More stories

  • in

    Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks

    Biogeographic pattern of LOSSThe original forest plot data aggregated at 0.25 degree show large spatial variations (Fig. 1a) across the continents, with the greatest LOSS in Asia & Australia (mean ± 1 SE; 6.5 ± 0.5 Mg ha−1 y−1) > South America (4.9 ± 0.2 Mg ha−1 y−1) and Africa (4.6 ± 0.2 Mg ha−1 y−1) > North America (2.3 ± 0.1 Mg ha−1 y−1 in boreal and 2 ± 0.1 Mg ha−1 y−1 in temperate)36 (Fig. 1b; Supplementary Fig. 5a). This pattern was robust to bootstrapping (1000 iterations) to randomly select 90% of plots for estimating the probability distribution of the mean continental values (Supplementary Fig. 5b). The upscaled gridded LOSS maps generated by our random forest algorithm (see Methods) over the spatial domain of our full datasets shows hotspots of high LOSS in Southern Asia & Australia ( > 6 Mg ha−1 y−1), Northwestern South America (Amazon) ( > 5 Mg ha−1 y−1), and the western coast of North America ( >3 Mg ha−1 y−1)10,36,37,38 (Supplementary Fig. 6a). These patterns were robust to two bootstrapping approaches – based on the sampled biomes of each point feature and also randomly sampling 90% data with replacement (see Methods) (Fig. 2a; Supplementary Fig. 6b). The uncertainty (coefficient of variance – CV; %mean) was generally low ( 10%), despite the larger sample size (n  > 500 at 0.25 degree) (Fig. 2b; Supplementary Fig. 6c), likely because of potential effects of forest recovery or regrowth following past disturbance16 as well as the small plot size (i.e., 0.067 ha in each plot)39.Fig. 1: Map of sample locations and biomass loss to mortality (LOSS) data.a Sampling sites. A total of 2676 samples were collected and aggregated into 814 grids at 0.25 degree that were used for geospatial modeling. b The median and interquartile range of LOSS across continents—North America, South America, Africa, and Asia & Australia.Full size imageFig. 2: Map of biomass loss to mortality (LOSS) and its uncertainty across continents.a, b Ensemble mean of LOSS a and its uncertainty (coefficient of variation, b across continents at 0.25 degree derived from forest plot data using the bootstrapped (10 iterations) approach by randomly sampling 90% plots with replacement. c, d Ensemble mean of LOSS c and its uncertainty (coefficient of variation, d across continents at 0.5 degree derived from six dynamic vegetation models (DGVMs, ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). Coefficient of variation was quantified as the standard deviation divided by the mean predicted value as a measure of prediction accuracy. e The difference of LOSS between ensemble mean of DGVMs and ensemble mean of LOSS derived from forest plots data across continents at 0.5 degree, quantified as difference between c and a, whereby LOSS in Fig. 2a is resampled at 0.5 degree.Full size imageDrivers of LOSSMean annual temperature (MAT), aridity index (the ratio of precipitation to potential evapotranspiration), and precipitation seasonality were identified as the dominant predictors of LOSS across continents (Supplementary Fig. 7a), with positive relationships with LOSS (Fig. 3a)10,36. In contrast to local-scale studies40,41, wood density, forest stand density, and soil conditions were poor predictors of LOSS when all data were used. These relationships were largely driven by the spatial pattern of LOSS and climate gradients, whereby LOSS and MAT, aridity index, and precipitation seasonality were high in tropical forests (Supplementary Fig. 8). This motivated us to examine the drivers of LOSS in tropical vs non-tropical biomes (Supplementary Fig. 7b, c; Fig. 3b–d). With a smaller gradient in climate within wet tropical forests, soil properties such as nutrient content and cation exchange capacity (CEC) were significant predictors of LOSS (Supplementary Fig. 7b; Fig. 3b)42. In wet tropical forests, the relationships between soil nutrient content and CEC and LOSS were positive (Fig. 3b) and thus appeared to support the pattern of higher mortality in more productive tropical forests growing over nutrient rich soils42,43. In non-tropical regions, basal area or a competition index based on the degree of crowding within stocked areas44 (see Methods) were the dominant predictors of LOSS, especially in extra-tropical North America (Supplementary Fig. 7c; Fig. 3c, d). This result highlights the role of stand competition in driving the spatial patterns of LOSS44,45. This pattern also supports the existence of a spatial tradeoff between faster growth and higher mortality because of resource limitations or younger death, whereby competition plays the fundamental role13,45. In contrast to other studies15,46, forest age (available in boreal and temperate forests in North America) was not a good predictor of LOSS (Supplementary Fig. 9), likely because of our focus on mature and old-growth forests (i.e., age > 80 and 100 years in boreal and temperate forests, respectively).Fig. 3: Standardized response coefficients (mean ± 95% CIs) between LOSS and dominant environmental drivers.The scales analyzed were at continents a, tropical regions b vs non-tropical regions c, d. The response coefficients were quantified by linear mixed model which account for each plot as a random effect. Panels c and d used basal area and stand density index (SDI) as competition index, respectively. SDI was defined as the degree of crowding within stocked areas and quantified as a function of tree density and the quadratic mean diameter in centimeters. Basal area is strongly correlated with total biomass and higher LOSS in higher basal area may be merely because of its correlations. Thus, we used another competition metrics – SDI to further confirm the role of competition in LOSS. The error bars denote the 95% confidence interval. *P  130%) in western boreal forests in North America (Fig. 2d).Conventional emergent constraintWe first used the conventional emergent constraint approach27 to constrain the projected (2015–2099) NPP and HR across continents. This approach was conducted by building the statistic (linear) relationship between the historical LOSS averaged at forest-plot scale (derived from original plot data of LOSS) or continental scale (derived from the map of LOSS) and projected NPP and HR summed across continents (see Methods and Supplementary Fig. 4 for details). We found that the emergent constraint approach worked well in North America, where the relationship between historical LOSS and projected NPP and HR was significant (the scenario of using original plot data of LOSS: R2 = 0.68 and P = 0.04 for grid-level NPP; R2 = 0.97 and P = 0.0001 for grid-level HR; the scenario of using map of LOSS at continent scale: R2 = 0.7 and P = 0.04 for grid-level NPP; R2 = 0.95 and P = 0.0008 for grid-level HR) (Supplementary Fig. 11a; Supplementary Fig. 12a). This emergent constraint approach was less effective, however, for other continents, where tropical forests are predominant (all P  > 0.05; Supplementary Fig. 11b, c, d; Supplementary Fig. 12b, c, d). These results suggest a weak linear relationships when observations are lumped or averaged at broad continental scales for tropical continents, thus highlighting the importance of spatial scale and non-linear relationships in emergent constraint25. We interpret the result that this LOSS emergent constraint works better in North America than in the tropical forests, by a better representation of forest plot distribution and couplings of LOSS and NPP and HR across space in North America.Machine learning constraintTo overcome this limitation, we trained a machine learning algorithm34 to reproduce the emerging relationship between historical LOSS and projected NPP and HR at grid level in each DGVM by incorporating all grid values without or with climate predictors, expressed as NPPpro or HRpro = f(LOSShis) or f(LOSShis, MATpro, MAPpro), respectively, where pro refers to projected variables, his refers to historical variables, and MAT and MAP is mean annual temperature precipitation, respectively (see Methods). The results show consistently positive non-linear relationships between LOSShis and NPPpro or HRpro across DGVMs (Supplementary Fig. 3). Our machine learning algorithms can surrogate well the results of process-based models between the historical LOSS and the projected NPP and HR (R  > 0.65 and R  > 0.9 in both scenarios without climate effects and with climate effects, respectively; see Methods) (Supplementary Fig. 13). After including the observed LOSShis (derived from LOSS) in the machine learning algorithm, we were able to generate spatially explicit constrained estimates34 of projected NPP and HR, and then compare them with the scenario without the constraint (Supplementary Fig. 14; Supplementary Fig. 15). These patterns essentially show a lower NPPpro or HRpro in locations of overestimated LOSShis in DGVMs, consistent with the positive relationship between LOSShis and NPPpro or HRpro (Supplementary Fig. 3).Our results show that most DGVMs overestimate tree mortality, particularly in tropical regions (Fig. 2c, e). Thus, if modeled mortality is over-estimated, we expect that NPP is over-estimated as well. Ultimately, we used a bootstrap approach to generate 100 maps of mean value of LOSS with its distribution following the values of the average and 2 times of standard deviation of LOSS maps as a conservative constraint (see Methods). Then the 100 maps of mean value of LOSS were used to constrain the projected NPP or HR as ensemble means in our ML constraint and the uncertainty of the constraint was assessed. Our bootstrapping constraint approach by LOSS reduces this common bias of models and decreases projected NPP down to 7.9, 2.3, 2 Pg C y−1 in South America, Africa and Asia & Australia, compared to original NPP values of 9, 2.4, 2.3 Pg C y−1 (Fig. 4a). The reason for this is that NPP or growth is strongly positively correlated with LOSS across space in both inventory data and DGVMs (Supplementary Figs. 2 and 3; Supplementary Fig. 16). The constant mortality parameter used in most models may be too large if modelers have tuned this parameter to obtain reasonable biomass stocks, thus compensating for an overestimate of NPP in absence of modeled competition between individuals and nutrients (e.g. phosphorus) limitations in tropical forests13. Likewise, HRpro showed similar patterns with NPPpro because of coupling of HR and NPP and LOSS at broad spatial and long term scales20,21, despite the likely decoupling of the instantaneous rate of HR and NPP and LOSS at local and short-term scales22,23. Thus, we also constrained a decrease in projected grid-level HR with values of 6.5, 1.9, 1.7 Pg C y−1 in South America, Africa and Asia & Australia compared to 7, 1.9, 1.8 Pg C y−1 in the original model ensemble (Fig. 4b). Taken together, our results constrain a weaker future tropical forest carbon sink from observation-based LOSS estimates down to 1.4, 0.4, 0.3 Pg C y−1 in South America, Africa and Asia & Australia as compared to 2, 0.5, 0.5 Pg C y−1 in the original models. The projected sink is reduced in particular over the Amazon basin, while North America showed an enhanced future carbon sink (1.1 and 0.8 Pg C y−1 after and before constraint, respectively). The constraint by the machine learning approach significantly reduced the model spread in grid-level NPPpro and HRpro generally in tropical regions and particularly in South America (Fig. 4; Table 1). This was in contrast to the case of constraint at the whole North America scale (Fig. 4; Table 1), presumably because of spatial trade-off or compensation from regions of mortality overestimation (i.e., eastern North America—temperate zones) vs underestimation (i.e., boreal zones). To this end, we further divided the whole North America into temperate and boreal forests and found the significant effects of the ML constraint (Supplementary Fig. 17). These results highlight the importance of spatial scale in the ML constraint approach. We thus recommend accounting for the role of spatial trade-off in our ML constraint approach or using our ML constraint approach at broad spatial scales whereby the effect of spatial trade-off is minimal. We also caution that the bootstrapping (100 times) approach used in our ML constraint increases the sample size and could have increased the significant difference with and without LOSS constraint. Overall, the uncertainty of the ML constraint was low in the bootstrapping approach (Supplementary Fig. 18).Fig. 4: Projected grid-level NPP and grid heterotrophic respiration (HR) across continents.a, b Projected (2015–2099) grid-level NPP a and grid-level HR b across continents quantified by six dynamic vegetation models—DGVMs (ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). The y axes are the minimum, mean, and maximum values in six DGVMs. ‘DGVMs’ refers to the scenario before constraint and ‘DGVMs + Observation’ refers to the scenario after constraint without climate predictors. The constraint was achieved by using the observational maps (n = 100; through a bootstrapping approach; see Methods for details) of LOSS derived from forest plots data to feed into the trained ML (random forest) model. Reported are ensemble means of constraint. The constraint effect was significant when North America were divided into temperate and boreal forests (see results of Supplementary Fig. 17). *P  More

  • in

    Ultracold storage ensures a future for endangered plants

    Here at the Germplasm Bank of Wild Species of China at the Kunming Institute of Botany, we want to preserve the seeds of as many wild plants as possible from across China’s vast land area. I work on developing the best techniques to freeze plant seeds and tissues at ultracold temperatures, to maintain their viability for years. The idea is that if we plant these seeds again in hundreds of years, a plant will grow.The picture shows me taking a sample of embryos from the seeds of a magnolia tree out of a liquid-nitrogen cryopreservation tank to test whether they’ll regrow when thawed. I dress in protective equipment from head to toe to protect me from the nitrogen, which has a temperature of −196 °C.When I came to the institute in 2009 as a PhD student, it had just purchased its first liquid-nitrogen cryopreservation system, but no one knew how to operate it. I was the one to work it out.Over the years, human activities and climate change have had a negative impact on plant biodiversity. The ultimate goal of the plant seed bank is to collect and preserve all wild plant species in China that are endangered, rare or valuable. We want to save these species before they go extinct. We’ve collected seeds from nearly 11,000 plant species, but that’s only one-third of what grows in China.Many wild plants have genes that help them to survive in harsh environments and make them disease- or drought-resistant. In the future, we might need these genetic materials to breed new crops that can better adapt to the changing climate.I am constantly amazed by how diverse and beautiful seeds are. Some of them are brightly coloured and others are star-shaped. I feel proud when I see the unfrozen seeds germinate in test tubes and gradually grow into large plants. We have three plants in the seed-bank lobby that we cultivated from preserved tissues, and they are all now taller than me. More

  • in

    Author Correction: Climate and land-use changes reduce the benefits of terrestrial protected areas

    AffiliationsDepartment of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, AustraliaErnest F. Asamoah & Joseph M. MainaDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaLinda J. BeaumontAuthorsErnest F. AsamoahLinda J. BeaumontJoseph M. MainaCorresponding authorCorrespondence to
    Ernest F. Asamoah. More

  • in

    Monitoring of radioactive cesium in wild boars captured inside the difficult-to-return zone in Fukushima Prefecture over a 5-year period

    Ministry of the Environment Government of Japan. Designation of Evacuation Zone (accessed 07 April 2021); https://www.env.go.jp/chemi/rhm/h29kisoshiryo/h29kiso-09-04-01.html. (in Japanese).Fukushima Prefectural Government, Japan. About the Transition of Evacuation Zone (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/site/portal/cat01-more.html. (in Japanese).Chino, M. et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol. 48, 1129–1134 (2011).CAS 
    Article 

    Google Scholar 
    Koarashi, J., Atarashi-Andoh, M., Takeuchi, E. & Nishimura, S. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocaesium on forest floor driven by biologically mediated processes. Sci. Rep. 4, 6853 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saito, R., Nemoto, Y. & Tsukada, H. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukada, H. From soil to agricultural-plants-transfer and distribution of radiocaesium. Kagaku (Chemistry). 67, 20–23 (2012) (in Japanese).CAS 

    Google Scholar 
    Saito, R. & Tsukada, H. Chapter 23: Physicochemical fractions of radiocaesium in the stomach contents of wild boar and its transfer to muscle tissue. In Behavior of Radionuclides in the Environment III (eds Nanba, K. et al.) 495–505 (Springer, 2022).Chapter 

    Google Scholar 
    Ishii, Y., Hayashi, S. & Takamura, T. Radiocaesium transfer in forest insect communities after the Fukushima Dai-ichi Nuclear Power Plant accident. PLoS ONE 12, e0171133 (2017).Article 

    Google Scholar 
    Matsushima, N., Ihara, S., Takase, M. & Horiguchi, T. Assessment of radiocaesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Sci. Rep. 5, 9712 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ishii, Y., Matsuzaki, S. S. & Hayashi, S. Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J. Environ. Radioact. 213, 106102 (2020).CAS 
    Article 

    Google Scholar 
    Wada, T. et al. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J. Environ. Radioact. 204, 132–142 (2019).CAS 
    Article 

    Google Scholar 
    Morishita, D. et al. Spatial and seasonal variations of radiocaesium concentrations in an algae-grazing annual fish, ayu Plecoglossus altivelis collected from Fukushima Prefecture in 2014. Fish. Sci. 85, 561–569 (2019).CAS 
    Article 

    Google Scholar 
    Saito, R., Kabeya, M., Nemoto, Y. & Oomachi, H. Monitoring 137Cs concentrations in bird species occupying different ecological niches; game birds and raptors in Fukushima Prefecture. J. Environ. Radioact. 197, 67–73 (2019).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environ. Sci. Technol. 49, 2875–2885 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Steinhauser, G. & Saey, P. R. J. 137Cs in the meat of wild boars: A comparison of the impacts of Chernobyl and Fukushima. J. Radioanal. Nucl. Chem. 307, 1801–1806 (2016).CAS 
    Article 

    Google Scholar 
    Nemoto, Y., Saito, R. & Oomachi, H. Seasonal variation of caesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture, Japan. PLoS ONE 13, e0200797. https://doi.org/10.1371/journal.pone.0200797 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342 (2020).CAS 
    Article 

    Google Scholar 
    Saito, R., Oomachi, H., Nemoto, Y. & Osako, M. Estimation of the total amount of the radiocaesium in the wild boar in their body – each organs survey and incineration residue survey. J. Soc. Rem. Radioact. Contam. Environ. 7, 165–173 (2019) (in Japanese).
    Google Scholar 
    Cui, L. et al. Radiocaesium concentrations in wild boars captured within 20 km of the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 10, 9272. https://doi.org/10.1038/s41598-020-66362-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tagami, K., Howard, B. J. & Uchida, S. The time-dependent transfer factor of radiocaesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. Environ. Sci. Technol. 50, 9424–9431. https://doi.org/10.1021/acs.est.6b03011 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuma, S. et al. Radiocaesium contamination of wild boars in Fukushima and surrounding regions after the Fukushima nuclear accident. Environ. Radioact. 164, 60–64 (2016).CAS 
    Article 

    Google Scholar 
    Fukushima Prefectural Government, Japan. Monitoring of Wild Animals. Accessed 7 Apr 2021. https://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html. (in Japanese).Strebl, F. & Tataruch, F. Time trends (1986–2003) of radiocaesium transfer to roe deer and wild boar in two Austrian forest regions. J. Environ. Radioactiv. 98, 137–152 (2007).CAS 
    Article 

    Google Scholar 
    Ohtsuka-Ito, E. & Kanzaki, N. Population trends of the Japanese wild boar during the Showa era. Wildl. Cons. Jpn. 3, 95–105 (1998).Article 

    Google Scholar 
    Ueda, H. & Jiang, Z. The use of Orchards and Abandoned Orchard by wild boars in Yamanashi. Mamm. Sci. 44, 23–33 (2004) (in Japanese).
    Google Scholar 
    Fukushima Prefectural Government, Japan. Fukushima Prefecture Wild Boar Management Plan (Phase 3) (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/uploaded/life/497785_1296285_misc.pdf (in Japanese).Anderson, D. et al. A comparison of methods to derive aggregated transfer factors using wild boar data from the Fukushima Prefecture. J. Environ. Radioact. 197, 101–108 (2019).CAS 
    Article 

    Google Scholar 
    Pröhl, G. et al. Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. J. Environ. Radioactiv. 91, 41–72 (2006).Article 

    Google Scholar 
    Palo, R. T., White, N. & Danell, K. Spatial and temporal variations of 137Cs in moose Alces alces and transfer to man in northern Sweden. Wildlife Biol. 9, 207–212 (2003).Article 

    Google Scholar 
    Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan. J. Mammal. Soc. Jpn. 53, 279–287 (2013) (in Japanese).
    Google Scholar 
    Kodera, Y. & Kanzaki, N. Food habits and nutritional condition of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Cons. Jpn. 6, 109–117 (2001) (in Japanese).
    Google Scholar 
    Arita, S. et al. Radioactive cesium accumulation during developmental stages of Largemouth Bass, Micropterus salmoides. Proc. JSCE. G. (Environment) 71, 267–276 (2015).Article 

    Google Scholar 
    Kodera, Y. C. S. F. prevention of epidemics from a point of view of the ecology of wild boar. J. Vet. Epidemiol. 23, 4–8 (2019) (in Japanese).Article 

    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. J. Zool. 242, 411–423 (1997).Article 

    Google Scholar 
    Morelle, K. et al. Towards understanding wild boar Sus scrofa movement: A synthetic movement ecology approach. Mammal Rev. 45, 15–29 (2015).Article 

    Google Scholar 
    Kapata, J., Mnich, K., Mnich, S., Karpińska, M. & Bielawska, A. Time-dependence of 137Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland). J. Environ. Radioactiv. 141, 76–81 (2015).Article 

    Google Scholar 
    Gulakov, A. V. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive. J. Environ. Radioactiv. 127, 171–175 (2014).CAS 
    Article 

    Google Scholar 
    Hohmann, U. & Huckschlag, D. Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: A stomach content analysis. Eur. J. Wildl. Res. 51, 263–270 (2005).Article 

    Google Scholar 
    Škrkal, J., Rulík, P., Fantínová, K., Mihalík, J. & Timková, J. Radiocaesium levels in game in the Czech Republic. J. Environ. Radioactiv. 139, 18–23 (2015).Article 

    Google Scholar 
    Japan Atomic Energy Agency (JAEA). 5th airborne monitoring survey (accessed 07 April 2021); https://emdb.jaea.go.jp/emdb/en/portals/b1020201/Steinhauser, G. Monitoring and radioecological characteristics of radiocaesium in Japanese beef after the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 311, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J. Radioanal. Nucl. Chem. 307, 1807–1810 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    A global record of annual terrestrial Human Footprint dataset from 2000 to 2018

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6, 439–447 (2008).Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, (2017).Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nature communications 9, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology 24, 3199–3213 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510 (2020).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing 13, 1849 (2021).ADS 
    Article 

    Google Scholar 
    Wang, L. et al. Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment 210, 269–281 (2018).ADS 
    Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends in ecology & evolution 29, 635–644 (2014).Article 

    Google Scholar 
    Nikhil, S. et al. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis 5, 1–14 (2021).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Steffen W, et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, (2015).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific data 3, 1–10 (2016).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mu, H. et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning 218, 104305 (2022).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nature communications 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).ADS 
    Article 

    Google Scholar 
    Allan, J. R., Venter, O. & Watson, J. E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Scientific data 4, 1–8 (2017).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances 6, eabc3436 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data 12, 1953–1972 (2020).ADS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, 811–826 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2, 599–610 (2018).Article 

    Google Scholar 
    Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecology letters 17, 1365–1379 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific data 7, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Luck, G. W., Ricketts, T. H., Daily, G. C. & Imhoff, M. Alleviating spatial conflict between people and biodiversity. Proceedings of the National Academy of Sciences 101, 182–186 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Gong, P., Li, X. & Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin 64, 756–763 (2019).ADS 
    Article 

    Google Scholar 
    Hu, T., Yang, J., Li, X. & Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sensing 8, 151 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters 15, 094044 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhu, Z. & Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data 12, 357–371 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, X. et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data 12, 1625–1648 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment 166, 78–90 (2015).ADS 
    Article 

    Google Scholar 
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G. & Gaston, K. J. Urban form, biodiversity potential and ecosystem services. Landscape and urban planning 83, 308–317 (2007).Article 

    Google Scholar 
    Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous United States. PE&RS. Photogrammetric Engineering & Remote Sensing 77, 858–864 (2011).
    Google Scholar 
    Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).ADS 
    Article 

    Google Scholar 
    Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment 219, 206–220 (2018).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637 (2017).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing 38, 6030–6046 (2017).ADS 
    Article 

    Google Scholar 
    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115, 161–164 (2004).Article 

    Google Scholar 
    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Scientific data 4, 1–17 (2017).Article 

    Google Scholar 
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological reviews 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, M. et al. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971 (2019).ADS 
    Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability 3, 281–289 (2020).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature communications 10, 1–10 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Plummer, S., Lecomte, P. & Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203, 2–8 (2017).ADS 
    Article 

    Google Scholar 
    Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles 22, (2008).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation biology 14, 18–30 (2000).Article 

    Google Scholar 
    Paton, D. G., Ciuti, S., Quinn, M. & Boyce, M. S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 8, e01841 (2017).Article 

    Google Scholar 
    Center For International Earth Science Information Network –Columbia University, Georgia ITOSUO. Global roads open access data set, version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), (2013).Wolter, C. & Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89 (2003).Article 

    Google Scholar 
    Wolter, C. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53, 135–144 (2001).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89, 93–94 (2008).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. An annual global terrestrial Human Footprint dataset from 2000 to 2018. figshare https://doi.org/10.6084/m9.figshare.16571064.v5 (2021).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA https://doi.org/10.1594/PANGAEA.787668 (2012).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Scientific data 6, 1–17 (2019).Article 

    Google Scholar 
    Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Global change biology 26, 3040–3051 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez

    Fatty acid profilePlukenetia volubilisThe fatty acid composition of P. volubilis is the most well studied in the genus, and the results from the two P. volubilis accessions from Ecuador and Peru in the current study are similar to previous results. The most abundant fatty acid in the seed oil of P. volubilis from Ecuador and Peru, respectively, is α-linolenic acid (C18:3 n-3, ω-3, ALA; 51.5 ± 3.3 and 46.6 ± 1.2%), followed by linoleic acid (C18:2 n-6, ω-6, LA; 32.5 ± 3.9 and 36.5 ± 0.8%), oleic acid (C18:1, OA; 8.5 ± 1,2 and 8.3 ± 0,4%) and smaller amounts ( More

  • in

    Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts

    Phylogenetic placement of Saccharibacteria rhodopsins (SacRs) shows that these sequences form a sibling clade to characterized light-driven inward and outward H+ pumps (Fig. 1a). We selected three phylogenetically diverse SacRs from freshwater lakes (Table S1) and two related, previously uncharacterized sequences from the Gammaproteobacteria (Kushneria aurantia and Halomonas sp.) for synthesis and functional characterization (highlighted in Fig. 1a). All sequences have Asp–Thr–Ser (DTS) residues at the positions of D85–T96–D96 of bacteriorhodopsin (BR) in the third transmembrane helix (Fig. S1). These residues are known as the triplet DTD motif and represent key residues for proton pumping function in BR [6].Fig. 1: Characteristics of Saccharibacteria rhodopsins (SacRs).a Rhodopsin protein tree indicating that SacRs from freshwater lakes form a broad clade of proton pumps. b The ion-pumping activity of SacRs. Blue and green lines indicate the pH change with and without 10 μM CCCP, respectively. Yellow bars indicate the period of light illumination. c Time evolution of transient absorption changes of SacRNC335 in 100 mM NaCl, 20 mM HEPES–NaOH, pH 7.0, and POPE/POPG (molar ratio 3:1) vesicles with a lipid to protein molar ratio = 50. Time evolution at 406 nm (blue, representing the M accumulation), 561 nm (green, representing the bleaching of the initial state and the L accumulation), and 638 nm (red, representing the K and O accumulations). Yellow lines indicate fitting curves by a multi-exponential function. Inset: The photocycle of SacRNC335 based on the fitting in (c) and a kinetic model assuming a sequential photocycle. The lifetime (τ) of each intermediate is indicated by numbers as follow (mean ± S.D., fraction of the intermediate decayed with each lifetime in its double exponential decay is indicated in parentheses): I: τ = 1.7 ± 0.3 μs (42%), τ = 13 ± 1.8 μs (58%), II: τ = 118 ± 2 μs, III: τ = 1.6 ± 0.1 ms, IV: τ = 23.5 ± 1.0 ms, V: τ = 98.4 ± 6.4 ms (56%), τ = 384 ± 18 ms (44%). d Genomic context of SacRNC335. Neighboring genes with above-threshold KEGG annotations are indicated in gray with the highest-scoring HMM model. Genes without KEGG annotations are indicated in white.Full size imageProton transport assays for the SacRs and Gammaproteobacteria proteins expressed in Escherichia coli showed marked decrease of external pH upon light illumination (Fig. 1b and Fig. S2), indicating that these proteins are light-driven outward H+ pumps. The pH decrease was almost eliminated after adding the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which dissipates the H+ gradient, confirming that it was indeed formed upon illumination (Fig. 1b and Fig. S2). We also characterized the absorption spectra and the photocycle of the SacRs, showing that the three rhodopsins have an absorption peak around 550 nm (Fig. S3). The photocycle of the SacRs, determined by measuring the transient absorption change after nanosecond laser pulse illumination (Fig. 1c and Fig. S4), displays a blue-shifted M intermediate that represents the deprotonated state of the retinal chromophore. This has been observed for other H+ pumping rhodopsins [7, 8] and indicates that the proton bound to retinal is translocated during pumping.Given that SacRs function as outward proton pumps, we searched Saccharibacteria genomes for the F1Fo ATP synthase that would be required to harness the generated proton motive force for ATP synthesis. HMM searches showed that all genomes encoded the complete ATP synthase gene cluster and, furthermore, had c subunits with motifs consistent with H+ binding, instead of Na+ binding (Table S1 and Fig. S5). Together, our experimental and genomic analyses strongly suggest that some Saccharibacteria utilize rhodopsins for auxiliary energy generation in addition to their core fermentative capacities [6].Retinal is the rhodopsin chromophore that enables function of the complex upon illumination [9]. We found no evidence for the presence of β-carotene 15,15’-dioxygenase (blh), which produces all-trans-retinal (ATR) from β-carotene, in Saccharibacteria genomes encoding rhodopsin. This absence was likely not due to genome incompleteness, as genomic bins were generally of high quality (79–98% completeness, Table S1) and rhodopsin genomic loci were well-sampled. Additionally, no conserved hypothetical proteins were present in these regions, where blh is often found [10] (Fig. 1d, Fig. S6 and Table S2). As SacRs do contain the conserved lysine for retinal binding [4], we instead hypothesized that Saccharibacteria may uptake retinal from the environment, as has been previously observed for other microorganisms encoding rhodopsin but also lacking blh [11, 12].We tested the ability of SacR proteins to bind ATR from an external source by performing a retinal reconstitution assay. In contrast to the proton transport assays, where rhodopsin was expressed in the presence of ATR, here ATR was dissociated from the purified complex and the visible absorbance of rhodopsin was measured upon re-addition of ATR [13]. Both Gloeobacter rhodopsin (GR), a typical Type-1 outward H+ pump, and SacRs showed an increase in absorption in the visible region with time after the addition of ATR (Fig. 2a and Fig. S7). For all SacRs, the binding of ATR by their apoprotein was saturated within 30 sec after retinal addition (Fig. 2b), indicating that SacR is able to be efficiently functionalized using externally derived ATR. The observed reconstitution rate is substantially faster than that of GR (  > 20 min) and comparable to that of heliorhodopsin, which is used by other microorganisms also lacking a retinal synthetic pathway and rapidly binds ATR through a small opening in the apoprotein [12]. In the structure of SacRNC335 modeled by Alphafold2 [14, 15], a similar hole is visible in the protein moiety constructing the retinal binding pocket (Fig. S8). Hence, SacRs may also bind retinal through this hole in a similar manner to TaHeR (heliorhodopsin).Fig. 2: Binding of retinal by Saccharibacteria rhodopsins and context for biosynthesis.a UV-visible absorption spectra showing the regeneration of retinal binding to SacRNC335 and GR in 20 mM HEPES–NaOH, pH 7.0, 100 mM NaCl and 0.05% n-dodecyl-β-D-maltoside (DDM). In SacRNC335, a peak around 470 nm was transiently observed in the spectrum 30 s after the addition of ATR, suggesting that an intermediate species appears during the retinal incorporation process that involves formation of the Schiff base linkage. b Time evolution of visible absorption representing retinal binding to apo-protein. Numbers in parentheses in the legend indicate the absorption maxima of each rhodopsin. c Genetic potential for β-carotene 15,15’-dioxygenase (blh) production in freshwater lake metagenomes where SacRs are found. Fractions indicate the number of blh-encoding scaffolds taxonomically affiliated with the Actinobacteria in each sample. d Conceptual diagram illustrating potential retinal exchange between Saccharibacteria and host cells. ATR all-trans-retinal, GR Gloeobacter rhodopsin, AM Alinen Mustajärvi, Ki Kiruna, rhod. rhodopsin.Full size imageSaccharibacteria with rhodopsin must obtain retinal from other organisms. To evaluate possible sources of ATR, we investigated the genetic potential for retinal biosynthesis in 15 subarctic and boreal lakes [16] where Saccharibacteria with rhodopsin were present (Fig. S9). Blh-encoding scaffolds were found in 14 of the 15 metagenomes profiled (~93%) and, in nearly all cases, these scaffolds derived from Actinobacteria (Fig. 2c and Table S3). This is intriguing because Actinobacteria are known to be hosts of Saccharibacteria in the human microbiome [17, 18] and potentially more generally [4, 19]. BLAST searches against genome bins from the same samples indicated that these Actinobacteria were members of the order Nanopelagicales (Table S3) and often encode a rhodopsin (phylogenetically distinct from SacRs) in close genomic proximity to blh genes (Table S4). HMM searches revealed that these genomes also harbor homologs of the crtI, crtE, crtB, and crtY genes necessary for β-carotene production [20]. More

  • in

    Factors influencing wind turbine avoidance behaviour of a migrating soaring bird

    REN21. Renewables 2018 global status report. (REN21 Secretariat, 2018).Schuster, E., Bulling, L. & Koppel, J. Consolidating the state of knowledge: A synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).Article 

    Google Scholar 
    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170829 (2017).
    Google Scholar 
    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).Article 

    Google Scholar 
    Katzner, T. E. et al. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 49, 1178–1186 (2012).Article 

    Google Scholar 
    Watson, R. T. et al. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 52, 1–18 (2018).Article 

    Google Scholar 
    May, R. F. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190, 179–187 (2015).Article 

    Google Scholar 
    Cabrera-Cruz, S. A. & Villegas-Patraca, R. Response of migrating raptors to an increasing number of wind farms. J. Appl. Ecol. 53, 1667–1675 (2016).Article 

    Google Scholar 
    Hull, C. L. & Muir, S. C. Behavior and turbine avoidance rates of eagles at two wind farms in Tasmania, Australia. Wildl. Soc. Bull. 37, 49–58 (2013).Article 

    Google Scholar 
    Marques, A. T. et al. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 89, 93–103 (2020).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Langston, R. H. W., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).Article 

    Google Scholar 
    Schaub, T., Klaassen, R. H. G., Bouten, W., Schlaich, A. E. & Koks, B. J. Collision risk of Montagu’s Harriers Circus pygargus with wind turbines derived from high-resolution GPS tracking. Ibis 162, 520–534 (2020).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Black kites of different age and sex show similar avoidance responses to wind turbines during migration. R. Soc. Open Sci. 8, 201933 (2021).Article 

    Google Scholar 
    Santos, C. D., Ferraz, R., Muñoz, A.-R., Onrubia, A. & Wikelski, M. Data from: Black kites of different age and sex show similar avoidance responses to wind turbines during migration. Movebank Data Repository https://doi.org/10.5441/001/1.23n2m412 (2021).Article 

    Google Scholar 
    Khosravifard, S. et al. Identifying birds’ collision risk with wind turbines using a multidimensional utilization distribution method. Wildl. Soc. Bull. 44, 191–199 (2020).Article 

    Google Scholar 
    Hoover, S. L. & Morrison, M. L. Behavior of red-tailed hawks in a wind turbine development. J. Wildl. Manag. 69, 150–159 (2005).Article 

    Google Scholar 
    Miller, R. A. et al. Local and regional weather patterns influencing post-breeding migration counts of soaring birds at the Strait of Gibraltar Spain. Ibis 158, 106–115 (2016).Article 

    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A.-R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?. J. Anim. Ecol. 89, 1317–1328 (2020).Article 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).Article 

    Google Scholar 
    Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound. Layer Meteorol. 174, 1–59 (2020).Article 

    Google Scholar 
    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using “mgcv” and “lme4” (R package version 0.2-5, 2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4 (R package version 1.1-19, 2016).Bjornstad, O. N. ncf: Spatial Covariance Functions (R package version 1.2-6, 2018).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2016).Bartoń, K. MuMIn: Multi-model inference (R package version 1.43.15, 2019).Bellebaum, J., Korner-Nievergelt, F., Dürr, T. & Mammen, U. Wind turbine fatalities approach a level of concern in a raptor population. J. Nat. Conserv. 21, 394–400 (2013).Article 

    Google Scholar 
    Heuck, C. et al. Sex- but not age-biased wind turbine collision mortality in the White-tailed Eagle Haliaeetus albicilla. J. Ornithol. 161, 753–757 (2020).Article 

    Google Scholar 
    Hunt, W. G. et al. Quantifying the demographic cost of human-related mortality to a raptor population. PLoS One 12, e0172232 (2017).Article 

    Google Scholar 
    Martín, B., Perez-Bacalu, C., Onrubia, A., De Lucas, M. & Ferrer, M. Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur. J. Wildl. Res. 64, 33 (2018).Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Stephen, L., Douse, A. & Langston, R. H. W. Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi-site and multi-species analysis. J. Appl. Ecol. 49, 386–394 (2012).Article 

    Google Scholar 
    Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of windfarm impacts on birds. Environ. Conserv. 34, 1–11 (2007).Article 

    Google Scholar 
    De Lucas, M., Janss, G. F. E., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).Article 

    Google Scholar 
    May, R., Reitan, O., Bevanger, K., Lorentsen, S. H. & Nygard, T. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 42, 170–181 (2015).Article 

    Google Scholar 
    Magnusson, M. & Smedman, A. S. Air flow behind wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 169–189 (1999).Article 

    Google Scholar 
    Walters, K., Kosciuch, K. & Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development?. Wildl. Soc. Bull. 38, 250–256 (2014).Article 

    Google Scholar 
    Ferrer, M. et al. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 49, 38–46 (2012).Article 

    Google Scholar 
    Martín, B., Onrubia, A., de la Cruz, A. & Ferrer, M. Trends of autumn counts at Iberian migration bottlenecks as a tool for monitoring continental populations of soaring birds in Europe. Biodivers. Conserv. 25, 295–309 (2016).Article 

    Google Scholar 
    May, R. et al. Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 10, 8927–8935 (2020).Article 

    Google Scholar  More