Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).Article
Google Scholar
Lewison, R. et al. Research priorities for seabirds: improving conservation and management in the 21st century. Endanger. Species Res 17, 93–121 (2012).Article
Google Scholar
Hasegawa, H. & DeGange, A. R. The Short-tailed Albatross, Diomedea albatrus, its status, distribution and natural history. Am. Birds 36, 806–814 (1982).
Google Scholar
Tickell, W. L. N. Albatrosses (Pica Press, 2000).BirdLife International. Phoebastria albatrus. The IUCN Red List of Threatened Species, e.T22698335A132642113 https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22698335A132642113.en (2018).Japan Ministry of the Environment. Ministry of the Environment Red List (Government of Japan, 2020).COSEWIC. COSEWIC Assessment and Status Report on the Short-tailed Albatross Phoebastria albatrus in Canada (Committee on the Status of Endangered Wildlife in Canada, 2013).Environment Canada. Recovery Strategy for the Short-tailed Albatross (Phoebastria albatrus) and the Pink-footed Shearwater (Puffinus creatopus) in Canada (Environment Canada, 2008).United States of America Fish and Wildlife Service. Endangered and Threatened Wildlife and Plants; Final Rule to List the Short-tailed Albatross as Endangered in the United States. 65 FR 46643, 46643–4654, Document Number 00–19123 (2000).United States of America Fish and Wildlife Service. Short-tailed Albatross (Phoebastria albatrus) 5-Year Review: Summary and Evaluation (United States of America Fish and Wildlife Service, 2020).United States of America Fish and Wildlife Service. Short-tailed Albaross Recovery Plan (United States of America Fish and Wildlife Service, 2008).Orben, R. A. et al. Ontogenetic changes in at-sea distributions of immature short-tailed albatrosses Phoebastria albatrus. Endanger. Species Res 35, 23–37 (2018).Article
Google Scholar
Orben, R. A. et al. Across borders: external factors and prior behaviour influence North Pacific albatross associations with fishing vessels. J. Appl. Ecol. 58, 1272–1283 (2021).Article
Google Scholar
Fox, C. H., Robertson, C., O’Hara, P. D., Tadey, R. & Morgan, K. H. Spatial assessment of albatrosses, commercial fisheries, and bycatch incidents on Canada’s Pacific coast. Mar. Ecol. Prog. Ser. 672, 205–222 (2021).Article
Google Scholar
Piatt, J. F. et al. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: implications for conservation. Deep Sea Res. Part II 53, 387–398 (2006).Article
Google Scholar
Suryan, R. M. et al. Migratory routes of short-tailed albatrosses: use of exclusive economic zones of North Pacific Rim countries and spatial overlap with commercial fisheries in Alaska. Biol. Conserv. 137, 450–460 (2007).Article
Google Scholar
Suryan, R. M. & Fischer, K. N. Stable isotope analysis and satellite tracking reveal interspecific resource partitioning of nonbreeding albatrosses off Alaska. Can. J. Zool. 88, 299–305 (2010).CAS
Article
Google Scholar
Zador, S. G., Punt, A. E. & Parrish, J. K. Population impacts of endangered short-tailed albatross bycatch in the Alaskan trawl fishery. Biol. Conserv. 141, 872–882 (2008).Article
Google Scholar
Geernaert, T. O., Gilroy, H. L., Kaimmer, S. M., Williams, G. H. & Trumble, R. J. A Feasibility Study that Investigates Options for Monitoring Bycatch of the Short-tailed Albatross in the Pacific Halibut Fishery off Alaska (International Pacific Halibut Commission, 2001).Guy, T. J. et al. Overlap of North Pacific albatrosses with the U.S. west coast groundfish and shrimp fisheries. Fish. Res. 147, 222–234 (2013).Article
Google Scholar
Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Natural 161, 1–28 (2003).Article
Google Scholar
Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).Article
Google Scholar
Wakefield, E. D. et al. Long-term individual foraging site fidelity—why some gannets don’t change their spots. Ecology 96, 3058–3074 (2015).PubMed
Article
PubMed Central
Google Scholar
Votier, S. C. et al. Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. Proc. R. Soc. B 284, 20171068 (2017).PubMed
PubMed Central
Article
Google Scholar
Sztukowski, L. A. et al. Sex differences in individual foraging site fidelity of Campbell albatross. Mar. Ecol. Prog. Ser. 601, 227–238 (2018).Article
Google Scholar
Gutowsky, S. E. et al. Divergent post-breeding distribution and habitat associations of fledgling and adult Black-footed Albatrosses Phoebastria nigripes in the North Pacific. Ibis 156, 60–72 (2014).Article
Google Scholar
Weimerskirch, H., Åkesson, S. & Pinaud, D. Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species. J. Avian Biol. 37, 23–28 (2006).
Google Scholar
Olson, S. L. & Hearty, P. J. Probable extirpation of a breeding colony of Short-tailed Albatross (Phoebastria albatrus) on Bermuda by Pleistocene sea-level rise. Proc. Natl Acad. Sci. 100, 12825–12829 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
Dall, W. H. Notes on pre-historic remains in the Aleutian islands. Proc. Calif. Acad. Sci. 4, 283–287 (1872).
Google Scholar
Eda, M. et al. Inferring the ancient population structure of the vulnerable albatross Phoebastria albatrus, combining ancient DNA, stable isotope, and morphometric analyses of archaeological samples. Conserv. Genet. 13, 143–151 (2012).Article
Google Scholar
Cousins, K. L., Dalzell, P. & Gilman, E. Managing pelagic longline-albatross interactions in the North Pacific Ocean. Mar. Ornithol 28, 159–174 (2000).
Google Scholar
Hobson, K. A. & Montevecchi, W. A. Stable isotopic determinations of trophic relationships of great auks. Oecologia 87, 528–531 (1991).PubMed
Article
PubMed Central
Google Scholar
Fuller, B. T. et al. Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109383 (2020).Article
Google Scholar
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94, 181–188 (1992).Article
Google Scholar
Hyland, C., Scott, M. B., Routledge, J. & Szpak, P. Stable carbon and nitrogen isotope variability of bone collagen to determine the number of isotopically distinct specimens. J. Archaeol. Method Theory https://doi.org/10.1007/s10816-021-09533-7 (2021).Article
Google Scholar
Hedges, R. E. M., Clement, J. G., Thomas, D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007).PubMed
Article
PubMed Central
Google Scholar
Guiry, E. J., Orchard, T. J., Royle, T. C. A., Cheung, C. & Yang, D. Y. Dietary plasticity and the extinction of the passenger pigeon (Ectopistes migratorius). Quat. Sci. Rev. 233, 106225 (2020).Article
Google Scholar
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).CAS
Article
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).CAS
Article
Google Scholar
Hobson, K. A., Ambrose, W. G. Jr & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).Article
Google Scholar
Sigman, D., Karsh, K. & Casciotti, K. Ocean process tracers: nitrogen isotopes in the ocean in Encyclopedia of Ocean Science (eds Steele, J. H. et al.) 4139–4152 (Academic Press, 2009).Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: implications for the study of past subsistence and environmental change. Front. Ecol. Evol 7, 313 (2019).Article
Google Scholar
Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989).CAS
PubMed
Article
PubMed Central
Google Scholar
Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).CAS
Article
Google Scholar
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and (CO2) aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).CAS
Article
Google Scholar
Vokhshoori, N. L. et al. Broader foraging range of ancient short-tailed albatross populations into California coastal waters based on bulk tissue and amino acid isotope analysis. Mar. Ecol. Prog. Ser. 610, 1–13 (2019).CAS
Article
Google Scholar
Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B. & McCarthy, M. D. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. Proc. Natl Acad. Sci. 108, 1011–1015 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Szpak, P., Savelle, J. M., Conolly, J. & Richards, M. P. Variation in late holocene marine environments in the Canadian Arctic Archipelago: evidence from ringed seal bone collagen stable isotope compositions. Quat. Sci. Rev. 211, 136–155 (2019).Article
Google Scholar
Guiry, E. J. et al. Deforestation caused abrupt shift in Great Lakes nitrogen cycle. Limnol. Oceanogr. 65, 1921–1935 (2020).CAS
Article
Google Scholar
Wiley, A. E. et al. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs. Proc. Natl Acad. Sci. 110, 8972–8977 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS
Article
Google Scholar
McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).CAS
Article
Google Scholar
Chikaraishi, Y. et al. Determination of aquatic food‐web structure based on compound‐specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS
Article
Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed
Article
PubMed Central
Google Scholar
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).Article
Google Scholar
Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416 (2021).CAS
Article
Google Scholar
Thompson, D. R. & Furness, R. W. Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in Northern Fulmars. Auk 112, 493–498 (1995).Article
Google Scholar
Carter, H. R. & Sealy, S. G. Historical occurrence of the short-tailed Albatross in British Columbia and Washington. 1841–1958. Wildl. Afield 11, 24–38 (2014).
Google Scholar
Crockford, S. The Archaeological History of Short-tailed Albatross in British Columbia: A Review and Summary of STAL Skeletal Remains, as Compared to Other Avian Species, Identified from Historic and Prehistoric Midden Deposits. Report on file, Canadian Wildlife Service (2003).Borrmann, R. M., Phillips, R. A., Clay, T. A. & Garthe, S. High foraging site fidelity and spatial segregation among individual great black-backed gulls. J. Avian Biol. 50, e02156 (2019).Article
Google Scholar
Wilkinson, B. P., Haynes-Sutton, A. M., Meggs, L. & Jodice, P. G. High spatial fidelity among foraging trips of Masked Boobies from Pedro Cays, Jamaica. PLoS ONE 15, e0231654 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed
Article
PubMed Central
Google Scholar
Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).Article
Google Scholar
Irons, D. B. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79, 647–655 (1998).Article
Google Scholar
Piper, W. H. Making habitat selection more “familiar”: a review. Behav. Ecol. Sociobiol. 65, 1329–1351 (2011).Article
Google Scholar
Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Search strategies of a pursuit‐diving marine bird and the persistence of prey patches. Ecol. Monogr. 73, 463–481 (2003).Article
Google Scholar
Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).Article
Google Scholar
Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).PubMed
PubMed Central
Article
Google Scholar
McAllister, N. M. Avian fauna from the Yuquot excavation in The Yuquot Project, Volume 2 (eds. Folan, W. J. & Dewhirst, J.) 103–174 (National Historic Parks and Sites Branch, 1980).Drucker, P. I. The Northern and Central Nootkan tribes. Bureau of American Ethnology Bulletin 144, 1–480 (1951).
Google Scholar
Lepofsky, D. & Caldwell, M. Indigenous marine resource management on the Northwest Coast of North America. Ecol. Process 2, 12 (2013).Article
Google Scholar
Dewhirst, J. The Indigenous Archaeology of Yuquout, a Nootkan Outside Village (National Historic Parks and Sites Branch, 1980).Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).CAS
PubMed
Article
PubMed Central
Google Scholar
Guiry, E. J. & Hunt, B. P. V. Integrating fish scale and bone isotopic compositions for ‘deep time’ retrospective studies. Mar. Environ. Res. 160, 104982 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
Hobson, K. A., Atwell, L. & Wassenaar, L. I. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc. Natl Acad. Sci. 96, 8003–8006 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom 17, 2483–2487 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
Qi, H. et al. A new organic reference material, l-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41. Rapid Commun. Mass Spectrom 30, 859–866 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep 13, 609–616 (2017).
Google Scholar
Hammer, Ø., Haper, A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2019). More