More stories

  • in

    Monitoring of radioactive cesium in wild boars captured inside the difficult-to-return zone in Fukushima Prefecture over a 5-year period

    Ministry of the Environment Government of Japan. Designation of Evacuation Zone (accessed 07 April 2021); https://www.env.go.jp/chemi/rhm/h29kisoshiryo/h29kiso-09-04-01.html. (in Japanese).Fukushima Prefectural Government, Japan. About the Transition of Evacuation Zone (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/site/portal/cat01-more.html. (in Japanese).Chino, M. et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol. 48, 1129–1134 (2011).CAS 
    Article 

    Google Scholar 
    Koarashi, J., Atarashi-Andoh, M., Takeuchi, E. & Nishimura, S. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocaesium on forest floor driven by biologically mediated processes. Sci. Rep. 4, 6853 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saito, R., Nemoto, Y. & Tsukada, H. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukada, H. From soil to agricultural-plants-transfer and distribution of radiocaesium. Kagaku (Chemistry). 67, 20–23 (2012) (in Japanese).CAS 

    Google Scholar 
    Saito, R. & Tsukada, H. Chapter 23: Physicochemical fractions of radiocaesium in the stomach contents of wild boar and its transfer to muscle tissue. In Behavior of Radionuclides in the Environment III (eds Nanba, K. et al.) 495–505 (Springer, 2022).Chapter 

    Google Scholar 
    Ishii, Y., Hayashi, S. & Takamura, T. Radiocaesium transfer in forest insect communities after the Fukushima Dai-ichi Nuclear Power Plant accident. PLoS ONE 12, e0171133 (2017).Article 

    Google Scholar 
    Matsushima, N., Ihara, S., Takase, M. & Horiguchi, T. Assessment of radiocaesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Sci. Rep. 5, 9712 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ishii, Y., Matsuzaki, S. S. & Hayashi, S. Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J. Environ. Radioact. 213, 106102 (2020).CAS 
    Article 

    Google Scholar 
    Wada, T. et al. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J. Environ. Radioact. 204, 132–142 (2019).CAS 
    Article 

    Google Scholar 
    Morishita, D. et al. Spatial and seasonal variations of radiocaesium concentrations in an algae-grazing annual fish, ayu Plecoglossus altivelis collected from Fukushima Prefecture in 2014. Fish. Sci. 85, 561–569 (2019).CAS 
    Article 

    Google Scholar 
    Saito, R., Kabeya, M., Nemoto, Y. & Oomachi, H. Monitoring 137Cs concentrations in bird species occupying different ecological niches; game birds and raptors in Fukushima Prefecture. J. Environ. Radioact. 197, 67–73 (2019).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environ. Sci. Technol. 49, 2875–2885 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Steinhauser, G. & Saey, P. R. J. 137Cs in the meat of wild boars: A comparison of the impacts of Chernobyl and Fukushima. J. Radioanal. Nucl. Chem. 307, 1801–1806 (2016).CAS 
    Article 

    Google Scholar 
    Nemoto, Y., Saito, R. & Oomachi, H. Seasonal variation of caesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture, Japan. PLoS ONE 13, e0200797. https://doi.org/10.1371/journal.pone.0200797 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342 (2020).CAS 
    Article 

    Google Scholar 
    Saito, R., Oomachi, H., Nemoto, Y. & Osako, M. Estimation of the total amount of the radiocaesium in the wild boar in their body – each organs survey and incineration residue survey. J. Soc. Rem. Radioact. Contam. Environ. 7, 165–173 (2019) (in Japanese).
    Google Scholar 
    Cui, L. et al. Radiocaesium concentrations in wild boars captured within 20 km of the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 10, 9272. https://doi.org/10.1038/s41598-020-66362-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tagami, K., Howard, B. J. & Uchida, S. The time-dependent transfer factor of radiocaesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. Environ. Sci. Technol. 50, 9424–9431. https://doi.org/10.1021/acs.est.6b03011 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuma, S. et al. Radiocaesium contamination of wild boars in Fukushima and surrounding regions after the Fukushima nuclear accident. Environ. Radioact. 164, 60–64 (2016).CAS 
    Article 

    Google Scholar 
    Fukushima Prefectural Government, Japan. Monitoring of Wild Animals. Accessed 7 Apr 2021. https://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html. (in Japanese).Strebl, F. & Tataruch, F. Time trends (1986–2003) of radiocaesium transfer to roe deer and wild boar in two Austrian forest regions. J. Environ. Radioactiv. 98, 137–152 (2007).CAS 
    Article 

    Google Scholar 
    Ohtsuka-Ito, E. & Kanzaki, N. Population trends of the Japanese wild boar during the Showa era. Wildl. Cons. Jpn. 3, 95–105 (1998).Article 

    Google Scholar 
    Ueda, H. & Jiang, Z. The use of Orchards and Abandoned Orchard by wild boars in Yamanashi. Mamm. Sci. 44, 23–33 (2004) (in Japanese).
    Google Scholar 
    Fukushima Prefectural Government, Japan. Fukushima Prefecture Wild Boar Management Plan (Phase 3) (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/uploaded/life/497785_1296285_misc.pdf (in Japanese).Anderson, D. et al. A comparison of methods to derive aggregated transfer factors using wild boar data from the Fukushima Prefecture. J. Environ. Radioact. 197, 101–108 (2019).CAS 
    Article 

    Google Scholar 
    Pröhl, G. et al. Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. J. Environ. Radioactiv. 91, 41–72 (2006).Article 

    Google Scholar 
    Palo, R. T., White, N. & Danell, K. Spatial and temporal variations of 137Cs in moose Alces alces and transfer to man in northern Sweden. Wildlife Biol. 9, 207–212 (2003).Article 

    Google Scholar 
    Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan. J. Mammal. Soc. Jpn. 53, 279–287 (2013) (in Japanese).
    Google Scholar 
    Kodera, Y. & Kanzaki, N. Food habits and nutritional condition of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Cons. Jpn. 6, 109–117 (2001) (in Japanese).
    Google Scholar 
    Arita, S. et al. Radioactive cesium accumulation during developmental stages of Largemouth Bass, Micropterus salmoides. Proc. JSCE. G. (Environment) 71, 267–276 (2015).Article 

    Google Scholar 
    Kodera, Y. C. S. F. prevention of epidemics from a point of view of the ecology of wild boar. J. Vet. Epidemiol. 23, 4–8 (2019) (in Japanese).Article 

    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. J. Zool. 242, 411–423 (1997).Article 

    Google Scholar 
    Morelle, K. et al. Towards understanding wild boar Sus scrofa movement: A synthetic movement ecology approach. Mammal Rev. 45, 15–29 (2015).Article 

    Google Scholar 
    Kapata, J., Mnich, K., Mnich, S., Karpińska, M. & Bielawska, A. Time-dependence of 137Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland). J. Environ. Radioactiv. 141, 76–81 (2015).Article 

    Google Scholar 
    Gulakov, A. V. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive. J. Environ. Radioactiv. 127, 171–175 (2014).CAS 
    Article 

    Google Scholar 
    Hohmann, U. & Huckschlag, D. Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: A stomach content analysis. Eur. J. Wildl. Res. 51, 263–270 (2005).Article 

    Google Scholar 
    Škrkal, J., Rulík, P., Fantínová, K., Mihalík, J. & Timková, J. Radiocaesium levels in game in the Czech Republic. J. Environ. Radioactiv. 139, 18–23 (2015).Article 

    Google Scholar 
    Japan Atomic Energy Agency (JAEA). 5th airborne monitoring survey (accessed 07 April 2021); https://emdb.jaea.go.jp/emdb/en/portals/b1020201/Steinhauser, G. Monitoring and radioecological characteristics of radiocaesium in Japanese beef after the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 311, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J. Radioanal. Nucl. Chem. 307, 1807–1810 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts

    Phylogenetic placement of Saccharibacteria rhodopsins (SacRs) shows that these sequences form a sibling clade to characterized light-driven inward and outward H+ pumps (Fig. 1a). We selected three phylogenetically diverse SacRs from freshwater lakes (Table S1) and two related, previously uncharacterized sequences from the Gammaproteobacteria (Kushneria aurantia and Halomonas sp.) for synthesis and functional characterization (highlighted in Fig. 1a). All sequences have Asp–Thr–Ser (DTS) residues at the positions of D85–T96–D96 of bacteriorhodopsin (BR) in the third transmembrane helix (Fig. S1). These residues are known as the triplet DTD motif and represent key residues for proton pumping function in BR [6].Fig. 1: Characteristics of Saccharibacteria rhodopsins (SacRs).a Rhodopsin protein tree indicating that SacRs from freshwater lakes form a broad clade of proton pumps. b The ion-pumping activity of SacRs. Blue and green lines indicate the pH change with and without 10 μM CCCP, respectively. Yellow bars indicate the period of light illumination. c Time evolution of transient absorption changes of SacRNC335 in 100 mM NaCl, 20 mM HEPES–NaOH, pH 7.0, and POPE/POPG (molar ratio 3:1) vesicles with a lipid to protein molar ratio = 50. Time evolution at 406 nm (blue, representing the M accumulation), 561 nm (green, representing the bleaching of the initial state and the L accumulation), and 638 nm (red, representing the K and O accumulations). Yellow lines indicate fitting curves by a multi-exponential function. Inset: The photocycle of SacRNC335 based on the fitting in (c) and a kinetic model assuming a sequential photocycle. The lifetime (τ) of each intermediate is indicated by numbers as follow (mean ± S.D., fraction of the intermediate decayed with each lifetime in its double exponential decay is indicated in parentheses): I: τ = 1.7 ± 0.3 μs (42%), τ = 13 ± 1.8 μs (58%), II: τ = 118 ± 2 μs, III: τ = 1.6 ± 0.1 ms, IV: τ = 23.5 ± 1.0 ms, V: τ = 98.4 ± 6.4 ms (56%), τ = 384 ± 18 ms (44%). d Genomic context of SacRNC335. Neighboring genes with above-threshold KEGG annotations are indicated in gray with the highest-scoring HMM model. Genes without KEGG annotations are indicated in white.Full size imageProton transport assays for the SacRs and Gammaproteobacteria proteins expressed in Escherichia coli showed marked decrease of external pH upon light illumination (Fig. 1b and Fig. S2), indicating that these proteins are light-driven outward H+ pumps. The pH decrease was almost eliminated after adding the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which dissipates the H+ gradient, confirming that it was indeed formed upon illumination (Fig. 1b and Fig. S2). We also characterized the absorption spectra and the photocycle of the SacRs, showing that the three rhodopsins have an absorption peak around 550 nm (Fig. S3). The photocycle of the SacRs, determined by measuring the transient absorption change after nanosecond laser pulse illumination (Fig. 1c and Fig. S4), displays a blue-shifted M intermediate that represents the deprotonated state of the retinal chromophore. This has been observed for other H+ pumping rhodopsins [7, 8] and indicates that the proton bound to retinal is translocated during pumping.Given that SacRs function as outward proton pumps, we searched Saccharibacteria genomes for the F1Fo ATP synthase that would be required to harness the generated proton motive force for ATP synthesis. HMM searches showed that all genomes encoded the complete ATP synthase gene cluster and, furthermore, had c subunits with motifs consistent with H+ binding, instead of Na+ binding (Table S1 and Fig. S5). Together, our experimental and genomic analyses strongly suggest that some Saccharibacteria utilize rhodopsins for auxiliary energy generation in addition to their core fermentative capacities [6].Retinal is the rhodopsin chromophore that enables function of the complex upon illumination [9]. We found no evidence for the presence of β-carotene 15,15’-dioxygenase (blh), which produces all-trans-retinal (ATR) from β-carotene, in Saccharibacteria genomes encoding rhodopsin. This absence was likely not due to genome incompleteness, as genomic bins were generally of high quality (79–98% completeness, Table S1) and rhodopsin genomic loci were well-sampled. Additionally, no conserved hypothetical proteins were present in these regions, where blh is often found [10] (Fig. 1d, Fig. S6 and Table S2). As SacRs do contain the conserved lysine for retinal binding [4], we instead hypothesized that Saccharibacteria may uptake retinal from the environment, as has been previously observed for other microorganisms encoding rhodopsin but also lacking blh [11, 12].We tested the ability of SacR proteins to bind ATR from an external source by performing a retinal reconstitution assay. In contrast to the proton transport assays, where rhodopsin was expressed in the presence of ATR, here ATR was dissociated from the purified complex and the visible absorbance of rhodopsin was measured upon re-addition of ATR [13]. Both Gloeobacter rhodopsin (GR), a typical Type-1 outward H+ pump, and SacRs showed an increase in absorption in the visible region with time after the addition of ATR (Fig. 2a and Fig. S7). For all SacRs, the binding of ATR by their apoprotein was saturated within 30 sec after retinal addition (Fig. 2b), indicating that SacR is able to be efficiently functionalized using externally derived ATR. The observed reconstitution rate is substantially faster than that of GR (  > 20 min) and comparable to that of heliorhodopsin, which is used by other microorganisms also lacking a retinal synthetic pathway and rapidly binds ATR through a small opening in the apoprotein [12]. In the structure of SacRNC335 modeled by Alphafold2 [14, 15], a similar hole is visible in the protein moiety constructing the retinal binding pocket (Fig. S8). Hence, SacRs may also bind retinal through this hole in a similar manner to TaHeR (heliorhodopsin).Fig. 2: Binding of retinal by Saccharibacteria rhodopsins and context for biosynthesis.a UV-visible absorption spectra showing the regeneration of retinal binding to SacRNC335 and GR in 20 mM HEPES–NaOH, pH 7.0, 100 mM NaCl and 0.05% n-dodecyl-β-D-maltoside (DDM). In SacRNC335, a peak around 470 nm was transiently observed in the spectrum 30 s after the addition of ATR, suggesting that an intermediate species appears during the retinal incorporation process that involves formation of the Schiff base linkage. b Time evolution of visible absorption representing retinal binding to apo-protein. Numbers in parentheses in the legend indicate the absorption maxima of each rhodopsin. c Genetic potential for β-carotene 15,15’-dioxygenase (blh) production in freshwater lake metagenomes where SacRs are found. Fractions indicate the number of blh-encoding scaffolds taxonomically affiliated with the Actinobacteria in each sample. d Conceptual diagram illustrating potential retinal exchange between Saccharibacteria and host cells. ATR all-trans-retinal, GR Gloeobacter rhodopsin, AM Alinen Mustajärvi, Ki Kiruna, rhod. rhodopsin.Full size imageSaccharibacteria with rhodopsin must obtain retinal from other organisms. To evaluate possible sources of ATR, we investigated the genetic potential for retinal biosynthesis in 15 subarctic and boreal lakes [16] where Saccharibacteria with rhodopsin were present (Fig. S9). Blh-encoding scaffolds were found in 14 of the 15 metagenomes profiled (~93%) and, in nearly all cases, these scaffolds derived from Actinobacteria (Fig. 2c and Table S3). This is intriguing because Actinobacteria are known to be hosts of Saccharibacteria in the human microbiome [17, 18] and potentially more generally [4, 19]. BLAST searches against genome bins from the same samples indicated that these Actinobacteria were members of the order Nanopelagicales (Table S3) and often encode a rhodopsin (phylogenetically distinct from SacRs) in close genomic proximity to blh genes (Table S4). HMM searches revealed that these genomes also harbor homologs of the crtI, crtE, crtB, and crtY genes necessary for β-carotene production [20]. More

  • in

    Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez

    Fatty acid profilePlukenetia volubilisThe fatty acid composition of P. volubilis is the most well studied in the genus, and the results from the two P. volubilis accessions from Ecuador and Peru in the current study are similar to previous results. The most abundant fatty acid in the seed oil of P. volubilis from Ecuador and Peru, respectively, is α-linolenic acid (C18:3 n-3, ω-3, ALA; 51.5 ± 3.3 and 46.6 ± 1.2%), followed by linoleic acid (C18:2 n-6, ω-6, LA; 32.5 ± 3.9 and 36.5 ± 0.8%), oleic acid (C18:1, OA; 8.5 ± 1,2 and 8.3 ± 0,4%) and smaller amounts ( More

  • in

    Factors influencing wind turbine avoidance behaviour of a migrating soaring bird

    REN21. Renewables 2018 global status report. (REN21 Secretariat, 2018).Schuster, E., Bulling, L. & Koppel, J. Consolidating the state of knowledge: A synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).Article 

    Google Scholar 
    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170829 (2017).
    Google Scholar 
    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).Article 

    Google Scholar 
    Katzner, T. E. et al. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 49, 1178–1186 (2012).Article 

    Google Scholar 
    Watson, R. T. et al. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 52, 1–18 (2018).Article 

    Google Scholar 
    May, R. F. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190, 179–187 (2015).Article 

    Google Scholar 
    Cabrera-Cruz, S. A. & Villegas-Patraca, R. Response of migrating raptors to an increasing number of wind farms. J. Appl. Ecol. 53, 1667–1675 (2016).Article 

    Google Scholar 
    Hull, C. L. & Muir, S. C. Behavior and turbine avoidance rates of eagles at two wind farms in Tasmania, Australia. Wildl. Soc. Bull. 37, 49–58 (2013).Article 

    Google Scholar 
    Marques, A. T. et al. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 89, 93–103 (2020).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Langston, R. H. W., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).Article 

    Google Scholar 
    Schaub, T., Klaassen, R. H. G., Bouten, W., Schlaich, A. E. & Koks, B. J. Collision risk of Montagu’s Harriers Circus pygargus with wind turbines derived from high-resolution GPS tracking. Ibis 162, 520–534 (2020).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Black kites of different age and sex show similar avoidance responses to wind turbines during migration. R. Soc. Open Sci. 8, 201933 (2021).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Data from: Black kites of different age and sex show similar avoidance responses to wind turbines during migration. Movebank Data Repository https://doi.org/10.5441/001/1.23n2m412 (2021).Article 

    Google Scholar 
    Khosravifard, S. et al. Identifying birds’ collision risk with wind turbines using a multidimensional utilization distribution method. Wildl. Soc. Bull. 44, 191–199 (2020).Article 

    Google Scholar 
    Hoover, S. L. & Morrison, M. L. Behavior of red-tailed hawks in a wind turbine development. J. Wildl. Manag. 69, 150–159 (2005).Article 

    Google Scholar 
    Miller, R. A. et al. Local and regional weather patterns influencing post-breeding migration counts of soaring birds at the Strait of Gibraltar Spain. Ibis 158, 106–115 (2016).Article 

    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A.-R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?. J. Anim. Ecol. 89, 1317–1328 (2020).Article 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).Article 

    Google Scholar 
    Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound. Layer Meteorol. 174, 1–59 (2020).Article 

    Google Scholar 
    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using “mgcv” and “lme4” (R package version 0.2-5, 2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4 (R package version 1.1-19, 2016).Bjornstad, O. N. ncf: Spatial Covariance Functions (R package version 1.2-6, 2018).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2016).Bartoń, K. MuMIn: Multi-model inference (R package version 1.43.15, 2019).Bellebaum, J., Korner-Nievergelt, F., Dürr, T. & Mammen, U. Wind turbine fatalities approach a level of concern in a raptor population. J. Nat. Conserv. 21, 394–400 (2013).Article 

    Google Scholar 
    Heuck, C. et al. Sex- but not age-biased wind turbine collision mortality in the White-tailed Eagle Haliaeetus albicilla. J. Ornithol. 161, 753–757 (2020).Article 

    Google Scholar 
    Hunt, W. G. et al. Quantifying the demographic cost of human-related mortality to a raptor population. PLoS One 12, e0172232 (2017).Article 

    Google Scholar 
    Martín, B., Perez-Bacalu, C., Onrubia, A., De Lucas, M. & Ferrer, M. Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur. J. Wildl. Res. 64, 33 (2018).Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Douse, A. & Langston, R. H. W. Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi-site and multi-species analysis. J. Appl. Ecol. 49, 386–394 (2012).Article 

    Google Scholar 
    Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of windfarm impacts on birds. Environ. Conserv. 34, 1–11 (2007).Article 

    Google Scholar 
    De Lucas, M., Janss, G. F. E., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).Article 

    Google Scholar 
    May, R., Reitan, O., Bevanger, K., Lorentsen, S. H. & Nygard, T. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 42, 170–181 (2015).Article 

    Google Scholar 
    Magnusson, M. & Smedman, A. S. Air flow behind wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 169–189 (1999).Article 

    Google Scholar 
    Walters, K., Kosciuch, K. & Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development?. Wildl. Soc. Bull. 38, 250–256 (2014).Article 

    Google Scholar 
    Ferrer, M. et al. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 49, 38–46 (2012).Article 

    Google Scholar 
    Martín, B., Onrubia, A., de la Cruz, A. & Ferrer, M. Trends of autumn counts at Iberian migration bottlenecks as a tool for monitoring continental populations of soaring birds in Europe. Biodivers. Conserv. 25, 295–309 (2016).Article 

    Google Scholar 
    May, R. et al. Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 10, 8927–8935 (2020).Article 

    Google Scholar  More

  • in

    Punishment institutions selected and sustained through voting and learning

    Henrich, J. et al. Costly punishment across human societies. Science https://doi.org/10.1126/science.1127333 (2006).Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).Ostrom, E., Walker, J. & Gardner, R. Covenants with and without a sword: self-governance is possible. Am. Polit. Sci. Rev. 86, 404–417 (1992).Article 

    Google Scholar 
    Fehr, E. & Gächter, S. Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90, 980–994 (2000).Article 

    Google Scholar 
    Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. Winners don’t punish. Nature https://doi.org/10.1038/nature06723 (2008).Rand, D. G., Ohtsuki, H. & Nowak, M. A. Direct reciprocity with costly punishment: generous tit-for-tat prevails. J. Theor. Biol. https://doi.org/10.1016/j.jtbi.2008.09.015 (2009).Ohtsuki, H., Iwasa, Y. & Nowak, M. A. Indirect reciprocity provides only a narrow margin of efficiency for costly punishment. Nature https://doi.org/10.1038/nature07601 (2009).Sethi, R. & Somanathan, E. Understanding reciprocity. J. Econ. Behav. Organ. 50, 1–27 (2003).Article 

    Google Scholar 
    Bowles, S. & Gintis, H. A Cooperative Species (Princeton Univ. Press, 2011).Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A. & Sigmund, K. Via freedom to coercion: the emergence of costly punishment. Science https://doi.org/10.1126/science.1141588 (2007).Brandt, H., Hauert, C. & Sigmund, K. Punishment and reputation in spatial public goods games. Proc. R. Soc. B https://doi.org/10.1098/rspb.2003.2336 (2003).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000758 (2010).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New J. Phys. https://doi.org/10.1088/1367-2630/12/8/083005 (2010).Perc, M. & Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. https://doi.org/10.1088/1367-2630/14/4/043013 (2012).Boyd, R., Gintis, H. & Bowles, S. Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science https://doi.org/10.1126/science.1183665 (2010).Sigmund, K., De Silva, H., Traulsen, A. & Hauert, C. Social learning promotes institutions for governing the commons. Nature 466, 861–863 (2010).CAS 
    Article 

    Google Scholar 
    Hilbe, C., Traulsen, A., Röhl, T. & Milinski, M. Democratic decisions establish stable authorities that overcome the paradox of second-order punishment. Proc. Natl Acad. Sci. USA 111, 752–756 (2014).CAS 
    Article 

    Google Scholar 
    Murphy, B. The Punisher’s Brain: The Evolution of Judge and Jury. By Hoffman, Morris B. Pp. xi, 359. Cambridge/NY, Cambridge University Press, 2014, £21.99/$30.00. Heythrop J. https://doi.org/10.1111/heyj.12249_81 (2015).Gruter, M. & Masters, R. D. Ostracism as a social and biological phenomenon: an introduction. Ethol. Sociobiolo. https://doi.org/10.1016/0162-3095(86)90043-9 (1986).Molleman, L., Kölle, F., Starmer, C. & Gächter, S. People prefer coordinated punishment in cooperative interactions. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0707-2 (2019).Szolnoki, A., Szabó, G. & Perc, M. Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E https://doi.org/10.1103/PhysRevE.83.036101 (2011).Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).Article 

    Google Scholar 
    Platteau, J.-P. Institutions, Social Norms, and Economic Development Vol. 1 (Psychology Press, 2000).van den Bergh, J. C. J. M., Ferrer-i-Carbonell, A. & Munda, G. Alternative models of individual behaviour and implications for environmental policy. Ecol. Econ. 32, 43–61 (2000).Article 

    Google Scholar 
    Traulsen, A., Nowak, M. A. & Pacheco, J. M. Stochastic dynamics of invasion and fixation. Phys. Rev. E 74, 11909 (2006).Article 

    Google Scholar 
    Dequech, D. Institutions, social norms, and decision-theoretic norms. J. Econ. Behav. Organ. 72, 70–78 (2009).Article 

    Google Scholar 
    Dunn, S. P. Bounded rationality is not fundamental uncertainty: a post Keynesian perspective. J. Post Keynes. Econ. 23, 567–587 (2001).Article 

    Google Scholar 
    Levin, S. The trouble of discounting tomorrow. Solutions 3, 20–24 (2012).
    Google Scholar 
    Alford, R. P. The proliferation of international courts and tribunals: international adjudication in ascendance. In Proc. Annual Meeting of the American Society of International Law Vol. 94, 160–165 (Cambridge University Press, 2000).Dunn, L. A. Containing Nuclear Proliferation (International Institute for Strategic Studies, 1991).Potoski, M. Green clubs in building block climate change regimes. Climatic Change 144, 53–63 (2017).Article 

    Google Scholar 
    Trzyna, T. C., Margold, E. & Osborn, J. K. World Directory of Environmental Organizations: A Handbook of National and International Organizations and Programs—Governmental and Non-governmental—Concerned with Protecting the Earth’s Resources Vol. 5 (Earthscan, 1996).Dixit, A. & Levin, S. in The Theory of Externalities and Public Goods: Essays in Memory of Richard C. Cornes (eds Buchholz, W. and Rübbelke, D.) 127–143 (Springer, 2017); https://doi.org/10.1007/978-3-319-49442-5_7Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. A bottom-up institutional approach to cooperative governance of risky commons. Nat. Clim. Change 3, 797–801 (2013).Article 

    Google Scholar 
    Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. Cooperation dynamics of polycentric climate governance. Math. Model. Methods Appl. Sci. 25, 2503–2517 (2015).Article 

    Google Scholar 
    Ostrom, E. Beyond markets and states: polycentric governance of complex economic systems. Am. Econ. Rev. 100, 641–672 (2010).Article 

    Google Scholar 
    Vasconcelos, V. V., Hannam, P. M., Levin, S. A. & Pacheco, J. M. Coalition-structured governance improves cooperation to provide public goods. Sci. Rep. 10, 9194 (2020).CAS 
    Article 

    Google Scholar 
    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    Article 

    Google Scholar 
    Hannam, P. M., Vasconcelos, V. V., Levin, S. A. & Pacheco, J. M. Incomplete cooperation and co-benefits: deepening climate cooperation with a proliferation of small agreements. Climatic Change 144, 65–79 (2017).Article 

    Google Scholar 
    Markussen, T., Putterman, L. & Tyran, J.-R. Self-organization for collective action: an experimental study of voting on sanction regimes. Rev. Econ. Stud. 81, 301–324 (2014).Article 

    Google Scholar 
    Gürerk, Ö., Irlenbusch, B. & Rockenbach, B. The competitive advantage of sanctioning institutions. Science 312, 108–111 (2006).Article 

    Google Scholar 
    Dannenberg, A. & Gallier, C. The choice of institutions to solve cooperation problems: a survey of experimental research. Exp. Econ. https://doi.org/10.1007/s10683-019-09629-8 (2019).Bühren, C. & Dannenberg, A. The demand for punishment to promote cooperation among like-minded people. Eur. Econ. Rev. 138, 103862 (2021).Radzvilavicius, A. L., Kessinger, T. A. & Plotkin, J. B. Adherence to public institutions that foster cooperation. Nat. Commun. 12, 3567 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Sexual morph specialisation in a trioecious nematode balances opposing selective forces

    Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton and Company, 1877).
    Google Scholar 
    Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn Soc. 22, 333–348 (1984).Article 

    Google Scholar 
    Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44, 1469–1489 (1990).CAS 
    Article 

    Google Scholar 
    Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).
    Google Scholar 
    Weeks, S. C. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).Article 

    Google Scholar 
    Pannell, J. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997).Article 

    Google Scholar 
    Wolf, D. E. & Takebayashi, N. Pollen limitation and the evolution of androdioecy from dioecy. Am. Nat. 163, 122–137 (2004).Article 

    Google Scholar 
    Charlesworth, D. Theories of the evolution of dioecy. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A. et al.) 33–60 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-662-03908-3_2.Chapter 

    Google Scholar 
    Denver, D. R., Clark, K. A. & Raboin, M. J. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species. Mol. Phylogenetics Evol. 61, 584–592 (2011).CAS 
    Article 

    Google Scholar 
    Pires-daSilva, A. Evolution of the control of sexual identity in nematodes. Semin. Cell Dev. Biol. 18, 362–370 (2007).Article 

    Google Scholar 
    Kanzaki, N. et al. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci. Rep. 7, 11135 (2017).ADS 
    Article 

    Google Scholar 
    Tandonnet, S. et al. Sex- and gamete-specific patterns of X chromosome segregation in a trioecious nematode. Curr. Biol. 28, 93-99.e3 (2018).CAS 
    Article 

    Google Scholar 
    Chaudhuri, J. et al. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 5, 17676 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Félix, M.-A. Alternative morphs and plasticity of vulval development in a rhabditid nematode species. Dev. Genes Evol. 214, 55–63 (2004).Article 

    Google Scholar 
    Shakes, D. C., Neva, B. J., Huynh, H., Chaudhuri, J. & Pires-daSilva, A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat. Commun. 2, 157 (2011).ADS 
    Article 

    Google Scholar 
    Winter, E. S. et al. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development 144, 3253–3263 (2017).CAS 

    Google Scholar 
    Robles, P. et al. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol. 19, 102 (2021).CAS 
    Article 

    Google Scholar 
    Zuco, G. et al. Sensory neurons control heritable adaptation to stress through germline reprogramming. bioRxiv 406033 (2018) https://doi.org/10.1101/406033.Colegrave, N., Kaltz, O. & Bell, G. The ecology and genetics of fitness in chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56, 14–21 (2002).Article 

    Google Scholar 
    Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Gray, J. C. & Goddard, M. R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol. Biol. 12, 43 (2012).Article 

    Google Scholar 
    Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage ⌽6. Genetics 166, 19 (2004).Article 

    Google Scholar 
    Stewart, A. D. & Phillips, P. C. Selection and maintenance of androdioecy in Caenorhabditis elegans. Genetics 160, 975–982 (2002).Article 

    Google Scholar 
    Stiernagle, T. Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology (WormBook, 2006).Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).CAS 
    Article 

    Google Scholar 
    Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    Lenth, R. V. Emmeans: estimated marginal means, aka least-squares means (2021).Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004).CAS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Pino, E. C., Webster, C. M., Carr, C. E. & Soukas, A. A. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. J. Vis. Exp. https://doi.org/10.3791/50180 (2013).Article 

    Google Scholar 
    Hakim, A. et al. WorMachine: machine learning-based phenotypic analysis tool for worms. BMC Biol. 16, 8 (2018).Article 

    Google Scholar 
    Motola, D. L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).CAS 
    Article 

    Google Scholar 
    Ogawa, A., Streit, A., Antebi, A. & Sommer, R. J. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19, 67–71 (2009).CAS 
    Article 

    Google Scholar 
    Wang, Z. et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc. Natl. Acad. Sci. 106, 9138–9143 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Hu, P. Dauer. WormBook: The C. elegans Research Community (2007).Chaudhuri, J., Kache, V. & Pires-daSilva, A. Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Curr. Biol. 21, 1548–1551 (2011).CAS 
    Article 

    Google Scholar 
    Luciani, G. M. et al. Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat. Chem. Biol. 7, 891–893 (2011).CAS 
    Article 

    Google Scholar 
    Adams, S., Pathak, P., Shao, H., Lok, J. B. & Pires-daSilva, A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci. Rep. 9, 483 (2019).ADS 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    Article 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).CAS 
    Article 

    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar 
    Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    Article 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucl. Acids Res. 39, W29–W37 (2011).CAS 
    Article 

    Google Scholar 
    Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).CAS 
    Article 

    Google Scholar 
    McGhee, J. D. The C. elegans intestine. WormBook: The Online Review of C. elegans Biology [Internet] (WormBook, 2007).Mullaney, B. C. & Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1791, 474–478 (2009).CAS 

    Google Scholar 
    O’Rourke, E. J., Soukas, A. A., Carr, C. E. & Ruvkun, G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).Article 

    Google Scholar 
    Mak, H. Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans. J. Lipid Res. 53, 28–33 (2012).CAS 
    Article 

    Google Scholar 
    Kroetz, S. M., Srinivasan, J., Yaghoobian, J., Sternberg, P. W. & Hong, R. L. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. BMC Proc. 6, P27 (2012).Article 

    Google Scholar 
    Edgar, L. G. & McGhee, J. D. Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev. Biol. 114, 109–118 (1986).CAS 
    Article 

    Google Scholar 
    Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386 (1999).ADS 
    CAS 

    Google Scholar 
    Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L. & Bargmann, C. I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Joo, H.-J. et al. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319–29325 (2010).CAS 
    Article 

    Google Scholar 
    Yassin, L. et al. Characterization of the DEG-3/DES-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol. Cell. Neurosci. 17, 589–599 (2001).CAS 
    Article 

    Google Scholar 
    Zhang, X., Wang, Y., Perez, D. H., Lipinski, R. A. J. & Butcher, R. A. Acyl-CoA oxidases fine-tune the production of ascaroside pheromones with specific side chain lengths. ACS Chem. Biol. https://doi.org/10.1021/acschembio.7b01021 (2018).Article 

    Google Scholar 
    Borne, F., Kasimatis, K. R. & Phillips, P. C. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS ONE 87, 511 (2017).
    Google Scholar 
    Choe, A. et al. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. 109, 20949–20954 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Duggal, C. L. Sex attraction in the free-living nematode panagrellus redivivus. Nematologica 24, 213–221 (1978).Article 

    Google Scholar 
    Andersson, M. Sexual Selection Vol. 72 (Princeton University Press, 1994).Book 

    Google Scholar 
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).CAS 
    Article 

    Google Scholar 
    Kvarnemo, C. & Simmons, L. W. Polyandry as a mediator of sexual selection before and after mating. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120042 (2013).Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: the history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).Article 

    Google Scholar 
    Rhainds, M. Female mating failures in insects. Entomol. Exp. Appl. 136, 211–226 (2010).Article 

    Google Scholar 
    Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland Biol. Neoplasia 2, 243–252 (1997).CAS 
    Article 

    Google Scholar 
    Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 363, 375–398 (2008).Article 

    Google Scholar 
    Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015).Article 

    Google Scholar 
    Kaliszewicz, A. Interference of asexual and sexual reproduction in the green hydra. Ecol. Res. 26, 147–152 (2011).Article 

    Google Scholar 
    Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. A. Trioecy in the Marine Mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).Article 

    Google Scholar 
    Armoza-Zvuloni, R., Kramarsky-Winter, E., Loya, Y., Schlesinger, A. & Rosenfeld, H. Trioecy, a unique breeding strategy in the sea anemone aiptasia diaphana and its association with sex steroids. Biol. Reprod. 90, 122 (2014).Article 

    Google Scholar 
    Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 539(7628), 254–258. https://doi.org/10.1038/nature19848 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Kieninger, M. R. et al. The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus.Curr Biol 26(16), 2174–2179. https://doi.org/10.1016/j.cub.2016.06.018 (2016).Therrien, M., Rouleau, G. A., Dion, P. A., Parker, J. A. & Dupuy, D. Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans. PLoS ONE 8(12), e83450. https://doi.org/10.1371/journal.pone.0083450 (2013).Lee, B. H., Liu, J., Wong, D., Srinivasan, S., Ashrafi, K. & Kim, S. K. Hyperactive Neuroendocrine Secretion Causes Size Feeding and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biol 9(12), e1001219. https://doi.org/10.1371/journal.pbio.1001219 (2011).CAS 
    Article 

    Google Scholar 
    Li, C. & Kim, K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol. https://doi.org/10.3389/fendo.2014.00150 (2014). Buntschuh, I. et al. FLP-1 neuropeptides modulate sensory and motor circuits in the nematode Caenorhabditis elegans. PLoS ONE 13(1), e0189320. https://doi.org/10.1371/journal.pone.0189320 (2018).Topalidou, I. et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLOS Genet 12(5), e1006074. https://doi.org/10.1371/journal.pgen.1006074 (2016).Maman, M. et al. A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode C. elegans. J Neurosci 33(14), 6102–6111. https://doi.org/10.1523/JNEUROSCI.4023-12.2013 (2013). More

  • in

    The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions

    Caldeira, K. & Wickett, M. E. Oceanography: Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M.) (2019).Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2014).ADS 
    Article 

    Google Scholar 
    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).Article 

    Google Scholar 
    Kleypas, J. A. & Yates, K. K. Coral reefs and ocean acidification. Oceanography 22, 108–117 (2009).Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    Article 

    Google Scholar 
    Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: The role of reef foraminifera. J. Foraminifer. Res. 27, 271–277 (1997).Article 

    Google Scholar 
    Langer, M. R. Assessing the contribution of foraminiferan protists to global ocean carbonate production. J. Eukaryot. Microbiol. 55, 163–169 (2008).Article 

    Google Scholar 
    Hallock, P. Symbiont-bearing Foraminifera. In Modern Foraminifera (ed. Sen Gupta, B. K.) 123–139 (Springer Netherlands, 2003). https://doi.org/10.1007/0-306-48104-9_8.BouDagher-Fadel, M. K. Biology and evolutionary history of larger benthic foraminifera. In Evolution and Geological Significance of Larger Benthic Foraminifera 1–44 (UCL Press, 2018).Köhler-Rink, S. & Kühl, M. Microsensor studies of photosynthesis and respiration in larger symbiotic foraminifera. I The physico-chemical microenvironment of Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii. Mar. Biol. 137, 473–486 (2000).Article 

    Google Scholar 
    Glas, M. S., Fabricius, K. E., de Beer, D. & Uthicke, S. The O2, pH and Ca2+ microenvironment of benthic foraminifera in a high CO2 world. PLoS One 7, e50010 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    De Nooijer, L. J., Toyofuku, T. & Kitazato, H. Foraminifera promote calcification by elevating their intracellular pH. Proc. Natl. Acad. Sci. U. S. A. 106, 15374–15378 (2009).ADS 
    Article 

    Google Scholar 
    Glas, M., Langer, G. & Keul, N. Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.). J. Exp. Mar. Biol. Ecol. 424–425, 53–58 (2012).Article 

    Google Scholar 
    Toyofuku, T. et al. Proton pumping accompanies calcification in foraminifera. Nat. Commun. 8, 14145 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M. & Donnelly, K. B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM Index. Environ. Monit. Assess. 81, 221–238 (2003).Article 

    Google Scholar 
    Uthicke, S., Thompson, A. & Schaffelke, B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29, 209–225 (2010).ADS 
    Article 

    Google Scholar 
    Prazeres, M., Martínez-Colón, M. & Hallock, P. Foraminifera as bioindicators of water quality: The FoRAM Index revisited. Environ. Pollut. 257, 113612 (2020).CAS 
    Article 

    Google Scholar 
    Sen Gupta, B. K. Modern Foraminifera. (Springer Science & Business Media, 2003).Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Andersson, A. J., Mackenzie, F. T. & Bates, N. R. Life on the margin: Implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar. Ecol. Prog. Ser. 373, 265–273 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Van Dijk, I., De Nooijer, L. J. & Reichart, G.-J. Trends in element incorporation in hyaline and porcelaneous foraminifera as a function of pCO2. Biogeosciences 14, 497–510 (2017).ADS 
    Article 

    Google Scholar 
    Not, C., Thibodeau, B. & Yokoyama, Y. Incorporation of Mg, Sr, Ba, U, and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2. Geochem. Geophys. Geosyst. 19, 83–98 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Levi, A., Müller, W. & Erez, J. Intrashell variability of trace elements in benthic foraminifera grown under high CO2 levels. Front. Earth Sci. 7, 247 (2019).ADS 
    Article 

    Google Scholar 
    Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).CAS 
    Article 

    Google Scholar 
    Fujita, K. et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8, 2089–2098 (2011).ADS 
    Article 

    Google Scholar 
    Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).ADS 
    Article 

    Google Scholar 
    Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).Article 

    Google Scholar 
    McIntyre-Wressnig, A., Bernhard, J. M., McCorkle, D. C. & Hallock, P. Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Mar. Ecol. Prog. Ser. 472, 45–60 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).ADS 
    Article 

    Google Scholar 
    Knorr, P. O., Robbins, L. L., Harries, P. J., Hallock, P. & Wynn, J. Response of the Miliolid Archaias angulatus to simulated ocean acidification. J. Foraminifer. Res. 45, 109–127 (2015).Article 

    Google Scholar 
    Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B Biol. Sci. 282, 20142782 (2015).Article 

    Google Scholar 
    Reymond, C., Lloyd, A., Kline, D., Dove, S. & Pandolfi, J. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 
    Article 

    Google Scholar 
    Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R. & Ralph, P. J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinutok, S., Hill, R., Kühl, M., Doblin, M. A. & Ralph, P. J. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).CAS 
    Article 

    Google Scholar 
    Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).ADS 
    Article 

    Google Scholar 
    Engel, B., Hallock, P., Price, R. & Pichler, T. Shell dissolution in larger benthic foraminifers exposed to pH and temperature extremes: Results from an in situ experiment. J. Foraminifer. Res. 45, 190–203 (2015).Article 

    Google Scholar 
    Marques, J. A., de Barros Marangoni, L. F. & Bianchini, A. Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa. Coral Reefs 36, 489–501 (2017).ADS 
    Article 

    Google Scholar 
    Uthicke, S. & Fabricius, K. E. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Glob. Change Biol. 18, 2781–2791 (2012).ADS 
    Article 

    Google Scholar 
    Uthicke, S., Momigliano, P. & Fabricius, K. E. High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Pettit, L. R., Smart, C. W., Hart, M. B., Milazzo, M. & Hall-Spencer, J. M. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Ecol. Evol. 5, 1784–1793 (2015).Article 

    Google Scholar 
    Martinez, A., Hernández-Terrones, L., Rebolledo-Vieyra, M. & Paytan, A. Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages. Biogeosciences 15, 6819–6832 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Pettit, L. R. et al. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Mar. Pollut. Bull. 73, 452–462 (2013).CAS 
    Article 

    Google Scholar 
    Charrieau, L. M. et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region. Mar. Micropaleontol. 139, 42–56 (2018).ADS 
    Article 

    Google Scholar 
    Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology https://doi.org/10.1111/sed.12858 (2021).Article 

    Google Scholar 
    Le Cadre, V., Debenay, J.-P. & Lesourd, M. Low pH effect on Ammonia beccarii test deformation: Implications for using test deformations as a pollution indicator. J. Foraminifer. Res. 33, 1–9 (2003).Article 

    Google Scholar 
    Kurtarkar, S. R., Nigam, R., Saraswat, R. & Linshy, V. N. Regeneration and abnormality in benthic foraminifer Rosalina leei: Implications in reconstructing past salinity changes. Riv. Ital. Paleontol. E Stratigr. 117(1), 189–196 (2011).
    Google Scholar 
    Haynert, K., Schönfeld, J., Polovodova-Asteman, I. & Thomsen, J. The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic Sea. Biogeosciences 9, 4421–4440 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Lee, J. J. ‘Living Sands’—Larger foraminifera and their endosymbiotic algae. Symbiosis 25, 71–100 (1997).CAS 

    Google Scholar 
    Parker, J. Ultrastructure of the test wall in modern porcelaneous foraminifera: Implications for the classification of the Miliolida. J. Foraminifer. Res. 47, 136–174 (2017).ADS 
    Article 

    Google Scholar 
    Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev. Mineral. Geochem. 54, 115–149 (2003).CAS 
    Article 

    Google Scholar 
    Dissard, D., Nehrke, G., Reichart, G. J. & Bijma, J. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7, 81–93 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McIntyre-Wressnig, A., Bernhard, J. M., Wit, J. C. & Mccorkle, D. C. Ocean acidification not likely to affect the survival and fitness of two temperate benthic foraminiferal species: Results from culture experiments. J. Foraminifer. Res. 44, 341–351 (2014).Article 

    Google Scholar 
    Charrieau, L. M. et al. Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity. Mar. Environ. Res. 138, 36–45 (2018).CAS 
    Article 

    Google Scholar 
    Saraswat, R. et al. Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment. Estuar. Coast. Shelf Sci. 153, 96–107 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Buzas-Stephens, P. & Buzas, M. A. Population dynamics and dissolution of foraminifera in Nueces Bay, Texas. J. Foraminifer. Res. 35, 248–258 (2005).Article 

    Google Scholar 
    Cesbron, F. et al. Vertical distribution and respiration rates of benthic foraminifera: Contribution to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows. Estuar. Coast. Shelf Sci. 179, 23–38 (2016).CAS 
    Article 

    Google Scholar 
    Lee, J. J. et al. Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera. Mar. Biol. 109, 417–425 (1991).Article 

    Google Scholar 
    Yanko, V., Arnold, A. J. & Parker, W. C. Effects of marine pollution on benthic Foraminifera. In Modern Foraminifera 217–235 (Springer Netherlands, 1999). https://doi.org/10.1007/0-306-48104-9_13.Polovodova Asteman, I. & Schönfeld, J. Foraminiferal test abnormalities in the western Baltic Sea. J. Foraminifer. Res. 38, 318–336 (2008).Article 

    Google Scholar 
    Boltovskoy, E. & Wright, R. The test. In Recent Foraminifera (eds. Boltovskoy, E. & Wright, R.) 51–93 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-017-2860-7_3.Kaczmarek, K. et al. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry. Biogeosciences 12, 1753–1763 (2015).ADS 
    Article 

    Google Scholar 
    Allen, K. et al. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet. Sci. Lett. 309, 291–301 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Allen, K., Hönisch, B., Eggins, S. & Rosenthal, Y. Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth Planet. Sci. Lett. s351–352, 270–280 (2012).ADS 
    Article 

    Google Scholar 
    Howes, E. L. et al. Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa. Biogeosciences 14, 415–430 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lea, D. W. Trace elements in foraminiferal calcite. In Modern Foraminifera 259–277 (Springer Netherlands, 2003).Quigg, A. Micronutrients. In The Physiology of Microalgae (eds. Borowitzka, M. A., Beardall, J. & Raven, J. A.) 211–231 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24945-2_10.Jennings, D. Culturing Benthic Foraminifera to Understand the Effects of Changing Seawater Chemistry and Temperature on Foraminiferal Shell Chemistry. (2015).Van Dijk, I., De Nooijer, L. J., Barras, C. & Reichart, G.-J. Mn Incorporation in large benthic foraminifera: Differences between species and the impact of pCO2. Front. Earth Sci. https://doi.org/10.3389/feart.2020.567701 (2020).Article 

    Google Scholar 
    Raitzsch, M., Dueñas-Bohórquez, A., Reichart, G.-J., de Nooijer, L. J. & Bickert, T. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: Impact of calcium concentration and associated calcite saturation state. Biogeosciences 7, 869–881 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Holzmann, M., Hohenegger, J., Hallock, P., Piller, W. E. & Pawlowski, J. Molecular phylogeny of large miliolid foraminifera (Soritacea Ehrenberg 1839). Mar. Micropaleontol. 43, 57–74 (2001).ADS 
    Article 

    Google Scholar 
    Hottinger, L., Halicz, E. & Reiss, Z. Recent Foraminiferida from the Gulf of Aqaba, Red Sea. vol. 33 (Slovenska Akademija Znanosti in Umetnosti, Dela Opera, Classis IV: Historia Naturalis, 1993).Langer, M., Makled, W., Pietsch, S. & Weinmann, A. Asynchronous calcification in juvenile megalospheres: An ontogenetic window into the life cycle and polymorphism of Peneroplis. J. Foraminifer. Res. 39, 8–14 (2009).Article 

    Google Scholar 
    Dissard, D., Nehrke, G., Reichart, G.-J. & Bijma, J. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments. Geochim. Chosmocimica Acta 74, 928–940 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean. (Springer, 2017).Culberson, C. H., Pytkowicz, R. M. & Hawley, J. E. Seawater alkalinity determination by the pH method. J. Mar. Res. 28, 15–21 (1970).CAS 

    Google Scholar 
    Dickson, A. G. & Goyet, C. DOE. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2. (eds., ORNL/CDIAC-74., 1994).Suga, H., Sakai, S., Toyofuku, T. & Ohkouchi, N. A simplified method for determination of total alkalinity in seawater based on the small sample one-point titration method. JAMSTEC Rep. Res. Dev. 17, 23–33 (2013).Article 

    Google Scholar 
    Robbins, L. L., Hansen, M. E., Kleypas, J. A. & Meylan, S. C. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone): U.S. Geological Survey Open-File Report 2010–1280. 17 (2010).Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).CAS 
    Article 

    Google Scholar 
    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).ADS 
    Article 

    Google Scholar 
    Orr, J. C., Epitalon, J.-M. & Gattuso, J.-P. Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences 12, 1483–1510 (2015).ADS 
    Article 

    Google Scholar 
    Fontanier, C. et al. Living (stained) deep-sea foraminifera from the Sea of Marmara: A preliminary study. Deep Sea Res. Part II Top. Stud. Oceanogr. 153, 61 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Gaffey, S. & Bronnimann, C. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).ADS 
    Article 

    Google Scholar 
    Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Local neural-network-weighted models for occurrence and number of down wood in natural forest ecosystem

    Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).Article 

    Google Scholar 
    Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research (eds MacFadyen, A. & Ford, E. D.) 133–302 (Academic Press, 1986).Chapter 

    Google Scholar 
    Harmon, M. E. & Bell, D. M. Mortality in forested ecosystems: suggested conceptual advances. Forests 11, 572 (2020).Article 

    Google Scholar 
    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the Western United States. Science 323, 521–524 (2009).ADS 
    Article 

    Google Scholar 
    Kinnucan, H. W. Timber price dynamics after a natural disaster: Hurricane Hugo revisited. J. For. Econ. 25, 115–129 (2016).
    Google Scholar 
    Marsinko, A. P., Straka, T. J. & Haight, R. G. The effect of a large-scale natural disaster on regional timber supply. J. World For. Resour. Manag. 8, 75–85 (1997).
    Google Scholar 
    Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 33, 368–398 (2008).Article 

    Google Scholar 
    Shifley, S. R., Brookshire, B. L., Larsen, D. R. & Herbeck, L. A. Snags and down wood in missouri old-growth and mature second-growth forests. North. J. Appl. For. 14, 165–172 (1997).Article 

    Google Scholar 
    Bobiec, A. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. For. Ecol. Manag. 165, 125–140 (2002).Article 

    Google Scholar 
    Spetich, M. A., Shifley, S. R. & Parker, G. R. Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. For. Sci. 45, 302–313 (1999).
    Google Scholar 
    Rimle, A., Heiri, C. & Bugmann, H. Deadwood in Norway spruce dominated mountain forest reserves is characterized by large dimensions and advanced decomposition stages. For. Ecol. Manag. 404, 174–183 (2017).Article 

    Google Scholar 
    Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V. & Kushnevskaya, H. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. Eur. J. For. Res. 137, 707–718 (2018).Article 

    Google Scholar 
    Ranius, T. & Kindvall, O. Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol. Conserv. 119, 51–59 (2004).Article 

    Google Scholar 
    Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118, 281–299 (2004).Article 

    Google Scholar 
    Svensson, M. et al. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20, 166–174 (2016).Article 

    Google Scholar 
    Bahuguna, D., Mitchell, S. J. & Nishio, G. R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on Vancouver Island. Eur. J. For. Res. 131, 249–260 (2012).Article 

    Google Scholar 
    Fortin, M. & DeBlois, J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Quebec Canada. For. Sci. 53, 529–539 (2007).
    Google Scholar 
    Herrero, C., Pando, V. & Bravo, F. Modelling coarse woody debris in Pinus spp. Plantations. A case study in Northern Spain. Ann. For. Sci. 67, 708–708 (2010).Article 

    Google Scholar 
    Arekhi, S. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam province Iran. Afr. J. Biotechnol. 10, 16236–16249 (2011).
    Google Scholar 
    Kumar, R., Nandy, S., Agarwal, R. & Kushwaha, S. P. S. Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol. Indic. 45, 444–455 (2014).Article 

    Google Scholar 
    Podur, J. J., Martell, D. L. & Stanford, D. A compound poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21, 457–469 (2010).MathSciNet 

    Google Scholar 
    Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).Article 

    Google Scholar 
    Griffith, D. & Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of regional science 1477–1507 (eds Fischer, M. M. & Nijkamp, P.) (Springer, 2014). https://doi.org/10.1007/978-3-642-23430-9_72.Chapter 

    Google Scholar 
    Li, T. & Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 702, 134913 (2019).ADS 
    Article 

    Google Scholar 
    Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).Article 

    Google Scholar 
    Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 30, 1905–1927 (1998).Article 

    Google Scholar 
    Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess Plateau of China based on the geographically weighted regression model. Forests 12, 673 (2021).Article 

    Google Scholar 
    Monjarás-Vega, N. et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 718, 137313 (2020).ADS 
    Article 

    Google Scholar 
    Peng, X., Wu, H. & Ma, L. A study on geographically weighted spatial autoregression models with spatial autoregressive disturbances. Commun. Stat. Theor. Methods 49, 5235–5251 (2020).MathSciNet 
    Article 

    Google Scholar 
    Harris, P. & Brunsdon, C. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Comput. Geosci. 36, 54–70 (2010).ADS 
    Article 

    Google Scholar 
    Li, J., Jin, M. & Li, H. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model. Int. J. Environ. Res. Public Health 16, 454 (2019).Article 

    Google Scholar 
    Peng, C., Wang, M. & Chen, W. Spatial analysis of PAHs in soils along an urban-suburban-rural gradient: scale effect, distribution patterns, diffusion and influencing factors. Sci. Rep. 6, 37185 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wu, S. et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 35, 582–608 (2021).Article 

    Google Scholar 
    Wu, S. et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 709, 136097 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Du, Z., Wang, Z., Wu, S., Zhang, F. & Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 34, 1353–1377 (2020).Article 

    Google Scholar 
    Sun, Y., Ao, Z., Jia, W., Chen, Y. & Xu, K. A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in liangshui national nature reserve (China). IForest 14, 353–361 (2021).Article 

    Google Scholar 
    Wilkinson, L. Tests of significance in stepwise regression. Psychol. Bull. 86, 168–174 (1979).Article 

    Google Scholar 
    Henderson, D. A. & Denison, D. R. Stepwise regression in social and psychological research. Psychol. Rep. 64, 251–257 (1989).Article 

    Google Scholar 
    Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 159–170 (2007).Article 

    Google Scholar 
    Wu, W. & Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62 (2013).Article 

    Google Scholar 
    Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 405, 123–136 (2011).ADS 
    Article 

    Google Scholar 
    Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M. & Franco, Plata R. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 30, 576–591 (2010).Article 

    Google Scholar 
    Tutmez, B., Kaymak, U., Erhan Tercan, A. & Lloyd, C. D. Evaluating geo-environmental variables using a clustering based areal model. Comput. Geosci. 43, 34–41 (2012).ADS 
    Article 

    Google Scholar 
    Li, X., Wu, P., Guo, F.-T. & Hu, X. A geographically weighted regression approach to detect divergent changes in the vegetation activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119089 (2021).Article 

    Google Scholar 
    Que, X., Ma, C., Ma, X. & Chen, Q. Parallel computing for fast spatiotemporal weighted regression. Comput. Geosci. 150, 104723 (2021).Article 

    Google Scholar 
    Wu, L. et al. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted logistic regression model. Int. J. Environ. Res. Public Health 13, 1125 (2016).Article 

    Google Scholar 
    Liu, Y. et al. Geographical variations in maternal lifestyles during pregnancy associated with congenital heart defects among live births in Shaanxi province Northwestern China. Sci. Rep. 10, 12958 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Saefuddin, A., Saepudin, D. & Kusumaningrum, D. Geographically weighted poisson regression (GWPR) for analyzing the malnutrition data in java-Indonesia (European Regional Science Association (ERSA), 2013).
    Google Scholar 
    Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ketkar, N. Introduction to Keras. In Deep learning with python: a hands-on introduction (ed. Ketkar, N.) 97–111 (Apress, 2017). https://doi.org/10.1007/978-1-4842-2766-4_7.Chapter 

    Google Scholar 
    Tsomokos, D. I., Ashhab, S. & Nori, F. Fully connected network of superconducting qubits in a cavity. New J. Phys. 10, 113020 (2008).ADS 
    Article 

    Google Scholar 
    Hu, T. et al. Study on the estimation of forest volume based on multi-source data. Sensors 21, 7796 (2021).ADS 
    Article 

    Google Scholar 
    Chen, L., Ren, C., Zhang, B., Wang, Z. & Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9, 582 (2018).Article 

    Google Scholar 
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).MathSciNet 
    MATH 

    Google Scholar 
    Mastromichalakis, S. ALReLU: A different approach on Leaky ReLU activation function to improve neural networks performance. arXiv:2012.07564 [Cs] arXiv:2012.07564 (2021).Chen, C., Li, Y., Yan, C., Dai, H. & Liu, G. A robust algorithm of multiquadric method based on an improved huber loss function for interpolating remote-sensing-derived elevation data sets. Remote Sens. 7, 3347–3371 (2015).ADS 
    Article 

    Google Scholar 
    de Jong, P., Sprenger, C. & Veen, F. On extreme values of Moran’s I and Geary’s c ( spatial autocorrelation). Geogr. Anal. 16, 17–24 (1984).Article 

    Google Scholar 
    Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 11, 2401–2409 (2014).ADS 
    Article 

    Google Scholar 
    Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Moore, J. R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For. Ecol. Manag. 135, 63–71 (2000).Article 

    Google Scholar 
    Lanquaye-Opoku, N. & Mitchell, S. J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 216, 134–148 (2005).Article 

    Google Scholar 
    Li, X. et al. Response of species and stand types to snow/wind damage in a temperate secondary forest Northeast China. J. For. Res. 29, 395–404 (2018).CAS 
    Article 

    Google Scholar 
    Zhen, Z. et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 37, 114–126 (2013).Article 

    Google Scholar 
    Vozmishcheva, A. et al. Strong disturbance impact of tropical cyclone Lionrock (2016) on Korean pine-broadleaved forest in the Middle Sikhote-Alin Mountain range Russian Far East. Forests 10, 15 (2019).Article 

    Google Scholar 
    Bivand, R., Müller, W. G. & Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 53, 2859–2872 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Yuan, J. et al. Dynamics of coarse woody debris characteristics in the Qinling mountain forests in China. Forests 8, 403–403 (2017).MathSciNet 
    Article 

    Google Scholar 
    Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61, 246–253 (1997).ADS 
    Article 

    Google Scholar 
    Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 17, 446–459 (2002).ADS 
    Article 

    Google Scholar 
    Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).Article 

    Google Scholar 
    Odhiambo, B. O., Kenduiywo, B. K. & Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 114, 102129 (2020).Article 

    Google Scholar  More