More stories

  • in

    Salt marshes create more extensive channel networks than mangroves

    Fosberg, F. R. & Chapman, V. J. Mangrove Vegetation. Taxon 26, 113 (1977).Article 

    Google Scholar 
    Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 23, 431–446 (2012).Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science. 317, 41b–42b (2007).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10170 (2020).Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231 (2000).ADS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35, 3891–3904 (1999).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Mudd, S. M. & Fagherazzi, S. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69, 311–324 (2006).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).ADS 
    Article 

    Google Scholar 
    Schwarz, C. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11, 672–677 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Mariotti, G. & Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out? Water Resour. Res. 53, 7029–7054 (2017).ADS 
    Article 

    Google Scholar 
    Stark, J., Van Oyen, T., Meire, P. & Temmerman, S. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol. Oceanogr. 60, 1371–1381 (2015).ADS 
    Article 

    Google Scholar 
    Montgomery, J., Bryan, K., Horstman, E. & Mullarney, J. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10, 1119 (2018).Article 

    Google Scholar 
    Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).ADS 
    Article 

    Google Scholar 
    van Maanen, B., Coco, G. & Bryan, K. R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150115 (2015).
    Google Scholar 
    Bij de Vaate, I., Brückner, M. Z. M., Kleinhans, M. G. & Schwarz, C. On the Impact of Salt Marsh Pioneer Species-Assemblages on the Emergence of Intertidal Channel Networks. Water Resour. Res. 56, (2020).Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).Article 

    Google Scholar 
    Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).ADS 
    Article 

    Google Scholar 
    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, (2017).Spalding, M. World Atlas of Mangroves. World Atlas of Mangroves https://doi.org/10.4324/9781849776608 (2010).Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. in. Mar. Geol. 208, 265–280 (2004).ADS 
    Article 

    Google Scholar 
    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).ADS 
    Article 

    Google Scholar 
    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).ADS 
    Article 

    Google Scholar 
    Tomlinson, P. B. The botany of mangroves. Bot. Mangroves https://doi.org/10.2307/2996392 (1986).Article 

    Google Scholar 
    Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landf. 40, 1672–1687 (2015).ADS 
    Article 

    Google Scholar 
    Nardin, W. et al. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surf. Process. Landf. 41, 2024–2037 (2016).ADS 
    Article 

    Google Scholar 
    Proffitt, C. E., Travis, S. E. & Edwards, K. R. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecol. Appl. 13, 180–192 (2003).Article 

    Google Scholar 
    van Wesenbeeck, B. K. et al. Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes. Ecosystems 11, 1133–1141 (2008).Article 

    Google Scholar 
    Ranwell, D. S. Spartina salt marshes in southern England 3. Rates of establishment, succession and nutrient supply at Bridgewater Bay, Somerset. J. Ecol. 52, 95–105 (1964).Article 

    Google Scholar 
    van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).Article 

    Google Scholar 
    Taylor, C. M. & Hastings, A. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J. Appl. Ecol. 41, 1049–1057 (2004).Article 

    Google Scholar 
    Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, 1–13 (2011).Article 

    Google Scholar 
    Mobberley, D. G. Taxonomy and distribution of the genus Spartina. (Iowa State University, 1953).Gourgue, O. et al. A Convolution Method to Assess Subgrid-Scale Interactions Between Flow and Patchy Vegetation in Biogeomorphic Models. J. Adv. Model. Earth Syst. 127, 1–25 (2021).Zong, L. & Nepf, H. Spatial distribution of deposition within a patch of vegetation. Water Resour. Res. 47, (2011).Suyadi, Gao, J., Lundquist, C. J. & Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 215, 1–10 (2018).ADS 
    Article 

    Google Scholar 
    Best, S. N. et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 109, 152–166 (2018).Article 

    Google Scholar 
    Chen, Y., Li, Y., Cai, T., Thompson, C. & Li, Y. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surf. Process. Landf. 41, 1967–1979 (2016).ADS 
    Article 

    Google Scholar 
    Xie, D. et al. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures. Environ. Res. Lett. 15, 114033 (2020).ADS 
    Article 

    Google Scholar 
    Steel, T. J. & Pye, K. The development of salt marsh tidal creek networks: evidence from the UK. In Proceedings of the Canadian Coastal Conference 1, 267–280 (1997).Fagherazzi, S. & Sun, T. A stochastic model for the formation of channel networks in tidal marshes. Geophys. Res. Lett. 31, L21503 (2004).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. & Rinaldo, A. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110, F02001 (2005).ADS 

    Google Scholar 
    Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).ADS 

    Google Scholar 
    Liu, Z. et al. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Sci. Total Environ. 749, 141493 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hood, W. G. Applying tidal landform scaling to habitat restoration planning, design, and monitoring. Estuar. Coast. Shelf Sci. 244, 106060 (2020).Article 

    Google Scholar 
    Horstman, E., Dohmen-Janssen, C., Geomorphology, T. B.- & 2015, undefined. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling. ElsevierCoco, G. et al. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 346, 1–16 (2013).ADS 
    Article 

    Google Scholar 
    Geng, L., Gong, Z., Zhou, Z., Lanzoni, S. & D’Alpaos, A. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landf. 45, 237–250 (2020).ADS 
    Article 

    Google Scholar 
    Andutta, F. P., Wang, X. H., Li, L. & Williams, D. Hydrodynamics and Sediment Transport in a Macro-tidal Estuary: Darwin Harbour, Australia. in 111–129 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-7019-5_7Elmqvist, T. & Cox, P. A. The Evolution of Vivipary in Flowering Plants. Oikos 77, 3 (1996).Article 

    Google Scholar 
    Zhang, X., Leonardi, N., Donatelli, C. & Fagherazzi, S. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Resour. 125, 32–40 (2019).ADS 
    Article 

    Google Scholar 
    Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. In Coastal Sediments ’07 1441–1454 (American Society of Civil Engineers, 2007). https://doi.org/10.1061/40926(239)111Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).CAS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecol. Process 2, 1–16 (2013).Article 

    Google Scholar 
    Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993).ADS 
    Article 

    Google Scholar 
    Vandenbruwaene, W., Meire, P. & Temmerman, S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology (2012).Marani, M. et al. Patterns in tidal environments: salt-marsh channel networks and vegetation. in Geoscience and Remote Sensing Symposium. IEEE 5 3269–3271 (2003).Horstman, E. M., Karin R. B., and Julia C. M. “Drag variations, tidal asymmetry and tidal range changes in a mangrove creek system.” Earth Surf. Process. Landf. (2021).R. Core, Team. R: A language and environment for statistical computing. (2013).Lillesand, T. M. & Kiefer, R. W. Remote Sensing and Image Interpretation. John Willey & Sons. Inc, USA. (1994).Vandenbruwaene, W., Bouma, T. J., Meire, P. & Temmerman, S. Bio-geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landforms 38, 122–132 (2013).ADS 
    Article 

    Google Scholar 
    Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).ADS 
    Article 

    Google Scholar 
    Braat, L., Leuven, J. R. F. W., Lokhorst, I. R. & Kleinhans, M. G. Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments. Earth Surf. Process. Landf. 44, 417–432 (2019).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G. et al. Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surf. Dyn. 5, 731–756 (2017).ADS 
    Article 

    Google Scholar 
    Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 97, 1–43 (2009).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G., Leuven, J. R. F. W., Braat, L. & Baar, A. Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds. Sedimentology 64, 1381–1401 (2017).Article 

    Google Scholar 
    Lokhorst, I. R., Lange, S. I., Buiten, G., Selaković, S. & Kleinhans, M. G. Species selection and assessment of eco‐engineering effects of seedlings for biogeomorphological landscape experiments. Earth Surf. Process. Landf. 44, 2922–2935 (2019).ADS 
    Article 

    Google Scholar 
    Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27, 1174–1189 (2007).ADS 
    Article 

    Google Scholar 
    Verney, R., Brun-Cottan, J. C., Lafite, R., Deloffre, J. & Taylor, J. A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries and Coasts 29, 653–664 (2006).Article 

    Google Scholar 
    Wu, W., Perera, C., Smith, J. & Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 56, 96–110 (2018).Article 

    Google Scholar 
    Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).Article 

    Google Scholar  More

  • in

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 136, 856–868 (2010).ADS 
    Article 

    Google Scholar 
    Coumou, D., Capua, D. I., Vavrus, G., Wang, L. S. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017).Article 

    Google Scholar 
    Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, 1–6 (2012).
    Google Scholar 
    Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,910–989,997 (2016).Article 

    Google Scholar 
    Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 34037 (2013).Article 

    Google Scholar 
    Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 
    Article 

    Google Scholar 
    Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017).Article 

    Google Scholar 
    Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11, 3421–3435 (2014).ADS 
    Article 

    Google Scholar 
    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20, 5081–5099 (2007).ADS 
    Article 

    Google Scholar 
    Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).ADS 
    Article 

    Google Scholar 
    Rammig, A. et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12, 373–385 (2015).ADS 
    Article 

    Google Scholar 
    Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 3, 509–524 (2015).Article 

    Google Scholar 
    Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 143, 2960–2972 (2017).ADS 
    Article 

    Google Scholar 
    Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change 7, 557–562 (2017).Article 

    Google Scholar 
    Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).Article 

    Google Scholar 
    Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 
    Article 

    Google Scholar 
    Zweifel, R. & Sterck, F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change 1, 9 (2018).Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 221, 652–668 (2019).CAS 
    Article 

    Google Scholar 
    Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014).Article 

    Google Scholar 
    Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39 (2012).Drouard, M. & Woollings, T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 45, 12,040–12,048 (2018).Article 

    Google Scholar 
    Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 7, 10315 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 48, 1141–1160 (2017).Article 

    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).Article 

    Google Scholar 
    Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362–379 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Leuschner, C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 47, 125576 (2020).Article 

    Google Scholar 
    Muffler, L. et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 47, 1910–1921 (2020).Article 

    Google Scholar 
    Wang, F. et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees 35, 53–67 (2021).CAS 
    Article 

    Google Scholar 
    Hall, R. J., Jones, J. M., Hanna, E., Scaife, A. A. & Erdélyi, R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 48, 3869–3887 (2017).Article 

    Google Scholar 
    Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).ADS 
    Article 

    Google Scholar 
    Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 54002 (2019).Article 

    Google Scholar 
    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 74016 (2018).Article 

    Google Scholar 
    Matsueda, M. & Endo, H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 44, 5158–5166 (2017).ADS 
    Article 

    Google Scholar 
    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).Article 

    Google Scholar 
    Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020).ADS 
    Article 

    Google Scholar 
    de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 41, 2643–2654 (2013).Article 

    Google Scholar 
    Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 4, 287–300 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 24, 4304–4315 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).Article 

    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dorado-Liñán, I. et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 25, 1296–1314 (2019).ADS 
    Article 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015).PubMed 
    Article 

    Google Scholar 
    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popkin, G. How much can forests fight climate change? Nature 565, 280–282 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 29, 8823–8840 (2016).ADS 
    Article 

    Google Scholar 
    Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 29, 851–862 (2009).Article 

    Google Scholar 
    Doblas-Reyes, F. J., Casado, M. J. & Pastor, M. A. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 107, D2 (2002).Article 

    Google Scholar 
    Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/ More

  • in

    Author Correction: Climate and land-use changes reduce the benefits of terrestrial protected areas

    AffiliationsDepartment of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, AustraliaErnest F. Asamoah & Joseph M. MainaDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaLinda J. BeaumontAuthorsErnest F. AsamoahLinda J. BeaumontJoseph M. MainaCorresponding authorCorrespondence to
    Ernest F. Asamoah. More

  • in

    Fuel, food and fertilizer shortage will hit biodiversity and climate

    As well as the humanitarian catastrophe it is inflicting, Russia’s invasion of Ukraine in February is disrupting global flows of vital commodities such as fuel, food and fertilizer. This will affect biodiversity and the environment far beyond the war zones, with implications for sustainability and well-being worldwide.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Catestatin selects for colonization of antimicrobial-resistant gut bacterial communities

    Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature 2016;535:47–47.Article 

    Google Scholar 
    El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–79.CAS 
    Article 

    Google Scholar 
    Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338–e338.CAS 
    Article 

    Google Scholar 
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100:1623–33.CAS 
    Article 

    Google Scholar 
    Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, et al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci. 2005;62:377–85.CAS 
    Article 

    Google Scholar 
    Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745–53.CAS 
    Article 

    Google Scholar 
    Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue M-H. Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem. 2012;19:4115–23.CAS 
    Article 

    Google Scholar 
    El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand J Gastroenterol. 2017;52:691–7.CAS 
    Article 

    Google Scholar 
    Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32:755–97.CAS 
    Article 

    Google Scholar 
    Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci. 2019;1455:34–58.CAS 
    Article 

    Google Scholar 
    Corti A, Marcucci F, Bachetti T. Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Archiv Eur J Physiol. 2018;470:199–210.Mahata SK, Mahata M, Fung MM, O’Connor DT. Catestatin: a multifunctional peptide from chromogranin A. Regul Pept. 2010;162:33–43.CAS 
    Article 

    Google Scholar 
    Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes. 2018;67:841–8.CAS 
    Article 

    Google Scholar 
    Mahata SK, Kiranmayi M, Mahapatra NR. Catestatin: a master regulator of cardiovascular functions. Curr Med Chem. 2018;25:1352–74.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, et al. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol. 2021;232:e13655.Rabbi MF, Munyaka PM, Eissa N, Metz-Boutigue MH, Khafipour E, Ghia JE. Human catestatin alters gut microbiota composition in mice. Front Microbiol. 2017;7:1–12.Article 

    Google Scholar 
    Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, et al. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol. 2008;128:1525–34.CAS 
    Article 

    Google Scholar 
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.CAS 
    Article 

    Google Scholar 
    Dupont A, Heinbockel L, Brandenburg K, Hornef MW. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes. 2014;5:761–5.Article 

    Google Scholar 
    Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15:2574–90.CAS 
    Article 

    Google Scholar 
    Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta Biomembr. 2015;1848:3089–100.CAS 
    Article 

    Google Scholar 
    Jakobsson HE, Rodríguez‐Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–77.CAS 
    Article 

    Google Scholar 
    Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: regulation, structure and immune response. J Mol Biol. 2020;432:5184–96.CAS 
    Article 

    Google Scholar 
    Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet. 1996;30:465–506.CAS 
    Article 

    Google Scholar 
    Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32:1–16.Article 

    Google Scholar 
    Nayfach S, Fischbach MA, Pollard KS. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics. 2015;31:3368–70.CAS 
    Article 

    Google Scholar 
    Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, et al. Immunosuppression of macrophages underlies the cardioprotective effects of CST (Catestatin). Hypertension. 2021;77:1670–82.CAS 
    Article 

    Google Scholar 
    Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1–16.Article 

    Google Scholar 
    Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501–9.Article 

    Google Scholar 
    Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7:1–10.
    Google Scholar 
    Herp S, Durai Raj AC, Salvado Silva M, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: causality in health and disease. Med Microbiol Immunol. 2021;210:173–9.Article 

    Google Scholar 
    Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:1–15.Article 

    Google Scholar 
    Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol. 2020;11:1–14.Article 

    Google Scholar 
    McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Moual H LE, Coombes BK. Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn’s disease-associated adherent-invasive Escherichia coli. Infect Immun. 2014;82:3383–93.Article 

    Google Scholar 
    Xu Y, Wei W, Lei S, Lin J, Srinivas S, Feng Y. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. MBio. 2018;9:1–18.Article 

    Google Scholar 
    Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun. 2012;80:483–92.CAS 
    Article 

    Google Scholar 
    Desloges I, Taylor JA, Leclerc JM, Brannon JR, Portt A, Spencer JD, et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen. 2019;8:1–36.Article 

    Google Scholar 
    McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol. 2004;186:5919–25.CAS 
    Article 

    Google Scholar 
    Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res. 2015;181:1–7.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol. 2018;9:2199.Santella RM. Approaches to DNA/RNA extraction and whole genome amplification: table 1. Cancer Epidemiol Biomark Prev. 2006;15:1585–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. https://www.r-project.org/.Lahti L, Shetty S. microbiome R package. http://microbiome.github.io.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.CAS 
    Article 

    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.Article 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    Article 

    Google Scholar 
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    Article 

    Google Scholar 
    Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP, et al. The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe. 2022;30:124–138.e8.CAS 
    Article 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.Article 

    Google Scholar 
    Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM, Rutaihwa LK, et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinforma. 2018;19:1–8.Article 

    Google Scholar 
    Haider SR, Reid HJ, Sharp BL. Tricine-SDS-PAGE. In: Kurien B., Scofield R. editors. Protein electrophoresis. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press; 2012. p. 81–91.Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.Article 

    Google Scholar 
    Zoetendal EG, Booijink CCGM, Klaassens ES, Heilig HGHJ, Kleerebezem M, Smidt H, et al. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc. 2006;1:954–9.CAS 
    Article 

    Google Scholar 
    Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.CAS 
    Article 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS 
    Article 

    Google Scholar  More

  • in

    Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts

    Phylogenetic placement of Saccharibacteria rhodopsins (SacRs) shows that these sequences form a sibling clade to characterized light-driven inward and outward H+ pumps (Fig. 1a). We selected three phylogenetically diverse SacRs from freshwater lakes (Table S1) and two related, previously uncharacterized sequences from the Gammaproteobacteria (Kushneria aurantia and Halomonas sp.) for synthesis and functional characterization (highlighted in Fig. 1a). All sequences have Asp–Thr–Ser (DTS) residues at the positions of D85–T96–D96 of bacteriorhodopsin (BR) in the third transmembrane helix (Fig. S1). These residues are known as the triplet DTD motif and represent key residues for proton pumping function in BR [6].Fig. 1: Characteristics of Saccharibacteria rhodopsins (SacRs).a Rhodopsin protein tree indicating that SacRs from freshwater lakes form a broad clade of proton pumps. b The ion-pumping activity of SacRs. Blue and green lines indicate the pH change with and without 10 μM CCCP, respectively. Yellow bars indicate the period of light illumination. c Time evolution of transient absorption changes of SacRNC335 in 100 mM NaCl, 20 mM HEPES–NaOH, pH 7.0, and POPE/POPG (molar ratio 3:1) vesicles with a lipid to protein molar ratio = 50. Time evolution at 406 nm (blue, representing the M accumulation), 561 nm (green, representing the bleaching of the initial state and the L accumulation), and 638 nm (red, representing the K and O accumulations). Yellow lines indicate fitting curves by a multi-exponential function. Inset: The photocycle of SacRNC335 based on the fitting in (c) and a kinetic model assuming a sequential photocycle. The lifetime (τ) of each intermediate is indicated by numbers as follow (mean ± S.D., fraction of the intermediate decayed with each lifetime in its double exponential decay is indicated in parentheses): I: τ = 1.7 ± 0.3 μs (42%), τ = 13 ± 1.8 μs (58%), II: τ = 118 ± 2 μs, III: τ = 1.6 ± 0.1 ms, IV: τ = 23.5 ± 1.0 ms, V: τ = 98.4 ± 6.4 ms (56%), τ = 384 ± 18 ms (44%). d Genomic context of SacRNC335. Neighboring genes with above-threshold KEGG annotations are indicated in gray with the highest-scoring HMM model. Genes without KEGG annotations are indicated in white.Full size imageProton transport assays for the SacRs and Gammaproteobacteria proteins expressed in Escherichia coli showed marked decrease of external pH upon light illumination (Fig. 1b and Fig. S2), indicating that these proteins are light-driven outward H+ pumps. The pH decrease was almost eliminated after adding the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which dissipates the H+ gradient, confirming that it was indeed formed upon illumination (Fig. 1b and Fig. S2). We also characterized the absorption spectra and the photocycle of the SacRs, showing that the three rhodopsins have an absorption peak around 550 nm (Fig. S3). The photocycle of the SacRs, determined by measuring the transient absorption change after nanosecond laser pulse illumination (Fig. 1c and Fig. S4), displays a blue-shifted M intermediate that represents the deprotonated state of the retinal chromophore. This has been observed for other H+ pumping rhodopsins [7, 8] and indicates that the proton bound to retinal is translocated during pumping.Given that SacRs function as outward proton pumps, we searched Saccharibacteria genomes for the F1Fo ATP synthase that would be required to harness the generated proton motive force for ATP synthesis. HMM searches showed that all genomes encoded the complete ATP synthase gene cluster and, furthermore, had c subunits with motifs consistent with H+ binding, instead of Na+ binding (Table S1 and Fig. S5). Together, our experimental and genomic analyses strongly suggest that some Saccharibacteria utilize rhodopsins for auxiliary energy generation in addition to their core fermentative capacities [6].Retinal is the rhodopsin chromophore that enables function of the complex upon illumination [9]. We found no evidence for the presence of β-carotene 15,15’-dioxygenase (blh), which produces all-trans-retinal (ATR) from β-carotene, in Saccharibacteria genomes encoding rhodopsin. This absence was likely not due to genome incompleteness, as genomic bins were generally of high quality (79–98% completeness, Table S1) and rhodopsin genomic loci were well-sampled. Additionally, no conserved hypothetical proteins were present in these regions, where blh is often found [10] (Fig. 1d, Fig. S6 and Table S2). As SacRs do contain the conserved lysine for retinal binding [4], we instead hypothesized that Saccharibacteria may uptake retinal from the environment, as has been previously observed for other microorganisms encoding rhodopsin but also lacking blh [11, 12].We tested the ability of SacR proteins to bind ATR from an external source by performing a retinal reconstitution assay. In contrast to the proton transport assays, where rhodopsin was expressed in the presence of ATR, here ATR was dissociated from the purified complex and the visible absorbance of rhodopsin was measured upon re-addition of ATR [13]. Both Gloeobacter rhodopsin (GR), a typical Type-1 outward H+ pump, and SacRs showed an increase in absorption in the visible region with time after the addition of ATR (Fig. 2a and Fig. S7). For all SacRs, the binding of ATR by their apoprotein was saturated within 30 sec after retinal addition (Fig. 2b), indicating that SacR is able to be efficiently functionalized using externally derived ATR. The observed reconstitution rate is substantially faster than that of GR (  > 20 min) and comparable to that of heliorhodopsin, which is used by other microorganisms also lacking a retinal synthetic pathway and rapidly binds ATR through a small opening in the apoprotein [12]. In the structure of SacRNC335 modeled by Alphafold2 [14, 15], a similar hole is visible in the protein moiety constructing the retinal binding pocket (Fig. S8). Hence, SacRs may also bind retinal through this hole in a similar manner to TaHeR (heliorhodopsin).Fig. 2: Binding of retinal by Saccharibacteria rhodopsins and context for biosynthesis.a UV-visible absorption spectra showing the regeneration of retinal binding to SacRNC335 and GR in 20 mM HEPES–NaOH, pH 7.0, 100 mM NaCl and 0.05% n-dodecyl-β-D-maltoside (DDM). In SacRNC335, a peak around 470 nm was transiently observed in the spectrum 30 s after the addition of ATR, suggesting that an intermediate species appears during the retinal incorporation process that involves formation of the Schiff base linkage. b Time evolution of visible absorption representing retinal binding to apo-protein. Numbers in parentheses in the legend indicate the absorption maxima of each rhodopsin. c Genetic potential for β-carotene 15,15’-dioxygenase (blh) production in freshwater lake metagenomes where SacRs are found. Fractions indicate the number of blh-encoding scaffolds taxonomically affiliated with the Actinobacteria in each sample. d Conceptual diagram illustrating potential retinal exchange between Saccharibacteria and host cells. ATR all-trans-retinal, GR Gloeobacter rhodopsin, AM Alinen Mustajärvi, Ki Kiruna, rhod. rhodopsin.Full size imageSaccharibacteria with rhodopsin must obtain retinal from other organisms. To evaluate possible sources of ATR, we investigated the genetic potential for retinal biosynthesis in 15 subarctic and boreal lakes [16] where Saccharibacteria with rhodopsin were present (Fig. S9). Blh-encoding scaffolds were found in 14 of the 15 metagenomes profiled (~93%) and, in nearly all cases, these scaffolds derived from Actinobacteria (Fig. 2c and Table S3). This is intriguing because Actinobacteria are known to be hosts of Saccharibacteria in the human microbiome [17, 18] and potentially more generally [4, 19]. BLAST searches against genome bins from the same samples indicated that these Actinobacteria were members of the order Nanopelagicales (Table S3) and often encode a rhodopsin (phylogenetically distinct from SacRs) in close genomic proximity to blh genes (Table S4). HMM searches revealed that these genomes also harbor homologs of the crtI, crtE, crtB, and crtY genes necessary for β-carotene production [20]. More

  • in

    Factors influencing wind turbine avoidance behaviour of a migrating soaring bird

    REN21. Renewables 2018 global status report. (REN21 Secretariat, 2018).Schuster, E., Bulling, L. & Koppel, J. Consolidating the state of knowledge: A synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).Article 

    Google Scholar 
    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170829 (2017).
    Google Scholar 
    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).Article 

    Google Scholar 
    Katzner, T. E. et al. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 49, 1178–1186 (2012).Article 

    Google Scholar 
    Watson, R. T. et al. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 52, 1–18 (2018).Article 

    Google Scholar 
    May, R. F. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190, 179–187 (2015).Article 

    Google Scholar 
    Cabrera-Cruz, S. A. & Villegas-Patraca, R. Response of migrating raptors to an increasing number of wind farms. J. Appl. Ecol. 53, 1667–1675 (2016).Article 

    Google Scholar 
    Hull, C. L. & Muir, S. C. Behavior and turbine avoidance rates of eagles at two wind farms in Tasmania, Australia. Wildl. Soc. Bull. 37, 49–58 (2013).Article 

    Google Scholar 
    Marques, A. T. et al. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 89, 93–103 (2020).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Langston, R. H. W., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).Article 

    Google Scholar 
    Schaub, T., Klaassen, R. H. G., Bouten, W., Schlaich, A. E. & Koks, B. J. Collision risk of Montagu’s Harriers Circus pygargus with wind turbines derived from high-resolution GPS tracking. Ibis 162, 520–534 (2020).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Black kites of different age and sex show similar avoidance responses to wind turbines during migration. R. Soc. Open Sci. 8, 201933 (2021).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Data from: Black kites of different age and sex show similar avoidance responses to wind turbines during migration. Movebank Data Repository https://doi.org/10.5441/001/1.23n2m412 (2021).Article 

    Google Scholar 
    Khosravifard, S. et al. Identifying birds’ collision risk with wind turbines using a multidimensional utilization distribution method. Wildl. Soc. Bull. 44, 191–199 (2020).Article 

    Google Scholar 
    Hoover, S. L. & Morrison, M. L. Behavior of red-tailed hawks in a wind turbine development. J. Wildl. Manag. 69, 150–159 (2005).Article 

    Google Scholar 
    Miller, R. A. et al. Local and regional weather patterns influencing post-breeding migration counts of soaring birds at the Strait of Gibraltar Spain. Ibis 158, 106–115 (2016).Article 

    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A.-R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?. J. Anim. Ecol. 89, 1317–1328 (2020).Article 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).Article 

    Google Scholar 
    Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound. Layer Meteorol. 174, 1–59 (2020).Article 

    Google Scholar 
    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using “mgcv” and “lme4” (R package version 0.2-5, 2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4 (R package version 1.1-19, 2016).Bjornstad, O. N. ncf: Spatial Covariance Functions (R package version 1.2-6, 2018).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2016).Bartoń, K. MuMIn: Multi-model inference (R package version 1.43.15, 2019).Bellebaum, J., Korner-Nievergelt, F., Dürr, T. & Mammen, U. Wind turbine fatalities approach a level of concern in a raptor population. J. Nat. Conserv. 21, 394–400 (2013).Article 

    Google Scholar 
    Heuck, C. et al. Sex- but not age-biased wind turbine collision mortality in the White-tailed Eagle Haliaeetus albicilla. J. Ornithol. 161, 753–757 (2020).Article 

    Google Scholar 
    Hunt, W. G. et al. Quantifying the demographic cost of human-related mortality to a raptor population. PLoS One 12, e0172232 (2017).Article 

    Google Scholar 
    Martín, B., Perez-Bacalu, C., Onrubia, A., De Lucas, M. & Ferrer, M. Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur. J. Wildl. Res. 64, 33 (2018).Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Douse, A. & Langston, R. H. W. Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi-site and multi-species analysis. J. Appl. Ecol. 49, 386–394 (2012).Article 

    Google Scholar 
    Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of windfarm impacts on birds. Environ. Conserv. 34, 1–11 (2007).Article 

    Google Scholar 
    De Lucas, M., Janss, G. F. E., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).Article 

    Google Scholar 
    May, R., Reitan, O., Bevanger, K., Lorentsen, S. H. & Nygard, T. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 42, 170–181 (2015).Article 

    Google Scholar 
    Magnusson, M. & Smedman, A. S. Air flow behind wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 169–189 (1999).Article 

    Google Scholar 
    Walters, K., Kosciuch, K. & Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development?. Wildl. Soc. Bull. 38, 250–256 (2014).Article 

    Google Scholar 
    Ferrer, M. et al. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 49, 38–46 (2012).Article 

    Google Scholar 
    Martín, B., Onrubia, A., de la Cruz, A. & Ferrer, M. Trends of autumn counts at Iberian migration bottlenecks as a tool for monitoring continental populations of soaring birds in Europe. Biodivers. Conserv. 25, 295–309 (2016).Article 

    Google Scholar 
    May, R. et al. Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 10, 8927–8935 (2020).Article 

    Google Scholar  More

  • in

    Publisher Correction: Field experiments underestimate aboveground biomass response to drought

    These authors contributed equally: György Kröel-Dulay, Andrea Mojzes.Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryGyörgy Kröel-Dulay & Andrea Mojzes‘Lendület’ Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryKatalin Szitár & Péter BatáryDepartment of Ecology, University of Innsbruck, Innsbruck, AustriaMichael BahnDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, DenmarkClaus Beier, Inger Kappel Schmidt & Klaus Steenberg LarsenNamibia University of Science and Technology, Windhoek, NamibiaMark BiltonPlants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, BelgiumHans J. De Boeck & Sara ViccaDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJeffrey S. DukesDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USAJeffrey S. DukesCSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, SpainMarc Estiarte & Josep PeñuelasCREAF, Cerdanyola del Vallès, SpainMarc Estiarte & Josep PeñuelasGlobal Change Research Institute of the Czech Academy of Sciences, Brno, Czech RepublicPetr HolubDisturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, GermanyAnke JentschExperimental Plant Ecology, University of Greifswald, Greifswald, GermanyJuergen KreylingUK Centre for Ecology & Hydrology, Bangor, UKSabine ReinschSchool of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelMarcelo SternbergPlant Ecology Group, University of Tübingen, Tübingen, GermanyKatja TielbörgerInstitute for Biodiversity and Ecosystem Dynamics (IBED), Ecosystem and Landscape Dynamics (ELD), University of Amsterdam, Amsterdam, the NetherlandsAlbert Tietema More