More stories

  • in

    Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference

    Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, et al. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021;15:3522–33.CAS 

    Google Scholar 
    Huang H, Ren L, Li H, Schmidt A, Gershenzon J, Lu Y, et al. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathog. 2020;16:e1008800.CAS 

    Google Scholar 
    Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep. 2016;6:34084.
    Google Scholar 
    Davis TS, Landolt PJ. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol. 2013;39:860–8.CAS 

    Google Scholar 
    Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, et al. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J. 2018;13:860–72.
    Google Scholar 
    Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–800.CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.
    Google Scholar 
    Paul GB, Gerhard F, Elżbieta R, Alexandra S, Arne H, Sébastien L, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol. 2012;26:1365–2435.
    Google Scholar 
    Ganter PF. Yeast and invertebrate associations. In: Gábor P, Carlos R, editors. Biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer; 2006. pp 303–70.Anagnostou C, Legrand EA, Rohlfs M. Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos. 2010;119:533–41.
    Google Scholar 
    Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol. 2019;9:8075–86.
    Google Scholar 
    Luo Y, Johnson JC, Chakraborty TS, Piontkowski A, Gendron CM, Pletcher SD. Yeast volatiles double starvation survival in Drosophila. Sci Adv. 2021;7:eabf8896.CAS 

    Google Scholar 
    Fogleman S. Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol. 1986;12:1037–55.
    Google Scholar 
    Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Tec. 2008;49:386–96.CAS 

    Google Scholar 
    Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–57.CAS 

    Google Scholar 
    Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol. 2020;30:127–34.CAS 

    Google Scholar 
    Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, et al. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Arch Insect Biochem. 2019;102:e21601.CAS 

    Google Scholar 
    Han P, Wang X, Niu CY, Dong YC, Zhu JQ, Desneux N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J Pest Sci. 2011;84:289–95.
    Google Scholar 
    Duyck PF, David P, Quilici S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol. 2004;29:511–20.
    Google Scholar 
    Wen T, Zheng L, Dong S, Gong Z, Sang M, Long X, et al. Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol Tec. 2019;147:156–65.
    Google Scholar 
    Li X, Yang H, Wang T, Wang J, Wei H. Life history and adult dynamics of Bactrocera dorsalis in the citrus orchard of Nanchang, a subtropical area from China: implications for a control timeline. ScienceAsia. 2019;45:212–20.
    Google Scholar 
    Chalupowicz D, Veltman B, Droby S, Eltzov E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens Actuat B-Chem. 2020;311:127896.CAS 

    Google Scholar 
    Turlings TC, Lengwiler UB, Bernasconi ML, Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta. 1998;207:146–52.CAS 

    Google Scholar 
    Wang B, Dong W, Li H, D’Onofrio C, Bai P, Chen R, et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr Biol. 2022;32:951–62.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 

    Google Scholar 
    Cellar NA, De Nison JE, Seipelt CT, Twohig M, Burgess JA. Title of subordinate document. In: Dramatic improvements in assay reproducibility for water-soluble vitamins using ACQUITY UPLC and the Ultra-Sensitive Xevo TQ-S Mass Spectrometer. 2013. https://www.waters.com/webassets/cms/library/docs/720004690en.pdf.Ren FR, Sun X, Wang TY, Yan JY, Yao YL, Li CQ, et al. Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME J. 2021;15:1655–67.CAS 

    Google Scholar 
    Batta YA. Quantitative postharvest contamination and transmission of Penicillium expansum (Link) conidia to nectarine and pear fruit by Drosophila melanogaster (Meig.) adults. Postharvest Biol Tec. 2006;40:190–6.
    Google Scholar 
    Rohlfs M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool. 2005;2:2.
    Google Scholar 
    Becher PG, Bengtsson M, Hansson BS, Witzgall P. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol. 2010;36:599–607.CAS 

    Google Scholar 
    Dionigi C, Ahten T, Wartelle L. Effects of several metals on spore, biomass, and geosmin production by Streptomyces tendae and Penicillium expansum. J Ind Microbiol Biot. 1996;17:84–88.CAS 

    Google Scholar 
    Jin S, Zhou X, Gu F, Zhong G, Yi X. Olfactory plasticity: variation in the expression of chemosensory receptors in Bactrocera dorsalis in different physiological states. Front Physiol. 2017;8:672.
    Google Scholar 
    Li H, Ren L, Xie M, Gao Y, He M, Hassan B, et al. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr Biol. 2020;30:4432–40.CAS 

    Google Scholar 
    Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Insect Biochem Molec. 2020;122:103389.CAS 

    Google Scholar 
    Ju JF, Bing XL, Zhao DS, Guo Y, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:1–12.
    Google Scholar 
    Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle–fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME J. 2020;14:2829–42.CAS 

    Google Scholar 
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
    Google Scholar 
    Honda K, Ômura H, Hayashi N, Abe F, Yamauchi T. Conduritols as oviposition stimulants for the danaid butterfly, Parantica sita, identified from a host plant, Marsdenia tomentosa. J Chem Ecol. 2004;30:2285–96.CAS 

    Google Scholar 
    Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, et al. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife. 2016;5:e13133.
    Google Scholar 
    Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 2016;14:e1002455.
    Google Scholar 
    Stötefeld L, Holighaus G, Schütz S, Rohlfs M. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. Chemoecology. 2015;5:271–83.
    Google Scholar 
    Gou B, Liu Y, Guntur A, Stern U, Yang HC. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Rep. 2014;9:522–30.CAS 

    Google Scholar 
    Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr Biol. 2020;30:3736–48.CAS 

    Google Scholar 
    Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 2020;10:3013–20.
    Google Scholar 
    Holden JT, Furman C, Snell EE. D-alanine and the vitamin B6 content of microorganisms. J Biol Chem. 1949;178:789–97.CAS 

    Google Scholar 
    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Micro. 2014;80:5844–53.
    Google Scholar 
    Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, et al. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 2020;14:2542–53.CAS 

    Google Scholar 
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci. 2014;281:20141838.
    Google Scholar  More

  • in

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera

    Lotsy, J. P. Evolution by Means of Hybridization (Martinus Nijhoff, 1916).Abbott, R. J. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).PubMed 
    Article 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z. F. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Müntzing, A. Outlines to a genetic monograph for the genus Galeopsis: with special reference to the nature and inheritance of partial sterility. Hereditas 13, 185–341 (1930).Article 

    Google Scholar 
    Schumer, M., Cui, R., Rosenthal, G. G. & Andolfatto, P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. Plos. Genet. 11, e1005041 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kong, S. & Kubatko, L. S. Comparative performance of popular methods for hybrid detection using genomic data. Syst. Biol. 70, 891–907 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jiang, Y. F. et al. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. N. Phytol. 228, 409–414 (2020).Article 

    Google Scholar 
    Rokas, A. & Holland, P. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol. 19, 972–977 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 
    Article 

    Google Scholar 
    Guo, X., Thomas, D. C. & Saunders, R. M. K. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Mol. Phylogenet. Evol. 127, 14–29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winkler, H. Betulaceae. In: Pflanzenreich IV (Verlag von Wilhelm Engelmann, 1904).Li, P. Q. & Skvortsov, A. K. Betulaceae. In: Flora of China (Science Press & Missouri Botanical Garden Press, 1999).Crane, P. R. Betulaceous leaves and fruits from the British Upper Palaeocene. Bot. J. Linn. Soc. 83, 103–136 (1981).Article 

    Google Scholar 
    Li, P. Q. & Cheng, S. X. Betulaceae. In: Flora Reipublicae Popularis Sinicae (Science Press, 1979).Yoo, K. O. & Wen, J. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Plant Sci. 163, 641–650 (2002).Article 

    Google Scholar 
    Li, J. H. Sequences of low-copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). J. Sys. Evol. 46, 333–340 (2008).
    Google Scholar 
    Yang, X. Y. et al. Plastomes of Betulaceae and phylogenetic implications. J. Sys. Evol. 57, 508–518 (2019).Article 

    Google Scholar 
    Yang, Y. Z. et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, X. Y. et al. A chromosome-level reference genome of the hornbeam, Carpinus fangiana. Sci. Data 7, 24 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Y. et al. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic. Res. 8, 54 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tajima, F. Evolutionary relationship of DNA-sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kubatko, L. S. & Chifman, J. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. BMC Evol. Biol. 19, 112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baack, E., Melo, M. C., Rieseberg, L. H. & Ortiz-Barrientos, D. The origins of reproductive isolation in plants. N. Phytol. 207, 968–984 (2015).Article 

    Google Scholar 
    Sobel, J. M. & Chen, G. F. Unification of methods for estimating the strength of reproductive isolation. Evolution 68, 1511–1522 (2014).PubMed 
    Article 

    Google Scholar 
    Imura, Y. et al. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 53, 287–303 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S.-J. & Bassham, D. C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol. 156, 514–526 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, F. et al. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. N. Phytol. 223, 2024–2038 (2019).CAS 
    Article 

    Google Scholar 
    Liu, Z. C., Franks, R. G. & Klink, V. P. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1891 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sitaraman, J., Bui, M. & Liu, Z. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol. 147, 672–681 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. L. et al. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Sys. Evol. 59, 1198–1208 (2021).Article 

    Google Scholar 
    Morales-Briones, D. F. et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219–235 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yang, Y. Z. et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215–222 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Grover, C. E. et al. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 92, 45–52 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.1–4.10.14 (2004).Article 

    Google Scholar 
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    Article 

    Google Scholar 
    Conesa, A. & Götz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, G. et al. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant J. 97, 779–794 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. GigaScience 9, giaa050 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. In: Multiple Sequence Alignment Methods, Methods in Molecular Biology (Humana Press, 2014).Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).Article 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 
    Article 

    Google Scholar 
    Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Individual and collective learning in groups facing danger

    Experimental setupThis research was approved by the Carnegie Mellon University Committee of the Use of Human Subjects. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all participants. Our data includes no identifying information of human participants. We conducted experiments from February to August 2021 (except for the preliminary sessions of random information; we ran the condition from June to November 2020). We preregistered the main experiment settings using AsPredicted (https://aspredicted.org/sm4k5.pdf).A total of 2786 subjects participated in our incentivized decision-making game experiments. We recruited subjects using Amazon Mechanical Turk (MTurk)52,53. Supplementary Table 1 shows the subject demographics. Our participants interacted anonymously over the Internet using customized software playable in a browser window (available at http://breadboard.yale.edu). All participants provided explicit consent and passed a series of human verification checks and a screening test of understanding game rules and payoffs before playing the game (see SI). We prohibited subjects from participating in more than one session of the experiment by using unique identifications for each subject on MTurk.In each session, subjects were paid a $2.00 show-up fee and a bonus depending on whether they took the appropriate disaster decision in four rounds. Furthermore, subjects earned $1.00 when they completed all four rounds. In each round, when a disaster stroke before they evacuated, the subjects earned no bonus. Otherwise, they earned a bonus of $1.00 without disaster or $0.50 with disaster by spending $0.50 for evacuation, plus $0.05 per other players who took the correct action accordingly (Supplementary Table 2). We have confirmed with prior work that the amount of evacuation cost, if any, makes no significant difference in the game’s performance23.At the start, subjects were required to pass a series of human verification checks. They needed to pass Google’s reCAPTCHA using the “I’m not a robot” checkbox. They were also requested to answer whether they were human players. The exact question asked was: “Please select an applicable answer about you.” The options were: “I am not a bot. I am a real person.” “I am not a real person. I am a bot.” “I am anything but a human.” and “I am a computer program working for a person.” The option’s order was randomized. Only the participants who selected “I am not a bot. I am a real person.” moved to the step of informed consent.When subjects provided explicit consent, they were asked to take a tutorial before the actual game would begin. In the tutorial, each subject separately interacted with three dummy players in two rounds of a 45-s practice game. In the actual game, some subjects would be informed in advance whether a disaster would indeed strike or not. In the practice game, while all subjects were not informed of such information in the first round, they were informed of the information in the second round. Thus, they practiced both conditions in terms of prior information on the disaster (see SI).After the practice game, subjects were assessed for their comprehension of the game rules and payment structure using four multiple-choice questions with three options. If they failed to select the correct answer in one of the questions, they could reselect it only once through the entire test. If they failed to select the correct answer more than once, they were unable to join the actual game.At 720 s after the tutorial beginning, a “Ready” button became visible simultaneously to all the subjects who completed the tutorial and passed the comprehension tests. The actual games started 30 s after the “Ready” button showed up. If subjects did not click the button before the game started, they were dropped. The game required a certain number of subjects. When the subjects who successfully clicked the button were more than 16, surplus subjects, randomly selected, were dropped from the game. When the number of qualified subjects was less than 12, the game did not start. As a result, subjects started the game in a group with an average size of 15.5 (s.d. = 1.1).At the start of the actual game, we selected one subject (the “informant”) at random who was informed in advance whether a disaster would indeed strike or not. The other subjects were informed that some players had accurate information about the disaster, but they were not informed who the informant was. The exact sentence that the informants received in their game screen was “A disaster is going to strike!” when a disaster would strike or “There is no disaster.” when a disaster would not strike. The one that the other uninformed subjects received was “A disaster may or may not strike.” Then, the group had the same informant across the four rounds except for a supplement condition of random informants. In the random informant condition, an informant was randomly selected every round.To prevent an end-of-game effect, we randomly set the game time with a normal distribution of a mean of 75 s and a standard deviation of 10 s. Prior work has confirmed that the game time is sufficient for players to communicate and make an evacuation decision23. As a result, each round ended at 75.0 s on average (s.d. = 9.5) without prior notice. In half of the sessions, a disaster struck at the end of the game. We did not inform any subjects, including the informants, when their sessions would end, the global network structure they were embedded in, or how many informants were in the game. After making their evacuation choice, subjects were informed of their success and failure along with overall results in their group. Then, subjects played another round of the evacuation game until they completed four total rounds. They had the same local network environment across four rounds except for the dynamic network condition.Network structure and tie rewiringIn the network sessions, subjects played the game in a directed network with a random graph configuration. A certain number of ties were present at the game’s onset as the initial density was set to 0.25.In the dynamic network conditions, subjects also could change their neighbors by making or breaking ties between rounds. In the tie-rewiring step, 40% of all the possible subject pairs were chosen at random. Thus, subjects could choose every other player at least once throughout the entire session (i.e., a set of four rounds) with a probability of about 80%. When the chosen pairs were connected, the pairs (the ties) were dissolved if the predecessor subject of the directed ties chose to break the tie. When the chosen pairs were not connected, the pairs (the ties) were newly created when the predecessor of the potential tie chose to create the tie. Subjects were not informed of the rewiring rate.To equalize the game time, we made subjects in the independent and static network conditions wait for additional 10 s after each game round ended. Despite the adjustment, the game time was significantly longer in the dynamic network sessions than in the independent and static network sessions. The average game time is 429.5 s (s.d. = 20.2) for the independent condition; 428.8 s (s.d. = 19.0) for the static network condition; and 564.7 s (s.d. = 36.3) for the dynamic network condition.To clarify mechanisms for dynamic networks to facilitate collective intelligence, we added one supplementary condition. In the supplementary condition, subjects were assigned to one of the 40 isomorphic networks that other subjects had developed with tie-rewiring options through the three rounds in the dynamic network condition (567 subjects in 40 groups). Network structure and other game settings (i.e., whether a disaster stroke, how long the game was, and which node was the informant) were identical to where the others played the game at the final round. However, players were different, and they had no prior experience in the game. They played the game in a network with a topology created by others ostensibly to optimize the accurate flow of information. In contrast to other conditions, subjects played only one round in the isomorphic network condition.Signal buttonsDuring the game of network sessions, subjects were allowed to share information about the possibly impending “disaster” by using “Safe” and “Danger” buttons that indicated their assessment (see SI). The default node color was grey. Then, when they clicked the Safe button, their node turned blue and, after 5 s, automatically returned to grey. Likewise, the Danger button turned their node to red for 5 s. Subjects could see only the colors of neighbors to whom they were directly connected. Since the signal exchange occurred through directed connections, an individual could send, but not receive, information from another subject (and vice versa). Once subjects chose to evacuate, they could no longer send signals, and their node showed grey (the default color) for the rest of the game. The neighbors of evacuated subjects were not informed of their evacuation. We have confirmed with prior work that collective performance does not vary with the communication continuity and the evacuation visibility23. Subjects could use the Safe and Danger buttons any time unless they evacuated, or they did not have to.Players dropping during the gameAfter each game round, when a player was inactive for 10 s, they were warned about being dropped. When they remained inactive after 10 s, they were dropped. When the selected informant was dropped, the session stopped at the round, and we did not use the data. Furthermore, as too many dropped players could affect the network structure and the behavioral dynamics of remaining players, we did not use the sessions where more than 25% of initial players were dropped during the game. Overall, 4 players dropped in 15 sessions; 3 players dropped in 22 sessions; 2 players dropped in 41 sessions; 1 player dropped in 44 sessions; and no player dropped in 58 sessions. The dropped players were prohibited from joining another session of this experiment.As noted above, players took the additional tie-rewiring step every round in the dynamic network sessions. Thus, the total game time was longer in the dynamic network sessions than in the independent and static network sessions even with the adjustment. As a result, more players were dropped in the dynamic network sessions than in the independent and static network sessions. The average number of dropped players across the four rounds is 0.40 (s.d. = 0.60) for the independent condition; 1.15 (s.d. = 0.86) for the static network condition; 1.75 (s.d. = 1.19) for the dynamic network condition. Although group size could affect collective performance, we found the differences in group size small enough for our study. We have confirmed the dynamic network’s performance improvement with a comprehensive analysis controlling the effect of group size (Supplementary Table 3). Also, there was no statistically significant difference in the dropped players’ performance of the dynamic network condition, compared with the other two conditions. The rate of correct actions of dropped players is 0.456 (s.d. = 0.322) for the independent condition, 0.594 (s.d. = 0.387) for the static network condition, and 0.558 (s.d. = 0.411) for the dynamic network condition; P = 0.106 between the independent condition and the dynamic network condition; P = 0.599 between the static network condition and the dynamic network condition (Welch two-sample t test).Analysis of signal diffusionsTo examine the change in signal diffusion, we analyzed “diffusion chains” for each signal type in the network sessions. We first identified the subjects who sent a signal when their neighbors had never sent one as spontaneous “diffusion sources.” When a subject sent a signal after at least one neighbor had sent the same type of signal, we regarded the subject’s signaling (and evacuation with danger signals) as occurring in a chain of signal diffusion and the total number of the responded subjects (including the diffusion source) as the diffusion size.We analyzed the distribution of signal diffusion chains with complementary cumulative distribution functions, measuring the fraction of diffusion chains that exhibit a given number of diffusion sizes. We found that the number of diffusions of both signals did not change across rounds. Safe-signal diffusions were more likely to occur than danger-signal diffusions regardless of whether a “disaster” would strike and how many rounds subjects played. On the other hand, the diffusion size varied greatly across rounds in disaster situations. With “disaster,” false safe signals spread further than true danger signals at the first round, but after that, warnings outperformed safe signals in terms of diffusion size. Figure 2B and Supplementary Fig. 3 scrutinize the changes in diffusion chains with their distributions.Analysis of individual responsivenessWe analyzed how individual evacuation behavior varies with exposure to signals from neighbors54. Let$${a}_{i}^{evacuate},, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ evacuates at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show, safe},, (t)=left{begin{array}{ll}1&quad text{if subject } i mathrm{ shows a safe signal at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show , danger} ,, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ shows a danger signal at time } t\ 0&quad text{otherwise}end{array}right.$$The hazard function, or instantaneous rate of occurrence of subject (i)’s evacuation at time t, is defined as:$${lambda }_{i},, (t)=underset{mathit{dt}to 0}{{mathrm{lim}}}frac{{mathrm{Pr}}({a}_{i}^{evacuate}=1;,, tt)}{dt}$$To model the time to evacuation, We used a Cox proportional hazards model with time-varying covariates for the number of signals, incorporating an individual actor-specific random effect55:$${lambda }_{i} ,, left{t|{{P}_{i}, X}_{i}(t), {G}_{i},{Y}_{i}(t)right}={lambda }_{0}(t)mathrm{exp}left{{{beta }_{P}^{{prime}}{P}_{i}+beta }_{X}^{{prime}}{X}_{i}(t)+{beta }_{G}^{{prime}}{G}_{i}+{beta }_{Y}^{{prime}}{Y}_{i}(t)+{gamma }_{i}right}$$where λ0(t) is a baseline hazard at time t.In the model, the hazard λi(t) depends on the covariates Pi, Xi(t), Gi, and Yi(t). The covariate Pi is the vector of subject i’s experiences before the sessions; that is, the number of rounds, the number of disasters that she has experienced, and the number of disasters that she has been struck by.The covariate Xi(t) is the vector of the number of safe signals ({x}_{i}^{safe} (t)), the number of danger signals ({x}_{i}^{danger} (t)). When subject j is a neighbor of subject i (i.e., (jin {N}_{i})), subject i is exposed to the signal of subject j, so that:$${x}_{i}^{safe},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, safe}(t)$$$${x}_{i}^{danger},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, danger}(t)$$The covariate Gi is the vector of the properties of the network in which subject i is embedded, out-degree, in-degree, and a network plasticity indicator. The covariate Yi(t) is the vector of the number of the subject i’s actions of sending safe and danger signals before time t. The coefficients β are the fixed effects and γi is the random effect for individual i. We assumed that waiting times to evacuation in different actors are conditionally independent given the sequence of signals they receive from network neighbors. This model shows how the hazard of an individual’s evacuation depends on the signaling actions of others, their network position, and experience (Supplementary Table 4). We applied the same model to the first signaling behavior. More

  • in

    Cooperation by necessity: condition- and density-dependent reproductive tactics of female house mice

    Gross, M. R. Alternative reproductive strategies and tactics: diversity within sexes. Trend. Ecol. Evol. 11, 92–98 (1996).CAS 

    Google Scholar 
    Oliveira, R. F., Taborsky, M., and Brockmann, H. J. Alternative reproductive tactics: An integrative approach. (Cambridge University Press, 2008).Schradin, C. & Lindholm, A. K. Relative fitness of alternative male reproductive tactics in a mammal varies between years. J. Anim. Ecol. 80, 908–917 (2011).PubMed 

    Google Scholar 
    Riehl, C. & Strong, M. J. Social parasitism as an alternative reproductive tactic in a cooperatively breeding cuckoo. Nature 567, 96–99 (2019).CAS 
    PubMed 

    Google Scholar 
    Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Natural. 193, 106–124 (2019).
    Google Scholar 
    Eggert, A.-K. & Müller, J. K. Joint breeding in female burying beetles. Behav. Ecol. Sociobiol. 31, 237–242 (1992).
    Google Scholar 
    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the seychelles warbler. Nature 358, 493–495 (1992).
    Google Scholar 
    Hayes, D. L. et al. Fitness consequences of group living in the degu Octodon degus, a plural breeder rodent with communal care. Anim. Behav. 78, 131–139 (2009).
    Google Scholar 
    Scott, M. P. & Williams, S. M. Comparative reproductive success of communally breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA. Proc. Natl. Acad. Sci. USA 90, 2242–2245 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chantrey, D. F. & Jenkins, B. Sensory processes in the discrimination of pups by female mice (Mus musculus). Anim. Behav.30, 881–885 (1982).
    Google Scholar 
    König, B. Kin recognition and maternal care under restricted feeding in house mice (Mus domesticus). Ethology 82, 328–343 (1989).
    Google Scholar 
    Ferrari, M. & Lindholm, A. K. The risk of exploitation during communal nursing in house mice, Mus musculus domesticus. Anim. Behav. 110, 133–143 (2015).
    Google Scholar 
    Sayler, A. & Salmon, M. An ethological analysis of communal nursing by the house mouse (Mus musculus). Behaviour 40, 62–85 (1971).
    Google Scholar 
    Manning, C. J., Dewsbury, D. A., Wakeland, E. K. & Potts, W. K. Communal nesting and communal nursing in house mice, Mus musculus domesticus. Anim. Behav. 50, 741–751 (1995).
    Google Scholar 
    König, B. Non-offspring nursing in mammals: General implications from a case study on house mice. In Peter M. Kappeler & Carel P. van Schaik, editor, Cooperation in Primates and Humans. Mechanisms and Evolution, pages 191–205. Springer Verlag, Berlin Heidelberg, 2006.Mumme, R. L., Koenig, W. D., & Pitelka, F. A. Costs and benefits of joint nesting in the Acorn Woodpecker. Am. Natural. 131, 654–677 (1988).Packer, C., Lewis, S. & Pusey, A. A comparative analysis of non-offspring nursing. Anim. Behav. 43, 265–281 (1992).
    Google Scholar 
    Bourke, A. F. & Heinze, J. The ecology of communal breeding: the case of multiple-queen leptothoracine ants. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 345, 359–372 (1994).
    Google Scholar 
    Marin, G. & Pilastro, A. Communally breeding dormice, glis glis, are close kin. Anim. Behav. 47, 1485–1487 (1994).
    Google Scholar 
    Hayes, D. L. To nest communally or not to nest communally: a review of rodent communal nesting and nursing. Anim. Behav.59, 677–688 (2000).CAS 
    PubMed 

    Google Scholar 
    König, B. Components of lifetime reproductive success in communally and solitarily nursing house mice: A laboratory study. Behav. Ecol. Sociobiol. 34, 275–283 (1994).
    Google Scholar 
    Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1476–1473 (2014).
    Google Scholar 
    Palanza, P., Della Seta, D., Ferrari, P. F. & Parmigiani, S. Female competition in wild house mice depends upon timing of female/male settlement and kinship between females. Anim. Behav. 69, 1259–1271 (2005).
    Google Scholar 
    Schmidt, J. et al. Reproductive asynchrony and infanticide in house mice breeding communally. Anim. Behav. 101, 201–211 (2015).
    Google Scholar 
    Dobson, F. S., Jacquot, C. & Baudoin, C. An experimental test of kin association in the house mouse. Can. J. Zool. 78, 1806–1812 (2000).
    Google Scholar 
    König, B. et al. A system for automatic recording of social behavior in a free-living wild house mouse population. Anim. Biotelemetry 3, 1–15 (2015).
    Google Scholar 
    Mathot, K. J. & Giraldeau, L.-A. Within-group relatedness can lead to higher levels of exploitation: a model and empirical test. Behav. Ecol. 21, 843–850 (2010).
    Google Scholar 
    Harrison, N., Lindholm, A. K., Dobay, A., Halloran, O., Manser, A., & König, B. Female nursing partner choice in a population of wild house mice (Musmusculusdomesticus). Front. Zool. 15, 4 (2018).König, B., Riester, J. & Markl, H. Maternal care in house mice (Mus musculus): II. The energy cost of lactation as a function of litter size. J. Zool. 216, 195–210 (1988).
    Google Scholar 
    Hurst, J. L. Behavioural variation in wild house mice mus domesticus rutty: A quantitative assessment of female social organization. Anim. Behav. 35, 1846–1857 (1987).Weidt, A., Lindholm, A. K. & König, B. Communal nursing in wild house mice is not a by-product of group living: Females choose. Naturwissenschaften 101, 73–76 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lidicker, W. Z. Social behaviour and density regulation in house mice living in large enclosures. J. Anim. Ecol. 45, 677–697 (1976).
    Google Scholar 
    Southwick, C. H. The population dynamics of confined house mice supplied with unlimited food. Ecology 36, 212–225 (1955).
    Google Scholar 
    König, B. & Lindholm, A. K. The complex social environment of female house mice (Mus domesticus). In Macholàn, M., Baird, S. J. E., Mundlinger, P., and Piàlek, J., editors, Evolution of the House Mouse, pages 114–134. Cambridge University Press, Cambridge, UK, 2012.Hestbeck, J. B., Nichols, J. D. & Malecki, R. A. Estimates of movement and site fidelity using mark-resight data of wintering canada geese. Ecology 72, 523–533 (1991).
    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).
    Google Scholar 
    Lebreton, J., Nichols, J. D., Barker, R. J., Pradel, R., & Spendelow, J. A. Chapter 3 modeling individual animal histories with multistate capture–recapture models. In Caswell, H., editor, Advances in Ecological Research, volume 41, pages 87–173. Academic Press, 2009.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation. Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates, 2001.Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B: Biol. Sci. 285, 20181333 (2018).
    Google Scholar 
    Oli, M. K., Slade, N. A. & Dobson, F. S. Effect of density reduction on Uinta ground squirrels: analysis of life table response experiments. Ecology 82, 1921–1929 (2001).
    Google Scholar 
    Descamps, S., Boutin, S., Berteaux, D., McAdam, A. G. & Gaillard, J.-M. Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. J. Anim. Ecol. 77, 305–314 (2008).PubMed 

    Google Scholar 
    Gaines, M. S. & McClenaghan Jr, L. R. Dispersal in small mammals. Ann. Rev. Ecol. Sys. 11, 163–196 (1980).
    Google Scholar 
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
    Google Scholar 
    Wolff, J. O. Population regulation in mammals: an evolutionary perspective. J. Anim. Ecol. 66, 1–13 (1997).
    Google Scholar 
    Pocock, M. J. O., Hauffe, H. C. & Searle, J. B. Dispersal in house mice. Biol. J. Linnean Soc. 84, 565–583 (2005).
    Google Scholar 
    Clutton-Brock, T., Major, M., Albon, S. & Guinness, F. Early development and population dynamics in red deer. i. density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).
    Google Scholar 
    Gerlach, G. & Bartmann, S. Reproductive skew, costs, and benefits of cooperative breeding in female wood mice (Apodemus sylvaticus). Behav. Ecol. 13, 408–418 (2002).
    Google Scholar 
    Festa-Bianchet, M., Gaillard, J. & Jorgenson, J. T. Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. Am. Natural. 152, 367–379 (1998).CAS 

    Google Scholar 
    Tavecchia, G. et al. Predictors of reproductive cost in female soay sheep. J. Anim. Ecol. 74, 201–213 (2005).
    Google Scholar 
    McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215 (1996).CAS 
    PubMed 

    Google Scholar 
    Taborsky, M., Oliveira, R. F., & Brockmann, H. J. The evolution of alternative reproductive tactics: concepts and questions. In Oliveira, R. F., Brockmann, H. J., and Taborsky, M., editors, Alternative Reproductive Tactics: An Integrative Approach. Cambridge University Press, Cambridge, UK, 2008.Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol 51, 3–47 (1976).CAS 
    PubMed 

    Google Scholar 
    McShea, W. J. & Madison, D. M. Communal nesting between reproductively active females in a spring population of Microtus pennsylvanicus. Can. J. Zool. 62, 344–346 (1984).
    Google Scholar 
    Hill, D. L., Pillay, N. & Schradin, C. Alternative reproductive tactics in female striped mice: heavier females are more likely to breed solitarily than communally. J. Anim. Ecol. 84, 1497–1508 (2015).PubMed 

    Google Scholar 
    Krebs, C. J., Chitty, D., Singleton, G. & Boonstra, R. Can changes in social behaviour help to explain house mouse plagues in Australia? Oikos 73, 429–434 (1995).
    Google Scholar 
    Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E. & Blake, J. A. The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res. 36, D724–D728 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Teschke, M., Mukabayire, O., Wiehe, T. & Tautz, D. Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics 180, 1537–1545 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 

    Google Scholar 
    Arnason, A. N. Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res Popul. Ecol. 13, 97–113 (1972).
    Google Scholar 
    Arnason, A. N. The estimation of population size, migration rates and survival in a stratified population. Res. Popul. Ecol. 15, 1–8 (1973).
    Google Scholar 
    White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Laake, J. RMark: An r interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., (Seattle, WA, 2013).Burnham, K. P. and Anderson, D. R. Model Selection and Multimodel Inference. (Springer, 1998).Stubben, C. J. and Milligan, B. G. Estimating and analyzing demographic models using the popbio package in r. J. Stat. Soft. 22, 1–23 (2007).Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2015. More

  • in

    Water security determines social attitudes about dams and reservoirs in South Europe

    Karr, J.R., & Chu, E.W. Introduction: sustaining living rivers. In Assessing the Ecological Integrity of Running Waters, Developments in Hydrobiology, vol 149 (eds. Jungwirth, M., Muhar, S., & S. Schmutz, S.) 1–14. (Springer: Dordrecht, 2000).Lu, S., Dai, W., Tang, Y. & Guo, M. A review of the impact of hydropower reservoirs on global climate change. Sci. Total Environ. 711, 134996 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, C., Ahn, C. R., An, X. & Lee, S. H. Life-cycle assessment of concrete dam construction: comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manage. 20139(12), A4013009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000752 (2013).Article 

    Google Scholar 
    Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).ADS 
    Article 

    Google Scholar 
    Grigg, N. S. Global water infrastructure: state of the art review. Int. J. Water Resour. Dev. 35(2), 181–205. https://doi.org/10.1080/07900627.2017.1401919 (2019).Article 

    Google Scholar 
    European Environment Agency. European waters: Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (Publications Office of the European Union (2018).Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10(1), 015001 (2015).ADS 
    Article 

    Google Scholar 
    Kim, J. & An, K. G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 7(11), 6378–6403. https://doi.org/10.3390/w7116378 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McCartney, M. Living with dams: managing the environmental impacts. Water Policy 11(S1), 121–139 (2009).MathSciNet 
    Article 

    Google Scholar 
    Van Cappellen, P. & Maavara, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106–111 (2016).Article 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: a symbol of the effects of global change. Fish Fish 19(5), 903–930 (2018).Article 

    Google Scholar 
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Hermoso, V., Clavero, M., Blanco-Garrido, F. & Prenda, J. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol. Appl. 21(1), 175–188 (2011).Article 

    Google Scholar 
    Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 23(1), 1–22 (2013).Article 

    Google Scholar 
    Sánchez-Pérez, A. et al. Seasonal use of fish passes in a modified Mediterranean river: first insights of the LIFE+ Segura-Riverlink. FiSHMED 008, 3. https://doi.org/10.29094/FiSHMED.2016.008 (2016).Article 

    Google Scholar 
    Schiermeir, Q. Dam removal restores rivers. Nature 557, 290–291. https://doi.org/10.1038/d41586-018-05182-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Benjankar, R. et al. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manage. 213, 126–134. https://doi.org/10.1016/j.jenvman.2018.02.066 (2018).Article 

    Google Scholar 
    Tupiño Salinas, C. E., Pinto Vidal de Oliveira, V., Brito, L., Ferreira, A. V. & de Araújo, J. C. Social impacts of a large-dam construction: the case of Castanhão, Brazil. Water Int. 44(8), 871–885. https://doi.org/10.1080/02508060.2019.1677303 (2019).Article 

    Google Scholar 
    Opperman, J. J. et al. Valuing Rivers: How the diverse benefits of healthy rivers underpin economies. WWF Global Science (2018).Kellner, E. Social acceptance of a multi-purpose reservoir in a recently deglaciated landscape in the Swiss Alps. Sustainability 11, 3819. https://doi.org/10.3390/su11143819 (2019).Article 

    Google Scholar 
    Boyé, H., & de Vivo, M. The environmental and social acceptability of dams. Field Actions Sci. Rep. http://journals.openedition.org/factsreports/4055 (2016).Wiejaczka, Ł, Piróg, D. & Fidelus-Orzechowska, J. Cost-benefit analysis of dam projects: the perspectives of resettled and non-resettled communities. Water Resour. Manag. 34(1), 343–357 (2020).Article 

    Google Scholar 
    Rodeles, A. A., Galicia, D. & Miranda, R. Recommendations for monitoring freshwater fishes in river restoration plans: a wasted opportunity for assessing impact. Aquat. Conserv. 27(4), 880–885. https://doi.org/10.1002/aqc.2753 (2017).Article 

    Google Scholar 
    Birnie-Gauvin, K., Tummers, J. S., Lucas, M. C. & Aarestrup, K. Adaptive management in the context of barriers in European freshwater ecosystems. J. Environ. Manag. 204, 436–441. https://doi.org/10.1016/j.jenvman.2017.09.023 (2017).Article 

    Google Scholar 
    Yousefi-Sahzabi, A. et al. Turkish challenges for low-carbon society: current status, government policies and social acceptance. Renew. Sustain. Energy Rev. 68, 596–608. https://doi.org/10.1016/j.rser.2016.09.090 (2017).Article 

    Google Scholar 
    Jiang, H., Lin, P. & Qiang, M. Public-opinion sentiment analysis for large hydro projects. J. Construct. Eng. Manage. 142(2), 05015013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039 (2016).Article 

    Google Scholar 
    Schulz, C., Martin-Ortega, J. & Glenk, K. Understanding public views on a dam construction boom: the role of values. Water Resour. Manage. 33, 4687–4700. https://doi.org/10.1007/s11269-019-02383-9 (2019).Article 

    Google Scholar 
    Kirchherr, J., Pohlner, H. & Charles, K. J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 60, 115–125. https://doi.org/10.1016/j.eiar.2016.02.007 (2016).Article 

    Google Scholar 
    Piróg, D., Fidelus-Orzechowska, J., Wiejaczka, L. & Łajczak, A. Hierarchy of factors affecting the social perception of dam reservoirs. Environ. Impact Assess. Rev. 79, 106301. https://doi.org/10.1016/j.eiar.2019.106301 (2019).Article 

    Google Scholar 
    Arboleya, E., Fernandez, S., Clusa, L., Dopico, E. & Garcia-Vazquez, E. River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University students. Front. Environ. Sci. 9, 643820. https://doi.org/10.3389/fenvs.2021.643820 (2021).Article 

    Google Scholar 
    Gilg, A., & Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 57(3), 400–414. doi:https://doi.org/10.1016/j.ecolecon.2005.04.010 (2006)Schapper, A., Unrau, C., & Killoh, S. Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustain. Develop. 28, 413–423. doi:https://doi.org/10.1002/sd.1995 (2020)Flaminio, S., Piégay, H., & Le Lay, Y-F. To dam or not to dam in an age of anthropocene: insights from a genealogy of media discourses. Anthropocene. 36, 100312, doi:https://doi.org/10.1016/j.ancene.2021.100312 (2021)Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: If you remove it, what’s to come?. Bioscience 69(1), 26–39. https://doi.org/10.1093/biosci/biy152 (2019).Article 

    Google Scholar 
    Heberlein, T. A. Navigating environmental attitudes. Conserv. Biol. 26(4), 583–585. https://doi.org/10.1111/j.1523-1739.2012.01892.x (2012).Article 

    Google Scholar 
    Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change. 3, 399–404. https://doi.org/10.1038/NCLIMATE1720 (2013).ADS 
    Article 

    Google Scholar 
    Schuldt, J. P., Roh, S. & Schwarz, N. Questionnaire design effects in climate change surveys: Implications for the partisan divide. Ann. Am. Acad. Pol. Soc. Sci. 658(1), 67–85. https://doi.org/10.1177/0002716214555066 (2015).Article 

    Google Scholar 
    Bowden, V., Nyberg, D. & Wright, C. Planning for the past: local temporality and the construction of denial in climate change adaptation. Glob. Environ. Change 57, 101939. https://doi.org/10.1016/j.gloenvcha.2019.101939 (2019).Article 

    Google Scholar 
    Venus, T. E., Hinzmann, M., Bakken, T. H., Gerdes, H., Nunes Godinho, F., Hansen, B., Pinheiro, A., & Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy. 140, 111422. doi:https://doi.org/10.1016/j.enpol.2020.111422 (2020)Schober, M. F. The future of face-to-face interviewing. Qual. Assur. Educ. 26(2), 290–302. https://doi.org/10.1108/QAE-06-2017-0033 (2018).MathSciNet 
    Article 

    Google Scholar 
    Couper, M. P. The future of modes of data collection. Public Opin. Q. 75, 889–908. https://doi.org/10.1093/poq/nfr046 (2011).Article 

    Google Scholar 
    Zhang, X., Kuchinke, L., Woud, M. L., Velten, J. & Margraf, J. Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Comput. Hum. Behav. 71, 172–180. https://doi.org/10.1016/j.chb.2017.02.006 (2017).Article 

    Google Scholar 
    Garcia de Leaniz, C., Berkhuysen, A., & Belletti, B. Beware small dams, they can do damage, too. Nature 570, 164–164; doi:https://doi.org/10.1038/d41586-019-01826-y (2019).Belletti, B., et al. Small isn’t beautiful: the impact of small barriers on longitudinal connectivity of European rivers. Geophys. Res. Abst. 20: EGU2018-PREVIEW (2018).Hophmayer-Tokich, S. & Krozer, Y. Public participation in rural area water management: experiences from the North Sea countries in Europe. Water Int. 33(2), 243–257. https://doi.org/10.1080/02508060802027604 (2008).Article 

    Google Scholar 
    San-Martín, E., Larraz, B. & Gallego, M. S. When the river does not naturally flow: a case study of unsustainable management in the Tagus River (Spain). Water Int. 45(3), 189–221. https://doi.org/10.1080/02508060.2020.1753395 (2020).Article 

    Google Scholar 
    Dunlap, R. E. Environmental concern. The Wiley‐Blackwell Encyclopedia of Globalization. (Wiley, Amsterdam, 2012).European Commission Ethics for researchers. Facilitating Research Excellence in FP7. https://doi.org/10.2777/7491 (Publications Office of the European Union, 2013).Jenner, B. M. & Myers, K. C. Intimacy, rapport, and exceptional disclosure: a comparison of in-person and mediated interview contexts. Int. J. Soc. Res. Methodol. 22(2), 165–177. https://doi.org/10.1080/13645579.2018.1512694 (2019).Article 

    Google Scholar 
    Given, L. M. 100 questions (and answers) about qualitative research (Sage, 2015).
    Google Scholar 
    Saris, W. E. & Gallhofer, I. N. Design, evaluation, and analysis of questionnaires for survey research (Wiley, 2014).Book 

    Google Scholar 
    Avella, J. R. Delphi panels: research design, procedures, advantages, and challenges. IJDS 11(1), 305–321. https://doi.org/10.28945/3561 (2016).Article 

    Google Scholar 
    Vandenplas, C. & Loosveldt, G. Modeling the weekly data collection efficiency of face-to-face surveys: six rounds of the European social survey. J. Surv. Stat. Methodol. 5(2), 212–232. https://doi.org/10.1093/jssam/smw034 (2017).Article 

    Google Scholar 
    Barbero-García, M. I., Vila-Abad, E. & Holgado-Tello, F. P. Tests adaptation in cross-cultural comparative studies. Acción Psicol. 5, 7–16. https://doi.org/10.5944/ap.5.2.454 (2008).Article 

    Google Scholar 
    Flick, U. Triangulation in data collection. The SAGE Handbook of Qualitative Data Collection. (Sage, London, 2018).Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological triangulation. Synthese 196(8), 3067–3081. https://doi.org/10.1007/s11229-016-1294-7 (2019).MathSciNet 
    Article 

    Google Scholar 
    DeVellis, R. F. Scale development: Theory and applications (Sage, 2012).
    Google Scholar 
    Hammer, Ø., Harper, D.A.T., & Ryan, P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001). More

  • in

    Direct effects of elevated dissolved CO2 can alter the life history of freshwater zooplankton

    Animal culture and mediumFive different clonal lineages of the water flea Daphnia magna were sampled from two ponds on agricultural land in Belgium (Vleteren: 50°55′06.7″ N, 2°43′27.0″ E and De Haan 51°13′53.8″ N, 3°01′49.2″). They were cultured separately in 210 ml glass jars under optimized laboratory conditions (20 ± 1 °C, 14:10 h light:dark cycle). Seed shrimp and rotifer resting eggs were obtained from a commercial supplier (MicroBioTests Inc., H. incongruens strain MBT/1999/10, product code TB36; B. calyciflorus, product code TK21, Belgium) and represent laboratory cultured, single clonal lineages. More details on animal culture are reported in the online supplementary methods (Appendix 3).Natural pond water was used as medium both in animal cultures and the experiment. It was extracted from a Belgian region (50°59′00.92″ N, 5°19′55.85″ E, Zonhoven) with soft, poorly buffered water (Alkalinity 3–8°d; pH 6.5–8.5) which is likely to be susceptible to acidification under elevated pCO2. More information on medium and mineral composition is reported in the online supplementary information (Appendix 3; Table S3, Appendix 1).Experimental set-upOrganisms were exposed to three pCO2 treatments, an ambient control (C; 1,520 ppm ± 702 SD), an elevated (T1; 25,609 ppm ± 4,541 SD) and an extreme pCO2 level (T2; 83,201 ppm ± 15,533 SD). The control pCO2 level represents the current global mean that is measured in lentic freshwaters considering most ponds and lakes are already supersaturated10,12. The T1 level is currently only observed in more extreme cases11. However, it reflects a pCO2 level that could be encountered more commonly in the field in the future. The T2 treatment represents an extreme test of the tolerance limits of extant species. These treatments are a necessary simplification of reality since pCO2 can experience strong fluctuations in ponds and lakes. An overview of freshwater pCO2 concentrations from literature can be found in Table S1 (Appendix 1).The elevated pCO2 concentrations were manipulated in the water by injecting pure CO2 (99.998% pure, ALPHAGAZ CO2 SFC * B50-N48, Airliquide, Belgium) from gas cylinders into the water (cf.49) at a constant flowrate, using a high-pressure regulator (HBS 200–10.2,5; AirLiquide, Belgium) and a flow controller (Sho-rate model 1350G, Brooks Instruments, USA). In the control treatment, ambient air was supplied at a similar rate as the CO2 to ensure equal perturbation levels across all containers. Water of all experimental containers (including control) were also injected with ambient air to keep the water oxygenated. A relatively constant pCO2 was ensured by continuously monitoring pH and kept between a range of ~ 20,000–30,000 ppm (pH 6.9–6.7) for T1 and ~ 70,000–120,000 ppm (pH 6.4–6.1) for T2 (Figure S2, Appendix 2).Each treatment included 13 replicate 210 mL glass jars per species, resulting in a total of 117 experimental units. Per replicate, one mature water flea (8–11 days old) was inoculated in a jar containing aerated pond water. The five clonal lineages were distributed evenly over the experimental conditions so that each condition had the same number of replicates per clone. Seed shrimp replicates each contained one newly hatched ( More

  • in

    Trajectory to local extinction of an isolated dugong population near Okinawa Island, Japan

    Deterministic logistic modelThe following population dynamics model was applied to reconstruct the initial dugong population size in 1894 from fishery statistics between 1894 and 1914:$$N_{t + 1} = N_{t} left( {1 , + r{-}r , N_{t} /K} right) – C_{t} ,$$where r is the intrinsic rate of population increase, Nt is the population size in year t, K is the carrying capacity, and Ct is the number of individuals removed from the waters near the Ryukyu Islands in year t. The carrying capacity (K) in 1893 was sufficient to sustain the initial population of dugongs at that time (N1894). The intrinsic rate of population increase (r) was given between 1 and 5% within a range of natural one.Approximate Bayesian calculationWe conducted approximate Bayesian calculation (ABC)32 to estimate the number of individuals in 1979 based on bycatch data between 1979 and 2019, and the constraints of the numbers of individuals were 11 in 1997, three in 2007, and almost extinct in 2019. We denoted fecundity as f, the survival rate until 1 year old as s0, the annual survival rate after 1 year old as s, the age at maturity as am, and the physiological longevity as A. We assumed that the sex ratio at birth was 1:1 on average; the age at maturity am was eight years of age33, and the physiological longevity A was 73 years6. We ignored environmental stochasticity because no mass deaths caused by infectious diseases or changes in survival or mortality rates due to environmental fluctuations have not been recorded during this period. We also ignored density effects because the carrying capacity of the location was sufficiently greater than the initial population size, and our goal was to investigate the possibility of population recovery after a decrease in population using a population dynamics model and estimate the natural growth rate during this period. The detailed extinction risk depends on age structure.According to the life history parameters, except the physiological longevity compiled by (ref.33), the annual survival probability of an a year-old individual is s for a = 1, 2, …, 72; s0 for a = 0, and 0 for a = 73; the reproductive probability of an adult female  > 8 years old is 2f. As the number of years for a population to become extinct or recover depends on age composition, age-specific survival, and reproductive rates, we obtain the population growth rate by the maximum eigenvalue of the following Leslie matrix, L = {Lij} (i = 1,…73, j = 1,…,73) as:$$L_{i1} = s_{0} f/2quad {text{for}}quad i ge a_{m} ,L_{i+ 1,i} = squad {text{for}}quad i = 1, ldots ,72,quad {text{and}}quad L_{ij} = 0,{text{otherwise}}{.}$$We used the population growth rate λ, defined by the maximum eigenvalue of L, as an indicator of the population growth rate.We assumed that the sex of each individual in 1979 was randomly sampled by the 1:1 sex ratio, and its age was randomly sampled by the stable age structure that is given by the eigenvector of the Leslie matrix with the maximum eigenvalue. We assumed that the number of individuals at age 1 year in year t + 1, denoted by N1,t+1, is determined by the binomial distribution:$$Prleft[ {N_{1,t + 1} = x} right] = left( {begin{array}{*{20}c} {N_{f} } \ x \ end{array} } right)left( {s_{0} f} right)^{x} left[ {1 – left( {s_{0} f} right)} right]^{{N_{f} – x}} ,$$where Nf represents the number of adult females in year t. We assumed that no twins were born. We assumed that the probability that an individual with age x survived in the next year is s if x = 1 or s0 if x = 0. We also assumed that Ct individuals who died by bycatch were randomly chosen from any sex and age because the age of individuals caught by bycatch is rarely known. We do not know the sex of some individuals.We assumed the following prior distributions for N1997, f, and s: N1979 (in) U(11, 80), f (in) U(1/14, 1/6) if at least one adult male existed in the population, s0 (in) U(0.1, 0.85); and s (in) U(0.8, 0.97), where U(a, b) is the uniform random variable between a and b. These probabilities were constant for each simulation trial from 1997 to 2019. We selected the set of parameters with the population growth rate (λ) obtained when the maximum eigenvalue of the Leslie matrix was between 0.96 and 1.01.We rejected trials that did not satisfy the following summary statistics: N1997 ≥ 11 (intensive survey in 1997), Nt ≥ 3 during 2004–2017 (monitoring), and N2019 ≤ 1 (“local extinction”). We obtained the prior distributions of N1997, f, s0, s, and N2004, and of the  > 130,000 trials in the prior distribution with natural population growth rates λ of 96.1–98.8%, 99.3% were rejected. For 95% of the 1000 adopted trials, N1979 ranged from 14 to 58. If λ  > 98%, N1997 was ≤ 45 for the adopted trials (Extended Data Fig. 7. Even if all the stranding deaths were due to anthropogenic factors, such as the release of dugongs after bycatch or boat strike, the range of N1997 changed to  98%, with only a slight upward shift, but positive natural growth rate (or λ  > 1) was again very unlikely (0.3%) among the adopted trials.Population viability analysis to assess the impact of bycatch on the extinction riskWe re-evaluated the extinction risk with and without bycatch using the 1000 parameter sets of N1979, f, s0, and s that satisfied the summary statistics in the ABC and stochastic individual-based model, beginning from N1979 for the corresponding parameters. For each parameter set, 100 trials were conducted for each scenario to compare the extinction risks. More

  • in

    Trade-off between tree planting and wetland conservation in China

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacDicken, K. G. Global forest resources assessment 2015: what, why and how? For. Ecol. Manag. 352, 3–8 (2015).
    Google Scholar 
    Li, M.-M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).ADS 

    Google Scholar 
    Zhang, P. et al. China’s forest policy for the 21st century. Science 288, 2135–2136 (2000).CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).ADS 

    Google Scholar 
    Xu, J., Yin, R., Li, Z. & Liu, C. China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 57, 595–607 (2006).
    Google Scholar 
    Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).ADS 

    Google Scholar 
    Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).ADS 

    Google Scholar 
    Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).ADS 

    Google Scholar 
    Cao, S., Zhang, J., Chen, L. & Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 183, 843–849 (2016).
    Google Scholar 
    Liu, Y. et al. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 11, 094010 (2016).ADS 

    Google Scholar 
    Yao, Y. et al. The effect of afforestation on soil moisture content in Northeastern China. PLoS ONE 11, e0160776 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    An, W. et al. Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China. Ecol. Eng. 107, 144–151 (2017).
    Google Scholar 
    Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Global Wetland Outlook: State of the World’s Wetlands and their Services to People (Ramsar Convention Secretariat, 2018).Baumgartner, R. J. Sustainable development goals and the forest sector—a complex relationship. Forests 10, 152 (2019).
    Google Scholar 
    15-year Comprehensive Plan for Ecological System Protection and Recovery Work (National Development and Reform Commission, 2020).Prigent, C., Jimenez, C. & Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. Atmos. 125, e2019JD030711 (2020).ADS 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cy. 19, GB1015 (2005).ADS 

    Google Scholar 
    Tootchi, A. Development of a global wetland map and application to describe hillslope hydrology in the ORCHIDEE land surface model. Sorbonne Université, https://www.metis.upmc.fr/~ducharne/documents/These_Tootchi_revised_11Sep2019.pdf (2019).Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. B. 24, 43–69 (1979).
    Google Scholar 
    Stocker, B. D., Spahni, R. & Joos, F. DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 7, 3089–3110 (2014).ADS 

    Google Scholar 
    Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 11, 45–51 (2021).ADS 

    Google Scholar 
    Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (Experiment 1). Data Integration and Analysis System (DIAS). (2017).Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 2097–2120 (2020).ADS 

    Google Scholar 
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 6, 810–813 (2016).ADS 

    Google Scholar 
    Zhu, Q. et al. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci. Rep. 6, 38020 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mao, D. et al. Remote observations in China’s Ramsar Sites: wetland dynamics, anthropogenic threats, and implications for sustainable development goals. J. Remote Sens. 2021, 9849343 (2021).ADS 

    Google Scholar 
    Budyko, M. I. Climate and Life (Academic Press, 1974).Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).ADS 

    Google Scholar 
    Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016).ADS 

    Google Scholar 
    Ringeval, B. et al. Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data. Geosci. Model Dev. 5, 941 (2012).ADS 

    Google Scholar 
    Tootchi, A., Jost, A. & Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 11, 189–220 (2019).ADS 

    Google Scholar 
    List of Protected Wetlands in China. http://www.zrbhq.cn/web/confirm.html (National Forestry and Grassland Administration, 2011).Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).ADS 

    Google Scholar 
    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levia, D. F. et al. Homogenization of the terrestrial water cycle. Nat. Geosci. 13, 656–658 (2020).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet sustainable development goal 15. Nat. Ecol. Evol. 5, 10–13 (2020).
    Google Scholar 
    Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).ADS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).ADS 
    CAS 

    Google Scholar 
    Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).ADS 

    Google Scholar 
    Teuling, A. J. & Hoek van Dijke, A. J. Forest age and water yield. Nature 578, E16–E18 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Doelman, J. C. et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).ADS 

    Google Scholar 
    Peng, S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 9, 84–87 (2019).ADS 

    Google Scholar 
    Brown, I. Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environ. Sci. Policy 107, 36–45 (2020).
    Google Scholar 
    The 2nd – 9th National Forest Resource Inventory Report (State Forestry Administration of the People’s Republic of China, 1973–2018).Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 20, 2019–2030 (2014).ADS 

    Google Scholar 
    Hou, X. Vegetation atlas of China. Chinese Academy of Science, the editorial board of vegetation map of China (2001).Xi, Y. et al. Contributions of climate change, CO2, land-use change, and human activities to changes in river flow across 10 Chinese Basins. J. Hydrometeorol. 19, 1899–1914 (2018).ADS 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).ADS 

    Google Scholar 
    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).ADS 

    Google Scholar 
    Herold, M., Van Groenestijn, A., Kooistra, L., Kalogirou, V. & Arino, O. Land cover CCI, product user guide version 2.0. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2015).Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).ADS 
    CAS 

    Google Scholar 
    Zhou, G. et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yang, H. et al. Changing retention properties of catchments and their influence on runoff under climate change. Environ. Res. Lett. 13, 094019 (2018).ADS 

    Google Scholar 
    Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M. & Woods, R. A. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53, 8475–8486 (2017).ADS 

    Google Scholar 
    Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guimberteau, M. et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci. Model Dev. 7, 1115–1136 (2014).ADS 

    Google Scholar 
    Traore, A. K. et al. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. J. Geophys. Res. Biogeosci. 119, 1554–1575 (2014).
    Google Scholar 
    de Rosnay, P. & Polcher, J. Impact of a physically based soil water flow and soil‐plant interaction representation for modeling large‐scale land surface processes. J. Geophys. Res. Atmos. 107, ACL 3-1–ACL 3-19 (2002).
    Google Scholar 
    Campoy, A. et al. Influence of soil bottom hydrological conditions on land surface fluxes and climate in a general circulation model. J. Geophys. Res. Atmos. 118, 10725–10739 (2013).ADS 

    Google Scholar 
    Guimberteau, M. et al. Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol. Earth Syst. Sci. 16, 11171–11232 (2012).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Sy. 12, e2019MS002010 (2020).ADS 

    Google Scholar 
    Fan, Y. et al. Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).ADS 

    Google Scholar 
    Rayner, P. J. et al. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Glob. Biogeochem. Cy. 19, GB2026 (2005).ADS 

    Google Scholar 
    Ducharne, A. Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrol. Earth Syst. Sci. 13, 2399–2412 (2009).ADS 

    Google Scholar 
    Niu, G., Yang, Z., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. 110, D21106 (2005).ADS 

    Google Scholar 
    Xi, Y. et al. Monthly inundated fraction over China for 2000-2015 from GIEMS-2 (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.5750962 (2021).Xi, Y. et al. Code of wetland simulation for trade-off between tree planting and wetland conservation in China (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4435082 (2021). More