More stories

  • in

    Potential negative effects of ocean afforestation on offshore ecosystems

    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    N‘Yeurt, A. D. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 90, 467–474 (2012).Article 
    CAS 

    Google Scholar 
    Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).Article 

    Google Scholar 
    Woody, T. Seaweed ‘forests’ can help fight climate change. National Geographic https://www.nationalgeographic.co.uk/environment-and-conservation/2019/08/seaweed-forests-can-help-fight-climate-change (2019).Godin, M. The ocean farmers trying to save the world with seaweed. Time https://time.com/5848994/seaweed-climate-change-solution/ (2020).Marshall, M. Kelp is coming: how seaweed could prevent catastrophic climate change. New Scientist https://www.newscientist.com/article/mg24632821-100-kelp-is-coming-how-seaweed-could-prevent-catastrophic-climate-change/ (2020).Bever, F. ‘Run the oil industry in reverse’: fighting climate change by farming kelp. NPR https://www.npr.org/2021/03/01/970670565/run-the-oil-industry-in-reverse-fighting-climate-change-by-farming-kelp (2021).Running Tide. https://www.runningtide.com/ (2022).IPCC: Summary for Policymakers. In Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press) (in the press).GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (eds Boyd, P. W. & Vivian, C. M. G.) GESAMP Working Group 41 (International Maritime Organization, 2019).Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Law, C. S. Predicting and monitoring the impact of large-scale iron fertilisation on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).CAS 
    Article 

    Google Scholar 
    Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, C., Fries, L. & Gaines, S. Transformational opportunities in ocean-based food & nutrition. Zenodo https://zenodo.org/record/4646319#.YkBFxhPMLAw (2021).Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Cullen, J. J. & Boyd, P. W. Predicting and verifying the intended and uninterested consequence of large-scale iron fertilization. Mar. Ecol. Prog. Ser. 364, 295–301 (2008).CAS 
    Article 

    Google Scholar 
    Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. https://doi.org/10.3389/fclim.2019.00007 (2019).Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Suchet, P. A., Probst, J.-L. & Ludwig, L. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).
    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2011).PubMed 

    Google Scholar 
    Fraser, C. I., Davies, I. D., Bryant, D. & Waters, J. M. How disturbance and dispersal influence intraspecific structure. J. Ecol. 106, 1298–1306 (2018).Article 

    Google Scholar 
    Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article 

    Google Scholar 
    Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol., https://doi.org/10.1111/jpy.13249 (2022).Stripe commits $8M to six new carbon removal companies. Stripe https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases (2021).General application. Stripe https://github.com/stripe/carbon-removal-source-materials/blob/master/Project%20Applications/Spring2021/Running%20Tide%20-%20Stripe%20Spring21%20CDR%20Purchase%20Application.pdf (2021).Coston-Clements, L. Utilization of the Sargassum Habitat by Marine Invertebrates and Vertebrates: a Review. NOAA Technical Memorandum NMFS-SEFSC, 296 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center & Beaufort Laboratory, 1991).Egan, S. et al. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37, 462–476 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Califano, G., Kwantes, M., Abreu, M. H., Costa, R. & Wichard, T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta)Front. Mar. Sci. 7, 52 (2020).Article 

    Google Scholar 
    Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonthond, G. et al. The role of host promiscuity in the invasion process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269 (2020).Article 

    Google Scholar 
    Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harrison, P. J., Druehl, L. D., Lloyd, K. E. & Thompson, P. A. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93, 29–35 (1986).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. & Dring, M. L. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107, 281–289 (1990).Article 

    Google Scholar 
    Ohtake, M. et al. Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquat. Bot. 163, 103208 (2020).Article 

    Google Scholar 
    MacFarlane, J. J. & Raven, J. A. C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. Plant Cell Environ. 13, 1–13 (1990).CAS 
    Article 

    Google Scholar 
    Wu, J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Preprint at Earth System Dynamics Discuss https://doi.org/10.5194/esd-2021-104 (2022).Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS 
    Article 

    Google Scholar 
    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).CAS 
    Article 

    Google Scholar 
    Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2, 3269–3280 (2017).Article 

    Google Scholar 
    Lapointe, B. E. et al. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 12, 3060 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fan, W. et al. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 101, 102260 (2020).Article 

    Google Scholar 
    Karl, D. M. & Letelier, R. M. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar. Ecol. Prog. Ser. 364, 257–268 (2008).CAS 
    Article 

    Google Scholar 
    Oschlies, A. S., Pahlow, M., Yool, A. & Matear, R. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).Article 
    CAS 

    Google Scholar 
    Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., Sebastián, M., Pedrós-Alió, C. & Estrada, M. Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol. Oceanogr. 51, 1791–1800 (2006).Article 

    Google Scholar 
    Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49, 1652–1666 (2004).Article 

    Google Scholar 
    Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. 57, 1375–1391 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220 (1977).Article 

    Google Scholar 
    Sieburth, J. M. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969).CAS 
    Article 

    Google Scholar 
    Hanson, R. B. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29, 107–118 (1977).CAS 
    Article 

    Google Scholar 
    Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y., Liu, X., Wang, M. & Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26–37 (2013).Article 
    CAS 

    Google Scholar 
    Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. & Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coast. Shelf Sci. 84, 147–153 (2009).CAS 
    Article 

    Google Scholar 
    Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Huang, X. & Macreadie, P. I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 54, 14750–14760 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, H. C. et al. Ocean warming may enhance biochemical alterations induced by an invasive seaweed exudate in the mussel Mytilus galloprovincialis. Toxics 9, 121 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, S. D. & Thornton, D. C. O. Marine aerosols and clouds. Ann. Rev. Mar. Sci. 10, 289–313 (2018).PubMed 
    Article 

    Google Scholar 
    Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).Article 

    Google Scholar 
    Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res. 93, 10749–10768 (1988).Article 

    Google Scholar 
    Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R. & Kwon, M. Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl Acad. Sci. USA 112, 5921–5926 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denaro, G. et al. Dynamics of two picophytoplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE 8, e66765 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol. Oceanogr. 54, 276–288 (2009).Article 

    Google Scholar 
    Omand, M. M., Steinberg, D. K. & Stamies, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. Proc. Natl Acad. Sci. USA 118, e2022977118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bach, L. T. & Boyd, P. W. Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proc. Natl Acad. Sci. USA 118, e2106147118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Donk, E. & van de Bund, W. J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72, 261–274 (2002).Article 

    Google Scholar 
    Jin, Q., Dong, S. & Wang, C. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31–37 (2005).Article 

    Google Scholar 
    Wallace, R. B. & Gobler, C. J.Factors controlling blooms of microalgae and macroalgae (Ulva rigida) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries Coast 38, 519–533 (2015).CAS 
    Article 

    Google Scholar 
    Tang, Y. Z. & Gobler, C. J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10, 480–488 (2011).Article 

    Google Scholar 
    Cagle, S. E., Roelke, D. L. & Muhl, R. W. Allelopathy and micropredation paradigms reconcile with system stoichiometry. Ecosphere 12, e03372 (2021).Article 

    Google Scholar 
    Hein, M., Pedersen, M. F. & Sand-Jensen, K. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118, 247–253 (1995).Article 

    Google Scholar 
    Stevens, C. L., Hurd, C. L. & Smith, M. J. Water motion relative to subtidal kelp fronds. Limnol. Oceanogr. 46, 668–678 (2001).Article 

    Google Scholar 
    Raut, Y., Morando, M. & Capone, D. G. Diazotrophic macroalgal associations with living and decomposing Sargassum. Front. Microbiol. 9, 3127 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Villareal, T. A., Woods, S., Moore, J. K. & CulverRymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).Article 

    Google Scholar 
    Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Thiel, M. & Gutow, L. in Oceanography and Marine Biology: an Annual Review Vol. 43 (eds Gibson, R. et al.) 279–418 (Taylor & Francis, 2005).Rech, S., Borrell Pichs, Y. J. & García-Vazquez, E. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS ONE 13, e0191859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).Schell, J. M., Goodwin, D. S. & Siuda, A. N. S. Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E. et al. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. Peer J. 8, e8667 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flannery, T. How farming giant seaweed can feed fish and fix the climate. The Conversation Trust https://theconversation.com/how-farming-giant-seaweed-can-feed-fish-and-fix-the-climate-81761 (2017).GESAMP. Methodology for the Evaluation of Ballast Water Management Systems Using Active Substances. GESAMP No. 101 (eds Linders, J. & Dock, A.) (International Maritime Organization, 2019).Lenton, A., Boyd, P. W., Thatcher, M. & Emmerson, K. M. Foresight must guide geoengineering research and development. Nat. Clim. Change 9, 342 (2019).Article 

    Google Scholar 
    Sumaila, U. R. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article 

    Google Scholar 
    Rech, S., Salmina, S., Borrell Pichs, Y. J. & García-Vazquez, E. Dispersal of alien invasive species on anthropogenic litter from European mariculture areas. Mar. Pollut. Bull. 131, 10–16 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Therriault, T. W. et al. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 132, 82–89 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, J. A., Carlton, J. T., Chapman, J. W., Geller, J. B. & Ruiz, G. M. Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: an approach for evaluating rafting of a coastal species at sea. Mar. Pollut. Bull. 132, 60–69 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunt, G. L. Jr et al. Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).Article 

    Google Scholar 
    Hallegraeff, G. M. & Bolch, C. J. Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14, 1067–1084 (1992).Article 

    Google Scholar 
    Russell, L. K., Hepburn, C. D., Hurd, C. L. & Stuart, M. D. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol. Invasions 10, 103–115 (2008).Article 

    Google Scholar 
    Uwai, S. et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45, 687–695 (2006).Article 

    Google Scholar  More

  • in

    The distribution of manta rays in the western North Atlantic Ocean off the eastern United States

    Couturier, L. et al. Biology, ecology and conservation of the Mobulidae. J. Fish Biol. 80, 1075–1119 (2012).CAS 

    Google Scholar 
    Herman, J., Hovestadt-Euler, M., Hovestadt, D. & Stehmann, M. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supraspecific taxa of Chondrichthyan fishes. Part B: Batomorphii 4c: Order Rajiformes-Suborder Myliobatoidei-Superfamily Dasyatoidea-Family Dasyatidae-Subfamily Dasyatinae-Genus: Urobatis, Subfamily Potamotrygoninae-Genus: Paratrygon, Superfamily Plesiobatoidea-Family Plesiobatidae-Genus: Plesiobatis, Superfamily Myliobatoidea-Family Myliobatidae-Subfamily Myliobatinae-Genera: Aetobatus, Aetomylaeus, Myliobatis and Pteromylaeus, Subfamily Rhinopterinae-Genus: Rhinoptera and Subfamily Mobulinae-Genera: Manta and Mobula. Addendum 1 to 4a: erratum to Genus Pteroplatytrygon. Bull. Koninlijk Belgisch Inst Natuurwetenschappen-Biol. (2000).Adnet, S., Cappetta, H., Guinot, G. & NOTARBARTOLO DI SCIARA, G. Evolutionary history of the devilrays (Chondrichthyes: Myliobatiformes) from fossil and morphological inference. Zool. J. Linnean Soc. 166, 132–159 (2012).
    Google Scholar 
    Naylor, G. J. et al. A DNA sequence–based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. Hist. 2012, 1–262 (2012).
    Google Scholar 
    Kitchen-Wheeler, A.-M. The Behaviour and Ecology of Alfred mantas (Manta alfredi) in the Maldives (Newcastle University, 2013).
    Google Scholar 
    Paig-Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: Variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).
    Google Scholar 
    Aschliman, N. C., Claeson, K. M. & McEachran, J. D. Phylogeny of batoidea. Biol. Sharks Relat. 2, 57–96 (2012).
    Google Scholar 
    Poortvliet, M. et al. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences. Mol. Phylogenet. Evol. 83, 72–85 (2015).CAS 

    Google Scholar 
    Marshall, A. D., Compagno, L. J. & Bennett, M. B. Redescription of the genus Manta with resurrection of Manta alfredi (Krefft, 1868)(Chondrichthyes; Myliobatoidei; Mobulidae). Zootaxa 2301, 1–28 (2009).
    Google Scholar 
    White, W. T. et al. Phylogeny of the manta and devilrays (Chondrichthyes: Mobulidae), with an updated taxonomic arrangement for the family. Zool. J. Linn. Soc. 182, 50–75 (2018).
    Google Scholar 
    Service, N. O. a. A. A. F. Vol. 83 (ed U.S. Department of Commerce) 2916–2931 (U.S. Department of Commerce, Federal Register, 2018).Service, N. O. a. A. A. F. Vol. 84 (ed U.S. Department of Commerce) 66652–66664 (U.S. Department of Commerce, Federal Register, 2019).Clark, T. B. Abundance, home range, and movement patterns of manta rays (Manta alfredi, M. birostris) in Hawaiʻi, [Honolulu]:[University of Hawaii at Manoa],[December 2010], (2010).Burgess, K. Feeding ecology and habitat use of the giant manta ray Manta birostris at a key aggregation site off mainland Ecuador (2017).Beale, C. S., Stewart, J. D., Setyawan, E., Sianipar, A. B. & Erdmann, M. V. Population dynamics of oceanic manta rays (Mobula birostris) in the Raja Ampat Archipelago, West Papua, Indonesia, and the impacts of the El Niño-Southern Oscillation on their movement ecology. Divers. Distrib. 25, 1472–1487 (2019).
    Google Scholar 
    Bertolini, F. Dentatura dei Selaci in rapporto con la nutrizione. (editore non identificato, 1933).Bigelow, H. B. Sawfishes, guitarfishes, skates and rays. Sawfishes, guitarfishes, skates and rays, and chimaeroids, 1–514 (1953).Rohner, C. A. et al. Mobulid rays feed on euphausiids in the Bohol Sea. R. Soc. Open Sci. 4, 161060 (2017).ADS 

    Google Scholar 
    Stewart, J. D. et al. Trophic overlap in mobulid rays: insights from stable isotope analysis. Mar. Ecol. Prog. Ser. 580, 131–151 (2017).ADS 

    Google Scholar 
    De Boer, M., Saulino, J., Lewis, T. & Notarbartolo-Di-Sciara, G. New records of whale shark (Rhincodon typus), giant manta ray (Manta birostris) and Chilean devil ray (Mobula tarapacana) for Suriname. Mar. Biodivers. Rec. 8 (2015).Hacohen-Domené, A., Martínez-Rincón, R. O., Galván-Magaña, F., Cárdenas-Palomo, N. & Herrera-Silveira, J. Environmental factors influencing aggregation of manta rays (Manta birostris) off the northeastern coast of the Yucatan Peninsula. Mar. Ecol. 38, e12432 (2017).ADS 

    Google Scholar 
    Service, N. O. a. A. A. N. O. What is the Loop Current? https://oceanservice.noaa.gov/facts/loopcurrent.html (2021).Service, N. O. a. A. A. N. O. How fast is the Gulf Stream? https://oceanservice.noaa.gov/facts/gulfstreamspeed.html (2021).Childs, J. N. The Occurrence, Habitat Use and Behavior of Sharks and Rays Associating with Topographic Highs in the Gulf of Mexico. M.S. Thesis, Texas A&M University (2001).Stewart, J. D., Nuttall, M., Hickerson, E. L. & Johnston, M. A. Important juvenile manta ray habitat at Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico. Mar. Biol. 165, 1–8 (2018).CAS 

    Google Scholar 
    Pate, J. H. & Marshall, A. D. Urban manta rays: Potential manta ray nursery habitat along a highly developed Florida coastline. Endanger. Spec. Res. 43, 51–64 (2020).
    Google Scholar 
    Hosegood, J. et al. Phylogenomics and species delimitation for effective conservation of manta and devil rays. Mol. Ecol. 29, 4783–4796 (2020).
    Google Scholar 
    Hinojosa-Alvarez, S., Walter, R. P., Diaz-Jaimes, P., Galván-Magaña, F. & Paig-Tran, E. M. A potential third manta ray species near the Yucatán Peninsula? Evidence for a recently diverged and novel genetic Manta group from the Gulf of Mexico. PeerJ 4, e2586 (2016).
    Google Scholar 
    Bucair, N., Venables, S. K., Balboni, A. P. & Marshall, A. D. Sightings trends and behaviour of manta rays in Fernando de Noronha Archipelago, Brazil. Mar. Biodivers. Rec. 14, 1–11 (2021).
    Google Scholar 
    Garzon, F., Graham, R., Witt, M. & Hawkes, L. Ecological niche modeling reveals manta ray distribution and conservation priority areas in the Western Central Atlantic. Anim. Conserv. 24, 322–334 (2021).
    Google Scholar 
    Stewart, J. D. et al. Research priorities to support effective manta and devil ray conservation. Front. Mar. Sci. 5, 314 (2018).
    Google Scholar 
    Garrison, L. P. Abundance of coastal and continental shelf stocks of bottlenose dolphins in the northern Gulf of Mexico: 2011–2012. (National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, 2017).Garrison, L. P., Ortega-Ortiz, J. & Rappucci, G. Abundance of coastal and continental shelf stocks of bottlenose dolphins in the northern Gulf of Mexico: 2017–2018. (National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, 2021).Palka, D. L. et al. Atlantic Marine Assessment Program for Protected Species: 2010–2014. (US Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, DC, 2017).Palka, D. et al. Atlantic Marine Assessment Program for Protected Species: FY15 – FY19. (US Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, DC, 2021).Laake, J. L. & Borchers, D. L. in Advanced distance sampling (eds S.T. Buckland et al.) 108–189 (Oxford University Press, 2004).mrds: Mark-Recapture Distance Sampling v. 2.2.2 (https://CRAN.R-project.org/package=mrds, 2020).Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).MathSciNet 
    MATH 

    Google Scholar 
    Consortium, N. A. R. W. (2018).Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28 (2019).
    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE https://doi.org/10.1371/journal.pone.0073051 (2013).Article 

    Google Scholar 
    rerddap: General Purpose Client for ‘ERDDAP’ Servers v. 0.7.4 (https://cran.r-project.org/package=rerddap, 2021).Belkin, I. M. & O’Reilly, J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 319–326 (2009).
    Google Scholar 
    grec: GRadient-Based RECognition of Spatial Patterns in Environmental Data v. 1.3.1 (https://github.com/LuisLauM/grec, 2020).Del Castillo, C. E. et al. Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf. Limnol. Oceanogr. 46, 1836–1843 (2001).ADS 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. 5, 219 (2018).
    Google Scholar 
    Hazen, E. L. et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 54, 1415–1428 (2017).
    Google Scholar 
    Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 1–8 (2011).
    Google Scholar 
    Farmer, N. A. et al. Timing and locations of reef fish spawning off the southeastern United States. PLoS ONE 12, e0172968 (2017).
    Google Scholar 
    Heyman, W. D. et al. Cooperative monitoring, assessment, and management of fish spawning aggregations and associated fisheries in the US Gulf of Mexico. Mar. Policy 109, 103689 (2019).
    Google Scholar 
    Shumway, R. H. & Stoffer, D. S. (Springer, 2017).astsa: Applied Statistical Time Series Analysis v. 1.12 (https://CRAN.R-project.org/package=astsa, 2020).Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression Vol. 398 (Wiley, New York, 2013).MATH 

    Google Scholar 
    Service, N. O. a. A. A. F. Giant manta ray recovery outline, https://www.fisheries.noaa.gov/resource/document/giant-manta-ray-recovery-outline (2020).Kashiwagi, T., Marshall, A. D., Bennett, M. B. & Ovenden, J. R. Habitat segregation and mosaic sympatry of the two species of manta ray in the Indian and Pacific Oceans: Manta alfredi and M. birostris. Mar. Biodivers. Rec. 4 (2011).Adams, D. H. & Amesbury, E. Occurrence of the manta ray, Manta birostris, in the Indian River Lagoon, Florida. Florida Sci., 7–9 (1998).Milessi, A. C. & Oddone, M. C. Primer registro de Manta birostris (Donndorff 1798)(Batoidea: Mobulidae) en el Rio de La Plata, Uruguay. Gayana (Concepción) 67, 126–129 (2003).
    Google Scholar 
    Medeiros, A., Luiz, O. & Domit, C. Occurrence and use of an estuarine habitat by giant manta ray Manta birostris. J. Fish Biol. 86, 1830–1838 (2015).CAS 

    Google Scholar 
    Shropshire, T. A. et al. Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model. Biogeosciences 17, 3385–3407 (2020).ADS 

    Google Scholar 
    Strömberg, K. P., Smyth, T. J., Allen, J. I., Pitois, S. & O’Brien, T. D. Estimation of global zooplankton biomass from satellite ocean colour. J. Mar. Syst. 78, 18–27 (2009).
    Google Scholar 
    Yoder, J. Environmental control of phytoplankton production on the southeastern US continental shelf. Oceanogr. Southeast. US Cont. Shelf 2, 93–103 (1985).
    Google Scholar 
    Yoder, J. A., Atkinson, L. P., Lee, T. N., Kim, H. H. & McClain, C. R. Role of gulf stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf 1. Limnol. Oceanogr. 26, 1103–1110 (1981).ADS 

    Google Scholar 
    Cloern, J. E. Tidal stirring and phytoplankton bloom dynamics in an estuary. J. Mar. Res. 49, 203–221 (1991).
    Google Scholar 
    Blauw, A. N., Beninca, E., Laane, R. W., Greenwood, N. & Huisman, J. Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by different oscillatory modes of the tidal cycle. PLoS ONE 7, e49319 (2012).ADS 
    CAS 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672 (2008).ADS 
    CAS 

    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 

    Google Scholar 
    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    Google Scholar 
    Huey, R. B. & Stevenson, R. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).
    Google Scholar 
    Angilletta, M. J. Jr. Estimating and comparing thermal performance curves. J. Therm. Biol 31, 541–545 (2006).
    Google Scholar 
    Angilletta, M. J. Jr., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268 (2002).
    Google Scholar 
    Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).ADS 

    Google Scholar 
    Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. 5, 1–7 (2014).
    Google Scholar 
    Freedman, R. & Roy, S. S. Spatial patterning of Manta birostris in United States east coast offshore habitat. Appl. Geogr. 32, 652–659 (2012).
    Google Scholar 
    Graham, R. T. et al. Satellite tracking of manta rays highlights challenges to their conservation. PLoS ONE 7, e36834 (2012).ADS 
    CAS 

    Google Scholar 
    Duffy, C. & Abbott, D. Sightings of mobulid rays from northern New Zealand, with confirmation of the occurrence of Manta birostris in New Zealand waters. (2003).Dewar, H. et al. Movements and site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia. Mar. Biol. 155, 121–133 (2008).
    Google Scholar 
    Johnston, M. A. et al. Long-term monitoring at east and west Flower Garden Banks: 2017 annual report. (Flower Garden Banks National Marine Sanctuary, Galveston, Texas, 2018).Morita, K., Fukuwaka, M. A., Tanimata, N. & Yamamura, O. Size-dependent thermal preferences in a pelagic fish. Oikos 119, 1265–1272 (2010).
    Google Scholar 
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Google Scholar 
    Kingsolver, J. G. The Well-temperatured biologist: (American Society of Naturalists Presidential Address). Am. Nat. 174, 755–768 (2009).
    Google Scholar 
    Stevenson, R. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am. Nat. 125, 102–117 (1985).
    Google Scholar 
    Blanton, J., Atkinson, L., Pietrafesa, L. & Lee, T. The intrusion of Gulf Stream water across the continental shelf due to topographically-induced upwelling. Deep Sea Res. Part A Oceanogr. Res. Pap. 28, 393–405 (1981).ADS 

    Google Scholar 
    Savidge, G. A preliminary study of the distribution of chlorophyll a in the vicinity of fronts in the Celtic and western Irish Seas. Estuar. Coast. Mar. Sci. 4, 617–625 (1976).ADS 
    CAS 

    Google Scholar 
    Pingree, R. & Griffiths, D. Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. Oceans 83, 4615–4622 (1978).ADS 

    Google Scholar 
    Tett, P. Modelling phytoplankton production at shelf-sea fronts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 302, 605–615 (1981).ADS 

    Google Scholar 
    Bumpus, D. F. & Wehe, T. Hydrography of the Western Atlantic: coastal water circulation off the east coast of the United States between Cape Hatteras and Florida. (Woods Hole Oceanographic Institution, 1949).Clark, T. B. Population structure of Manta birostris (Chondrichthyes: Mobulidae) from the Pacific and Atlantic Oceans. Texas A&M University (2002).Kashiwagi, T. et al. in The Joint Meeting of Ichthyologists & Herpetologist. Austin: American Elasmobranch Society Conference. 254–255.Notarbartolo-di-Sciara, G. Natural history of the rays of the genus Mobula in the Gulf of California. Fish. Bull. 86, 45–66 (1988).
    Google Scholar 
    Notarbartolo-di-Sciara, G. A revisionary study of the genus Mobula Rafinesque, 1810 (Chondrichthyes: Mobulidae) with the description of a new species. Zool. J. Linn. Soc. 91, 1–91 (1987).
    Google Scholar 
    Canese, S. et al. Diving behavior of the giant devil ray in the Mediterranean Sea. Endangered Species Research 14, 171–176 (2011).
    Google Scholar 
    Stewart, J. D. et al. Spatial ecology and conservation of Manta birostris in the Indo-Pacific. Biol. Cons. 200, 178–183 (2016).
    Google Scholar 
    Farmer, N. A. et al. Population consequences of disturbance by offshore oil and gas activity for endangered sperm whales (Physeter macrocephalus). Biol. Cons. 227, 189–204 (2018).
    Google Scholar 
    Farmer, N. A., Gowan, T. A., Powell, J. R. & Zoodsma, B. J. Evaluation of alternatives to winter closure of black sea bass pot gear: Projected impacts on catch and risk of entanglement with North Atlantic right whales Eubalaena glacialis. Mar. Coast. Fish. 8, 202–221 (2016).
    Google Scholar 
    Miller, M. & Klimovich, C. Endangered Species Act status review report: Giant manta ray (Manta birostris) and reef manta ray (Manta alfredi). Report to National Marine Fisheries Service, Office of Protected Resources. Silver Spring, MD (2016).Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).
    Google Scholar 
    Carlson, J. K. Estimated incidental take of smalltooth sawfish (Pristis pectinata) and giant manta ray (Manta birostris) in the South Atlantic and Gulf of Mexico shrimp trawl fishery. 16 (National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, Panama City, Florida, 2020).Essumang, D. First determination of the levels of platinum group metals in Manta birostris (Manta Ray) caught along the Ghanaian coastline. Bull. Environ. Contam. Toxicol. 84, 720–725 (2010).CAS 

    Google Scholar 
    Hajbane, S. & Pattiaratchi, C. B. Plastic pollution patterns in offshore, nearshore and estuarine waters: A case study from Perth Western Australia. Front. Mar. Sci. 4, 63 (2017).
    Google Scholar 
    Germanov, E. S. et al. Microplastics on the menu: Plastics pollute Indonesian manta ray and whale shark feeding grounds. Front. Mar. Sci. 6, 679 (2019).
    Google Scholar 
    McCauley, D. J. et al. Reliance of mobile species on sensitive habitats: A case study of manta rays (Manta alfredi) and lagoons. Mar. Biol. 161, 1987–1998 (2014).
    Google Scholar 
    Guard, U. S. C. 2019 recreational boating statistics. 83 (U.S. Department of Homeland Security, U.S. Coast Guard, Office of Auxiliary and Boating Safety, Washington, DC, 2019).Roberts, B. in Florida Sportsman (2020).Pate, J. H., Macdonald, C. & Wester, J. Surveys of recreational anglers reveal knowledge gaps and positive attitudes towards manta ray conservation in Florida. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1410–1419 (2021).
    Google Scholar 
    Currier, R., Kirkpatrick, B., Simoniello, C., Lowerre-Barbieri, S. & Bickford, J. in OCEANS 2015-MTS/IEEE Washington. 1–3 (IEEE).Young, J. M. et al. The FACT Network: Philosophy, evolution, and management of a collaborative coastal tracking network. Mar. Coast. Fish. 12, 258–271 (2020).
    Google Scholar  More

  • in

    Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).ADS 
    Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273 (2020).ADS 
    Article 

    Google Scholar 
    Kravchenko, A. N. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. 10, 3121 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Witzgall, K. et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12, 4115 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).ADS 
    Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keiluweit, M., Nico, P. S., Kleber, M. & Fendorf, S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127, 157–171 (2016).CAS 
    Article 

    Google Scholar 
    Rohe, L. et al. Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences 18, 1185–1201 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hall, S. J. & Silver, W. L. Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry 125, 149–165 (2015).CAS 
    Article 

    Google Scholar 
    Hagedorn, F., Bruderhofer, N., Ferrari, A. & Niklaus, P. A. Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: Biodegradation, physico-chemical retention or preferential flow? Soil Biol. Biochem. 88, 333–343 (2015).CAS 
    Article 

    Google Scholar 
    Védère, C., Vieublé Gonod, L., Pouteau, V., Girardin, C. & Chenu, C. Spatial and temporal evolution of detritusphere hotspots at different soil moistures. Soil Biol. Biochem. 150, 107975 (2020).Article 
    CAS 

    Google Scholar 
    Silver, W. L., Lugo, A. E. & Keller, M. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44, 301–328 (1999).
    Google Scholar 
    Schuur, E. A. G., Chadwick, O. A. & Matson, P. A. Carbon cycling and soil carbon storage in mesic to wet hawaiian montane forests. Ecology 82, 3182–3196 (2001).Article 

    Google Scholar 
    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).ADS 
    Article 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cleveland, C. C., Wieder, W. R., Reed, S. C. & Townsend, A. R. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91, 2313–2323 (2010).PubMed 
    Article 

    Google Scholar 
    Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).CAS 
    Article 

    Google Scholar 
    Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 11, 91–101 (1999).Article 

    Google Scholar 
    Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).ADS 
    Article 

    Google Scholar 
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Ruamps, L. S., Nunan, N. & Chenu, C. Microbial biogeography at the soil pore scale. Soil Biol. Biochem. 43, 280–286 (2011).CAS 
    Article 

    Google Scholar 
    Strong, D. T., Wever, H. D., Merckx, R. & Recous, S. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil Sci. 55, 739–750 (2004).Article 

    Google Scholar 
    Vogel, H.-J. et al. A holistic perspective on soil architecture is needed as a key to soil functions. Eur. J. Soil Sci. 73, e13152 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 1, 238–242 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Steffens, M. et al. Identification of distinct functional microstructural domains controlling C storage in soil. Environ. Sci. Technol. 51, 12182–12189 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elyeznasni, N. et al. Exploration of soil micromorphology to identify coarse-sized OM assemblages in X-ray CT images of undisturbed cultivated soil cores. Geoderma 179-180, 38–45 (2012).ADS 
    Article 

    Google Scholar 
    Hayes, T. L., Lindgren, F. T. & Gofman, J. W. A quantitative determination of the Osmium tetroxide-lipoprotein interaction. J. Cell Biol. 19, 251–255 (1963).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Belazi, D., Solé-Domènech, S., Johansson, B., Schalling, M. & Sjövall, P. Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochem. Cell Biol. 132, 105–115 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz M., et al. Structured heterogeneity in a marine terrace chronosequence: upland mottling. Vadose Zone J. 15, vzj2015.07.0102 (2016).Fimmen et al. Fe–C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils. Biogeochemistry 87, 127–141 (2008).CAS 
    Article 

    Google Scholar 
    Zheng, H., Kim, K., Kravchenko, A., Rivers, M. & Guber, A. Testing Os staining approach for visualizing soil organic matter patterns in intact samples via X-ray dual-energy tomography scanning. Environ. Sci. Technol. 54, 8980–8989 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article 

    Google Scholar 
    Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Quigley M. Y., Rivers M. L. & Kravchenko A. N. Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front. Environ. Sci. 6 (2018).Arai, M. et al. An improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography. Soil Tillage Res. 191, 275–281 (2019).Article 

    Google Scholar 
    Peth, S. et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biol. Biochem. 78, 189–194 (2014).CAS 
    Article 

    Google Scholar 
    Rawlins, B. G. et al. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. Soil 2, 659–671 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Plattner H. & Zingsheim H. P. Electron Microscopic Methods in Cellular and Molecular Biology. In: Subcellular Biochemistry (ed. Roodyn D. B.). (Plenum Press, 1983).Litman, R. B. & Barrnett, R. J. The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding. J. Ultrastruct. Res. 38, 63–86 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vepraskas M. & Lindbo D. Redoximorphic features as related to soil hydrology and hydric soils. In: Hydropedology: Synergistic Integration of Soil Science and Hydrology (ed. Lin H.). Academic Press (2012).See C. R., et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Vidal, A. et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 160, 108347 (2021).CAS 
    Article 

    Google Scholar 
    Hagedorn, F., Kaiser, K., Feyen, H. & Schleppi, P. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J. Environ. Qual. 29, 288–297 (2000).CAS 
    Article 

    Google Scholar 
    Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pédrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Eusterhues, K., Rumpel, C. & Kögel-Knabner, I. Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem. 36, 1567–1575 (2005).CAS 
    Article 

    Google Scholar 
    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Lucas, M., Schlüter, S., Vogel, H.-J. & Vetterlein, D. Soil structure formation along an agricultural chronosequence. Geoderma 350, 61–72 (2019).ADS 
    Article 

    Google Scholar 
    Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).ADS 
    Article 

    Google Scholar 
    Marschner, B. & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113, 211–235 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Stirling, E., Smernik, R. J., Macdonald, L. M. & Cavagnaro, T. R. The effect of fire affected Pinus radiata litter and char addition on soil nitrogen cycling. Sci. Total Environ. 664, 276–282 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kravchenko, A. N. et al. Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat. Geosci. 10, 496 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kim, K., Guber, A., Rivers, M. & Kravchenko, A. Contribution of decomposing plant roots to N2O emissions by water absorption. Geoderma 375, 114506 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Goebel, M. O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–2656 (2011).ADS 
    Article 

    Google Scholar 
    Brodowski, S., Amelung, W., Haumaier, L., Abetz, C. & Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116–129 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Diel, J., Vogel, H.-J. & Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 345, 63–71 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Surey R., et al. Contribution of particulate and mineral-associated organic matter to potential denitrification of agricultural soils. Front. Environ. Sci. 9 (2021).Kaiser, M., Ellerbrock, R. H. & Sommer, M. Separation of coarse organic particles from bulk surface soil samples by electrostatic attraction. Soil Sci. Soc. Am. J. 73, 2118–2130 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, R., Posner, A. & Quirk, J. P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 71, 550–558 (1967).CAS 
    Article 

    Google Scholar 
    Mueller, C. W. et al. Submicron scale imaging of soil organic matter dynamics using NanoSIMS – from single particles to intact aggregates. Org. Geochem. 42, 1476–1488 (2012).Article 
    CAS 

    Google Scholar 
    Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 39, 1835–1850 (2007).CAS 
    Article 

    Google Scholar 
    Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. Med. Imaging, IEEE Trans. 29, 196–205 (2010).Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975).
    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlüter, S., Leuther, F., Vogler, S. & Vogel, H.-J. X-ray microtomography analysis of soil structure deformation caused by centrifugation. Solid Earth 7, 129–140 (2016).ADS 
    Article 

    Google Scholar 
    Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlüter, S., Sheppard, A., Brown, K. & Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50, 3615–3639 (2014).ADS 
    Article 

    Google Scholar 
    Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).CAS 
    PubMed 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Surey, R. et al. Differences in labile soil organic matter explain potential denitrification and denitrifying communities in a long-term fertilization experiment. Appl. Soil Ecol. 153, 103630 (2020).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2020). More

  • in

    Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams

    Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. in Global Change and River Ecosystems—Implications for Structure, Function and EcosystemServices (eds. Stevenson, R. J. & Sabater, S.) 107–121 (Springer Netherlands, 2010).Battin, T. J., Wille, A., Psenner, R. & Richter, A. Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1, 159–171 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuhn, M. The nutrient cycle through snow and ice, a review. Aquat. Sci. 63, 150–167 (2001).CAS 
    Article 

    Google Scholar 
    Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. U. S. A. 114, 9770–9778 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tockner, K., Malard, F., Uehlinger, U. & Ward, J. V. Nutrients and organic matter in a glacial river-floodplain system (Val Roseg, Switzerland). Limnol. Oceanogr. 47, 266–277 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).Article 

    Google Scholar 
    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).Article 

    Google Scholar 
    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).ADS 
    Article 

    Google Scholar 
    Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. WIREs Water 6, e1390 (2019).Article 

    Google Scholar 
    Hoyle, J. T., Kilroy, C., Hicks, D. M. & Brown, L. The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshw. Biol. 62, 258–273 (2017).Article 

    Google Scholar 
    Canadell, M. B. et al. Regimes of primary production and their drivers in Alpine streams. Freshwater Biol. https://doi.org/10.1111/fwb.13730 (2021).Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. Bioscience 67, 897–911 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13, 291–314 (1982).Article 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kaplan, L. A. & Bott, T. L. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34, 718–733 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Vincent, W. F., Downes, M. T., Castenholz, R. W. & Howard-Williams, C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur. J. Phycol. 28, 213–221 (1993).Article 

    Google Scholar 
    Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. Sci. Total Environ. 717, 137101 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Risse‐Buhl, U. et al. Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms. Limnol. Oceanogr. 65, 2261–2277 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, M. A., Swan, C. M., Nelson, K., Silver, P. & Alvestad, R. Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landsc. Ecol. 15, 563–576 (2000).Article 

    Google Scholar 
    Battin, T. J. et al. Microbial landscapes: new paths to biofilm research. Nat. Rev. Microbiol. 5, 76–81 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dzubakova, K. et al. Environmental heterogeneity promotes spatial resilience of phototrophic biofilms in streambeds. Biol. Lett. 14, 20180432 (2018).Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).Article 
    PubMed 

    Google Scholar 
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol 1, 16048 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chaudhari, N. M., Overholt, W. A. & Figueroa-Gonzalez, P. A. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. bioRxiv. 16, 1–8 (2021).Vigneron, A. et al. Ultra‐small and abundant: candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol. Oceanogr. Lett. 5, 212–220 (2020).Article 

    Google Scholar 
    Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cai, M. et al. Ecological features and global distribution of Asgard archaea. Sci. Total Environ. 758, 143581 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: The enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018).Article 

    Google Scholar 
    Payne, A. T. et al. Widespread cryptic viral infections in lotic biofilms. Biofilms 2, 100016 (2020).Article 

    Google Scholar 
    Anesio, A. M., Mindl, B., Laybourn-Parry, J., Hodson, A. J. & Sattler, B. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112, (2007).Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Q. et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J. 15, 1844–1857 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klawonn, I. et al. Characterizing the ‘fungal shunt’: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Chróst, R. J. Microbial Enzymes in Aquatic Environments. (Springer-Verlag, 1991).Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: a pan-arctic review. Front. Mar. Sci. 5, 292 (2018).Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 45 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avcı, B., Krüger, K., Fuchs, B. M., Teeling, H. & Amann, R. I. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 14, 1369–1383 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol 5, 1026–1039 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, J., Lyu, Y., Richlen, M., Anderson, D. M. & Cai, Z. Quorum sensing is a language of chemical signals and plays an ecological role in algal–bacterial interactions. CRC Crit. Rev. Plant Sci. 35, 81–105 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Grossman, A. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol.: CB vol. 26, R319–R321 (2016).CAS 
    Article 

    Google Scholar 
    Segev, E. et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5, e17473 (2016).Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Fellman, J. B. et al. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol. Oceanogr. 60, 1118–1128 (2015).ADS 
    Article 

    Google Scholar 
    Singer, G. A. et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi‐chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tranter, M., Mills, R. & Raiswell, R. Chemical weathering reactions in Alpine glacial meltwaters. in International symposium on water-rock interaction. 687–690 (1989).Tranter, M., Brown, G., Raiswell, R., Sharp, M. & Gurnell, A. A conceptual model of solute acquisition by Alpine glacial meltwaters. J. Glaciol. 39, 573–581 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    St Pierre, K. A. et al. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proc. Natl Acad. Sci. U. S. A. 116, 17690–17695 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E. & Boyd, E. S. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Hernández, M. et al. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the Class Ktedonobacteria. Microorganisms 8, 1880 (2020).Quick, A. M. et al. Nitrous oxide from streams and rivers: a review of primary biogeochemical pathways and environmental variables. Earth-Sci. Rev. 191, 224–262 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gooseff, M. N., McKnight, D. M., Runkel, R. L. & Duff, J. H. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 49, 1884–1895 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 55, 1901–1911 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alves, R. J. E. et al. Ammonia oxidation by the Arctic terrestrial thaumarchaeote candidatus nitrosocosmicus arcticus is stimulated by increasing temperatures. Front. Microbiol. 10, 1571 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Könneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. U. S. A. 111, 8239–8244 (2014).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Battin, T. J., Kaplan, L. A., Denis Newbold, J. & Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cockell, C. S. et al. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. J. Photochem. Photobiol. B 68, 23–32 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sommaruga, R. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B 62, 35–42 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Maayer, P., Anderson, D., Cary, C. & Cowan, D. A. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15, 508–517 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tribelli, P. M. & López, N. I. Reporting key features in cold-adapted bacteria. Life 8, 8 (2018).Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alonso-Sáez, L. et al. Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front. Microbiol. 5, 425 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hornung, C. et al. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 8, e55045 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maillot, N. J., Honoré, F. A., Byrne, D., Méjean, V. & Genest, O. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun. Biol. 2, 323 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konings, W. N., Albers, S.-V., Koning, S. & Driessen, A. J. M. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van. Leeuwenhoek 81, 61–72 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Methé, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. U. S. A. 102, 10913–10918 (2005).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayala-del-Río, H. L. et al. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76, 2304–2312 (2010).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mykytczuk, N. C. S. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ting, L. et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ. Microbiol 12, 2658–2676 (2010).CAS 
    PubMed 

    Google Scholar 
    Tribelli, P. M. et al. Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 10, e0145353 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blagojevic, D. P., Grubor-Lajsic, G. N. & Spasic, M. B. Cold defence responses: the role of oxidative stress. Front. Biosci. 3, 416–427 (2011).Article 

    Google Scholar 
    Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. https://doi.org/10.1038/s41396-021-01106-6 (2021).Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Vegetation Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gautreau, I. E7805 NEBNext® UltraTM II FS DNA Library Prep Kit for Illumina® Protocol for use with Inputs ≤ 100 ng. https://www.protocols.io/view/e7805-nebnext-ultra-ii-fs-dna-library-prep-kit-for-k8tczwn (2020).Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol 2, 16180 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. bioRxiv 2021.12.22.473795 https://doi.org/10.1101/2021.12.22.473795. (2021).Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol 3, 836–843 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz848 (2019).Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zablocki, O., Jang, H. B., Bolduc, B. & Sullivan, M. B. vConTACT 2: A tool to automate genome-based prokaryotic viral taxonomy. in Plant and Animal Genome XXVII Conference (January 12-16, 2019) (PAG, 2019).Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krinos, A. I., Hu, S. K., Cohen, N. R. & Alexander, H. EUKulele: Taxonomic annotation of the unsung eukaryotic microbes. arXiv [q-bio.PE] (2020).Queirós, P., Delogu, F., Hickl, O., May, P. & Wilmes, P. Mantis: flexible and consensus-driven genome annotation. bioRxiv (2020).Zhou, Z. et al. METABOLIC: High-throughput profiling of microbial genomes for functional traits, biogeochemistry, and community-scale metabolic networks. bioRxiv 761643. https://doi.org/10.1101/761643 (2020).McDaniel, E. A., Anantharaman, K. & McMahon, K. D. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv 2019.12.20.884627. https://doi.org/10.1101/2019.12.20.884627 (2019).Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. https://www.osti.gov/biblio/1241166 (2014).Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. CONCOCT: Clustering cONtigs on COverage and ComposiTion. arXiv [q-bio.GN] (2013).Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Inferring Correlation Networks from Genomic Survey Data. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002687.Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst. 1695, 1–9 (2006).
    Google Scholar 
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tange, O. GNU Parallel 2018. (Lulu.com, 2018).Team, R. C. & Others. R: A language and environment for statistical computing. (2013).Kahle, D. & Wickham, H. Ggmap: spatial visualization with ggplot2. R. J. 5, 144 (2013).Article 

    Google Scholar 
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).kevinblighe/EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano.Wickham, H. ggplot2: ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).MATH 
    Article 

    Google Scholar 
    Bah, T. Inkscape: guide to a vector drawing program. (Prentice Hall Press, 2007).Varrette, S., Bouvry, P., Cartiaux, H. & Georgatos, F. Management of an academic HPC cluster: The UL experience. In 2014 International Conference on High Performance Computing Simulation (HPCS) 959–967 (2014). More

  • in

    Chemotaxis shapes the microscale organization of the ocean’s microbiome

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    Article 

    Google Scholar 
    Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).CAS 
    Article 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).CAS 
    Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).CAS 
    Article 

    Google Scholar 
    Strom, S. L. Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 1043–1045 (2008).CAS 
    Article 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Env. Microbiol. 14, 2348–2360 (2012).CAS 
    Article 

    Google Scholar 
    Grossart, H.-P., Riemann, L. & Azam, F. Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 25, 247–258 (2001).Article 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).CAS 
    Article 

    Google Scholar 
    Fenchel, T. Eppur si muove: many water column bacteria are motile. Aquat. Microb. Ecol. 24, 197–201 (2001).Article 

    Google Scholar 
    Son, K., Menolascina, F. & Stocker, R. Speed-dependent chemotactic precision in marine bacteria. Proc. Natl Acad. Sci. USA 113, 8624–8629 (2016).CAS 
    Article 

    Google Scholar 
    Fenchel, T. Microbial behavior in a heterogeneous world. Science 296, 1068–1071 (2002).CAS 
    Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).Article 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).Article 

    Google Scholar 
    Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell. Biol. 5, 1024–1037 (2004).CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).CAS 
    Article 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).CAS 
    Article 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    Article 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).CAS 
    Article 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).CAS 
    Article 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).CAS 
    Article 

    Google Scholar 
    Larsen, M. H., Blackburn, N., Larsen, J. L. & Olsen, J. E. Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology 150, 1283–1290 (2004).CAS 
    Article 

    Google Scholar 
    Rinke, C. et al. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ 4, e2486 (2016).Article 

    Google Scholar 
    Becker, J. et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front. Microbiol. 5, 111 (2014).Article 

    Google Scholar 
    Vraspir, J. M. & Butler, A. Chemistry of marine ligands and siderophores. Annu. Rev. Mar. Sci. 1, 43–63 (2009).Article 

    Google Scholar 
    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).CAS 
    Article 

    Google Scholar 
    Hopkinson, B. M. & Morel, F. M. M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals 22, 659–669 (2009).CAS 
    Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).CAS 
    Article 

    Google Scholar 
    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).CAS 
    Article 

    Google Scholar 
    Helliwell, K. E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol. 216, 62–68 (2017).CAS 
    Article 

    Google Scholar 
    Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009).CAS 
    Article 

    Google Scholar 
    Christie, P. J., Whitaker, N. & González-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).CAS 
    Article 

    Google Scholar 
    Preston, G. M. Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2, 291–294 (2007).CAS 
    Article 

    Google Scholar 
    Deakin, W. J. & Broughton, W. J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7, 312–320 (2009).CAS 
    Article 

    Google Scholar 
    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).Article 

    Google Scholar 
    Rolland, J. L., Stien, D., Sanchez-Ferandin, S. & Lami, R. Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology. J. Chem. Ecol. 42, 1201–1211 (2016).CAS 
    Article 

    Google Scholar 
    Fei, C. et al. Quorum sensing regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environ. Microbiol. 22, 4761–4778 (2020).CAS 
    Article 

    Google Scholar 
    Landa, M., Burns, A. S., Roth, S. J. & Moran, M. A. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 11, 2677 (2017).CAS 
    Article 

    Google Scholar 
    Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).CAS 
    Article 

    Google Scholar 
    Fenchel, T. & Blackburn, N. Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 150, 325–336 (1999).CAS 
    Article 

    Google Scholar 
    Hughes, D. J. et al. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. 63, 1891–1910 (2018).Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).CAS 
    Article 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, e86 (2019).Article 

    Google Scholar 
    Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).CAS 
    Article 

    Google Scholar 
    Lambert, B. S. & Raina, J.-B. Fabrication and deployment of the in situ chemotaxis assay (ISCA). protocols.io https://doi.org/10.17504/protocols.io.kztcx6n (2019).Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).CAS 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    Article 

    Google Scholar 
    Bramucci, A. R. et al. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 1, 79 (2021).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).Article 

    Google Scholar 
    Kuever, J., Rainey, F. A. & Widdel, F. In Bergey’s Manual of Systematics of Archaea and Bacteria https://doi.org/10.1002/9781118960608.obm00084 (2015).Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).CAS 
    Article 

    Google Scholar 
    Liu, X. et al. Wide distribution of anaerobic ammonium-oxidizing bacteria in the water column of the South China Sea: implications for their survival strategies. Divers. Distrib. 27, 1893–19003 (2021).Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    Article 

    Google Scholar 
    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).CAS 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).Article 

    Google Scholar 
    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200 (2013).CAS 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Lane, D. In Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (1991).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘Vegan’ Community Ecology Package Version 2 (2013).Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4, 1706–1715 (2019).CAS 
    Article 

    Google Scholar 
    Durham, B. P. et al. Recognition cascade and metabolite transfer in a marine bacteria–phytoplankton model system. Environ. Microbiol. 19, 3500–3513 (2017).CAS 
    Article 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453–457 (2015).CAS 
    Article 

    Google Scholar 
    Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Human forager response to abrupt climate change at 8.2 ka on the Atlantic coast of Europe

    Carleton, C. & Collard, M. Recent major themes and research areas in the study of human-environmental interaction in prehistory. Environ. Archaeol. 25, 114–130 (2020).Article 

    Google Scholar 
    deMenocal, P. B. Climate and human evolution. Science 331, 540–542 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Potts, R. Evolution and environmental change in early human prehistory. Annu. Rev. Anthropol. 41, 151–167 (2012).Article 

    Google Scholar 
    Mayewski, P. A. et al. Holocene climate variability. Quatern. Res. 62, 243–255 (2004).ADS 
    Article 

    Google Scholar 
    Rohling, E. J. & Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomas, E. R. et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).ADS 
    Article 

    Google Scholar 
    Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W. & Sonnichsen, G. V. Lake agassiz outburst age and routing by labrador current and the 82 cal ka cold event. Quat. Int. 260, 83–97 (2012).Article 

    Google Scholar 
    Mary, Y. et al. Changes in Holocene meridional circulation and poleward Atlantic flow: The Bay of Biscay as a nodal point. Clim. Past 13, 201–216 (2017).Article 

    Google Scholar 
    Prasad, S. et al. The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Glob. Planet. Change 67, 218–226 (2009).ADS 
    Article 

    Google Scholar 
    Seppä, H. et al. Spatial structure of the 8200 cal yr BP event in Northern Europe. Clim. Past Discuss. 3, 165–195 (2007).ADS 

    Google Scholar 
    Alley, R. B. & Ágústsdóttir, A. M. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quatern. Sci. Rev. 24, 1123–1149 (2005).ADS 
    Article 

    Google Scholar 
    Morrill, C. & Jacobsen, R. M. How widespread were climate anomalies 8200 years ago?. Geophys. Res. Lett. 32, 2 (2005).Article 

    Google Scholar 
    Dixit, Y., Hodell, D. A., Sinha, R. & Petrie, C. A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci. Lett. 391, 16–23 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bustamante, M. G. et al. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quatern. Sci. Rev. 146, 274–287 (2016).ADS 
    Article 

    Google Scholar 
    Roffet-Salque, M. et al. Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proc. Natl. Acad. Sci. 115, 8705–8709 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: A Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).Article 

    Google Scholar 
    van der Plicht, J., Akkermans, P. M. M. G., Nieuwenhuyse, O., Kaneda, A. & Russell, A. Tell Sabi Abyad, Syria: Radiocarbon chronology, cultural change, and the 8.2 ka event. Radiocarbon 53, 229–243 (2011).Article 

    Google Scholar 
    Vermeersch, P. M. et al. Early and middle holocene human occupation of the Egyptian Eastern desert: Sodmein cave. Afr. Archaeol. Rev. 32, 465–503 (2015).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. et al. Shell midden research in Atlantic Europe: State of the art, research problems and perspectives for the future. Quatern. Int. 239, 70–85 (2011).Article 

    Google Scholar 
    Bicho, N., Umbelino, C., Detry, C. & Pereira, T. The emergence of Muge Mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J. Island Coast. Archaeol. 5, 86–104 (2010).Article 

    Google Scholar 
    Mannino, M. A., Spiro, B. F. & Thomas, K. D. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J. Archaeol. Sci. 30, 667–679 (2003).Article 

    Google Scholar 
    García-Escárzaga, A. et al. Stable oxygen isotope analysis of Phorcus lineatus (da Costa, 1778) as a proxy for foraging seasonality during the Mesolithic in northern Iberia. Archaeol. Anthropol. Sci. 11, 5631–5644 (2019).Article 

    Google Scholar 
    Crisp, D. The effects of the severe winter of 1962–63 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).Article 

    Google Scholar 
    Mieszkowska, N., Hawkins, S., Burrows, M. & Kendall, M. Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. J. Mar. Biol. Assoc. U.K. 87, 537–545 (2007).Article 

    Google Scholar 
    Hawkins, S. J. et al. Complex interactions in a rapidly changing world: Responses of rocky shore communities to recent climate change. Clim. Res. 37, 123–133 (2008).Article 

    Google Scholar 
    Gutiérrez-Zugasti I, Cuenca-Solana D. Biostratigraphy of shells and climate changes in the Cantabrian region (northern Spain) during the Pleistocene-Holocene transition. In: Archaeomalacology Shells in the Arcaheological Record. British Archaeological Reports International Series 2666 (eds Szabó K, Dupont C, Dimitrijevic V, Gómez-Castélum L, Serrand N). Archaeopress (2014).Thomas, K. D. Molluscs emergent, Part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. J. Archaeol. Sci. 56, 133–140 (2015).Article 

    Google Scholar 
    García-Escárzaga, A. et al. Bayesian estimates of marine radiocarbon reservoir effect in northern Iberia during Early and Middle Holocene. Quatern. Geochronol. 67, 101232 (2022).Article 

    Google Scholar 
    Andrus, C. F. T. Shell midden sclerochronology. Quatern. Sci. Rev. 30, 2892–2905 (2011).ADS 
    Article 

    Google Scholar 
    Wang, T., Surge, D. & Mithen, S. Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317–318, 104–113 (2012).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I., García-Escárzaga, A., Martín-Chivelet, J. & González-Morales, M. R. Determination of sea surface temperatures using oxygen isotope ratios from Phorcus lineatus (Da Costa, 1778) in northern Spain: Implications for paleoclimate and archaeological studies. Holocene 25, 1002–1014 (2015).ADS 
    Article 

    Google Scholar 
    García-Escárzaga, A. et al. Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chem. Geol. 526, 49–61 (2019).ADS 
    Article 

    Google Scholar 
    Bronk, R. C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Bronk, R. C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Heaton, T. J. et al. Marine20-the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS 
    Article 

    Google Scholar 
    Bailey, G. N. & Craighead, A. S. Late Pleistocene and Holocene coastal paleoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeol. Int. J. 18, 175–204 (2003).Article 

    Google Scholar 
    Nuñez S. Dinámicas socio-ecológicas, resiliencia y vulnerabilidad en un paisaje atlántico montañoso: la región cantábrica durante el Holoceno. Unpublished PhD dissertation, Universidad de Cantabria (2018).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, D06102 (2006).ADS 
    Article 

    Google Scholar 
    Ellison, C. R., Chapman, M. R. & Hall, I. R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 1929–1932 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    LeGrande, A. et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. U.S.A. 103, 837–842 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Domínguez-Villar, D. et al. Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology 37, 1095–1098 (2009).ADS 
    Article 

    Google Scholar 
    Lorenz, S. J., Kim, J.-H., Rimbu, N., Schneider, R. R. & Lohmann, G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography 21, 2 (2006).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. Coastal resource intensification across the Pleistocene-Holocene transition in Northern Spain: Evidence from shell size and age distributions of marine gastropods. Quatern. Int. 244, 54–66 (2011).Article 

    Google Scholar 
    Marín-Arroyo, A. B. Human response to Holocene warming on the Cantabrian Coast (northern Spain): An unexpected outcome. Quatern. Sci. Rev. 81, 1–11 (2013).ADS 
    Article 

    Google Scholar 
    Muñoz-Sobrino, C., Ramil-Rego, P., Gómez-Orellana, L. & Díaz Varela, R. A. Palynological data on major Holocene climatic events in NW Iberia. Boreas 34, 381–400 (2005).Article 

    Google Scholar 
    Moreno, A. et al. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J. Paleolimnol. 46, 327–349 (2011).ADS 
    Article 

    Google Scholar 
    Smith, A. C. et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Sci. Rep. 6, 24745 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Rossi, C., Bajo, P., Lozano, R. P. & Hellstrom, J. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quatern. Sci. Rev. 192, 71–85 (2018).ADS 
    Article 

    Google Scholar 
    Hald, M. et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quatern. Sci. Rev. 26, 3423–3440 (2007).ADS 
    Article 

    Google Scholar 
    Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. & Haywood, A. M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017).ADS 
    Article 

    Google Scholar 
    Griffiths, S. & Robinson, E. The 8.2 ka BP Holocene climate change event and human population resilience in northwest Atlantic Europe. Quatern. Int. 465, 251–257 (2018).Article 

    Google Scholar 
    Alday, A. et al. The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin. Quatern. Sci. Rev. 184, 85–106 (2018).ADS 
    Article 

    Google Scholar 
    González-Sampériz, P. et al. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quatern. Res. 71, 121–132 (2009).ADS 
    Article 

    Google Scholar 
    García-Martínez de Lagrán, I. et al. 8.2 ka BP paleoclimatic event and the Ebro Valley Mesolithic groups: Preliminary data from Artusia rock shelter (Unzué, Navarra, Spain). Quatern. Int. 403, 151–173 (2016).Article 

    Google Scholar 
    Neira Campos, A., Fuertes Prieto, N. & Herrero, A. D. The Mesolithic with geometrics south of the ‘Picos de Europa’ (Northern Iberian Peninsula): The main characteristics of the lithic industry and raw material procurement. Quatern. Int. 402, 90–99 (2016).Article 

    Google Scholar 
    Vidal-Encinas, J. M. & Prada-Marcos, M. E. Los hombres mesolíticos de la cueva de La Braña-Arintero (Valdelugueros, León). Jutan de Castillo y León (2010).Jones, J. R., Marín-Arroyo, A. B., Straus, L. G. & Richards, M. P. Adaptability, resilience and environmental buffering in European Refugia during the Late Pleistocene: Insights from La Riera Cave (Asturias, Cantabria, Spain). Sci. Rep. 10, 1217 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Arias Cabal, P. & Fano Martínez, M. Á. Mesolítico Geométrico o Mesolítico con geométricos? El caso de la región Cantábrica. In El Mesolítico Geométrico en la Península Ibérica (eds Utrilla, P. & Montes, L.) (Universidad de Zaragoza, 2009).
    Google Scholar 
    Fuertes-Prieto N, Risseto J, Gutiérrez-Zugasti I, Cuenca-Solana D, González-Morales MR. New perspectives on Mesolithic technology in northern Iberia: data from El Mazo shell midden site (Asturias, Spain). In: Foraging Assemblages: Papers Presented at the Ninth International Conference on the Mesolithic in Europe, Belgrade 2015 (eds Boric D, Antonovic D, Mihailovic B) (2020).Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).ADS 
    Article 

    Google Scholar 
    McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late glacial and early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Philos. Trans. R. Soc. B 376, 20190724 (2020).Article 

    Google Scholar 
    Crowther, A. et al. Coastal subsistence, maritime trade, and the colonization of small offshore islands in eastern African prehistory. J. Island Coast. Archaeol. 11, 211–237 (2016).Article 

    Google Scholar 
    King, C. L. et al. Marine resource reliance in the human populations of the Atacama Desert, northern Chile—A view from prehistory. Quatern. Sci. Rev. 182, 163–174 (2018).ADS 
    Article 

    Google Scholar 
    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C. & Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 4704–4715 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Fairbanks, R. G. A 17.000-year glacio-eustatic sea lever record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).ADS 
    Article 

    Google Scholar 
    Leorri, E., Cearreta, A. & Milne, G. Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: Implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quatern. Sci. Rev. 42, 59–73 (2012).ADS 
    Article 

    Google Scholar 
    Hoffman, J. S. et al. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea. Geophys. Res. Lett. 39, 2 (2012).Article 

    Google Scholar 
    Gutiérrez-Zugasti, I. Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacogical analysis: The case of the Cantabrian Region (Northern Spain). Archaeometry 53, 614–630 (2011).Article 

    Google Scholar 
    Gutiérrez, Z. I. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial (Publican, 2009).
    Google Scholar 
    Harris, M., Weisler, M. & Faulkner, P. A refined protocol for calculating MNI in archaeological molluscan shell assemblages: A Marshall Islands case study. J. Archaeol. Sci. 57, 168–179 (2015).Article 

    Google Scholar  More

  • in

    We could still limit global warming to just 2˚C — but there's an 'if'

    Vote for our episode What’s the isiZulu for dinosaur? to win a People’s Voice Award in this year’s Webbys

    Listen to the latest from the world of science, with Benjamin Thompson, Nick Petrić Howe and Shamini Bundell.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:46 What COP26 promises will do for climateAt COP26 countries made a host of promises and commitments to tackle global warming. Now, a new analysis suggests these pledges could limit warming to below 2˚C – if countries stick to them.BBC News: Climate change: COP26 promises will hold warming under 2C03:48 Efficiency boost for energy storage solutionStoring excess energy is a key obstacle preventing wider adoption of renewable power. One potential solution has been to store this energy as heat before converting it back into electricity, but to date this process has been inefficient. Last week, a team reported the development of a new type of ‘photothermovoltaic’ that increases the efficiency of converting stored heat back into electricity, potentially making the process economically viable.Science: ‘Thermal batteries’ could efficiently store wind and solar power in a renewable grid07:56 Leeches’ lunches help ecologists count wildlifeBlood ingested by leeches may be a way to track wildlife, suggests new research. Using DNA from the blood, researchers were able to detect 86 different species in China’s Ailaoshan Nature Reserve. Their results also suggest that biodiversity was highest in the high-altitude interior of the reserve, suggesting that human activity had pushed wildlife away from other areas.ScienceNews: Leeches expose wildlife’s whereabouts and may aid conservation efforts11:05 How communication evolved in underground cave fishResearch has revealed that Mexican tetra fish are very chatty, and capable of making six distinct sounds. They also showed that fish populations living in underground caves in north-eastern Mexico have distinct accents.New Scientist: Blind Mexican cave fish are developing cave-specific accents14:36 Declassified data hints at interstellar meteorite strikeIn 2014 a meteorite hit the Earth’s atmosphere that may have come from far outside the solar system, making it the first interstellar object to be detected. However, as some of the data needed to confirm this was classified by the US Government, the study was never published. Now the United States Space Command have confirmed the researchers’ findings, although the work has yet to be peer reviewed.LiveScience: An interstellar object exploded over Earth in 2014, declassified government data revealVice: Secret Government Info Confirms First Known Interstellar Object on Earth, Scientists SaySubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

    Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.CAS 
    Article 

    Google Scholar 
    Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.CAS 
    Article 

    Google Scholar 
    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    Article 

    Google Scholar 
    Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.Article 

    Google Scholar 
    Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.Article 

    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.Article 

    Google Scholar 
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.Article 

    Google Scholar 
    Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.Article 

    Google Scholar 
    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    Article 

    Google Scholar 
    Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.Article 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.CAS 
    Article 

    Google Scholar 
    Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.CAS 
    Article 

    Google Scholar 
    Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.CAS 
    Article 

    Google Scholar 
    Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.CAS 
    Article 

    Google Scholar 
    Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.Article 

    Google Scholar 
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.CAS 
    Article 

    Google Scholar 
    Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.Article 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.Article 

    Google Scholar 
    Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.Article 

    Google Scholar 
    DFO Canada. AZMP Bulletin PMZA. 2006. DFO.Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.Article 

    Google Scholar 
    El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.Article 

    Google Scholar 
    Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.CAS 
    Article 

    Google Scholar 
    Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.CAS 
    Article 

    Google Scholar 
    Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.CAS 
    Article 

    Google Scholar 
    Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.Article 

    Google Scholar 
    Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.CAS 
    Article 

    Google Scholar 
    Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.Article 

    Google Scholar 
    Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    Article 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.CAS 
    Article 

    Google Scholar 
    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.
    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS 
    Article 

    Google Scholar 
    Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    Article 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.Article 

    Google Scholar 
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.CAS 
    Article 

    Google Scholar 
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 
    Article 

    Google Scholar 
    Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.Article 

    Google Scholar 
    Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.Article 

    Google Scholar 
    Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.CAS 
    Article 

    Google Scholar 
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.CAS 
    Article 

    Google Scholar 
    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.Article 

    Google Scholar 
    Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.CAS 
    Article 

    Google Scholar 
    Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.Article 

    Google Scholar 
    Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.CAS 
    Article 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.Article 

    Google Scholar 
    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.CAS 
    Article 

    Google Scholar 
    Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.CAS 
    Article 

    Google Scholar 
    Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.
    Google Scholar 
    Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.Article 

    Google Scholar 
    Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.Article 

    Google Scholar 
    Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.Article 

    Google Scholar 
    Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.
    Google Scholar 
    Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.CAS 
    Article 

    Google Scholar 
    Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.CAS 
    Article 

    Google Scholar 
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.CAS 
    Article 

    Google Scholar 
    Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.Article 

    Google Scholar 
    Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.Article 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.Article 

    Google Scholar 
    Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.Article 

    Google Scholar 
    Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.Article 

    Google Scholar 
    Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.Article 

    Google Scholar 
    Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.Article 

    Google Scholar 
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.Article 

    Google Scholar 
    Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.Article 

    Google Scholar 
    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.CAS 
    Article 

    Google Scholar 
    Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.CAS 
    Article 

    Google Scholar 
    Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.Article 

    Google Scholar  More