Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, et al. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021;15:3522–33.CAS
Google Scholar
Huang H, Ren L, Li H, Schmidt A, Gershenzon J, Lu Y, et al. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathog. 2020;16:e1008800.CAS
Google Scholar
Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep. 2016;6:34084.
Google Scholar
Davis TS, Landolt PJ. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol. 2013;39:860–8.CAS
Google Scholar
Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, et al. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J. 2018;13:860–72.
Google Scholar
Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–800.CAS
Google Scholar
Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.
Google Scholar
Paul GB, Gerhard F, Elżbieta R, Alexandra S, Arne H, Sébastien L, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol. 2012;26:1365–2435.
Google Scholar
Ganter PF. Yeast and invertebrate associations. In: Gábor P, Carlos R, editors. Biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer; 2006. pp 303–70.Anagnostou C, Legrand EA, Rohlfs M. Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos. 2010;119:533–41.
Google Scholar
Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol. 2019;9:8075–86.
Google Scholar
Luo Y, Johnson JC, Chakraborty TS, Piontkowski A, Gendron CM, Pletcher SD. Yeast volatiles double starvation survival in Drosophila. Sci Adv. 2021;7:eabf8896.CAS
Google Scholar
Fogleman S. Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol. 1986;12:1037–55.
Google Scholar
Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Tec. 2008;49:386–96.CAS
Google Scholar
Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–57.CAS
Google Scholar
Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol. 2020;30:127–34.CAS
Google Scholar
Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, et al. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Arch Insect Biochem. 2019;102:e21601.CAS
Google Scholar
Han P, Wang X, Niu CY, Dong YC, Zhu JQ, Desneux N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J Pest Sci. 2011;84:289–95.
Google Scholar
Duyck PF, David P, Quilici S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol. 2004;29:511–20.
Google Scholar
Wen T, Zheng L, Dong S, Gong Z, Sang M, Long X, et al. Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol Tec. 2019;147:156–65.
Google Scholar
Li X, Yang H, Wang T, Wang J, Wei H. Life history and adult dynamics of Bactrocera dorsalis in the citrus orchard of Nanchang, a subtropical area from China: implications for a control timeline. ScienceAsia. 2019;45:212–20.
Google Scholar
Chalupowicz D, Veltman B, Droby S, Eltzov E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens Actuat B-Chem. 2020;311:127896.CAS
Google Scholar
Turlings TC, Lengwiler UB, Bernasconi ML, Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta. 1998;207:146–52.CAS
Google Scholar
Wang B, Dong W, Li H, D’Onofrio C, Bai P, Chen R, et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr Biol. 2022;32:951–62.CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS
Google Scholar
Cellar NA, De Nison JE, Seipelt CT, Twohig M, Burgess JA. Title of subordinate document. In: Dramatic improvements in assay reproducibility for water-soluble vitamins using ACQUITY UPLC and the Ultra-Sensitive Xevo TQ-S Mass Spectrometer. 2013. https://www.waters.com/webassets/cms/library/docs/720004690en.pdf.Ren FR, Sun X, Wang TY, Yan JY, Yao YL, Li CQ, et al. Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME J. 2021;15:1655–67.CAS
Google Scholar
Batta YA. Quantitative postharvest contamination and transmission of Penicillium expansum (Link) conidia to nectarine and pear fruit by Drosophila melanogaster (Meig.) adults. Postharvest Biol Tec. 2006;40:190–6.
Google Scholar
Rohlfs M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool. 2005;2:2.
Google Scholar
Becher PG, Bengtsson M, Hansson BS, Witzgall P. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol. 2010;36:599–607.CAS
Google Scholar
Dionigi C, Ahten T, Wartelle L. Effects of several metals on spore, biomass, and geosmin production by Streptomyces tendae and Penicillium expansum. J Ind Microbiol Biot. 1996;17:84–88.CAS
Google Scholar
Jin S, Zhou X, Gu F, Zhong G, Yi X. Olfactory plasticity: variation in the expression of chemosensory receptors in Bactrocera dorsalis in different physiological states. Front Physiol. 2017;8:672.
Google Scholar
Li H, Ren L, Xie M, Gao Y, He M, Hassan B, et al. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr Biol. 2020;30:4432–40.CAS
Google Scholar
Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Insect Biochem Molec. 2020;122:103389.CAS
Google Scholar
Ju JF, Bing XL, Zhao DS, Guo Y, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:1–12.
Google Scholar
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle–fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME J. 2020;14:2829–42.CAS
Google Scholar
Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
Google Scholar
Honda K, Ômura H, Hayashi N, Abe F, Yamauchi T. Conduritols as oviposition stimulants for the danaid butterfly, Parantica sita, identified from a host plant, Marsdenia tomentosa. J Chem Ecol. 2004;30:2285–96.CAS
Google Scholar
Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, et al. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife. 2016;5:e13133.
Google Scholar
Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 2016;14:e1002455.
Google Scholar
Stötefeld L, Holighaus G, Schütz S, Rohlfs M. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. Chemoecology. 2015;5:271–83.
Google Scholar
Gou B, Liu Y, Guntur A, Stern U, Yang HC. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Rep. 2014;9:522–30.CAS
Google Scholar
Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr Biol. 2020;30:3736–48.CAS
Google Scholar
Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 2020;10:3013–20.
Google Scholar
Holden JT, Furman C, Snell EE. D-alanine and the vitamin B6 content of microorganisms. J Biol Chem. 1949;178:789–97.CAS
Google Scholar
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Micro. 2014;80:5844–53.
Google Scholar
Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, et al. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 2020;14:2542–53.CAS
Google Scholar
Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci. 2014;281:20141838.
Google Scholar More