Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 96, 49–125 (2005).
Google Scholar
Parzanini, C., Parrish, C., Hamel, J. & Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 13, e0207395 (2018).Article
Google Scholar
Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanogr. 2013, 1–16 (2013).Article
Google Scholar
Parrish, C. et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In Marine Chemistry. The Handbook of Environmental Chemistry (Vol. 5 Series: Water Pollution) Vol. 5 (ed. Wangersky, P. J.) (Springer, 2000).
Google Scholar
Laender, F. D., Oevelen, D. V., Frantzen, S., Middelburg, J. J. & Soetaert, K. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration. Environ. Sci. Technol. 44, 356–361 (2010).Article
Google Scholar
Bianchi, T. & Canuel, E. Chemical Biomarkers in Aquatic Ecosystems (Princeton University Press, 2011).Book
Google Scholar
Signa, G. et al. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 57, 384–394 (2015).CAS
Article
Google Scholar
Brett, M., Mueller-Navarra, D. & Persson, J. Crustacean zooplankton fatty acid composition. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 115–146 (Springer, 2009).Chapter
Google Scholar
Martin-Creuzburg, D. & Elert, E. Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 43–64 (Springer, 2009).Chapter
Google Scholar
Parrish, C. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystem (eds Kainz, M. et al.) 309–326 (Springer, 2009).Chapter
Google Scholar
Maier, S. R., Bannister, R. J., van Oevelen, D. & Kutti, T. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs 39, 173–187 (2020).Article
Google Scholar
Phleger, C. F. Buoyancy in marine fishes: Direct and indirect role of lipids. Am. Zool. 38, 321–330 (1998).CAS
Article
Google Scholar
Pond, D. W. & Tarling, G. A. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56, 1310–1318 (2011).CAS
Article
Google Scholar
Giese, A. C. Lipids in the economy of marine invertebrates. Physiol. Rev. 46, 244–298 (1966).CAS
Article
Google Scholar
Joseph, J. D. Distribution and composition of lipids in marine invertebrates. In Marine Biogenic Lipids, Fats and Oils (ed. Ackman, R. G.) 49–143 (CRC Press, 1989).
Google Scholar
Lee, R. F. Lipoproteins from the hemolymph and ovaries of marine invertebrates. In Advances in Comparative and Environmental Physiology (eds Houlihan, D. F. et al.) 187–207 (Springer, 1991).Chapter
Google Scholar
Kattner, G. & Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 170, 203–213 (1998).CAS
Article
Google Scholar
Heras, H., Pollero, R. J., Gonzalez-Baró, M. R. & Pollero, R. J. Lipid and fatty acid composition and energy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids 35, 645–651 (2000).CAS
Article
Google Scholar
Viladrich, N. et al. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35, 1033–1045 (2016).Article
Google Scholar
Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, fat metabolism, and lifespan—What is the connection?. Cell Metab. 17, 10–19 (2013).CAS
Article
Google Scholar
Strathmann, R. R. Egg size, larval development, and juvenile size in benthic marine invertebrates. Am. Nat. 111, 373–376 (1977).Article
Google Scholar
Pechenik, J. Delayed metamorphosis by larvae of benthic marine-invertebrates—Does it occur? Is there a price to pay?. Ophelia 32, 63–94 (1990).Article
Google Scholar
Harms, J. Larval development and delayed metamorphosis in the hermit crab Clibanarius erythropus (Latreille) (Crustacea, Diogenidae). J. Exp. Mar. Bio. Ecol. 156, 151–160 (1992).Article
Google Scholar
Harii, S., Kayanne, H., Takigawa, H. T., Hayashibara, T. H. & Yamamoto, M. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 141, 39–46 (2002).Article
Google Scholar
Doughty, P. & Shine, R. Detecting life history trade-offs: measuring energy stores in “capital” breeders reveals costs of reproduction. Oecologia 110, 508–513 (1997).Article
Google Scholar
Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar. Ecol. Prog. Ser. 162, 89–103 (1998).Article
Google Scholar
Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): Evidence for summer–autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS
Article
Google Scholar
Kattner, G., Graeve, M. & Hagen, W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 644, 18119 (1994).
Google Scholar
Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS
Article
Google Scholar
Mourente, G., Medina, A., González, S. & Rodríguez, A. Variations in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus. Aquaculture 130, 187–199 (1995).CAS
Article
Google Scholar
Marshall, C. T., Yaragina, N. A., Lambert, Y. & Kjesbu, O. S. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402, 288–290 (1999).CAS
Article
Google Scholar
Marshall, C. T., Yaragina, N. A., Ådlandsvik, B. & Dolgov, A. V. Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Can. J. Fish. Aquat. Sci. 57, 2433–2442 (2000).Article
Google Scholar
Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. B. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).Article
Google Scholar
Bergquist, P. R., Lawson, M. P., Lavis, A. & Cambie, R. C. Fatty acid composition and the classification of the Porifera. Biochem. Syst. Ecol. 12, 63–84 (1984).CAS
Article
Google Scholar
Djerassi, C. & Lam, W. K. Sponge phospholipids. Acc. Chem. Res. 24, 69–75 (1991).CAS
Article
Google Scholar
Thiel, V. et al. A chemical view of the most ancient metazoa – Biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66 (2002).CAS
Article
Google Scholar
Velosaotsy, N. et al. Phospholipid distribution and phospholipid fatty acids in four Saudi red sea sponges. Boll. Mus. Ist. Biol. Univ. Genova 68, 639–645 (2004).
Google Scholar
Rod’kina, S. A. Fatty acids and other lipids of marine sponges. Russ. J. Mar. Biol. 31, S49–S60 (2005).Article
Google Scholar
Blumenberg, M. & Michaelis, W. High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Mar. Biol. 150, 1153–1160 (2007).CAS
Article
Google Scholar
Genin, E. et al. New trends in phospholipid class composition of marine sponges. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 427–431 (2008).Article
Google Scholar
Müller, W. et al. Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J. Biol. Chem. 262, 9850–9858 (1987).Article
Google Scholar
Weissmann, G., Riesen, W., Davidson, S. & Waite, M. Stimulus-response coupling in marine sponge cell aggregation: Lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids. Biochim. Biophys. Acta 960, 351–364 (1988).CAS
Article
Google Scholar
Zivanovic, A., Pastro, N. J., Fromont, J., Thomson, M. & Skropeta, D. Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Nat. Prod. Commun. 6, 1921–1924 (2011).CAS
Google Scholar
Shaaban, M., Abd-Alla, H. I., Hassan, A. Z., Aly, H. F. & Ghani, M. A. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org. Med. Chem. Lett. 2, 30 (2012).Article
Google Scholar
Botić, T. et al. Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biol. 38, 1605–1612 (2015).Article
Google Scholar
Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Chang. Biol. 24, 3130–3144 (2018).Article
Google Scholar
Carballeira, N. M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 47, 50–61 (2008).CAS
Article
Google Scholar
Kikuchi, H. et al. Marine natural products. X. Pharmacologically active glycolipids from the Okinawan marine sponge Phyllospongia foliascens (Pallas). Chem. Pharm. Bull. (Tokyo) 30, 3544–3547 (1982).CAS
Article
Google Scholar
Natori, T., Morita, M., Akimoto, K. & Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50, 2771–2784 (1994).CAS
Article
Google Scholar
Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. & Ianaro, A. Glycolipids from Sponges. 6. Plakoside A and B, two unique prenylated glycosphingolipids with Immunosuppressive activity from the marine sponge Plakortis simplex. J. Am. Chem. Soc. 119, 12465–12470 (1997).CAS
Article
Google Scholar
Costantino, V., Fattorusso, E., Imperatore, C. & Mangoni, A. Glycolipids from sponges. 11. Isocrasserides, novel glycolipids with a five-membered cyclitol widely distributed in marine sponges. J. Nat. Prod. 65, 883–886 (2002).CAS
Article
Google Scholar
Maldonado, M. & Riesgo, A. Reproduction in Porifera: a synoptic overview. Treballs la Soc. Catalana Biol. 59, 29–49 (2008).
Google Scholar
Sciscioli, M., Lepore, E., Scalera-Liaci, L. & Gherardi, M. Indagine ultrastrutturale sugli ovociti di Erylus discophorus (Schmidt) (Porifera, Tetractinellida). Oebalia 15, 939–941 (1989).
Google Scholar
Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M. & Simpson, T. L. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (porifera demospongiae). Mol. Reprod. Dev. 28, 346–350 (1991).CAS
Article
Google Scholar
Riesgo, A. et al. Some like it fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).Article
Google Scholar
Watanabe, Y. The development of two species of Tetilla (Demosponge). NSR. O. U. 29, 71–106 (1978).
Google Scholar
Gaino, E. & Sarà, M. An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invertebr. Reprod. Dev. 26, 99–106 (1994).Article
Google Scholar
Maldonado, M. & Riesgo, A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156, 2181–2197 (2009).Article
Google Scholar
Lanna, E. & Klautau, M. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249–261 (2010).Article
Google Scholar
Koutsouveli, V. et al. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE 13, 1–24 (2018).Article
Google Scholar
Fell, P. E. The involvement of nurse cells in oogenesis and embryonic development in the marine sponge, Haliclona ecbasis. J. Morphol. 127, 133–149 (1969).Article
Google Scholar
Simpson, T. The Cell Biology of Sponges (Springer, 1984).Book
Google Scholar
Bellairs, R. The structure of the yolk of the hen’s egg as studied by electron microscopy : i. The yolk of the unincubated egg. J. Biophys. Biochem. Cytol. 11, 207–225 (1961).CAS
Article
Google Scholar
Ereskovsky, A. The Comparative Embryology of Sponges (Springer, 2010).Book
Google Scholar
Sarà, A., Cerrano, C. & Sarà, M. Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol. 25, 425–431 (2002).Article
Google Scholar
Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 674 (2020).Article
Google Scholar
Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: Biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS
Article
Google Scholar
Lüskow, F. et al. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Front. Mar. Sci. 6, 1–7 (2019).Article
Google Scholar
Reiswig, H. Population dynamics of three Jamaican demospongiae. Bull. Mar. Sci. 23, 191–226 (1973).
Google Scholar
Elvin, D. W. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Univ. Chicago Press 151, 108–125 (1976).
Google Scholar
Elvin, D. W. The relationship of seasonal changes in the biochemical components to the reproductive behavior of the intertidal sponge, Haliclona permollis. Biol Bull. 156, 47–61 (1979).CAS
Article
Google Scholar
Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Prog. Ser. 32, 291–298 (1986).Article
Google Scholar
Ivanisevic, J., Pérez, T., Ereskovsky, A. V., Barnathan, G. & Thomas, O. P. Lysophospholipids in the Mediterranean sponge Oscarella tuberculata: Seasonal variability and putative biological role. J. Chem. Ecol. 37, 537 (2011).CAS
Article
Google Scholar
Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (Porifera, demospongiae) at the Faroe islands, North-eastern Atlantic. Sarsia 80, 1–22 (1995).Article
Google Scholar
Klitgaard, A. B. & Tendal, O. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article
Google Scholar
Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article
Google Scholar
Pile, A. & Young, C. The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Res. Part I Oceanogr. Res. Pap. 53, 1148–1156 (2006).Article
Google Scholar
Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I. & Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52, 428–440 (2007).CAS
Article
Google Scholar
Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS
Article
Google Scholar
Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 1–12 (2015).Article
Google Scholar
Kahn, A., Yahel, G., Chu, J., Tunnicliffe, V. & Leys, S. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).Article
Google Scholar
Rooks, C. et al. Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges. Biogeosciences 17, 1231–1245 (2020).CAS
Article
Google Scholar
Koutsouveli, V., Cárdenas, P., Conejero, M., Rapp, H. T. & Riesgo, A. Reproductive biology of Geodia species (Porifera, Tetractinellida) from Boreo-Arctic North-Atlantic Deep-Sea Sponge Grounds. Front. Mar. Sci. 7, 1–22 (2020).Article
Google Scholar
Reynolds, E. S. The use of lead citrate at high PH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CAS
Article
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
Article
Google Scholar
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS
Article
Google Scholar
Balgoma, D. et al. Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics 16, 12 (2020).CAS
Article
Google Scholar
Kolmert, J. et al. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat. 137, 20–29 (2018).CAS
Article
Google Scholar
Balgoma, D. et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 47, 1645–1656 (2016).CAS
Article
Google Scholar
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS
Article
Google Scholar
Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).Article
Google Scholar
Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).Article
Google Scholar
Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25, 218–224 (2008).Article
Google Scholar
Koutsouveli, V. et al. The molecular machinery of gametogenesis in Geodia demosponges (Porifera): Evolutionary origins of a conserved toolkit across animals. Mol. Biol. Evol. 37, 3485–3506 (2020).CAS
Article
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
Article
Google Scholar
Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome assembly from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS
Article
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS
Article
Google Scholar
Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS
Article
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).Article
Google Scholar
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).CAS
Article
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS
Article
Google Scholar
Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).CAS
Article
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).Article
Google Scholar
Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS
Article
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS
Article
Google Scholar
Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 167, 103427 (2020).Article
Google Scholar
Southwood, T. R. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46, 336–365 (1977).Article
Google Scholar
Clarke, A. A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol. J. Linn. Soc. 14, 77–92 (1980).Article
Google Scholar
Witte, U. Seasonal reproduction in deep-sea sponges—Triggered by vertical particle flux?. Mar. Biol. 124, 571–581 (1996).Article
Google Scholar
Spetland, F., Rapp, H. T., Hoffmann, F. & Tendal, O. S. Sexual reproduction of Geodia barretti Bowerbank, 1858 (Porifera, Astrophorida) in two Scandinavian fjords. In Porifera Research: Biodiversity, Innovation, Sustainability Vol. 1858 (eds Custódio, M. et al.) 613–620 (Série Livros. Museu Nacional, 2007).
Google Scholar
Wassmann, P. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. Annu. Rev. 29, 87–154 (1991).
Google Scholar
Wassmann, P., Svendsen, H., Keck, A. & Reigstad, M. Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. J. Mar. Syst. 8, 53–71 (1996).Article
Google Scholar
Bamstedt, U. Life cycle, seasonal vertical distribution and feeding of Calanus finmarchicus in Skagerrak coastal water. Mar. Biol. 137, 279–289 (2000).Article
Google Scholar
Eckelbarger, K. J. & Watling, L. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebr. Biol. 114, 256–269 (1995).Article
Google Scholar
Riesgo, A. & Maldonado, M. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell 41, 51–65 (2009).Article
Google Scholar
Whiteley, N. M., Taylor, E. W. & el Haj, A. J. A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans. Am. J. Physiol. 271, R1295–R1303 (1996).CAS
Article
Google Scholar
Pace, D. A. & Manahan, D. T. Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol. Bull. 212, 115–129 (2007).CAS
Article
Google Scholar
Sciscioli, M., Lepore, E., Gherardi, M. & Liaci, L. S. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): An ultrastructural study. Cah. Biol. Mar. 35, 471–478 (1994).
Google Scholar
McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).Article
Google Scholar
Derickson, W. K. Lipid storage and utilization in reptiles. Am. Zool. 16, 711–723 (1976).CAS
Article
Google Scholar
Fraser, A. J. Triacylglycerol content as a condition index for fish, bivalve, and crustacean larvae. Can. J. Fish. Aquat. Sci. 46, 1868–1873 (1989).CAS
Article
Google Scholar
Bonnet, X., Naulleau, G. & Mauget, R. The influence of body condition on 17-beta estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia, Viperidae). Gen. Comp. Endocrinol. 93, 424–437 (1994).CAS
Article
Google Scholar
Duggan, A. et al. Seasonal variation in plasma lipids, lipoproteins, apolipoprotein A-I and vitellogenin in the freshwater turtle, Chrysemys picta. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 253–269 (2001).CAS
Article
Google Scholar
Lance, V. A., Place, A. R., Grumbles, J. S. & Rostal, D. C. Variation in plasma lipids during the reproductive cycle of male and female desert tortoises, Gopherus agassizii. J. Exp. Zool. 293, 703–711 (2002).CAS
Article
Google Scholar
Kawazu, I. et al. Signals of vitellogenesis and estrus in female hawksbill turtles. Zoolog. Sci. 32, 114–118 (2015).Article
Google Scholar
Teshima, S. & Kanazawa, A. Variation in lipid compositions during the ovarian maturation of the prawn. Nippon Suisan Gakkaishi 49, 957–962 (1983).CAS
Article
Google Scholar
Clarke, A., Brown, J. H. & Holmes, L. J. The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development. Comp. Biochem. Physiol. Part B Comp. Biochem. 96, 505–511 (1990).Article
Google Scholar
Allen, W. Amino acid and fatty acid composition of tissues of the dungeness crab (Cancer magister). J. Fish. Res. Board Canada 28, 1191–1195 (1971).CAS
Article
Google Scholar
Rosa, R. & Nunes, M. L. Tissue biochemical composition in relation to the reproductive cycle of deep-sea decapod Aristeus antennatus in the Portuguese south coast. J. Mar. Biol. Assoc. U. K. 83, 963–970 (2003).CAS
Article
Google Scholar
Balgoma, D., Pettersson, C. & Hedeland, M. Common fatty markers in diseases with dysregulated lipogenesis. Trends Endocrinol. Metab. 30, 283–285 (2019).CAS
Article
Google Scholar
Kent, C. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315–343 (1995).CAS
Article
Google Scholar
Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).CAS
Article
Google Scholar
Bell, R. M. & Coleman, R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49, 459–487 (1980).CAS
Article
Google Scholar
Mathews, C., van Holde, K., Appling, D. & Anthony-Cahill, S. Biochemistry (Pearson, 2019).
Google Scholar
Gavaud, J. Histochemical identification of ovarian lipids during vitellogenesis in the lizard Lacerta vivipara. Can. J. Zool. 69, 1389–1392 (1991).Article
Google Scholar
Chapman, M. J. Animal lipoproteins: Chemistry, structure, and comparative aspects. J. Lipid Res. 21, 789–853 (1980).CAS
Article
Google Scholar
Lebouvier, M., Miramón-Puértolas, P. & Steinmetz, P.R. Evolutionary conserved aspects of animal nutrient uptake and transport in sea anemone vitellogenesis. bioRxiv (2022).Dolphin, P. J., Ansari, A. Q., Lazier, C. B., Munday, K. A. & Akhtar, M. Studies on the induction and biosynthesis of vitellogenin, an oestrogen-induced glycolipophosphoprotein. Biochem. J. 124, 751–758 (1971).CAS
Article
Google Scholar
Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).CAS
Article
Google Scholar
Wanders, R. J. A. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83, 16–27 (2004).CAS
Article
Google Scholar
Wanders, R. J. A., Waterham, H. R. & Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83 (2016).Article
Google Scholar
Talley, J. & Mohiuddin, S. Biochemstry, Fatty Acid Oxidation (StatPearls, 2020).
Google Scholar
Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141, 568–591 (1971).Article
Google Scholar
Sugimoto, Y., Inazumi, T. & Tsuchiya, S. Roles of prostaglandin receptors in female reproduction. J. Biochem. 157, 73–80 (2015).CAS
Article
Google Scholar
Niringiyumukiza, J. D., Cai, H. & Xiang, W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod. Biol. Endocrinol. 16, 43 (2018).Article
Google Scholar
Kaczynski, P., Baryla, M., Goryszewska, E., Bauersachs, S. & Waclawik, A. Prostaglandin F2α promotes embryo implantation and development in the pig. Reproduction 156, 405–419 (2018).CAS
Google Scholar
De Petrocellis, L. & Di Marzo, V. Aquatic invertebrates open up new perspectives in eicosanoid research: Biosynthesis and bioactivity. Prostaglandins Leukot. Essent. Fat. Acids 51, 215–229 (1994).Article
Google Scholar
Destephano, D. B. & Brady, U. E. Prostaglandin and prostaglandin synthetase in the cricket, Acheta domesticus. J. Insect Physiol. 23, 905–911 (1977).CAS
Article
Google Scholar
Rich, A. M. et al. Calcium dependent aggregation of marine sponge cells is provoked by leukotriene B4 and inhibited by inhibitors of arachidonic acid oxidation. Biochem. Biophys. Res. Commun. 121, 863–870 (1984).CAS
Article
Google Scholar
Gramzow, M. et al. Role of phospholipase A2 in the stimulation of sponge cell proliferation by homologous lectin. Cell 59, 939–948 (1989).CAS
Article
Google Scholar
Nomura, T. & Ogata, H. Distribution of prostagladins in the animal kingdom. Biochim. Biophys. Acta 431, 127–131 (1976).CAS
Article
Google Scholar More