More stories

  • in

    Expanding ocean food production under climate change

    United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (2011).Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).Article 

    Google Scholar 
    IPCC. IPCC Special Report on Climate Change and Land (2019).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (2020).Bryndum‐Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).ADS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).PubMed 
    Article 

    Google Scholar 
    Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).Article 

    Google Scholar 
    Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305 (2016).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).Article 

    Google Scholar 
    Barange, M., Bahri, T., Beveridge, M. & Cochrane, K. L. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).Article 

    Google Scholar 
    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).ADS 
    Article 

    Google Scholar 
    Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24, 1287–1307 (2016).Article 

    Google Scholar 
    Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).PubMed 
    Article 

    Google Scholar 
    European Union. Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. http://data.europa.eu/eli/reg/2009/710/oj (2009).Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).Article 

    Google Scholar 
    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).Article 

    Google Scholar 
    Troell, M. et al. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9 (2009).Article 

    Google Scholar 
    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 99, 13–24 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).Article 

    Google Scholar 
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture (FAO, 2017).Soto, D. et al. In Impacts Of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options Ch. 26 (FAO, 2018).Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).Article 

    Google Scholar 
    Antonello, J. et al. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).Article 

    Google Scholar 
    Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147 (2006).Article 

    Google Scholar 
    Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture development and livelihood diversification in the Philippines. Mar. Policy 36, 867–881 (2012).Article 

    Google Scholar 
    Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2017).Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).Article 

    Google Scholar 
    Leape, J. et al. Technology, Data and New Models for Sustainably Managing Ocean Resources (World Resources Institute, 2020).Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 6, 250 (2019).Article 

    Google Scholar 
    Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    FAO. Aquaculture Development: 7. Aquaculture Governance and Sector Development (2017).Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE 13, e0191086 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jackson, A. Fish in-fish out ratio explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).CAS 
    Article 

    Google Scholar 
    World Bank. Population, Total (2020); https://data.worldbank.org/indicator/SP.POP.TOTLEdwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).Article 

    Google Scholar 
    Roberts, P. Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products (The Food and Agriculture Organization of the United Nations, 1998).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species https://www.aquamaps.org/ (2019).García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).ADS 
    Article 

    Google Scholar 
    Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).Article 

    Google Scholar 
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).FAO. Cultured Aquatic Species (2019).Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 
    Article 

    Google Scholar 
    Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 7, 226 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).PubMed 
    Article 

    Google Scholar 
    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25, 146–159 (2015).Article 

    Google Scholar 
    Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4, 154 (2017).Article 

    Google Scholar 
    World Bank. Adjusted Net National Income per Capita (Current US$) (2019); https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CDWorld Bank. Pump Price for Diesel Fuel (US$ per liter) (2019); https://data.worldbank.org/indicator/EP.PMP.DESL.CDPiburn, J. wbstats: programmatic access to the World Bank API. R package v.1.0.4 https://cran.r-project.org/web/packages/wbstats/index.html (2018).Rubino, M. (ed.) Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities NOAA Technical Memorandum NMFS F/SPO-103 (US Department of Commerce, 2008).Jackson, A. & Newton, R. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients, with Special Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, University Of Stirling And IFFO, 2016). More

  • in

    Impact of disabled circadian clock on yellow fever mosquito Aedes aegypti fitness and behaviors

    Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S. & Hardin, P. E. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Drug Discov. 4, 121–130 (2005).Article 
    CAS 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.): The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, M. D. R. The programming of circadian flight-activity in relation to mating and the gonotrophic cycle in the mosquito. Physiol. Entomol. 6, 307–313 (1981).Article 

    Google Scholar 
    Lee, H., Yang, Y., Liu, Y., Teng, H. & Sauman, I. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. Physiol. Entomol. 56, 1219–1223 (2010).
    Google Scholar 
    Ptitsyn, A. A. et al. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genom. 12, 153 (2011).CAS 
    Article 

    Google Scholar 
    Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duf, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 108, 419–444 (2011).Article 

    Google Scholar 
    Rund, S. S. C., Gentile, J. E. & Duffield, G. E. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genom. 14, 218 (2013).CAS 
    Article 

    Google Scholar 
    Leming, M. T., Rund, S. S. C., Behura, S. K., Duffield, G. E. & O’Tousa, J. E. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC Genom. 15, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araujo, M. S., Guo, F. & Rosbash, M. Video recording can conveniently assay mosquito locomotor activity. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Lima-Camara, T. N. et al. Dengue infection increases the locomotor activity of Aedes aegypti females. PLoS ONE 6, 1–5 (2011).Article 
    CAS 

    Google Scholar 
    Das, S. & Dimopoulos, G. Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC Physiol. 19, 1–19 (2008).
    Google Scholar 
    Gentile, C. et al. Circadian clock of Aedes aegypti: Effects of blood-feeding, insemination and RNA interference. Mem. Inst. Oswaldo Cruz 108, 80–87 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meireles-filho, A. C. A. & Kyriacou, C. P. Circadian rhythms in insect disease vectors. Mem. Inst. Oswaldo Cruz 108, 48–58 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gentile, C., Rivas, G. B. S., Meireles-Filho, A. C. A., Lima, J. B. P. & Peixoto, A. A. Circadian expression of clock genes in two mosquito disease vectors: Cry2 is different. J. Biol. Rhythms 24, 444–451 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl. Acad. Sci. USA. 114, E7516–E7525 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylies, M. K., Bargiello, T. A., Jackson, F. R. & Young, M. W. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 48, 1986–1988 (1987).
    Google Scholar 
    Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E., Maltseva, O. & Rosbash, M. The timSL mutant affects a restricted portion of the drosophila melanogaster circadian cycle. J. Biol. Rhythms 13, 380–392 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 1–9 (2013).Article 

    Google Scholar 
    Meireles-Filho, A. C. A. et al. The biological clock of an hematophagous insect: Locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Lett. 580, 2–8 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. FEBS Lett. https://doi.org/10.1038/s41598-018-36550-6 (2019).Article 

    Google Scholar 
    Hug, N., Longman, D. & Cáceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495 (2015).Article 

    Google Scholar 
    Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 147 (2011).
    Google Scholar 
    Tauber, E., Roe, H., Costa, R., Hennessy, J. M. & Kyriacou, C. P. Temporal mating isolation driven by a behavioral gene in Drosophila. Curr. Biol. 13, 140–145 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E. et al. Cycle is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, F.-J., Song, W., Meyer-Bernstein, E., Naidoo, N. & Sehgal, A. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 21, 7287–7294 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yadav, P., Thandapani, M. & Sharma, V. K. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev. Biol. 14, 1–12 (2014).Article 
    CAS 

    Google Scholar 
    Jones, M. & Reiter, P. Entrainment of the pupation and adult activity rhythms during development in the mosquito Anopheles gambiae. Nature 254, 242–244 (1968).ADS 
    Article 

    Google Scholar 
    Nayar, J. K. The pupation rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic timing, rate of development, and endogenous diurnal rhythm of pupation. Ann. Entomol. Soc. Am. 60, 946–971 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nijhout, H. F. et al. The developmental control of size in insects. Wiley Interdiscip. Rev. Dev. Biol. 3, 113–134 (2014).PubMed 
    Article 

    Google Scholar 
    Kaneko, M., Hamblen, M. J. & Hall, J. C. Involvement of the period gene in developmental time-memory: Effect of the per(Short) mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms 15, 13–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M., James, A., Varma, V., Sharma, V. K. & Sheeba, V. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence. BMC Dev. Biol. 18, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Menon, A., Varma, V. & Sharma, V. K. Rhythmic egg-laying behaviour in virgin females of fruit flies Drosophila melanogaster. Chronobiol. Int. 31, 433–441 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Oldroyd, M., Wood, J., Sharp, M. & Hill, M. Clock mutations alter developmental timing in drosophila. Heredity 64, 395–401 (1990).PubMed 
    Article 

    Google Scholar 
    Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605–624 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima-Camara, T. N., Lima, J. B. P., Bruno, R. V. & Peixoto, A. A. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions. Parasit. Vectors 7, 1–8 (2014).Article 

    Google Scholar 
    Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delventhal, R. et al. Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. Elife 8, 48305 (2019).Article 

    Google Scholar 
    Nayar, J. K. & Sauerman, D. M. The effect of light regimes on the circadian rhythm of flight activity in the mosquito Aedes taeniorhynchus. J. Exp. Biol. 54, 745–756 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Granados-Fuentes, D., Tseng, A. & Herzog, E. D. A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci. 26, 12219–12225 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eilerts, D. F., Vandergiessen, M., Bose, E. A. & Broxton, K. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).PubMed Central 
    Article 

    Google Scholar 
    Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr. Biol. 14, 638–649 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sakai, T. & Ishida, N. Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc. Natl. Acad. Sci. USA. 98, 9221–9225 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petersen, G., Hall, J. C. & Rosbash, M. The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 7, 3939–3947 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 23, 1–10 (2007).PubMed 
    Article 

    Google Scholar 
    Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, 401–407 (2014).Article 
    CAS 

    Google Scholar 
    Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220–228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, 730 (2005).Article 
    CAS 

    Google Scholar 
    McDonald, M. J., Rosbash, M. & Emery, P. Wild-type circadian rhythmicity is dependent on closely spaced e boxes in the Drosophila timeless promoter. Mol. Cell. Biol. 21, 1207–1217 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chang, D. C. & Reppert, S. M. A novel c-terminal domain of drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription. Curr. Biol. 13, 654–658 (2003).Article 
    CAS 

    Google Scholar  More

  • in

    Photophysiological response of Symbiodiniaceae single cells to temperature stress

    Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011;333:418–22.CAS 
    Article 

    Google Scholar 
    Baird AH, Marshall PA. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser. 2002;237:133–41.Article 

    Google Scholar 
    Lewis CL, Coffroth MA. The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science. 2004;304:1490–2.CAS 
    Article 

    Google Scholar 
    Matsuda SB, Chakravarti LJ, Cunning R, Huffmyer AS, Nelson CE, Gates RD, et al. Temperature mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. Glob Chang Biol. 2022;28:2006–25.Article 

    Google Scholar 
    Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 2017;26:2640–59.CAS 
    Article 

    Google Scholar 
    Diaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc R Soc B. 2017;284:20171767.Article 

    Google Scholar 
    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2012;2:116–20.Article 

    Google Scholar 
    Voolstra CR, Buitrago-Lopez C, Perna G, Cardenas A, Hume BCC, Radecker N, et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob Change Biol. 2020;26:4328–43.Article 

    Google Scholar 
    Behrendt L, Salek MM, Trampe EL, Fernandez VI, Lee KS, Kuhl M, et al. Phenochip: a single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci Adv. 2020;6:eabb2754.CAS 
    Article 

    Google Scholar 
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.Article 

    Google Scholar 
    Buerger P, Alvarez-Roa C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.CAS 
    Article 

    Google Scholar 
    Kavousi J, Denis V, Sharp V, Reimer JD, Nakamura T, Parkinson JE. Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Mar Biol. 2020;167:23.CAS 
    Article 

    Google Scholar 
    Parkinson JE, Baums IB. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol. 2014;5:445.Article 

    Google Scholar 
    Andersson M, Johansson S, Bergman H, Xiao L, Behrendt L, Tenje M. A microscopy-compatible temperature regulation system for single-cell phenotype analysis— demonstrated by thermoresponse mapping of microalgae. Lab Chip. 2021;21:1694–705.CAS 
    Article 

    Google Scholar 
    Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull. 2013;72:313–22.CAS 
    Article 

    Google Scholar 
    Karim W, Nakaema S, Hidaka M. Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. J Mar Sci Eng. 2015;3:368–81.Article 

    Google Scholar 
    Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR. Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol. 2013;161:477–85.CAS 
    Article 

    Google Scholar 
    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.CAS 
    Article 

    Google Scholar 
    Calabrese F, Voloshynoyska I, Musat F, Thullner M, Schlomann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.Article 

    Google Scholar 
    Martins BMC, Locke JOW. Microbial individuality: How single-cell heterogeneity enables population level strategies. Curr Opin Microbiol. 2015;24:104–12.CAS 
    Article 

    Google Scholar  More

  • in

    Role of trade agreements in the global cereal market and implications for virtual water flows

    Link activationContingency tables corresponding to the three cases described in the “Methods” section are shown in Table 1. This Table is quite revealing in several ways. The most interesting aspect is that the highest probability of link establishment occurs when an agreement is activated (Operational Activation in t).Table 1 Contingency tables.Full size tableIn this case, the probability of activation of a new link is 8.8%—namely, the ratio of new activation 7.3% to the total number of links that were not active at year t-1 (82.6%)—which is significantly higher than in the case of links not covered by a commercial agreement (No Trade Agreement), amounting to 1.4%.Therefore, the findings show that operational activation is associated with creating new trade relations between two particular countries. The third set, which considers links where a trade agreement exists in both years (t-1) and t (Trade Agreement in t-1 and t), also shows a consistent activation probability of 6%. This result confirms the assumption that the coverage of a commercial agreement, and not only its implementation, encourages the genesis of new links.Moreover, Table 1 suggests some interesting considerations on trade persistence. To establish these probabilities, we focus on the row totals in which a trade relationship is present at year (t-1), i.e., 28.8% in the case Trade Agreement in t-1 and t. The presence of an agreement influences in a positive way the probability of maintaining a trade relationship. In fact, when a trade agreement is present in both years, (t-1) and t, the probability of preserving the trade relationship is 87.1% ((frac{25.1}{28.8}times {100})), while when a trade agreement is activated at year t, the probability slightly decreases to 81.6%. In cases where trade agreements are missing (No Trade Agreement in t) we observe the probability of retaining a relationship decreases to 77.3%.Another interesting aspect concerns the probability of link deactivation. Once more, the coverage of a trade agreement favors a lower likelihood of deactivation of existing links. The ratio of the percentage of links that were active at year (t-1) and are no more active at year t to the total is 22.7% ((frac{1}{4.4}times {100})) in the case of a lack of agreement. This probability decreases to 18.4% ((frac{3.2}{17.4}times {100})) if we consider only the year of activation of the agreement (Operational Activation), and drops to 12.8% ((frac{3.7}{28.8}times {100})) when looking at agreements present in both years.Together, these results provide insights into the role of trade agreements in the network topology of cereal trade. While the establishment of a trade agreement promotes the potential for new trade links, the presence of the agreement in two consecutive years allows both to maintain an existing relationship and reduce the likelihood of link shutdowns.Flow variationsIn this second part, we study the impact of trade agreements on existing trade flows, analyzing the relationship between the flows at time t and the flows at time (t-1) in each of the three cases described in the “Methods” section—i.e., No trade agreements, Operational Activation in t, and Trade agreement in t-1 and t—measured in US$, Kcal and m(^3) of virtual water.Figure 3Kernel Density scatterplot between trade flows of cereals at time t (on the y-axis) and time (t-1) (on the x-axis) for the three different sets: No trade agreements (column a), Operational Activation in t (b), and Trade agreement in (t-1) and t (c). Panels in the first, second and third row refer to flows in US$, Kcal, and virtual water (m(^3)), respectively. Flow values are shown on a logarithmic scale. The color bar indicates probability densities, and the bisector is highlighted. Notice (i) the higher volumes in the case of flows covered by trade agreement and (ii) a a less relevant increase in volume when the flows are seen in the virtual water lens.Full size imageFigure 3 shows three different scatterplots for each unit of measure (US$ and Kcal and m(^3)). The scatterplots are colored by Kernel Density Estimation (KDE), a non-parametric technique for probability density functions. KDE aims to take a finite sample of data and infer the underlying probability density function. Figure 3 relates the flows at time (t-1) with the flows at time t, both reported on a logarithmic scale since the quantities span several orders of magnitude. Let’s start focusing on flows in terms of dollars and kilocalories. What stands out from the figure is the displacement of the flows toward higher values when they are covered by trade agreements (Trade Agreement in t-1 and t), compared to the case where flows have no trade agreement.We have quantitative evidence of this result by looking at Table 2 where the average flows in both years are shown. The average values of flows in both US$ and Kcal are much higher when there is a trade agreement over time (Trade agreement in t-1 and t). Flows have an average value of (6.13times 10^{7})$, larger than the mean of (3.05times 10^{7})$ achieved by flows not covered by a trade agreement. By comparing the distributions of the two distinct sets with different dimensions by applying the non-parametric Mann-Whitney test, we stand to evaluate this result as extremely significant (p-value approximately 0).Table 2 Average values of trade flows and flow variation index (rho _{ij}) for each of the three sets, in US$ (a), Kcal (b), and Virtual water (VW, m(^3)). The bar indicates the average operator.Full size tableAlso, while operational activation plays a crucial role in creating new links in the global cereal trade, it does not appear to hold central importance in driving flow increases. The average value of flows in both years (t-1) and t are, in fact, smaller than those not covered by trade agreements.The view appears slightly different when we look at the values in terms of virtual water (VW, m(^3)), i.e., the sum of the blue and green components. Flows with a commercial agreement show higher averages values than those not covered by agreements (see panel (c) of Table 2), but the increase is significantly lower than the one recorded in the other two units (US$ and Kcal). The increase recorded in dollars is about 100%, while in terms of virtual water this increase is less than 30%. In the next subsection, we will focus on this peculiar behavior, which reveals a different water content of the goods traded along links covered or not by agreements.Another significant result that emerges from Fig. 3 is the smaller amplitude (around the bisector) of the cloud in the case of link covered by agreements in both years (t-1) and t. This is confirmed by comparing the weighted average of the absolute value of the inter-annual flow variation index (overline{rho _{ij}}_{w}) (weights are the flows traded in the year (t-1)). The index (rho _{ij}) is used to highlight cases where the activation or the presence of the agreement generates a significant flow increase.Larger (rho _{ij}) values correspond to larger average variations from year (t-1) to year t. Accordingly, we observe that in the presence of trade agreement at time (t-1) and t a smaller (rho _{ij}) value of 24.79 percentage points (p.p) is found (see panel (a) of Table 2).Considering all the units (US$, Kcal, and m(^3)), this value is about half of the average inter-annual variation that occurs when there is no trade agreement. Hence, the presence of a commercial agreement over time reduces large fluctuations, stabilizing the year-to-year variations.To shed light on the response of water flows to the occurrence of the agreement, we refer to water productivity (WP)34, both in economic and nutritional terms. Table 3 shows that the Nutritional WP for the total virtual water is, on average, 35% higher in the flows under a trade agreement than in flows that are not under any treaty, while the Economic WP is 62% higher. We also analyze the two virtual water components, blue and green, separately.Interestingly, for blue water in the presence of a trade agreement, the Nutritional WP and the Economic WP for the flows covered by trade agreement are, on average, 68% and 93% higher than for the flows not covered by agreements. In other words, for one cubic meter of water used for grain production, more kilo-calories and dollars are exchanged when an agreement is in place, and this difference is even more significant in terms of blue water.Table 3 Average of nutritional ((mathrm {kcal/m^3})) and economic ((mathrm {US$/m^3})) water productivity (WP) for the total, blue and green virtual water.Full size tableWe also investigate in detail which products contribute most to the imbalance between flows in terms of kcal or water. To this aim, Fig. 4 reports the nutritional WP for each grain item distinguishing whether or not there is a commercial agreement (similar results occur if the economic WP is considered).The figure highlights that the nutritional WP is generally higher in the case where flows are covered by trade agreements (green bars). The most noticeable cases are Maize and Wheat, which are also the most traded products: the value of nutritional WP increases from 1978 (mathrm {kcal/m^3}) (No trade agreement) to 2851 (mathrm {kcal/m^3}) in case of a trade agreement for Wheat, and from 4471 (mathrm {kcal/m^3}) to 5026 for Maize.Figure 4The bar chart shows the nutritional WP for each cereal product in the two sets of Trade agreement in t-1 and t (in green) and No trade agreement (in red). The number over the bars represents the percentage of kcal traded for each product compared to the total kcal of all cereals. Note that green bars are higher than the red ones in 80% of cases.Full size imageA few products have a higher nutritional WP value when the flows are not involved in any treaty, e.g., Rye. This behavior can be traced back to a few flows that dominate the market between countries not linked by trade agreements. For example, trade in Rye in 2014 is attributable to just two major flows in terms of caloric intake relative to water quantity (notably, one between Germany and Japan, the other between Russia and Turkey).Figure 4 clearly shows that grains characterized by greater water efficiency generally move along the links covered by agreements.Performance of trade agreements in increasing flowOur results show that links covered by agreements exhibit larger flows than links not covered by treaties. We also intend to obtain information about the possible flow increase under a specific agreement.As mentioned in the “Methods” section, we selected only those operating links when the agreement came into force to evaluate the variation index ((rho _a)) under a specific treaty. Consequently, since there are trade agreements that came into force before the time interval considered, these are excluded from this analysis. As a result, the total number of agreements selected for this analysis is 99, 61 of which show an increase (positive (rho _{a}) values), while the remaining 38 exhibits a decrease in the flux intensities compared to the overall global trend. We present in Table 5 the results for positive (rho _{a}) variations, while trade agreements with negative (rho _{a}) values are reported in Supplementary Material (5). We provide this analysis in terms of economic flows (US$), but very similar results are obtained if calories (kcal) or virtual water (m(^3)) are chosen as the unit of measure.Table 4 Flow values in millions of dollars in year t and percent changes (rho _{a}) from (t-1) to t for each trade agreement.Full size tableWhat stands out in Table 4 is that most of the positive percentage changes occur in Europe and Central Asia regions. This may be due to long-term commercial activities in Europe, which are supported by the geographical proximity of the countries, as well as the wide variety of political and economic treaties among them. Europe, in fact, is characterized by a fourfold increase in cereal production since the 1960s due to the adoption of the Common Agricultural Policy, which has intensified trade in Europe and towards external markets30.A closer inspection of Table 4 shows that among the agreements with the most significant flows that showed the greatest increases, we find EEA (European Economic Area) in Europe and Central Asia, Japan-ASEAN in East Asia and Pacific, and COMESA in Sub-Saharan Africa.With lower flow values but large increases ((rho _{a})) due to the entry into force of trade agreements, the India-Sri Lanka agreement in South Asia stands out above all others. Also, the treaty signed in 2013 between EU-Colombia and Peru shows significant variations in terms of the percentage of flow increase, but the volume of the corresponding flow is inferior when compared with other trade agreements. On the other hand, the North American Free Trade Agreement (NAFTA), which became effective in 1994, has a lower (rho _{a}) value, but the flows on which the variation is calculated are significantly higher. More

  • in

    The EU needs a nutrient directive

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).Withers, P. J. A. & Haygarth, P. M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 23, 1–4 (2007).Article 

    Google Scholar 
    Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (IFA, 2008).Wassen, M. J., Schrader, J., van Dijk, J. & Eppinga, M. B. Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat. Ecol. Evol. 5, 67–73 (2021).Article 

    Google Scholar 
    Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol. 26, 1962–1985 (2020).Article 

    Google Scholar 
    Stokstad, E. Nitrogen crisis threatens Dutch environment — and economy. Science 366, 1180–1181 (2019).Article 

    Google Scholar 
    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).Article 

    Google Scholar 
    Garske, B., Stubenrauch, J. & Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. RECIEL 29, 107–117 (2020).Article 

    Google Scholar 
    A Farm to Fork Strategy for a Fair, Healthy and Environmentally-friendly Food System (COM(2020) 381 final: European Commission, 2020); https://knowledge4policy.ec.europa.eu/publication/communication-com2020381-farm-fork-strategy-fair-healthy-environmentally-friendly-food_en More

  • in

    Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae

    Ternes, T. A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 32, 3245–3260 (1998).CAS 
    Article 

    Google Scholar 
    Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 131, 5–17 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474, 619–641 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Ternes, T., Joss, A. & Oehlmann, J. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Res. 72, 1–2 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zorita, S., Mårtensson, L. & Mathiasson, L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 407, 2760–2770 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E. & Tsang, Y. F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 596–597, 303–320 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M. & Stamm, C. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 48, 7683–7689 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kümmerer, K., Dionysiou, D. D., Olsson, O. & Fatta-Kassinos, D. Reducing aquatic micropollutants: Increasing the focus on input prevention and integrated emission management. Sci. Total Environ. 652, 836–850 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Love, A. C., Crooks, N. & Ford, A. T. The effects of wastewater effluent on multiple behaviours in the amphipod. Gammarus pulex. Environ. Pollut. 267, 115386 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, C., Guimarães, L. & Vieira, N. Combining biomarker and community approaches using benthic macroinvertebrates can improve the assessment of the ecological status of rivers. Hydrobiolgia 839, 1–24 (2019).CAS 
    Article 

    Google Scholar 
    Previšić, A. et al. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. Sci. Total Environ. 704, 135333 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    De Castro-Català, N., Muñoz, I., Riera, J. L. & Ford, A. T. Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex. Environ. Pollut. 231, 406–414 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).CAS 
    Article 

    Google Scholar 
    Jonsson, M., Fick, J., Klaminder, J. & Brodin, T. Antihistamines and aquatic insects: Bioconcentration and impacts on behavior in damselfly larvae (Zygoptera). Sci. Total Environ. 472, 108–111 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R. & Córdoba-Aguilar, A. Evolutionary ecology of odonata: A complex life cycle perspective. Annu. Rev. Entomol. 57, 249–265 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janssens, L. & Stoks, R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193, 210–216 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodin, T. & Johansson, F. Conflicting selection pressures on the growth/predation-risk trade-off in a damselfly. Ecology 85, 2927–2932 (2004).Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Monserrat, J. M. et al. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comp. Biochem. Physiol. Part C 146, 221–234 (2007).
    Google Scholar 
    Ågerstrand, M. et al. Emerging investigator series: Use of behavioural endpoints in the regulation of chemicals. Environ. Sci. Process. Impacts 22, 49–65 (2020).PubMed 
    Article 

    Google Scholar 
    Sardo, A. M. & Soares, A. M. V. M. Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic oligochaete Lumbriculus variegatus. Arch. Environ. Contam. Toxicol. 58, 648–656 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bossus, M. C., Guler, Y. Z., Short, S. J., Morrison, E. R. & Ford, A. T. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. Aquat. Toxicol. 151, 46–56 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A. C. M. et al. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. Aquat. Toxicol. 170, 371–376 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nielsen, M. E. & Roslev, P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. Chemosphere 211, 978–985 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Badran, A. A., Fujiwara, M. & Mora, M. A. Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE 14, e0223641 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leonard, J. A., Cope, W. G., Barnhart, M. C. & Bringolf, R. B. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat. Toxicol. 150, 103–116 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robert Michaud, M. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect Physiol. 101, 107–112 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hidalgo, K., Beaugeard, E., Renault, D., Dedeine, F. & Lécureuil, C. Physiological and biochemical responses to thermal stress vary among genotypes in the parasitic wasp Nasonia vitripennis. J. Insect Physiol. 117, 103909 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D. & Viant, M. R. Direct sampling of organisms from the field and knowledge of their phenotype: Key recommendations for environmental metabolomics. Environ. Sci. Technol. 41, 3375–3381 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agbo, S. O. et al. Changes in Lumbriculus variegatus metabolites under hypoxic exposure to benzo(a)pyrene, chlorpyrifos and pentachlorophenol: Consequences on biotransformation. Chemosphere 93, 302–310 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Venter, L. et al. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics 14, 49 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Melvin, S. D. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa). Aquat. Toxicol. Amst. Neth. 170, 271–278 (2016).CAS 
    Article 

    Google Scholar 
    Du, S. N. N. et al. Metabolic costs of exposure to wastewater effluent lead to compensatory adjustments in respiratory physiology in bluegill sunfish. Environ. Sci. Technol. 52, 801–811 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehdi, H., Dickson, F. H., Bragg, L. M., Servos, M. R. & Craig, P. M. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp. Biochem. Physiol. B 224, 270–279 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmons, D. B. D. et al. Altered expression of metabolites and proteins in wild and caged fish exposed to wastewater effluents in situ. Sci. Rep. 7, 17000 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCallum, E. S. et al. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. Sci. Total Environ. 605–606, 578–588 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Simmons, D. B. D. et al. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius auratus. Sci. Rep. 7, 17001 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gauthier, P. T. & Vijayan, M. M. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. Environ. Pollut. 259, 113757 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finotello, S., Feckler, A., Bundschuh, M. & Johansson, F. Repeated pulse exposures to lambda-cyhalothrin affect the behavior, physiology, and survival of the damselfly larvae Ischnura graellsii (Insecta; Odonata). Ecotoxicol. Environ. Saf. 144, 107–114 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Späth, J. et al. Novel metabolomic method to assess the effect-based removal efficiency of advanced wastewater treatment techniques. Environ. Chem. https://doi.org/10.1071/EN19270 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Späth, J. et al. Oxylipins at intermediate larval stages of damselfly Coenagrion hastulatum as biochemical biomarkers for anthropogenic pollution. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-12503-x (2021).Article 

    Google Scholar 
    Späth, J. et al. Metabolomics reveals changes in metabolite profiles due to growth and metamorphosis during the on. J. Insect Physiol. 136, 104341 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rodriguez, A. et al. ToxTrac: A fast and robust software for tracking organisms. Methods Ecol. Evol. 9, 460–464 (2018).Article 

    Google Scholar 
    Treit, D. & Fundytus, M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodin, T. Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav. Ecol. 20, 30–37 (2009).Article 

    Google Scholar 
    Jonsson, M. et al. High-speed imaging reveals how antihistamine exposure affects escape behaviours in aquatic insect prey. Sci. Total Environ. 648, 1257–1262 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M. & Moritz, T. Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331, 283–295 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teixeira, P. F. et al. A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nat. Chem. Biol. 13, 15–17 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol. 13, e1005752 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 82, 425–442 (2016).CAS 
    Article 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 40 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, e86 (2019).Article 

    Google Scholar 
    Van Gossum, H. et al. Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Environ. Pollut. 157, 1332–1336 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bownik, A., Ślaska, B., Bochra, J., Gumieniak, K. & Gałek, K. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. Environ. Sci. Pollut. Res. 26, 18662–18673 (2019).CAS 
    Article 

    Google Scholar 
    Di Cicco, M. et al. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). Sci. Total Environ. 799, 149461 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Di Nica, V., González, A. B. M., Lencioni, V. & Villa, S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environ. Sci. Pollut. Res. 27, 30918–30926 (2020).Article 
    CAS 

    Google Scholar 
    Cappello, T. et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone. Ecotoxicol. Environ. Saf. 143, 166–172 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A. C. M. et al. Energetic costs and biochemical biomarkers associated with esfenvalerate exposure in Sericostoma vittatum. Chemosphere 189, 445–453 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ji, C. et al. Proteomic and metabolomic analysis of earthworm Eisenia fetida exposed to different concentrations of 2,2′,4,4′-tetrabromodiphenyl ether. J. Proteom. 91, 405–416 (2013).CAS 
    Article 

    Google Scholar 
    Felten, V. et al. Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat. Toxicol. 86, 413–425 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Lange, H. J., Peeters, E. T. H. M. & Lürling, M. Changes in ventilation and locomotion of Gammarus pulex (Crustacea, Amphipoda) in response to low concentrations of pharmaceuticals. Hum. Ecol. Risk Assess. Int. J. 15, 111–120 (2009).Article 
    CAS 

    Google Scholar 
    Ashauer, R., Caravatti, I., Hintermeister, A. & Escher, B. I. Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ. Toxicol. Chem. 29, 1625–1636 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schroeder-Spain, K., Fisher, L. L. & Smee, D. L. Uncoordinated: Effects of sublethal malathion and carbaryl exposures on juvenile and adult blue crabs (Callinectes sapidus). J. Exp. Mar. Biol. Ecol. 504, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    Janssens, L. & Stoks, R. Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquat. Toxicol. 132–133, 92–99 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ernest, S. K. M. Homeostasis. In Encyclopedia of Ecology (eds Jørgensen, S. E. & Fath, B. D.) 1879–1884 (Academic Press, 2008).Chapter 

    Google Scholar 
    Karanova, M. V. & Andreev, A. A. Free amino acids and reducing sugars in the freshwater shrimp Gammarus lacustris (Crustacea, Amphipoda) at the initial stage of preparation to winter season. J. Evol. Biochem. Physiol. 46, 335–340 (2010).CAS 
    Article 

    Google Scholar 
    Maity, S. et al. Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp. Biochem. Physiol. B 161, 348–355 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cappello, T. et al. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar. Pollut. Bull. 77, 132–139 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, Y., Jiao, H., Sun, P., Yin, F. & Tang, B. Metabolic response of Scapharca subcrenata to heat stress using GC/MS-based metabolomics. PeerJ 8, e8445 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roznere, I., Watters, G. T., Wolfe, B. A. & Daly, M. Effects of relocation on metabolic profiles of freshwater mussels: Metabolomics as a tool for improving conservation techniques. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 919–926 (2017).Article 

    Google Scholar 
    Cappello, T., Maisano, M., Mauceri, A. & Fasulo, S. 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 142, 417–422 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, C. & Wang, W.-X. Chronic effects of copper in oysters Crassostrea hongkongensis under different exposure regimes as shown by NMR-based metabolomics. Environ. Toxicol. Chem. 36, 2428–2435 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aru, V., Sarais, G., Savorani, F., Engelsen, S. B. & Cesare Marincola, F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. Mar. Pollut. Bull. 107, 292–299 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tufi, S., Stel, J. M., de Boer, J., Lamoree, M. H. & Leonards, P. E. G. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 49, 14529–14536 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tanguy, A., Boutet, I. & Moraga, D. Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: Expression study in response to xenobiotic exposure and developmental stage. Biochim. Biophys. Acta BBA 1681, 116–125 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Shi, X., Gan, F., Huang, D. & Huang, K. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Vet. Res. 46, 32 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Leroy, D., Haubruge, E., De Pauw, E., Thomé, J. P. & Francis, F. Development of ecotoxicoproteomics on the freshwater amphipod Gammarus pulex: Identification of PCB biomarkers in glycolysis and glutamate pathways. Ecotoxicol. Environ. Saf. 73, 343–352 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ch, R., Singh, A. K., Pandey, P., Saxena, P. N. & Mudiam, M. K. R. Identifying the metabolic perturbations in earthworm induced by cypermethrin using gas chromatography-mass spectrometry based metabolomics. Sci. Rep. 5, 15674 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson, J. W., Allen, K. & Awapara, J. Free amino acids in some aquatic invertebrates. Biol. Bull. 117, 371–381 (1959).CAS 
    Article 

    Google Scholar 
    Fu, Q., Scheidegger, A., Laczko, E. & Hollender, J. Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca. Environ. Sci. Technol. 55, 7920–7929 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tikunov, A. P., Johnson, C. B., Lee, H., Stoskopf, M. K. & Macdonald, J. M. Metabolomic investigations of american oysters using 1H-NMR spectroscopy. Mar. Drugs 8, 2578–2596 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gülçin, İ. Antioxidant and antiradical activities of l-carnitine. Life Sci. 78, 803–811 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Yuan, D. et al. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochim. Biophys. Acta 1841, 1272–1284 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garreta-Lara, E. et al. Effect of psychiatric drugs on Daphnia magna oxylipin profiles. Sci. Total Environ. 644, 1101–1109 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. E. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 108–120 (2017).Article 

    Google Scholar  More

  • in

    Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2) (2016). http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2.Donohue, M. J. et al. Evaluating exposure of northern fur seals, Callorhinus ursinus, to microplastic pollution through fecal analysis. Mar. Pollut. Bull. 138, 213–221 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752 (2019).ADS 
    Article 

    Google Scholar 
    Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bessa, F. et al. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 9, 14191 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ. Rev. 27, 304–317 (2019).Article 

    Google Scholar 
    Bucci, K., Bikker, J., Stevack, K., Watson-Leung, T. & Rochman, C. Impacts to larval fathead minnows vary between preconsumer and environmental microplastics. Environ. Toxicol. Chem. 41, 4 (2021).
    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    De-la-Torre, G. E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. 57, 1601–1608 (2020).Article 
    PubMed 

    Google Scholar 
    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 364, 2027–2045 (2009).CAS 
    Article 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    He, S. et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 1, 127286. https://doi.org/10.1016/j.jhazmat.2021.127286 (2021).CAS 
    Article 

    Google Scholar 
    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    World Health Organization. Safe Management of Shellfish and Harvest Waters (WHO, 2010).
    Google Scholar 
    Lindsay, D. S. & Dubey, J. P. Long-term survival of Toxoplasma gondii sporulated oocysts in seawater. J. Parasitol. 95, 1019–1020 (2009).Article 
    PubMed 

    Google Scholar 
    Tamburrini, A. & Pozio, E. Long-term survival of Cryptosporidium parvum oocysts in seawater and in experimentally infected mussels (Mytilus galloprovincialis). Int. J. Parasitol. 29, 711–715 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 
    PubMed 

    Google Scholar 
    Robertson, L. J. The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: A review. Int. J. Food Microbiol. 120, 201–216 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterb. Parasitol. 15, e00049 (2019).Article 

    Google Scholar 
    Miller, M. A., Shapiro, K., Murray, M. J., Haulena, M. J. & Raverty, S. Protozoan parasites of marine mammals. in CRC Handbook of Marine Mammal Medicine (2018).Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rose, J. B. Environmental ecology of cryptosporidium and public health implications. Annu. Rev. Public Health 18, 135–161 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robert-Gangneux, F. & Dardé, M.-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahia-Oliveira, L., Gomez-Marin, J. & Shapiro, K. Toxoplasma gondii. Global Water Pathogen Project. https://www.waterpathogens.org/book/toxoplasma-gondii (2015).Kreuder, C. et al. Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. J. Wildl. Dis. 39, 495–509 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Dual congenital transmission of Toxoplasma gondii and Sarcocystis neurona in a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis). Parasitology 143, 276–288 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbieri, M. M. et al. Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi. Dis. Aquat. Org. 121, 85–95 (2016).Article 

    Google Scholar 
    Roe, W. D., Howe, L., Baker, E. J., Burrows, L. & Hunter, S. A. An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet. Parasitol. 192, 67–74 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hernandez, E., Nowack, B. & Mitrano, D. M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ. Sci. Technol. 51, 7036–7046 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mason, S. A. et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 109, 230–235 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Desforges, J.-P.W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horn, D., Miller, M., Anderson, S. & Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 139, 231–237 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, X. et al. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613–614, 298–305 (2018).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Collicutt, B., Juanes, F. & Dudas, S. E. Microplastics in juvenile Chinook salmon and their nearshore environments on the east coast of Vancouver Island. Environ. Pollut. 244, 135–142 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davidson, K. & Dudas, S. E. Microplastic ingestion by wild and cultured manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol. 71, 147–156 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129, 179–185 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wootton, N., Reis-Santos, P. & Gillanders, B. M. Microplastic in fish: A global synthesis. Rev. Fish. Biol. Fish. 31, 753–771 (2021).Article 

    Google Scholar 
    De-la-Pinta, I. et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. 30, 77 (2019).
    Google Scholar 
    Rochman, C. M., Hoh, E., Hentschel, B. T. & Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ. Sci. Technol. 47, 1646–1654 (2013).CAS 
    PubMed 

    Google Scholar 
    Lindquist, H. D. A. et al. Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J. Parasitol. 89, 865–867 (2003).Article 
    PubMed 

    Google Scholar 
    Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I 40, 1131–1140 (1993).CAS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. R. Soc. B 281, 20141287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers: Assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).CAS 
    Article 

    Google Scholar 
    Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1211 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lusher, A., Hollman, P. C. H. & Mendoza-Hill, J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (Food and Agriculture Organization of the United Nations, 2017).
    Google Scholar 
    Tamburri, M. N. & Zimmer-Faust, R. K. Suspension feeding: Basic mechanisms controlling recognition and ingestion of larvae. Limnol. Oceanogr. 41, 1188–1197 (1996).ADS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol. 84, 103252 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saley, A. M. et al. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar. Pollut. Bull. 146, 54–59 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res. 44, 893–903 (2010).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Africans and Europeans differ in their facial perception of dominance and sex-typicality: a multidimensional Bayesian approach

    de Waal-Andrews, W., Gregg, A. P. & Lammers, J. When status is grabbed and when status is granted: Getting ahead in dominance and prestige hierarchies. Br. J. Soc. Psychol. 54, 445–464 (2015).PubMed 

    Google Scholar 
    Mileva, V. R., Cowan, M. L., Cobey, K. D., Knowles, K. K. & Little, A. C. In the face of dominance: Self-perceived and other-perceived dominance are positively associated with facial-width-to-height ratio in men. Pers. Individ. Dif. 69, 115–118 (2014).
    Google Scholar 
    Quist, M. C., Watkins, C. D., Smith, F. G., DeBruine, L. M. & Jones, B. C. Facial masculinity is a cue to women’s dominance. Pers. Individ. Dif. 50, 1089–1093 (2011).
    Google Scholar 
    Gallup, A. C., O’Brien, D. T., White, D. D. & Wilson, D. S. Handgrip strength and socially dominant behavior in male adolescents. Evol. Psychol. 8, 229–243 (2010).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W. & Sell, A. N. Judgments of dominance from the face track physical strength. Evol. Psychol. 12, 1–18 (2014).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W., Dotsch, R., Falvello, V. & Todorov, A. Physical strength as a cue to dominance: A data-driven approach. Personal. Soc. Psychol. Bull. 42, 1603–1616 (2016).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., van Vugt, M. & Penke, L. Honest signals of status: Facial and bodily dominance are related to success in physical but not nonphysical competition. Evol. Psychol. 17, 147470491986316 (2019).
    Google Scholar 
    Han, C. et al. Interrelationships among men’s threat potential, facial dominance, and vocal dominance. Evol. Psychol. 15, 1–4 (2017).
    Google Scholar 
    Sell, A. et al. Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proc. R. Soc. B Biol. Sci. 276, 575–584 (2009).
    Google Scholar 
    Kleisner, K., Kočnar, T., Rubešová, A. & Flegr, J. Eye color predicts but does not directly influence perceived dominance in men. Pers. Individ. Dif. 49, 59–64 (2010).
    Google Scholar 
    Windhager, S., Schaefer, K. & Fink, B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am. J. Hum. Biol. 23, 805–814 (2011).PubMed 

    Google Scholar 
    Albert, G., Wells, E., Arnocky, S., Liu, C. H. & Hodges-Simeon, C. R. Observers use facial masculinity to make physical dominance assessments following 100-ms exposure. Aggress. Behav. https://doi.org/10.1002/ab.21941 (2020).Article 
    PubMed 

    Google Scholar 
    Batres, C., Re, D. E. & Perrett, D. I. Influence of perceived height, masculinity, and age on each other and on perceptions of dominance in male faces. Perception 44, 1293–1309 (2015).PubMed 

    Google Scholar 
    Boothroyd, L. G., Jones, B. C., Burt, D. M. & Perrett, D. I. Partner characteristics associated with masculinity, health and maturity in male faces. Pers. Individ. Dif. 43, 1161–1173 (2007).
    Google Scholar 
    Main, J. C., Jones, B. C., DeBruine, L. M. & Little, A. C. Integrating gaze direction and sexual dimorphism of face shape when perceiving the dominance of others. Perception 38, 1275–1283 (2009).PubMed 

    Google Scholar 
    Van Dongen, S. & Sprengers, E. Hand grip strength in relation to morphological measures of masculinity, fluctuating asymmetry and sexual behaviour in males and females. Sex Horm. https://doi.org/10.5772/25880 (2012).Article 

    Google Scholar 
    Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).PubMed 

    Google Scholar 
    Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 26, 1470–1475 (2015).
    Google Scholar 
    Law, S. M. J. et al. Facial appearance is a cue to oestrogen levels in women. Proc. Biol. Sci. 273, 135–140 (2006).
    Google Scholar 
    Probst, F., Bobst, C. & Lobmaier, J. S. Testosterone-to-estradiol ratio is associated with female facial attractiveness. Q. J. Exp. Psychol. 69, 89–99 (2016).
    Google Scholar 
    Marečková, K. et al. Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Horm. Behav. 60, 681–690 (2011).PubMed 

    Google Scholar 
    Whitehouse, A. J. O. et al. Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proc. R. Soc. B Biol. Sci. 282, 78–94 (2015).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., Pita, S. R., Jünger, J. & Penke, L. Further evidence that facial width-to-height ratio and global facial masculinity are not positively associated with testosterone levels. Adapt. Hum. Behav. Physiol. 5, 117–130 (2019).
    Google Scholar 
    Chiu, H. T., Shih, M. T. & Chen, W. L. Examining the association between grip strength and testosterone. Aging Male 3, 1–8 (2019).
    Google Scholar 
    Hirschberg, A. L. et al. Effects of moderately increased testosterone concentration on physical performance in young women: A double blind, randomised, placebo controlled study. Br. J. Sports Med. 3, 1–7. https://doi.org/10.1136/bjsports-2018-100525 (2019).Article 

    Google Scholar 
    Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).PubMed 

    Google Scholar 
    Carré, J. M. & Olmstead, N. A. Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience 286, 171–186 (2015).PubMed 

    Google Scholar 
    Lefevre, C. E., Etchells, P. J., Howell, E. C., Clark, A. P. & Penton-Voak, I. S. Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. Biol. Lett. 10, 20140729 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Alrajih, S. & Ward, J. Increased facial width-to-height ratio and perceived dominance in the faces of the UK’s leading business leaders. Br. J. Psychol. 105, 153–161 (2014).PubMed 

    Google Scholar 
    Watkins, C. D., Jones, B. C. & DeBruine, L. M. Individual differences in dominance perception: Dominant men are less sensitive to facial cues of male dominance. Pers. Individ. Dif. 49, 967–971 (2010).
    Google Scholar 
    Wang, X., Guinote, A. & Krumhuber, E. G. Dominance biases in the perception and memory for the faces of powerholders, with consequences for social inferences. J. Exp. Soc. Psychol. 78, 23–33 (2018).
    Google Scholar 
    de Carrito, M. L. et al. The role of sexually dimorphic skin colour and shape in attractiveness of male faces. Evol. Hum. Behav. 37, 125–133 (2016).
    Google Scholar 
    Stephen, I. D., Oldham, F. H., Perrett, D. I. & Barton, R. A. Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evol. Psychol. 10, 562–572 (2012).PubMed 

    Google Scholar 
    Stephen, I. D. & Perrett, D. I. Color and face perception. in Handbook of Color Psychology (eds. Elliot, A. J., Fairchild, M. D. & Franklin, A.) 585–602 (Cambridge University Press, 2016). https://doi.org/10.1017/cbo9781107337930.029.Carrito, M. L. & Semin, G. R. When we don’t know what we know–Sex and skin color. Cognition 191, 103972 (2019).PubMed 

    Google Scholar 
    Said, C. P. & Todorov, A. A statistical model of facial attractiveness. Psychol. Sci. 22, 1183–1190 (2011).PubMed 

    Google Scholar 
    Mitteroecker, P., Windhager, S., Møller, G. B. & Schaefer, K. The morphometrics of ‘masculinity’ in human faces. PLoS One 10, e0118374 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Pages, S., Rodriguez-Ruiz, C. & Turiegano, E. Facial masculinity: How the choice of measurement method enables to detect its influence on behaviour. PLoS One 9, 10078 (2014).
    Google Scholar 
    Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P. & Penton-Voak, I. S. Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS One 5, e13585 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rennels, J. L., Bronstad, P. M. & Langlois, J. H. Are attractive men’s faces masculine or feminine ? The importance of type of facial stimuli. J. Exp. Psychol. Hum. Percept. Perform. 34, 884–893 (2008).PubMed 

    Google Scholar 
    Swaddle, J. P. & Reierson, G. W. Testosterone increases perceived dominance but not attractiveness in human males. Proc. R. Soc. B Biol. Sci. 269, 2285–2289 (2002).CAS 

    Google Scholar 
    Hester, N., Jones, B. C. & Hehman, E. Perceived femininity and masculinity contribute independently to facial impressions. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000989 (2020).Article 
    PubMed 

    Google Scholar 
    Howansky, K., Albuja, A. & Cole, S. Seeing Gender: Perceptual Representations of Transgender Individuals. Soc. Psychol. Personal. Sci. 11, 474–482 (2020).
    Google Scholar 
    Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world. Sci. Rep. 7, 10048 (2021).
    Google Scholar 
    Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
    Google Scholar 
    Strom, M. A., Zebrowitz, L. A., Zhang, S., Bronstad, P. M. & Lee, H. K. Skin and bones: The contribution of skin tone and facial structure to racial prototypicality ratings. PLoS One 7, e41193 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS One 9, 1700 (2014).
    Google Scholar 
    Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal length affects depicted shape and perception of facial images. PLoS One 11, e0149313 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nábělková, M. Closely-related languages in contact: Czech, Slovak, “Czechoslovak”. Int. J. Soc. Lang. 183, 53–73 (2007).
    Google Scholar 
    Dixson, B. J. Facial width to height ratio and dominance. Encycl. Evol. Psychol. Sci. https://doi.org/10.1007/978-3-319-16999-6 (2017).Article 

    Google Scholar 
    Geniole, S. N. & McCormick, C. M. Facing our ancestors: Judgements of aggression are consistent and related to the facial width-to-height ratio in men irrespective of beards. Evol. Hum. Behav. 36, 279–285 (2015).
    Google Scholar 
    Třebický, V. et al. Further evidence for links between facial width-to-height ratio and fighting success: Commentary on Zilioli et al. (2014). Aggress. Behav. 41, 331–334 (2015).PubMed 

    Google Scholar 
    McLaren, K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J. Soc. Dye. Colour. 92, 338–341 (1976).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V. et al. African perceptions of female attractiveness. PLoS ONE 7, 3–8 (2012).
    Google Scholar 
    Webster, M. & Sheets, H. D. A practical introduction to landmark-based geometric morphometrics. Paleontol. Soc. Pap. 16, 163–188 (2010).Kleisner, K., Pokorný, Š & Saribay, S. A. Toward a new approach to cross-cultural distinctiveness and typicality of human faces: The cross-group typicality/ distinctiveness metric. Front. Psychol. 10, 124 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bookstein, F. L. Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol. 58, 313–365 (1996).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 1–4 (2015).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Revelle, W. psych: Procedures for Personality and Psychological Research. (2018).Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).CAS 
    PubMed 

    Google Scholar 
    McElreath, R. rethinking: Statistical Rethinking book package. R package version 2.13. (2020).Stan Development Team. RStan: The R interface to Stan. R package version 2.21.2. (2020).Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).PubMed 

    Google Scholar 
    Voegeli, R. et al. Cross-cultural perception of female facial appearance: A multi-ethnic and multi-centre study. PLoS ONE 16, 8–12 (2021).
    Google Scholar 
    Kočnar, T., Adil Saribay, S. & Kleisner, K. Perceived attractiveness of Czech faces across 10 cultures: Associations with sexual shape dimorphism, averageness, fluctuating asymmetry, and eye color. PLoS One 14, e0225549 (2019).Pavlovič, O., Fiala, V. & Kleisner, K. Environmental convergence in facial preferences: A cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Gonzalez-Santoyo, I. et al. The face of female dominance: Women with dominant faces have lower cortisol. Horm. Behav. 71, 16–21 (2015).CAS 
    PubMed 

    Google Scholar 
    Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saribay, S. A. et al. The Bogazici face database: Standardized photographs of Turkish faces with supporting materials. PLoS One 13, 10058 (2018).
    Google Scholar 
    Alharbi, S. A. H., Holzleitner, I. J., Lee, A. J., Saribay, S. A. & Jones, B. C. Women’s preferences for sexual dimorphism in faces: Data from a sample of arab women. Evol. Psychol. Sci. 6, 328–334 (2020).
    Google Scholar 
    Jones, B. C. et al. To which world regions does the valence–dominance model of social perception apply?. Nat. Hum. Behav. 5, 159–169 (2021).PubMed 

    Google Scholar 
    Sutherland, C. A. M. et al. Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers’ unconstrained facial impressions. Personal. Soc. Psychol. Bull. 44, 521–537 (2017).
    Google Scholar 
    Marcinkowska, U. M. et al. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biol. Lett. 10, 4–7 (2014).
    Google Scholar 
    Marcinkowska, U. M. et al. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annu. Rev. Psychol. 66, 519–545 (2015).PubMed 

    Google Scholar 
    Little, A. C., Jones, B. C. & Debruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1638–1659 (2011).Foo, Y. Z., Simmons, L. W. & Rhodes, G. Predictors of facial attractiveness and health in humans. Sci. Rep. 7, 39731 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dion, K., Berscheid, E. & Walster, E. What is beautiful is good. J. Pers. Soc. Psychol. 24, 285–290 (1972).CAS 
    PubMed 

    Google Scholar 
    Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: Evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013).PubMed 

    Google Scholar 
    van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?. Ethn. Racial Stud. 9, 87–113 (1986).
    Google Scholar 
    Fink, B. et al. Colour homogeneity and visual perception of age, health and attractiveness of male facial skin. J. Eur. Acad. Dermatology Venereol. 26, 1486–1492 (2012).CAS 

    Google Scholar 
    Gallagher, N. M. & Bodenhausen, G. V. Gender essentialism and the mental representation of transgender women and men: A multimethod investigation of stereotype content. Cognition 217, 104887 (2021).Fiala, V. et al. Facial attractiveness and preference of sexual dimorphism: A comparison across five populations. Evol. Hum. Sci. 3, e38 (2021). More