More stories

  • in

    Feces DNA analyses track the rehabilitation of a free-ranging beluga whale

    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2011.05403.x (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, 1–14 (2019).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16, 714–726 (2016).CAS 
    Article 

    Google Scholar 
    Deagle, B. E., Chiaradia, A., Mcinnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? https://doi.org/10.1007/s10592-010-0096-6.Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).Article 

    Google Scholar 
    Günther, B., Fromentin, J., Metral, L. & Arnaud-haond, S. Metabarcoding confirms the opportunistic foraging behaviour of Atlantic bluefin tuna and reveals the importance of gelatinous prey. PeerJ 9, e11757. https://doi.org/10.7717/peerj.11757 (2021).Article 

    Google Scholar 
    Simon, M., Hanson, M. B., Murrey, L., Tougaard, J. & Ugarte, F. From captivity to the wild and back: An attempt to release keiko the killer whale. Mar. Mammal Sci. 25, 693–705 (2009).Article 

    Google Scholar 
    Moore, M. et al. Rehabilitation and release of marine mammals in the United States: Risks and benefits. Mar. Mammal Sci. 23, 731–750 (2007).Article 

    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).Article 

    Google Scholar 
    Geller, J., Meyer, C. & Parker, M. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13(5), 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).CAS 
    Article 

    Google Scholar 
    Blaxter, M. L. et al. A molecular evolutionary framework for the phylum Nematoda. Nature https://doi.org/10.1038/32160 (1998).Article 

    Google Scholar 
    Sinniger, F. et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Front. Mar. Sci. 3, 1–14 (2016).Article 

    Google Scholar 
    Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21(6), 1904–1921 (2021).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Antich, A., Palacin, C., Wangensteen, O. S. & Turon, X. To denoise or to cluster, that is not the question: Optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinform. 22, 1–25 (2021).Article 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarmv2: Highly-scalable and high-resolution amplicon clustering. PeerJ 2015, 1–12 (2015).
    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 

    Google Scholar 
    Machida, R. J., Leray, M., Ho, S.-L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027 (2017).CAS 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naıve Bayesian classifier for rapid assignment of rRNA sequences.pdf. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Davis, N. M., Di Proctor, M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome https://doi.org/10.1186/s40168-018-0605-2 (2018).Article 

    Google Scholar 
    Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hardbottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 2018, 1–30 (2018).
    Google Scholar 
    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated – reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).CAS 
    Article 

    Google Scholar 
    Song, X. et al. A new deep-sea hydroid (Cnidaria:Hydrozoa ) from the Bering Sea Basin reveals high genetic relevance to Arctic and adjacent shallow-water species. Polar Biol. 39, 461–471 (2016).Article 

    Google Scholar 
    Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1–11 (2017).Article 

    Google Scholar 
    Vacquié-Garcia, J., Lydersen, C., Ims, R. A. & Kovacs, K. M. Habitats and movement patterns of white whales Delphinapterus leucas in Svalbard, Norway in a changing climate. Mov. Ecol. 6, 1–12 (2018).Article 

    Google Scholar 
    Kastelein, R. A., Nieuwstraten, S. H. & Verstegen, M. W. A. Passage time of carmine red dye through the digestion tract . In The Biology of the Harbour Porpoise 235–245 (1997).Lesage, V., Lair, S., Turgeon, S. & Beland, P. Diet of St. Lawrence Estuary Beluga (Delphinapterus leucas) in a changing ecosystem. Can. Field-Nat. 134, 21–35 (2020).Article 

    Google Scholar 
    Bluhm, B. A. & Gradinger, R. Regional variability in food availability for arctic marine mammals. Ecol. Appl. 18, S77–S96 (2008).Article 

    Google Scholar 
    Quakenbush, L. T. et al. Diet of beluga whales, Delphinapterus leucas, in Alaska from stomach contents, March-November. Mar. Fish. Rev. 77, 70–84 (2015).Article 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: Insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Mychek-Londer, J. G., Chaganti, S. R. & Heath, D. D. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes. PLoS ONE 15, 1–22 (2020).Article 

    Google Scholar 
    Nedreaas, K. Food and feeding habits of young saithe, Pollachius virens (L.), on the coast of Western Norway. Fisk. Skr. Ser. Havundersokelser 18, 263–301 (1987).
    Google Scholar 
    Højgaard, D. P. Food and parasitic nematodes of saithe, Pollachius virens (L.), from the Faroe Islands. Sarsia 84, 473–478 (1999).Article 

    Google Scholar 
    Ekbaum, E. Notes on the occurrence of Acanthocephala in Pacific fishes: I. Echinorhynchus gadi (Zoega) Müller in salmon and E. lageniformis sp. nov. and Corynosoma strumosum (Rudolphi) in two species of flounder. Parasitology 30, 267–274 (1938).Article 

    Google Scholar 
    Baptista-Fernandes, T. et al. Human gastric hyperinfection by Anisakis simplex: A severe and unusual presentation and a brief review. Int. J. Infect. Dis. 64, 38–41 (2017).Article 

    Google Scholar 
    Hubert, B., Bacou, J. & Belveze, H. Epidemiology of human anisakiasis: Incidence and sources in France. Am. J. Trop. Med. Hyg. 40, 301–303 (1989).CAS 
    Article 

    Google Scholar 
    Hays, R., Measures, L. N. & Huot, J. Capelin (Mallotus villosus) and herring (Clupea harengus) as paratenic hosts of Anisakis simplex, a parasite of beluga (Delphinapterus leucas) in the St. Lawrence estuary. Can. J. Zool. 78, 1411–1417 (1998).Article 

    Google Scholar 
    Yanong, R. P. E. Nematode (Roundworm) Infections in Fish Vol. 1, 1–9 (2002).Jauniaux, T. et al. Post-mortem findings and causes of death of harbour porpoises (Phocoena phocoena) stranded from 1990 to 2000 along the coastlines of Belgium and Northern France. J. Compar. Pathol. 126, 243–253 (2002).CAS 
    Article 

    Google Scholar  More

  • in

    Salt marshes create more extensive channel networks than mangroves

    Fosberg, F. R. & Chapman, V. J. Mangrove Vegetation. Taxon 26, 113 (1977).Article 

    Google Scholar 
    Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 23, 431–446 (2012).Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science. 317, 41b–42b (2007).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10170 (2020).Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231 (2000).ADS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35, 3891–3904 (1999).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Mudd, S. M. & Fagherazzi, S. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69, 311–324 (2006).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).ADS 
    Article 

    Google Scholar 
    Schwarz, C. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11, 672–677 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Mariotti, G. & Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out? Water Resour. Res. 53, 7029–7054 (2017).ADS 
    Article 

    Google Scholar 
    Stark, J., Van Oyen, T., Meire, P. & Temmerman, S. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol. Oceanogr. 60, 1371–1381 (2015).ADS 
    Article 

    Google Scholar 
    Montgomery, J., Bryan, K., Horstman, E. & Mullarney, J. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10, 1119 (2018).Article 

    Google Scholar 
    Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).ADS 
    Article 

    Google Scholar 
    van Maanen, B., Coco, G. & Bryan, K. R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150115 (2015).
    Google Scholar 
    Bij de Vaate, I., Brückner, M. Z. M., Kleinhans, M. G. & Schwarz, C. On the Impact of Salt Marsh Pioneer Species-Assemblages on the Emergence of Intertidal Channel Networks. Water Resour. Res. 56, (2020).Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).Article 

    Google Scholar 
    Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).ADS 
    Article 

    Google Scholar 
    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, (2017).Spalding, M. World Atlas of Mangroves. World Atlas of Mangroves https://doi.org/10.4324/9781849776608 (2010).Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. in. Mar. Geol. 208, 265–280 (2004).ADS 
    Article 

    Google Scholar 
    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).ADS 
    Article 

    Google Scholar 
    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).ADS 
    Article 

    Google Scholar 
    Tomlinson, P. B. The botany of mangroves. Bot. Mangroves https://doi.org/10.2307/2996392 (1986).Article 

    Google Scholar 
    Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landf. 40, 1672–1687 (2015).ADS 
    Article 

    Google Scholar 
    Nardin, W. et al. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surf. Process. Landf. 41, 2024–2037 (2016).ADS 
    Article 

    Google Scholar 
    Proffitt, C. E., Travis, S. E. & Edwards, K. R. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecol. Appl. 13, 180–192 (2003).Article 

    Google Scholar 
    van Wesenbeeck, B. K. et al. Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes. Ecosystems 11, 1133–1141 (2008).Article 

    Google Scholar 
    Ranwell, D. S. Spartina salt marshes in southern England 3. Rates of establishment, succession and nutrient supply at Bridgewater Bay, Somerset. J. Ecol. 52, 95–105 (1964).Article 

    Google Scholar 
    van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).Article 

    Google Scholar 
    Taylor, C. M. & Hastings, A. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J. Appl. Ecol. 41, 1049–1057 (2004).Article 

    Google Scholar 
    Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, 1–13 (2011).Article 

    Google Scholar 
    Mobberley, D. G. Taxonomy and distribution of the genus Spartina. (Iowa State University, 1953).Gourgue, O. et al. A Convolution Method to Assess Subgrid-Scale Interactions Between Flow and Patchy Vegetation in Biogeomorphic Models. J. Adv. Model. Earth Syst. 127, 1–25 (2021).Zong, L. & Nepf, H. Spatial distribution of deposition within a patch of vegetation. Water Resour. Res. 47, (2011).Suyadi, Gao, J., Lundquist, C. J. & Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 215, 1–10 (2018).ADS 
    Article 

    Google Scholar 
    Best, S. N. et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 109, 152–166 (2018).Article 

    Google Scholar 
    Chen, Y., Li, Y., Cai, T., Thompson, C. & Li, Y. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surf. Process. Landf. 41, 1967–1979 (2016).ADS 
    Article 

    Google Scholar 
    Xie, D. et al. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures. Environ. Res. Lett. 15, 114033 (2020).ADS 
    Article 

    Google Scholar 
    Steel, T. J. & Pye, K. The development of salt marsh tidal creek networks: evidence from the UK. In Proceedings of the Canadian Coastal Conference 1, 267–280 (1997).Fagherazzi, S. & Sun, T. A stochastic model for the formation of channel networks in tidal marshes. Geophys. Res. Lett. 31, L21503 (2004).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. & Rinaldo, A. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110, F02001 (2005).ADS 

    Google Scholar 
    Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).ADS 

    Google Scholar 
    Liu, Z. et al. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Sci. Total Environ. 749, 141493 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hood, W. G. Applying tidal landform scaling to habitat restoration planning, design, and monitoring. Estuar. Coast. Shelf Sci. 244, 106060 (2020).Article 

    Google Scholar 
    Horstman, E., Dohmen-Janssen, C., Geomorphology, T. B.- & 2015, undefined. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling. ElsevierCoco, G. et al. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 346, 1–16 (2013).ADS 
    Article 

    Google Scholar 
    Geng, L., Gong, Z., Zhou, Z., Lanzoni, S. & D’Alpaos, A. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landf. 45, 237–250 (2020).ADS 
    Article 

    Google Scholar 
    Andutta, F. P., Wang, X. H., Li, L. & Williams, D. Hydrodynamics and Sediment Transport in a Macro-tidal Estuary: Darwin Harbour, Australia. in 111–129 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-7019-5_7Elmqvist, T. & Cox, P. A. The Evolution of Vivipary in Flowering Plants. Oikos 77, 3 (1996).Article 

    Google Scholar 
    Zhang, X., Leonardi, N., Donatelli, C. & Fagherazzi, S. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Resour. 125, 32–40 (2019).ADS 
    Article 

    Google Scholar 
    Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. In Coastal Sediments ’07 1441–1454 (American Society of Civil Engineers, 2007). https://doi.org/10.1061/40926(239)111Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).CAS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecol. Process 2, 1–16 (2013).Article 

    Google Scholar 
    Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993).ADS 
    Article 

    Google Scholar 
    Vandenbruwaene, W., Meire, P. & Temmerman, S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology (2012).Marani, M. et al. Patterns in tidal environments: salt-marsh channel networks and vegetation. in Geoscience and Remote Sensing Symposium. IEEE 5 3269–3271 (2003).Horstman, E. M., Karin R. B., and Julia C. M. “Drag variations, tidal asymmetry and tidal range changes in a mangrove creek system.” Earth Surf. Process. Landf. (2021).R. Core, Team. R: A language and environment for statistical computing. (2013).Lillesand, T. M. & Kiefer, R. W. Remote Sensing and Image Interpretation. John Willey & Sons. Inc, USA. (1994).Vandenbruwaene, W., Bouma, T. J., Meire, P. & Temmerman, S. Bio-geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landforms 38, 122–132 (2013).ADS 
    Article 

    Google Scholar 
    Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).ADS 
    Article 

    Google Scholar 
    Braat, L., Leuven, J. R. F. W., Lokhorst, I. R. & Kleinhans, M. G. Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments. Earth Surf. Process. Landf. 44, 417–432 (2019).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G. et al. Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surf. Dyn. 5, 731–756 (2017).ADS 
    Article 

    Google Scholar 
    Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 97, 1–43 (2009).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G., Leuven, J. R. F. W., Braat, L. & Baar, A. Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds. Sedimentology 64, 1381–1401 (2017).Article 

    Google Scholar 
    Lokhorst, I. R., Lange, S. I., Buiten, G., Selaković, S. & Kleinhans, M. G. Species selection and assessment of eco‐engineering effects of seedlings for biogeomorphological landscape experiments. Earth Surf. Process. Landf. 44, 2922–2935 (2019).ADS 
    Article 

    Google Scholar 
    Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27, 1174–1189 (2007).ADS 
    Article 

    Google Scholar 
    Verney, R., Brun-Cottan, J. C., Lafite, R., Deloffre, J. & Taylor, J. A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries and Coasts 29, 653–664 (2006).Article 

    Google Scholar 
    Wu, W., Perera, C., Smith, J. & Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 56, 96–110 (2018).Article 

    Google Scholar 
    Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).Article 

    Google Scholar  More

  • in

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 136, 856–868 (2010).ADS 
    Article 

    Google Scholar 
    Coumou, D., Capua, D. I., Vavrus, G., Wang, L. S. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017).Article 

    Google Scholar 
    Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, 1–6 (2012).
    Google Scholar 
    Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,910–989,997 (2016).Article 

    Google Scholar 
    Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 34037 (2013).Article 

    Google Scholar 
    Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 
    Article 

    Google Scholar 
    Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017).Article 

    Google Scholar 
    Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11, 3421–3435 (2014).ADS 
    Article 

    Google Scholar 
    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20, 5081–5099 (2007).ADS 
    Article 

    Google Scholar 
    Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).ADS 
    Article 

    Google Scholar 
    Rammig, A. et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12, 373–385 (2015).ADS 
    Article 

    Google Scholar 
    Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 3, 509–524 (2015).Article 

    Google Scholar 
    Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 143, 2960–2972 (2017).ADS 
    Article 

    Google Scholar 
    Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change 7, 557–562 (2017).Article 

    Google Scholar 
    Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).Article 

    Google Scholar 
    Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 
    Article 

    Google Scholar 
    Zweifel, R. & Sterck, F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change 1, 9 (2018).Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 221, 652–668 (2019).CAS 
    Article 

    Google Scholar 
    Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014).Article 

    Google Scholar 
    Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39 (2012).Drouard, M. & Woollings, T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 45, 12,040–12,048 (2018).Article 

    Google Scholar 
    Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 7, 10315 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 48, 1141–1160 (2017).Article 

    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).Article 

    Google Scholar 
    Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362–379 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Leuschner, C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 47, 125576 (2020).Article 

    Google Scholar 
    Muffler, L. et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 47, 1910–1921 (2020).Article 

    Google Scholar 
    Wang, F. et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees 35, 53–67 (2021).CAS 
    Article 

    Google Scholar 
    Hall, R. J., Jones, J. M., Hanna, E., Scaife, A. A. & Erdélyi, R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 48, 3869–3887 (2017).Article 

    Google Scholar 
    Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).ADS 
    Article 

    Google Scholar 
    Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 54002 (2019).Article 

    Google Scholar 
    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 74016 (2018).Article 

    Google Scholar 
    Matsueda, M. & Endo, H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 44, 5158–5166 (2017).ADS 
    Article 

    Google Scholar 
    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).Article 

    Google Scholar 
    Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020).ADS 
    Article 

    Google Scholar 
    de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 41, 2643–2654 (2013).Article 

    Google Scholar 
    Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 4, 287–300 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 24, 4304–4315 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).Article 

    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dorado-Liñán, I. et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 25, 1296–1314 (2019).ADS 
    Article 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015).PubMed 
    Article 

    Google Scholar 
    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popkin, G. How much can forests fight climate change? Nature 565, 280–282 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 29, 8823–8840 (2016).ADS 
    Article 

    Google Scholar 
    Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 29, 851–862 (2009).Article 

    Google Scholar 
    Doblas-Reyes, F. J., Casado, M. J. & Pastor, M. A. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 107, D2 (2002).Article 

    Google Scholar 
    Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/ More

  • in

    Catestatin selects for colonization of antimicrobial-resistant gut bacterial communities

    Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature 2016;535:47–47.Article 

    Google Scholar 
    El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–79.CAS 
    Article 

    Google Scholar 
    Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338–e338.CAS 
    Article 

    Google Scholar 
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100:1623–33.CAS 
    Article 

    Google Scholar 
    Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, et al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci. 2005;62:377–85.CAS 
    Article 

    Google Scholar 
    Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745–53.CAS 
    Article 

    Google Scholar 
    Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue M-H. Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem. 2012;19:4115–23.CAS 
    Article 

    Google Scholar 
    El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand J Gastroenterol. 2017;52:691–7.CAS 
    Article 

    Google Scholar 
    Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32:755–97.CAS 
    Article 

    Google Scholar 
    Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci. 2019;1455:34–58.CAS 
    Article 

    Google Scholar 
    Corti A, Marcucci F, Bachetti T. Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Archiv Eur J Physiol. 2018;470:199–210.Mahata SK, Mahata M, Fung MM, O’Connor DT. Catestatin: a multifunctional peptide from chromogranin A. Regul Pept. 2010;162:33–43.CAS 
    Article 

    Google Scholar 
    Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes. 2018;67:841–8.CAS 
    Article 

    Google Scholar 
    Mahata SK, Kiranmayi M, Mahapatra NR. Catestatin: a master regulator of cardiovascular functions. Curr Med Chem. 2018;25:1352–74.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, et al. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol. 2021;232:e13655.Rabbi MF, Munyaka PM, Eissa N, Metz-Boutigue MH, Khafipour E, Ghia JE. Human catestatin alters gut microbiota composition in mice. Front Microbiol. 2017;7:1–12.Article 

    Google Scholar 
    Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, et al. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol. 2008;128:1525–34.CAS 
    Article 

    Google Scholar 
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.CAS 
    Article 

    Google Scholar 
    Dupont A, Heinbockel L, Brandenburg K, Hornef MW. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes. 2014;5:761–5.Article 

    Google Scholar 
    Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15:2574–90.CAS 
    Article 

    Google Scholar 
    Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta Biomembr. 2015;1848:3089–100.CAS 
    Article 

    Google Scholar 
    Jakobsson HE, Rodríguez‐Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–77.CAS 
    Article 

    Google Scholar 
    Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: regulation, structure and immune response. J Mol Biol. 2020;432:5184–96.CAS 
    Article 

    Google Scholar 
    Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet. 1996;30:465–506.CAS 
    Article 

    Google Scholar 
    Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32:1–16.Article 

    Google Scholar 
    Nayfach S, Fischbach MA, Pollard KS. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics. 2015;31:3368–70.CAS 
    Article 

    Google Scholar 
    Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, et al. Immunosuppression of macrophages underlies the cardioprotective effects of CST (Catestatin). Hypertension. 2021;77:1670–82.CAS 
    Article 

    Google Scholar 
    Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1–16.Article 

    Google Scholar 
    Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501–9.Article 

    Google Scholar 
    Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7:1–10.
    Google Scholar 
    Herp S, Durai Raj AC, Salvado Silva M, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: causality in health and disease. Med Microbiol Immunol. 2021;210:173–9.Article 

    Google Scholar 
    Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:1–15.Article 

    Google Scholar 
    Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol. 2020;11:1–14.Article 

    Google Scholar 
    McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Moual H LE, Coombes BK. Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn’s disease-associated adherent-invasive Escherichia coli. Infect Immun. 2014;82:3383–93.Article 

    Google Scholar 
    Xu Y, Wei W, Lei S, Lin J, Srinivas S, Feng Y. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. MBio. 2018;9:1–18.Article 

    Google Scholar 
    Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun. 2012;80:483–92.CAS 
    Article 

    Google Scholar 
    Desloges I, Taylor JA, Leclerc JM, Brannon JR, Portt A, Spencer JD, et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen. 2019;8:1–36.Article 

    Google Scholar 
    McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol. 2004;186:5919–25.CAS 
    Article 

    Google Scholar 
    Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res. 2015;181:1–7.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol. 2018;9:2199.Santella RM. Approaches to DNA/RNA extraction and whole genome amplification: table 1. Cancer Epidemiol Biomark Prev. 2006;15:1585–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. https://www.r-project.org/.Lahti L, Shetty S. microbiome R package. http://microbiome.github.io.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.CAS 
    Article 

    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.Article 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    Article 

    Google Scholar 
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    Article 

    Google Scholar 
    Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP, et al. The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe. 2022;30:124–138.e8.CAS 
    Article 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.Article 

    Google Scholar 
    Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM, Rutaihwa LK, et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinforma. 2018;19:1–8.Article 

    Google Scholar 
    Haider SR, Reid HJ, Sharp BL. Tricine-SDS-PAGE. In: Kurien B., Scofield R. editors. Protein electrophoresis. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press; 2012. p. 81–91.Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.Article 

    Google Scholar 
    Zoetendal EG, Booijink CCGM, Klaassens ES, Heilig HGHJ, Kleerebezem M, Smidt H, et al. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc. 2006;1:954–9.CAS 
    Article 

    Google Scholar 
    Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.CAS 
    Article 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS 
    Article 

    Google Scholar  More

  • in

    A global record of annual terrestrial Human Footprint dataset from 2000 to 2018

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6, 439–447 (2008).Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, (2017).Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nature communications 9, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology 24, 3199–3213 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510 (2020).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing 13, 1849 (2021).ADS 
    Article 

    Google Scholar 
    Wang, L. et al. Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment 210, 269–281 (2018).ADS 
    Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends in ecology & evolution 29, 635–644 (2014).Article 

    Google Scholar 
    Nikhil, S. et al. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis 5, 1–14 (2021).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Steffen W, et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, (2015).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific data 3, 1–10 (2016).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mu, H. et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning 218, 104305 (2022).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nature communications 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).ADS 
    Article 

    Google Scholar 
    Allan, J. R., Venter, O. & Watson, J. E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Scientific data 4, 1–8 (2017).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances 6, eabc3436 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data 12, 1953–1972 (2020).ADS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, 811–826 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2, 599–610 (2018).Article 

    Google Scholar 
    Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecology letters 17, 1365–1379 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific data 7, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Luck, G. W., Ricketts, T. H., Daily, G. C. & Imhoff, M. Alleviating spatial conflict between people and biodiversity. Proceedings of the National Academy of Sciences 101, 182–186 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Gong, P., Li, X. & Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin 64, 756–763 (2019).ADS 
    Article 

    Google Scholar 
    Hu, T., Yang, J., Li, X. & Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sensing 8, 151 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters 15, 094044 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhu, Z. & Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data 12, 357–371 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, X. et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data 12, 1625–1648 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment 166, 78–90 (2015).ADS 
    Article 

    Google Scholar 
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G. & Gaston, K. J. Urban form, biodiversity potential and ecosystem services. Landscape and urban planning 83, 308–317 (2007).Article 

    Google Scholar 
    Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous United States. PE&RS. Photogrammetric Engineering & Remote Sensing 77, 858–864 (2011).
    Google Scholar 
    Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).ADS 
    Article 

    Google Scholar 
    Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment 219, 206–220 (2018).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637 (2017).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing 38, 6030–6046 (2017).ADS 
    Article 

    Google Scholar 
    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115, 161–164 (2004).Article 

    Google Scholar 
    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Scientific data 4, 1–17 (2017).Article 

    Google Scholar 
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological reviews 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, M. et al. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971 (2019).ADS 
    Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability 3, 281–289 (2020).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature communications 10, 1–10 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Plummer, S., Lecomte, P. & Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203, 2–8 (2017).ADS 
    Article 

    Google Scholar 
    Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles 22, (2008).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation biology 14, 18–30 (2000).Article 

    Google Scholar 
    Paton, D. G., Ciuti, S., Quinn, M. & Boyce, M. S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 8, e01841 (2017).Article 

    Google Scholar 
    Center For International Earth Science Information Network –Columbia University, Georgia ITOSUO. Global roads open access data set, version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), (2013).Wolter, C. & Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89 (2003).Article 

    Google Scholar 
    Wolter, C. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53, 135–144 (2001).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89, 93–94 (2008).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. An annual global terrestrial Human Footprint dataset from 2000 to 2018. figshare https://doi.org/10.6084/m9.figshare.16571064.v5 (2021).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA https://doi.org/10.1594/PANGAEA.787668 (2012).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Scientific data 6, 1–17 (2019).Article 

    Google Scholar 
    Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Global change biology 26, 3040–3051 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Author Correction: Climate and land-use changes reduce the benefits of terrestrial protected areas

    AffiliationsDepartment of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, AustraliaErnest F. Asamoah & Joseph M. MainaDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaLinda J. BeaumontAuthorsErnest F. AsamoahLinda J. BeaumontJoseph M. MainaCorresponding authorCorrespondence to
    Ernest F. Asamoah. More

  • in

    Fuel, food and fertilizer shortage will hit biodiversity and climate

    As well as the humanitarian catastrophe it is inflicting, Russia’s invasion of Ukraine in February is disrupting global flows of vital commodities such as fuel, food and fertilizer. This will affect biodiversity and the environment far beyond the war zones, with implications for sustainability and well-being worldwide.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Monitoring of radioactive cesium in wild boars captured inside the difficult-to-return zone in Fukushima Prefecture over a 5-year period

    Ministry of the Environment Government of Japan. Designation of Evacuation Zone (accessed 07 April 2021); https://www.env.go.jp/chemi/rhm/h29kisoshiryo/h29kiso-09-04-01.html. (in Japanese).Fukushima Prefectural Government, Japan. About the Transition of Evacuation Zone (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/site/portal/cat01-more.html. (in Japanese).Chino, M. et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol. 48, 1129–1134 (2011).CAS 
    Article 

    Google Scholar 
    Koarashi, J., Atarashi-Andoh, M., Takeuchi, E. & Nishimura, S. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocaesium on forest floor driven by biologically mediated processes. Sci. Rep. 4, 6853 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saito, R., Nemoto, Y. & Tsukada, H. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukada, H. From soil to agricultural-plants-transfer and distribution of radiocaesium. Kagaku (Chemistry). 67, 20–23 (2012) (in Japanese).CAS 

    Google Scholar 
    Saito, R. & Tsukada, H. Chapter 23: Physicochemical fractions of radiocaesium in the stomach contents of wild boar and its transfer to muscle tissue. In Behavior of Radionuclides in the Environment III (eds Nanba, K. et al.) 495–505 (Springer, 2022).Chapter 

    Google Scholar 
    Ishii, Y., Hayashi, S. & Takamura, T. Radiocaesium transfer in forest insect communities after the Fukushima Dai-ichi Nuclear Power Plant accident. PLoS ONE 12, e0171133 (2017).Article 

    Google Scholar 
    Matsushima, N., Ihara, S., Takase, M. & Horiguchi, T. Assessment of radiocaesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Sci. Rep. 5, 9712 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ishii, Y., Matsuzaki, S. S. & Hayashi, S. Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J. Environ. Radioact. 213, 106102 (2020).CAS 
    Article 

    Google Scholar 
    Wada, T. et al. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J. Environ. Radioact. 204, 132–142 (2019).CAS 
    Article 

    Google Scholar 
    Morishita, D. et al. Spatial and seasonal variations of radiocaesium concentrations in an algae-grazing annual fish, ayu Plecoglossus altivelis collected from Fukushima Prefecture in 2014. Fish. Sci. 85, 561–569 (2019).CAS 
    Article 

    Google Scholar 
    Saito, R., Kabeya, M., Nemoto, Y. & Oomachi, H. Monitoring 137Cs concentrations in bird species occupying different ecological niches; game birds and raptors in Fukushima Prefecture. J. Environ. Radioact. 197, 67–73 (2019).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environ. Sci. Technol. 49, 2875–2885 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Steinhauser, G. & Saey, P. R. J. 137Cs in the meat of wild boars: A comparison of the impacts of Chernobyl and Fukushima. J. Radioanal. Nucl. Chem. 307, 1801–1806 (2016).CAS 
    Article 

    Google Scholar 
    Nemoto, Y., Saito, R. & Oomachi, H. Seasonal variation of caesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture, Japan. PLoS ONE 13, e0200797. https://doi.org/10.1371/journal.pone.0200797 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342 (2020).CAS 
    Article 

    Google Scholar 
    Saito, R., Oomachi, H., Nemoto, Y. & Osako, M. Estimation of the total amount of the radiocaesium in the wild boar in their body – each organs survey and incineration residue survey. J. Soc. Rem. Radioact. Contam. Environ. 7, 165–173 (2019) (in Japanese).
    Google Scholar 
    Cui, L. et al. Radiocaesium concentrations in wild boars captured within 20 km of the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 10, 9272. https://doi.org/10.1038/s41598-020-66362-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tagami, K., Howard, B. J. & Uchida, S. The time-dependent transfer factor of radiocaesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. Environ. Sci. Technol. 50, 9424–9431. https://doi.org/10.1021/acs.est.6b03011 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuma, S. et al. Radiocaesium contamination of wild boars in Fukushima and surrounding regions after the Fukushima nuclear accident. Environ. Radioact. 164, 60–64 (2016).CAS 
    Article 

    Google Scholar 
    Fukushima Prefectural Government, Japan. Monitoring of Wild Animals. Accessed 7 Apr 2021. https://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html. (in Japanese).Strebl, F. & Tataruch, F. Time trends (1986–2003) of radiocaesium transfer to roe deer and wild boar in two Austrian forest regions. J. Environ. Radioactiv. 98, 137–152 (2007).CAS 
    Article 

    Google Scholar 
    Ohtsuka-Ito, E. & Kanzaki, N. Population trends of the Japanese wild boar during the Showa era. Wildl. Cons. Jpn. 3, 95–105 (1998).Article 

    Google Scholar 
    Ueda, H. & Jiang, Z. The use of Orchards and Abandoned Orchard by wild boars in Yamanashi. Mamm. Sci. 44, 23–33 (2004) (in Japanese).
    Google Scholar 
    Fukushima Prefectural Government, Japan. Fukushima Prefecture Wild Boar Management Plan (Phase 3) (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/uploaded/life/497785_1296285_misc.pdf (in Japanese).Anderson, D. et al. A comparison of methods to derive aggregated transfer factors using wild boar data from the Fukushima Prefecture. J. Environ. Radioact. 197, 101–108 (2019).CAS 
    Article 

    Google Scholar 
    Pröhl, G. et al. Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. J. Environ. Radioactiv. 91, 41–72 (2006).Article 

    Google Scholar 
    Palo, R. T., White, N. & Danell, K. Spatial and temporal variations of 137Cs in moose Alces alces and transfer to man in northern Sweden. Wildlife Biol. 9, 207–212 (2003).Article 

    Google Scholar 
    Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan. J. Mammal. Soc. Jpn. 53, 279–287 (2013) (in Japanese).
    Google Scholar 
    Kodera, Y. & Kanzaki, N. Food habits and nutritional condition of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Cons. Jpn. 6, 109–117 (2001) (in Japanese).
    Google Scholar 
    Arita, S. et al. Radioactive cesium accumulation during developmental stages of Largemouth Bass, Micropterus salmoides. Proc. JSCE. G. (Environment) 71, 267–276 (2015).Article 

    Google Scholar 
    Kodera, Y. C. S. F. prevention of epidemics from a point of view of the ecology of wild boar. J. Vet. Epidemiol. 23, 4–8 (2019) (in Japanese).Article 

    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. J. Zool. 242, 411–423 (1997).Article 

    Google Scholar 
    Morelle, K. et al. Towards understanding wild boar Sus scrofa movement: A synthetic movement ecology approach. Mammal Rev. 45, 15–29 (2015).Article 

    Google Scholar 
    Kapata, J., Mnich, K., Mnich, S., Karpińska, M. & Bielawska, A. Time-dependence of 137Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland). J. Environ. Radioactiv. 141, 76–81 (2015).Article 

    Google Scholar 
    Gulakov, A. V. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive. J. Environ. Radioactiv. 127, 171–175 (2014).CAS 
    Article 

    Google Scholar 
    Hohmann, U. & Huckschlag, D. Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: A stomach content analysis. Eur. J. Wildl. Res. 51, 263–270 (2005).Article 

    Google Scholar 
    Škrkal, J., Rulík, P., Fantínová, K., Mihalík, J. & Timková, J. Radiocaesium levels in game in the Czech Republic. J. Environ. Radioactiv. 139, 18–23 (2015).Article 

    Google Scholar 
    Japan Atomic Energy Agency (JAEA). 5th airborne monitoring survey (accessed 07 April 2021); https://emdb.jaea.go.jp/emdb/en/portals/b1020201/Steinhauser, G. Monitoring and radioecological characteristics of radiocaesium in Japanese beef after the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 311, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J. Radioanal. Nucl. Chem. 307, 1807–1810 (2016).CAS 
    Article 

    Google Scholar  More