Salt marshes create more extensive channel networks than mangroves
Fosberg, F. R. & Chapman, V. J. Mangrove Vegetation. Taxon 26, 113 (1977).Article
Google Scholar
Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 23, 431–446 (2012).Article
Google Scholar
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS
CAS
Article
Google Scholar
Duke, N. C. et al. A world without mangroves?. Science. 317, 41b–42b (2007).Article
Google Scholar
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article
Google Scholar
Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10170 (2020).Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231 (2000).ADS
Article
Google Scholar
Fagherazzi, S. et al. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35, 3891–3904 (1999).ADS
Article
Google Scholar
D’Alpaos, A., Lanzoni, S., Mudd, S. M. & Fagherazzi, S. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69, 311–324 (2006).ADS
Article
Google Scholar
D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).ADS
Article
Google Scholar
Schwarz, C. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11, 672–677 (2018).ADS
CAS
Article
Google Scholar
Mariotti, G. & Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out? Water Resour. Res. 53, 7029–7054 (2017).ADS
Article
Google Scholar
Stark, J., Van Oyen, T., Meire, P. & Temmerman, S. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol. Oceanogr. 60, 1371–1381 (2015).ADS
Article
Google Scholar
Montgomery, J., Bryan, K., Horstman, E. & Mullarney, J. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10, 1119 (2018).Article
Google Scholar
Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).ADS
Article
Google Scholar
van Maanen, B., Coco, G. & Bryan, K. R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150115 (2015).
Google Scholar
Bij de Vaate, I., Brückner, M. Z. M., Kleinhans, M. G. & Schwarz, C. On the Impact of Salt Marsh Pioneer Species-Assemblages on the Emergence of Intertidal Channel Networks. Water Resour. Res. 56, (2020).Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).Article
Google Scholar
Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).ADS
Article
Google Scholar
Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, (2017).Spalding, M. World Atlas of Mangroves. World Atlas of Mangroves https://doi.org/10.4324/9781849776608 (2010).Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. in. Mar. Geol. 208, 265–280 (2004).ADS
Article
Google Scholar
Proisy, C. et al. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).ADS
Article
Google Scholar
Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).ADS
Article
Google Scholar
Tomlinson, P. B. The botany of mangroves. Bot. Mangroves https://doi.org/10.2307/2996392 (1986).Article
Google Scholar
Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article
Google Scholar
Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landf. 40, 1672–1687 (2015).ADS
Article
Google Scholar
Nardin, W. et al. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surf. Process. Landf. 41, 2024–2037 (2016).ADS
Article
Google Scholar
Proffitt, C. E., Travis, S. E. & Edwards, K. R. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecol. Appl. 13, 180–192 (2003).Article
Google Scholar
van Wesenbeeck, B. K. et al. Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes. Ecosystems 11, 1133–1141 (2008).Article
Google Scholar
Ranwell, D. S. Spartina salt marshes in southern England 3. Rates of establishment, succession and nutrient supply at Bridgewater Bay, Somerset. J. Ecol. 52, 95–105 (1964).Article
Google Scholar
van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).Article
Google Scholar
Taylor, C. M. & Hastings, A. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J. Appl. Ecol. 41, 1049–1057 (2004).Article
Google Scholar
Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, 1–13 (2011).Article
Google Scholar
Mobberley, D. G. Taxonomy and distribution of the genus Spartina. (Iowa State University, 1953).Gourgue, O. et al. A Convolution Method to Assess Subgrid-Scale Interactions Between Flow and Patchy Vegetation in Biogeomorphic Models. J. Adv. Model. Earth Syst. 127, 1–25 (2021).Zong, L. & Nepf, H. Spatial distribution of deposition within a patch of vegetation. Water Resour. Res. 47, (2011).Suyadi, Gao, J., Lundquist, C. J. & Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 215, 1–10 (2018).ADS
Article
Google Scholar
Best, S. N. et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 109, 152–166 (2018).Article
Google Scholar
Chen, Y., Li, Y., Cai, T., Thompson, C. & Li, Y. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surf. Process. Landf. 41, 1967–1979 (2016).ADS
Article
Google Scholar
Xie, D. et al. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures. Environ. Res. Lett. 15, 114033 (2020).ADS
Article
Google Scholar
Steel, T. J. & Pye, K. The development of salt marsh tidal creek networks: evidence from the UK. In Proceedings of the Canadian Coastal Conference 1, 267–280 (1997).Fagherazzi, S. & Sun, T. A stochastic model for the formation of channel networks in tidal marshes. Geophys. Res. Lett. 31, L21503 (2004).ADS
Article
Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. & Rinaldo, A. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110, F02001 (2005).ADS
Google Scholar
Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).ADS
Google Scholar
Liu, Z. et al. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Sci. Total Environ. 749, 141493 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hood, W. G. Applying tidal landform scaling to habitat restoration planning, design, and monitoring. Estuar. Coast. Shelf Sci. 244, 106060 (2020).Article
Google Scholar
Horstman, E., Dohmen-Janssen, C., Geomorphology, T. B.- & 2015, undefined. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling. ElsevierCoco, G. et al. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 346, 1–16 (2013).ADS
Article
Google Scholar
Geng, L., Gong, Z., Zhou, Z., Lanzoni, S. & D’Alpaos, A. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landf. 45, 237–250 (2020).ADS
Article
Google Scholar
Andutta, F. P., Wang, X. H., Li, L. & Williams, D. Hydrodynamics and Sediment Transport in a Macro-tidal Estuary: Darwin Harbour, Australia. in 111–129 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-7019-5_7Elmqvist, T. & Cox, P. A. The Evolution of Vivipary in Flowering Plants. Oikos 77, 3 (1996).Article
Google Scholar
Zhang, X., Leonardi, N., Donatelli, C. & Fagherazzi, S. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Resour. 125, 32–40 (2019).ADS
Article
Google Scholar
Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).ADS
CAS
Article
Google Scholar
Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. In Coastal Sediments ’07 1441–1454 (American Society of Civil Engineers, 2007). https://doi.org/10.1061/40926(239)111Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).ADS
Article
CAS
Google Scholar
Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).CAS
Article
Google Scholar
Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecol. Process 2, 1–16 (2013).Article
Google Scholar
Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993).ADS
Article
Google Scholar
Vandenbruwaene, W., Meire, P. & Temmerman, S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology (2012).Marani, M. et al. Patterns in tidal environments: salt-marsh channel networks and vegetation. in Geoscience and Remote Sensing Symposium. IEEE 5 3269–3271 (2003).Horstman, E. M., Karin R. B., and Julia C. M. “Drag variations, tidal asymmetry and tidal range changes in a mangrove creek system.” Earth Surf. Process. Landf. (2021).R. Core, Team. R: A language and environment for statistical computing. (2013).Lillesand, T. M. & Kiefer, R. W. Remote Sensing and Image Interpretation. John Willey & Sons. Inc, USA. (1994).Vandenbruwaene, W., Bouma, T. J., Meire, P. & Temmerman, S. Bio-geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landforms 38, 122–132 (2013).ADS
Article
Google Scholar
Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).ADS
Article
Google Scholar
Braat, L., Leuven, J. R. F. W., Lokhorst, I. R. & Kleinhans, M. G. Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments. Earth Surf. Process. Landf. 44, 417–432 (2019).ADS
Article
Google Scholar
Kleinhans, M. G. et al. Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surf. Dyn. 5, 731–756 (2017).ADS
Article
Google Scholar
Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 97, 1–43 (2009).ADS
Article
Google Scholar
Kleinhans, M. G., Leuven, J. R. F. W., Braat, L. & Baar, A. Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds. Sedimentology 64, 1381–1401 (2017).Article
Google Scholar
Lokhorst, I. R., Lange, S. I., Buiten, G., Selaković, S. & Kleinhans, M. G. Species selection and assessment of eco‐engineering effects of seedlings for biogeomorphological landscape experiments. Earth Surf. Process. Landf. 44, 2922–2935 (2019).ADS
Article
Google Scholar
Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27, 1174–1189 (2007).ADS
Article
Google Scholar
Verney, R., Brun-Cottan, J. C., Lafite, R., Deloffre, J. & Taylor, J. A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries and Coasts 29, 653–664 (2006).Article
Google Scholar
Wu, W., Perera, C., Smith, J. & Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 56, 96–110 (2018).Article
Google Scholar
Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).Article
Google Scholar More