189 (2009).PubMed 
    Article 

    Google Scholar 
    Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 141 (2017).PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).Article 

    Google Scholar 
    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).Article 

    Google Scholar 
    Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Modes of pre-Ediacaran multicellularity. Precambrian Res. 173, 201–211 (2009).CAS 
    Article 

    Google Scholar 
    Peng, Y., Bao, H. & Yuan, X. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223–232 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J. in Origins and Evolution of Life: An Astrobiological Perspective (eds Gargaud, M., López-García, P. & Martin, H.) 414–449 (Cambridge Univ. Press, 2011).Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlisle, E. M., Jobbins, M., Pankhania, V., Cunningham, J. A. & Donoghue, P. C. J. Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci. Adv. 7, eabe9487 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, T. M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science 257, 232–235 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Javaux, E. J. & Lepot, K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2018).CAS 
    Article 

    Google Scholar 
    Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).Article 
    CAS 

    Google Scholar 
    Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).CAS 
    PubMed 

    Google Scholar 
    Bengtson, S., Belivanova, V., Rasmussen, B. & Whitehouse, M. The controversial ‘Cambrian’ fossils of the Vindhyan are real but more than a billion years older. Proc. Natl Acad. Sci. USA 106, 7729–7734 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bykova, N. et al. Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).CAS 
    Article 

    Google Scholar 
    Maloney, K. M. et al. New multicellular marine macroalgae from the early Tonian of northwestern Canada. Geology 49, 743–747 (2021).CAS 
    Article 

    Google Scholar 
    Tang, Q. et al. The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110485 (2021).Article 

    Google Scholar 
    Sforna, M. C. et al. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 146 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strother, P. K. et al. A possible billion-year-old holozoan with differentiated multicellularity. Curr. Biol. 31, 2658–2665.e2 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).CAS 
    Article 

    Google Scholar 
    Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).Article 

    Google Scholar 
    Husson, J. M. & Peters, S. E. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg. Top. Life Sci. 2, 125–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Yang, Z. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R. Soc. Lond. B 371, 20160020 (2016).Article 

    Google Scholar 
    Berney, C. & Pawlowski, J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. Biol. Sci. 273, 1867–1872 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernikova, D., Motamedi, S., Csürös, M., Koonin, E. V. & Rogozin, I. B. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shih, P. M. & Matzke, N. J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).CAS 
    Article 

    Google Scholar 
    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland, H. D. When did the Earth’s atmosphere become oxic? A reply. Geochem. N. 100, 20–22 (1999).
    Google Scholar 
    Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).CAS 
    Article 

    Google Scholar 
    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–759 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodgskiss, M. S. W. & Sperling, E. A. A prolonged, two-step oxygenation of Earth’s early atmosphere: support from confidence intervals. Geology https://doi.org/10.1130/g49385.1 (2021).Article 

    Google Scholar 
    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).CAS 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and Cyanobacteria. N. Phytol. 225, 1440–1446 (2020).Article 

    Google Scholar 
    Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. Biol. Sci. 288, 20210675 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA 103, 15759–15764 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).CAS 
    Article 

    Google Scholar 
    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).CAS 
    Article 

    Google Scholar 
    Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Slotznick, S. P. et al. Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jabłońska, J. & Tawfik, D. S. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448 (2021).PubMed 
    Article 

    Google Scholar 
    Mentel, M., Röttger, M., Leys, S., Tielens, A. G. M. & Martin, W. F. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays 36, 924–932 (2014).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).CAS 
    Article 

    Google Scholar 
    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).CAS 
    Article 

    Google Scholar 
    Wang, C. et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic. Proc. Natl Acad. Sci. USA 119, e2116101119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth’s oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).CAS 
    Article 

    Google Scholar 
    Gilleaudeau, G. J. et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521, 150–157 (2019).CAS 
    Article 

    Google Scholar 
    Cole, D. B. et al. On the co-evolution of surface oxygen levels and animals. Geobiology 319, 55 (2020).
    Google Scholar 
    Friese, A. et al. Organic matter mineralization in modern and ancient ferruginous sediments. Nat. Commun. 12, 2216 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46, 215–235 (2015).Article 

    Google Scholar 
    Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cohen, P. A. & Kodner, R. B. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.11.005 (2021).Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).PubMed 
    Article 

    Google Scholar 
    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Theissen, U., Hoffmeister, M., Grieshaber, M. & Martin, W. Single eubacterial origin of eukaryotic sulfide: quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol. Biol. Evol. 20, 1564–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. et al. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55, 193–204 (2003).Gould, S. B. et al. Adaptation to life on land at high O2 via transition from ferredoxin-to NADH-dependent redox balance. Proc. Biol. Sci. 286, 20191491 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, D. B. The origin of phagocytosis in Earth history. Interface Focus 10, 20200019 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213–1219 (2020).PubMed 
    Article 

    Google Scholar 
    Richards, T. A. & van der Giezen, M. Evolution of the Isd11–IscS complex reveals a single α-proteobacterial endosymbiosis for all eukaryotes. Mol. Biol. Evol. 23, 1341–1344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sapp, J. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 57–83 (Springer, 2007).Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cavalier-Smith, T. in Endocytobiology II (eds Schenk, H. E. A. & Schwemmler, W. S.) 1027–1034 (de Gruyter, 1983).Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canfield, D. E. Oxygen: a Four Billion Year History (Princeton Univ. Press, 2014).Holland, H. D. in Petrologic Studies: a Volume in Honor of A. F. Buddington (eds Engel, A. E. J., James, H. L. & Leonard, B. F.) 447–477 (Geological Society of America, 1962).Cloud, P. E. Jr. Significance of the Gunflint (Precambrian) microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science 148, 27–35 (1965).PubMed 
    Article 

    Google Scholar 
    Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Esser, C., Martin, W. & Dagan, T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol. Lett. 3, 180–184 (2007).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Niche expansion and adaptive divergence in the global radiation of crows and ravens

    Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).PubMed 
    Article 

    Google Scholar 
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).PubMed 
    Article 

    Google Scholar 
    Nicolai, M. P. J. & Matzke, N. J. Trait-based range expansion aided in the global radiation of Crocodylidae. Glob. Ecol. Biogeogr. 28, 1244–1258 (2019).Article 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).Price, T. & others. Speciation in Birds (Roberts and Co., 2008).Moyle, R. G., Filardi, C. E., Smith, C. E. & Diamond, J. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc. Natl Acad. Sci. USA 106, 1863–1868 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Phillimore, A. B. & Price, T. D. in Speciation and Patterns on Diversity (eds Butlin, R., Bridle, J. & Schluter, D.) Ch. 13 (Cambridge Univ. Press, 2009).Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. Camb. Philos. Soc. 95, 1055–1072 (2020).Price, T. D. & Sol, D. Introduction: genetics of colonizing species. Am. Nat. 172, S1–S3 (2008).PubMed 
    Article 

    Google Scholar 
    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).Gill, F. & Donsker, D. IOC world bird list (v 8.1). 2018. (2018).Del Hoyo, J., Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World Vol. 1 (Lynx edicions, 1992).Cassey, P. Are there body size implications for the success of globally introduced land birds? Ecography 24, 413–420 (2001).Article 

    Google Scholar 
    Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).PubMed 
    Article 

    Google Scholar 
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L. & Sol, D. Brains, lifestyles and cognition: are there general trends? Brain. Behav. Evol. 72, 135–144 (2008).PubMed 
    Article 

    Google Scholar 
    Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94 (2016).PubMed 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marki, P. Z. et al. Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution 69, 1874–1924 (2015).PubMed 
    Article 

    Google Scholar 
    KessLer, J. E. Evolution of Corvids and their presence in the neogene and the quaternary in the Carpathian Basin. Ornis Hungarica 28, 121–168 (2020).Article 

    Google Scholar 
    Olson, S. L. & Rasmussen, P. C., others. Miocene and Pliocene birds from the Lee Creek Mine, North Carolina. Smithson Contrib. Paleobiol. 90, 233–365 (2001).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).Alfaro, M. E. et al. Lineage-specific diversification rates and high turnover in the history of jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L., Donnellan, S. C., Grundler, M. & Lovette, I. J. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63, 610–627 (2014).PubMed 
    Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls-a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeffer, A., Johansson, L. C. & Marmebro, Å. Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. 79, 461–484 (2003).Article 

    Google Scholar 
    Wang, X., McGowan, A. J. & Dyke, G. J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS ONE 6, e28672 (2011).Corbin, C. E., Lowenberger, L. K. & Gray, B. L. Linkage and trade-off in trophic morphology and behavioural performance of birds. Funct. Ecol. 29, 808–815 (2015).Article 

    Google Scholar 
    Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B Biol. Sci. 283, 20161922 (2016).Article 

    Google Scholar 
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 

    Google Scholar 
    Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6, 1311–1319 (2015).Uyeda, J. C., Caetano, D. S. & Pennell, M. W. Comparative analysis of principal components can be misleading. Syst. Biol. 64, 677–689 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leyequién, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741 (2007).Article 

    Google Scholar 
    Grant, P. R. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Biol. 17, 319–333 (1968).CAS 
    Article 

    Google Scholar 
    Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    Friedman, N. R. et al. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B 286, 20192474 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Friedman, N. R., Harmáčková, L., Economo, E. P. & Remeš, V. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds. Evolution 71, 2120–2129 (2017).PubMed 
    Article 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).Article 

    Google Scholar 
    Thomas, G. H. & Freckleton, R. P. MOTMOT: models of trait macroevolution on trees. Methods Ecol. Evol. 3, 145–151 (2012).CAS 
    Article 

    Google Scholar 
    O’Meara, B. C., Ané, C., Sanderson, M. J. & Wainwright, P. C. Testing for different rates of continuous trait evolution using likelihood. Evolution 60, 922–933 (2006).PubMed 
    Article 

    Google Scholar 
    Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. Diversity versus disparity and the radiation of modern cetaceans. Proc. R. Soc. B Biol. Sci. 277, 3097–3104 (2010).Article 

    Google Scholar 
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Heinrich, B. Ravens in Winter (Simon and Schuster, 2014).Taylor, A. H., Hunt, G. R., Medina, F. S. & Gray, R. D. Do new Caledonian crows solve physical problems through causal reasoning? Proc. R. Soc. B Biol. Sci. 276, 247–254 (2009).CAS 
    Article 

    Google Scholar 
    Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain. Behav. Evol. 63, 233–246 (2004).PubMed 
    Article 

    Google Scholar 
    Rensch, B. Increase of learning capability with increase of brain-size. Am. Nat. 90, 81–95 (1956).Article 

    Google Scholar 
    Roth, T. C., LaDage, L. D., Freas, C. A. & Pravosudov, V. V. Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc. R. Soc. B Biol. Sci. 279, 402–410 (2012).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain. Behav. Evol. 87, 69–77 (2016).PubMed 
    Article 

    Google Scholar 
    Garcia-Porta, J. & Ord, T. J. Key innovations and island colonization as engines of evolutionary diversification: a comparative test with the Australasian diplodactyloid geckos. J. Evol. Biol. 26, 2662–2680 (2013).Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).PubMed 
    Article 

    Google Scholar 
    Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).Article 

    Google Scholar 
    Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 
    Article 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).Article 

    Google Scholar 
    Baltensperger, A. P. et al. Seasonal observations and machine-learning-based spatial model predictions for the common raven (Corvus corax) in the urban, sub-arctic environment of Fairbanks, Alaska. Polar Biol. 36, 1587–1599 (2013).Article 

    Google Scholar 
    Kövér, L. et al. Recent colonization and nest site selection of the Hooded Crow (Corvus corone cornix L.) in an urban environment. Landsc. Urban Plan. 133, 78–86 (2015).Article 

    Google Scholar 
    Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    Dukas, R. & Ratcliffe, J. M. Cognitive Ecology II (University of Chicago Press, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed 
    Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).Aboitiz, F. Behavior, body types and the irreversibility of evolution. Acta Biotheor. 38, 91–101 (1990).Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).Article 

    Google Scholar 
    Sol, D., Stirling, D. G. & Lefebvre, L. Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution 59, 2669–2677 (2005).PubMed 
    Article 

    Google Scholar 
    Mayr, E., Mayr, E., Mayr, E. & Mayr, E. Animal Species and Evolution Vol. 797 (Belknap Press of Harvard University Press, 1963).Mayr, E. The emergence of evolutionary novelties. Evol. Darwin 1, 349–380 (1960).
    Google Scholar 
    Hardy, A. C. The Living Stream: Evolution and Man (Harper & Row, 1967).Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Plotkin, H. C. The Role of Behavior in Evolution (MIT press, 1988).Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    Sol, D. & Price, T. D. Brain size and the diversification of body size in birds. Am. Nat. 172, 170–177 (2008).PubMed 
    Article 

    Google Scholar 
    Sayol, F., Lapiedra, O., Ducatez, S. & Sol, D. Larger brains spur species diversification in birds. Evolution 73, 2085–2093 (2019).PubMed 
    Article 

    Google Scholar 
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R., others. Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).PubMed 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. J. Tracer v1. 4. (2007).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Louca, S. & Louca, M. S. Package ‘castor’. (2017).Rasband, W. S. et al. ImageJ. (1997).Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    Adams, D. C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. Geomorph: software for geometric morphometric analyses. (2016).Chira, A. M. & Thomas, G. H. The impact of rate heterogeneity on inference of phylogenetic models of trait evolution. J. Evol. Biol. 29, 2502–2518 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodríguez Casal, A. & Pateiro López, B. Generalizing the convex hull of a sample: the R package alphahull. J. Stat. Softw. 34, 1–28 (2010).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2012).Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in Phyllostomid bats. Syst. Biol. 69, 927–943 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dujardin, J.-P., Le Pont, F. & Baylac, M. Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bull. Entomol. Res. 93, 87–90 (2003).PubMed 
    Article 

    Google Scholar 
    Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    International, B. BirdLife International and handbook of the birds of the world (2017) Bird species distribution maps of the world. (2017).Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700 bird species. Proc. Natl. Acad. Sci. USA 118, e2023170118 (2021).Hijmans, R. & van Etten, J. raster: raster: geographic data analysis and modeling. R. Packag. version 517, 2 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B., others. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Ho, L. S. T. et al. Package ‘phylolm’. (2018).Akaike, H. Selected Papers of Hirotugu Akaike (Springer, 1998).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar  More