Potential negative effects of ocean afforestation on offshore ecosystems
Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
N‘Yeurt, A. D. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 90, 467–474 (2012).Article
CAS
Google Scholar
Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).Article
Google Scholar
Woody, T. Seaweed ‘forests’ can help fight climate change. National Geographic https://www.nationalgeographic.co.uk/environment-and-conservation/2019/08/seaweed-forests-can-help-fight-climate-change (2019).Godin, M. The ocean farmers trying to save the world with seaweed. Time https://time.com/5848994/seaweed-climate-change-solution/ (2020).Marshall, M. Kelp is coming: how seaweed could prevent catastrophic climate change. New Scientist https://www.newscientist.com/article/mg24632821-100-kelp-is-coming-how-seaweed-could-prevent-catastrophic-climate-change/ (2020).Bever, F. ‘Run the oil industry in reverse’: fighting climate change by farming kelp. NPR https://www.npr.org/2021/03/01/970670565/run-the-oil-industry-in-reverse-fighting-climate-change-by-farming-kelp (2021).Running Tide. https://www.runningtide.com/ (2022).IPCC: Summary for Policymakers. In Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press) (in the press).GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (eds Boyd, P. W. & Vivian, C. M. G.) GESAMP Working Group 41 (International Maritime Organization, 2019).Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).CAS
PubMed
Article
Google Scholar
Law, C. S. Predicting and monitoring the impact of large-scale iron fertilisation on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).CAS
Article
Google Scholar
Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Costello, C., Fries, L. & Gaines, S. Transformational opportunities in ocean-based food & nutrition. Zenodo https://zenodo.org/record/4646319#.YkBFxhPMLAw (2021).Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article
Google Scholar
Cullen, J. J. & Boyd, P. W. Predicting and verifying the intended and uninterested consequence of large-scale iron fertilization. Mar. Ecol. Prog. Ser. 364, 295–301 (2008).CAS
Article
Google Scholar
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. https://doi.org/10.3389/fclim.2019.00007 (2019).Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS
Article
Google Scholar
Suchet, P. A., Probst, J.-L. & Ludwig, L. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).
Google Scholar
Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2011).PubMed
Google Scholar
Fraser, C. I., Davies, I. D., Bryant, D. & Waters, J. M. How disturbance and dispersal influence intraspecific structure. J. Ecol. 106, 1298–1306 (2018).Article
Google Scholar
Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article
Google Scholar
Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).CAS
Article
Google Scholar
Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS
Article
Google Scholar
Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol., https://doi.org/10.1111/jpy.13249 (2022).Stripe commits $8M to six new carbon removal companies. Stripe https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases (2021).General application. Stripe https://github.com/stripe/carbon-removal-source-materials/blob/master/Project%20Applications/Spring2021/Running%20Tide%20-%20Stripe%20Spring21%20CDR%20Purchase%20Application.pdf (2021).Coston-Clements, L. Utilization of the Sargassum Habitat by Marine Invertebrates and Vertebrates: a Review. NOAA Technical Memorandum NMFS-SEFSC, 296 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center & Beaufort Laboratory, 1991).Egan, S. et al. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37, 462–476 (2013).CAS
PubMed
Article
Google Scholar
Califano, G., Kwantes, M., Abreu, M. H., Costa, R. & Wichard, T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta)Front. Mar. Sci. 7, 52 (2020).Article
Google Scholar
Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Bonthond, G. et al. The role of host promiscuity in the invasion process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87 (2019).CAS
PubMed
Article
Google Scholar
Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269 (2020).Article
Google Scholar
Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS
PubMed
Article
Google Scholar
Harrison, P. J., Druehl, L. D., Lloyd, K. E. & Thompson, P. A. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93, 29–35 (1986).CAS
Article
Google Scholar
Hurd, C. L. & Dring, M. L. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107, 281–289 (1990).Article
Google Scholar
Ohtake, M. et al. Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquat. Bot. 163, 103208 (2020).Article
Google Scholar
MacFarlane, J. J. & Raven, J. A. C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. Plant Cell Environ. 13, 1–13 (1990).CAS
Article
Google Scholar
Wu, J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Preprint at Earth System Dynamics Discuss https://doi.org/10.5194/esd-2021-104 (2022).Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS
Article
Google Scholar
Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS
Article
Google Scholar
Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).CAS
Article
Google Scholar
Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2, 3269–3280 (2017).Article
Google Scholar
Lapointe, B. E. et al. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 12, 3060 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Fan, W. et al. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 101, 102260 (2020).Article
Google Scholar
Karl, D. M. & Letelier, R. M. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar. Ecol. Prog. Ser. 364, 257–268 (2008).CAS
Article
Google Scholar
Oschlies, A. S., Pahlow, M., Yool, A. & Matear, R. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).Article
CAS
Google Scholar
Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).CAS
Article
Google Scholar
Morán, X. A. G., Sebastián, M., Pedrós-Alió, C. & Estrada, M. Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol. Oceanogr. 51, 1791–1800 (2006).Article
Google Scholar
Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49, 1652–1666 (2004).Article
Google Scholar
Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. 57, 1375–1391 (2021).CAS
PubMed
Article
Google Scholar
Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220 (1977).Article
Google Scholar
Sieburth, J. M. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969).CAS
Article
Google Scholar
Hanson, R. B. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29, 107–118 (1977).CAS
Article
Google Scholar
Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Zhang, Y., Liu, X., Wang, M. & Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26–37 (2013).Article
CAS
Google Scholar
Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. & Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coast. Shelf Sci. 84, 147–153 (2009).CAS
Article
Google Scholar
Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Huang, X. & Macreadie, P. I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 54, 14750–14760 (2020).CAS
PubMed
Article
Google Scholar
Vieira, H. C. et al. Ocean warming may enhance biochemical alterations induced by an invasive seaweed exudate in the mussel Mytilus galloprovincialis. Toxics 9, 121 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Brooks, S. D. & Thornton, D. C. O. Marine aerosols and clouds. Ann. Rev. Mar. Sci. 10, 289–313 (2018).PubMed
Article
Google Scholar
Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).Article
Google Scholar
Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res. 93, 10749–10768 (1988).Article
Google Scholar
Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R. & Kwon, M. Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl Acad. Sci. USA 112, 5921–5926 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
Denaro, G. et al. Dynamics of two picophytoplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE 8, e66765 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Kavanaugh, M. T. et al. Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol. Oceanogr. 54, 276–288 (2009).Article
Google Scholar
Omand, M. M., Steinberg, D. K. & Stamies, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. Proc. Natl Acad. Sci. USA 118, e2022977118 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Bach, L. T. & Boyd, P. W. Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proc. Natl Acad. Sci. USA 118, e2106147118 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
van Donk, E. & van de Bund, W. J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72, 261–274 (2002).Article
Google Scholar
Jin, Q., Dong, S. & Wang, C. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31–37 (2005).Article
Google Scholar
Wallace, R. B. & Gobler, C. J.Factors controlling blooms of microalgae and macroalgae (Ulva rigida) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries Coast 38, 519–533 (2015).CAS
Article
Google Scholar
Tang, Y. Z. & Gobler, C. J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10, 480–488 (2011).Article
Google Scholar
Cagle, S. E., Roelke, D. L. & Muhl, R. W. Allelopathy and micropredation paradigms reconcile with system stoichiometry. Ecosphere 12, e03372 (2021).Article
Google Scholar
Hein, M., Pedersen, M. F. & Sand-Jensen, K. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118, 247–253 (1995).Article
Google Scholar
Stevens, C. L., Hurd, C. L. & Smith, M. J. Water motion relative to subtidal kelp fronds. Limnol. Oceanogr. 46, 668–678 (2001).Article
Google Scholar
Raut, Y., Morando, M. & Capone, D. G. Diazotrophic macroalgal associations with living and decomposing Sargassum. Front. Microbiol. 9, 3127 (2018).PubMed
PubMed Central
Article
Google Scholar
Villareal, T. A., Woods, S., Moore, J. K. & CulverRymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).Article
Google Scholar
Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).CAS
PubMed
Article
Google Scholar
Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).PubMed
Article
CAS
Google Scholar
Thiel, M. & Gutow, L. in Oceanography and Marine Biology: an Annual Review Vol. 43 (eds Gibson, R. et al.) 279–418 (Taylor & Francis, 2005).Rech, S., Borrell Pichs, Y. J. & García-Vazquez, E. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS ONE 13, e0191859 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).Schell, J. M., Goodwin, D. S. & Siuda, A. N. S. Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015).Article
Google Scholar
Rodríguez-Martínez, R. E. et al. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. Peer J. 8, e8667 (2020).PubMed
PubMed Central
Article
Google Scholar
Flannery, T. How farming giant seaweed can feed fish and fix the climate. The Conversation Trust https://theconversation.com/how-farming-giant-seaweed-can-feed-fish-and-fix-the-climate-81761 (2017).GESAMP. Methodology for the Evaluation of Ballast Water Management Systems Using Active Substances. GESAMP No. 101 (eds Linders, J. & Dock, A.) (International Maritime Organization, 2019).Lenton, A., Boyd, P. W., Thatcher, M. & Emmerson, K. M. Foresight must guide geoengineering research and development. Nat. Clim. Change 9, 342 (2019).Article
Google Scholar
Sumaila, U. R. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article
Google Scholar
Rech, S., Salmina, S., Borrell Pichs, Y. J. & García-Vazquez, E. Dispersal of alien invasive species on anthropogenic litter from European mariculture areas. Mar. Pollut. Bull. 131, 10–16 (2018).CAS
PubMed
Article
Google Scholar
Therriault, T. W. et al. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 132, 82–89 (2018).CAS
PubMed
Article
Google Scholar
Miller, J. A., Carlton, J. T., Chapman, J. W., Geller, J. B. & Ruiz, G. M. Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: an approach for evaluating rafting of a coastal species at sea. Mar. Pollut. Bull. 132, 60–69 (2018).CAS
PubMed
Article
Google Scholar
Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).CAS
PubMed
Article
Google Scholar
Hunt, G. L. Jr et al. Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).Article
Google Scholar
Hallegraeff, G. M. & Bolch, C. J. Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14, 1067–1084 (1992).Article
Google Scholar
Russell, L. K., Hepburn, C. D., Hurd, C. L. & Stuart, M. D. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol. Invasions 10, 103–115 (2008).Article
Google Scholar
Uwai, S. et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45, 687–695 (2006).Article
Google Scholar More