More stories

  • in

    Components of respiration and their temperature sensitivity in four reconstructed soils

    Wang, C. & Yang, J. Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Glob. Change Biol. 13, 123–131 (2007).ADS 
    Article 

    Google Scholar 
    Zhao, X., Li, L., Xie, Z. & Li, P. Effects of nitrogen deposition and plant litter alteration on soil respiration in a semiarid grassland. Sci. Total Environ. 740, 1–10 (2020).Article 

    Google Scholar 
    Jia, X., Shao, M. & Wei, X. Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agr. For. Meteorol. 166, 32–40 (2012).Article 

    Google Scholar 
    Meyer, N., Meyer, H. & Welp, G. Soil respiration and its temperature sensitivity (Q10): rapid acquisition using mid-infrared spectroscopy. Geoderma 323, 31–40 (2018).ADS 
    Article 

    Google Scholar 
    Gao, Q. et al. Effects of litter manipulation on soil respiration under short-term nitrogen addition in a subtropical evergreen forest. For. Ecol. Manag. 429, 77–83 (2018).Article 

    Google Scholar 
    Wang, Z. et al. Soil respiration response to alterations in precipitation and nitrogen addition in a desert steppe in northern China. Sci. Total Environ. 688, 231–242 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Luo, J. et al. Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain China. PLoS ONE 7, 1–9 (2012).Article 

    Google Scholar 
    Tong, X. et al. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos Environ. 49, 257–267 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 23, 2090–2103 (2017).ADS 
    Article 

    Google Scholar 
    Huang, S. D. et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the southeast China. Soil Biol. Biochem. 123, 242–249 (2018).CAS 
    Article 

    Google Scholar 
    Zeng, X., Song, Y., Zhang, W. & He, S. Spatio-temporal variation of soil respiration and its driving factors in semi-arid regions of north China. Chin. Geogr. Sci. 28, 12–24 (2018).Article 

    Google Scholar 
    Li, X. et al. Contribution of root respiration to total soil respiration in a semi-arid grassland on the Loess Plateau China. Sci Total Environ. 627, 1209–1217 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Luo, Y. & Zhou, X. Soil Respiration and the Environment. 3–4, (Elsevier, 2006).Bhupinderpal, S. et al. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ. 26, 1287–1296 (2003).Article 

    Google Scholar 
    Lavigne, M. et al. Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Can J Forest Res. 33, 1744–1753 (2003).CAS 
    Article 

    Google Scholar 
    Rey, A. et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Change Biol. 8, 851–866 (2002).ADS 
    Article 

    Google Scholar 
    Hartley, I., Heinemeyer, A., Evans, S. & Ineson, P. The effect of soil warming on bulk soil vs rhizosphere respiration. Glob. Change Biol. 13, 2654–2667 (2007).ADS 
    Article 

    Google Scholar 
    Zheng, Y., Zhang, Z., Hu, Y., Yao, D. & Chen, X. Seasonal variation of soil respiration and its environmental effect factors on refactoring soil in coal mine reclamation area. J. China Coal Soc. 39, 2300–2306 (2014).
    Google Scholar 
    Ren, Z. et al. Effect of weathered coal on soil respiration of reconstructed soils on mining area’s earth disposal sites in Shanxi-Shaanxi-Inner Monglia adjacent area. Trans. CSAE 31, 230–237 (2015).
    Google Scholar 
    Wang, F. Effect of coversoil thickness on reconstruction soil respiration characteristics in coal mining areas-A case from Panji mining area in Huainan China. Huainan Anhui Univ. Sci. Technol. 1, 59–60 (2017).
    Google Scholar 
    Sun, Z. H., Han, J. C. & Wang, H. Y. Soft rock for improving crop yield in sandy soil of Mu Us sandy land China. Arid Land Res Manag. 33, 136–154 (2019).CAS 
    Article 

    Google Scholar 
    Sun, Z. H. & Han, J. C. Effect of soft rock amendment on soil hydraulic parameters and crop performance in Mu Us sandy land China. Field Crop Res. 222, 85–93 (2018).Article 

    Google Scholar 
    Liu, Y. S., Yang, Y. Y., Li, Y. Y. & Li, J. T. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 51, 141–150 (2017).Article 

    Google Scholar 
    Lei, N. & Han, J. C. Effect of precipitation on soil respiration of different reconstructed soils. SCI REP-UK 10, 7328 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Jin, Z., Qi, Y., Yun, S. & Domroes, M. Seasonal patterns of soil respiration in three types of communities along grass-desert shrub transition in Inner Mongolia, China. Adv atmos Sci. 26, 503–512 (2009).CAS 
    Article 

    Google Scholar 
    Wang, X. et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).ADS 
    Article 

    Google Scholar 
    Zhao, C., Zhao, Z., Hong, Z. & Jun, L. Contribution of root and rhizosphere respiration of Haloxylon ammodendron to seasonal variation of soil respiration in the Central Asian desert. Quatern Int. 244, 304–309 (2011).Article 

    Google Scholar 
    Hanson, P., Edwards, N., Garten, C. & Andrews, J. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115–146 (2000).CAS 
    Article 

    Google Scholar 
    Liu, H. & Li, F. Effects of shoot excision on in situ soil and root respiration of wheat and soybean under drought stress. Plant Growth Regul. 50, 1–9 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, X., Zhou, G. & Xu, Z. Research and prospects for soil respiration of farmland ecosystems in China. J Plant Ecol. 32, 719–733 (2008).CAS 

    Google Scholar 
    Tong, D., Xiao, H., Li, Z., Nie, X. & Huang, J. Stand ages adjust fluctuating patterns of soil respiration and decrease temperature sensitivity after revegetation. Soil Sci. Soc. Am. J. 84, 760–774 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Gromova, M., Matvienko, A., Makarov, M., Cheng, C. & Menyailo, O. Temperature Sensitivity (Q10) of soil basal respiration as a function of available carbon substrate, temperature, and moisture. Eurasian Soil ence. 53, 377–382 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cy. 32, 204–210 (2018).Article 

    Google Scholar 
    Tang, X., Shao, H. & Liang, H. Soil respiration and net ecosystem production in relation to intensive management in moso bamboo forests. CATENA 137, 219–228 (2016).Article 

    Google Scholar 
    Zhou, Y., Wang, F., Chen, X., Chen, M. & Liu, B. Effects of ecological restoration patterns on diurnal variation of CO2 flux from rehabilitated soil of coal mining areas in Huainan City. Bull. Soil Water Conserv. 36, 40–46 (2016).
    Google Scholar 
    Lellei, K. et al. Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrub land ecosystems. Ecosystems 19, 1460–1477 (2016).Article 

    Google Scholar 
    Zhan, X., Yu, G., Zheng, Z. & Wang, Q. Carbon emission andspatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement. Adv. Earth Sci. 31, 97–108 (2012).
    Google Scholar  More

  • in

    Glasgow forest declaration needs new modes of data ownership

    Glasgow Leaders’ Declaration on Forests and Land Use (UNFCCC, 2021); https://go.nature.com/3FmrE2iIPCC: Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO, 2019); https://go.nature.com/3itqkRWTomppo, E. et al. National Forest Inventories: Pathways for Common Reporting (Springer, 2010).Jeanjean, H. & Achard, F. Int. J. Remote Sens. 18, 2455–2461 (1997).Article 

    Google Scholar 
    Ceccherini, G. et al. Nature 583, 72–77 (2020).CAS 
    Article 

    Google Scholar 
    Palahí, M. et al. Nature 592, E15–E17 (2021).Article 

    Google Scholar 
    Breidenbach, J. et al. Ann. For. Sci. 79, 2 (2022).Article 

    Google Scholar 
    ForestPlots.net Forest. et al. Biol. Conserv. 260, 108849 (2021).Article 

    Google Scholar 
    A Fresh Perspective: Global Forest Resources Assessment 2020 (FAO, 2020); https://go.nature.com/3uhpfBZCurtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Chazdon, R. L. et al. Ambio 45, 538–550 (2016).Article 

    Google Scholar 
    Sasaki, N. & Putz, F. E. Conserv. Lett. 2, 226–232 (2009).Article 

    Google Scholar 
    Wulder, M. A. & Coops, N. C. Nature 513, 30–31 (2014).CAS 
    Article 

    Google Scholar 
    Reiche, J. et al. Nat. Clim. Change 6, 120–122 (2016).Article 

    Google Scholar 
    Gorelick, N. et al. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    Valbuena, R. et al. Trends Ecol. Evol. 35, 656–667 (2020).CAS 
    Article 

    Google Scholar 
    Porter-Bolland, L. et al. For. Ecol. Manage. 268, 6–17 (2012).Article 

    Google Scholar 
    Boissière, M. et al. PLoS ONE 12, e0176897 (2017).Article 

    Google Scholar 
    Armenteras, D. Nat. Ecol. Evol. 5, 1193–1194 (2021).Article 

    Google Scholar 
    Forest Information System for Europe (FISE) (EEA, 2022); https://go.nature.com/3D1CcUw More

  • in

    Making forest data fair and open

    The risks of open forest data exploitation are magnified by features of how forests are measured and who does the measuring. Generating long-term data on forest health and change involves physically measuring and identifying millions of trees. This means establishing, maintaining and revisiting plots, and curating records indefinitely. Trees are long-lived organisms so forests require decades of monitoring to properly infer change. Sustaining local observations for decades needs deep, long-term commitment to the unique but shifting combinations of people, institutions, regulations, interests and relationships that characterize each forest site. The challenge is enhanced by the great biodiversity of tropical forests. Measuring a single hectare of Amazon forest involves collecting and identifying up to ten times the number of tree species that are present in the UK’s entire 24 million hectares. There are very few people with the skills to do this.Long-term tropical-forest data measurements not only require effort and skill but also often carry risk and depend on some of the most disadvantaged actors in the global science community. Many forest workers (researchers, technicians, students, field assistants and local communities) lack basic job security, much less a career path, despite the long-term dedication that monitoring forests requires. In addition, many tropical forest workers may endure dangerous field conditions, with threats including kidnapping, armed insurgents, narcotraffickers, land-grabbers, infectious disease, snakebite, floods, fire, dangerous transport and gender-based violence. Besides these personal dangers, tropical scientists often lack the basic resources to measure and maintain their forest plots, let alone develop their research groups8.In contrast to the experiences of those monitoring forests on the ground, consider the context for satellite and aircraft-based measurements, which require ground-based data for validation. Space-based forest missions are expensive but are funded by public or private capital. Once in orbit, they stream data to analysts ‘for free’. This requires relatively few people to sustain, and although the analysts’ work is highly skilled, it carries little professional and physical risk and lacks commitment to place. Forest fieldwork is less capital-intensive, but needs sustained investment, is intensely human and carries substantial costs and risks. There are no automated collecting stations to help to identify and measure trees, so without the long-term dedication of many forest workers data collection simply stops.The risks and costs involved in acquiring and sustaining ground forest data are persistently overlooked, ignored or regarded as externalities to be picked up by the forest workers themselves. This is especially problematic because countries that hold the most tropical forests are among those least able to invest in science and development (Fig. 1, Supplementary Fig. 1). For example, monitoring the carbon balance of intact tropical moist forests has been estimated to cost US $7 million a year12, easily exceeding present support. By contrast, the USA alone spends over $90 million annually on its national forest inventory13. So, many tropical forest data are collected by skilled people working with minimal funding, in challenging conditions and facing other constraints, including complex layers of rules, agreements and research permits. Given such huge disparities, it is hardly reasonable to expect this output to be served on an open plate to the world.Fig. 1: Global distributions of per capita gross domestic product and tropical forest area.a,b, The 2008–2018 national average gross domestic product per capita (a) and tropical forest area per capita (b). Countries are coloured according to position from lowest (dark red) to highest (dark blue) within each global distribution.Full size imageIt is perhaps unsurprising that the most vocal proponents of making tropical and subtropical forest data open are often not those who actually measure and monitor them. Meanwhile, key beneficiaries include powerful publishers (usually with commercial interests), agencies and technology companies (often with commercial or political interests), and highly educated computer-savvy analysts wishing to integrate earth observation data with forest data (naturally with a career interest). Relatively few of these institutions and people are based in the tropics and subtropics. Fewer still are also data originators.And so, for many data originators the present meaning of making tropical forest data ‘open’ is to transfer the hard-won output of their labours to more privileged individuals and institutions, and lose more of the limited control they have over their professional lives. Power flows from the originators to public agencies, private companies and data scientists, mainly in the Global North. More

  • in

    Genetic structure in neotropical birds with different tolerance to urbanization

    Biamonte, E., Sandoval, L., Chacón, E. & Barrantes, G. Effect of urbanization on the avifauna in a tropical metropolitan area. Landsc. Ecol. 26, 183–194 (2011).Article 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    Montgomery, M. R. The urban transformation of the developing world. Science 319, 761–764 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Nuissl, H. & Siedentop, S. Urbanisation and Land Use Change. In Sustainable Land Management in a European Context: A Co-Design Approach (eds Weith, T. et al.) 75–99 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-50841-8_5.Chapter 

    Google Scholar 
    Scolozzi, R. & Geneletti, D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ. Impact Assess. Rev. 36, 9–22 (2012).Article 

    Google Scholar 
    Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).Article 

    Google Scholar 
    Xu, X., Xie, Y., Qi, K., Luo, Z. & Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 624, 1561–1576 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Bélisle, M. & St. Clair, C. C. Cumulative effects of barriers on the movements of forest birds. Conserv. Ecol. 5, 9; http://www.consecol.org/vol5/iss2/art9 (2001).Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).Article 

    Google Scholar 
    Tremblay, M. A. & St Clair, C. C. Permeability of a heterogeneous urban landscape to the movements of forest songbirds. J. Appl. Ecol. 48, 679–688 (2011).Article 

    Google Scholar 
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).Article 
    CAS 

    Google Scholar 
    Isaksson, C. Impact of Urbanization on Birds. In Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 235–257 (Springer International Publishing, Berlin, 2018). https://doi.org/10.1007/978-3-319-91689-7_13.Chapter 

    Google Scholar 
    Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed 
    Article 

    Google Scholar 
    Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban Habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Unfried, T. M., Hauser, L. & Marzluff, J. M. Effects of urbanization on Song Sparrow (Melospiza melodia) population connectivity. Conserv. Genet. 14, 41–53 (2013).Article 

    Google Scholar 
    Brewer, V. N., Lane, S. J., Sewall, K. B. & Mabry, K. E. Effects of low-density urbanization on genetic structure in the Song Sparrow. PLoS ONE 15, e0234008 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Björklund, M., Ruiz, I. & Senar, J. C. Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city. Biol. J. Linn. Soc. 99, 9–19 (2010).Article 

    Google Scholar 
    Perrier, C. et al. Great tits and the city: Distribution of genomic diversity and gene–environment associations along an urbanization gradient. Evol. Appl. 11, 593–613 (2018).PubMed 
    Article 

    Google Scholar 
    Tan, D. J. X. et al. Novel genome and genome-wide SNPs reveal early fragmentation effects in an edge-tolerant songbird population across an urbanized tropical metropolis. Sci. Rep. 8, 12804 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).PubMed 
    Article 

    Google Scholar 
    Howell, S. N. G. & Webb, S. A Guide to the Birds of Mexico and Northern Central America (Oxford University Press, 1995).
    Google Scholar 
    Sandoval, L. & Mennill, D. J. Breeding biology of White-eared Ground-sparrow (Melozone leucotis), with a description of a new nest type. Ornitol. Neotropical 23, 225–234 (2012).
    Google Scholar 
    Stiles, F. G. & Skutch, A. F. A Guide to the Birds of Costa Rica (Cornell University Press, 1989).
    Google Scholar 
    Carlson, T. N. & Sanchez-Azofeifa, G. A. Satellite remote sensing of land use changes in and around San José Costa Rica. Remote Sens. Environ. 70, 247–256 (1999).Article 
    ADS 

    Google Scholar 
    Sánchez, J. E., Criado, J., Sánchez, C. & Sandoval, L. Costa Rica. In Important Bird Areas of Americas: priority sites for biodiversity conservation (eds Davendish, C. et al.) 149–156 (Birdlife International, 2009).
    Google Scholar 
    Sandoval, L. et al. The forgotten habitats in conservation: early successional vegetation. Rev. Biol. Trop. 67, 36–52 (2019).Article 

    Google Scholar 
    Juárez, R., Chacón-Madrigal, E. & Sandoval, L. Urbanization has opposite effects on the territory size of two passerine birds. Avian Res. 11, 11 (2020).Article 

    Google Scholar 
    Skutch, A. F. Life history of the Southern House Wren. Condor 55, 121–149 (1953).Article 

    Google Scholar 
    Johnson, L. S. House Wren (Troglodytes aedon), Version 10. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Markowski, M. et al. Genetic structure of urban and non-urban populations differs between two common parid species. Sci. Rep. 11, 10428. https://doi.org/10.1038/s41598-021-89847-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Mueller, J. C. et al. Evolution of genomic variation in the burrowing owl in response to recent colonization of urban areas. Proc. R. Soc. B Biol. Sci. 285, 20180206 (2018).Article 

    Google Scholar 
    Vangestel, C. et al. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient. Heredity 109, 163–172 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joyce, A. T. Land Use Change in Costa Rica: 1966–2006, as Influenced by Social, Economic, Political, and Environmental Factors (Litografía e imprenta LIL, 2016).
    Google Scholar 
    Fuchs, E. J. & Hamrick, J. L. Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conserv. Genet. 12, 175–185 (2011).Article 

    Google Scholar 
    Stevens, K., Harrisson, K. A., Hogan, F. E., Cooke, R. & Clarke, R. H. Reduced gene flow in a vulnerable species reflects two centuries of habitat loss and fragmentation. Ecosphere 9, e02114 (2018).Article 

    Google Scholar 
    Quesada-Román, A., Villalobos-Portilla, E. & Campos-Durán, D. Hydrometeorological disasters in urban areas of Costa Rica Central America. Environ. Hazards 20, 264–278 (2021).Article 

    Google Scholar 
    Muñoz, P., García-Rodríguez, A. & Sandoval, L. Urbanization, habitat extension and spatial pattern, threaten a Costa Rican endemic bird. Rev. Biol. Trop. 69, 170–180 (2021).
    Google Scholar 
    Sandoval, L., Bitton, P. P., Doucet, S. M. & Mennill, D. J. Analysis of plumage, morphology, and voice reveals species-level differences between two subspecies of Prevost’s Ground-sparrow Melozone biarcuata (Prévost and Des Murs) (Aves: Emberizidae). Zootaxa 3895, 103–116 (2014).PubMed 
    Article 

    Google Scholar 
    Arguedas, N. & Parker, P. G. Seasonal migration and genetic population structure in House Wrens. Condor 102, 517–528 (2000).Article 

    Google Scholar 
    Pujol, R. & Pérez, E. Crecimiento urbano en la región metropolitana de San José, Costa Rica. Una exploración espacial y temporal de los determinantes del cambio de uso del suelo, 1986–2010. Lincoln Institute of Land Policy https://www.lincolninst.edu/sites/default/files/pubfiles/2242_1578_Pujol_WP13RP1SP.pdf (2012).Sandoval, L., Dabelsteen, T. & Mennill, D. J. Transmission characteristics of solo songs and duets in a neotropical thicket habitat specialist bird. Bioacoustics 24, 289–306 (2015).Article 

    Google Scholar 
    Sandoval, L., Méndez, C. & Mennill, D. J. Vocal behaviour of White-eared Ground-sparrows (Melozone leucotis) during the breeding season: repertoires, diel variation, behavioural contexts, and individual distinctiveness. J. Ornithol. 157, 1–12 (2016).Article 

    Google Scholar 
    Carro, M. E., Llambías, P. E., Mahler, B. & Fernández, G. J. Contrasting patterns of natal dispersal of a south temperate House Wren population at local and regional scales. J. Ornithol. 162, 895–907 (2021).Article 

    Google Scholar 
    Garrigues, R. & Dean, R. The Birds of Costa Rica: A Field Guide (Cornell University Press, 2014).
    Google Scholar 
    Sandoval, L., Epperly, K. L., Klicka, J. & Mennill, D. J. The biogeographic and evolutionary history of an endemic clade of Middle American sparrows: Melozone and Aimophila (Aves: Passerellidae). Mol. Phylogenet. Evol. 110, 50–59 (2017).PubMed 
    Article 

    Google Scholar 
    MacGregor-Fors, I. & Escobar-Ibáñez, J. F. Birds from Urban Latin America, Where Economic Inequality and Urbanization Meet Biodiversity. In Avian Ecology in Latin American Cityscapes (eds MacGregor-Fors, I. & Escobar-Ibáñez, J. F.) 1–10 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-63475-3_1.Chapter 

    Google Scholar 
    MacGregor-Fors, I. & García-Arroyo, M. Who Is Who in the City? Bird Species Richness and Composition in Urban Latin America. In Avian Ecology in Latin American Cityscapes (eds MacGregor-Fors, I. & Escobar-Ibáñez, J. F.) 33–55 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-63475-3_3.Chapter 

    Google Scholar 
    Lande, R. & Barrowclough, G. F. Effective population size, genetic variation, and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.) 87–124 (Cambridge University Press, 1987). https://doi.org/10.1017/CBO9780511623400.007.Chapter 

    Google Scholar 
    Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia Pulchella. Evolution 51, 354–362 (1997).PubMed 
    Article 

    Google Scholar 
    Longmire, J. L., Maltbie, M. & Baker, R. J. Use of ‘Lysis Buffer’ in DNA isolation and its implication for museum collections (Museum of Texas Tech University, 1997).Book 

    Google Scholar 
    Bulgin, N. L., Gibbs, H. L., Vickery, P. & Baker, A. J. Ancestral polymorphisms in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus). Mol. Ecol. 12, 831–844 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hanotte, O. et al. Isolation and characterization of microsatellite loci in a passerine bird: the reed bunting Emberiza schoeniclus. Mol. Ecol. 3, 529–530 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jeffery, K. J., Keller, L. F., Arcese, P. & Bruford, M. W. The development of microsatellite loci in the song sparrow, Melospiza melodia (Aves) and genotyping errors associated with good quality DNA. Mol. Ecol. Notes 1, 11–13 (2001).CAS 
    Article 

    Google Scholar 
    Petren, K. Microsatellite primers from Geospiza fortis and cross-species amplification in Darwin’s finches. Mol. Ecol. 7, 1782–1784 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brar, R. K. et al. Eleven microsatellite loci isolated from the banded wren (Thryothorus pleurostictus). Mol. Ecol. Notes 7, 69–71 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cabe, P. R. & Marshall, K. E. Microsatellite loci from the house wren (Troglodytes aedon). Mol. Ecol. Notes 1, 155–156 (2001).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2021).RStudio Team. RStudio: integrated development environment for R. RStudio http://www.rstudio.com/ (2021).Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shah, V. B. & McRae, B. Circuitscape: A Tool for Landscape Ecology. in Proceedings of the 7th Python in Science Conference (eds. Varoquaux, G., Vaught, T. & Millman, J.) 62–65 (2008).Ortiz-Malavasi, E. Atlas digital de costa rica está a disposición del público. Invest. TEC 23, 1659–3383 (2015).
    Google Scholar 
    McRae, B., Shirk, A. & Platt, J. Gnarly landscape utilities: Resistance and habitat calculator user guide. The Nature Conservancy https://circuitscape.org/gnarly-landscape-utilities/ (2013).Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol. 9, 1151–1156 (2018).Article 

    Google Scholar  More

  • in

    The application and limitations of exposure multiplication factors in sublethal effect modelling

    The GUTS modelFor completeness, we will prove the result for the most general GUTS model, which will also prove the result for all reduced forms.Theorem 1
    For any model version within the GUTS framework, let (S(t; alpha )) denote the survival probability at time t for a given non-zero exposure profile (C_w(t)) scaled by some EMF value (alpha). For any chosen (x > 0) percentage effect (exposure-induced mortality), model end time (t_{E}) and background mortality (h_b) low enough such that (S(t_E; 0) > 0) there exists a unique EMF (alpha _*) such that$$begin{aligned} S(t_{E}; alpha _*) = left( 1 – frac{x}{100}right) S(t_E; 0), end{aligned}$$
    (2)
    (alpha _*) is the (hbox {LP}_{x}) for the exposure profile.
    Baudrot and Charles10 calculated (LC_{50}) values for GUTS-RED-SD and GUTS-RED-IT. Their results implied the result of Theorem 1 for the main regulatory models. Our work makes the result explicit and generalises it to the whole GUTS framework. Another result of Theorem 1 is that the (hbox {LP}_{x}) is monotonically increasing with respect to x. For example, the (hbox {LP}_{50}) will always larger than the (hbox {LP}_{10}) for the same exposure profile. This result comes directly from (S4) in the SI.DEB modelsDue to the additional complexity of the DEB model we split the result into multiple theorems and proofs, starting by showing continuity and monotonicity of the damage ODE.
    Theorem 2

    Let
    (C_w)
    be some external concentration over time. Assume an effects model where the effects of higher exposure on growth and/or reproduction are always adverse (or zero) at all points in time. Then, defining the scaled damage ODE as
    $$begin{aligned} begin{aligned} frac{D(t; alpha )}{dt} =&k_d(x_u alpha C_w – x_eD) – (x_G + x_R)D. end{aligned} end{aligned}$$
    (3)

    Then, for any combination of feedbacks (varvec{X} = [varvec{X}_u, 0, varvec{X}_G, varvec{X}_R]), damage is monotonically increasing with respect to (alpha), and is continuous with respect to (alpha) as long as changes to L and R are continuous. Moreover, damage is strictly monotonically increasing with respect to (alpha) whenever (D(t;1) > 0).
    The limitation that (varvec{X}_e = 0) will be discussed in greater detail later. However, depending on the pMoA of the stressor we can extend the result of Theorem 2 slightly.
    Corollary 3.1
    If the pMoA of a substance directly affects reproduction and does not affect growth, i.e. (varvec{S} = [0, 0, 0, s_{R}, s_{H}]) then the results of Theorem 2holds for any combination of feedbacks.
    Finally, we can step from the results of Theorem 2 and Corollary 3.1 to show the existence and uniqueness of a critical multiplier ((hbox {EP}_{x}) or (hbox {LP}_{x})) for growth, reproduction and survival.
    Theorem 3
    Consider the DEB-TKTD model of Jager11 and a substance such that at least one of Theorem 2or Corollary 3.1hold. Further, let (C_w(t)) be a non-zero exposure profile where the time of first exposure is before (t_1) as defined in Table 1. Then, for any chosen percentage effect level (x > 0) there exists a unique EMF (alpha _* >0) such that$$begin{aligned} min left( frac{L(t_{E}; alpha _*)}{L_(t_{E}; 0)}, frac{R_c(t_{E}; alpha _*)}{R_c(t_{E};0)}, frac{S(t_{E}; alpha _*)}{S(t_{E}; 0)}right) = 1 – frac{x}{100} end{aligned}$$
    (4)
    this (alpha _*) is the (hbox {EP}_{x}) (or (hbox {LP}_{x})) for the exposure profile (C_w(t)).

    Table 1 Table of the state variables and pMoAs (including combinations of pMoAs) in the DEB-TKTD model11.Full size table
    The monotonicity of effects on all state variables in the DEB model means that, for the conditions described in Theorem 3, the (hbox {EP}_{x}) (or (hbox {LP}_{x})) is also monotonically increasing with respect to x.We should note here that one can either setup an algorithm to find the critical multiplier value for growth, reproduction and survival individually and then select the minimum or setup the algorithm to directly find the minimum critical multiplier as in (4). Both will produce the same result, but the second approach is likely to be faster.One could argue that ERA should consider the combined effects of lethal and sublethal stress on the individual’s fitness. This is possible using the continuous form of the Euler–Lotka equation24$$begin{aligned} B(t) = int _0^t B(t-a) l(a)b(a) da, end{aligned}$$
    (5)
    where B(t) is the number of births at time t, l(a) is the fraction of females which survive to age a and b(a) is the birth rate for mothers of age a. For the offspring of a test population which all have the same age (as is the standard in long-term toxicity experiments) this integral collapses to a single point, (B(t-a) = 1) when (t=a) and zero elsewhere. The DEB model provides exactly the values which we need to calculate B(t). Namely$$begin{aligned} l(a) = S(a), quad b(a) = frac{d}{dt}R_c(a). end{aligned}$$One can now find the births per individual per time predicted by the DEB model as$$begin{aligned} B(t) = S(t)frac{d}{dt}R_c(t). end{aligned}$$
    (6)
    Integrating (6) over the duration of the experiment gives the expected number of offspring produced per female alive at the start of the test.There are two clear options for how to proceed. Firstly, one could calculate (int _0^{t_E} B(t) dt) for each EMF and compare it to the control, similar to finding (hbox {EP}_{x}) values for individual endpoints. Alternatively, one can use B(t) as the basis to estimate the intrinsic population growth rate25. This quantity provides an estimation of population growth based on the survival and fecundity over time of individuals. Indeed, it is listed as a potential output value in the experimental guidelines for standard Daphnia magna reproduction tests26. For the first of these options we offer an extension to Theorem 3.
    Corollary 3.2
    Consider a DEB-TKTD model and exposure profile such that Theorem 3holds. The number of expected offspring per female, given by$$begin{aligned} mathrm {B}(t_E; alpha ) = int _0^{t_E} S(t; alpha )frac{d}{dt}R_c(t; alpha ) dt end{aligned}$$has a unique (hbox {EP}_{x}) (alpha _*) such that$$begin{aligned}frac{mathrm {B}(t_E; alpha _*)}{mathrm {B}(t_E; 0)} = 1 – frac{x}{100}end{aligned}$$
    Our results provide a rigid boundary to the applicability domain of the EMF approach both in terms of existence and uniqueness. Existence relies on the initial time in the profile when external concentration is non-zero, as described in Table 1. While it is important to know about these conditions, they will rarely inhibit an ERA, since long initial periods with zero exposure are uncommon.Cases where uniqueness cannot be guaranteed require more caution and it is unwise to use root-finding algorithms. In the next subsection we explore what can happen outside of this domain and provide suggestions for how to still produce a single reliable (hbox {EP}_{x}) value.Surface:volume scaling of eliminationThere is a reason that in Theorem 2, (varvec{X}_e = 0) was specified. In some cases when (varvec{X}_e = 1) a higher multiplier is no guarantee of higher damage for all time. Consider a substance which acts on assimilation and has surface area:volume scaled elimination (i.e. (varvec{X} = [0, 1, 0, 0])). The damage ODE under some EMF (alpha) is then$$begin{aligned} frac{dD}{dt} = k_d left( alpha C_w – frac{L_m}{L} D right) , end{aligned}$$where (L_m) is the maximum length the organism can reach. The EMF has a positive direct effect on damage, but also an opposing indirect effect. Increasing damage decreases the size of the organism which, due to the surface area:volume elimination of damage, enables faster elimination of damage. As a result, not only does Theorem 2 no longer hold but in fact a larger multiplier value can cause lower damage at some points in an exposure profile. In other words, we observe a paradoxical result whereby more exposure translates to less effect some time after exposure.Figure 3 illustrates what we will refer to as the “more is less” scenario. The exposure consists of a single pulse early in the animal’s life, modelled for two multiplier values, (alpha _2 > alpha _1). During the exposure phase the direct effect of the higher exposure causes higher damage and greater effects on size. After the pulse, external exposure is zero, and therefore the external concentration and uptake remain zero regardless of (alpha). Regardless of the EMF, scaled damage can only decrease during this phase. However, the effects of the higher multiplier are still relevant. As Fig. 2 shows, the feedback processes still influence damage dynamics. The model organism exposed to (alpha _2C_w) is smaller and therefore able to eliminate damage more rapidly because (varvec{X}_e = 1). This eventually leads to lower damage for the model organism exposed to (alpha _2C_w) (i.e. (D(t; alpha _1) > D(t; alpha _2))). The more is less phenomenon can also impact growth and cumulative reproduction, as seen in Fig. 3b,c. Sometime after exposure (L(t;alpha _2) > L(t; alpha _1)) and (R(t;alpha _2) > R(t; alpha _1)). For survival, and any additional endpoints without recovery, this “crossover” is unlikely, mortality during the exposure phase (where (D(t; alpha _2) > D(t; alpha _1))) will almost certainly dominate any mortality during the recovery phase. Figure 3d shows that for certain (x%) effect levels (vertical axis) multiple (hbox {EP}_{x}) values exist.Figure 3An illustration of the issues which can occur using the EMF approach for substances with surface area:volume scaled elimination (i.e. (varvec{X} = [0, 1, 0, 0])). The (non-multiplied) exposure is a constant (1 mu g/L) for the first 14 days and zero thereafter and effects assimilation only ((varvec{S} = [1, 0,0, 0, 0])). (a) Scaled damage, (b) length over time, (c) cumulative reproduction. (d) Endpoint value as a proportion of control after 40 days. The shape of these curves show that certain effect levels can be caused by two distinct multiplier values. Parameter values are (L_0 = 0.1), (f = 1), (r_B = 0.1), (L_p = 0.6), (L_m = 1), (R_m = 15), (kappa = 0.8), (y_P = 0.64) (z_b = 0.1), (b_b = 1), (k_d = 0.05), (varvec{X} = [0, 1, 0, 0]). See the SI for the definitions of these parameter values.Full size imageIn practice, instances of non-uniqueness such as Fig. 3 will be rare since they rely on a sudden and significant decrease in external exposure. Moreover, EMF methods for DEB-TKTD models will include a moving time window method18 consisting of many exposures constructed sequentially and assessed. Each window will produce an (hbox {EP}_{x}) value, but only the lowest will be relevant for the ERA. A time window which starts slightly earlier in the broader exposure profile would feature the same pulse later in the model organism’s lifespan and thus not allow organism recovery. Depending on the exact endpoint used, one would expect those windows to have a lower (and unique) (hbox {EP}_{x}). However, the potential for multiple (hbox {EP}_{x}) values raises concerns across all areas which impose a multiplicative margin of safety. We cannot guarantee that a multiplier resulting in (x%) effects exists nor that any value found by the algorithm is unique.Although not pictured here, maintenance and growth pMoAs and combinations of feedbacks which include (varvec{X}_e = 1) can also produce the “crossover” in the damage values and the “more is less” phenomenon seen in Fig. 3. It can also arise for scenarios which do not feature a deviation from the standard rules for growth (e.g. a starvation phase) and for other DEB based models. The SI features a similar plot to Fig. 3 showing damage crossover for a standard DEB model.Knowing this, the obvious question is how to proceed? Certainly with caution when (varvec{X}_e = 1) is necessary in model calibration and validation. Under such circumstances algorithms must ensure that the (hbox {EP}_{x}) value found is the lowest multiplier which gives (x%) effects when there is a risk of non-uniqueness. The brute force approach, incrementing from zero until the desired effect level is met or exceeded, is one example. Whether it is realistic for higher EMF values to cause reduced effects in vivo then does not alter the conservatism of the approach for ERA.Table 2 summarises the domain where the margin of safety approach can be used in conjunction with a root-finding algorithm without concern in the DEB-TKTD model of Jager11. For model configurations where non-uniqueness could emerge using another method to find the (hbox {EP}_{x}) is advisable. For example, a brute-force approach starting from an EMF of 0 in small increments (e.g. by 0.1). Without good reason, calibration should first be attempted with no feedbacks. Under this guiding philosophy of pursuing model simplicity we expect that the problem cases will be rare.Table 2 A table to mark under which scenarios the EMF approach is and is not guaranteed to produce a unique (hbox {EP}_{x}).Full size tableOther issuesThe damage crossover illustrated in the previous subsection occurs more commonly, and to a greater extent, when the pMoA is assimilation effects. This is because, at least in this standard implementation, stress can cause (100%) effect and completely cease assimilation when (s_A ge 1) (see SI for details). When this is the case, higher exposure (even from an increased multiplier) does not translate to higher stress. This differs from other pMoAs, whose stress values are unbounded. Indeed, replacing (1 – s_A) with (1/(1 + s_A)) in the model ((S5) in the SI) reduces the occurrence and scale of “crossovers” such as Fig. 3. However, the formulation of the pMoA should not be based on how it might affect the algorithm or the EMF.Certain species require further deviations from the standard model. For instance, different life-stages, growth and/or reproduction rules might be introduced to explain observed phenomena. Before models featuring these deviations are used in an EMF approach one should consider the potential issues as we have done in this section. While a proof of existence and uniqueness of the (hbox {EP}_{x}) for each model variant is ideal it is also infeasible. However, modellers should ensure that their approach is robust enough to deal with issues around existence and uniqueness. Checking that the model endpoint is reduced by (x%) when the (hbox {EP}_{x}) is applied to the exposure profile is an easy way to check accuracy and existence. An argument (if not a full, formal proof) for uniqueness should also be considered. In cases where that is not possible, the algorithm must be set up to identify the lowest (hbox {EP}_{x}), or check that no lower values exist.One common addition is to DEB-TKTD models which feature starvation is to assume that there is some maximum amount of starvation/shrinking which an animal can survive. Once that point is met or exceeded death is instantaneous27. Such death mechanisms cause problems. They can introduce a discontinuity in the response versus multiplier value for a given time window (i.e. a “jump” in plots such as Fig. 3). For instance, if in the example given in Fig. 3 the animal was not allowed to shrink, and instead died, then the multiplier of 6 would result in (100%) effects on survival (and significant growth effects). In contrast, the exposure when the multiplier is 2 is survivable and the animal can recover. Presumably, for some critical (alpha _c in (2, 6)) the exact threshold for death is reached. This (alpha _c) is a discontinuity between partial and (100%) effects relative to control. Under some circumstances this will prohibit finding a multiplier which results in exactly (x%) effects, regardless of the method used.There are two readily apparent solutions to this at the individual level. One is to set (alpha _c) as the multiplier for the window, the second is to replace such discrete responses with graded responses. In this example for instance, shrinking could add to the lethal hazard h. It is not possible to universally recommend one approach over the other as it will depend on the species’ behaviour. Once that decision has been made these issues must be recognised and reported by the modellers. More

  • in

    The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient

    Rochman CM. Microplastics research—from sink to source. Science. 2018;360:28–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Galloway TS, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol. 2017;1:116.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J Geophys Res Oceans. 2020;125:1–40.Article 

    Google Scholar 
    Harrison JP, Hoellein TJ, Sapp M, Tagg AS, Ju-Nam Y, Ojeda JJ. Microplastic-associated biofilms: a comparison of freshwater and marine environments. In: Freshwater microplastics. Cham: Springer; 2018. p. 181–201.Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15:155–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dang H, Lovell CR. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 2016;80:91–138.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McCormick AR, Hoellein TJ, London MG, Hittie J, Scott JW, Kelly JJ. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere. 2016;7:e01556.Article 

    Google Scholar 
    Kesy K, Oberbeckmann S, Kreikemeyer B, Labrenz M. Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea mesocosms. Front Microbiol. 2019;10:1665.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol. 2014;90:478–92.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Masó M, Garcés E, Pagès F, Camp J. Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. Sci Mar. 2003;67:107–11.Article 

    Google Scholar 
    Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Loder M, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res. 2016;120:1–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.CAS 
    Article 

    Google Scholar 
    Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:2709.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dussud C, Meistertzheim AL, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Frère L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the Plastisphere: implications for policy. Front Ecol Environ. 2015;13:541–6.Article 

    Google Scholar 
    Amaral-Zettler LA, Ballerini T, Zettler ER, Asbun AA, Adame A, Casotti R, et al. Diversity and predicted inter- and intra-domain interactions in the Mediterranean Plastisphere. Environ Pollut. 2021;286.Li W, Zhang Y, Wu N, Zhao Z, Xu W, Ma Y, et al. Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the Haihe Estuary of Bohai Bay, China. Environ Sci Technol. 2019;53:10763–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Oberbeckmann S, Labrenz M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Ann Rev Mar Sci. 2020;12:209–32.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yang Y, Liu W, Zhang Z, Grossart HP, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol. 2020;104:6501–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebreton LCM, van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. River plastic emissions to the world’s oceans. Nat Commun. 2017;8:15611.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G. The Travelling Particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany). Sci Total Environ. 2020;720:137603.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021-18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.Beule L, Karlovsky P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ. 2020;8:e9593.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2013;2:1–295.Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dinno A. dunn. test: Dunn’s test of multiple comparisons using rank sums. R package version. Vienna, Austria: R Foundation for Statistical Computing. 2017;1:1.Foster ZS, Sharpton TJ, Grunwald NJ. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13:e1005404.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Clarke K, Gorley R. Getting started with PRIMER v7. PRIMER-E, 20. Plymouth: Plymouth Marine Laboratory; 2015.Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley Statsref: Statistics Reference Online; 2014. p. 1–15.Baselga A, Orme CDL. betapart: an R package for the study of beta diversity. Methods Ecol Evol. 2012;3:808–12.Article 

    Google Scholar 
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:370.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wust PK, Bunk B, et al. Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Front Microbiol. 2020;11:1391.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chase JM, Kraft NJ, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α‐diversity. Ecosphere. 2011;2:1–11.Article 

    Google Scholar 
    Miao L, Wang P, Hou J, Yao Y, Liu Z, Liu S, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ. 2019;650:2395–402.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cai L, Wu D, Xia J, Shi H, Kim H. Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Sci Total Environ. 2019;671:1101–7.CAS 
    Article 

    Google Scholar 
    Wang L, Luo Z, Zhen Z, Yan Y, Yan C, Ma X, et al. Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors. Environ Pollut. 2020;265:114922.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vukanti R, Crissman M, Leff LG, Leff AA. Bacterial communities of tyre monofill sites: growth on tyre shreds and leachate. J Appl Microbiol. 2009;106:1957–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wagner S, Huffer T, Klockner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment – a review on generation, analysis, occurrence, fate and effects. Water Res. 2018;139:83–100.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Degaffe FS, Turner A. Leaching of zinc from tire wear particles under simulated estuarine conditions. Chemosphere. 2011;85:738–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Halsband C, Sørensen L, Booth AM, Herzke D. Car tire crumb rubber: does leaching produce a toxic chemical cocktail in coastal marine systems? Front Environ Sci. 2020;8:1–15.Article 

    Google Scholar 
    Thavamani P, Malik S, Beer M, Megharaj M, Naidu R. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manage. 2012;99:10–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Toshchakov SV, Korzhenkov AA, Chernikova TN, Ferrer M, Golyshina OV, Yakimov MM, et al. The genome analysis of Oleiphilus messinensis ME102 (DSM 13489(T)) reveals backgrounds of its obligate alkane-devouring marine lifestyle. Mar. Genomics. 2017;36:41–7.Article 

    Google Scholar 
    Love CR, Arrington EC, Gosselin KM, Reddy CM, Van Mooy BAS, Nelson RK, et al. Microbial production and consumption of hydrocarbons in the global ocean. Nat Microbiol. 2021;6:489–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ribicic D, McFarlin KM, Netzer R, Brakstad OG, Winkler A, Throne-Holst M, et al. Oil type and temperature dependent biodegradation dynamics – combining chemical and microbial community data through multivariate analysis. BMC Microbiol. 2018;18:83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drablos F, Brakstad OG. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull. 2018;129:370–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rezaei Somee M, Dastgheib SMM, Shavandi M, Ghanbari Maman L, Kavousi K, Amoozegar MA, et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci Rep. 2021;11:11316.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren X, Tang J, Wang L, Sun H. Combined effects of microplastics and biochar on the removal of polycyclic aromatic hydrocarbons and phthalate esters and its potential microbial ecological mechanism. Front Microbiol. 2021;12:647766.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dussud C, Hudec C, George M, Fabre P, Higgs P, Bruzaud S, et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front Microbiol. 2018;9:1571.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaksmaa A, Knittel K, Abdala Asbun A, Goudriaan M, Ellrott A, Witte HJ, et al. Microbial communities on plastic polymers in the Mediterranean Sea. Front Microbiol. 2021;12:673553.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto M, Langer TM, Huffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE. 2019;14:e0217165.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erni-Cassola G, Wright RJ, Gibson MI, Christie-Oleza JA. Early colonization of weathered polyethylene by distinct bacteria in Marine Coastal Seawater. Microb Ecol. 2020;79:517–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Berry D, Gutierrez T. Evaluating the detection of hydrocarbon-degrading bacteria in 16S rRNA gene sequencing surveys. Front Microbiol. 2017;8:896.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang P, Zhao S, Zhu L, Li D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ. 2018;624:48–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol. 2008;74:52–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobias-Hunefeldt S. Community assembly drivers shift from bottom-up to top-down in a maturing in situ marine biofilm model. University of Otago; 2020.Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci USA. 2007;104:11436–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rocca JD, Simonin M, Bernhardt ES, Washburne AD, Wright JP. Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing. Ecology. 2020;101:e02956.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Crump BC, Hopkinson CS, Sogin ML, Hobbie JE. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol. 2004;70:1494–505.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185:1485–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palomo A, Dechesne A, Smets BF. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. 2019. https://www.biorxiv.org/content/10.1101/612226v1.Kielak AM, van Veen JA, Kowalchuk GA. Comparative analysis of acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on acidobacteria subdivision 6. Appl Environ Microbiol. 2010;76:6769–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol. 2014;48:11863–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Teixeira L, Merquior V. The family moraxellaceae. The prokaryotes: Gammaproteobacteria. Berlin: Springer. 2014. p. 443–76.Stalder T, Press MO, Sullivan S, Liachko I, Top EM. Linking the resistome and plasmidome to the microbiome. ISME J. 2019;13:2437–46.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, et al. High diversity of extended-spectrum beta-lactamase-producing bacteria in an urban river sediment habitat. Appl Environ Microbiol. 2010;76:5972–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Mapping the distribution and tree canopy cover of Jacaranda mimosifolia and Platanus × acerifolia in Johannesburg’s urban forest

    Lawrence, H. In City Trees: A Historical Geography from the Renaissance through to the Nineteenth Century (Charlottesville and London: University of Virginia Press, 2006, Lewis Mumford. The City in History: Its Origins, Its Transformations and Its Prospects (San Diego: Harvest Book Harcourt, 1961).Frawley, J. Campaigning for street trees, Sydney botanic gardens, 1890s–1920s. Environ. Hist. 15(3), 303–322. https://doi.org/10.3197/096734009X12474738199953 (2009).Article 

    Google Scholar 
    Seburanga, J. L., Kaplin, B. A., Zhang, Q.-X. & Gatesire, T. Amenity trees and green space structure in urban settlements of Kigali, Rwanda. Urban. For. Urban Green. 13(84–9313), 84–93. https://doi.org/10.1016/j.ufug.2013.08.001 (2014).Article 

    Google Scholar 
    Wilson, E. H. Northern trees in southern lands. J. Arnold Arbor. 4(2), 61–90 (1923).Article 

    Google Scholar 
    Gwedla, N. & Shackleton, C. M. Population size and development history determine street tree distribution and composition within and between Eastern Cape towns, South Africa. Urban. For. Urban. Gree. 25, 11–18. https://doi.org/10.1016/j.ufug.2017.04.014 (2017).Article 

    Google Scholar 
    Jacobs, A. B., Macdonald, E. & Rofé, Y. In The Boulevard Book: History, Evolution, Design of Multiway Boulevards (MIT Press, Cambridge, MA 2002), Robinson, W. The Parks and Gardens of Paris Considered in Relation to the Wants of Other Cities and of Private and Public Gardens (McMillan and Co., London , 1878).Akbari, A. H., Pomerantz, M. & Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban. Sol. Energy. 70(3), 295–310 (2001).ADS 
    Article 

    Google Scholar 
    Roy, S., Byrne, J. & Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 11, 351–363. https://doi.org/10.1016/j.ufug.2012.06.006 (2012).Article 

    Google Scholar 
    Schäffler, A. & Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 86, 246–257. https://doi.org/10.1016/j.ecolecon.2012.05.008 (2013).Article 

    Google Scholar 
    Santamour, F. S. Trees for urban planting: Diversity, uniformity and common sense. In Proceedings of the 7th Conference of the Metropolitan Tree Improvement Alliance (METRIA), vol. 7, 57–65 (1990).Shams, Z. I. Changes in diversity and composition of flora along a corridor of different land uses in Karachi over 20 years: caUses and implications. Urban. For. Urban Green. 17, 71–79. https://doi.org/10.1016/j.ufug.2016.03.002 (2016).Article 

    Google Scholar 
    Kambites, C. & Owen, S. Renewed prospects for green infrastructure planning in the UK. Plan. Prac. Res. 21(94), 483–496. https://doi.org/10.1080/02697450601173413 (2006).Article 

    Google Scholar 
    Cho, M. A., Malahlelac, O. & Ramoeloa, A. Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study. Int. J. Appl. Earth. Obs. 38, 349–357. https://doi.org/10.1016/j.jag.2015.01.015 (2015).Article 

    Google Scholar 
    Niculescu, S., Lardeux, C., Grigoras, I., Hanganu, J. & David, L. Synergy between LiDAR, RADARSAT-2, and spot-5 images for the detection and mapping of wetland vegetation in the Danube Delta. IEEE J Sel. Top. Appl. Earth. Obs. Remote Sens. 9, 3651–3666 (2016).ADS 
    Article 

    Google Scholar 
    Lefebvre, A., Picand, P.-A. & Sannier, C. Mapping tree cover in European cities: Comparison of classification algorithms for an operational production framework. In 2015 Joint Urban Remote Sensing Event (JURSE), IEEE, 1–4 (2015) https://doi.org/10.1109/JURSE.2015.7120511.Wyndham, C. H., Strydom, N. B., Van Rensburg, A. J. & Rogers, G. G. Effects on maximal oxygen intake of acute changes in altitude in a deep mine. J. Appl. Physiol. 29(5), 552–555 (1970).CAS 
    Article 

    Google Scholar 
    Hegnauer, R. Chemotaxonomie der Pflanzen, vol. 3, 268–281 (Birkhäuser Verlag, Basel, 1964).Mabberley, D. J. The Plant-Book, 2nd edn. 87, 368–369 (Cambridge University Press, Cambridge, 1997).Gachet, M. S. & Schühly, W. Jacaranda—An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 121, 14–27. https://doi.org/10.1016/j.jep.2008.10.015 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gilman, E. F. & Watson, D. G. Jacaranda mimosifolia. Fact Sheet ST-317, Environmental Horticulture Department, Florida Cooperative Extension Service, University of Florida, Gainesville, http://www.ci.milpitas.ca.gov/_pdfs/council/2016/021616/item_04.pdf Accessed 6 June 2020 (1993).Dineva, S. B. Comparative studies of the leaf morphology and structure of white ash Fraxinus americana L. and London plane tree Platanus acerifolia Willd growing in polluted area. Dendrobiology 52, 3–8 (2004).
    Google Scholar 
    Liu, G., Li, Z. & Bao, M. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157, 145–154. https://doi.org/10.1007/s10681-007-9406-6 (2007).Article 

    Google Scholar 
    Henry, A. & Flood, M. G. The history of the London plane, Platanus acerifolia, with notes on the Genus Platanus. Proc. R. Irish Acad Sect. B Biol. Geol. Chem. Sci. 35, 9–28 (1919).
    Google Scholar 
    Chavez, P. S. Image-based atmospheric corrections revisited and improved. Photogram. Eng. Rem. S. 62, 1025–1036 (1996).
    Google Scholar 
    Riano, D., Chuvieco, E., Salas, J. & Aguado, I. Assessment of different topographic corrections in Landsat-T. M. data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 41, 1056–1061. https://doi.org/10.1109/TGRS.2003.811693 (2003).ADS 
    Article 

    Google Scholar 
    Rouse J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, USA: NASASP-351; 1974. Monitoring vegetation system in the great plains with ERTS, 3010–3017 (1974).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Du, Y. et al. New hyperspectral discrimination measure for spectral characterization. Opt. Eng. 43(8), 1777–1786 (2004).ADS 
    Article 

    Google Scholar 
    Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions’. Bull. Calcutta Math. Soc. 35, 99–109 (1943).MathSciNet 
    MATH 

    Google Scholar 
    Bruzzone, L., Roli, F. & Serpico, S. B. An extension to multiclass cases of the Jefferys-Matusita distance. IEEE Trans. Pattern. Anal. Mach. Intell. 33, 1318–1321 (1995).
    Google Scholar 
    Kaufman, Y. & Remer, L. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 32(3), 672–683 (1994).ADS 
    Article 

    Google Scholar 
    Padma, S. & Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. Int. J. Appl. Earth. Obs. 32, 138–151. https://doi.org/10.1016/j.jag.2014.04.001 (2014).Article 

    Google Scholar 
    Kavzoglu, T. & Mather, P. M.. The use of feature selection techniques in the context of artificial neural networks. In Proceedings of the 26th Annual Conference of the Remote Sensing Society (CD-ROM), 12–14 September (Leicester, UK, 2000).Gunal, S. & Edizkan, R. Subspace based feature selection for pattern recognition. Info. Sci. 178, 3716–3726. https://doi.org/10.1016/j.ins.2008.06.001 (2008).Article 

    Google Scholar 
    Tolpekin, V. A. & Stein, A. Quantification of the effects of land-cover-class spectral separability on the accuracy of markov-random-field-based superresolution mapping. IEEE Trans. Geosci. Remote Sens. 47(9), 3283–3297. https://doi.org/10.1109/TGRS.2009.2019126 (2009).ADS 
    Article 

    Google Scholar 
    Paterson, M., Lucas, R. M. & Chisholm, L. Differentiation of selected Australian woodland species using CASI data. In Proceedings IEEE International Geoscience and Remote Sensing Symposium, 643–645 (University of New South Wales, Australia, 2001).Richards, J. A. & Jai, X. Remote Sensing Digital Analysis: An Introduction, 4th edition (Springer, Berlin, 1999).Veraverbeke, S., Harris, S. & Hook, S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ. 115, 2702–2709. https://doi.org/10.1016/j.rse.2011.06.010 (2011).ADS 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Georganos, S. et al. Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. https://doi.org/10.1080/10106049.2019.1595177 (2019).Article 

    Google Scholar 
    Mellor, A., Haywood, A., Stone, C. & Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 5, 2838–2856. https://doi.org/10.3390/rs5062838 (2013).ADS 
    Article 

    Google Scholar 
    Congalton, R. G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland. Fire. 10, 321–328 (2001).Article 

    Google Scholar 
    Thomas, I. L., Ching, N. P., Benning, V. M. & D’aguanno, J. A. Review Article A review of multi-channel indices of class separability. Int. J. Remote Sens. 8(3), 331–350. https://doi.org/10.1080/01431168708948645 (1987).Article 

    Google Scholar 
    Mausel, P. W., Kramber, W. J. & Lee, J. K. Optimum band selection for supervised classification of multispectral data. Photogramm. Eng. Remote. Sens. 56(1), 55–60 (1990).
    Google Scholar 
    Singh, A. Some clarifications about the pairwise divergence measure in remote sensing. Int. J. Remote Sens. 5(3), 623–627. https://doi.org/10.1080/01431168408948845 (1984).Article 

    Google Scholar 
    Kumar, P. et al. A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto Int. 32(2), 206–224. https://doi.org/10.1080/10106049.2015.1132483 (2017).Article 

    Google Scholar 
    McPherson, E. G., Simpson, J. R., Peper, P. J., Xiao, Q. & Wu, C. Los Angeles 1-Million Tree Canopy Cover Assessment. General Technical Report PSW-GTR-207. U.S. Department of Agriculture Forest Service Pacific Southwest Research Station. Albany, CA, 1–64 (2008).Rahimizadeh, N., Kafaky, S. B., Sahebi, M. R. & Mataji, A. Forest structure parameter extraction using SPOT-7 satellite data by object- and pixel-based classification methods. Environ. Monit. Assess. 192, 43. https://doi.org/10.1007/s10661-019-8015-x (2020).Article 

    Google Scholar 
    McRoberts, R. E. Satellite image-based maps: Scientific inference or pretty pictures?. Remote. Sens. Environ. 115, 715–724. https://doi.org/10.1016/j.rse.2010.10.013 (2011).ADS 
    Article 

    Google Scholar 
    McRoberts, R. E. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote. Sens. Environ. 114, 1017–1025. https://doi.org/10.1016/j.rse.2009.12.013 (2010).ADS 
    Article 

    Google Scholar 
    Kokubu, Y., Hara, S. & Tani, A. Mapping seasonal tree canopy cover and leaf area using worldview-2/3 satellite imagery: A megacity-scale case study in Tokyo urban area. Remote. Sens. 12(9), 1505. https://doi.org/10.3390/rs12091505 (2020).Article 

    Google Scholar 
    Johannesburg City Parks and Zoo. 2018. The city that’s a rain forest. http://www.jhbcityparks.com/index.php/street-trees-contents-29. Accessed 14 June 2020.Tesfamichael, S. G., Newete, S. W., Adam, E. & Dubula, B. Field spectroradiometer and simulated multispectral bands for discriminating invasive species from morphologically similar cohabitant plants. GIsci. Remote Sens. 55(3), 417–436. https://doi.org/10.1080/15481603.2017.1396658 (2018).Article 

    Google Scholar 
    McPherson, E. G., Simpsona, J. R., Xiao, Q. & Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban. Plan. 99, 40–50 (2011).Article 

    Google Scholar 
    Baines, O., Wilkes, P. & Disney, M. Quantifying urban forest structure with open-access remote sensing data sets. Urban For. Urban Green. 50, 126653. https://doi.org/10.1016/j.ufug.2020.126653 (2020).Article 

    Google Scholar 
    Nowak, D. J. et al. Measuring and analyzing urban tree cover. Landsc. Urban Plan. 36, 49–57 (1996).Article 

    Google Scholar 
    Estoque, R. C. et al. Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and environmental initiatives. Environ. Res. Lett. 16, 044047. https://doi.org/10.1088/1748-9326/abe5d9 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Paap, T., de Beer, W., Migliorini, D., Nel, W. J. & Wingfield, M. J. The polyphagous shot hole borer (PSHB) and its fungal symbiont Fusarium euwallaceae: A new invasion in South Africa Trudy. Aust. Plant. Pathol. 47, 231–237. https://doi.org/10.1007/s13313-018-0545-0 (2018).Article 

    Google Scholar  More

  • in

    Experimental evidence challenges the presumed defensive function of a “slow toxin” in cycads

    Cox, P. A., Banack, S. A. & Murch, S. J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. U.S.A. 100, 13380–13383 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Brand, L. E., Pablo, J., Compton, A., Hammerschlag, N. & Mash, D. C. Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-L-alanine (BMAA), in south Florida aquatic food webs. Harmful Algae 9, 620–635 (2010).CAS 
    Article 

    Google Scholar 
    Metcalf, J. S., Banack, S. A., Richer, R. & Cox, P. A. Neurotoxic amino acids and their isomers in desert environments. J. Arid Environ. 112, 140–144 (2015).ADS 
    Article 

    Google Scholar 
    Violi, J. P., Mitrovic, S. M., Colville, A., Main, B. J. & Rodgers, K. J. Prevalence of (beta)-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia. Ecotoxicol. Environ. Saf. 172, 72–81 (2019).CAS 
    Article 

    Google Scholar 
    Jonasson, S. et al. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. 107, 9252–9257 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Metcalf, J. et al. Toxin analysis of freshwater cyanobacterial and marine harmful algal blooms on the west coast of Florida and implications for estuarine environments. Neurotox. Res. 39, 27–35 (2021).CAS 
    Article 

    Google Scholar 
    Cox, P. A. et al. Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph. Lateral Scler. 10, 109–117 (2009).CAS 
    Article 

    Google Scholar 
    Charlton, T. S., Marini, A. M., Markey, S. P., Norstog, K. & Duncan, M. W. Quantification of the neurotoxin 2-amino-3-(methylamino)-propanoic acid (BMAA) in Cycadales. Phytochemistry 31, 3429–3432 (1992).CAS 
    Article 

    Google Scholar 
    Whiting, M. G. Toxicity of cycads. Econ. Bot. 17, 270–302 (1963).Article 

    Google Scholar 
    Cox, P. A., Davis, D. A., Mash, D. C., Metcalf, J. S. & Banack, S. A. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc. R. Soc. B: Biol. Sci. 283, 20152397 (2016).Article 

    Google Scholar 
    Scott, L. L. & Downing, T. G. A single neonatal exposure to BMAA in a rat model produces neuropathology consistent with neurodegenerative diseases. Toxins 10, 22 (2018).Article 

    Google Scholar 
    Roy, U. et al. Metabolic profiling of zebrafish (Danio rerio) embryos by NMR spectroscopy reveals multifaceted toxicity of (beta)-methylamino-L-alanine (BMAA). Sci. Rep. 7, 1–12 (2017).ADS 
    Article 

    Google Scholar 
    Purdie, E. L., Metcalf, J. S., Kashmiri, S. & Codd, G. A. Toxicity of the cyanobacterial neurotoxin (beta)-N-methylamino-L-alanine to three aquatic animal species. Amyotroph. Lateral Scler. 10, 67–70 (2009).CAS 
    Article 

    Google Scholar 
    Brenner, E. D. et al. Arabidopsis mutants resistant to s (+)-(beta)-methyl-(alpha), (beta)-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiol. 124, 1615–1624 (2000).CAS 
    Article 

    Google Scholar 
    Schneider, D., Wink, M., Sporer, F. & Lounibos, P. Cycads: Their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Koi, S. & Daniels, J. Life history variations and seasonal polyphenism in Eumaeus atala (Lepidoptera: Lycaenidae). Florida Entomol. 100, 219–229 (2017).Article 

    Google Scholar 
    Koi, S. A butterfly picks its poison: Cycads (Cycadaceae), integrated pest management and Eumaeus atala Poey (Lepidoptera: Lycaenidae). Entomol. Ornithol. Herpetol. 6 (2017).Brenner, E. D., Stevenson, D. W. & Twigg, R. W. Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci. 8, 446–452 (2003).CAS 
    Article 

    Google Scholar 
    Prado, A. The cycad herbivores. Bull. Soc. D’entomol. Quebec 18, 3–6 (2011).
    Google Scholar 
    Popova, A. & Koksharova, O. Neurotoxic non-proteinogenic amino acid (beta)-N-methylamino-L-alanine and its role in biological systems. Biochem. Mosc. 81, 794–805 (2016).CAS 
    Article 

    Google Scholar 
    Salzman, S., Whitaker, M. R. L. & Pierce, N. E. Cycad-feeding insects share a core gut microbiome. Biol. J. Lin. Soc. 123, 728–738 (2018).Article 

    Google Scholar 
    Whitaker, M. R. & Salzman, S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol. Lett. 23, 1862–1877 (2020).Article 

    Google Scholar 
    Zhou, X., Escala, W., Papapetropoulos, S., Bradley, W. G. & Zhai, R. G. BMAA neurotoxicity in Drosophila. Amyotroph. Lateral Scler. 10, 61–66 (2009).CAS 
    Article 

    Google Scholar 
    Zhou, X., Escala, W., Papapetropoulos, S. & Zhai, R. G. (beta)-N-methylamino-L-alanine induces neurological deficits and shortened life span in Drosophila. Toxins 2, 2663–2679 (2010).CAS 
    Article 

    Google Scholar 
    Mekdara, N. T. et al. A novel lenticular arena to quantify locomotor competence in walking fruit flies. J. Exp. Zool. A Ecol. Genet. Physiol. 317, 382–394 (2012).Article 

    Google Scholar 
    Goto, J. J., Koenig, J. H. & Ikeda, K. The physiological effect of ingested (beta)-N-methylamino-L-alanine on a glutamatergic synapse in an in vivo preparation. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 156, 171–177 (2012).CAS 

    Google Scholar 
    Okle, O., Rath, L., Galizia, C. G. & Dietrich, D. R. The cyanobacterial neurotoxin (beta)-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees. Toxicol. Appl. Pharmacol. 270, 9–15 (2013).CAS 
    Article 

    Google Scholar 
    Spencer, P. S. et al. Guam amyotrophis lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237, 517–522 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Bernays, E. A. & Chapman, R. F. Host-plant selection by phytophagous insects. In Host-Plant Selection by Phytophagous Insects. Contemporary Topics in Entomology, vol. 2, 201–213 (Springer, Boston, MA, 1994).Zandt, P. A. V. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology 88, 1984–1993 (2007).Article 

    Google Scholar 
    Duncan, M. W. Role of the cycad neurotoxin BMAA in the amyotrophic lateral sclerosi-parkisonism dementia complex of the Western Pacific. Adv. Neurol. 56, 301–310 (1991).CAS 
    PubMed 

    Google Scholar 
    Banack, S. A. & Cox, P. A. Distribution of the neurotoxic nonprotein amino acid BMAA in Cycas micronesica. Bot. J. Linn. Soc. 143, 165–168 (2003).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-11 (2021).Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves using ’ggplot2’. R package version 0.4.9 (2021).Pennington, Z. T. et al. eztrack: An open-source video analysis pipeline for the investigation of animal behavior. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Pérez, F. & Granger, B. E. IPython: A system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    Article 

    Google Scholar 
    Karlsson, O., Roman, E. & Brittebo, E. B. Long-term cognitive impairments in adult rats treated neonatally with (beta)-N-methylamino-L-alanine. Toxicol. Sci. 112, 185–195 (2009).CAS 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Gratacos, X. & Tucker Lima, J. Localized overabundance of an otherwise rare butterfly threatens endangered cycads. Florida Entomol. 103, 519–522 (2021).Article 

    Google Scholar 
    Backmann, P. et al. Delayed chemical defense: Timely expulsion of herbivores can reduce competition with neighboring plants. Am. Nat. 193, 125–139 (2019).Article 

    Google Scholar 
    Yáñez-Espinosa, L. & Sosa-Sosa, F. Population structure of Dioon purpusii rose in Oaxaca, Mexico. Neotrop. Biol. Conserv. 2, 46–54 (2007).
    Google Scholar 
    Robbins, R. K. et al. A switch to feeding on cycads generates parallel accelerated evolution of toxin tolerance in two clades of Eumaeus caterpillars (Lepidoptera: Lycaenidae). Proc. Natl. Acad. Sci.118 (2021).Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y. & Whalen, J. K. Production of the neurotoxin beta-N-methylamino-L-alanine may be triggered by agricultural nutrients: An emerging public health issue. Water Res. 170, 115335 (2020).CAS 
    Article 

    Google Scholar  More