More stories

  • in

    Chemotaxis shapes the microscale organization of the ocean’s microbiome

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    Article 

    Google Scholar 
    Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).CAS 
    Article 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).CAS 
    Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).CAS 
    Article 

    Google Scholar 
    Strom, S. L. Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 1043–1045 (2008).CAS 
    Article 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Env. Microbiol. 14, 2348–2360 (2012).CAS 
    Article 

    Google Scholar 
    Grossart, H.-P., Riemann, L. & Azam, F. Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 25, 247–258 (2001).Article 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).CAS 
    Article 

    Google Scholar 
    Fenchel, T. Eppur si muove: many water column bacteria are motile. Aquat. Microb. Ecol. 24, 197–201 (2001).Article 

    Google Scholar 
    Son, K., Menolascina, F. & Stocker, R. Speed-dependent chemotactic precision in marine bacteria. Proc. Natl Acad. Sci. USA 113, 8624–8629 (2016).CAS 
    Article 

    Google Scholar 
    Fenchel, T. Microbial behavior in a heterogeneous world. Science 296, 1068–1071 (2002).CAS 
    Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).Article 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).Article 

    Google Scholar 
    Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell. Biol. 5, 1024–1037 (2004).CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).CAS 
    Article 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).CAS 
    Article 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    Article 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).CAS 
    Article 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).CAS 
    Article 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).CAS 
    Article 

    Google Scholar 
    Larsen, M. H., Blackburn, N., Larsen, J. L. & Olsen, J. E. Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology 150, 1283–1290 (2004).CAS 
    Article 

    Google Scholar 
    Rinke, C. et al. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ 4, e2486 (2016).Article 

    Google Scholar 
    Becker, J. et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front. Microbiol. 5, 111 (2014).Article 

    Google Scholar 
    Vraspir, J. M. & Butler, A. Chemistry of marine ligands and siderophores. Annu. Rev. Mar. Sci. 1, 43–63 (2009).Article 

    Google Scholar 
    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).CAS 
    Article 

    Google Scholar 
    Hopkinson, B. M. & Morel, F. M. M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals 22, 659–669 (2009).CAS 
    Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).CAS 
    Article 

    Google Scholar 
    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).CAS 
    Article 

    Google Scholar 
    Helliwell, K. E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol. 216, 62–68 (2017).CAS 
    Article 

    Google Scholar 
    Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009).CAS 
    Article 

    Google Scholar 
    Christie, P. J., Whitaker, N. & González-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).CAS 
    Article 

    Google Scholar 
    Preston, G. M. Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2, 291–294 (2007).CAS 
    Article 

    Google Scholar 
    Deakin, W. J. & Broughton, W. J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7, 312–320 (2009).CAS 
    Article 

    Google Scholar 
    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).Article 

    Google Scholar 
    Rolland, J. L., Stien, D., Sanchez-Ferandin, S. & Lami, R. Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology. J. Chem. Ecol. 42, 1201–1211 (2016).CAS 
    Article 

    Google Scholar 
    Fei, C. et al. Quorum sensing regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environ. Microbiol. 22, 4761–4778 (2020).CAS 
    Article 

    Google Scholar 
    Landa, M., Burns, A. S., Roth, S. J. & Moran, M. A. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 11, 2677 (2017).CAS 
    Article 

    Google Scholar 
    Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).CAS 
    Article 

    Google Scholar 
    Fenchel, T. & Blackburn, N. Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 150, 325–336 (1999).CAS 
    Article 

    Google Scholar 
    Hughes, D. J. et al. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. 63, 1891–1910 (2018).Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).CAS 
    Article 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, e86 (2019).Article 

    Google Scholar 
    Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).CAS 
    Article 

    Google Scholar 
    Lambert, B. S. & Raina, J.-B. Fabrication and deployment of the in situ chemotaxis assay (ISCA). protocols.io https://doi.org/10.17504/protocols.io.kztcx6n (2019).Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).CAS 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    Article 

    Google Scholar 
    Bramucci, A. R. et al. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 1, 79 (2021).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).Article 

    Google Scholar 
    Kuever, J., Rainey, F. A. & Widdel, F. In Bergey’s Manual of Systematics of Archaea and Bacteria https://doi.org/10.1002/9781118960608.obm00084 (2015).Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).CAS 
    Article 

    Google Scholar 
    Liu, X. et al. Wide distribution of anaerobic ammonium-oxidizing bacteria in the water column of the South China Sea: implications for their survival strategies. Divers. Distrib. 27, 1893–19003 (2021).Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    Article 

    Google Scholar 
    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).CAS 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).Article 

    Google Scholar 
    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200 (2013).CAS 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Lane, D. In Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (1991).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘Vegan’ Community Ecology Package Version 2 (2013).Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4, 1706–1715 (2019).CAS 
    Article 

    Google Scholar 
    Durham, B. P. et al. Recognition cascade and metabolite transfer in a marine bacteria–phytoplankton model system. Environ. Microbiol. 19, 3500–3513 (2017).CAS 
    Article 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453–457 (2015).CAS 
    Article 

    Google Scholar 
    Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

    Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.CAS 
    Article 

    Google Scholar 
    Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.CAS 
    Article 

    Google Scholar 
    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    Article 

    Google Scholar 
    Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.Article 

    Google Scholar 
    Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.Article 

    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.Article 

    Google Scholar 
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.Article 

    Google Scholar 
    Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.Article 

    Google Scholar 
    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    Article 

    Google Scholar 
    Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.Article 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.CAS 
    Article 

    Google Scholar 
    Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.CAS 
    Article 

    Google Scholar 
    Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.CAS 
    Article 

    Google Scholar 
    Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.CAS 
    Article 

    Google Scholar 
    Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.Article 

    Google Scholar 
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.CAS 
    Article 

    Google Scholar 
    Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.Article 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.Article 

    Google Scholar 
    Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.Article 

    Google Scholar 
    DFO Canada. AZMP Bulletin PMZA. 2006. DFO.Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.Article 

    Google Scholar 
    El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.Article 

    Google Scholar 
    Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.CAS 
    Article 

    Google Scholar 
    Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.CAS 
    Article 

    Google Scholar 
    Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.CAS 
    Article 

    Google Scholar 
    Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.Article 

    Google Scholar 
    Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.CAS 
    Article 

    Google Scholar 
    Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.Article 

    Google Scholar 
    Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    Article 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.CAS 
    Article 

    Google Scholar 
    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.
    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS 
    Article 

    Google Scholar 
    Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    Article 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.Article 

    Google Scholar 
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.CAS 
    Article 

    Google Scholar 
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 
    Article 

    Google Scholar 
    Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.Article 

    Google Scholar 
    Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.Article 

    Google Scholar 
    Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.CAS 
    Article 

    Google Scholar 
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.CAS 
    Article 

    Google Scholar 
    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.Article 

    Google Scholar 
    Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.CAS 
    Article 

    Google Scholar 
    Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.Article 

    Google Scholar 
    Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.CAS 
    Article 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.Article 

    Google Scholar 
    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.CAS 
    Article 

    Google Scholar 
    Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.CAS 
    Article 

    Google Scholar 
    Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.
    Google Scholar 
    Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.Article 

    Google Scholar 
    Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.Article 

    Google Scholar 
    Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.Article 

    Google Scholar 
    Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.
    Google Scholar 
    Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.CAS 
    Article 

    Google Scholar 
    Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.CAS 
    Article 

    Google Scholar 
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.CAS 
    Article 

    Google Scholar 
    Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.Article 

    Google Scholar 
    Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.Article 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.Article 

    Google Scholar 
    Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.Article 

    Google Scholar 
    Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.Article 

    Google Scholar 
    Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.Article 

    Google Scholar 
    Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.Article 

    Google Scholar 
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.Article 

    Google Scholar 
    Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.Article 

    Google Scholar 
    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.CAS 
    Article 

    Google Scholar 
    Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.CAS 
    Article 

    Google Scholar 
    Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.Article 

    Google Scholar  More

  • in

    Human forager response to abrupt climate change at 8.2 ka on the Atlantic coast of Europe

    Carleton, C. & Collard, M. Recent major themes and research areas in the study of human-environmental interaction in prehistory. Environ. Archaeol. 25, 114–130 (2020).Article 

    Google Scholar 
    deMenocal, P. B. Climate and human evolution. Science 331, 540–542 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Potts, R. Evolution and environmental change in early human prehistory. Annu. Rev. Anthropol. 41, 151–167 (2012).Article 

    Google Scholar 
    Mayewski, P. A. et al. Holocene climate variability. Quatern. Res. 62, 243–255 (2004).ADS 
    Article 

    Google Scholar 
    Rohling, E. J. & Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomas, E. R. et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).ADS 
    Article 

    Google Scholar 
    Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W. & Sonnichsen, G. V. Lake agassiz outburst age and routing by labrador current and the 82 cal ka cold event. Quat. Int. 260, 83–97 (2012).Article 

    Google Scholar 
    Mary, Y. et al. Changes in Holocene meridional circulation and poleward Atlantic flow: The Bay of Biscay as a nodal point. Clim. Past 13, 201–216 (2017).Article 

    Google Scholar 
    Prasad, S. et al. The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Glob. Planet. Change 67, 218–226 (2009).ADS 
    Article 

    Google Scholar 
    Seppä, H. et al. Spatial structure of the 8200 cal yr BP event in Northern Europe. Clim. Past Discuss. 3, 165–195 (2007).ADS 

    Google Scholar 
    Alley, R. B. & Ágústsdóttir, A. M. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quatern. Sci. Rev. 24, 1123–1149 (2005).ADS 
    Article 

    Google Scholar 
    Morrill, C. & Jacobsen, R. M. How widespread were climate anomalies 8200 years ago?. Geophys. Res. Lett. 32, 2 (2005).Article 

    Google Scholar 
    Dixit, Y., Hodell, D. A., Sinha, R. & Petrie, C. A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci. Lett. 391, 16–23 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bustamante, M. G. et al. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quatern. Sci. Rev. 146, 274–287 (2016).ADS 
    Article 

    Google Scholar 
    Roffet-Salque, M. et al. Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proc. Natl. Acad. Sci. 115, 8705–8709 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: A Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).Article 

    Google Scholar 
    van der Plicht, J., Akkermans, P. M. M. G., Nieuwenhuyse, O., Kaneda, A. & Russell, A. Tell Sabi Abyad, Syria: Radiocarbon chronology, cultural change, and the 8.2 ka event. Radiocarbon 53, 229–243 (2011).Article 

    Google Scholar 
    Vermeersch, P. M. et al. Early and middle holocene human occupation of the Egyptian Eastern desert: Sodmein cave. Afr. Archaeol. Rev. 32, 465–503 (2015).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. et al. Shell midden research in Atlantic Europe: State of the art, research problems and perspectives for the future. Quatern. Int. 239, 70–85 (2011).Article 

    Google Scholar 
    Bicho, N., Umbelino, C., Detry, C. & Pereira, T. The emergence of Muge Mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J. Island Coast. Archaeol. 5, 86–104 (2010).Article 

    Google Scholar 
    Mannino, M. A., Spiro, B. F. & Thomas, K. D. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J. Archaeol. Sci. 30, 667–679 (2003).Article 

    Google Scholar 
    García-Escárzaga, A. et al. Stable oxygen isotope analysis of Phorcus lineatus (da Costa, 1778) as a proxy for foraging seasonality during the Mesolithic in northern Iberia. Archaeol. Anthropol. Sci. 11, 5631–5644 (2019).Article 

    Google Scholar 
    Crisp, D. The effects of the severe winter of 1962–63 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).Article 

    Google Scholar 
    Mieszkowska, N., Hawkins, S., Burrows, M. & Kendall, M. Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. J. Mar. Biol. Assoc. U.K. 87, 537–545 (2007).Article 

    Google Scholar 
    Hawkins, S. J. et al. Complex interactions in a rapidly changing world: Responses of rocky shore communities to recent climate change. Clim. Res. 37, 123–133 (2008).Article 

    Google Scholar 
    Gutiérrez-Zugasti I, Cuenca-Solana D. Biostratigraphy of shells and climate changes in the Cantabrian region (northern Spain) during the Pleistocene-Holocene transition. In: Archaeomalacology Shells in the Arcaheological Record. British Archaeological Reports International Series 2666 (eds Szabó K, Dupont C, Dimitrijevic V, Gómez-Castélum L, Serrand N). Archaeopress (2014).Thomas, K. D. Molluscs emergent, Part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. J. Archaeol. Sci. 56, 133–140 (2015).Article 

    Google Scholar 
    García-Escárzaga, A. et al. Bayesian estimates of marine radiocarbon reservoir effect in northern Iberia during Early and Middle Holocene. Quatern. Geochronol. 67, 101232 (2022).Article 

    Google Scholar 
    Andrus, C. F. T. Shell midden sclerochronology. Quatern. Sci. Rev. 30, 2892–2905 (2011).ADS 
    Article 

    Google Scholar 
    Wang, T., Surge, D. & Mithen, S. Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317–318, 104–113 (2012).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I., García-Escárzaga, A., Martín-Chivelet, J. & González-Morales, M. R. Determination of sea surface temperatures using oxygen isotope ratios from Phorcus lineatus (Da Costa, 1778) in northern Spain: Implications for paleoclimate and archaeological studies. Holocene 25, 1002–1014 (2015).ADS 
    Article 

    Google Scholar 
    García-Escárzaga, A. et al. Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chem. Geol. 526, 49–61 (2019).ADS 
    Article 

    Google Scholar 
    Bronk, R. C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Bronk, R. C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Heaton, T. J. et al. Marine20-the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS 
    Article 

    Google Scholar 
    Bailey, G. N. & Craighead, A. S. Late Pleistocene and Holocene coastal paleoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeol. Int. J. 18, 175–204 (2003).Article 

    Google Scholar 
    Nuñez S. Dinámicas socio-ecológicas, resiliencia y vulnerabilidad en un paisaje atlántico montañoso: la región cantábrica durante el Holoceno. Unpublished PhD dissertation, Universidad de Cantabria (2018).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, D06102 (2006).ADS 
    Article 

    Google Scholar 
    Ellison, C. R., Chapman, M. R. & Hall, I. R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 1929–1932 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    LeGrande, A. et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. U.S.A. 103, 837–842 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Domínguez-Villar, D. et al. Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology 37, 1095–1098 (2009).ADS 
    Article 

    Google Scholar 
    Lorenz, S. J., Kim, J.-H., Rimbu, N., Schneider, R. R. & Lohmann, G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography 21, 2 (2006).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. Coastal resource intensification across the Pleistocene-Holocene transition in Northern Spain: Evidence from shell size and age distributions of marine gastropods. Quatern. Int. 244, 54–66 (2011).Article 

    Google Scholar 
    Marín-Arroyo, A. B. Human response to Holocene warming on the Cantabrian Coast (northern Spain): An unexpected outcome. Quatern. Sci. Rev. 81, 1–11 (2013).ADS 
    Article 

    Google Scholar 
    Muñoz-Sobrino, C., Ramil-Rego, P., Gómez-Orellana, L. & Díaz Varela, R. A. Palynological data on major Holocene climatic events in NW Iberia. Boreas 34, 381–400 (2005).Article 

    Google Scholar 
    Moreno, A. et al. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J. Paleolimnol. 46, 327–349 (2011).ADS 
    Article 

    Google Scholar 
    Smith, A. C. et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Sci. Rep. 6, 24745 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Rossi, C., Bajo, P., Lozano, R. P. & Hellstrom, J. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quatern. Sci. Rev. 192, 71–85 (2018).ADS 
    Article 

    Google Scholar 
    Hald, M. et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quatern. Sci. Rev. 26, 3423–3440 (2007).ADS 
    Article 

    Google Scholar 
    Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. & Haywood, A. M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017).ADS 
    Article 

    Google Scholar 
    Griffiths, S. & Robinson, E. The 8.2 ka BP Holocene climate change event and human population resilience in northwest Atlantic Europe. Quatern. Int. 465, 251–257 (2018).Article 

    Google Scholar 
    Alday, A. et al. The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin. Quatern. Sci. Rev. 184, 85–106 (2018).ADS 
    Article 

    Google Scholar 
    González-Sampériz, P. et al. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quatern. Res. 71, 121–132 (2009).ADS 
    Article 

    Google Scholar 
    García-Martínez de Lagrán, I. et al. 8.2 ka BP paleoclimatic event and the Ebro Valley Mesolithic groups: Preliminary data from Artusia rock shelter (Unzué, Navarra, Spain). Quatern. Int. 403, 151–173 (2016).Article 

    Google Scholar 
    Neira Campos, A., Fuertes Prieto, N. & Herrero, A. D. The Mesolithic with geometrics south of the ‘Picos de Europa’ (Northern Iberian Peninsula): The main characteristics of the lithic industry and raw material procurement. Quatern. Int. 402, 90–99 (2016).Article 

    Google Scholar 
    Vidal-Encinas, J. M. & Prada-Marcos, M. E. Los hombres mesolíticos de la cueva de La Braña-Arintero (Valdelugueros, León). Jutan de Castillo y León (2010).Jones, J. R., Marín-Arroyo, A. B., Straus, L. G. & Richards, M. P. Adaptability, resilience and environmental buffering in European Refugia during the Late Pleistocene: Insights from La Riera Cave (Asturias, Cantabria, Spain). Sci. Rep. 10, 1217 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Arias Cabal, P. & Fano Martínez, M. Á. Mesolítico Geométrico o Mesolítico con geométricos? El caso de la región Cantábrica. In El Mesolítico Geométrico en la Península Ibérica (eds Utrilla, P. & Montes, L.) (Universidad de Zaragoza, 2009).
    Google Scholar 
    Fuertes-Prieto N, Risseto J, Gutiérrez-Zugasti I, Cuenca-Solana D, González-Morales MR. New perspectives on Mesolithic technology in northern Iberia: data from El Mazo shell midden site (Asturias, Spain). In: Foraging Assemblages: Papers Presented at the Ninth International Conference on the Mesolithic in Europe, Belgrade 2015 (eds Boric D, Antonovic D, Mihailovic B) (2020).Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).ADS 
    Article 

    Google Scholar 
    McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late glacial and early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Philos. Trans. R. Soc. B 376, 20190724 (2020).Article 

    Google Scholar 
    Crowther, A. et al. Coastal subsistence, maritime trade, and the colonization of small offshore islands in eastern African prehistory. J. Island Coast. Archaeol. 11, 211–237 (2016).Article 

    Google Scholar 
    King, C. L. et al. Marine resource reliance in the human populations of the Atacama Desert, northern Chile—A view from prehistory. Quatern. Sci. Rev. 182, 163–174 (2018).ADS 
    Article 

    Google Scholar 
    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C. & Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 4704–4715 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Fairbanks, R. G. A 17.000-year glacio-eustatic sea lever record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).ADS 
    Article 

    Google Scholar 
    Leorri, E., Cearreta, A. & Milne, G. Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: Implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quatern. Sci. Rev. 42, 59–73 (2012).ADS 
    Article 

    Google Scholar 
    Hoffman, J. S. et al. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea. Geophys. Res. Lett. 39, 2 (2012).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacogical analysis: The case of the Cantabrian Region (Northern Spain). Archaeometry 53, 614–630 (2011).Article 

    Google Scholar 
    Gutiérrez, Z. I. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial (Publican, 2009).
    Google Scholar 
    Harris, M., Weisler, M. & Faulkner, P. A refined protocol for calculating MNI in archaeological molluscan shell assemblages: A Marshall Islands case study. J. Archaeol. Sci. 57, 168–179 (2015).Article 

    Google Scholar  More

  • in

    Home range size and habitat quality affect breeding success but not parental investment in barn owl males

    Stearns, S. C. The Evolution of Life Histories (Oxford University, 1992).
    Google Scholar 
    Roff, D. A., Mostowy, S. & Fairbairn, D. J. The evolution of trade-offs: Testing predictions on response to selection and environmental variation. Evolution (N. Y.). 56, 84–95 (2002).
    Google Scholar 
    Lack, D. The Significance of Clutch-size. Ibis (Lond. 1859). 89, 302–352 (1947).Article 

    Google Scholar 
    Drent, R. H. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Adrea 68, 225–263 (1980).
    Google Scholar 
    Harshman, L. G. & Zera, A. J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 22, 80–86 (2007).Article 

    Google Scholar 
    Dijkstra, C., Daan, S. & Tinbergen, J. M. Family planning in the Kestrel (Falco Tinnunculus): The ultimate control of covariation of laying date and clutch size. Behaviour 114, 83–116 (1990).Article 

    Google Scholar 
    Cox, R. M. et al. Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct. Ecol. 24, 1262–1269 (2010).Article 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 277, 963–969 (2010).Article 

    Google Scholar 
    Rivalan, P. et al. Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle. Oecologia 145, 564–574 (2005).ADS 
    Article 

    Google Scholar 
    Perrins, C. M. Population Fluctuations and Clutch-Size in the Great Tit, Parus major. J. Anim. Ecol. 34, 601 (1965).Article 

    Google Scholar 
    Walker, R. S., Gurven, M., Burger, O. & Hamilton, M. J. The trade-off between number and size of offspring in humans and other primates. Proc. R. Soc. B Biol. Sci. 275, 827–833 (2008).Article 

    Google Scholar 
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).Article 

    Google Scholar 
    Charnov, E. L. & Krebs, J. R. On clutch-size and fitness. Ibis (Lond. 1859). 116, 217–219 (1974).Article 

    Google Scholar 
    Ricklefs, R. E. On the evolution of reproductive strategies in birds: Reproductive effort. Am. Nat. 111, 453–478 (1977).Article 

    Google Scholar 
    Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Syst. 18, 435–487 (1987).Article 

    Google Scholar 
    Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123 (2012).Article 

    Google Scholar 
    Kouba, M., Bartoš, L., Sindelář, J. & St’astny, K. Alloparental care and adoption in Tengmalm’s Owl (Aegolius funereus). J. Ornithol. 158, 185–191 (2017).Article 

    Google Scholar 
    Redpath, S. M. Habitat fragmentation and the individual: Tawny owls Strix aluco in woodland patches. J. Anim. Ecol. 64, 652 (1995).Article 

    Google Scholar 
    Bruun, M. & Smith, H. G. Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biol. Conserv. 114, 179–187 (2003).Article 

    Google Scholar 
    Frey-Roos, F., Brodmann, P. A. & Reyer, H. U. Relationships between food resources, foraging patterns, and reproductive success in the water pipit, Anthus sp. Spinoletta. Behav. Ecol. 6, 287–295 (1995).Article 

    Google Scholar 
    Saïd, S. et al. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118, 1299–1306 (2009).Article 

    Google Scholar 
    Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Hakkarainen, H., Koivunen, V. & Korpimäki, E. Reproductive success and parental effort of Tengmalm’s owls: Effects of spatial and temporal variation in habitat quality. Ecoscience 4, 35–42 (1997).Article 

    Google Scholar 
    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).Article 

    Google Scholar 
    Trembley, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2004).Article 

    Google Scholar 
    Turcotte, Y. & Desrochers, A. Landscape-dependent response to predation risk by forest birds. Oikos 100, 614–618 (2003).Article 

    Google Scholar 
    Hinsley, S. A., Rothery, P. & Bellamy, P. E. Influence of woodland area on breeding success in great tits parus major and blue tits Parus caeruleus. J. Avian Biol. 30, 271 (1999).Article 

    Google Scholar 
    Hinam, H. L. & Clair, C. C. S. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of Northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).Article 

    Google Scholar 
    Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the Kestrel. J. Anim. Ecol. 65, 539 (1996).Article 

    Google Scholar 
    Slagsvold, T., Sandvik, J., Rofstad, G., Lorentsen, O. & Husby, M. On the adaptive value of intraclutch egg-size variation in birds. Auk 101, 685–697 (1984).Article 

    Google Scholar 
    Tripet, F., Richner, H. & Tripet, F. Host responses to ectoparasites: Food compensation by parent blue tits. Oikos 78, 557 (1997).Article 

    Google Scholar 
    Budden, A. E. & Beissinger, S. R. Resource allocation varies with parental sex and brood size in the asynchronously hatching green-rumped parrotlet (Forpus passerinus). Behav. Ecol. Sociobiol. 63, 637–647 (2009).Article 

    Google Scholar 
    Bókony, V. et al. Stress response and the value of reproduction: Are birds prudent parents?. Am. Nat. 173, 589–598 (2009).Article 

    Google Scholar 
    McGinley, M. A., Temme, D. H. & Geber, M. A. Parental investment in offspring in variable environments: Theoretical and empirical considerations. Am. Nat. 130, 370–398 (1987).Article 

    Google Scholar 
    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science (80-.). 292, 494–497 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Caro, S. M., Griffin, A. S., Hinde, C. A. & West, S. A. Unpredictable environments lead to the evolution of parental neglect in birds. Nat. Commun. 7, 1–10 (2016).Article 

    Google Scholar 
    Roulin, A. Barn Owls: Evolution and Ecology (Cambridge University Press, 2020).
    Google Scholar 
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan avian predator. J. Biogeogr. 47, 1467–1481 (2020).Article 

    Google Scholar 
    Arlettaz, R., Krähenbühl, M., Almasi, B., Roulin, A. & Schaub, M. Wildflower areas within revitalized agricultural matrices boost small mammal populations but not breeding Barn Owls. J. Ornithol. 151, 553–564 (2010).Article 

    Google Scholar 
    Hindmarch, S., Elliott, J. E., Mccann, S. & Levesque, P. Habitat use by barn owls across a rural to urban gradient and an assessment of stressors including, habitat loss, rodenticide exposure and road mortality. Landsc. Urban Plan. 164, 132–143 (2017).Article 

    Google Scholar 
    Castañeda, X. A., Huysman, A. E. & Johnson, M. D. Barn Owls select uncultivated habitats for hunting in a winegrape growing region of California. Ornithol. Appl. 123, 1–15 (2021).
    Google Scholar 
    Séchaud, R. et al. Behaviour-specific habitat selection patterns of breeding barn owls. Mov. Ecol. 9, 18 (2021).Article 

    Google Scholar 
    Roulin, A., Ducrest, A.-L. & Dijkstra, C. Effect of brood size manipulations on parents and offspring in the barn owl Tyto alba. Ardea 87, 91–100 (1999).
    Google Scholar 
    Béziers, P. & Roulin, A. Double brooding and offspring desertion in the barn owl Tyto alba. J. Avian Biol. 47, 235–244 (2016).Article 

    Google Scholar 
    Laaksonen, T., Hakkarainen, H. & Korpimäki, E. Lifetime reproduction of a forest-dwelling owl increases with age and area of forests. Proc. R. Soc. B Biol. Sci. 271, 10058 (2004).Article 

    Google Scholar 
    Bryant, D. M. Energy expenditure and body mass changes as measures of reproductive costs in birds. Funct. Ecol. 2, 23 (1988).Article 

    Google Scholar 
    Merilä, J. & Wiggins, D. A. Mass loss in breeding blue tits: The role of energetic stress. J. Anim. Ecol. 66, 452 (1997).Article 

    Google Scholar 
    Frey, C., Sonnay, C., Dreiss, A. & Roulin, A. Habitat, breeding performance, diet and individual age in Swiss Barn Owls (Tyto alba). J. Ornithol. 152, 279–290 (2010).Article 

    Google Scholar 
    Aschwanden, J., Holzgang, O. & Jenni, L. Importance of ecological compensation areas for small mammals in intensively farmed areas. Wildlife Biol. 13, 150–158 (2007).Article 

    Google Scholar 
    Roulin, A. Tyto alba Barn Owl. BWP Updat. 4, 115–138 (2002).
    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Taylor, I. Barn Owls: Predator-Prey Relationships and Conservation (Cambridge University Press, 1994).
    Google Scholar 
    van den Brink, V., Dreiss, A. N. & Roulin, A. Melanin-based coloration predicts natal dispersal in the barn owl, Tyto alba. Anim. Behav. 84, 805–812 (2012).Article 

    Google Scholar 
    Dreiss, A. N. & Roulin, A. Divorce in the barn owl: Securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate. J. Evol. Biol. 27, 1114–1124 (2014).CAS 
    Article 

    Google Scholar 
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation-maximization binary clustering for behavioural annotation. PLoS One 11, e0151984 (2016).Article 

    Google Scholar 
    San-Jose, L. M. et al. Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat. Ecol. Evol. 3, 1331–1340 (2019).Article 

    Google Scholar 
    Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography (Cop.) 41, 1801–1811 (2018).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. Data Visualization for Statistics in Social Science [R package sjPlot version 2.8.9]. (2021).Rutz, C. & Bijlsma, R. G. Food-limitation in a generalist predator. Proc. R. Soc. B Biol. Sci. 273, 2069–2076 (2006).Article 

    Google Scholar 
    Altmann, S. A. The impact of locomotor energetics on mammalian foraging. J. Zool. 211, 215–225 (1987).Article 

    Google Scholar 
    Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Pfeiffer, T. & Meyburg, B. U. GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J. Ornithol. 156, 963–975 (2015).Article 

    Google Scholar 
    Romano, A. et al. Nestling sex and plumage color predict food allocation by barn swallow parents. Behav. Ecol. 27, 1198–1205 (2016).Article 

    Google Scholar 
    Bryant, D. M. & Tatner, P. Hatching asynchrony, sibling competition and siblicide in nestling birds: Studies of swiftlets and bee-eaters. Anim. Behav. 39, 657–671 (1990).Article 

    Google Scholar 
    Mock, D. W. & Parker, G. A. Advantages and disadvantages of egret and heron brood reduction. Evolution (N. Y.). 40, 459–470 (1986).
    Google Scholar 
    Stenning, M. J. Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol. Evol. 11, 243–246 (1996).CAS 
    Article 

    Google Scholar 
    Roulin, A., Colliard, C., Russier, F., Fleury, M. & Grandjean, V. Sib-sib communication and the risk of prey theft in the barn owl Tyto alba. J. Avian Biol. 39, 593–598 (2008).Article 

    Google Scholar 
    Korpimaki, E. Costs of reproduction and success of manipulated broods under varying food conditions in Tengmalm’s owl. J. Anim. Ecol. 57, 1879 (1988).
    Google Scholar 
    Tolonen, P. & Korpimäki, E. Do kestrels adjust their parental effort to current or future benefit in a temporally varying environment?. Écoscience 3, 165–172 (1996).Article 

    Google Scholar 
    Harrison, F., Barta, Z., Cuthill, I. & Székely, T. How is sexual conflict over parental care resolved? A meta-analysis. J. Evol. Biol. 22, 1800–1812 (2009).CAS 
    Article 

    Google Scholar 
    Osorno, J. L. & Székely, T. Sexual conflict and parental care in magnificent frigatebirds: Full compensation by deserted females. Anim. Behav. 68, 337–342 (2004).Article 

    Google Scholar 
    Paredes, R., Jones, I. L. & Boness, D. J. Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behaviour 143, 451–481 (2006).Article 

    Google Scholar 
    Kleijn, D. et al. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol. Lett. 9, 243–254 (2006).CAS 
    Article 

    Google Scholar 
    Zingg, S., Ritschard, E., Arlettaz, R. & Humbert, J. Y. Increasing the proportion and quality of land under agri-environment schemes promotes birds and butterflies at the landscape scale. Biol. Conserv. 231, 39–48 (2019).Article 

    Google Scholar  More

  • in

    Coupling reconstruction of atmospheric hydrological profile and dry-up risk prediction in a typical lake basin in arid area of China

    Coupling accuracy analysisPrecipitation simulation accuracyThe comparison between annual precipitation simulated by WRF-Hydro and measured precipitation is shown in the following Fig. 3a. From the Fig. 3a, we can get that the correlation between simulated precipitation and measured precipitation is 0.783, which is relatively high and the simulation is good. In addition, the simulated precipitation is less than the measured precipitation value in time. We guess that this error is caused by the precision and quality of precipitation products. WRF-Hydro can easily underestimate the duration of heavy rain when simulating precipitation, so the simulated precipitation is slightly smaller than the measured precipitation in long-term sequence, but the overall accuracy is good.Figure 3(a) Comparison between WRF-HYDRO simulation and measured annual precipitation in Daihai; (b) Comparison of runoff simulation and remote sensing estimation in Daihai Lake; (c) Modified runoff simulation and remote sensing estimation in Daihai Lake.Full size imageThe comparison between the simulated spatial distribution of annual precipitation and the verified products in the study area is shown in the Fig. 4. Generally speaking, the precipitation of interpolation products is slightly higher than the simulation value, which is consistent with the above analysis. In addition, the spatial distribution law of the two is consistent with each other, and the spatial variation law is basically the same. However, the transition of simulation results in areas with severe precipitation changes is relatively gentle, while the transition of interpolation products is more severe. The coverage of the maximum value in the simulation results is smaller than that of interpolation products. The guess is caused by the error of setting the precipitation boundary line. The boundary of interpolation products is China as a whole, and the boundary of simulation results is only Daihai Basin, which fundamentally determines that the precipitation simulation results will be slightly smaller than the interpolation products. Because the climate and hydrology mutual chamber is defined in the model setting from the surrounding grid points, the smaller the area causes some areas with mutual chamber cannot enter the boundary line, resulting in the precipitation simulation results less than the interpolation products. But in terms of the overall spatial differentiation law, the distribution of simulation results in interpolation products is not very different, which has good practical value.Figure 4Spatial comparison of WRF-HYDRO simulation and interpolation of annual precipitation in Daihai.Full size imageSimulation accuracy of runoff into LakeThe comparison between the WRF-Hydro simulation results and remote sensing estimation results of the runoff from Daihai Lake for many years is shown in the Fig. 3b. It can be seen from the figure that the correlation between simulation results and remote sensing estimation results is 0.629, which is better. But it is obvious that the simulation results are higher than those of remote sensing. The reason may be that the model does not set up the parameters of man-made water from the river entering the lake, including agricultural irrigation water and industrial water intake. So the simulation results are overestimated to the runoff into the lake. Therefore, the simulated runoff into the lake is modified in this study to reduce the water consumption ignored by the model.The comparison between the revised simulated runoff and remote sensing estimation is shown in the Fig. 3c. As can be seen from the figure, the correlation is increased to 0.650. Although not much improvement, the simulation results and remote sensing results are distributed evenly around the boundary.Analysis of coupling resultsPrecipitation analysisThe precipitation in Daihai Basin is relatively abundant. Except for some extreme drought years and humid years, the average annual precipitation is 300–600 mm (see Fig. 5a), and the average annual precipitation is about 400 mm. It can be seen from the figure that the minimum annual precipitation is less than 250 mm; The maximum annual diameter is higher than 750 mm. The difference between extreme dry year and extreme wet year is three times.Figure 5(a) Distribution curve of annual precipitation in Daihai Basin; (b) Distribution curve of annual mean monthly precipitation in Daihai Basin.Full size imageThe monthly average of precipitation in the Daihai Basin for many years is shown in the Fig. 5b. It can be seen from the figure that the precipitation in the Daihai Basin is unevenly distributed throughout the year, with the least in January at 1.73 mm and the most in July at 112.10 mm. The precipitation in July–August accounts for more than 50% of the total annual precipitation. In addition, it can be seen from the figure that the precipitation in the Daihai Basin is mainly concentrated in June to September, which is also the flood season in the Daihai Basin, accounting for more than 70% of the total annual precipitation.Combined with Table 3, overall, the average precipitation from 1980 to 1994 is 401.75 mm, with little fluctuation; During the period from 1995 to 2011, except for extreme precipitation in some years (more than 600 mm in both 1995 and 2003), the precipitation decrease, with an average value of 371.39 mm. There are several dry years and wet years, and the fluctuation range was sharp; From 2012 to 2020, the fluctuation range is small, and the average value rises to 451.75 mm.Table 3 Average precipitation (mm) in different periods in Dahai BasinFull size tableThe spatial distribution of annual precipitation in Daihai Basin is shown in the Fig. 6. It is obvious from the figure that the precipitation in 1990, 1995 and 2020 is abundant compared with other years. In addition, it is found that although the annual precipitation in Daihai Basin varies in size, its spatial distribution is basically the same.Figure 6Spatial distribution of annual precipitation in Daihai Basin.Full size imageThe spatial pattern of annual precipitation in Daihai Basin is as follows: the southeast of Liangcheng County and the north of Zuoyun County, the northwest of Liangcheng County and the northwest of Fengzhen county are the three precipitation centers, which gradually decrease outward. And the central effect of Fengzhen county is not obvious in some years. In addition, it is found that the area around Daihai Lake has the least precipitation in the whole Daihai Basin. This may be related to the terrain surrounding the Daihai Basin.In the whole study area, the annual precipitation in the north of Zuoyun County is larger than that in other regions. In some years, the annual precipitation reaches 800 mm, and the extension area is wide. In some years, it extends to the southeast of Liangcheng County. Therefore, it is speculated that mountain torrents, debris flows, rainstorms, snowstorms and other natural disasters are prone to occur here.In addition, combined with the topographic map, it is found that the southeast and northwest of Liangcheng County are the highest elevation in the study area, which coincides with the extreme precipitation. At the same time, it is found that the spatial consistency of precipitation distribution in the whole study area is higher than that of terrain distribution in the study area. Therefore, it is speculated that the precipitation in the study area is seriously affected by the terrain, in other words, the precipitation in the study area is mostly terrain rain or mountain convective rain.Runoff analysisThe Runoff Curve of Daihai Lake is shown in the Fig. 7a. It can be seen from the figure that the flow into the lake shows a downward trend from 1980 to 2020. Although it rebounded in 1996–1999 and 2005–2007, after 2010, the runoff into the lake decreased sharply below 8 × 106m3. From 1980 to 1990, the runoff into the lake decreased linearly with a larger slope and a faster speed; However, from 1990 to 2000, the runoff into the lake appeared the first vibration wave peak, and from 2000 to 2007, the second vibration wave peak. From 2008 to 2012, the decline rate was sharp, and the runoff into the lake had been reduced to 3.95 × 106m3 in 2012; Since 2013, the runoff into the lake tends to be flat, but it has not exceeded 10 × 106m3.Figure 7(a) Change of runoff in Daihai Lake over the years; (b) Changes of lake area in Daihai over the years; (c) Changes of lake water level in Daihai over the years; (d) Changes of volume water in Daihai Lake over the years.Full size imageThe change curve of Daihai Lake area is shown in the Fig. 7b. It can be seen from the figure that the area of Daihai Lake is declining in a straight line. In a short period of 40 years, the lake area has shrunk nearly 100 km2. In addition, we found that the shrinkage rate of Daihai Lake area slowed down from 1980 to 1985, but the lake area shrank sharply from 1995 to 2000. After 2005, the atrophy curve almost coincided with the fitting curve, and the overall fitting R2 was as high as 0.958.The water level variation curve of Daihai Lake is shown in the Fig. 7c. As can be seen from the figure, the variation trend of water level in Daihai Lake is very similar to that of lake area. However, the slope of lake water level change is less than the change rate of lake area. In the 40 years since 1975, the water level in Daihai has dropped by nearly 10 m. In addition, the water level rose slightly in 1995–1996 and 2003–2006. And after 2006, Daihai water level decline rate also accelerated. Since 2006, the water level of Daihai has dropped nearly 6 m, with a rate of 0.45 m/year.The trend of the volume water volume of the Daihai Lake is shown in the Fig. 7d. It can be clearly seen from the figure that the decline curve of the Daihai Lake water volume is close to a straight line, especially from 2005 to the present, the fitting degree is as high as 0.981. There should be some geometrical relationship among the lake area, water level and water volume, and this relationship should be related to the digital elevation model of the lake bottom. In addition, the changes of lake bottom topography are not linear, so there are still subtle differences between the three changes.The annual surface runoff of Daihai Basin is shown in the Fig. 8. It can be seen from the figure that the Gongba River, the Wuhao River, the Buliang River and the Tiancheng River in the south of Daihai Lake supply the Daihai Lake for a long time, and the Bantanzi River in the West also flows into the Dai sea in some years. Combined with the spatial distribution of annual precipitation, it can be concluded that surface runoff is seriously affected by precipitation. The annual distribution is uneven. The surface runoff from the southeast of Liangcheng County generally flows into Daihai Lake to the north, but in some drought years, it will be stopped and cannot flow into Daihai Lake. Bantanzi River in the west of Daihai Lake also supplies Daihai Lake in the year of more precipitation.Figure 8Spatial distribution of surface runoff in Daihai Basin.Full size imageTaking the surface runoff of Daihai Basin in January, April, July and October 2015 as an example, the distribution of surface runoff in different seasons of the year is analyzed, as shown in the Fig. 9. It can be seen from the figure that the rivers in Daihai Basin are seasonal rivers, which are prone to be cut off in autumn and winter. In winter (December–February), there will be different degrees of snowfall events in Daihai Basin, but due to the river freezing period and small snowfall, there will be no runoff. In spring (March to May), the precipitation in Daihai Basin began to increase, and the surface runoff also began to increase, mainly from the southeast and northwest of Liangcheng County. Gongba River, Wuhao River, buliang River, Tiancheng River and Bantanzi River in the south of Daihai Lake will supply Daihai Lake, but these rivers have small flow in spring, which is easy to break. Summer (June–August) is the main period of precipitation in Daihai Basin, and the surface runoff will also surge. In July 2015, the runoff in some areas reached 2000 mm, which was prone to flood disaster. The rivers in the west and south of Daihai Lake will supply it, but the runoff into Daihai Lake is not high, and most of the runoff is concentrated in the upper and middle reaches. In autumn (from September to November), the precipitation in Daihai Basin decreases. Before the freezing period, the precipitation may form runoff, but it is difficult to flow into Daihai Lake due to the small flow.Figure 9Spatial distribution of surface runoff in different seasons in Daihai Basin.Full size imageStatistical analysis of other factorsClimatic factors

    (1)

    Evaporation capacity

    The variation curve of annual evaporation in Daihai is shown in the Fig. 10a. It can be seen from the figure that although the evaporation in Daihai Basin fluctuates, it shows an upward trend, with an upward slope of 8.855 and R2 of 0.560. From 1980 to 1986, the annual evaporation fluctuated around 1000 mm; From 1987 to 1992, the annual evaporation of Daihai Basin decreased sharply, but from 1993 to 2000, the annual evaporation increased sharply with a very high rate of increase; But after 2000, the annual evaporation fluctuated and remained at 1250 mm.

    (2)

    Average temperature

    Figure 10Perennial (a) evaporation (b) annual average temperature (c) annual average wind speed change in Daihai Basin.Full size imageThe variation curve of annual average temperature in Daihai is shown in the Fig. 10b. It can be seen from the figure that the annual average temperature in Daihai Basin presents an obvious fluctuating upward trend, and the fitting upward slope is 0.040, R2 is 0.406. In addition, it can be observed that in a 10-year cycle, there will be two small fluctuations and one large fluctuation, and the fluctuation will rise.

    (3)

    Wind speed

    The curve of annual average wind speed in Daihai is shown in the Fig. 10c. It can be seen from the figure that the annual average wind speed of Daihai Basin presents a fluctuating downward trend, and the fitting downward slope is 0.036, R2 is 0.368. In addition, it can be observed that the annual average wind speed fluctuated with a mean line of 6.2 from 1980 to 1987; In 1988 and 1990, it dropped sharply with a large slope; From 1990 to 2003, the fluctuation decreased. From 2003 to 2011, the fluctuation was stable at 4.5, and rose sharply in 2012. So far, the fluctuation has been stable at 5.2.Human factors

    (1)

    Cultivated land area

    The change curve of cultivated land area in Daihai Basin is shown in the figure. It can be seen from the Fig. 11a that the annual average wind speed in Daihai Basin presents an upward trend, with the fitting rising rate of 0.017 and R2 of 0.970, almost in a straight line. In addition, it can be observed that from 1996 to 2005, the rising rate appeared a trough, that is, the rising rate first increased rapidly and then decreased. From 2000 to 2005, the rising rate was very slow and approached zero; But since 2006, it has returned to a straight-line rise.

    (2)

    Industrial water consumption

    Figure 11Perennial (a) cultivated land area (b) industrial water consumption (c) total population change curve in Daihai Basin.Full size imageThe change curve of industrial water consumption in Daihai Basin is shown in the Fig. 11b. It can be seen from the figure that the industrial water consumption of Daihai Basin presents an upward trend, and the fitting rising rate is 0.433, R2 is 0.794. In addition, it can be observed that from 1975 to 1993, the industrial water consumption of Daihai Basin was below 3 × 106m3; From 1994 to 2005, except for the decrease in 1998–2000, it has been on the rise, and the rising speed is fast, which has increased five times in ten years; Since 2005, the industrial water consumption in Daihai Basin has been stable at about 15 × 106m3.

    (3)

    Total population

    The change curve of total population in Daihai Basin is shown in the Fig. 11c. It can be seen from the figure that the total population of Daihai Basin presents an upward trend, and the fitting rising rate is 0.074, R2 is 0.864. In addition, it can be observed that the total population of Daihai Basin increased slowly from 1975 to 1985; From 1986 to 1990, the total population remained flat; It fluctuated from 1990 to 2000; Since 2000, the total population has risen sharply.Analysis of driving factors of hydrological informationIn this study, the average temperature, annual precipitation, annual evaporation, average wind speed in natural factors and cultivated land area, agricultural water consumption, industrial water consumption and population in human factors are considered as the influencing factors of runoff change in Daihai Lake. Therefore, the flow into the lake and the above elements constitute a variable sequence, and the correlation matrix is calculated. See the Table 4 for details.Table 4 Correlation matrix between lake inflow and influencing factors.Full size tableIt can be seen from the Table 4 that the cultivated land area has the highest correlation with the runoff into the lake, with a correlation of − 0.777, which is highly significant, followed by the wind speed, with a correlation of 0.690, which is highly significant; In addition, the total population, industrial water consumption, evaporation and average temperature were significantly correlated. Therefore, the discharge of Daihai Lake is influenced by both nature and human. It can be seen from the table that industrial water consumption, total population, cultivated land area, evaporation and annual average temperature have a negative impact on the flow into the lake, while wind speed has a positive impact.At the same time, the correlation between different factors can be obtained from the Table. For example, the correlation between industrial water consumption and population, cultivated land area and evaporation is as high as 0.8, which is highly significant; The correlation between population and cultivated land, cultivated land and wind speed and evaporation is also about 0.8, which is highly significant; In addition, the correlations between industrial water consumption and annual average temperature, population and annual average temperature, wind speed, evaporation, cultivated land, cultivated land and annual average temperature, evaporation and wind speed, wind speed and annual average temperature are all over 0.5.It can be clearly observed from the table that except for agricultural water consumption, precipitation and evaporation, the annual average temperature is significantly correlated with other factors, and the correlation is more than 0.5. The correlation between annual precipitation and other factors is small and not significant. Therefore, it can be determined that there is data redundancy between different elements. In order to eliminate the data redundancy and get the determinants of the discharge into the lake, the correlation analysis of the variable sequence is carried out, as shown in the table.It can be seen from the Table 5 that the cumulative variance of the first three principal components has reached 87.016%, and the eigenvalues of the first two principal components are greater than 1, which has met the standard. The variance contribution rate of the first principal component was 59.641%, and the order of load rate was cultivated land (0.967), industrial water (0.950), population (0.859), evaporation (0.856), wind speed (0.841), and the load rate was greater than 0.8; In the first principal component, the influence of human factors is greater than that of natural factors. In the second principal component, the variance contribution rate is 18.821%, in which the annual precipitation (− 0.875) and agricultural water consumption (0.736) have higher load rate, and the influence of natural factors is greater than that of human factors.Table 5 Component matrix of principal component analysis of different influencing factorsFull size tableFuture forecastAccording to the analysis in Sect. 3.4, we find that human factors have a huge impact on the lake inflow. In lake water balance, precipitation and evaporation are determined by climate. Now, the Inner Mongolian government has taken a series of measures to protect the Daihai Lake. Therefore, when we predict the future lake water volume, we consider two situations: (1) the future lake water volume in the natural state without any interference (protection or destruction) measures; (2) keeping the existing water volume unchanged future lake water volume in the case.Situation IFor the Situation I, we use two forecasting methods. Method I is to directly predict the future lake water volume by using the variation law of lake volume water volume with time. Method II is to use the lake water balance equation to estimate the change in lake water volume, and then estimate the future lake water volume. The results obtained by these two calculation methods are shown in the Table 6.Table 6 Future prediction of Daihai Lake in situation I.Full size tableWhen estimating the dry years of the Daihai Lake, the results obtained by using the time-varying laws of lake area, water volume and lake depth are inconsistent. Among them, the dry year of the Daihai Lake obtained by using the water volume is 2031, the lake area is 2047, and the water depth is 2096. The three are vastly different. The reason is the uncertainty of our modeling data. As Daihai Lake is a lake in an arid area, data is extremely scarce, and there is almost no continuous measurement of water level, depth, and water volume. The lake area is interpreted from remote sensing images and is an annual average, which results in neglect of inter-annual hydrological changes. Similarly, the water depth is also obtained by remote sensing. The resolution of the remote sensing image is 30 m. We use the interpolation method to control the accuracy to about 5 m. However, in the later stage of the prediction, when the lake depth is lower than 10 m, the results begin to become inaccurate. The modeling data of lake water volume were obtained from WRF-Hydro simulations, so the uncertainty of the data led to the inconsistency of the results. We choose the most recent year as the final result of method I, that is, the forecast result of water volume.From the Table 6, we can observe that the calculation results of the two methods are quite different. The reason is that in method I, we assume that the volume of water in the lake changes linearly, and there is only one variable; in method II, the number of variables increases and the uncertainty increases. However, the years when the Daihai Lake is predicted to dry up are basically the same. Method I predicts that the Daihai Lake will be depleted in 2031, and method II is 2033, which is not much different.Situation IIFor the situation II, we control the agricultural water consumption and industrial water consumption to remain unchanged, estimate the change of volume water at this time, and then estimate the future lake water volume. Among them, the change in water consumption is only evaporation, and the change in water replenishment is precipitation and runoff. The future lake inflow and lake water volume calculated by using the water balance equation are shown in the Table 7:Table 7 Future prediction of Daihai Lake in situation II.Full size tableFrom the Table 7, we can see that under human control, although the of lake inflow will continue to decline compared with no measures, the rate of decline will be significantly slower. And the lake inflow will drop to 0 in 2060. Similarly, the water volume in the Daihai Lake will decline. But the rate is significantly slower compared with situation I. And the water volume will drop to 0 in 2140, nearly 110 years later than 2032–3033 without any control. This shows that man-made protection of the Daihai Lake is extremely important. More

  • in

    Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks

    Biogeographic pattern of LOSSThe original forest plot data aggregated at 0.25 degree show large spatial variations (Fig. 1a) across the continents, with the greatest LOSS in Asia & Australia (mean ± 1 SE; 6.5 ± 0.5 Mg ha−1 y−1) > South America (4.9 ± 0.2 Mg ha−1 y−1) and Africa (4.6 ± 0.2 Mg ha−1 y−1) > North America (2.3 ± 0.1 Mg ha−1 y−1 in boreal and 2 ± 0.1 Mg ha−1 y−1 in temperate)36 (Fig. 1b; Supplementary Fig. 5a). This pattern was robust to bootstrapping (1000 iterations) to randomly select 90% of plots for estimating the probability distribution of the mean continental values (Supplementary Fig. 5b). The upscaled gridded LOSS maps generated by our random forest algorithm (see Methods) over the spatial domain of our full datasets shows hotspots of high LOSS in Southern Asia & Australia ( > 6 Mg ha−1 y−1), Northwestern South America (Amazon) ( > 5 Mg ha−1 y−1), and the western coast of North America ( >3 Mg ha−1 y−1)10,36,37,38 (Supplementary Fig. 6a). These patterns were robust to two bootstrapping approaches – based on the sampled biomes of each point feature and also randomly sampling 90% data with replacement (see Methods) (Fig. 2a; Supplementary Fig. 6b). The uncertainty (coefficient of variance – CV; %mean) was generally low ( 10%), despite the larger sample size (n  > 500 at 0.25 degree) (Fig. 2b; Supplementary Fig. 6c), likely because of potential effects of forest recovery or regrowth following past disturbance16 as well as the small plot size (i.e., 0.067 ha in each plot)39.Fig. 1: Map of sample locations and biomass loss to mortality (LOSS) data.a Sampling sites. A total of 2676 samples were collected and aggregated into 814 grids at 0.25 degree that were used for geospatial modeling. b The median and interquartile range of LOSS across continents—North America, South America, Africa, and Asia & Australia.Full size imageFig. 2: Map of biomass loss to mortality (LOSS) and its uncertainty across continents.a, b Ensemble mean of LOSS a and its uncertainty (coefficient of variation, b across continents at 0.25 degree derived from forest plot data using the bootstrapped (10 iterations) approach by randomly sampling 90% plots with replacement. c, d Ensemble mean of LOSS c and its uncertainty (coefficient of variation, d across continents at 0.5 degree derived from six dynamic vegetation models (DGVMs, ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). Coefficient of variation was quantified as the standard deviation divided by the mean predicted value as a measure of prediction accuracy. e The difference of LOSS between ensemble mean of DGVMs and ensemble mean of LOSS derived from forest plots data across continents at 0.5 degree, quantified as difference between c and a, whereby LOSS in Fig. 2a is resampled at 0.5 degree.Full size imageDrivers of LOSSMean annual temperature (MAT), aridity index (the ratio of precipitation to potential evapotranspiration), and precipitation seasonality were identified as the dominant predictors of LOSS across continents (Supplementary Fig. 7a), with positive relationships with LOSS (Fig. 3a)10,36. In contrast to local-scale studies40,41, wood density, forest stand density, and soil conditions were poor predictors of LOSS when all data were used. These relationships were largely driven by the spatial pattern of LOSS and climate gradients, whereby LOSS and MAT, aridity index, and precipitation seasonality were high in tropical forests (Supplementary Fig. 8). This motivated us to examine the drivers of LOSS in tropical vs non-tropical biomes (Supplementary Fig. 7b, c; Fig. 3b–d). With a smaller gradient in climate within wet tropical forests, soil properties such as nutrient content and cation exchange capacity (CEC) were significant predictors of LOSS (Supplementary Fig. 7b; Fig. 3b)42. In wet tropical forests, the relationships between soil nutrient content and CEC and LOSS were positive (Fig. 3b) and thus appeared to support the pattern of higher mortality in more productive tropical forests growing over nutrient rich soils42,43. In non-tropical regions, basal area or a competition index based on the degree of crowding within stocked areas44 (see Methods) were the dominant predictors of LOSS, especially in extra-tropical North America (Supplementary Fig. 7c; Fig. 3c, d). This result highlights the role of stand competition in driving the spatial patterns of LOSS44,45. This pattern also supports the existence of a spatial tradeoff between faster growth and higher mortality because of resource limitations or younger death, whereby competition plays the fundamental role13,45. In contrast to other studies15,46, forest age (available in boreal and temperate forests in North America) was not a good predictor of LOSS (Supplementary Fig. 9), likely because of our focus on mature and old-growth forests (i.e., age > 80 and 100 years in boreal and temperate forests, respectively).Fig. 3: Standardized response coefficients (mean ± 95% CIs) between LOSS and dominant environmental drivers.The scales analyzed were at continents a, tropical regions b vs non-tropical regions c, d. The response coefficients were quantified by linear mixed model which account for each plot as a random effect. Panels c and d used basal area and stand density index (SDI) as competition index, respectively. SDI was defined as the degree of crowding within stocked areas and quantified as a function of tree density and the quadratic mean diameter in centimeters. Basal area is strongly correlated with total biomass and higher LOSS in higher basal area may be merely because of its correlations. Thus, we used another competition metrics – SDI to further confirm the role of competition in LOSS. The error bars denote the 95% confidence interval. *P  130%) in western boreal forests in North America (Fig. 2d).Conventional emergent constraintWe first used the conventional emergent constraint approach27 to constrain the projected (2015–2099) NPP and HR across continents. This approach was conducted by building the statistic (linear) relationship between the historical LOSS averaged at forest-plot scale (derived from original plot data of LOSS) or continental scale (derived from the map of LOSS) and projected NPP and HR summed across continents (see Methods and Supplementary Fig. 4 for details). We found that the emergent constraint approach worked well in North America, where the relationship between historical LOSS and projected NPP and HR was significant (the scenario of using original plot data of LOSS: R2 = 0.68 and P = 0.04 for grid-level NPP; R2 = 0.97 and P = 0.0001 for grid-level HR; the scenario of using map of LOSS at continent scale: R2 = 0.7 and P = 0.04 for grid-level NPP; R2 = 0.95 and P = 0.0008 for grid-level HR) (Supplementary Fig. 11a; Supplementary Fig. 12a). This emergent constraint approach was less effective, however, for other continents, where tropical forests are predominant (all P  > 0.05; Supplementary Fig. 11b, c, d; Supplementary Fig. 12b, c, d). These results suggest a weak linear relationships when observations are lumped or averaged at broad continental scales for tropical continents, thus highlighting the importance of spatial scale and non-linear relationships in emergent constraint25. We interpret the result that this LOSS emergent constraint works better in North America than in the tropical forests, by a better representation of forest plot distribution and couplings of LOSS and NPP and HR across space in North America.Machine learning constraintTo overcome this limitation, we trained a machine learning algorithm34 to reproduce the emerging relationship between historical LOSS and projected NPP and HR at grid level in each DGVM by incorporating all grid values without or with climate predictors, expressed as NPPpro or HRpro = f(LOSShis) or f(LOSShis, MATpro, MAPpro), respectively, where pro refers to projected variables, his refers to historical variables, and MAT and MAP is mean annual temperature precipitation, respectively (see Methods). The results show consistently positive non-linear relationships between LOSShis and NPPpro or HRpro across DGVMs (Supplementary Fig. 3). Our machine learning algorithms can surrogate well the results of process-based models between the historical LOSS and the projected NPP and HR (R  > 0.65 and R  > 0.9 in both scenarios without climate effects and with climate effects, respectively; see Methods) (Supplementary Fig. 13). After including the observed LOSShis (derived from LOSS) in the machine learning algorithm, we were able to generate spatially explicit constrained estimates34 of projected NPP and HR, and then compare them with the scenario without the constraint (Supplementary Fig. 14; Supplementary Fig. 15). These patterns essentially show a lower NPPpro or HRpro in locations of overestimated LOSShis in DGVMs, consistent with the positive relationship between LOSShis and NPPpro or HRpro (Supplementary Fig. 3).Our results show that most DGVMs overestimate tree mortality, particularly in tropical regions (Fig. 2c, e). Thus, if modeled mortality is over-estimated, we expect that NPP is over-estimated as well. Ultimately, we used a bootstrap approach to generate 100 maps of mean value of LOSS with its distribution following the values of the average and 2 times of standard deviation of LOSS maps as a conservative constraint (see Methods). Then the 100 maps of mean value of LOSS were used to constrain the projected NPP or HR as ensemble means in our ML constraint and the uncertainty of the constraint was assessed. Our bootstrapping constraint approach by LOSS reduces this common bias of models and decreases projected NPP down to 7.9, 2.3, 2 Pg C y−1 in South America, Africa and Asia & Australia, compared to original NPP values of 9, 2.4, 2.3 Pg C y−1 (Fig. 4a). The reason for this is that NPP or growth is strongly positively correlated with LOSS across space in both inventory data and DGVMs (Supplementary Figs. 2 and 3; Supplementary Fig. 16). The constant mortality parameter used in most models may be too large if modelers have tuned this parameter to obtain reasonable biomass stocks, thus compensating for an overestimate of NPP in absence of modeled competition between individuals and nutrients (e.g. phosphorus) limitations in tropical forests13. Likewise, HRpro showed similar patterns with NPPpro because of coupling of HR and NPP and LOSS at broad spatial and long term scales20,21, despite the likely decoupling of the instantaneous rate of HR and NPP and LOSS at local and short-term scales22,23. Thus, we also constrained a decrease in projected grid-level HR with values of 6.5, 1.9, 1.7 Pg C y−1 in South America, Africa and Asia & Australia compared to 7, 1.9, 1.8 Pg C y−1 in the original model ensemble (Fig. 4b). Taken together, our results constrain a weaker future tropical forest carbon sink from observation-based LOSS estimates down to 1.4, 0.4, 0.3 Pg C y−1 in South America, Africa and Asia & Australia as compared to 2, 0.5, 0.5 Pg C y−1 in the original models. The projected sink is reduced in particular over the Amazon basin, while North America showed an enhanced future carbon sink (1.1 and 0.8 Pg C y−1 after and before constraint, respectively). The constraint by the machine learning approach significantly reduced the model spread in grid-level NPPpro and HRpro generally in tropical regions and particularly in South America (Fig. 4; Table 1). This was in contrast to the case of constraint at the whole North America scale (Fig. 4; Table 1), presumably because of spatial trade-off or compensation from regions of mortality overestimation (i.e., eastern North America—temperate zones) vs underestimation (i.e., boreal zones). To this end, we further divided the whole North America into temperate and boreal forests and found the significant effects of the ML constraint (Supplementary Fig. 17). These results highlight the importance of spatial scale in the ML constraint approach. We thus recommend accounting for the role of spatial trade-off in our ML constraint approach or using our ML constraint approach at broad spatial scales whereby the effect of spatial trade-off is minimal. We also caution that the bootstrapping (100 times) approach used in our ML constraint increases the sample size and could have increased the significant difference with and without LOSS constraint. Overall, the uncertainty of the ML constraint was low in the bootstrapping approach (Supplementary Fig. 18).Fig. 4: Projected grid-level NPP and grid heterotrophic respiration (HR) across continents.a, b Projected (2015–2099) grid-level NPP a and grid-level HR b across continents quantified by six dynamic vegetation models—DGVMs (ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). The y axes are the minimum, mean, and maximum values in six DGVMs. ‘DGVMs’ refers to the scenario before constraint and ‘DGVMs + Observation’ refers to the scenario after constraint without climate predictors. The constraint was achieved by using the observational maps (n = 100; through a bootstrapping approach; see Methods for details) of LOSS derived from forest plots data to feed into the trained ML (random forest) model. Reported are ensemble means of constraint. The constraint effect was significant when North America were divided into temperate and boreal forests (see results of Supplementary Fig. 17). *P  More

  • in

    Fuel, food and fertilizer shortage will hit biodiversity and climate

    As well as the humanitarian catastrophe it is inflicting, Russia’s invasion of Ukraine in February is disrupting global flows of vital commodities such as fuel, food and fertilizer. This will affect biodiversity and the environment far beyond the war zones, with implications for sustainability and well-being worldwide.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Ultracold storage ensures a future for endangered plants

    Here at the Germplasm Bank of Wild Species of China at the Kunming Institute of Botany, we want to preserve the seeds of as many wild plants as possible from across China’s vast land area. I work on developing the best techniques to freeze plant seeds and tissues at ultracold temperatures, to maintain their viability for years. The idea is that if we plant these seeds again in hundreds of years, a plant will grow.The picture shows me taking a sample of embryos from the seeds of a magnolia tree out of a liquid-nitrogen cryopreservation tank to test whether they’ll regrow when thawed. I dress in protective equipment from head to toe to protect me from the nitrogen, which has a temperature of −196 °C.When I came to the institute in 2009 as a PhD student, it had just purchased its first liquid-nitrogen cryopreservation system, but no one knew how to operate it. I was the one to work it out.Over the years, human activities and climate change have had a negative impact on plant biodiversity. The ultimate goal of the plant seed bank is to collect and preserve all wild plant species in China that are endangered, rare or valuable. We want to save these species before they go extinct. We’ve collected seeds from nearly 11,000 plant species, but that’s only one-third of what grows in China.Many wild plants have genes that help them to survive in harsh environments and make them disease- or drought-resistant. In the future, we might need these genetic materials to breed new crops that can better adapt to the changing climate.I am constantly amazed by how diverse and beautiful seeds are. Some of them are brightly coloured and others are star-shaped. I feel proud when I see the unfrozen seeds germinate in test tubes and gradually grow into large plants. We have three plants in the seed-bank lobby that we cultivated from preserved tissues, and they are all now taller than me. More