More stories

  • in

    Selective feeding of three bivalve species on the phytoplankton community in a marine pond revealed by high-throughput sequencing

    Mao, Y. et al. Bivalve production in China (eds. Smaal, A., Ferreira, J., Grant, J., Petersen, J, & Strand, Ø.) 51–72 (Springer, New York, 2019).CFSY. China fishery statistical yearbook. (China Agriculture Publishing House, Beijing, 2021).Muller-Feuga, A. Microalgae for aquaculture: the current global situation and future trends (ed. Richmond, A.) 352–364 (Blackwell Science, Hoboken, 2004).Lindahl, O. Mussel farming as a tool for re‐eutrophication of coastal waters: experiences from Sweden (ed. Shumway, S. E.) 217–237 (Wiley-Blackwell, Hoboken, 2011).Petersen, J. K., Hasler, B., Timmermann, K., Nielsen, P. & Holmer, M. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 82, 137–143 (2014).CAS 

    Google Scholar 
    Petersen, J. K., Saurel, C., Nielsen, P. & Timmermann, K. The use of shellfish for eutrophication control. Aquacult. Int. 24, 857–878 (2016).
    Google Scholar 
    Hily, C., Grall, J., Chauvaud, L., Lejart, M. & Clavier, J. CO2 generation by calcified invertebrates along rocky shores of Brittany, France. Mar. Freshwater. Res. 64, 91–101 (2013).CAS 

    Google Scholar 
    Filgueira, R. Strohmeier, T. & Strand, Ø. Regulating services of bivalve molluscs in the context of the carbon cycle and implications for ecosystem valuation (eds. Smaal, A., Ferreira, J., Grant, J., Petersen, J. & Strand, Ø.) 231–251 (Springer, New York, 2019).Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Benemann, J. R. Microalgae aquaculture feeds. J. Appl. Phycol. 4, 233–245 (1992).
    Google Scholar 
    Brown, M. R. & Blackburn, I. Live microalgae as feeds in aquaculture hatcheries (eds. Allan, G. & Burnell, G.) 117–156 (Woodhead Publishing Series in Food Science, Technology and Nutrition, 2013).Thajuddin, N. & Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci. 89, 47–57 (2005).CAS 

    Google Scholar 
    Caers, M., Coutteau, P. & Sorgeloos, P. Dietary impact of algal and artificial diets, fed at different feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat. Aquaculture 170, 307–322 (1999).CAS 

    Google Scholar 
    Chen, S. M., Tseng, K. Y. & Huang, C. H. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Fish. Shellfish. Immunol. 45, 141–145 (2015).CAS 

    Google Scholar 
    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 37, 727–746 (2018).
    Google Scholar 
    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: particle selection in suspension-and deposit-feeding bivalves. J. Exp. Mar. Biol. Ecol. 300, 83–130 (2004).
    Google Scholar 
    Tang, B., Liu, B., Wang, G., Tao, Z. & Xiang, J. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix. Aquaculture 254, 526–533 (2006).
    Google Scholar 
    Espinosa, E. P., Cerrato, R. M., Wikfors, G. H. & Allam, B. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Mar. Biol. 163, 1–13 (2016).
    Google Scholar 
    Jones, J., Allam, B. & Espinosa, E. P. Particle selection in suspension-feeding bivalves: does one model fit all?. Biol. Bull. 238, 41–53 (2020).CAS 

    Google Scholar 
    Pales Espinosa, E., Cerrato, R. M., Wikfors, G. H. & Allam, B. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Mar. Biol. 163, 1–13 (2016).CAS 

    Google Scholar 
    Barillé, L., Prou, J., Héral, M. & Bourgrier, S. No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 171, 91–106 (1993).
    Google Scholar 
    Petersen, J. K. et al. Intercalibration of mussel Mytilus edulis clearance rate measurements. Mar. Ecol. Prog. Ser. 267, 187–194 (2004).ADS 

    Google Scholar 
    Zhang, T. et al. Effects of environmental factors on the survival and growth of juvenile hard clam Mercenaria mercenaria (Linnaeus,1758). Oceanol. Limnol. Sin. 34, 142–149 (2003).
    Google Scholar 
    Matias, D. et al. The influence of different microalgal diets on European clam (Ruditapes decussatus, Linnaeus, 1758) larvae culture performances. Aquacult. Res. 46, 2527–2543 (2015).
    Google Scholar 
    Liao, K. et al. qPCR analysis of bivalve larvae feeding preferences when grazing on mixed microalgal diets. PLoS ONE 12, e0180730 (2017).
    Google Scholar 
    Sautour, B., Artigas, L. F., Delmas, D., Herbland, A. & Laborde, P. Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. J. Plankton. Res. 22, 531–552 (2000).
    Google Scholar 
    Manoylov, K. M. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 50, 409–424 (2014).
    Google Scholar 
    Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).CAS 

    Google Scholar 
    Hirai, J., Hidaka, K., Nagai, S. & Ichikawa, T. Molecular-based diet analysis of the early post-larvae of Japanese sardine Sardinops melanostictus and Pacific round herring Etrumeus teres. Mar. Ecol. Prog. Ser. 564, 99–113 (2017).ADS 
    CAS 

    Google Scholar 
    Su, M., Liu, H., Liang, X., Gui, L. & Zhang, J. Dietary analysis of marine fish species: enhancing the detection of prey-specific dna sequences via high-throughput sequencing using blocking primers. Estuar. Coast. 41, 560–571 (2018).
    Google Scholar 
    Talwar, C., Nagar, S., Lal, R. & Negi, R. K. Fish gut microbiome: current approaches and future perspectives. Indian J. Microbiol. 58, 397–414 (2018).CAS 

    Google Scholar 
    Yi, X. et al. In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea. Acta. Oceanol. Sin. 36, 68–79 (2017).CAS 

    Google Scholar 
    Reis, A. D., Jeffs, A. G. & Lavery, S. D. From feeding habits to food webs: exploring the diet of an opportunistic benthic generalist. Mar. Ecol. Prog. Ser. 655, 107–121 (2020).ADS 

    Google Scholar 
    Yeh, H. D., Questel, J. M., Maas, K. R. & Bucklin, A. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Res. II 180, 104738 (2020).
    Google Scholar 
    Zeale, M. R., Howeverlin, R. K., Barker, G. L., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 

    Google Scholar 
    Sherwood, A. R. & Presting, G. G. Universal primers amplify a 23s rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol. 43, 605–608 (2007).
    Google Scholar 
    Qiao, L., Chang, Z., Li, J. & Chen, Z. Phytoplankton community succession in relation to water quality changes in the indoor industrial aquaculture system for Litopenaeus vannamei. Aquaculture 527, 735441 (2020).CAS 

    Google Scholar 
    Vahl, O. Efficiency of particle retention in Mytilus edulis L. Ophelia 10, 17–25 (1972).
    Google Scholar 
    Riisgård, H. U. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Mar. Ecol. Prog. Ser. 45, 217–223 (1988).ADS 

    Google Scholar 
    Rosa, M. et al. Examining the physiological plasticity of particle capture by the blue mussel, Mytilus edulis (L.): confounding factors and potential artifacts with studies utilizing natural seston. J. Exp. Mar. Biol. Ecol. 473, 207–217 (2015).
    Google Scholar 
    Shumway, S. E. et al. Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar. Ecol. Prog. Ser. 24, 201–204 (1985).ADS 

    Google Scholar 
    Dupuy, C. et al. Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the mediterranean thau lagoon. Mar. Ecol. Prog. Ser. 205, 171–184 (2000).ADS 

    Google Scholar 
    Strøhmeier, T., Strand, Ø., Alunno-Bruscia, M., Duinker, A. & Cranford, P. J. Variability in particle retention efficiency by the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 412, 96–102 (2012).
    Google Scholar 
    Yahel, G., Marie, D., Beninger, P. G., Eckstein, S. & Genin, A. In situ evidence for pre-capture qualitative selection in the tropical bivalve Lithophaga simplex. Aquat. Biol. 6, 235–246 (2009).
    Google Scholar 
    Bass, A. E., Malouf, R. E. & Shumway, S. E. Growth of northern quahogs, Mercenaria mercenaria (Linnaeus, 1758) fed on picophytoplankton. J. Shellfish. Res. 9, 299–307 (1990).
    Google Scholar 
    Leblanc, A. et al. Determination of isotopic labeling of proteins by precursor ion scanning liquid chromatography/tandem mass spectrometry of derivatized amino acids applied to nuclear magnetic resonance studies. Rapid Commun. Mass. Spectrom. 26, 1165–1174 (2012).ADS 
    CAS 

    Google Scholar 
    Sonier, R. et al. Picoplankton contribution to Mytilus edulis growth in an intense culture environment. Mar. Biol. 163, 73–85 (2016).
    Google Scholar 
    Herdman, M., Castenholz, R. W., Waterbury, J. B. & Rippka, R. Form-genus XIII. Synechococcus (eds. Boone, D. R. & Castenholz, R. W.) 508–512 (Springer, New York, 2001).Hibberd, D. J. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot. J. Linn. Soc. 82, 93–119 (1981).
    Google Scholar 
    Wei, Y. Chrysochromulina parva Lackey Prymnesiophyceae new record in China and its seasonal fluctuation in Lake Donghu, Wuhan. Acta Hydrobiol. Sin. 20, 317–321 (1996).
    Google Scholar 
    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
    Google Scholar 
    Gallager, S., Waterbury, J. & Stoecker, D. Efficient grazing and utilization of the marine cyanobacterium Synechococcus sp. by larvae of the bivalve Mercenaria mercenaria. Mar. Biol. 119, 251–259 (1994).
    Google Scholar 
    Seychelles, L. H., Audet, C., Tremblay, R., Fournier, R. & Pernet, F. Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aqua. Nut. 15, 431–439 (2009).CAS 

    Google Scholar 
    Hughes, T. G. The sorting of food particles by Abra sp. (bivalvia: tellinacea). J. Exp. Mar. Biol. Ecol. 20, 137–156 (1975).
    Google Scholar 
    Hernroth, B., Larsson, A. & Edebo, L. Influence on uptake, distribution and elimination of Salmonella typhimurium in the blue mussel, Mytilus edulis, by the cell surface properties of the bacteria. J. Shellfish. Res. 19, 167–174 (2000).
    Google Scholar 
    Rosa, M. et al. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 446, 320–327 (2013).
    Google Scholar 
    Rosa, M., Ward, J. E., Holohan, B. A., Shumway, S. E. & Wikfors, G. H. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. Biol. Ecol. 486, 59–68 (2017).CAS 

    Google Scholar 
    Grasland, B., Mitalane, J., Briandet, R., Quemener, E. & Haras, D. Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19, 307–313 (2003).CAS 

    Google Scholar 
    Ozkan, A. & Berberoglu, H. Physico-chemical surface properties of microalgae. Colloids. Surf. B. 112, 287–293 (2013).CAS 

    Google Scholar 
    Dadon-Pilosof, A. et al. Surface properties of SAR 11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2, 1608–1615 (2017).
    Google Scholar 
    Xiao, G., Zhang, J., Cai, X., Lu, R. & Fang, J. Studies on the filtration feeding, respiration ration and excretion of Ruditapes philippinarum juvenile. J. Oceanogr. Taiwan Strait 25, 30–35 (2006).
    Google Scholar 
    Atkins, D. On the ciliary mechanisms and interrelationships of lamellibranchs. VII: latero-frontal cilia of the gill filaments and their phylogenetic value. Q. J. Microsc. Sci. 80, 345–433 (1938).
    Google Scholar 
    Owen, G. & Mccrae, J. M. Further studies on the latero-frontal tracts of bivalves. Proc. R. Soc. London. 194, 527–544 (1976).ADS 

    Google Scholar 
    Owen, G. Classification and the bivalve gill. Phil. Trans. R. Soc. Lond. 284, 377–385 (1978).
    Google Scholar 
    Ward, J. E., Sanford, L. P. & Newell, R. A new explanation of particle capture in suspension- feeding bivalve molluscs. Limnol. Oceanogr. 43, 741–752 (1998).ADS 

    Google Scholar 
    Winter, J. E. A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 1–33 (1978).
    Google Scholar 
    Newell, C. R., Wildish, D. J. & Macdonald, B. A. The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 262, 91–111 (2001).
    Google Scholar 
    Jacobs, P., Troost, K., Riegman, R., Van der, M. & J.,. Length- and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101–112 (2015).ADS 

    Google Scholar 
    Ivlev, V. S. Experimental ecology of the feeding of fish. (Yale University Press New Haven, Connecticut, 1961) p 302.Strauss, R. E. Reliability estimates for Ivlevs electivity index the forage ratio and a proposed linear index of food selection. Trans. Am. Fish. Soc. 108, 344–352 (1979).
    Google Scholar 
    Puig, S., Videla, F., Cona, M. I. & Monge, A. S. Use of food availability by guanacos (Lama guanicoe) and livestock in Northern Patagonia (Mendoza, Argentina). J. Arid. Environ. 47, 291–308 (2001).ADS 

    Google Scholar  More

  • in

    Variation in the ratio of compounds in a plant volatile blend during transmission by wind

    Beyaert, I. & Hilker, M. Plant odour plumes as mediators of plant–insect interactions. Biol. Rev. 89, 68–81 (2014).
    Google Scholar 
    Simpraga, M., Takabayashi, J. & Holopainen, J. K. Language of plants: Where is the word?. J. Integr. Plant Biol. 58, 343–349 (2016).CAS 

    Google Scholar 
    Bruce, T. J. A., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).CAS 

    Google Scholar 
    Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 72, 1605–1611 (2011).CAS 

    Google Scholar 
    Raguso, R. A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. S. 39, 549–569 (2008).
    Google Scholar 
    Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).
    Google Scholar 
    Arimura, G., Kost, C. & Boland, W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta. 1734, 91–111 (2005).CAS 

    Google Scholar 
    Hare, J. D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161–180 (2011).CAS 

    Google Scholar 
    Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the earth system. New Phytol. 183, 27–51 (2009).CAS 

    Google Scholar 
    Dicke, M., van Loon, J. J. A. & Soler, R. Chemical complexity of volatiles from plant induced by multiple attack. Nature Chem. Biol. 5, 317–324 (2009).CAS 

    Google Scholar 
    Loreto, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010).CAS 

    Google Scholar 
    Tasin, M. et al. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68, 203–209 (2007).CAS 

    Google Scholar 
    Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).CAS 

    Google Scholar 
    Riffell, J. A., Lei, H. & Hildebrand, J. G. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc. Natl. Acad. Sci. USA 106, 19219–19226 (2009).ADS 
    CAS 

    Google Scholar 
    Atema, J. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191, 129–138 (1996).CAS 

    Google Scholar 
    Conchou, L. et al. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 10, 972 (2019).
    Google Scholar 
    Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853 (2008).CAS 

    Google Scholar 
    Mylne, K. R., Davidson, M. J. & Thomson, D. J. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Bound-Lay. Meteorol. 79, 225–242 (1996).ADS 

    Google Scholar 
    Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K. & Wethey, D. S. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44, 1056–1071 (1999).ADS 
    CAS 

    Google Scholar 
    Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
    Google Scholar 
    Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).CAS 

    Google Scholar 
    Kennedy, J. S. The visual response of flying mosquitoes. Proc. Zool. Soc. London Ser. A 109, 221–242 (1940).
    Google Scholar 
    Bursell, E. Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physio. Entomol. 9, 133–137 (1984).
    Google Scholar 
    Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
    Google Scholar 
    Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Guidance of flying male moths by wind-borne sex-pheromone. Physiol. Entomol. 6, 395–412 (1981).
    Google Scholar 
    Koehl, M. A. R. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93–105 (2006).CAS 

    Google Scholar 
    Baker, T. C., Willis, M. A., Haynes, K. F. & Phelan, P. L. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257–265 (1985).
    Google Scholar 
    Willis, M. A. & Baker, T. C. Effects of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9, 341–358 (1984).
    Google Scholar 
    Mafraneto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).ADS 
    CAS 

    Google Scholar 
    Mafraneto, A. & Cardé, R. T. Dissection of the pheromone-modulated flight of moths using single-pulse response as a template. Experientia 52, 373–379 (1996).CAS 

    Google Scholar 
    Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91, 5756–5760 (1994).ADS 
    CAS 

    Google Scholar 
    Lei, H., Riffell, J. A., Gage, S. L. & Hildebrand, J. G. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J. Biol. 8, 21 (2009).
    Google Scholar 
    Kuenen, L. & Carde, R. T. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19, 15–29 (1994).
    Google Scholar 
    Vickers, N. J. & Baker, T. C. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A. 178, 831–847 (1996).
    Google Scholar 
    Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198, 203–212 (2000).CAS 

    Google Scholar 
    Cardé, R. T. & Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 34, 854–866 (2008).
    Google Scholar 
    Willis, M. A. & Baker, T. C. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect. Behav. 1, 357–371 (1988).
    Google Scholar 
    Voskamp, K. E., Den Otter, C. J. & Noorman, N. Electroantennogram responses of tsetse flies (Glossina pallidipes) to host odours in an open field and riverine woodland. Physiol. Entomol. 23, 176–183 (1998).
    Google Scholar 
    Cai, X. M., Xu, X. X., Bian, L., Luo, Z. X. & Chen, Z. M. Measurement of volatile plant compounds in field ambient air by thermal desorption–gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 407, 9105–9114 (2015).CAS 

    Google Scholar 
    Zollner, G. E., Torr, S. J., Ammann, C. & Meixner, F. X. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29, 381–394 (2004).
    Google Scholar 
    McFrederick, Q. S., Kathilankal, J. C. & Fuentes, J. D. Air pollution modifies floral scent trails. Atmos. Environ. 42, 2336–2348 (2008).ADS 
    CAS 

    Google Scholar 
    Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & NealStewart, C. Jr. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).
    Google Scholar 
    Weissburg, M. J. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198, 188–202 (2000).CAS 

    Google Scholar 
    Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, 197–219 (2003).ADS 

    Google Scholar 
    Helmig, D., Bocquet, F., Pollmann, J. & Revermann, T. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmos. Environ. 38, 557–572 (2004).ADS 
    CAS 

    Google Scholar 
    Riffell, J. A, Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J. & NathanKutz, J. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).Shorey, H. H. Animal communication by pheromones (Academic Press, 1976).Cardé, R. T. & Charlton, R. E. Olfactory sexual communication in Lepidoptera: Strategy, sensitivity and selectivity In Insect communication (ed. Lewis, T.) 241–265 (Academic Press, 1984).Elkinton, J. S., Schal, C., Ono, T. & Carde, R. T. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12, 399–406 (1987).
    Google Scholar 
    Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530 (1998).ADS 
    CAS 

    Google Scholar 
    Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The speed of smell: Odor-object segregation within milliseconds. PLoS One 7, e36096 (2012).ADS 
    CAS 

    Google Scholar 
    Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92, 67–74 (1995).ADS 
    CAS 

    Google Scholar 
    Cai, X. M. et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7, 41818 (2017).ADS 
    CAS 

    Google Scholar 
    Xu, X. X. et al. Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda. J. Econ. Entomol. 110, 2357–2363 (2017).CAS 

    Google Scholar 
    Hare, J. D. & Sun, J. J. Production of induced volatiles by Datura wrightii in response to damage by insects: Effect of herbivore species and time. J. Chem. Ecol. 37, 751–764 (2011).CAS 

    Google Scholar 
    Mumm, R., Tiemann, T., Schulz, S. & Hilker, M. Analysis of volatiles from black pine (Pinus nigra): Significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65, 3221–3230 (2004).CAS 

    Google Scholar  More

  • in

    Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach

    Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A. IPCC special report on the ocean and cryosphere in a changing climate In: Pörtner H-O, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska Eea, editors. 2022; chapter 3: https://doi.org/10.1017/9781009157964 (in press).Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.Article 

    Google Scholar 
    Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.Article 

    Google Scholar 
    Barnes DKA, Souster T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Change. 2011;1:365–8.Article 

    Google Scholar 
    Grange L, Tyler P, Peck L, Cornelius N. Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar Ecol Prog Ser. 2004;278:141–55.Article 

    Google Scholar 
    Schratzberger M, Ingels J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. 2018;502:12–25.Article 

    Google Scholar 
    Mayor D, Thornton B, Jenkins H, Felgate S. Microbiota: the living foundation. In: Beninger P, editor. Mudflat ecology. Switzerland AG: Springer Nature 2018. p. 43–61.Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S, Power DM, et al. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci Rep. 2017;7:6094.CAS 
    Article 

    Google Scholar 
    Vause BJ, Morley SA, Fonseca VG, Jazdzewska A, Ashton GV, Barnes DKA, et al. Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecol. 2019;19:27.Article 

    Google Scholar 
    Danovaro R, Scopa M, Gambi C, Fraschetti S. Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol. 2007;152:339–50.Article 

    Google Scholar 
    Watzin MC. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia. 1983;59:163–6.Article 

    Google Scholar 
    Schmidt JL, Deming JW, Jumars PA, Keil RG. Constancy of bacterial abundance in surficial marine sediments. Limnol Oceanogr. 1998;43:976–82.Article 

    Google Scholar 
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    Article 

    Google Scholar 
    Burdige DJ. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev. 2007;107:467–85.CAS 
    Article 

    Google Scholar 
    Zou K, Thébault E, Lacroix G, Barot S. Interactions between the green and brown food web determine ecosystem functioning. Funct Ecol. 2016;30:1454–65.Article 

    Google Scholar 
    Anderson TR, Pond DW, Mayor DJ. The role of microbes in the nutrition of detritivorous invertebrates: a stoichiometric analysis. Front Microbiol. 2016;7:2113.
    Google Scholar 
    Lacoste E, Piot A, Archambault P, McKindsey CW, Nozais C. Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities. Mar Environ Res. 2018;136:62–70.CAS 
    Article 

    Google Scholar 
    Bonaglia S, Nascimento FJ, Bartoli M, Klawonn I, Bruchert V. Meiofauna increases bacterial denitrification in marine sediments. Nat Commun. 2014;5:5133.CAS 
    Article 

    Google Scholar 
    Riemann F, Helmke E. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol. 2002;23:93–113.CAS 
    Article 

    Google Scholar 
    dos Santos GAP, Derycke S, Fonseca-Genevois VG, Coelho LCBB, Correia MTS, Moens T. Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. J Exp Mar Biol Ecol. 2008;355:27–40.Article 

    Google Scholar 
    Zeppilli D, Sarrazin J, Leduc D, Arbizu PM, Fontaneto D, Fontanier C, et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers. 2015;45:505–35.Article 

    Google Scholar 
    Moens T, Beninger PG. Meiofauna: an inconspicuous but important player in Mudflat ecology. In: Beninger P, editor. Mudflat ecology aquatic ecology series. 7. Switzerland: Springer; 2018.Webb AL, Hughes KA, Grand MM, Lohan MC, Peck LS. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Sci Total Environ. 2020;698:134268.CAS 
    Article 

    Google Scholar 
    Brown KM, Fraser KP, Barnes DK, Peck LS. Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia. 2004;141:121–9.Article 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    Article 

    Google Scholar 
    Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    Article 

    Google Scholar 
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2005;33:D34–8.CAS 
    Article 

    Google Scholar 
    Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922;30:377–92.Article 

    Google Scholar 
    Dean WE. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Res. 1974;44:242–8.CAS 

    Google Scholar 
    Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett. 2007;5:9–12.CAS 
    Article 

    Google Scholar 
    Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G. Fishing elevates variability in the abundance of exploited species. Nature. 2006;443:859–62.CAS 
    Article 

    Google Scholar 
    Elbrecht V, Braukmann TWA, Ivanova NV, Prosser SWJ, Hajibabaei M, Wright M, et al. Validation of COI metabarcoding primers for terrestrial arthropods. Peer J. 2019;7:e7745–e.Article 

    Google Scholar 
    Kirse A, Bourlat SJ, Langen K, Fonseca VG. Unearthing the potential of Soil eDNA metabarcoding—towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 2021;9:630560.Article 

    Google Scholar 
    Zhang GK, Chain FJJ, Abbott CL, Cristescu ME. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evolut Appl. 2018;11:1901–14.CAS 
    Article 

    Google Scholar 
    Marquina D, Andersson AF, Ronquist F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol Ecol Resour. 2019;19:90–104.CAS 
    Article 

    Google Scholar 
    Leasi F, Sevigny JL, Laflamme EM, Artois T, Curini-Galletti M, de Jesus Navarrete A, et al. Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Commun Biol. 2018;1:112.Article 

    Google Scholar 
    Giebner H, Langen K, Bourlat SJ, Kukowka S, Mayer C, Astrin JJ, et al. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol Ecol Resour. 2020;20:1333–45.CAS 
    Article 

    Google Scholar 
    Vanhove S, Lee HJ, Beghyn M, Gansbeke DV, Brockington S, Vincx M. The Metazoan Meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK. 1998;78:411–34.Article 

    Google Scholar 
    Pasotti F, Saravia LA, De Troch M, Tarantelli MS, Sahade R, Vanreusel A. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat. PLoS ONE. 2015;10:e0141742.Article 

    Google Scholar 
    Griffiths JR, Kadin M, Nascimento FJA, Tamelander T, Tornroos A, Bonaglia S, et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology. 2017;23:2179–96.Article 

    Google Scholar 
    Virta L, Gammal J, Järnström M, Bernard G, Soininen J, Norkko J, et al. The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology. 2019;100:e02765.Article 

    Google Scholar 
    Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci USA. 2016;113:E1516–25.CAS 
    Article 

    Google Scholar 
    Forster D, Dunthorn M, Mahe F, Dolan JR, Audic S, Bass D, et al. Benthic protists: the under-charted majority. Fems Microbiol Ecol. 2016;92:fiw120.Article 

    Google Scholar 
    Fonseca VG, Carvalho GR, Nichols B, Quince C, Johnson HF, Neill SP, et al. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol Biogeogr. 2014;23:1293–302.Article 

    Google Scholar 
    O’Malley MA. The nineteenth century roots of ‘everything is everywhere’. Nat Rev Microbiol. 2007;5:647–51.Article 

    Google Scholar 
    Pasotti F, Manini E, Giovannelli D, Wölfl A-C, Monien D, Verleyen E, et al. Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar Ecol. 2015;36:716–33.Article 

    Google Scholar 
    Molari M, Janssen F, Vonnahme TR, Wenzhöfer F, Boetius A. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth). Biogeosciences. 2020;17:3203–22.CAS 
    Article 

    Google Scholar 
    Signori CN, Thomas F, Enrich-Prast A, Pollery RCG, Sievert SM. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front Microbiol. 2014;5:647.Article 

    Google Scholar 
    Ozturk RC, Feyzioglu AM, Altinok I. Prokaryotic community and diversity in coastal surface waters along the Western Antarctic Peninsula. Pol Sci. 2021;31:100764.Article 

    Google Scholar 
    Ghiglione JF, Murray AE. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol. 2012;14:617–29.CAS 
    Article 

    Google Scholar 
    Luria CM, Ducklow HW, Amaral-Zettler LA. Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquat Microbial Ecol. 2014;73:107–21.Article 

    Google Scholar 
    Cao S, He J, Zhang F, Lin L, Gao Y, Zhou Q. Diversity and community structure of bacterioplankton in surface waters off the northern tip of the Antarctic Peninsula. Pol Res. 2019;38:3491.Article 

    Google Scholar 
    Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89.Article 

    Google Scholar 
    Kiko R, Werner I, Wittmann A. Osmotic and ionic regulation in response to salinity variations and cold resistance in the Arctic under-ice amphipod Apherusa glacialis. Pol Biol. 2009;32:393–8.Article 

    Google Scholar 
    Zeppilli D, Leduc D, Fontanier C, Fontaneto D, Fuchs S, Gooday AJ, et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers. 2018;48:35–71.Article 

    Google Scholar 
    Arnosti C, Joergensen BB, Sagemann J, Thamdrup B. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser. 1998;165:59–70.CAS 
    Article 

    Google Scholar 
    Fabiano M, Danovaro R. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the ross sea (Antarctica). Appl Environ Microbiol. 1998;64:3838–45.CAS 
    Article 

    Google Scholar 
    Kujawinski EB, Longnecker K, Barott KL, Weber RJM, Kido Soule, MC. Microbial community structure affects marine dissolved organic matter composition. Front Mar Sci. 2016;3:45.Article 

    Google Scholar 
    Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem. 2006;38:3019–34.CAS 
    Article 

    Google Scholar 
    Ganzert L, Lipski A, Hubberten H-W, Wagner D. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. Fems Microbiol Ecol. 2011;76:476–91.CAS 
    Article 

    Google Scholar 
    Rusch A, Huettel M, Reimers CE, Taghon GL, Fuller CM. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. Fems Microbiol Ecol. 2003;44:89–100.CAS 
    Article 

    Google Scholar 
    Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front Microbiol. 2018;9:149.Article 

    Google Scholar 
    Giere O. Meiobenthology: the microscopic motile fauna of aquatic sediments. 2nd ed: Springer-Verlag Berlin Heidelberg; 2009. 527 p.Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, et al. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun. 2010;1:98.Article 

    Google Scholar 
    Pitcher RC, Lawton P, Ellis N, Smith SJ, Incze LS, Wei C-L, et al. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J Appl Ecol. 2012;49:670–9.Article 

    Google Scholar 
    Rose A, Ingels J, Raes M, Vanreusel A, Arbizu PM. Long-term iceshelf-covered meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea. Heidelberg: Springer; 2014. 743–62 p.Gonçalves-Araujo R, de Souza MS, Tavano VM, Garcia CAE. Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. J Mar Syst. 2015;142:1–15.Article 

    Google Scholar 
    Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM, Santos SR, et al. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Front Microbiol. 2016;7:284.Article 

    Google Scholar 
    Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    Article 

    Google Scholar 
    Rosli N, Leduc D, Rowden A, Probert P. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodivers. 2017;48:13–34.Article 

    Google Scholar 
    Ruff SE, Probandt D, Zinkann A-C, Iversen M, Klaas C, Schwabe L, et al. Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic Polar Front. Deep Sea Res Part II: Top Stud Oceanogr. 2014;108:6–16.Article 

    Google Scholar 
    El-Serehy HA, Al-Rasheid KA, Al-Misned FA, Al-Talasat AA, Gewik MM. Microbial-meiofaunal interrelationships in coastal sediments of the Red Sea. Saudi J Biol Sci. 2016;23:327–34.CAS 
    Article 

    Google Scholar 
    Danovaro R, Company JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE. 2010;5:e11832.Article 

    Google Scholar 
    Mussmann M, Pjevac P, Kruger K, Dyksma S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 2017;11:1276–81.CAS 
    Article 

    Google Scholar 
    Hinger I, Pelikan C, Mußmann M. Role of the ubiquitous bacterial family Woeseiaceae for N2O production in marine sediments. Geophys Res Abstracts. 2019;21:17441.
    Google Scholar 
    Hoffmann K, Bienhold C, Buttigieg PL, Knittel K, Laso-Pérez R, Rapp JZ, et al. Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J. 2020;14:1042–56.CAS 
    Article 

    Google Scholar 
    Mare MF. A study of a marine benthic community with special reference to the microorganisms. J Mar Biol Assoc UK. 1942;25:517–54.Article 

    Google Scholar 
    Bott TL, Borchardt MA. Grazing of protozoa, bacteria, and diatoms by Meiofauna in lotic epibenthic communities. J North Am Bentholog Soc. 1999;18:499–513.Article 

    Google Scholar 
    Griffiths HJ. Antarctic marine biodiversity-what do we know about the distribution of life in the Southern Ocean? PLoS ONE. 2010;5:e11683.Article 

    Google Scholar 
    Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, et al. The spatial structure of Antarctic biodiversity. Ecol Monogr. 2014;84:203–44.Article 

    Google Scholar 
    Li L, Ma ZS. Species sorting and neutral theory analyses reveal archaeal and bacterial communities are assembled differently in hot springs. Front Bioeng Biotechnol. 2020;8:464.Article 

    Google Scholar 
    Lee JE, Buckley HL, Etienne RS, Lear G. Both species sorting and neutral processes drive assembly of bacterial communities in aquatic microcosms. Fems Microbiol Ecol. 2013;86:288–302.CAS 
    Article 

    Google Scholar 
    Gansfort B, Fontaneto D, Zhai M. Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia. 2020;847:2645–63.Article 

    Google Scholar 
    Convey P, Peck LS. Antarctic environmental change and biological responses. Sci Adv. 2019;5:eaaz0888.CAS 
    Article 

    Google Scholar  More

  • in

    Estimating the expected planting area of double- and single-season rice in the Hunan-Jiangxi region of China by 2030

    China is the world’s most populous country, with a population of over 1.4 billion people, or 18% of the world human population1. However, China has only about 9% of the 1.4 billion hectares of total arable land in the world2. The question of “who will feed China?” raised by Dr. Lester R. Brown in 1995 is still worthy of consideration today, and ensuring food security remains a top priority for the Chinese government3.Rice is the staple food on dining-tables of over 65% of the population in China; thus, adequate rice production is critical to ensure food security in China4. In order to produce more rice on the limited amount of arable land available, double-season rice cropping systems, which involve successively growing early-season rice (ESR) and late-season rice (LSR) from March to November within a single calendar year, have been extensively developed in southern China5. The development of double-season rice cropping systems has made a considerable contribution toward achieving rice self-sufficiency in China6.Hunan and Jiangxi are the top two double-season rice producing provinces in China7. However, in recent years, the planting area devoted to double-season rice has sharply decreased in the Hunan-Jiangxi region as a result of the conversion from double- to single-season rice (SSR) cropping systems (referred as the rice “double-to-single” phenomenon) (Fig. 1A). A reduced rural labor supply and rising labor wages due to urbanization and economic growth are the key driving forces for the rice “double-to-single” phenomenon11. Fortunately, the rice “double-to-single” phenomenon has not resulted in a decrease in total rice production in the Hunan-Jiangxi region (Fig. 1B). During the most recent 10 years (2011–2020), the total rice production in the Hunan-Jiangxi region has been ranged from 45.3 to 48.7 million tons (Mt) with an average of 46.6 Mt, and the contribution of the Hunan-Jiangxi region to rice production in China has been maintained at ~ 22%.Figure 1(A) Planting areas (million hectares, Mha) for early-season rice (ESR), late-season rice (LSR), and single-season rice (SSR) in the Hunan-Jiangxi region and (B) total rice production (million tons, Mt) in the Hunan-Jiangxi region and the contribution of the Hunan-Jiangxi region to total rice production in China from 2011 to 2020. In (B), the dashed line represents the average rice production during 2011–2020. The rice planting area and total rice production in the Hunan-Jiangxi region were calculated based on data collected from the Hunan Provincial Bureau of Statistics8 and the Jiangxi Provincial Bureau of Statistics9. The contribution of the Hunan-Jiangxi region to rice production in China is the percentage of total rice production in the Hunan-Jiangxi region to the total rice production in China. Data for total rice production in China were collected from the National Bureau of Statistics of China10.Full size imageBecause China’s population is still growing12, China must continue to increase rice production. The domestic demand for rice grain in China is expected to reach 217 Mt by 2030, when the population of China is expected to stabilize6. To meet this demand, the Hunan-Jiangxi region will need to produce 47.7 Mt of rice grains, assuming that the contribution of the Hunan-Jiangxi region to rice production in China remains at the level of the most recent 10 years (~ 22%) (Fig. 1B). This expected rice production (ERP) is 1.1 Mt higher than the average total rice production during the most recent 10 years. In order to avoid the negative effect of the “double-to-single” phenomenon on achieving the ERP in the Hunan-Jiangxi region by 2030, it is necessary to estimate how much planting area of double-season rice will be needed in this region by this point in time.The ERP can be expressed by the following formula: ERP = EPAESR × EGYESR + EPALSR × EGYLSR + EPASSR × EGYSSR, where EGYESR, EGYLSR, and EGYSSR are the estimated grain yields of ESR, LSR, and SSR, respectively; and EPAESR, EPALSR, and EPASSR are the estimated planting areas for ESR, LSR, and SSR, respectively. We assume the following conditions in the Hunan-Jiangxi region by 2030: (1) the total paddy field area will be maintained in the range of 4.57–5.02 million hectares (Mha) that was planted during the years 2011–20208,9; (2) the ratio of EPALSR to EPAESR is the same as the average ratio of planting area of LSR to ESR during 2011–2020 (i.e., 1.07) (Fig. 1A); (3) EPASSR is the difference between the total paddy field area and the EPALSR; and (4) EGYESR, EGYLSR, and EGYSSR are projected under three scenarios: (1) constant yield scenario, (2) 5% yield increase scenario, and (3) 10% yield increase scenario (Fig. 2). The baseline yield for all three scenarios is the average grain yields during 2011–2020. The EPAESR, EPALSR, and EPASSR in the Hunan-Jiangxi region needed to achieve the expected rice production by 2030 were obtained by solving the above formula and are shown in Fig. 3.Figure 2(A) Grain yields from 2011 to 2020 and (B) estimated grain yields by 2030 under three scenarios for early-season rice (ESR), late-season rice (LSR), and single-season rice (SSR) in the Hunan-Jiangxi region. The grain yields from 2011 to 2020 were calculated based on data collected from the Hunan Provincial Bureau of Statistics8 and the Jiangxi Provincial Bureau of Statistics9. In (A), ns denotes non-significant trend at the 0.05 probability level (Statistix 8.0, Analytical software, Tallahassee, FL, USA). In (B), the baseline yield for all three scenarios is the average grain yields during 2011–2020.Full size imageFigure 3Estimated planting areas for early-season rice (ESR), late-season rice (LSR), and single-season rice (SSR) in the Hunan-Jiangxi region that will be required to achieve the expected rice production by 2030 under three scenarios: (A) constant yield scenario, (B) 5% yield increase scenario, and (C) 10% yield increase scenario. Mha is million hectares.Full size imageThe results presented in Fig. 3 provide guidance and models for the government’s decision-making process in the planning planting areas for ESR, LSR, and SSR in the Hunan-Jiangxi region. In brief, farmers will need to plant 2.55–3.18 Mha of ESR, 2.73–3.40 Mha of LSR, and 1.17–2.29 Mha of SSR under the constant yield scenario, 2.09–2.72 Mha of ESR, 2.24–2.91 Mha of LSR, and 1.66–2.78 Mha of SSR under the 5% yield increase scenario, and 1.67–2.31 Mha of ESR, 1.79–2.47 Mha of LSR, and 2.10–3.23 Mha of SSR under the 10% yield increase scenario in the Hunan-Jiangxi region by 2030 depending on the total available paddy field area.One thing to note here is that the actual planting areas for ESR (2.44 Mha) and LSR (2.57 Mha) in 2020 are below the estimated lower limits of planting areas for ESR (2.55 Mha) and LSR (2.73 Mha) that will be needed by 2030 under the constant yield scenario, while the actual planting area for SSR in 2020 (2.42 Mha) is above the estimated upper limit for SSR (2.29 Mha) that will be needed by 2030 under the constant yield scenario (Figs. 1A and 3A). This finding indicates that it is urgent to avoid a further aggravated “double-to-single” phenomenon while maintaining the total paddy field area in the Hunan-Jiangxi region. Because it is not an easy task to maintain the total paddy field area under the projected scenario for urban expansion13, the government should prepare an alternative to reverse the “double-to-single” phenomenon in the Hunan-Jiangxi region. Increasing the mechanized level of farming operation and improving economic returns to farmers are two key aspects for the government to take into account to promote the development of double-season rice.Although the current planting area of double-season rice can fully meet the requirement for achieving the ERP in the Hunan-Jiangxi region by 2030 under both the 5% and 10% yield increase scenarios, there is some difficulty in reaching the yield increase targets. In recent years, the planting area of high-quality rice varieties has been rapidly increased in China14. However, grain yield is generally not very high for high-quality rice varieties, although no genetic linkage has been identified between grain yield and quality in rice15. Hence, great efforts are required to develop rice varieties with both high quality and high yield. In addition, rice yields are determined not only by the variety but also by environments and crop management practices. Soil nutrient deficiencies, unfavorable climatic conditions (e.g., heat, cold, and drought), and pest infestations have always been major yield-limiting factors for rice production in China16. Therefore, great efforts are also required to: (1) improve soil fertility of low- and medium-yielding rice fields and optimize nutrient management practices; (2) develop climate-smart agriculture practices for alleviating climatic stresses; and (3) promote integrated pest management practices. More

  • in

    Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series

    Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, et al. Microbial community structure in the North Pacific ocean. ISME J. 2009;3:1374–86.CAS 
    Article 

    Google Scholar 
    Chénard C, Wijaya W, Vaulot D, dos Santos AL, Martin P, Kaur A, et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:1–13.Article 

    Google Scholar 
    Yeh YC, McNichol J, Needham DM, Fichot EB, Berdjeb L, Fuhrman JA. Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ Microbiol. 2021;23:2340–3250.Article 

    Google Scholar 
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 2016;1:16005.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Karl DM, Church MJ. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat Rev Microbiol. 2014;12:699–713.CAS 
    Article 

    Google Scholar 
    Mestre M, Höfer J, Sala MM, Gasol JM. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front Microbiol. 2020;11:1590.Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Berelson WM. The flushing of two deep‐sea basins, southern California borderland. Limnol Oceanogr. 1991;36:1150–66.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Traving SJ, Kellogg CT, Ross T, McLaughlin R, Kieft B, Ho GY, et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun Biology. 2021;4:1–12.Article 

    Google Scholar 
    Butler TM, Wilhelm A-C, Dwyer AC, Webb PN, Baldwin AL, Techtmann SM. Microbial community dynamics during lake ice freezing. Scient Rep. 2019;9:1–11.
    Google Scholar 
    LeBrun ES, King RS, Back JA, Kang S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb Ecol. 2018;75:64–73.CAS 
    Article 

    Google Scholar 
    McNichol J, Berube PM, Biller SJ, Fuhrman JA. Evaluating and improving small subunit rRNA PCR primer coverage for bacteria, archaea, and eukaryotes using metagenomes from global ocean surveys. Msystems. 2021;6:e00565–21.CAS 
    Article 

    Google Scholar 
    De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett. 2012;15:740–7.Article 

    Google Scholar 
    Soininen J, Korhonen JJ, Karhu J, Vetterli A. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnol. Oceanogr. 2011;56:508–20.Article 

    Google Scholar 
    Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.Article 

    Google Scholar 
    Kraemer S, Ramachandran A, Colatriano D, Lovejoy C, Walsh DA. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. 2020;14:79–90.Article 

    Google Scholar 
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.CAS 
    Article 

    Google Scholar 
    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Syst Biol. 2012;8:595.Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.Article 

    Google Scholar 
    Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 2014;8:1440–51.Article 

    Google Scholar 
    Fernández-Gomez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.Article 

    Google Scholar 
    Countway PD, Vigil PD, Schnetzer A, Moorthi SD, Caron DA. Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean). Limnol Oceanogr. 2010;55:2381–96.Article 

    Google Scholar 
    Kim DY, Countway PD, Jones AC, Schnetzer A, Yamashita W, Tung C, et al. Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific. ISME J. 2014;8:515–30.Article 

    Google Scholar 
    Parris DJ, Ganesh S, Edgcomb VP, DeLong EF, Stewart FJ. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. Front Microbiol. 2014;5:543.Article 

    Google Scholar 
    Orsi W, Song YC, Hallam S, Edgcomb V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 2012;6:1586–601.CAS 
    Article 

    Google Scholar 
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol Lett. 2004;7:601–13.Article 

    Google Scholar 
    Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci USA. 2006;103:13104–9.CAS 
    Article 

    Google Scholar 
    Chow C-ET, Sachdeva R, Cram JA, Steele JA, Needham DM, Patel A, et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. ISME J. 2013;7:2259–73.CAS 
    Article 

    Google Scholar 
    Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. ISME J. 2017;11:2510–25.Article 

    Google Scholar 
    Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E807.CAS 
    Article 

    Google Scholar 
    Mestre M, Ferrera I, Borrull E, Ortega‐Retuerta E, Mbedi S, Grossart HP, et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol Ecol. 2017;26:6827–40.CAS 
    Article 

    Google Scholar 
    Wilson B, Müller O, Nordmann E-L, Seuthe L, Bratbak G, Øvreås L. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front Mar Sci. 2017;4:95.
    Google Scholar 
    Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, et al. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 2009;3:1148–63.Article 

    Google Scholar 
    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.CAS 
    Article 

    Google Scholar 
    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.CAS 
    Article 

    Google Scholar 
    Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ. Water mass‐specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 2011;20:258–74.Article 

    Google Scholar 
    Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89.Article 

    Google Scholar 
    Reji L, Tolar BB, Chavez FP, Francis CA. Depth-differentiation and seasonality of planktonic microbial assemblages in the Monterey Bay upwelling system. Front Microbiol. 2020;11:1075.Article 

    Google Scholar 
    Milici M, Vital M, Tomasch J, Badewien TH, Giebel HA, Plumeier I, et al. Diversity and community composition of particle‐associated and free‐living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: Evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr. 2017;62:1080–95.Article 

    Google Scholar 
    Crespo BG, Pommier T, Fernández‐Gómez B, Pedrós‐Alió C. Taxonomic composition of the particle‐attached and free‐living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen. 2013;2:541–52.CAS 
    Article 

    Google Scholar 
    Ganesh S, Parris DJ, DeLong EF, Stewart FJ. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 2014;8:187–211.CAS 
    Article 

    Google Scholar 
    Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    Article 

    Google Scholar 
    Murillo AA, Ramírez-Flandes S, DeLong EF, Ulloa O. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem. Front Mar Sci. 2014;1:18.Article 

    Google Scholar 
    Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B, et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun. 2017;8:1–10.CAS 
    Article 

    Google Scholar 
    Santoro AE, Buchwald C, McIlvin MR, Casciotti KL. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science. 2011;333:1282–5.CAS 
    Article 

    Google Scholar 
    Aldunate M, De la Iglesia R, Bertagnolli AD, Ulloa O. Oxygen modulates bacterial community composition in the coastal upwelling waters off central Chile. Deep Sea Res Part II Top Stud Oceanogr. 2018;156:68–79.CAS 
    Article 

    Google Scholar 
    Duret MT, Lampitt RS, Lam P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ Microbiol Rep. 2019;11:386–400.CAS 
    Article 

    Google Scholar 
    Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high‐frequency sampling. Environ Microbiol. 2015;17:2459–76.Article 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krueger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife. 2016;5:e11888.Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    Article 

    Google Scholar 
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science. 2005;309:1242–5.CAS 
    Article 

    Google Scholar 
    Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, Fuhrman JA. Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME J. 2015;9:2573–86.Article 

    Google Scholar 
    Salazar G, Cornejo‐Castillo FM, Borrull E, Díez‐Vives C, Lara E, Vaqué D, et al. Particle‐association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol. 2015;24:5692–706.Article 

    Google Scholar 
    Mohit V, Archambault P, Toupoint N, Lovejoy C. Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl Environ Microbiol. 2014;80:2071–83.Article 

    Google Scholar 
    Rieck A, Herlemann DP, Jürgens K, Grossart H-P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front Microbiol. 2015;6:1297.Article 

    Google Scholar 
    Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell. 2019;179:1623–35. e11.CAS 
    Article 

    Google Scholar 
    Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 2020;14:437–49.Article 

    Google Scholar 
    Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol. 2007;9:1219–32.CAS 
    Article 

    Google Scholar 
    Ollison GA, Hu SK, Mesrop LY, DeLong EF, Caron DA. Come rain or shine: depth not season shapes the active protistan community at station ALOHA in the North Pacific Subtropical Gyre. Deep Sea Res Part I Oceanogr Res Pap. 2021;170:103494.Article 

    Google Scholar 
    Schnetzer A, Moorthi SD, Countway PD, Gast RJ, Gilg IC, Caron DA. Depth matters: microbial eukaryote diversity and community structure in the eastern North Pacific revealed through environmental gene libraries. Deep Sea Res Part I Oceanogr Res Pap. 2011;58:16–26.Article 

    Google Scholar 
    Martin P, Allen JT, Cooper MJ, Johns DG, Lampitt RS, Sanders R, et al. Sedimentation of acantharian cysts in the Iceland Basin: strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnol Oceanogr. 2010;55:604–14.CAS 
    Article 

    Google Scholar 
    Lampitt R, Salter I, Johns D. Radiolaria: Major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycle. 2009;23:GB1010.Article 

    Google Scholar 
    Skovgaard A, Massana R, Balague V, Saiz E. Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist. 2005;156:413–23.CAS 
    Article 

    Google Scholar 
    Bachvaroff TR, Kim S, Guillou L, Delwiche CF, Coats DW. Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appl Environ Microbiol. 2012;78:334–45.CAS 
    Article 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh R, Kirkham A, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    Article 

    Google Scholar 
    Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 2018;12:1907.Article 

    Google Scholar 
    Hu SK, Connell PE, Mesrop LY, Caron DA. A hard day’s night: diel shifts in microbial eukaryotic activity in the north pacific subtropical gyre. Front Mar Sci. 2018;5:351.Article 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.CAS 
    Article 

    Google Scholar 
    De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.Article 

    Google Scholar 
    Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 2016;10:945–58.Article 

    Google Scholar 
    Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science. 2006;313:966–8.CAS 
    Article 

    Google Scholar 
    Hawkins BA, Porter EE. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat. 2003;161:40–9.Article 

    Google Scholar 
    Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature. 2010;468:553–6.CAS 
    Article 

    Google Scholar 
    Yang JW, Wu W, Chung C-C, Chiang K-P, Gong G-C, Hsieh C-h Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning—interplay between nanoflagellates and bacterioplankton. ISME J. 2018;12:1532–42.Article 

    Google Scholar 
    Fuhrman JA, Comeau DE, Hagström Å, Chan AM. Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol. 1988;54:1426–9.CAS 
    Article 

    Google Scholar 
    Lie AA, Kim DY, Schnetzer A, Caron DA. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat Microb Ecol. 2013;70:93–110.Article 

    Google Scholar 
    Yeh Y-C, Needham DM, Sieradzki ET, Fuhrman JA. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. MSystems. 2018;3:e00023–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–D6.CAS 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl Acids Res. 2013;41:D579–D604.
    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5-7. 2020. https://CRAN.R-project.org/package=vegan.Wickham H. ggplot2-elegant graphics for data analysis. Cham, Switzerland: Springer International Publishing; 2016.Kolde R. Pheatmap: pretty heatmaps. R Package Version. 2012;1:726.
    Google Scholar 
    Schloerke B, Crowley J, Cook D. Package ‘GGally’. Extension to ‘ggplot2’See. 2018;713. More

  • in

    Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference

    Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, et al. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021;15:3522–33.CAS 

    Google Scholar 
    Huang H, Ren L, Li H, Schmidt A, Gershenzon J, Lu Y, et al. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathog. 2020;16:e1008800.CAS 

    Google Scholar 
    Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep. 2016;6:34084.
    Google Scholar 
    Davis TS, Landolt PJ. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol. 2013;39:860–8.CAS 

    Google Scholar 
    Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, et al. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J. 2018;13:860–72.
    Google Scholar 
    Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–800.CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.
    Google Scholar 
    Paul GB, Gerhard F, Elżbieta R, Alexandra S, Arne H, Sébastien L, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol. 2012;26:1365–2435.
    Google Scholar 
    Ganter PF. Yeast and invertebrate associations. In: Gábor P, Carlos R, editors. Biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer; 2006. pp 303–70.Anagnostou C, Legrand EA, Rohlfs M. Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos. 2010;119:533–41.
    Google Scholar 
    Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol. 2019;9:8075–86.
    Google Scholar 
    Luo Y, Johnson JC, Chakraborty TS, Piontkowski A, Gendron CM, Pletcher SD. Yeast volatiles double starvation survival in Drosophila. Sci Adv. 2021;7:eabf8896.CAS 

    Google Scholar 
    Fogleman S. Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol. 1986;12:1037–55.
    Google Scholar 
    Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Tec. 2008;49:386–96.CAS 

    Google Scholar 
    Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–57.CAS 

    Google Scholar 
    Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol. 2020;30:127–34.CAS 

    Google Scholar 
    Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, et al. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Arch Insect Biochem. 2019;102:e21601.CAS 

    Google Scholar 
    Han P, Wang X, Niu CY, Dong YC, Zhu JQ, Desneux N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J Pest Sci. 2011;84:289–95.
    Google Scholar 
    Duyck PF, David P, Quilici S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol. 2004;29:511–20.
    Google Scholar 
    Wen T, Zheng L, Dong S, Gong Z, Sang M, Long X, et al. Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol Tec. 2019;147:156–65.
    Google Scholar 
    Li X, Yang H, Wang T, Wang J, Wei H. Life history and adult dynamics of Bactrocera dorsalis in the citrus orchard of Nanchang, a subtropical area from China: implications for a control timeline. ScienceAsia. 2019;45:212–20.
    Google Scholar 
    Chalupowicz D, Veltman B, Droby S, Eltzov E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens Actuat B-Chem. 2020;311:127896.CAS 

    Google Scholar 
    Turlings TC, Lengwiler UB, Bernasconi ML, Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta. 1998;207:146–52.CAS 

    Google Scholar 
    Wang B, Dong W, Li H, D’Onofrio C, Bai P, Chen R, et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr Biol. 2022;32:951–62.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 

    Google Scholar 
    Cellar NA, De Nison JE, Seipelt CT, Twohig M, Burgess JA. Title of subordinate document. In: Dramatic improvements in assay reproducibility for water-soluble vitamins using ACQUITY UPLC and the Ultra-Sensitive Xevo TQ-S Mass Spectrometer. 2013. https://www.waters.com/webassets/cms/library/docs/720004690en.pdf.Ren FR, Sun X, Wang TY, Yan JY, Yao YL, Li CQ, et al. Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME J. 2021;15:1655–67.CAS 

    Google Scholar 
    Batta YA. Quantitative postharvest contamination and transmission of Penicillium expansum (Link) conidia to nectarine and pear fruit by Drosophila melanogaster (Meig.) adults. Postharvest Biol Tec. 2006;40:190–6.
    Google Scholar 
    Rohlfs M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool. 2005;2:2.
    Google Scholar 
    Becher PG, Bengtsson M, Hansson BS, Witzgall P. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol. 2010;36:599–607.CAS 

    Google Scholar 
    Dionigi C, Ahten T, Wartelle L. Effects of several metals on spore, biomass, and geosmin production by Streptomyces tendae and Penicillium expansum. J Ind Microbiol Biot. 1996;17:84–88.CAS 

    Google Scholar 
    Jin S, Zhou X, Gu F, Zhong G, Yi X. Olfactory plasticity: variation in the expression of chemosensory receptors in Bactrocera dorsalis in different physiological states. Front Physiol. 2017;8:672.
    Google Scholar 
    Li H, Ren L, Xie M, Gao Y, He M, Hassan B, et al. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr Biol. 2020;30:4432–40.CAS 

    Google Scholar 
    Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Insect Biochem Molec. 2020;122:103389.CAS 

    Google Scholar 
    Ju JF, Bing XL, Zhao DS, Guo Y, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:1–12.
    Google Scholar 
    Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle–fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME J. 2020;14:2829–42.CAS 

    Google Scholar 
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
    Google Scholar 
    Honda K, Ômura H, Hayashi N, Abe F, Yamauchi T. Conduritols as oviposition stimulants for the danaid butterfly, Parantica sita, identified from a host plant, Marsdenia tomentosa. J Chem Ecol. 2004;30:2285–96.CAS 

    Google Scholar 
    Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, et al. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife. 2016;5:e13133.
    Google Scholar 
    Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 2016;14:e1002455.
    Google Scholar 
    Stötefeld L, Holighaus G, Schütz S, Rohlfs M. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. Chemoecology. 2015;5:271–83.
    Google Scholar 
    Gou B, Liu Y, Guntur A, Stern U, Yang HC. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Rep. 2014;9:522–30.CAS 

    Google Scholar 
    Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr Biol. 2020;30:3736–48.CAS 

    Google Scholar 
    Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 2020;10:3013–20.
    Google Scholar 
    Holden JT, Furman C, Snell EE. D-alanine and the vitamin B6 content of microorganisms. J Biol Chem. 1949;178:789–97.CAS 

    Google Scholar 
    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Micro. 2014;80:5844–53.
    Google Scholar 
    Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, et al. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 2020;14:2542–53.CAS 

    Google Scholar 
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci. 2014;281:20141838.
    Google Scholar  More

  • in

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera

    Lotsy, J. P. Evolution by Means of Hybridization (Martinus Nijhoff, 1916).Abbott, R. J. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).PubMed 
    Article 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z. F. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Müntzing, A. Outlines to a genetic monograph for the genus Galeopsis: with special reference to the nature and inheritance of partial sterility. Hereditas 13, 185–341 (1930).Article 

    Google Scholar 
    Schumer, M., Cui, R., Rosenthal, G. G. & Andolfatto, P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. Plos. Genet. 11, e1005041 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kong, S. & Kubatko, L. S. Comparative performance of popular methods for hybrid detection using genomic data. Syst. Biol. 70, 891–907 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jiang, Y. F. et al. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. N. Phytol. 228, 409–414 (2020).Article 

    Google Scholar 
    Rokas, A. & Holland, P. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol. 19, 972–977 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 
    Article 

    Google Scholar 
    Guo, X., Thomas, D. C. & Saunders, R. M. K. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Mol. Phylogenet. Evol. 127, 14–29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winkler, H. Betulaceae. In: Pflanzenreich IV (Verlag von Wilhelm Engelmann, 1904).Li, P. Q. & Skvortsov, A. K. Betulaceae. In: Flora of China (Science Press & Missouri Botanical Garden Press, 1999).Crane, P. R. Betulaceous leaves and fruits from the British Upper Palaeocene. Bot. J. Linn. Soc. 83, 103–136 (1981).Article 

    Google Scholar 
    Li, P. Q. & Cheng, S. X. Betulaceae. In: Flora Reipublicae Popularis Sinicae (Science Press, 1979).Yoo, K. O. & Wen, J. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Plant Sci. 163, 641–650 (2002).Article 

    Google Scholar 
    Li, J. H. Sequences of low-copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). J. Sys. Evol. 46, 333–340 (2008).
    Google Scholar 
    Yang, X. Y. et al. Plastomes of Betulaceae and phylogenetic implications. J. Sys. Evol. 57, 508–518 (2019).Article 

    Google Scholar 
    Yang, Y. Z. et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, X. Y. et al. A chromosome-level reference genome of the hornbeam, Carpinus fangiana. Sci. Data 7, 24 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Y. et al. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic. Res. 8, 54 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tajima, F. Evolutionary relationship of DNA-sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kubatko, L. S. & Chifman, J. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. BMC Evol. Biol. 19, 112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baack, E., Melo, M. C., Rieseberg, L. H. & Ortiz-Barrientos, D. The origins of reproductive isolation in plants. N. Phytol. 207, 968–984 (2015).Article 

    Google Scholar 
    Sobel, J. M. & Chen, G. F. Unification of methods for estimating the strength of reproductive isolation. Evolution 68, 1511–1522 (2014).PubMed 
    Article 

    Google Scholar 
    Imura, Y. et al. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 53, 287–303 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S.-J. & Bassham, D. C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol. 156, 514–526 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, F. et al. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. N. Phytol. 223, 2024–2038 (2019).CAS 
    Article 

    Google Scholar 
    Liu, Z. C., Franks, R. G. & Klink, V. P. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1891 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sitaraman, J., Bui, M. & Liu, Z. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol. 147, 672–681 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. L. et al. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Sys. Evol. 59, 1198–1208 (2021).Article 

    Google Scholar 
    Morales-Briones, D. F. et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219–235 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yang, Y. Z. et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215–222 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Grover, C. E. et al. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 92, 45–52 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.1–4.10.14 (2004).Article 

    Google Scholar 
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    Article 

    Google Scholar 
    Conesa, A. & Götz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, G. et al. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant J. 97, 779–794 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. GigaScience 9, giaa050 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. In: Multiple Sequence Alignment Methods, Methods in Molecular Biology (Humana Press, 2014).Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).Article 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 
    Article 

    Google Scholar 
    Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Individual and collective learning in groups facing danger

    Experimental setupThis research was approved by the Carnegie Mellon University Committee of the Use of Human Subjects. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all participants. Our data includes no identifying information of human participants. We conducted experiments from February to August 2021 (except for the preliminary sessions of random information; we ran the condition from June to November 2020). We preregistered the main experiment settings using AsPredicted (https://aspredicted.org/sm4k5.pdf).A total of 2786 subjects participated in our incentivized decision-making game experiments. We recruited subjects using Amazon Mechanical Turk (MTurk)52,53. Supplementary Table 1 shows the subject demographics. Our participants interacted anonymously over the Internet using customized software playable in a browser window (available at http://breadboard.yale.edu). All participants provided explicit consent and passed a series of human verification checks and a screening test of understanding game rules and payoffs before playing the game (see SI). We prohibited subjects from participating in more than one session of the experiment by using unique identifications for each subject on MTurk.In each session, subjects were paid a $2.00 show-up fee and a bonus depending on whether they took the appropriate disaster decision in four rounds. Furthermore, subjects earned $1.00 when they completed all four rounds. In each round, when a disaster stroke before they evacuated, the subjects earned no bonus. Otherwise, they earned a bonus of $1.00 without disaster or $0.50 with disaster by spending $0.50 for evacuation, plus $0.05 per other players who took the correct action accordingly (Supplementary Table 2). We have confirmed with prior work that the amount of evacuation cost, if any, makes no significant difference in the game’s performance23.At the start, subjects were required to pass a series of human verification checks. They needed to pass Google’s reCAPTCHA using the “I’m not a robot” checkbox. They were also requested to answer whether they were human players. The exact question asked was: “Please select an applicable answer about you.” The options were: “I am not a bot. I am a real person.” “I am not a real person. I am a bot.” “I am anything but a human.” and “I am a computer program working for a person.” The option’s order was randomized. Only the participants who selected “I am not a bot. I am a real person.” moved to the step of informed consent.When subjects provided explicit consent, they were asked to take a tutorial before the actual game would begin. In the tutorial, each subject separately interacted with three dummy players in two rounds of a 45-s practice game. In the actual game, some subjects would be informed in advance whether a disaster would indeed strike or not. In the practice game, while all subjects were not informed of such information in the first round, they were informed of the information in the second round. Thus, they practiced both conditions in terms of prior information on the disaster (see SI).After the practice game, subjects were assessed for their comprehension of the game rules and payment structure using four multiple-choice questions with three options. If they failed to select the correct answer in one of the questions, they could reselect it only once through the entire test. If they failed to select the correct answer more than once, they were unable to join the actual game.At 720 s after the tutorial beginning, a “Ready” button became visible simultaneously to all the subjects who completed the tutorial and passed the comprehension tests. The actual games started 30 s after the “Ready” button showed up. If subjects did not click the button before the game started, they were dropped. The game required a certain number of subjects. When the subjects who successfully clicked the button were more than 16, surplus subjects, randomly selected, were dropped from the game. When the number of qualified subjects was less than 12, the game did not start. As a result, subjects started the game in a group with an average size of 15.5 (s.d. = 1.1).At the start of the actual game, we selected one subject (the “informant”) at random who was informed in advance whether a disaster would indeed strike or not. The other subjects were informed that some players had accurate information about the disaster, but they were not informed who the informant was. The exact sentence that the informants received in their game screen was “A disaster is going to strike!” when a disaster would strike or “There is no disaster.” when a disaster would not strike. The one that the other uninformed subjects received was “A disaster may or may not strike.” Then, the group had the same informant across the four rounds except for a supplement condition of random informants. In the random informant condition, an informant was randomly selected every round.To prevent an end-of-game effect, we randomly set the game time with a normal distribution of a mean of 75 s and a standard deviation of 10 s. Prior work has confirmed that the game time is sufficient for players to communicate and make an evacuation decision23. As a result, each round ended at 75.0 s on average (s.d. = 9.5) without prior notice. In half of the sessions, a disaster struck at the end of the game. We did not inform any subjects, including the informants, when their sessions would end, the global network structure they were embedded in, or how many informants were in the game. After making their evacuation choice, subjects were informed of their success and failure along with overall results in their group. Then, subjects played another round of the evacuation game until they completed four total rounds. They had the same local network environment across four rounds except for the dynamic network condition.Network structure and tie rewiringIn the network sessions, subjects played the game in a directed network with a random graph configuration. A certain number of ties were present at the game’s onset as the initial density was set to 0.25.In the dynamic network conditions, subjects also could change their neighbors by making or breaking ties between rounds. In the tie-rewiring step, 40% of all the possible subject pairs were chosen at random. Thus, subjects could choose every other player at least once throughout the entire session (i.e., a set of four rounds) with a probability of about 80%. When the chosen pairs were connected, the pairs (the ties) were dissolved if the predecessor subject of the directed ties chose to break the tie. When the chosen pairs were not connected, the pairs (the ties) were newly created when the predecessor of the potential tie chose to create the tie. Subjects were not informed of the rewiring rate.To equalize the game time, we made subjects in the independent and static network conditions wait for additional 10 s after each game round ended. Despite the adjustment, the game time was significantly longer in the dynamic network sessions than in the independent and static network sessions. The average game time is 429.5 s (s.d. = 20.2) for the independent condition; 428.8 s (s.d. = 19.0) for the static network condition; and 564.7 s (s.d. = 36.3) for the dynamic network condition.To clarify mechanisms for dynamic networks to facilitate collective intelligence, we added one supplementary condition. In the supplementary condition, subjects were assigned to one of the 40 isomorphic networks that other subjects had developed with tie-rewiring options through the three rounds in the dynamic network condition (567 subjects in 40 groups). Network structure and other game settings (i.e., whether a disaster stroke, how long the game was, and which node was the informant) were identical to where the others played the game at the final round. However, players were different, and they had no prior experience in the game. They played the game in a network with a topology created by others ostensibly to optimize the accurate flow of information. In contrast to other conditions, subjects played only one round in the isomorphic network condition.Signal buttonsDuring the game of network sessions, subjects were allowed to share information about the possibly impending “disaster” by using “Safe” and “Danger” buttons that indicated their assessment (see SI). The default node color was grey. Then, when they clicked the Safe button, their node turned blue and, after 5 s, automatically returned to grey. Likewise, the Danger button turned their node to red for 5 s. Subjects could see only the colors of neighbors to whom they were directly connected. Since the signal exchange occurred through directed connections, an individual could send, but not receive, information from another subject (and vice versa). Once subjects chose to evacuate, they could no longer send signals, and their node showed grey (the default color) for the rest of the game. The neighbors of evacuated subjects were not informed of their evacuation. We have confirmed with prior work that collective performance does not vary with the communication continuity and the evacuation visibility23. Subjects could use the Safe and Danger buttons any time unless they evacuated, or they did not have to.Players dropping during the gameAfter each game round, when a player was inactive for 10 s, they were warned about being dropped. When they remained inactive after 10 s, they were dropped. When the selected informant was dropped, the session stopped at the round, and we did not use the data. Furthermore, as too many dropped players could affect the network structure and the behavioral dynamics of remaining players, we did not use the sessions where more than 25% of initial players were dropped during the game. Overall, 4 players dropped in 15 sessions; 3 players dropped in 22 sessions; 2 players dropped in 41 sessions; 1 player dropped in 44 sessions; and no player dropped in 58 sessions. The dropped players were prohibited from joining another session of this experiment.As noted above, players took the additional tie-rewiring step every round in the dynamic network sessions. Thus, the total game time was longer in the dynamic network sessions than in the independent and static network sessions even with the adjustment. As a result, more players were dropped in the dynamic network sessions than in the independent and static network sessions. The average number of dropped players across the four rounds is 0.40 (s.d. = 0.60) for the independent condition; 1.15 (s.d. = 0.86) for the static network condition; 1.75 (s.d. = 1.19) for the dynamic network condition. Although group size could affect collective performance, we found the differences in group size small enough for our study. We have confirmed the dynamic network’s performance improvement with a comprehensive analysis controlling the effect of group size (Supplementary Table 3). Also, there was no statistically significant difference in the dropped players’ performance of the dynamic network condition, compared with the other two conditions. The rate of correct actions of dropped players is 0.456 (s.d. = 0.322) for the independent condition, 0.594 (s.d. = 0.387) for the static network condition, and 0.558 (s.d. = 0.411) for the dynamic network condition; P = 0.106 between the independent condition and the dynamic network condition; P = 0.599 between the static network condition and the dynamic network condition (Welch two-sample t test).Analysis of signal diffusionsTo examine the change in signal diffusion, we analyzed “diffusion chains” for each signal type in the network sessions. We first identified the subjects who sent a signal when their neighbors had never sent one as spontaneous “diffusion sources.” When a subject sent a signal after at least one neighbor had sent the same type of signal, we regarded the subject’s signaling (and evacuation with danger signals) as occurring in a chain of signal diffusion and the total number of the responded subjects (including the diffusion source) as the diffusion size.We analyzed the distribution of signal diffusion chains with complementary cumulative distribution functions, measuring the fraction of diffusion chains that exhibit a given number of diffusion sizes. We found that the number of diffusions of both signals did not change across rounds. Safe-signal diffusions were more likely to occur than danger-signal diffusions regardless of whether a “disaster” would strike and how many rounds subjects played. On the other hand, the diffusion size varied greatly across rounds in disaster situations. With “disaster,” false safe signals spread further than true danger signals at the first round, but after that, warnings outperformed safe signals in terms of diffusion size. Figure 2B and Supplementary Fig. 3 scrutinize the changes in diffusion chains with their distributions.Analysis of individual responsivenessWe analyzed how individual evacuation behavior varies with exposure to signals from neighbors54. Let$${a}_{i}^{evacuate},, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ evacuates at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show, safe},, (t)=left{begin{array}{ll}1&quad text{if subject } i mathrm{ shows a safe signal at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show , danger} ,, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ shows a danger signal at time } t\ 0&quad text{otherwise}end{array}right.$$The hazard function, or instantaneous rate of occurrence of subject (i)’s evacuation at time t, is defined as:$${lambda }_{i},, (t)=underset{mathit{dt}to 0}{{mathrm{lim}}}frac{{mathrm{Pr}}({a}_{i}^{evacuate}=1;,, tt)}{dt}$$To model the time to evacuation, We used a Cox proportional hazards model with time-varying covariates for the number of signals, incorporating an individual actor-specific random effect55:$${lambda }_{i} ,, left{t|{{P}_{i}, X}_{i}(t), {G}_{i},{Y}_{i}(t)right}={lambda }_{0}(t)mathrm{exp}left{{{beta }_{P}^{{prime}}{P}_{i}+beta }_{X}^{{prime}}{X}_{i}(t)+{beta }_{G}^{{prime}}{G}_{i}+{beta }_{Y}^{{prime}}{Y}_{i}(t)+{gamma }_{i}right}$$where λ0(t) is a baseline hazard at time t.In the model, the hazard λi(t) depends on the covariates Pi, Xi(t), Gi, and Yi(t). The covariate Pi is the vector of subject i’s experiences before the sessions; that is, the number of rounds, the number of disasters that she has experienced, and the number of disasters that she has been struck by.The covariate Xi(t) is the vector of the number of safe signals ({x}_{i}^{safe} (t)), the number of danger signals ({x}_{i}^{danger} (t)). When subject j is a neighbor of subject i (i.e., (jin {N}_{i})), subject i is exposed to the signal of subject j, so that:$${x}_{i}^{safe},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, safe}(t)$$$${x}_{i}^{danger},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, danger}(t)$$The covariate Gi is the vector of the properties of the network in which subject i is embedded, out-degree, in-degree, and a network plasticity indicator. The covariate Yi(t) is the vector of the number of the subject i’s actions of sending safe and danger signals before time t. The coefficients β are the fixed effects and γi is the random effect for individual i. We assumed that waiting times to evacuation in different actors are conditionally independent given the sequence of signals they receive from network neighbors. This model shows how the hazard of an individual’s evacuation depends on the signaling actions of others, their network position, and experience (Supplementary Table 4). We applied the same model to the first signaling behavior. More