More stories

  • in

    Responses of CO2 emissions and soil microbial community structures to organic amendment in two contrasting soils in Zambia

    Aune, J. B. & Lal, R. Agricultural productivity in the tropics and critical limits of properties of Oxisols, Ultisols, Alfisols. Trop. Agric. (Trinidad and Tobago) 74, 96–103 (1997).
    Google Scholar 
    Bauer, A. & Black, A. L. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58, 185–193 (1994).ADS 
    Article 

    Google Scholar 
    Hamamoto, T., Chirwa, M., Nyambe, I. & Uchida, Y. Small-scale variability in the soil microbial community structure in a semideveloped farm in Zambia. Appl. Environ. Soil Sci. 2018, 1–6 (2018).Article 

    Google Scholar 
    Mapanda, F., Wuta, M., Nyamangara, J. & Rees, R. M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343, 67–81 (2011).CAS 
    Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Swanepoel, C. M., van der Laan, M., Weepener, H. L., du Preez, C. C. & Annandale, J. G. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutr. Cycl. Agroecosyst. 104, 107–123 (2016).CAS 
    Article 

    Google Scholar 
    Zingore, S., Manyame, C., Nyamugafata, P. & Giller, K. E. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. Eur. J. Soil Sci. 56, 727–736 (2005).CAS 

    Google Scholar 
    Sakala, W. D., Cadisch, G. & Giller, K. E. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol. Biochem. 32, 679–688 (2000).CAS 
    Article 

    Google Scholar 
    Lal, R. & Stewart, B. A. (eds) Food security and soil quality (CRC Press, 2010).
    Google Scholar 
    Aparna, K., Pasha, M. A., Rao, D. L. N. & Krishnaraj, P. U. Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 71, 268–277 (2014).Article 

    Google Scholar 
    Dhull, S., Goyal, S., Kapoor, K. & Mundra, M. Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch. Agron. Soil Sci. 50, 641–647 (2004).CAS 
    Article 

    Google Scholar 
    Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326, 511–522 (2010).CAS 
    Article 

    Google Scholar 
    Janssen, B. H. Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. I. New soil organic matter and residual effect of P from fertilizers and farmyard manure in Kabete, Kenya. Plant Soil 339, 3–16 (2011).CAS 
    Article 

    Google Scholar 
    Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326, 31 (2010).CAS 
    Article 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, 6455 (2019).Article 

    Google Scholar 
    Grunwald, D., Kaiser, M. & Ludwig, B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Tillage Res. 164, 11–17 (2016).Article 

    Google Scholar 
    Schleuss, P.-M. et al. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol. Biochem. 135, 294–303 (2019).CAS 
    Article 

    Google Scholar 
    de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, (2016).Fan, F. et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 70, 12–21 (2014).CAS 
    Article 

    Google Scholar 
    Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).CAS 
    Article 

    Google Scholar 
    Kihara, J. et al. Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl. Soil Ecol. 58, 12–20 (2012).Article 

    Google Scholar 
    Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol. Biochem. 46, 1–9 (2012).CAS 
    Article 

    Google Scholar 
    Ouédraogo, E., Brussaard, L. & Stroosnijder, L. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa. Biol Fertil Soils 44, 343–351 (2007).Article 

    Google Scholar 
    Ouédraogo, E., Mando, A. & Brussaard, L. Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Appl. Soil Ecol. 27, 259–267 (2004).Article 

    Google Scholar 
    Powlson, D. S., Hirsch, P. R. & Brookes, P. C. The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 61, 41–51 (2001).Article 

    Google Scholar 
    Gentile, R., Vanlauwe, B., Kavoo, A., Chivenge, P. & Six, J. Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutr. Cycl. Agroecosyst. 88, 121–131 (2010).CAS 
    Article 

    Google Scholar 
    Amato, M. & Ladd, J. N. Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 24, 455–464 (1992).CAS 
    Article 

    Google Scholar 
    Spain, A. V. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Soil Res. 28, 825–839 (1990).CAS 
    Article 

    Google Scholar 
    Schimel, D. S., Coleman, D. C. & Horton, K. A. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214 (1985).ADS 
    Article 

    Google Scholar 
    Schimel, D., Stillwell, M. A. & Woodmansee, R. G. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66, 276–282 (1985).CAS 
    Article 

    Google Scholar 
    Macharia, J. M. et al. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosci. 125, e2019JG005427 (2020).Ortiz-Gonzalo, D. et al. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Sci. Total Environ. 626, 328–339 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De la Cruz-Barrón, M. et al. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from zimbabwe with contrasting management practices. Microb. Ecol. 73, 135–152 (2017).Article 

    Google Scholar 
    Wood, S. A. et al. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J. Appl. Ecol. 52, 744–752 (2015).CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Wagg, C., Dudenhöffer, J.-H., Widmer, F. & van der Heijden, M. G. A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 32, 1280–1292 (2018).Article 

    Google Scholar 
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003).Article 

    Google Scholar 
    Liu, B. et al. Microbial metabolic efficiency and community stability in high and low fertility soils following wheat residue addition. Appl. Soil Ecol. 159, 103848 (2021).Article 

    Google Scholar 
    Hamamoto, T., Uchida, Y., von Rein, I. & Mukumbuta, I. Effects of short-term freezing on nitrous oxide emissions and enzyme activities in a grazed pasture soil after bovine-urine application. Sci. Total Environ. 740, 140006 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).ADS 
    Article 

    Google Scholar 
    Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).
    Google Scholar 
    Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).Article 

    Google Scholar 
    Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest Soils. Appl. Environ. Microbiol. 78, 7398–7406 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).ADS 
    Article 

    Google Scholar 
    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).CAS 
    Article 

    Google Scholar 
    Moreno-Espíndola, I. P. et al. The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Front. Microbiol. 9, 2737 (2018).Article 

    Google Scholar 
    Steven, B. et al. Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances. Front. Microbiol. 12, (2021).Elliott, E. T., Anderson, R. V., Coleman, D. C. & Cole, C. V. Habitable pore space and microbial trophic interactions. Oikos 35, 327–335 (1980).Article 

    Google Scholar 
    Bushby, H. V. A. & Marshall, K. C. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Microbiology 99, 19–27 (1977).
    Google Scholar 
    Bitton, G., Henis, Y. & Lahav, N. Influence of clay minerals, humic acid and bacterial capsular polysaccharide on the survival of Klebsiella aerogenes exposed to drying and heating in soils. Plant Soil 45, 65–74 (1976).Article 

    Google Scholar 
    Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 1–11 (2021).Article 

    Google Scholar 
    Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1–13 (2021).Article 

    Google Scholar 
    Jones, A. et al. (eds) Soil Atlas of Africa (European Commission. Publication Office of the European Union, 2013).
    Google Scholar 
    Mehlich, A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).CAS 
    Article 

    Google Scholar 
    Hadas, A., Kautsky, L., Goek, M. & Erman Kara, E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 36, 255–266 (2004).CAS 
    Article 

    Google Scholar 
    Sagova-Mareckova, M. et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74, 2902–2907 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Schroeder, J., Kammann, L., Helfrich, M., Tebbe, C. C. & Poeplau, C. Impact of common sample pre-treatments on key soil microbial properties. Soil Biol. Biochem. 160, 108321 (2021).CAS 
    Article 

    Google Scholar 
    Wang, F. et al. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 157, 108238 (2021).CAS 
    Article 

    Google Scholar 
    Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).CAS 
    Article 

    Google Scholar 
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2016).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Mickan, B. S. et al. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol. Fertil. Soils 55, 53–66 (2019).CAS 
    Article 

    Google Scholar 
    Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).Article 

    Google Scholar  More

  • in

    Local neural-network-weighted models for occurrence and number of down wood in natural forest ecosystem

    Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).Article 

    Google Scholar 
    Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research (eds MacFadyen, A. & Ford, E. D.) 133–302 (Academic Press, 1986).Chapter 

    Google Scholar 
    Harmon, M. E. & Bell, D. M. Mortality in forested ecosystems: suggested conceptual advances. Forests 11, 572 (2020).Article 

    Google Scholar 
    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the Western United States. Science 323, 521–524 (2009).ADS 
    Article 

    Google Scholar 
    Kinnucan, H. W. Timber price dynamics after a natural disaster: Hurricane Hugo revisited. J. For. Econ. 25, 115–129 (2016).
    Google Scholar 
    Marsinko, A. P., Straka, T. J. & Haight, R. G. The effect of a large-scale natural disaster on regional timber supply. J. World For. Resour. Manag. 8, 75–85 (1997).
    Google Scholar 
    Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 33, 368–398 (2008).Article 

    Google Scholar 
    Shifley, S. R., Brookshire, B. L., Larsen, D. R. & Herbeck, L. A. Snags and down wood in missouri old-growth and mature second-growth forests. North. J. Appl. For. 14, 165–172 (1997).Article 

    Google Scholar 
    Bobiec, A. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. For. Ecol. Manag. 165, 125–140 (2002).Article 

    Google Scholar 
    Spetich, M. A., Shifley, S. R. & Parker, G. R. Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. For. Sci. 45, 302–313 (1999).
    Google Scholar 
    Rimle, A., Heiri, C. & Bugmann, H. Deadwood in Norway spruce dominated mountain forest reserves is characterized by large dimensions and advanced decomposition stages. For. Ecol. Manag. 404, 174–183 (2017).Article 

    Google Scholar 
    Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V. & Kushnevskaya, H. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. Eur. J. For. Res. 137, 707–718 (2018).Article 

    Google Scholar 
    Ranius, T. & Kindvall, O. Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol. Conserv. 119, 51–59 (2004).Article 

    Google Scholar 
    Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118, 281–299 (2004).Article 

    Google Scholar 
    Svensson, M. et al. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20, 166–174 (2016).Article 

    Google Scholar 
    Bahuguna, D., Mitchell, S. J. & Nishio, G. R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on Vancouver Island. Eur. J. For. Res. 131, 249–260 (2012).Article 

    Google Scholar 
    Fortin, M. & DeBlois, J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Quebec Canada. For. Sci. 53, 529–539 (2007).
    Google Scholar 
    Herrero, C., Pando, V. & Bravo, F. Modelling coarse woody debris in Pinus spp. Plantations. A case study in Northern Spain. Ann. For. Sci. 67, 708–708 (2010).Article 

    Google Scholar 
    Arekhi, S. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam province Iran. Afr. J. Biotechnol. 10, 16236–16249 (2011).
    Google Scholar 
    Kumar, R., Nandy, S., Agarwal, R. & Kushwaha, S. P. S. Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol. Indic. 45, 444–455 (2014).Article 

    Google Scholar 
    Podur, J. J., Martell, D. L. & Stanford, D. A compound poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21, 457–469 (2010).MathSciNet 

    Google Scholar 
    Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).Article 

    Google Scholar 
    Griffith, D. & Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of regional science 1477–1507 (eds Fischer, M. M. & Nijkamp, P.) (Springer, 2014). https://doi.org/10.1007/978-3-642-23430-9_72.Chapter 

    Google Scholar 
    Li, T. & Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 702, 134913 (2019).ADS 
    Article 

    Google Scholar 
    Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).Article 

    Google Scholar 
    Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 30, 1905–1927 (1998).Article 

    Google Scholar 
    Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess Plateau of China based on the geographically weighted regression model. Forests 12, 673 (2021).Article 

    Google Scholar 
    Monjarás-Vega, N. et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 718, 137313 (2020).ADS 
    Article 

    Google Scholar 
    Peng, X., Wu, H. & Ma, L. A study on geographically weighted spatial autoregression models with spatial autoregressive disturbances. Commun. Stat. Theor. Methods 49, 5235–5251 (2020).MathSciNet 
    Article 

    Google Scholar 
    Harris, P. & Brunsdon, C. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Comput. Geosci. 36, 54–70 (2010).ADS 
    Article 

    Google Scholar 
    Li, J., Jin, M. & Li, H. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model. Int. J. Environ. Res. Public Health 16, 454 (2019).Article 

    Google Scholar 
    Peng, C., Wang, M. & Chen, W. Spatial analysis of PAHs in soils along an urban-suburban-rural gradient: scale effect, distribution patterns, diffusion and influencing factors. Sci. Rep. 6, 37185 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wu, S. et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 35, 582–608 (2021).Article 

    Google Scholar 
    Wu, S. et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 709, 136097 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Du, Z., Wang, Z., Wu, S., Zhang, F. & Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 34, 1353–1377 (2020).Article 

    Google Scholar 
    Sun, Y., Ao, Z., Jia, W., Chen, Y. & Xu, K. A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in liangshui national nature reserve (China). IForest 14, 353–361 (2021).Article 

    Google Scholar 
    Wilkinson, L. Tests of significance in stepwise regression. Psychol. Bull. 86, 168–174 (1979).Article 

    Google Scholar 
    Henderson, D. A. & Denison, D. R. Stepwise regression in social and psychological research. Psychol. Rep. 64, 251–257 (1989).Article 

    Google Scholar 
    Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 159–170 (2007).Article 

    Google Scholar 
    Wu, W. & Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62 (2013).Article 

    Google Scholar 
    Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 405, 123–136 (2011).ADS 
    Article 

    Google Scholar 
    Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M. & Franco, Plata R. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 30, 576–591 (2010).Article 

    Google Scholar 
    Tutmez, B., Kaymak, U., Erhan Tercan, A. & Lloyd, C. D. Evaluating geo-environmental variables using a clustering based areal model. Comput. Geosci. 43, 34–41 (2012).ADS 
    Article 

    Google Scholar 
    Li, X., Wu, P., Guo, F.-T. & Hu, X. A geographically weighted regression approach to detect divergent changes in the vegetation activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119089 (2021).Article 

    Google Scholar 
    Que, X., Ma, C., Ma, X. & Chen, Q. Parallel computing for fast spatiotemporal weighted regression. Comput. Geosci. 150, 104723 (2021).Article 

    Google Scholar 
    Wu, L. et al. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted logistic regression model. Int. J. Environ. Res. Public Health 13, 1125 (2016).Article 

    Google Scholar 
    Liu, Y. et al. Geographical variations in maternal lifestyles during pregnancy associated with congenital heart defects among live births in Shaanxi province Northwestern China. Sci. Rep. 10, 12958 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Saefuddin, A., Saepudin, D. & Kusumaningrum, D. Geographically weighted poisson regression (GWPR) for analyzing the malnutrition data in java-Indonesia (European Regional Science Association (ERSA), 2013).
    Google Scholar 
    Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ketkar, N. Introduction to Keras. In Deep learning with python: a hands-on introduction (ed. Ketkar, N.) 97–111 (Apress, 2017). https://doi.org/10.1007/978-1-4842-2766-4_7.Chapter 

    Google Scholar 
    Tsomokos, D. I., Ashhab, S. & Nori, F. Fully connected network of superconducting qubits in a cavity. New J. Phys. 10, 113020 (2008).ADS 
    Article 

    Google Scholar 
    Hu, T. et al. Study on the estimation of forest volume based on multi-source data. Sensors 21, 7796 (2021).ADS 
    Article 

    Google Scholar 
    Chen, L., Ren, C., Zhang, B., Wang, Z. & Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9, 582 (2018).Article 

    Google Scholar 
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).MathSciNet 
    MATH 

    Google Scholar 
    Mastromichalakis, S. ALReLU: A different approach on Leaky ReLU activation function to improve neural networks performance. arXiv:2012.07564 [Cs] arXiv:2012.07564 (2021).Chen, C., Li, Y., Yan, C., Dai, H. & Liu, G. A robust algorithm of multiquadric method based on an improved huber loss function for interpolating remote-sensing-derived elevation data sets. Remote Sens. 7, 3347–3371 (2015).ADS 
    Article 

    Google Scholar 
    de Jong, P., Sprenger, C. & Veen, F. On extreme values of Moran’s I and Geary’s c ( spatial autocorrelation). Geogr. Anal. 16, 17–24 (1984).Article 

    Google Scholar 
    Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 11, 2401–2409 (2014).ADS 
    Article 

    Google Scholar 
    Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Moore, J. R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For. Ecol. Manag. 135, 63–71 (2000).Article 

    Google Scholar 
    Lanquaye-Opoku, N. & Mitchell, S. J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 216, 134–148 (2005).Article 

    Google Scholar 
    Li, X. et al. Response of species and stand types to snow/wind damage in a temperate secondary forest Northeast China. J. For. Res. 29, 395–404 (2018).CAS 
    Article 

    Google Scholar 
    Zhen, Z. et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 37, 114–126 (2013).Article 

    Google Scholar 
    Vozmishcheva, A. et al. Strong disturbance impact of tropical cyclone Lionrock (2016) on Korean pine-broadleaved forest in the Middle Sikhote-Alin Mountain range Russian Far East. Forests 10, 15 (2019).Article 

    Google Scholar 
    Bivand, R., Müller, W. G. & Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 53, 2859–2872 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Yuan, J. et al. Dynamics of coarse woody debris characteristics in the Qinling mountain forests in China. Forests 8, 403–403 (2017).MathSciNet 
    Article 

    Google Scholar 
    Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61, 246–253 (1997).ADS 
    Article 

    Google Scholar 
    Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 17, 446–459 (2002).ADS 
    Article 

    Google Scholar 
    Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).Article 

    Google Scholar 
    Odhiambo, B. O., Kenduiywo, B. K. & Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 114, 102129 (2020).Article 

    Google Scholar  More

  • in

    Thicker eggshells are not predicted by host egg ejection behaviour in four species of Australian cuckoo

    Rothstein, S. I. A model system for coevolution: Avian brood parasitism. Annu. Rev. Ecol. Syst. 21, 481–508 (1990).Article 

    Google Scholar 
    Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Brooke, M. de L. & Davies, N. B. Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335, 630–632 (1988).ADS 
    Article 

    Google Scholar 
    Medina, I. & Langmore, N. E. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts. Biol. Let. 11, 20150296 (2015).Article 

    Google Scholar 
    Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Grim, T. Experimental evidence for chick discrimination without recognition in a brood parasite host. Proc. R. Soc. B: Biol. Sci. 274, 373–381 (2007).Article 

    Google Scholar 
    Sato, N. J., Tokue, K., Noske, R. A., Mikami, O. K. & Ueda, K. Evicting cuckoo nestlings from the nest: A new anti-parasitism behaviour. Biol. Let. 6, 67–69. https://doi.org/10.1098/rsbl.2009.0540 (2010).Article 

    Google Scholar 
    Davies, N. & Brooke, M. de L. Cuckoos versus reed warblers: Adaptations and counteradaptations. Anim. Behav. 36, 262–284 (1988).Article 

    Google Scholar 
    Langmore, N. E. et al. Visual mimicry of host nestlings by cuckoos. Proc. R. Soc. B: Biol. Sci. 278, 2455–2463 (2011).Article 

    Google Scholar 
    Noh, H.-J., Gloag, R. & Langmore, N. E. True recognition of nestlings by hosts selects for mimetic cuckoo chicks. Proc. R. Soc. B: Bio. Sci. 285, 20180726 (2018).Article 

    Google Scholar 
    Spottiswoode, C. N. & Stevens, M. Host-parasite arms races and rapid changes in bird egg appearance. Am. Nat. 179, 633–648. https://doi.org/10.1086/665031 (2012).Article 

    Google Scholar 
    Taylor, C. J. & Langmore, N. E. How do brood-parasitic cuckoos reconcile conflicting environmental and host selection pressures on egg size investment?. Anim. Behav. 168, 89–96. https://doi.org/10.1016/j.anbehav.2020.08.003 (2020).Article 

    Google Scholar 
    Langmore, N. E., Maurer, G., Adcock, G. J. & Kilner, R. M. Socially acquired host-specific mimicry and the evolution of host races in Horsfield’s bronze-cuckoo Chalcites basalis. Evolution 62, 1689–1699 (2008).Article 

    Google Scholar 
    Noh, H. J., Jacomb, F., Gloag, R. & Langmore, N. E. Frontline defences against cuckoo parasitism in the large-billed gerygones. Anim. Behav. 174, 51–61. https://doi.org/10.1016/j.anbehav.2021.01.021 (2021).Article 

    Google Scholar 
    Langmore, N. E. & Kilner, R. M. Why do Horsfield’s bronze-cuckoo Chalcites basalis eggs mimic those of their hosts?. Behav. Ecol. Sociobiol. 63, 1127–1131. https://doi.org/10.1007/s00265-009-0759-9 (2009).Article 

    Google Scholar 
    Spottiswoode, C. N. & Stevens, M. How to evade a coevolving brood parasite: Egg discrimination versus egg variability as host defences. Proc. R. Soc. B: Biol. Sci. 278, 3566–3573. https://doi.org/10.1098/rspb.2011.0401 (2011).Article 

    Google Scholar 
    Yang, C., Wang, L., Liang, W. & Møller, A. P. Egg recognition as antiparasitism defence in hosts does not select for laying of matching eggs in parasitic cuckoos. Anim. Behav. 122, 177–181. https://doi.org/10.1016/j.anbehav.2016.10.018 (2016).Article 

    Google Scholar 
    Stevens, M. Bird brood parasitism. Curr. Biol. 23, R909–R913. https://doi.org/10.1016/j.cub.2013.08.025 (2013).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Feeney, W. E., Troscianko, J., Langmore, N. E. & Spottiswoode, C. N. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host. Proc. R. Soc. B: Biol. Sci. 282, 20150795 (2015).Article 

    Google Scholar 
    Davies, N. B. & Welbergen, J. A. Cuckoo–hawk mimicry? An experimental test. Proc. R. Soc. B: Biol. Sci. 275, 1817–1822 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific?. Oikos 57, 301–309. https://doi.org/10.2307/3565958 (1990).Article 

    Google Scholar 
    Langmore, N. E., Stevens, M., Maurer, G. & Kilner, R. M. Are dark cuckoo eggs cryptic in host nests?. Anim. Behav. 78, 461–468 (2009).Article 

    Google Scholar 
    Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen & Co., Ltd., 1968).
    Google Scholar 
    Spaw, C. D. & Rohwer, S. A comparative study of eggshell thickness in cowbirds and other passerines. The Condor 89, 307–318. https://doi.org/10.2307/1368483 (1987).Article 

    Google Scholar 
    Igic, B. et al. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species. J. R. Soc. Interface 8, 1654–1664. https://doi.org/10.1098/rsif.2011.0207 (2011).Article 

    Google Scholar 
    Brooker, M. G. & Brooker, L. C. Eggshell strength in cuckoos and cowbirds. Ibis 133, 406–413. https://doi.org/10.1111/j.1474-919X.1991.tb04589.x (1991).Article 

    Google Scholar 
    Maurer, G. et al. First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29, 209–218 (2015).Article 

    Google Scholar 
    Amos, A. & Rahn, H. Pores in avian eggshells: Gas conductance, gas exchange and embryonic growth rate. Respir. Physiol. 61, 1–20 (1985).Article 

    Google Scholar 
    Ar, A., Rahn, H. & Paganelli, C. V. The avian egg: Mass and strength. Condor 81, 331–337 (1979).Article 

    Google Scholar 
    Rahn, H. & Ar, A. Gas-exchange of the avian egg: Time, structure, and function. Am. Zool. 20, 477–484 (1980).Article 

    Google Scholar 
    Swynnerton, C. Rejections by birds of eggs unlike their own: With remarks on some of the cuckoo problems. Ibis 60, 127–154 (1918).Article 

    Google Scholar 
    López, A. V., Fiorini, V. D., Ellison, K. & Peer, B. D. Thick eggshells of brood parasitic cowbirds protect their eggs and damage host eggs during laying. Behav. Ecol. 29, 965–973 (2018).Article 

    Google Scholar 
    Wyllie, I. The Cuckoo (Batsford, 1981).
    Google Scholar 
    Yang, C. et al. Keeping eggs warm: Thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Sci. Nat. 105, 10 (2018).Article 

    Google Scholar 
    Davies, N. B. Cuckoos Cowbirds and other Cheats (T & A D Poyser, 2000).
    Google Scholar 
    Spottiswoode, C. N. The evolution of host-specific variation in cuckoo eggshell strength. J. Evol. Biol. 23, 1792–1799. https://doi.org/10.1111/j.1420-9101.2010.02010.x (2010).CAS 
    Article 

    Google Scholar 
    Langmore, N. E. et al. The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behav. Ecol. 16, 686–692. https://doi.org/10.1093/beheco/ari041 (2005).Article 

    Google Scholar 
    Rohwer, S., Spaw, C. D. & Røskaft, E. Costs to northern orioles of puncture-ejecting parasitic cowbird eggs from their nests. The Auk 106, 734–738 (1989).
    Google Scholar 
    Brooker, M. G., Brooker, L. C. & Rowley, I. Egg deposition by the bronze-cuckoos Chrysococcyx basalis and Chrysococcyx lucidus. Emu 88, 107–109. https://doi.org/10.1071/Mu9880107 (1988).Article 

    Google Scholar 
    McClelland, S. C. et al. Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Proc. R. Soc B-Biol. Sci. https://doi.org/10.1098/rspb.2021.1137 (2021).Article 

    Google Scholar 
    Gosler, A. G. & Wilkin, T. A. Eggshell speckling in a passerine bird reveals chronic long-term decline in soil calcium. Bird Study 64, 195–204. https://doi.org/10.1080/00063657.2017.1314448 (2017).Article 

    Google Scholar 
    Lundholm, C. E. Inhibition of prostaglandin synthesis in eggshell gland mucosa as a mechanism for P, P’-DDE-induced eggshell thinning in birds: A comparison of ducks and domestic-fowls. Comp. Biochem. Phys. C 106, 389–394. https://doi.org/10.1016/0742-8413(93)90151-A (1993).Article 

    Google Scholar 
    Bitman, J., Cecil, H. C. & Fries, G. F. DDT-Induced inhibition of avian shell gland carbonic anhydrase: A mechanism for thin eggshells. Science 168, 594–596. https://doi.org/10.1126/science.168.3931.594 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Ratcliffe, D. A. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol. 7, 67-+. https://doi.org/10.2307/2401613 (1970).Article 

    Google Scholar 
    Bouwman, H., Govender, D., Underhill, L. & Polder, A. Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. Chemosphere 126, 1–10. https://doi.org/10.1016/j.chemosphere.2014.12.071 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Bleu, J., Agostini, S., Angelier, F. & Biard, C. Experimental increase in temperature affects eggshell thickness, and not egg mass, eggshell spottiness or egg composition in the great tit (Parus major). Gen. Comp. Endocr. 275, 73–81. https://doi.org/10.1016/j.ygcen.2019.02.004 (2019).CAS 
    Article 

    Google Scholar 
    Picman, J. & Pribil, S. Is greater eggshell density an alternative mechanism by which parasitic cuckoos increase the strength of their eggs?. J. Ornithol. 138, 531–541. https://doi.org/10.1007/bf01651384 (1997).Article 

    Google Scholar 
    Lopez, A. V. et al. How to build a puncture- and breakage-resistant eggshell? Mechanical and structural analyses of avian brood parasites and their hosts. J. Exp. Biol. 224, jeb243016. https://doi.org/10.1242/jeb.243016 (2021).Article 

    Google Scholar 
    Soler, M., Rodriguez-Navarro, A. B., Perez-Contreras, T., Garcia-Ruiz, J. M. & Soler, J. J. Great spotted cuckoo eggshell microstructure characteristics can make eggs stronger. J. Avian Biol. 50, e02252. https://doi.org/10.1111/jav.02252 (2019).Article 

    Google Scholar 
    D’Alba, L. et al. Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. J. Morphol. 282, 1066–1079. https://doi.org/10.1002/jmor.21347 (2021).CAS 
    Article 

    Google Scholar 
    Legendre, L. J. & Clarke, J. A. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution 75, 1415–1430. https://doi.org/10.1111/evo.14245 (2021).Article 

    Google Scholar 
    Le Roy, N., Stapane, L., Gautron, J. & Hincke, M. T. Evolution of the avian eggshell biomineralization protein toolkit: New insights from multi-omics. Front. Genet. 12, 672433. https://doi.org/10.3389/fgene.2021.672433 (2021).CAS 
    Article 

    Google Scholar 
    Medina, I. & Langmore, N. E. Batten down the thatches: Front-line defences in an apparently defenceless cuckoo host. Anim. Behav. 112, 195–201. https://doi.org/10.1016/j.anbehav.2015.12.006 (2016).Article 

    Google Scholar 
    Starling, M., Heinsohn, R., Cockburn, A. & Langmore, N. E. Cryptic gentes revealed in pallid cuckoos Cuculus pallidus using reflectance spectrophotometry. Proc. R. Soc. Lond. B 273, 1929–1934 (2006).CAS 

    Google Scholar 
    Abernathy, V. E., Troscianko, J. & Langmore, N. E. Egg mimicry by the Pacific koel: Mimicry of one host facilitates exploitation of other hosts with similar egg types. J. Avian Biol. 48, 1414–1424. https://doi.org/10.1111/jav.01530 (2017).Article 

    Google Scholar 
    Green, R. E. An evaluation of three indices of eggshell thickness. Ibis 142, 676–679. https://doi.org/10.1111/j.1474-919X.2000.tb04468.x (2000).Article 

    Google Scholar 
    Green, R. E. Long-term decline in the thickness of eggshells of thrushes, Turdus spp., in Britain. Proc. R. Soc. London. Ser. B: Biol. Sci. 265, 679–684. https://doi.org/10.1098/rspb.1998.0347 (1998).Article 

    Google Scholar 
    Igic, B. et al. Comparison of micrometer-and scanning electron microscope-based measurements of avian eggshell thickness. J. Field Ornithol. 81, 402–410 (2010).Article 

    Google Scholar 
    Maurer, G., Portugal, S. J. & Cassey, P. A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis 154, 714–724 (2012).Article 

    Google Scholar 
    Becking, J. The ultrastructure of the avian eggshell. Ibis 117, 143–151 (1975).Article 

    Google Scholar 
    Birkhead, T. et al. New insights from old eggs–the shape and thickness of Great Auk Pinguinus impennis eggs. Ibis 162(4), 1345–1354 (2020).Article 

    Google Scholar 
    Riley, A., Sturrock, C., Mooney, S. & Luck, M. Quantification of eggshell microstructure using X-ray micro computed tomography. Br. Poult. Sci. 55, 311–320 (2014).CAS 
    Article 

    Google Scholar 
    Kibala, L., Rozempolska-Rucinska, I., Kasperek, K., Zieba, G. & Lukaszewicz, M. Ultrasonic eggshell thickness measurement for selection of layers. Poult. Sci. 94, 2360–2363. https://doi.org/10.3382/ps/pev254 (2015).Article 

    Google Scholar 
    Khaliduzzaman, A. et al. A nondestructive eggshell thickness measurement technique using terahertz waves. Sci. Rep. 10, 1–5 (2020).Article 

    Google Scholar 
    Santolo, G. M. A new nondestructive method for measuring eggshell thickness using a non-ferrous material thickness gauge. Wilson J. Ornithol. 130, 502–509. https://doi.org/10.1676/17-035.1 (2018).Article 

    Google Scholar 
    Marini, M. A. et al. The five million bird eggs in the world’s museum collections are an invaluable and underused resource. Auk 137, ukaa036. https://doi.org/10.1093/auk/ukaa036 (2020).Article 

    Google Scholar 
    Brooker, M. G. & Brooker, L. C. Cuckoo hosts in Australia. Aust. Zool. Rev. 2, 1–67 (1989).
    Google Scholar 
    Higgins, P. J. Vol. Volume 4: Parrots to Dollarbird (Oxford University Press, 1999).
    Google Scholar 
    Higgins, P. J. & Peter, J. M. Vol. 6: Pardalotes to Shrike-Thrushes (Oxford University Press, 2002).
    Google Scholar 
    Higgins, P. J., Peter, J. M. & Cowling, S. J. Vol. 4: Parrots to Dollarbird (Oxford University Press, 2006).
    Google Scholar 
    Higgins, P. J., Peter, J. M. & Steele, W. K. Vol. 5: Tyrant-flycatchers to Chats (Oxford University Press, 2001).
    Google Scholar 
    Landstrom, M., Heinsohn, R. & Langmore, N. E. Clutch variation and egg rejection in three hosts of the pallid cuckoo Cuculus pallidus. Behaviour 147, 19–36. https://doi.org/10.1163/000579509X12483520922043 (2010).Article 

    Google Scholar 
    Abernathy, V. E., Johnson, L. E. & Langmore, N. E. An experimental test of defenses against avian brood parasitism in a recent host. Front. Ecol. Evol. 9, 244. https://doi.org/10.3389/fevo.2021.651733 (2021).Article 

    Google Scholar 
    Landstrom, M. T., Heinsohn, R. & Langmore, N. E. Does clutch variability differ between populations of cuckoo hosts in relation to the rate of parasitism?. Anim. Behav. 81, 307–312 (2011).Article 

    Google Scholar 
    Peterson, S. H. et al. Avian eggshell thickness in relation to egg morphometrics, embryonic development, and mercury contamination. Ecol. Evol. 10, 8715–8740. https://doi.org/10.1002/ece3.6570 (2020).Article 

    Google Scholar 
    Attard, M., Medina, I., Langmore, N. E. & Sherratt, E. Egg shape mimicry in parasitic cuckoos. J. Evol. Biol. 30, 2079–2084 (2017).CAS 
    Article 

    Google Scholar 
    Birchard, G. F. & Deeming, D. C. Avian eggshell thickness: Scaling and maximum body mass in birds. J. Zool. 279, 95–101. https://doi.org/10.1111/j.1469-7998.2009.00596.x (2009).Article 

    Google Scholar 
    Orme, D. et al. The caper package: Comparative analysis of phylogenetics and evolution in R. R Packag. Vers. 5, 549–593 (2013).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing, (2013). More

  • in

    Habitat preferences, estimated abundance and behavior of tree hyrax (Dendrohyrax sp.) in fragmented montane forests of Taita Hills, Kenya

    Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Newmark, W. D. & McNeally, P. B. Impact of habitat fragmentation on the spatial structure of the Eastern Arc forests in East Africa: Implications for biodiversity conservation. Biodivers. Conserv. 27, 1387–1402 (2018).Article 

    Google Scholar 
    Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).Article 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 

    Google Scholar 
    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burgess, N. D. et al. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol. Conserv. 134, 209–231 (2007).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Oates, J. F. et al. A new species of tree hyrax (Procaviidae: Dendrohyrax) from West Africa and the significance of the Niger-Volta interfluvium in mammalian biogeography. Zool. J. Linn. Soc. 194, 527–552 (2022).Article 

    Google Scholar 
    Bloomer, P. Extant hyrax diversity is vastly underestimated. Afrotherian. Conserv. 7, 11–16 (2009).
    Google Scholar 
    Roberts, D., Topp-Jørgensen, E. & Moyer, D. C. Dendrohyrax validus Eastern Tree Hyrax. In Mammals of Africa Vol. I (eds Kingdon, J. et al.) 158–161 (Bloomsbury, 2013).
    Google Scholar 
    Hoeck, H. Some thoughts on the distribution of the tree hyraxes (genus Dendrohyrax) in northern Tanzania. Afrotherian Conserv. 13, 47–49 (2017).
    Google Scholar 
    Rosti, H., Pihlström, H., Bearder, S., Pellikka, P. & Rikkinen, J. Vocalization analyses of nocturnal arboreal mammals of the Taita Hills, Kenya. Diversity 12, 473 (2020).Article 

    Google Scholar 
    Roberts, D. Geographic variation in the loud calls of tree hyrax – Dendrohyrax validus (True 1890) In the Eastern Arc Mountains, East Africa: taxonomic and conservation implications. (MSc thesis, University of Reading, 2001).True, F. W. Description of two new species of mammals from Mt. Kilima-Njaro, East Africa. Proc. US Nat. Mus. 13, 227–229 (1890).Article 

    Google Scholar 
    True, F. W. An annotated catalogue of the mammals collected by Dr. W. L. Abbott in the Kilma-Njaro region, East Africa. Proc. U. S. Nat. Mus. 15, 445–480 (1892).Article 

    Google Scholar 
    Kundaeli, J. N. Distribution of tree hyrax (Dendrohyrax validus validus True) on Mt Kilimanjaro, Tanzania. Afr. J. Ecol. 14, 253–264 (1976).Article 

    Google Scholar 
    Gaylard, A. & Kerley, G. I. H. Diet of tree hyraxes Dendrohyrax arboreus (Hyracoidea: Procaviidae) in the Eastern Cape, South Africa. J. Mammal. 78, 213–221 (1997).Article 

    Google Scholar 
    Milner, J. Relationships between the forest dwelling people of south-west Mau and tree hyrax, Dendrohyrax arboreus. J. East Afr. Nat. Hist. 83, 17–29 (1994).Article 

    Google Scholar 
    Milner, J. M. & Harris, S. Habitat use and ranging behaviour of tree hyrax, Dendrohyrax arboreus, in the Virunga Volcanoes, Rwanda. Afr. J. Ecol. 37, 281–294 (1999).Article 

    Google Scholar 
    Gaylard, A. & Kerley, G. I. H. Habitat assessment for a rare, arboreal forest mammal, the tree hyrax (Dendrohyrax arboreus). Afr. J. Ecol. 39, 205–212 (2001).Article 

    Google Scholar 
    Djossa, B., Zachee, B. & Sinzin, B. Activity patterns and habitat use of the western tree hyrax (Dendrohyrax dorsalis), within forest patches and implications for conservation. Ecotropica 18, 65–72 (2012).
    Google Scholar 
    Opperman, E. J., Cherry, M. I. & Makunga, N. P. Community harvesting of trees used as dens and for food by the tree hyrax (Dendrohyrax arboreus) in the Pirie forest, South Africa. Koedoe 60, a1481 (2018).
    Cordeiro, N. J. et al. Notes on the ecology and status of some forest mammals in four Eastern Arc Mountains, Tanzania. J. East Afr. Nat. Hist. 94, 175–189 (2005).Article 

    Google Scholar 
    Koren, L. Vocalization as an indicator of individual quality in the rock hyrax. (PhD thesis, Tel-Aviv University, 2006).Koren, L., Mokady, O. & Geffen, E. Social status and cortisol levels in singing rock hyraxes. Horm. Behav. 54, 212–216 (2008).CAS 
    Article 

    Google Scholar 
    Koren, L. & Geffen, E. Complex call in male rock hyrax (Procavia capensis): A multi-information distributing channel. Behav. Ecol. Sociobiol. 63, 581–590 (2009).Article 

    Google Scholar 
    Lawes, M. J., Mealin, P. E. & Piper, S. E. Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented Afromontane forest in South Africa. Conserv. Biol. 14, 1088–1098 (2000).Article 

    Google Scholar 
    Topp-Jørgensen, J. E., Marshal, A. R., Brink, H. & Pedersen, U. B. Quantifying the response of tree hyraxes (Dendrohyrax validus) to human disturbance in the Udzungwa Mountains, Tanzania. Trop. Conserv. Sci. 1, 63–74 (2008).Article 

    Google Scholar 
    Hill, A. P. et al. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 9, 1199–1211 (2018).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).Article 

    Google Scholar 
    Pérez-Granados, C. & Traba, J. Estimating bird density using passive acoustic monitoring: A review of methods and suggestions for further research. Ibis 163, 765–783 (2021).Article 

    Google Scholar 
    Campos-Cerqueira, M. & Aide, T. M. Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods Ecol. Evol. 7, 1340–1348 (2016).Article 

    Google Scholar 
    McLean, K. A. et al. Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landsc. Ecol. 31, 1849–1862 (2016).Article 

    Google Scholar 
    Davies, A. B., Ancrenaz, M., Oram, F. & Asner, G. P. Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proc. Natl. Acad. Sci. USA 114, 8307–8312 (2017).CAS 
    Article 

    Google Scholar 
    Singh, M., Cheyne, S. M. & Ehlers Smith, D. A. How conspecific primates use their habitats: Surviving in an anthropogenically-disturbed forest in Central Kalimantan, Indonesia. Ecol. Indic. 87, 167–177 (2018).Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D. & Coomes, D. A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Aerts, R. et al. Woody plant communities of isolated Afromontane cloud forests in Taita Hills, Kenya. Plant Ecol. 212, 639–649 (2011).Article 

    Google Scholar 
    Lovett, J. C., Wasser, S. K., Cambridge University Press. Biogeography and Ecology of the Rain Forests of Eastern Africa (Cambridge University Press, 2008).
    Google Scholar 
    Pellikka, P. K. E., Lötjönen, M., Siljander, M. & Lens, L. Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 11, 221–232 (2009).ADS 
    Article 

    Google Scholar 
    Rovero, F. et al. Targeted vertebrate surveys enhance the faunal importance and improve explanatory models within the Eastern Arc Mountains of Kenya and Tanzania. Diversity Distrib. 20, 1438–1449 (2014).Article 

    Google Scholar 
    Rosti, H., Rikkinen, J., Pellikka, P., Bearder, S. & Mwamodenyi, J. M. Taita Mountain dwarf galago is extant in the Taita Hills of Kenya. Oryx 54, 152–153 (2020).Article 

    Google Scholar 
    Pihlström, H., Rosti, H., Lombo, B. & Pellikka, P. Domestic dog predation on white-tailed small-eared galago (Otolemur garnettii lasiotis) in the Taita Hills, Kenya. Afr. Primates 15, 31–38 (2021).
    Google Scholar 
    Etana, B. et al. Traditional shade coffee forest systems act as refuges for medium- and large-sized mammals as natural forest dwindles in Ethiopia. Biol. Conserv. 260, 109219 (2021).Article 

    Google Scholar 
    Hoeck, H., Rovero, F., Cordeiro, N., Butynski, T., Perkin, A. & Jones, T. Dendrohyrax validus. The IUCN Red List of Threatened Species (2015: e.T136599A21288090).Himberg, N. Traditionally protected forests’ role within transforming natural resource management regimes in Taita Hills, Kenya. (PhD thesis, University of Helsinki, 2011).Thijs, K. W., Roelen, I. & Musila, W. M. Field guide to the woody plants of Taita Hills, Kenya. J. East Afr. Nat. Hist. 102, 1–272 (2014).Article 

    Google Scholar 
    Yéboué, K. Y. et al. Genetic typing and in silico assignment of smoked and fresh bushmeat sold on markets and restaurants in west-central Côte d’Ivoire. Int. J. Genet. Mol. Biol. 13, 1–8 (2021).Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Seasonal behavioural patterns of free-living rock hyrax (Procavia capensis). J. Zool. 265, 311–326 (2005).Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 143, 42–49 (2006).Article 

    Google Scholar 
    Ilany, A., Barocas, A., Kam, M., Ilany, T. & Geffen, E. The energy cost of singing in wild rock hyrax males: Evidence for an index signal. Anim. Behav. 85, 995–1001 (2013).Article 

    Google Scholar 
    Demartsev, V. et al. Male hyraxes increase song complexity and duration in the presence of alert individuals. Behav. Ecol. 25, 1451–1458 (2014).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adhikari, H. et al. Determinants of aboveground biomass across an Afromontane landscape mosaic in Kenya. Remote Sens. 9, 827 (2017).ADS 
    Article 

    Google Scholar 
    Heiskanen, J., Korhonen, L., Hietanen, J. & Pellikka, P. K. E. Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 36, 2569–2583 (2015).Article 

    Google Scholar 
    Roussel, J.-R. et al. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061 (2020).ADS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. JOSS 6, 3139 (2021).ADS 
    Article 

    Google Scholar 
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Zuur, A. F., Savelʹev, A. A. & Ieno, E. N. Zero Inflated Models and Generalized Linear Mixed Models with R (Highland Statistics, 2012).
    Google Scholar 
    Campbell, H. The consequences of checking for zero-inflation and overdispersion in the analysis of count data. Methods Ecol. Evol. 12, 665–680 (2021).Article 

    Google Scholar 
    Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar  More

  • in

    Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767)

    Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 96, 49–125 (2005).
    Google Scholar 
    Parzanini, C., Parrish, C., Hamel, J. & Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 13, e0207395 (2018).Article 

    Google Scholar 
    Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanogr. 2013, 1–16 (2013).Article 

    Google Scholar 
    Parrish, C. et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In Marine Chemistry. The Handbook of Environmental Chemistry (Vol. 5 Series: Water Pollution) Vol. 5 (ed. Wangersky, P. J.) (Springer, 2000).
    Google Scholar 
    Laender, F. D., Oevelen, D. V., Frantzen, S., Middelburg, J. J. & Soetaert, K. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration. Environ. Sci. Technol. 44, 356–361 (2010).Article 

    Google Scholar 
    Bianchi, T. & Canuel, E. Chemical Biomarkers in Aquatic Ecosystems (Princeton University Press, 2011).Book 

    Google Scholar 
    Signa, G. et al. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 57, 384–394 (2015).CAS 
    Article 

    Google Scholar 
    Brett, M., Mueller-Navarra, D. & Persson, J. Crustacean zooplankton fatty acid composition. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 115–146 (Springer, 2009).Chapter 

    Google Scholar 
    Martin-Creuzburg, D. & Elert, E. Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 43–64 (Springer, 2009).Chapter 

    Google Scholar 
    Parrish, C. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystem (eds Kainz, M. et al.) 309–326 (Springer, 2009).Chapter 

    Google Scholar 
    Maier, S. R., Bannister, R. J., van Oevelen, D. & Kutti, T. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs 39, 173–187 (2020).Article 

    Google Scholar 
    Phleger, C. F. Buoyancy in marine fishes: Direct and indirect role of lipids. Am. Zool. 38, 321–330 (1998).CAS 
    Article 

    Google Scholar 
    Pond, D. W. & Tarling, G. A. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56, 1310–1318 (2011).CAS 
    Article 

    Google Scholar 
    Giese, A. C. Lipids in the economy of marine invertebrates. Physiol. Rev. 46, 244–298 (1966).CAS 
    Article 

    Google Scholar 
    Joseph, J. D. Distribution and composition of lipids in marine invertebrates. In Marine Biogenic Lipids, Fats and Oils (ed. Ackman, R. G.) 49–143 (CRC Press, 1989).
    Google Scholar 
    Lee, R. F. Lipoproteins from the hemolymph and ovaries of marine invertebrates. In Advances in Comparative and Environmental Physiology (eds Houlihan, D. F. et al.) 187–207 (Springer, 1991).Chapter 

    Google Scholar 
    Kattner, G. & Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 170, 203–213 (1998).CAS 
    Article 

    Google Scholar 
    Heras, H., Pollero, R. J., Gonzalez-Baró, M. R. & Pollero, R. J. Lipid and fatty acid composition and energy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids 35, 645–651 (2000).CAS 
    Article 

    Google Scholar 
    Viladrich, N. et al. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35, 1033–1045 (2016).Article 

    Google Scholar 
    Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, fat metabolism, and lifespan—What is the connection?. Cell Metab. 17, 10–19 (2013).CAS 
    Article 

    Google Scholar 
    Strathmann, R. R. Egg size, larval development, and juvenile size in benthic marine invertebrates. Am. Nat. 111, 373–376 (1977).Article 

    Google Scholar 
    Pechenik, J. Delayed metamorphosis by larvae of benthic marine-invertebrates—Does it occur? Is there a price to pay?. Ophelia 32, 63–94 (1990).Article 

    Google Scholar 
    Harms, J. Larval development and delayed metamorphosis in the hermit crab Clibanarius erythropus (Latreille) (Crustacea, Diogenidae). J. Exp. Mar. Bio. Ecol. 156, 151–160 (1992).Article 

    Google Scholar 
    Harii, S., Kayanne, H., Takigawa, H. T., Hayashibara, T. H. & Yamamoto, M. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 141, 39–46 (2002).Article 

    Google Scholar 
    Doughty, P. & Shine, R. Detecting life history trade-offs: measuring energy stores in “capital” breeders reveals costs of reproduction. Oecologia 110, 508–513 (1997).Article 

    Google Scholar 
    Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar. Ecol. Prog. Ser. 162, 89–103 (1998).Article 

    Google Scholar 
    Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): Evidence for summer–autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS 
    Article 

    Google Scholar 
    Kattner, G., Graeve, M. & Hagen, W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 644, 18119 (1994).
    Google Scholar 
    Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS 
    Article 

    Google Scholar 
    Mourente, G., Medina, A., González, S. & Rodríguez, A. Variations in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus. Aquaculture 130, 187–199 (1995).CAS 
    Article 

    Google Scholar 
    Marshall, C. T., Yaragina, N. A., Lambert, Y. & Kjesbu, O. S. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402, 288–290 (1999).CAS 
    Article 

    Google Scholar 
    Marshall, C. T., Yaragina, N. A., Ådlandsvik, B. & Dolgov, A. V. Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Can. J. Fish. Aquat. Sci. 57, 2433–2442 (2000).Article 

    Google Scholar 
    Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. B. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).Article 

    Google Scholar 
    Bergquist, P. R., Lawson, M. P., Lavis, A. & Cambie, R. C. Fatty acid composition and the classification of the Porifera. Biochem. Syst. Ecol. 12, 63–84 (1984).CAS 
    Article 

    Google Scholar 
    Djerassi, C. & Lam, W. K. Sponge phospholipids. Acc. Chem. Res. 24, 69–75 (1991).CAS 
    Article 

    Google Scholar 
    Thiel, V. et al. A chemical view of the most ancient metazoa – Biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66 (2002).CAS 
    Article 

    Google Scholar 
    Velosaotsy, N. et al. Phospholipid distribution and phospholipid fatty acids in four Saudi red sea sponges. Boll. Mus. Ist. Biol. Univ. Genova 68, 639–645 (2004).
    Google Scholar 
    Rod’kina, S. A. Fatty acids and other lipids of marine sponges. Russ. J. Mar. Biol. 31, S49–S60 (2005).Article 

    Google Scholar 
    Blumenberg, M. & Michaelis, W. High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Mar. Biol. 150, 1153–1160 (2007).CAS 
    Article 

    Google Scholar 
    Genin, E. et al. New trends in phospholipid class composition of marine sponges. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 427–431 (2008).Article 

    Google Scholar 
    Müller, W. et al. Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J. Biol. Chem. 262, 9850–9858 (1987).Article 

    Google Scholar 
    Weissmann, G., Riesen, W., Davidson, S. & Waite, M. Stimulus-response coupling in marine sponge cell aggregation: Lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids. Biochim. Biophys. Acta 960, 351–364 (1988).CAS 
    Article 

    Google Scholar 
    Zivanovic, A., Pastro, N. J., Fromont, J., Thomson, M. & Skropeta, D. Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Nat. Prod. Commun. 6, 1921–1924 (2011).CAS 

    Google Scholar 
    Shaaban, M., Abd-Alla, H. I., Hassan, A. Z., Aly, H. F. & Ghani, M. A. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org. Med. Chem. Lett. 2, 30 (2012).Article 

    Google Scholar 
    Botić, T. et al. Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biol. 38, 1605–1612 (2015).Article 

    Google Scholar 
    Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Chang. Biol. 24, 3130–3144 (2018).Article 

    Google Scholar 
    Carballeira, N. M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 47, 50–61 (2008).CAS 
    Article 

    Google Scholar 
    Kikuchi, H. et al. Marine natural products. X. Pharmacologically active glycolipids from the Okinawan marine sponge Phyllospongia foliascens (Pallas). Chem. Pharm. Bull. (Tokyo) 30, 3544–3547 (1982).CAS 
    Article 

    Google Scholar 
    Natori, T., Morita, M., Akimoto, K. & Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50, 2771–2784 (1994).CAS 
    Article 

    Google Scholar 
    Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. & Ianaro, A. Glycolipids from Sponges. 6. Plakoside A and B, two unique prenylated glycosphingolipids with Immunosuppressive activity from the marine sponge Plakortis simplex. J. Am. Chem. Soc. 119, 12465–12470 (1997).CAS 
    Article 

    Google Scholar 
    Costantino, V., Fattorusso, E., Imperatore, C. & Mangoni, A. Glycolipids from sponges. 11. Isocrasserides, novel glycolipids with a five-membered cyclitol widely distributed in marine sponges. J. Nat. Prod. 65, 883–886 (2002).CAS 
    Article 

    Google Scholar 
    Maldonado, M. & Riesgo, A. Reproduction in Porifera: a synoptic overview. Treballs la Soc. Catalana Biol. 59, 29–49 (2008).
    Google Scholar 
    Sciscioli, M., Lepore, E., Scalera-Liaci, L. & Gherardi, M. Indagine ultrastrutturale sugli ovociti di Erylus discophorus (Schmidt) (Porifera, Tetractinellida). Oebalia 15, 939–941 (1989).
    Google Scholar 
    Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M. & Simpson, T. L. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (porifera demospongiae). Mol. Reprod. Dev. 28, 346–350 (1991).CAS 
    Article 

    Google Scholar 
    Riesgo, A. et al. Some like it fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).Article 

    Google Scholar 
    Watanabe, Y. The development of two species of Tetilla (Demosponge). NSR. O. U. 29, 71–106 (1978).
    Google Scholar 
    Gaino, E. & Sarà, M. An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invertebr. Reprod. Dev. 26, 99–106 (1994).Article 

    Google Scholar 
    Maldonado, M. & Riesgo, A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156, 2181–2197 (2009).Article 

    Google Scholar 
    Lanna, E. & Klautau, M. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249–261 (2010).Article 

    Google Scholar 
    Koutsouveli, V. et al. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE 13, 1–24 (2018).Article 

    Google Scholar 
    Fell, P. E. The involvement of nurse cells in oogenesis and embryonic development in the marine sponge, Haliclona ecbasis. J. Morphol. 127, 133–149 (1969).Article 

    Google Scholar 
    Simpson, T. The Cell Biology of Sponges (Springer, 1984).Book 

    Google Scholar 
    Bellairs, R. The structure of the yolk of the hen’s egg as studied by electron microscopy : i. The yolk of the unincubated egg. J. Biophys. Biochem. Cytol. 11, 207–225 (1961).CAS 
    Article 

    Google Scholar 
    Ereskovsky, A. The Comparative Embryology of Sponges (Springer, 2010).Book 

    Google Scholar 
    Sarà, A., Cerrano, C. & Sarà, M. Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol. 25, 425–431 (2002).Article 

    Google Scholar 
    Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 674 (2020).Article 

    Google Scholar 
    Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: Biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS 
    Article 

    Google Scholar 
    Lüskow, F. et al. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Front. Mar. Sci. 6, 1–7 (2019).Article 

    Google Scholar 
    Reiswig, H. Population dynamics of three Jamaican demospongiae. Bull. Mar. Sci. 23, 191–226 (1973).
    Google Scholar 
    Elvin, D. W. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Univ. Chicago Press 151, 108–125 (1976).
    Google Scholar 
    Elvin, D. W. The relationship of seasonal changes in the biochemical components to the reproductive behavior of the intertidal sponge, Haliclona permollis. Biol Bull. 156, 47–61 (1979).CAS 
    Article 

    Google Scholar 
    Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Prog. Ser. 32, 291–298 (1986).Article 

    Google Scholar 
    Ivanisevic, J., Pérez, T., Ereskovsky, A. V., Barnathan, G. & Thomas, O. P. Lysophospholipids in the Mediterranean sponge Oscarella tuberculata: Seasonal variability and putative biological role. J. Chem. Ecol. 37, 537 (2011).CAS 
    Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (Porifera, demospongiae) at the Faroe islands, North-eastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Pile, A. & Young, C. The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Res. Part I Oceanogr. Res. Pap. 53, 1148–1156 (2006).Article 

    Google Scholar 
    Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I. & Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52, 428–440 (2007).CAS 
    Article 

    Google Scholar 
    Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    Article 

    Google Scholar 
    Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 1–12 (2015).Article 

    Google Scholar 
    Kahn, A., Yahel, G., Chu, J., Tunnicliffe, V. & Leys, S. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).Article 

    Google Scholar 
    Rooks, C. et al. Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges. Biogeosciences 17, 1231–1245 (2020).CAS 
    Article 

    Google Scholar 
    Koutsouveli, V., Cárdenas, P., Conejero, M., Rapp, H. T. & Riesgo, A. Reproductive biology of Geodia species (Porifera, Tetractinellida) from Boreo-Arctic North-Atlantic Deep-Sea Sponge Grounds. Front. Mar. Sci. 7, 1–22 (2020).Article 

    Google Scholar 
    Reynolds, E. S. The use of lead citrate at high PH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CAS 
    Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS 
    Article 

    Google Scholar 
    Balgoma, D. et al. Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics 16, 12 (2020).CAS 
    Article 

    Google Scholar 
    Kolmert, J. et al. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat. 137, 20–29 (2018).CAS 
    Article 

    Google Scholar 
    Balgoma, D. et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 47, 1645–1656 (2016).CAS 
    Article 

    Google Scholar 
    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS 
    Article 

    Google Scholar 
    Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).Article 

    Google Scholar 
    Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).Article 

    Google Scholar 
    Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25, 218–224 (2008).Article 

    Google Scholar 
    Koutsouveli, V. et al. The molecular machinery of gametogenesis in Geodia demosponges (Porifera): Evolutionary origins of a conserved toolkit across animals. Mol. Biol. Evol. 37, 3485–3506 (2020).CAS 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome assembly from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    Article 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).Article 

    Google Scholar 
    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).CAS 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    Article 

    Google Scholar 
    Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).CAS 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).Article 

    Google Scholar 
    Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    Article 

    Google Scholar 
    Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 167, 103427 (2020).Article 

    Google Scholar 
    Southwood, T. R. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46, 336–365 (1977).Article 

    Google Scholar 
    Clarke, A. A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol. J. Linn. Soc. 14, 77–92 (1980).Article 

    Google Scholar 
    Witte, U. Seasonal reproduction in deep-sea sponges—Triggered by vertical particle flux?. Mar. Biol. 124, 571–581 (1996).Article 

    Google Scholar 
    Spetland, F., Rapp, H. T., Hoffmann, F. & Tendal, O. S. Sexual reproduction of Geodia barretti Bowerbank, 1858 (Porifera, Astrophorida) in two Scandinavian fjords. In Porifera Research: Biodiversity, Innovation, Sustainability Vol. 1858 (eds Custódio, M. et al.) 613–620 (Série Livros. Museu Nacional, 2007).
    Google Scholar 
    Wassmann, P. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. Annu. Rev. 29, 87–154 (1991).
    Google Scholar 
    Wassmann, P., Svendsen, H., Keck, A. & Reigstad, M. Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. J. Mar. Syst. 8, 53–71 (1996).Article 

    Google Scholar 
    Bamstedt, U. Life cycle, seasonal vertical distribution and feeding of Calanus finmarchicus in Skagerrak coastal water. Mar. Biol. 137, 279–289 (2000).Article 

    Google Scholar 
    Eckelbarger, K. J. & Watling, L. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebr. Biol. 114, 256–269 (1995).Article 

    Google Scholar 
    Riesgo, A. & Maldonado, M. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell 41, 51–65 (2009).Article 

    Google Scholar 
    Whiteley, N. M., Taylor, E. W. & el Haj, A. J. A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans. Am. J. Physiol. 271, R1295–R1303 (1996).CAS 
    Article 

    Google Scholar 
    Pace, D. A. & Manahan, D. T. Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol. Bull. 212, 115–129 (2007).CAS 
    Article 

    Google Scholar 
    Sciscioli, M., Lepore, E., Gherardi, M. & Liaci, L. S. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): An ultrastructural study. Cah. Biol. Mar. 35, 471–478 (1994).
    Google Scholar 
    McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).Article 

    Google Scholar 
    Derickson, W. K. Lipid storage and utilization in reptiles. Am. Zool. 16, 711–723 (1976).CAS 
    Article 

    Google Scholar 
    Fraser, A. J. Triacylglycerol content as a condition index for fish, bivalve, and crustacean larvae. Can. J. Fish. Aquat. Sci. 46, 1868–1873 (1989).CAS 
    Article 

    Google Scholar 
    Bonnet, X., Naulleau, G. & Mauget, R. The influence of body condition on 17-beta estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia, Viperidae). Gen. Comp. Endocrinol. 93, 424–437 (1994).CAS 
    Article 

    Google Scholar 
    Duggan, A. et al. Seasonal variation in plasma lipids, lipoproteins, apolipoprotein A-I and vitellogenin in the freshwater turtle, Chrysemys picta. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 253–269 (2001).CAS 
    Article 

    Google Scholar 
    Lance, V. A., Place, A. R., Grumbles, J. S. & Rostal, D. C. Variation in plasma lipids during the reproductive cycle of male and female desert tortoises, Gopherus agassizii. J. Exp. Zool. 293, 703–711 (2002).CAS 
    Article 

    Google Scholar 
    Kawazu, I. et al. Signals of vitellogenesis and estrus in female hawksbill turtles. Zoolog. Sci. 32, 114–118 (2015).Article 

    Google Scholar 
    Teshima, S. & Kanazawa, A. Variation in lipid compositions during the ovarian maturation of the prawn. Nippon Suisan Gakkaishi 49, 957–962 (1983).CAS 
    Article 

    Google Scholar 
    Clarke, A., Brown, J. H. & Holmes, L. J. The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development. Comp. Biochem. Physiol. Part B Comp. Biochem. 96, 505–511 (1990).Article 

    Google Scholar 
    Allen, W. Amino acid and fatty acid composition of tissues of the dungeness crab (Cancer magister). J. Fish. Res. Board Canada 28, 1191–1195 (1971).CAS 
    Article 

    Google Scholar 
    Rosa, R. & Nunes, M. L. Tissue biochemical composition in relation to the reproductive cycle of deep-sea decapod Aristeus antennatus in the Portuguese south coast. J. Mar. Biol. Assoc. U. K. 83, 963–970 (2003).CAS 
    Article 

    Google Scholar 
    Balgoma, D., Pettersson, C. & Hedeland, M. Common fatty markers in diseases with dysregulated lipogenesis. Trends Endocrinol. Metab. 30, 283–285 (2019).CAS 
    Article 

    Google Scholar 
    Kent, C. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315–343 (1995).CAS 
    Article 

    Google Scholar 
    Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).CAS 
    Article 

    Google Scholar 
    Bell, R. M. & Coleman, R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49, 459–487 (1980).CAS 
    Article 

    Google Scholar 
    Mathews, C., van Holde, K., Appling, D. & Anthony-Cahill, S. Biochemistry (Pearson, 2019).
    Google Scholar 
    Gavaud, J. Histochemical identification of ovarian lipids during vitellogenesis in the lizard Lacerta vivipara. Can. J. Zool. 69, 1389–1392 (1991).Article 

    Google Scholar 
    Chapman, M. J. Animal lipoproteins: Chemistry, structure, and comparative aspects. J. Lipid Res. 21, 789–853 (1980).CAS 
    Article 

    Google Scholar 
    Lebouvier, M., Miramón-Puértolas, P. & Steinmetz, P.R. Evolutionary conserved aspects of animal nutrient uptake and transport in sea anemone vitellogenesis. bioRxiv (2022).Dolphin, P. J., Ansari, A. Q., Lazier, C. B., Munday, K. A. & Akhtar, M. Studies on the induction and biosynthesis of vitellogenin, an oestrogen-induced glycolipophosphoprotein. Biochem. J. 124, 751–758 (1971).CAS 
    Article 

    Google Scholar 
    Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).CAS 
    Article 

    Google Scholar 
    Wanders, R. J. A. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83, 16–27 (2004).CAS 
    Article 

    Google Scholar 
    Wanders, R. J. A., Waterham, H. R. & Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83 (2016).Article 

    Google Scholar 
    Talley, J. & Mohiuddin, S. Biochemstry, Fatty Acid Oxidation (StatPearls, 2020).
    Google Scholar 
    Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141, 568–591 (1971).Article 

    Google Scholar 
    Sugimoto, Y., Inazumi, T. & Tsuchiya, S. Roles of prostaglandin receptors in female reproduction. J. Biochem. 157, 73–80 (2015).CAS 
    Article 

    Google Scholar 
    Niringiyumukiza, J. D., Cai, H. & Xiang, W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod. Biol. Endocrinol. 16, 43 (2018).Article 

    Google Scholar 
    Kaczynski, P., Baryla, M., Goryszewska, E., Bauersachs, S. & Waclawik, A. Prostaglandin F2α promotes embryo implantation and development in the pig. Reproduction 156, 405–419 (2018).CAS 

    Google Scholar 
    De Petrocellis, L. & Di Marzo, V. Aquatic invertebrates open up new perspectives in eicosanoid research: Biosynthesis and bioactivity. Prostaglandins Leukot. Essent. Fat. Acids 51, 215–229 (1994).Article 

    Google Scholar 
    Destephano, D. B. & Brady, U. E. Prostaglandin and prostaglandin synthetase in the cricket, Acheta domesticus. J. Insect Physiol. 23, 905–911 (1977).CAS 
    Article 

    Google Scholar 
    Rich, A. M. et al. Calcium dependent aggregation of marine sponge cells is provoked by leukotriene B4 and inhibited by inhibitors of arachidonic acid oxidation. Biochem. Biophys. Res. Commun. 121, 863–870 (1984).CAS 
    Article 

    Google Scholar 
    Gramzow, M. et al. Role of phospholipase A2 in the stimulation of sponge cell proliferation by homologous lectin. Cell 59, 939–948 (1989).CAS 
    Article 

    Google Scholar 
    Nomura, T. & Ogata, H. Distribution of prostagladins in the animal kingdom. Biochim. Biophys. Acta 431, 127–131 (1976).CAS 
    Article 

    Google Scholar  More

  • in

    The role of epiphytes in seagrass productivity under ocean acidification

    Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).CAS 
    Article 

    Google Scholar 
    Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).Article 

    Google Scholar 
    Campagne, C. S., Salles, J.-M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).CAS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Duarte, C. M., Kennedy, H., Marbà, N. & Hendriks, I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast. Manag. 83, 32–38 (2013).Article 

    Google Scholar 
    Barrón, C., Duarte, C. M., Frankignoulle, M. & Borges, A. V. Organic carbon metabolism and carbonate dynamics in a mediterranean seagrass (Posidonia oceanica) Meadow. Estuar. Coasts 29, 417–426 (2006).Article 

    Google Scholar 
    Marbà, N., Díaz-Almela, E. & Duarte, C. M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 176, 183–190 (2014).Article 

    Google Scholar 
    Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Chang. Biol. 24, 4919–4928 (2018).ADS 
    Article 

    Google Scholar 
    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).ADS 
    Article 

    Google Scholar 
    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front Ecol Env. 15, 257–265 (2017).Article 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    Zunino, S., Libralato, S., Canu, D. M., Prato, G. & Solidoro, C. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems https://doi.org/10.1007/s10021-021-0060 (2021).Article 

    Google Scholar 
    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).ADS 
    Article 

    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).ADS 
    Article 

    Google Scholar 
    Zimmerman, R. C. et al. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 566, 1–15 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Egea, L. G., Jimé Nez-Ramos, R., Herná Ndez, I., Bouma, T. J. & Brun, F. G. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. PLoS ONE https://doi.org/10.1371/journal.pone.0192402 (2018).Article 

    Google Scholar 
    Jiang, Z. J., Huang, X.-P. & Zhang, J.-P. Effects of CO 2 enrichment on photosynthesis, growth, and biochemical composition of seagrass thalassia hemprichii (ehrenb.) aschers. J. Integr. Plant Biol. 52, 904–913 (2010).CAS 
    Article 

    Google Scholar 
    Apostolaki, E. T., Vizzini, S., Hendriks, I. E. & Olsen, Y. S. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99, 9–15 (2014).CAS 
    Article 

    Google Scholar 
    Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).ADS 
    Article 

    Google Scholar 
    Bergstrom, E., Silva, J., Martins, C. & Horta, P. Seagrass can mitigate negative ocean acidification effects on calcifying algae. Sci. Rep. 9(1), 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Hernán, G. et al. Seagrass (Posidonia oceanica) seedlings in a high-CO 2 world: from physiology to herbivory. Sci. Rep. 6(1), 1–12 (2016).MathSciNet 
    Article 

    Google Scholar 
    Cox, T. E. et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J. Ecol. 103, 1594–1609 (2015).CAS 
    Article 

    Google Scholar 
    Cox, T. E. et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13, 2179–2194 (2016).ADS 
    Article 

    Google Scholar 
    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200), 96–99 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Mecca, S., Casoli, E., Ardizzone, G. & Gambi, M. C. Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy). Mediterr. Mar. Sci. 21, 70–83 (2020).Article 

    Google Scholar 
    Ugarelli, K., Chakrabarti, S., Laas, P. & Stingl, U. The seagrass holobiont and its microbiome. Microorganisms 5(4), 81 (2017).Article 

    Google Scholar 
    Tarquinio, F., Hyndes, G. A., Laverock, B., Koenders, A. & Säwström, C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 366, 1–15 (2019).Article 

    Google Scholar 
    Brodersen, K. E. & Kühl, M. Effects of Epiphytes on the Seagrass Phyllosphere. Front. Mar. Sci. 9, 1–10 (2022).Article 

    Google Scholar 
    Seymour, J. R., Laverock, B., Nielsen, D. A., M., T.-T. S. & Macreadie, P. I. The Microbiology of Seagrasses. in Seagrasses of Australia 343–392 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-71354-0Ruocco, N. et al. First evidence of Halomicronema metazoicum (Cyanobacteria) free-living on Posidonia oceanica leaves. PLoS ONE 13(10), e0204954 (2018).Article 

    Google Scholar 
    Kohn, T. et al. The microbiome of posidonia oceanica seagrass leaves can be dominated by planctomycetes. Front. Microbiol 11, 1458 (2020).Article 

    Google Scholar 
    Casola, E., Scardi, M., Mazzella, L. & Fresi, E. Structure of the epiphytic community of posidonia oceanica leaves in a shallow meadow. Mar. Ecol. 8, 285–296 (1987).ADS 
    Article 

    Google Scholar 
    Martin, S. et al. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol. Lett 4, 689–692 (2008).Article 

    Google Scholar 
    Foo, S. A., Byrne, M., Ricevuto, E. & Gambi, M. C. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. 56, 237–310 (2018).
    Google Scholar 
    Olivé, I., Silva, J., Costa, M. M. & Santos, R. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries Coasts 39, 138–144 (2016).Article 

    Google Scholar 
    Barrón, C. & Duarte, C. M. Dissolved organic matter release in a Posidonia oceanica meadow. Mar. Ecol. Prog. Ser. 374, 75–84 (2009).ADS 
    Article 

    Google Scholar 
    Langsrud, Ø. ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Stat. Comput. 13, 163–167 (2003).MathSciNet 
    Article 

    Google Scholar 
    RStudio Team. RStudio. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2021).Donnarumma, L., Lombardi, C., Cocito, S. & Gambi, M. C. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 15, 498–509 (2014).Article 

    Google Scholar 
    Gravili, C., Cozzoli, F. & Gambi, M. C. Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy). Eur. Zool. J. 88, 472–486 (2021).CAS 
    Article 

    Google Scholar 
    Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).CAS 

    Google Scholar 
    Wear, D. J., Sullivan, M. J., Moore, A. D. & Millie, D. F. Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar. Ecol. Prog. Ser. 179, 201–213 (1999).ADS 
    Article 

    Google Scholar 
    Hasegawa, N., Hori, M. & Mukai, H. Seasonal shifts in seagrass bed primary producers in a cold-temperate estuary: Dynamics of eelgrass Zostera marina and associated epiphytic algae. Aquat. Bot. 86, 337–345 (2007).Article 

    Google Scholar 
    Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar. Ecol. 37, 3–41 (2016).ADS 
    Article 

    Google Scholar 
    Celdrán, D., Espinosa, E., Sánchez-Amat, A. & Marín, A. Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 456, 21–27 (2012).ADS 
    Article 

    Google Scholar 
    Brodersen, K. E., Koren, K., Revsbech, N. P. & Kühl, M. Strong leaf surface basification and CO2 limitation of seagrass induced by epiphytic biofilm microenvironments. Plant Cell Environ. 43, 174–187 (2020).CAS 
    Article 

    Google Scholar 
    Noisette, F., Depetris, A., Kühl, M. & Brodersen, K. E. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina). J. R. Soc. Interface 17(171), 20200485 (2020).Article 

    Google Scholar 
    Costa, M. M. et al. Epiphytes modulate posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms, and oxidative damage. Front. Mar. Sci. 2, 111 (2015).Article 

    Google Scholar 
    Guilini, K. et al. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification. PLoS ONE 12(8), e0181531 (2017).Article 

    Google Scholar 
    Palacios, S. L. & Zimmerman, R. C. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).ADS 
    Article 

    Google Scholar 
    Scartazza, A. et al. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. Sci. Total Environ. 607, 954–964 (2017).ADS 
    Article 

    Google Scholar 
    Hansen, A. B., Pedersen, A. S., Kühl, M. & Brodersen, K. E. Temperature Effects on Leaf and Epiphyte Photosynthesis, Bicarbonate Use and Diel O 2 Budgets of the Seagrass Zostera marina L. Front. Mar. Sci. 9, (2022).Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia 1, 871–882 (2014).ADS 
    Article 

    Google Scholar 
    Mabrouk, L., Hamza, A., Brahim, B. & Bradai, M.-N. Variability in the structure of epiphyte assemblages on leaves and rhizomes of Posidonia oceanica in relation to human disturbances in a seagrass meadow off Tunisia. Aquat. Bot. 108, 33–40 (2013).Article 

    Google Scholar 
    Garrard, S. L. et al. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J. Exp. Mar. Bio. Ecol. 461, 31–38 (2014).Article 

    Google Scholar 
    Touchette, B. W. & Burkholder, J. A. M. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Bio. Ecol. 250, 133–167 (2000).CAS 
    Article 

    Google Scholar 
    Borg, J. A., Rowden, A. A., Attrill, M. J., Schembri, P. J. & Jones, M. B. Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar. Biol. 149, 667–677 (2006).Article 

    Google Scholar 
    Teixidó, N. et al. Functional biodiversity loss along natural CO 2 gradients. Nat. Commun. 9(1), 1–9 (2018).Article 

    Google Scholar  More

  • in

    Optimizing the Dryland Sheet Erosion equation in South China

    Feng, T. et al. Modeling soil erosion using a spatially distributed model in a karst catchment of northwest Guangxi, China. Earth Surf. Process. Landf. 39, 1005 (2015).
    Google Scholar 
    Bodoque, J. M. et al. Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surf. Process. Landf. 40(9), 1146–1157 (2015).ADS 
    Article 

    Google Scholar 
    Larney, F. J. et al. Erosion–productivity–soil amendment relationships for wheat over 16 years. Soil Tillage Res. 103(1), 73–83 (2009).Article 

    Google Scholar 
    Xiao, H. et al. Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China. Hydrol. Process. 31(14), 2613–2621 (2017).ADS 
    Article 

    Google Scholar 
    Wei, W. et al. Effect of rainfall variation and landscape change on runoff and sediment yield from a loess hilly catchment in China. Environ. Earth Sci. 73(3), 1005–1016 (2015).Article 

    Google Scholar 
    Yu, F. A. et al. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 191, 12–25 (2019).Article 

    Google Scholar 
    Valmis, S., Dimoyiannis, D. & Danalatos, N. G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil Tillage Res. 80(1–2), 139–147 (2005).Article 

    Google Scholar 
    Qz, A. et al. Plot-based experimental study of raindrop detachment, interrill wash and erosion-limiting degree on a clayey loessal soil. J. Hydrol. 575, 1280–1287 (2019).Article 

    Google Scholar 
    Dongdong, W. et al. Sheet erosion rates and erosion control on steep rangelands in loess regions: Sheet erosion rates and erosion control on steep rangelands. Earth Surf. Process. Landf. 43, 146 (2018).
    Google Scholar 
    Mohammad, A. G. & Adam, M. A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81(2), 97–103 (2010).Article 

    Google Scholar 
    Shin, J. Y. et al. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. Catena. 176, 125–144 (2019).Article 

    Google Scholar 
    Wang, D. et al. Characterisation of soil erosion and overland flow on vegetation-growing slopes in fragile ecological regions: A review. J. Environ. Manag. 285, 1400 (2021).
    Google Scholar 
    Li, Z. W. et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China. Biosyst. Eng. 129, 248–257 (2015).Article 

    Google Scholar 
    Yu, L. et al. Hydrological responses and soil erosion potential of abandoned cropland in the loess plateau, China. Geomorphology 138(1), 404–414 (2012).ADS 
    Article 

    Google Scholar 
    Nearing, M. A., Bradford, J. M. & Parker, S. C. Soil detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 55(2), 351–357 (1991).Article 

    Google Scholar 
    Prosser, I. P. & Rustomji, P. Sediment transport capacity relations for overland flow. Prog. Phys. Geogr. 24, 179–193 (2000).Article 

    Google Scholar 
    Yang, C. T. Minimum unit stream power and fluvial hydraulics. J. Hydraul. Div. 102(7), 769–784 (1976).
    Google Scholar 
    Zhao, Z. X. & He, J. J. Hydraulics 2nd edn, 193–198 (Springer, 2010).
    Google Scholar 
    Zhang, M. et al. The response of soil microbial communities to soil erodibility depends on the plant and soil properties in semiarid regions. Land Degrad. Dev. 7, 14005 (2021).
    Google Scholar 
    Zhang, K. L. et al. Soil erodibility and its estimation for agricultural soils in China. Acta Pedol. Sin. 72(6), 1002–1011 (2008).
    Google Scholar 
    Long, S. et al. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China. J. Arid Land. 6(4), 400–409 (2014).Article 

    Google Scholar 
    Zhang, Y. W. et al. Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Sci. Rep. 11(1), 1000 (2021).Article 

    Google Scholar 
    Liu, J. et al. Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope. J. Soil Water Conserv. 70, 36–44 (2018).
    Google Scholar 
    Vargas-Luna, A., Crosato, A. & Uijttewaal, W. S. J. Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surf. Process. Landf. 40(2), 157–176 (2015).ADS 
    Article 

    Google Scholar 
    Wang, J. G. et al. Particle size and shape variation of Ultisol aggregates affected by abrasion under different transport distances in overland flow. Catena 123, 153–162 (2014).CAS 
    Article 

    Google Scholar 
    Wang, D. et al. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 535, 473–479 (2016).ADS 
    Article 

    Google Scholar 
    Zhang, B. J. et al. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China. Catena. 173, 375–383 (2019).Article 

    Google Scholar 
    Maïga-Yaleu, S. B. et al. Impact of sheet erosion mechanisms on organic carbon losses from crusted soils in the Sahel. Catena 126, 60–67 (2015).Article 

    Google Scholar 
    Mo, M. et al. Water and sediment runoff and soil moisture response to grass cover in sloping citrus land, Southern China. Soil Water Res. 14(1), 1004 (2018).
    Google Scholar 
    Jin, F. et al. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Enviro. 773, 10078 (2021).Article 

    Google Scholar 
    Yu, M. et al. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. J. Plant Nutr. Soil Sci. 178(3), 486–498 (2018).Article 

    Google Scholar 
    Liu, W. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid loess plateau of china. Chem. Geol. 296–297, 66–72 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cheng, M. & Shaoshan, A. N. Response of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. J. Arid Land. 7(2), 216–223 (2015).Article 

    Google Scholar 
    Zhang, G. H. et al. Influence of vegetation parameters on runoff and sediment characteristics in patterned Artemisia capillaris plots. J. Arid Land. 2, 1440 (2014).
    Google Scholar 
    Hao, H. X. et al. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil Tillage Res. 198, 104542 (2020).Article 

    Google Scholar 
    Chen, Y. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. China Appl. Soil Ecol. 170, 104292 (2020).Article 

    Google Scholar 
    Mga, B. et al. Revegetation induced change in soil erodibility as influenced by slope situation on the Loess Plateau. Sci. Total Environ. 2, 158 (2021).
    Google Scholar 
    Ma, L. et al. Effects of earthworm (Metaphire guillelmi) density on soil macropore and soil water content in typical Anthrosol soil. Agric. Ecosyst. Environ. 311(5), 107338 (2021).Article 

    Google Scholar 
    Chen, Y. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. China Appl. Soil Ecol. 170, 104292 (2020).Article 

    Google Scholar 
    Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 114(7), 1601 (2017).CAS 
    Article 

    Google Scholar 
    Ran, Q., Wang, F. & Gao, J. The effect of storm movement on infiltration, runoff and soil erosion in a semi-arid catchment. Hydrol. Process. 6, 7600 (2020).
    Google Scholar  More

  • in

    Autochthony and isotopic niches of benthic fauna at shallow-water hydrothermal vents

    Desbruyères, D., Segonzac, M. & Bright, M. Handbook of deep-Sea Hydrothermal Vent Fauna 2nd edn. (Biologiezentrum, 2006).
    Google Scholar 
    Van Dover, C. L. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).Book 

    Google Scholar 
    Tarasov, V. G., Gebruk, A. V., Mironov, A. N. & Moskalev, L. I. Deep-sea and upper sublittoral hydrothermal vent communities: Two different phenomena?. Chem. Geol. 224, 5–39. https://doi.org/10.1016/j.chemgeo.2005.07.021 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Lonsdale, P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24, 857–863. https://doi.org/10.1016/0146-6291(77)90478-7 (1977).ADS 
    Article 

    Google Scholar 
    Reid, W. D. et al. Spatial differences in East Scotia Ridge hydrothermal vent food webs: Influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8, e65553. https://doi.org/10.1371/journal.pone.006555 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 72. https://doi.org/10.3389/fmars.2016.00072 (2016).ADS 
    Article 

    Google Scholar 
    Mullineaux, L. S. et al. Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Front. Mar. Sci. 5, 49. https://doi.org/10.3389/fmars.2018.00049 (2018).Article 

    Google Scholar 
    Tarasov, V. G. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Adv. Mar. Biol. 50, 267–421. https://doi.org/10.1016/S0065-2881(05)50004-X (2006).CAS 
    Article 

    Google Scholar 
    Dando, P. R. Biological communities at marine shallow-water vent and seep sites. In The Vent and Seep Biota (ed. Kiel, S.) 333–378 (Springer, 2010).Chapter 

    Google Scholar 
    Couto, R. P., Rodriguesa, A. S. & Neto, A. I. Shallow-water hydrothermal vents in the Azores (Portugal). J. Integr. Coast. Zone Manage. 15, 495–505. https://doi.org/10.5894/rgci584 (2015).Article 

    Google Scholar 
    Bellec, L. et al. Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Front. Microbiol. 11, 2023. https://doi.org/10.3389/fmicb.2020.02023 (2020).Article 

    Google Scholar 
    Chan, B. K. K. et al. Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLoS One 11, e0148675. https://doi.org/10.1371/journal.pone.0148675 (2016).CAS 
    Article 

    Google Scholar 
    Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 685. https://doi.org/10.3389/fmars.2019.00685 (2019).Article 

    Google Scholar 
    Southward, A. J. et al. On the biology of submarine caves with sulphur springs: Appraisal of 13C/12C ratios as a guide to trophic relations. J. Mar. Biol. Ass. UK 76, 265–285. https://doi.org/10.1017/S002531540003054X (1996).CAS 
    Article 

    Google Scholar 
    Southward, A. J. et al. Behaviour and feeding of the Nassariid gastropod Cyclope neritea, abundant at hydrothermal brine seeps off Milos (Aegean Sea). J. Mar. Biol. Ass. UK 77, 753–771. https://doi.org/10.1017/S0025315400036171 (1997).Article 

    Google Scholar 
    Chang, N. N. et al. Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. PLoS One 13, e0204753. https://doi.org/10.1371/journal.pone.0204753 (2018).CAS 
    Article 

    Google Scholar 
    Trager, G. C. & DeNiro, M. J. Chemoautotrophic sulphur bacteria as a food source for mollusks at intertidal hydrothermal vents: Evidence from stable isotopes. Veliger 33, 359–362 (1990).
    Google Scholar 
    Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Progr. Ser. 120, 231–241. https://doi.org/10.3354/meps120231 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, C. T. A. et al. Investigation into extremely acidic hydrothermal fluids off Kueishantao Islet, Taiwan. Acta. Oceanol. Sin. 24, 125–133 (2005).CAS 

    Google Scholar 
    Wang, T. W., Chan, T. Y. & Chan, B. K. K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: A combined morphological, gut content analysis and stable isotope approach. Mar. Biol. 161, 2447–2463. https://doi.org/10.1007/s00227-014-2479-6 (2014).Article 

    Google Scholar 
    Chen, C., Chan, T. Y. & Chan, B. K. K. Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Mar. Biodivers. 48, 709–714. https://doi.org/10.1007/s12526-017-0804-2 (2017).Article 

    Google Scholar 
    Lebrato, M. et al. Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Sci. Rep. 9, 16926. https://doi.org/10.1038/s41598-019-53314-y (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, Y.-S. et al. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). Geobiology 19, 87–101. https://doi.org/10.1111/gbi.12418 (2021).CAS 
    Article 

    Google Scholar 
    Jeng, M. S., Ng, N. K. & Ng, P. K. L. Hydrothermal vent crabs feast on sea ‘snow’. Nature 432, 969. https://doi.org/10.1038/432969a (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798. https://doi.org/10.1007/s00227-015-2711-z (2015).CAS 
    Article 

    Google Scholar 
    Yang, S. H. et al. Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kueishan Island, Taiwan. PLoS One 11, e0150597. https://doi.org/10.1371/journal.pone.0150597 (2016).CAS 
    Article 

    Google Scholar 
    Wu, J.-Y. et al. Isotopic niche differentiation in benthic consumers from shallow-water hydrothermal vents and nearby non-vent rocky reefs in northeastern Taiwan. Prog. Oceanogr. 195, 102596. https://doi.org/10.1016/j.pocean.2021.102596 (2021).Article 

    Google Scholar 
    Collin, R. Calyptraeidae from the northeast Pacific (Gastropoda: Caenogastropoda). Zoosymposia 13, 28. https://doi.org/10.11646/zoosymposia.13.1.12 (2019).Article 

    Google Scholar 
    Phillips, B. T. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology. Deep-Sea Res. II: Top. Stud. Oceanogr. 137, 480–485. https://doi.org/10.1016/j.dsr2.2016.10.005 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Portail, M. et al. Food-web complexity across hydrothermal vents on the Azores triple junction. Deep-Sea Res. I: Oceanogr. Res. Pap. 131, 101–120. https://doi.org/10.1016/j.dsr.2017.11.010 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Mar. Ecol. Prog. Ser. 622, 49–65. https://doi.org/10.1016/j.dsr.2017.11.010 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Alfaro-Lucas, J. M. et al. High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology 101, e03144. https://doi.org/10.1002/ecy.3144 (2020).CAS 
    Article 

    Google Scholar 
    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).Article 

    Google Scholar 
    Michener, R. H. & Kaufman, L. Stable isotope ratios as tracers in marine food webs: An update. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 238–283 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch9.Chapter 

    Google Scholar 
    Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch7.Chapter 

    Google Scholar 
    Dietl, G. P. First report of cannibalism in Triplofusus giganteus (Gastropoda: Fasciolariidae). Bull. Mar. Sci. 73, 757–761 (2003).ADS 

    Google Scholar 
    Cumplido, M., Pappalardo, P., Fernandez, M., Averbuj, A. & Bigatti, G. Embryonic development, feeding and intracapsular oxygen availability in Trophon geversianus (Gastropoda: Muricudae). J. Molluscan. Stud. 77, 429–436. https://doi.org/10.1093/mollus/eyr025 (2011).Article 

    Google Scholar 
    Modica, M. V. & Holford, M. The neogastropoda: Evolutionary innovations of predatory marine snails with remarkable pharmacological potential. In Evolutionary Biology—Concepts, Molecular and Morphological Evolution (ed. Pontarotti, P.) 249–270 (Springer, 2010).Chapter 

    Google Scholar 
    Sebens, K. P. Recruitment and habitat selection in the intertidal sea anemones, Anthopleura elegantissima (Brandt) and A. xanthogrammica (Brandt). J. Exp. Mar. Biol. Ecol. 59, 103–124. https://doi.org/10.1016/0022-0981(82)90110-1 (1982).Article 

    Google Scholar 
    Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pages, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Mar. Biol. Ecol. 214, 3570–3576. https://doi.org/10.1242/jeb.061390 (2011).CAS 
    Article 

    Google Scholar 
    Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J. Exp. Mar. Biol. Ecol. 349, 205–214. https://doi.org/10.1016/j.jembe.2007.05.013 (2007).CAS 
    Article 

    Google Scholar 
    Quesada, A. J., Acuña, F. H. & Cortés, J. Diet of the sea anemone Anthopleura nigrescens: Composition and variation between daytime and nighttime high tides. Zool. Stud. 53, 26. https://doi.org/10.1186/s40555-014-0026-2 (2014).Article 

    Google Scholar 
    Ferrier-Pagès, C., Witting, J., Tambutté, E. & Sebens, K. P. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22, 229–240. https://doi.org/10.1007/s00338-003-0312-7 (2003).Article 

    Google Scholar 
    Teece, M. A., Estes, B., Gelsleichter, E. & Lirman, D. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol. Oceanogr. 56, 1285–1296. https://doi.org/10.4319/lo.2011.56.4.1285 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pawlik, J. R. & Deignan, L. K. Cowries graze verongid sponges on Caribbean reefs. Coral Reefs 34, 663. https://doi.org/10.1007/s00338-015-1279-x (2015).ADS 
    Article 

    Google Scholar 
    Chan, B. K. K., Shao, K. T., Shao, Y. T. & Chang, Y. W. A simplified, economical, and robust light trap for capturing benthic and pelagic zooplankton. J. Exp. Mar. Biol. Ecol. 482, 25–32. https://doi.org/10.1016/j.jembe.2016.04.003 (2016).Article 

    Google Scholar 
    Viozzi, M. F., Martinex del Rio, C. & Williner, V. Tissue-specific isotopic incorporation turnover rates and trophic discrimination factors in the freshwater shrimp Macrobrachium borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud. 60, 28. https://doi.org/10.6620/ZS.2021.60-28 (2021).CAS 
    Article 

    Google Scholar 
    Tixier, P. et al. Importance of toothfish in the diet of generalist subantarctic killer whales: Implications for fisheries interactions. Mar. Ecol. Prog. Ser. 613, 197–210. https://doi.org/10.3354/meps12894 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Nolan, E. T., Roberts, C. G. & Britton, R. J. Predicting the contributions of novel marine prey resources from angling and anadromy to the diet of a freshwater apex predator. Freshw. Biol. 64, 1542–1554. https://doi.org/10.1111/fwb.13326 (2019).Article 

    Google Scholar 
    Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual. Version 3.1. 716. https://doi.org/10.5281/zenodo.561 (2016).R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org (2019).McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).CAS 
    Article 

    Google Scholar 
    Gelman, A. Analysis of variance—why it is more important than ever. Ann. Stat. 33, 1–53. https://doi.org/10.1214/009053604000001048 (2005).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (CRC Press, 2014).MATH 

    Google Scholar 
    Jackson, A. L., Parnell, A. C., Inger, R. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 

    Google Scholar  More