More stories

  • in

    Deforestation-induced climate change reduces carbon storage in remaining tropical forests

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang 2, 182–185 (2012).ADS 
    CAS 

    Google Scholar 
    Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cy. 13, 997–1027 (1999).ADS 
    CAS 

    Google Scholar 
    Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Glob. Biogeochem. Cy. 22, GB3018 (2008).ADS 

    Google Scholar 
    Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).ADS 

    Google Scholar 
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol. 19, 680–688 (2005).
    Google Scholar 
    van Marle, M. J. et al. Fire and deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cy 31, 24–38 (2017).
    Google Scholar 
    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cy 31, 456–472 (2017).ADS 
    CAS 

    Google Scholar 
    Houghton, R. A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 11, 945–958 (2005).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).ADS 

    Google Scholar 
    Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).ADS 

    Google Scholar 
    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–8 (2015).ADS 

    Google Scholar 
    Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).
    Google Scholar 
    Betts, R. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus Ser. B-Chem. Phys. Meteorol. 59, 602–615 (2007).ADS 

    Google Scholar 
    Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. & Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 32, L23705 (2005).ADS 

    Google Scholar 
    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T. & Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7, 1383–1399 (2010).ADS 
    CAS 

    Google Scholar 
    Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl Acad. Sci. USA 112, 3257–3262 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land‐use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).CAS 
    PubMed 

    Google Scholar 
    Henderson-Sellers, A. & Gornitz, V. Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim. Change 6, 231–257 (1984).ADS 

    Google Scholar 
    Dickinson, R. E. & Henderson‐Sellers, A. Modelling tropical deforestation: a study of GCM land‐surface parametrizations. Q. J. R. Meteorol. Soc. 114, 439–462 (1988).ADS 

    Google Scholar 
    Zhang, H., Henderson-Sellers, A. & McGuffie, K. Impacts of tropical deforestation. Part I: process analysis of local climatic change. J. Clim. 9, 1497–1517 (1996).ADS 

    Google Scholar 
    Costa, M. H. & Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Clim. 13, 18–34 (2000).ADS 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 5, 27–36 (2015).ADS 

    Google Scholar 
    Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).ADS 

    Google Scholar 
    Gedney, N. & Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 27, 3053–3056 (2000).ADS 

    Google Scholar 
    Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. & Giarolla, E. Amazon deforestation and climate change in a coupled model simulation. J. Clim. 22, 5686–5697 (2009).ADS 

    Google Scholar 
    Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact. 14, 1–34 (2010).
    Google Scholar 
    Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).
    Google Scholar 
    Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 1–7 (2021).
    Google Scholar 
    Baidya Roy, S. & Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. Atmos. 107, LBA-4 (2002).
    Google Scholar 
    Khanna, J., Medvigy, D., Fisch, G. & de Araújo Tiburtino Neves, T. T. Regional hydroclimatic variability due to contemporary deforestation in southern Amazonia and associated boundary layer characteristics. J. Geophys. Res. Atmos. 123, 3993–4014 (2018).ADS 

    Google Scholar 
    McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. B. & Pitman, A. J. Global climate sensitivity to tropical deforestation. Glob. Planet. Change 10, 97–128 (1995).ADS 

    Google Scholar 
    Zhang, H., Henderson-Sellers, A. & McGuffie, K. The compounding effects of tropical deforestation and greenhouse warming on climate. Clim. Change 49, 309–338 (2001).CAS 

    Google Scholar 
    Voldoire, A. & Royer, J. F. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Clim. Dyn. 24, 843–862 (2005).
    Google Scholar 
    Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).
    Google Scholar 
    Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Chang. 8, 434–440 (2018).ADS 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosci. 113, G00B07 (2008).ADS 

    Google Scholar 
    Sullivan, M. J. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).ADS 

    Google Scholar 
    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, eabb7232 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Numata, I. et al. Biomass collapse and carbon emissions from forest fragmentation in the Brazilian Amazon. J. Geophys. Res. Biogeosci. 115, G03027 (2010).ADS 

    Google Scholar 
    Junior, C. H. S. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).ADS 

    Google Scholar 
    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).ADS 

    Google Scholar 
    Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 

    Google Scholar 
    Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12, 4823–4873 (2019).ADS 
    CAS 

    Google Scholar 
    Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).ADS 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of earth system processes in present‐day and future climate. J. Adv. Model Earth Syst. 11, 4182–4227 (2019).ADS 

    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model Earth Syst. 12, 1–52 (2020).
    Google Scholar 
    Kelley, M. et al. GISS‐E2. 1: configurations and climatology. J. Adv. Model Earth Syst. 12, e2019MS002025 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sellar, A. A. et al. Implementation of UK Earth system models for CMIP6. J. Adv. Model Earth Syst. 12, e2019MS001946 (2020).ADS 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1. 2) and its response to increasing CO2. J. Adv. Model Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boysen, L. et al. Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17, 5615–5638 (2020).ADS 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).ADS 
    CAS 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).ADS 
    CAS 

    Google Scholar 
    Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Stocker et al.) 465–570 (Cambridge Univ Press, UK and USA, 2013).Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 

    Google Scholar 
    Jones, C. D. et al. C4MIP–The coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).ADS 
    CAS 

    Google Scholar 
    UNFCCC. Background paper for the Workshop on Reducing Emissions from Deforestation in Developing Countries, Part 1: Scientific, Socio-economic, Technical, and Methodological Issues Related to Deforestation in Developing Countries 30 August to 1 September, Rome, Italy. Working paper No. 1(a) (2006).Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ. Res. Lett. 4, 034009 (2009).ADS 

    Google Scholar 
    Mahowald, N. M. et al. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cy 31, 96–113 (2017).CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).ADS 

    Google Scholar 
    Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 14, 479–483 (2021).ADS 
    CAS 

    Google Scholar 
    Ordway, E. M. & Asner, G. P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA117, 7863–7870 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. 219, 851–869 (2018).
    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    MATH 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).ADS 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).ADS 

    Google Scholar 
    Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).ADS 

    Google Scholar 
    Schulzweida, U. Climate data operators (CDO) user guide (Version 1.9.8). https://doi.org/10.5281/zenodo.3539275 (2019).Tropical Rainfall Measuring Mission (TRMM) TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).
    Google Scholar 
    Yang, H. et al. Comparison of forest above‐ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation‐based estimates. Glob. Chang. Biol. 26, 3997–4012 (2020).ADS 
    PubMed 

    Google Scholar 
    Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 1.0o: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100 (2011).Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang 5, 470–474 (2015).ADS 

    Google Scholar 
    Spracklen, D. V. & Garcia‐Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).ADS 

    Google Scholar  More

  • in

    Argentina: wildfires jeopardize rewilding

    CORRESPONDENCE
    12 April 2022

    Argentina: wildfires jeopardize rewilding

    Mario S. Di Bitetti

     ORCID: http://orcid.org/0000-0001-9704-8649

    0
    ,

    Carlos De Angelo

     ORCID: http://orcid.org/0000-0002-7759-3321

    1
    ,

    Agustín Paviolo

     ORCID: http://orcid.org/0000-0001-7855-4298

    2
    ,

    Adrián S. Di Giacomo

     ORCID: http://orcid.org/0000-0002-7976-0197

    3
    ,

    Diego Varela

     ORCID: http://orcid.org/0000-0003-3123-6756

    4
    &

    Alejandro R. Giraudo

     ORCID: http://orcid.org/0000-0003-0708-4481

    5

    Mario S. Di Bitetti

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Carlos De Angelo

    Universidad Nacional de Río Cuarto – CONICET, Río Cuarto, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Agustín Paviolo

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Adrián S. Di Giacomo

    Universidad Nacional del Nordeste – CONICET, Corrientes, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Diego Varela

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Alejandro R. Giraudo

    Universidad Nacional del Litoral-CONICET, Santa Fé, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Ferocious wildfires have already destroyed more than one million hectares this year in the Corrientes province of Argentina — including more than half of Iberá National Park, where a crucial rewilding project is under way (see E. Donadio et al. Nature 603, 225–227; 2022). We call for greater wildfire awareness and improved alarm systems to prevent such large-scale devastation in the future.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 246 (2022)
    doi: https://doi.org/10.1038/d41586-022-01006-5

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More

  • in

    Trade-off between tree planting and wetland conservation in China

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacDicken, K. G. Global forest resources assessment 2015: what, why and how? For. Ecol. Manag. 352, 3–8 (2015).
    Google Scholar 
    Li, M.-M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).ADS 

    Google Scholar 
    Zhang, P. et al. China’s forest policy for the 21st century. Science 288, 2135–2136 (2000).CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).ADS 

    Google Scholar 
    Xu, J., Yin, R., Li, Z. & Liu, C. China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 57, 595–607 (2006).
    Google Scholar 
    Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).ADS 

    Google Scholar 
    Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).ADS 

    Google Scholar 
    Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).ADS 

    Google Scholar 
    Cao, S., Zhang, J., Chen, L. & Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 183, 843–849 (2016).
    Google Scholar 
    Liu, Y. et al. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 11, 094010 (2016).ADS 

    Google Scholar 
    Yao, Y. et al. The effect of afforestation on soil moisture content in Northeastern China. PLoS ONE 11, e0160776 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    An, W. et al. Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China. Ecol. Eng. 107, 144–151 (2017).
    Google Scholar 
    Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Global Wetland Outlook: State of the World’s Wetlands and their Services to People (Ramsar Convention Secretariat, 2018).Baumgartner, R. J. Sustainable development goals and the forest sector—a complex relationship. Forests 10, 152 (2019).
    Google Scholar 
    15-year Comprehensive Plan for Ecological System Protection and Recovery Work (National Development and Reform Commission, 2020).Prigent, C., Jimenez, C. & Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. Atmos. 125, e2019JD030711 (2020).ADS 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cy. 19, GB1015 (2005).ADS 

    Google Scholar 
    Tootchi, A. Development of a global wetland map and application to describe hillslope hydrology in the ORCHIDEE land surface model. Sorbonne Université, https://www.metis.upmc.fr/~ducharne/documents/These_Tootchi_revised_11Sep2019.pdf (2019).Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. B. 24, 43–69 (1979).
    Google Scholar 
    Stocker, B. D., Spahni, R. & Joos, F. DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 7, 3089–3110 (2014).ADS 

    Google Scholar 
    Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 11, 45–51 (2021).ADS 

    Google Scholar 
    Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (Experiment 1). Data Integration and Analysis System (DIAS). (2017).Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 2097–2120 (2020).ADS 

    Google Scholar 
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 6, 810–813 (2016).ADS 

    Google Scholar 
    Zhu, Q. et al. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci. Rep. 6, 38020 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mao, D. et al. Remote observations in China’s Ramsar Sites: wetland dynamics, anthropogenic threats, and implications for sustainable development goals. J. Remote Sens. 2021, 9849343 (2021).ADS 

    Google Scholar 
    Budyko, M. I. Climate and Life (Academic Press, 1974).Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).ADS 

    Google Scholar 
    Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016).ADS 

    Google Scholar 
    Ringeval, B. et al. Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data. Geosci. Model Dev. 5, 941 (2012).ADS 

    Google Scholar 
    Tootchi, A., Jost, A. & Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 11, 189–220 (2019).ADS 

    Google Scholar 
    List of Protected Wetlands in China. http://www.zrbhq.cn/web/confirm.html (National Forestry and Grassland Administration, 2011).Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).ADS 

    Google Scholar 
    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levia, D. F. et al. Homogenization of the terrestrial water cycle. Nat. Geosci. 13, 656–658 (2020).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet sustainable development goal 15. Nat. Ecol. Evol. 5, 10–13 (2020).
    Google Scholar 
    Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).ADS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).ADS 
    CAS 

    Google Scholar 
    Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).ADS 

    Google Scholar 
    Teuling, A. J. & Hoek van Dijke, A. J. Forest age and water yield. Nature 578, E16–E18 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Doelman, J. C. et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).ADS 

    Google Scholar 
    Peng, S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 9, 84–87 (2019).ADS 

    Google Scholar 
    Brown, I. Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environ. Sci. Policy 107, 36–45 (2020).
    Google Scholar 
    The 2nd – 9th National Forest Resource Inventory Report (State Forestry Administration of the People’s Republic of China, 1973–2018).Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 20, 2019–2030 (2014).ADS 

    Google Scholar 
    Hou, X. Vegetation atlas of China. Chinese Academy of Science, the editorial board of vegetation map of China (2001).Xi, Y. et al. Contributions of climate change, CO2, land-use change, and human activities to changes in river flow across 10 Chinese Basins. J. Hydrometeorol. 19, 1899–1914 (2018).ADS 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).ADS 

    Google Scholar 
    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).ADS 

    Google Scholar 
    Herold, M., Van Groenestijn, A., Kooistra, L., Kalogirou, V. & Arino, O. Land cover CCI, product user guide version 2.0. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2015).Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).ADS 
    CAS 

    Google Scholar 
    Zhou, G. et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yang, H. et al. Changing retention properties of catchments and their influence on runoff under climate change. Environ. Res. Lett. 13, 094019 (2018).ADS 

    Google Scholar 
    Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M. & Woods, R. A. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53, 8475–8486 (2017).ADS 

    Google Scholar 
    Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guimberteau, M. et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci. Model Dev. 7, 1115–1136 (2014).ADS 

    Google Scholar 
    Traore, A. K. et al. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. J. Geophys. Res. Biogeosci. 119, 1554–1575 (2014).
    Google Scholar 
    de Rosnay, P. & Polcher, J. Impact of a physically based soil water flow and soil‐plant interaction representation for modeling large‐scale land surface processes. J. Geophys. Res. Atmos. 107, ACL 3-1–ACL 3-19 (2002).
    Google Scholar 
    Campoy, A. et al. Influence of soil bottom hydrological conditions on land surface fluxes and climate in a general circulation model. J. Geophys. Res. Atmos. 118, 10725–10739 (2013).ADS 

    Google Scholar 
    Guimberteau, M. et al. Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol. Earth Syst. Sci. 16, 11171–11232 (2012).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Sy. 12, e2019MS002010 (2020).ADS 

    Google Scholar 
    Fan, Y. et al. Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).ADS 

    Google Scholar 
    Rayner, P. J. et al. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Glob. Biogeochem. Cy. 19, GB2026 (2005).ADS 

    Google Scholar 
    Ducharne, A. Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrol. Earth Syst. Sci. 13, 2399–2412 (2009).ADS 

    Google Scholar 
    Niu, G., Yang, Z., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. 110, D21106 (2005).ADS 

    Google Scholar 
    Xi, Y. et al. Monthly inundated fraction over China for 2000-2015 from GIEMS-2 (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.5750962 (2021).Xi, Y. et al. Code of wetland simulation for trade-off between tree planting and wetland conservation in China (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4435082 (2021). More

  • in

    Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schnepf E, Kühn S. Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgol Mar Res. 2000;54:18–32.Article 

    Google Scholar 
    Garvetto A, Nézan E, Badis Y, Bilien G, Arce P, Bresnan E, et al. Novel widespread marine oomycetes parasitising diatoms, including the toxic genus pseudo-nitzschia: genetic, morphological, and ecological characterisation. Front Microbiol. 2018;9:2918.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez MH, Jara AM, Pantoja S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol. 2016;18:1646–53.PubMed 
    Article 

    Google Scholar 
    Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, et al. Zoosporic parasites infecting marine diatoms – A black box that needs to be opened. Fungal Ecol. 2016;19:59–76.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hedges J, Baldock J, Gélinas Y, Lee C, Peterson M, Wakeham S. The biochemical and elemental compositions of marine plankton: A NMR perspective. Mar Chem. 2002;78:47–63.CAS 
    Article 

    Google Scholar 
    Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature. 2001;409:801–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10 (12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chin W-C, Orellana MV, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature. 1998;391:568–72.CAS 
    Article 

    Google Scholar 
    Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr. 2002;55:287–333.Article 

    Google Scholar 
    Fangel JU, Pedersen HL, Vidal-Melgosa S, Ahl LI, Salmean AA, Egelund J, et al. Carbohydrate microarrays in plant science. Methods Mol Biol. 2012;918:351–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Pedersen HL, Schuckel J, Arnal G, Dumon C, Amby DB, et al. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes. J Biol Chem. 2015;290:9020–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker S, Scheffel A, Polz MF, Hehemann JH. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389-16.Krüger K, Chafee M, Francis TB, del Rio TG, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kappelmann L, Krüger K, Hehemann JH, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 2018;12:2894–906.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4:447–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature. 2014;506:498–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol. 2014;94:418–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544:65–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, et al. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019;15:803–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hahnke RL, Harder J. Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol. 2013;36:497–504.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: enzyme synergy and crystal structure of a β-mannanase. J Biol Chem. 2017;292:229–43.PubMed 
    Article 
    CAS 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Matulewicz M, Cerezo A. Water-soluble sulfated polysaccharides from the red seaweed Chaetangium fastigiatum. Analysis of the system and the structures of the α-D-(1→ 3)-linked mannans. Carbohydr Polym. 1987;7:121–32.CAS 
    Article 

    Google Scholar 
    Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int J Biol Macromol. 2013;59:1–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen Y, Mao WJ, Yan MX, Liu X, Wang SY, Xia Z, et al. Purification, chemical characterization, and bioactivity of an extracellular polysaccharide produced by the marine sponge endogenous fungus Alternaria sp. SP-32. Mar Biotechnol. 2016;18:301–13.CAS 
    Article 

    Google Scholar 
    Gimenez-Abian MI, Bernabe M, Leal JA, Jimenez-Barbero J, Prieto A. Structure of a galactomannan isolated from the cell wall of the fungus Lineolata rhizophorae. Carbohydr Res. 2007;342:2599–603.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennke CM, Krüger K, Kappelmann L, Huang S, Gobet A, Schüler M, et al. Polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ Microbiol. 2016;18:4456–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(W1):W445–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilchrist CLM, Chooi YH. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 2021;37:2473–75.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol. 2020;37:1237–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu H, Naismith JH. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008;8:91.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, Boraston AB. Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287:13985–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52.CAS 
    PubMed 

    Google Scholar 
    Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science. 2001;291:1523–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66:125–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen SX, Ben Jelloul M, Long F, Vagin A, Knipscheer P, Lebbink J. et al. ARP/wARP and molecular replacement: the next generation. Acta Crystallogr D Biol Crystallogr. 2008;64:49–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):271–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta crystallogr D Biol Crystallogr. 2008;64:61–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mystkowska AA, Robb C, Vidal-Melgosa S, Vanni C, Fernandez-Guerra A, Hohne M, et al. Molecular recognition of the beta-glucans laminarin and pustulan by a SusD-like glycan-binding protein of a marine. Bacteroidetes FEBS J. 2018;285:4465–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones DR, Xing X, Tingley JP, Klassen L, King ML, Alexander TW, et al. Analysis of active site architecture and reaction product linkage chemistry reveals a conserved cleavage substrate for an endo-alpha-mannanase within diverse yeast mannans. J Mol Biol. 2020;432:1083–97.CAS 
    PubMed 
    Article 

    Google Scholar 
    Starr CM, Masada RI, Hague C, Skop E, Klock JC. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A. 1996;720:295–321.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ivanova EP, Bowman JP, Christen R, Zhukova NV, Lysenko AM, Gorshkova NM, et al. Salegentibacter flavus sp. nov. Int J Syst Evol Microbiol. 2006;56:583–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang QY, Xu ZX, Zhang J, Chen GJ, Du ZJ. Salegentibacter sediminis sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal sediment. Int J Syst Evol Microbiol. 2018;68:2375–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nedashkovskaya OI, Kim SB, Lysenko AM, Mikhailov VV, Bae KS, Kim IS. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol. 2005;55:235–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nedashkovskaya OI, Kim SB, Vancanneyt M, Shin DS, Lysenko AM, Shevchenko LS, et al. Salegentibacter agarivorans sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the sponge Artemisina sp. Int J Syst Evol Microbiol. 2006;56:883–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nedashkovskaya OI, Suzuki M, Vancanneyt M, Cleenwerck I, Zhukova NV, Vysotskii MV, et al. Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. Int J Syst Evol Microbiol. 2004;54:1107–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia HF, Li XL, Liu QQ, Miao TT, Du ZJ, Chen GJ. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus. Antonie Van Leeuwenhoek. 2013;104:315–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon JH, Jung SY, Kang SJ, Jung YT, Oh TK. Salegentibacter salarius sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol. 2007;57:2738–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Regmi A, Boyd EF. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus. BMC Microbiol. 2019;19:112-.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shi H, Zhang Y, Xu B, Tu M, Wang F. Characterization of a novel GH2 family alpha-L-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett. 2014;36:1321–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu Y, Suits MD, Thompson AJ, Chavan S, Dinev Z, Dumon C, et al. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol. 2010;6:125–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, et al. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem. 2011;286:15586–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson AJ, Speciale G, Iglesias-Fernandez J, Hakki Z, Belz T, Cartmell A, et al. Evidence for a boat conformation at the transition state of GH76 alpha-1,6-mannanases-key enzymes in bacterial and fungal mannoprotein metabolism. Angew Chem. 2015;54:5378–82.CAS 
    Article 

    Google Scholar 
    Thompson AJ, Cuskin F, Spears RJ, Dabin J, Turkenburg JP, Gilbert HJ, et al. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr D Biol Crystallogr. 2015;71:408–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eklöf JM, Shojania S, Okon M, McIntosh LP, Brumer H. Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. J Biol Chem. 2013;288:15786–99.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Venugopal V. Marine polysaccharides: food applications. Boca Raton: CRC Press; 2016.Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep. 2016;6:30120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassett BT, Gradinger R. Chytrids dominate arctic marine fungal communities. Environ Microbiol. 2016;18:2001–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan Y, Xie N, Song Z, Ward CS, Yung C-M, Hunt DE, et al. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl Environ Microbiol. 2018;84:e00967–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Priest T, Fuchs B, Amann R, Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol. 2021;23:448–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Picard KT. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 2017;25:1–13.Article 

    Google Scholar 
    Taylor JD, Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 2016;10:2118–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Banos S, Gysi DM, Richter-Heitmann T, Glöckner FO, Boersma M, Wiltshire KH, et al. Seasonal dynamics of pelagic mycoplanktonic communities: interplay of taxon abundance, temporal occurrence, and biotic interactions. Front Microbiol. 2020;11:1305.Tisthammer KH, Cobian GM, Amend AS. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 2016;19:39–46.Article 

    Google Scholar 
    Tian T, Merico A, Su J, Staneva J, Wiltshire K, Wirtz K. Importance of resuspended sediment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem. J Sea Res. 2009;62:214–28.Article 

    Google Scholar 
    Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol. 2011;158:205–19.Article 

    Google Scholar 
    Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor JD. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 2017;30:135–8.Article 

    Google Scholar 
    Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J, Elies P, et al. Intracellular infection of diverse diatoms by an evolutionary distinct relative of the fungi. Curr Biol. 2019;29:4093–101.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Buaya AT, Ploch S, Hanic L, Nam B, Nigrelli L, Kraberg A, et al. Phylogeny of Miracula helgolandica gen. et sp. nov. and Olpidiopsis drebesii sp. nov., two basal oomycete parasitoids of marine diatoms, with notes on the taxonomy of Ectrogella-like species. Mycol Prog. 2017;16:1041–50.Article 

    Google Scholar 
    Meyers SP, Ahearn DG, Gunkel W, Roth FJ. Yeasts from the North Sea. Mar Biol. 1967;1:118–23.Article 

    Google Scholar 
    Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17:339–54.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    High genomic diversity in the endangered East Greenland Svalbard Barents Sea stock of bowhead whales (Balaena mysticetus)

    Kovacs, K. M. et al. The endangered Spitsbergen bowhead whales’ secrets revealed after hundreds of years in hiding. Biol. Lett. https://doi.org/10.1098/rsbl.2020.0148 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. & Reeves, R. Balaena mysticetus (East Greenland-Svalbard-Barents Sea subpopulation). The IUCN Red List of Threatened Species 2018, e.T2472A50348144 (2018). https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T2472A50348144.enAllen, R. C. & Keay, I. Bowhead whales in the eastern Arctic, 1611–1911: Population reconstruction with historical whaling records. Environ. Hist. 12, 89–113 (2006).Article 

    Google Scholar 
    Reeves, R. R. Spitsbergen bowhead stock: A short review. Mar. Fish. Rev. 42, 65–69 (1980).
    Google Scholar 
    Shelden, K. E. W. & Rugh, D. J. The Bowhead Whale, Balaena mysticetus: Its Historic and Current Status. Mar. Fish. Rev. 57, 1–20 (1995).
    Google Scholar 
    Gilg, O. & Born, E. W. Recent sightings of the bowhead whale (Balaena mysticetus) in Northeast Greenland and the Greenland Sea. Polar Biol. 28, 796–801. https://doi.org/10.1007/s00300-005-0001-9 (2005).Article 

    Google Scholar 
    Boertmann, D., Kyhn, L. A., Witting, L. & Heide-Jørgensen, M. P. A hidden getaway for bowhead whales in the Greenland Sea. Polar Biol. 38, 1315–1319. https://doi.org/10.1007/s00300-015-1695-y (2015).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Janik, V., Kovac, K. & Lydersen, C. Spitsbergen bowhead whales revisited. Mar. Mamm. Sci. 23, 688–693. https://doi.org/10.1111/j.1748-7692.2007.02373.x (2007).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Øien, N., Kovacs, K. & Lydersen, C. Observations of bowhead whales (Balaena mysticetus) in the Svalbard area 1940–2009. Polar Biol. 33, 979–984. https://doi.org/10.1007/s00300-010-0776-1 (2010).Article 

    Google Scholar 
    Lydersen, C. et al. Lost highway not forgotten: Satellite tracking of a bowhead whale (Balaena mysticetus) from the critically endangered Spitsbergen stock. Arctic 65, 76–86. https://doi.org/10.14430/arctic4167 (2012).Article 

    Google Scholar 
    Vacquié-Garcia, J. et al. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endang. Spec. Res. 32, 59–70. https://doi.org/10.3354/esr00791 (2017).Article 

    Google Scholar 
    Givens, G. H. & Heide-Jørgensen, M. P. Abundance. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 77–86 (Academic Press, 2020).
    Google Scholar 
    Rooney, A. P., Honeycutt, R. L. & Derr, J. N. Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 55, 1678–1685. https://doi.org/10.1111/j.0014-3820.2001.tb00687.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235. https://doi.org/10.1111/j.1365-294X.2007.03287.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    LeDuc, R. G. et al. Genetic analyses (mtDNA and microsatellites) of Okhotsk and Bering/Chukchi/Beaufort Seas populations of bowhead whales. J. Cetacean Res. Manag. 7, 107–111 (2005).
    Google Scholar 
    Meschersky, I. G., Chichkina, A. N., Shpak, O. V. & Rozhnov, V. V. Molecular genetic analysis of the Shantar Summer Group of bowhead whales (Balaena mysticetus L.) in the Okhotsk Sea. Russ. J. Genet. 50, 395–405. https://doi.org/10.1134/S1022795414040097 (2014).CAS 
    Article 

    Google Scholar 
    Bachmann, L. et al. Mitogenomics and the genetic differentiation of contemporary Balaena mysticetus (Cetacea) from Svalbard. Zool. J. Linn. Soc. 191, 1192–1203. https://doi.org/10.1093/zoolinnean/zlaa082 (2021).Article 

    Google Scholar 
    Grond, J., Płecha, M., Hahn, C., Wiig, Ø. & Bachmann, L. Mitochondrial genomes of ancient bowhead whales (Balaena mysticetus) from Svalbard. Mitochondrial DNA Part B 4, 4152–4154. https://doi.org/10.1080/23802359.2019.1693284 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nyhus, E. S. et al. Mitogenomes of contemporary Spitsbergen stock bowhead whales (Balaena mysticetus). Mitochondrial DNA Part B 1, 898–900. https://doi.org/10.1080/23802359.2016.1258345 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 10, 112–122. https://doi.org/10.1016/j.celrep.2014.12.008) (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, E. M. vcf2phylip v2.0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. zenodo.org, https://zenodo.org/record/2540861#.YDUOKy1Q0f0 (2019).Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–576. https://doi.org/10.1086/519795 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Knaus, B. J. & Grunwald, N. J. VcfR: An R package to manipulate and visualize VCF format data. bioRxiv, 041277 (2016). https://doi.org/10.1101/041277Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanghøj, K., Moltke, I., Alstrup Andersen, P., Manica, A. & Korneliussen, T. S. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034. https://doi.org/10.1093/gigascience/giz034 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).Article 

    Google Scholar 
    Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E. & Orlando, L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212, 587–614. https://doi.org/10.1534/genetics.119.302057 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151. https://doi.org/10.1093/bioinformatics/btq102 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the brown hyena. Mol. Biol. Evol. 35, 1225–1237. https://doi.org/10.1093/molbev/msy037 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from whole genome sequence of a single individual. Nature 475, 493–496. https://doi.org/10.1038/nature10231 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V., Petersen, B., Garde, E., Heide-Jørgensen, M. P. & Lorenzen, E. D. Narwhal genome reveals long-term low genetic diversity despite current large abundance size. iScience 15, 592–599. https://doi.org/10.1016/j.isci.2019.03.023 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, B. et al. Synthesis of lines of evidence for population structure for bowhead whales in the Bering-Chukchi-Beaufort region. Paper SC/59/BRG35 presented to the IWC Scientific Committee, Anchorage, Alaska (2007).Phillips, C. D. et al. Molecular insights into the historic demography of bowhead whales: Understanding the evolutionary basis of contemporary management practices. Ecol. Evol. 3, 18–37. https://doi.org/10.1002/ece3.374 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, X. & Fu, Y. X. Stairway Plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280. https://doi.org/10.1186/s13059-020-02196-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Speciation in the face of gene flow within the toothed whale superfamily Delphinoidea. bioRxiv, https://doi.org/10.1101/2020.10.23.352286 (2020).Westbury, M. V. et al. Ecological specialisation and evolutionary reticulation in extant Hyaenidae. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab055 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IWC. Report of the Scientific Committee Virtual Meeting, 11–26 May 2020. J. Cetacean Res. Manag. (Supplement) 22, 1–122 (2021).Jonsgård, Å. A right whale (Balaena sp.), in all probability a Greenland right whale (Balaena mysticetus) observed in the Barents Sea. Norsk Hvalfangst-Tidende 53, 311–313 (1964).
    Google Scholar 
    De Jong, C. The hunt of the Greenland whale: A short history and statistical sources. Rep. Int. Whaling Comm. Spec. Issue 5, 83–106 (1983).
    Google Scholar 
    Weslawski, J. M., Hacquebord, L., Stempniewicz, L. & Malinga, M. Greenland whales and walruses in the Svalbard food web before and after exploitation. Oceanologia 2, 37–56 (2000).
    Google Scholar 
    George, J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool. 77, 571–580. https://doi.org/10.1139/z99-015 (1999).Article 

    Google Scholar 
    de Jager, D. et al. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci. Rep. 11, 4540. https://doi.org/10.1038/s41598-021-83823-8 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belikov, S. E., Gorbunov, Y. A. & Shil’nikov, V. I. Distribution of pinnipedia and cetacea in Soviet arctic seas and the Bering Sea in winter. Sov. J. Marine Biology 15, 251–257 (1989).
    Google Scholar 
    Gavrilo, M. V. Status of the bowhead whale Balaena mysticetus in the waters of Franz Josef Land Archipelago. Paper SC/66a/BRG20 Presented to the IWC Scientific Committee, May 2015, San Diego, USA (2015).Heide-Jorgensen, M. P., Hansen, R. G. & Shpak, O. V. Distribution, migrations, and ecology of the Atlantic and the Okhotsk Sea Populations. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 57–75 (Academic Press, 2020).
    Google Scholar 
    Petrov, S. A. et al. The results of marine mammal countins during the four expeditions in the Arctic in 2014 and 2015. Collection of scientific papers 9th International Conference ‘Marine mammals of the Holarctic’, Astrakhan, Russia, 2016. 91–102 (2018).Gavrilo, M. V. & Tretiakov V. Y. Observation of bowhead whales (Balaena mysticetus) in the East-Siberian Sea during 2007 season with record-low ice cover – Marine mammals of the Holarctic. In: Collection of Scientific Papers. Odessa, 191–194 (2008).Citta, J. J., Quakenbush, L. & George, J. C. Distribution and behavior of Bering-Chukchi-Beaufort bowhead whales as inferred by telemetry. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 31–56 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-818969-6.00004-2.Chapter 

    Google Scholar 
    Arnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A. & Janke, A. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 4, eaap9873. https://doi.org/10.1126/sciadv.aap9873 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corbett-Detig, R., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112. https://doi.org/10.1371/journal.pbio.1002112 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans?. Ecol. Evol. 8, 1554–1572. https://doi.org/10.1002/ece3.3727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808. https://doi.org/10.1073/pnas.022629899 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bininda-Emonds, O. R. P. Fast genes and slow clades: Comparative rates of molecular evolution in mammals. Evol. Bioinf. 3, 59–85. https://doi.org/10.1177/117693430700300008 (2007).CAS 
    Article 

    Google Scholar 
    Jackson, J. A. et al. Big and slow: Phylogenetic estimates of molecular evolution in baleen whales (Suborder Mysticeti). Mol. Biol. Evol. 26, 2427–2440. https://doi.org/10.1093/molbev/msp169 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1667. https://doi.org/10.1038/ncomms2714 (2013).CAS 
    Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L. & Hufthammer, A. K. Late Pleistocene and Holocene occurrence of bowhead whales (Balaena mysticetus) along the coasts of Norway. Polar Biol. 42, 645–656. https://doi.org/10.1007/s00300-019-02460-0 (2018).Article 

    Google Scholar 
    Alter, S. E. et al. Gene flow on ice: The role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus). Ecol. Evol. 2, 2895–2911. https://doi.org/10.1093/zoolinnean/zlaa082 (2012).Article 

    Google Scholar  More

  • in

    Trajectory to local extinction of an isolated dugong population near Okinawa Island, Japan

    Deterministic logistic modelThe following population dynamics model was applied to reconstruct the initial dugong population size in 1894 from fishery statistics between 1894 and 1914:$$N_{t + 1} = N_{t} left( {1 , + r{-}r , N_{t} /K} right) – C_{t} ,$$where r is the intrinsic rate of population increase, Nt is the population size in year t, K is the carrying capacity, and Ct is the number of individuals removed from the waters near the Ryukyu Islands in year t. The carrying capacity (K) in 1893 was sufficient to sustain the initial population of dugongs at that time (N1894). The intrinsic rate of population increase (r) was given between 1 and 5% within a range of natural one.Approximate Bayesian calculationWe conducted approximate Bayesian calculation (ABC)32 to estimate the number of individuals in 1979 based on bycatch data between 1979 and 2019, and the constraints of the numbers of individuals were 11 in 1997, three in 2007, and almost extinct in 2019. We denoted fecundity as f, the survival rate until 1 year old as s0, the annual survival rate after 1 year old as s, the age at maturity as am, and the physiological longevity as A. We assumed that the sex ratio at birth was 1:1 on average; the age at maturity am was eight years of age33, and the physiological longevity A was 73 years6. We ignored environmental stochasticity because no mass deaths caused by infectious diseases or changes in survival or mortality rates due to environmental fluctuations have not been recorded during this period. We also ignored density effects because the carrying capacity of the location was sufficiently greater than the initial population size, and our goal was to investigate the possibility of population recovery after a decrease in population using a population dynamics model and estimate the natural growth rate during this period. The detailed extinction risk depends on age structure.According to the life history parameters, except the physiological longevity compiled by (ref.33), the annual survival probability of an a year-old individual is s for a = 1, 2, …, 72; s0 for a = 0, and 0 for a = 73; the reproductive probability of an adult female  > 8 years old is 2f. As the number of years for a population to become extinct or recover depends on age composition, age-specific survival, and reproductive rates, we obtain the population growth rate by the maximum eigenvalue of the following Leslie matrix, L = {Lij} (i = 1,…73, j = 1,…,73) as:$$L_{i1} = s_{0} f/2quad {text{for}}quad i ge a_{m} ,L_{i+ 1,i} = squad {text{for}}quad i = 1, ldots ,72,quad {text{and}}quad L_{ij} = 0,{text{otherwise}}{.}$$We used the population growth rate λ, defined by the maximum eigenvalue of L, as an indicator of the population growth rate.We assumed that the sex of each individual in 1979 was randomly sampled by the 1:1 sex ratio, and its age was randomly sampled by the stable age structure that is given by the eigenvector of the Leslie matrix with the maximum eigenvalue. We assumed that the number of individuals at age 1 year in year t + 1, denoted by N1,t+1, is determined by the binomial distribution:$$Prleft[ {N_{1,t + 1} = x} right] = left( {begin{array}{*{20}c} {N_{f} } \ x \ end{array} } right)left( {s_{0} f} right)^{x} left[ {1 – left( {s_{0} f} right)} right]^{{N_{f} – x}} ,$$where Nf represents the number of adult females in year t. We assumed that no twins were born. We assumed that the probability that an individual with age x survived in the next year is s if x = 1 or s0 if x = 0. We also assumed that Ct individuals who died by bycatch were randomly chosen from any sex and age because the age of individuals caught by bycatch is rarely known. We do not know the sex of some individuals.We assumed the following prior distributions for N1997, f, and s: N1979 (in) U(11, 80), f (in) U(1/14, 1/6) if at least one adult male existed in the population, s0 (in) U(0.1, 0.85); and s (in) U(0.8, 0.97), where U(a, b) is the uniform random variable between a and b. These probabilities were constant for each simulation trial from 1997 to 2019. We selected the set of parameters with the population growth rate (λ) obtained when the maximum eigenvalue of the Leslie matrix was between 0.96 and 1.01.We rejected trials that did not satisfy the following summary statistics: N1997 ≥ 11 (intensive survey in 1997), Nt ≥ 3 during 2004–2017 (monitoring), and N2019 ≤ 1 (“local extinction”). We obtained the prior distributions of N1997, f, s0, s, and N2004, and of the  > 130,000 trials in the prior distribution with natural population growth rates λ of 96.1–98.8%, 99.3% were rejected. For 95% of the 1000 adopted trials, N1979 ranged from 14 to 58. If λ  > 98%, N1997 was ≤ 45 for the adopted trials (Extended Data Fig. 7. Even if all the stranding deaths were due to anthropogenic factors, such as the release of dugongs after bycatch or boat strike, the range of N1997 changed to  98%, with only a slight upward shift, but positive natural growth rate (or λ  > 1) was again very unlikely (0.3%) among the adopted trials.Population viability analysis to assess the impact of bycatch on the extinction riskWe re-evaluated the extinction risk with and without bycatch using the 1000 parameter sets of N1979, f, s0, and s that satisfied the summary statistics in the ABC and stochastic individual-based model, beginning from N1979 for the corresponding parameters. For each parameter set, 100 trials were conducted for each scenario to compare the extinction risks. More

  • in

    Water security determines social attitudes about dams and reservoirs in South Europe

    Karr, J.R., & Chu, E.W. Introduction: sustaining living rivers. In Assessing the Ecological Integrity of Running Waters, Developments in Hydrobiology, vol 149 (eds. Jungwirth, M., Muhar, S., & S. Schmutz, S.) 1–14. (Springer: Dordrecht, 2000).Lu, S., Dai, W., Tang, Y. & Guo, M. A review of the impact of hydropower reservoirs on global climate change. Sci. Total Environ. 711, 134996 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, C., Ahn, C. R., An, X. & Lee, S. H. Life-cycle assessment of concrete dam construction: comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manage. 20139(12), A4013009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000752 (2013).Article 

    Google Scholar 
    Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).ADS 
    Article 

    Google Scholar 
    Grigg, N. S. Global water infrastructure: state of the art review. Int. J. Water Resour. Dev. 35(2), 181–205. https://doi.org/10.1080/07900627.2017.1401919 (2019).Article 

    Google Scholar 
    European Environment Agency. European waters: Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (Publications Office of the European Union (2018).Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10(1), 015001 (2015).ADS 
    Article 

    Google Scholar 
    Kim, J. & An, K. G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 7(11), 6378–6403. https://doi.org/10.3390/w7116378 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McCartney, M. Living with dams: managing the environmental impacts. Water Policy 11(S1), 121–139 (2009).MathSciNet 
    Article 

    Google Scholar 
    Van Cappellen, P. & Maavara, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106–111 (2016).Article 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: a symbol of the effects of global change. Fish Fish 19(5), 903–930 (2018).Article 

    Google Scholar 
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Hermoso, V., Clavero, M., Blanco-Garrido, F. & Prenda, J. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol. Appl. 21(1), 175–188 (2011).Article 

    Google Scholar 
    Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 23(1), 1–22 (2013).Article 

    Google Scholar 
    Sánchez-Pérez, A. et al. Seasonal use of fish passes in a modified Mediterranean river: first insights of the LIFE+ Segura-Riverlink. FiSHMED 008, 3. https://doi.org/10.29094/FiSHMED.2016.008 (2016).Article 

    Google Scholar 
    Schiermeir, Q. Dam removal restores rivers. Nature 557, 290–291. https://doi.org/10.1038/d41586-018-05182-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Benjankar, R. et al. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manage. 213, 126–134. https://doi.org/10.1016/j.jenvman.2018.02.066 (2018).Article 

    Google Scholar 
    Tupiño Salinas, C. E., Pinto Vidal de Oliveira, V., Brito, L., Ferreira, A. V. & de Araújo, J. C. Social impacts of a large-dam construction: the case of Castanhão, Brazil. Water Int. 44(8), 871–885. https://doi.org/10.1080/02508060.2019.1677303 (2019).Article 

    Google Scholar 
    Opperman, J. J. et al. Valuing Rivers: How the diverse benefits of healthy rivers underpin economies. WWF Global Science (2018).Kellner, E. Social acceptance of a multi-purpose reservoir in a recently deglaciated landscape in the Swiss Alps. Sustainability 11, 3819. https://doi.org/10.3390/su11143819 (2019).Article 

    Google Scholar 
    Boyé, H., & de Vivo, M. The environmental and social acceptability of dams. Field Actions Sci. Rep. http://journals.openedition.org/factsreports/4055 (2016).Wiejaczka, Ł, Piróg, D. & Fidelus-Orzechowska, J. Cost-benefit analysis of dam projects: the perspectives of resettled and non-resettled communities. Water Resour. Manag. 34(1), 343–357 (2020).Article 

    Google Scholar 
    Rodeles, A. A., Galicia, D. & Miranda, R. Recommendations for monitoring freshwater fishes in river restoration plans: a wasted opportunity for assessing impact. Aquat. Conserv. 27(4), 880–885. https://doi.org/10.1002/aqc.2753 (2017).Article 

    Google Scholar 
    Birnie-Gauvin, K., Tummers, J. S., Lucas, M. C. & Aarestrup, K. Adaptive management in the context of barriers in European freshwater ecosystems. J. Environ. Manag. 204, 436–441. https://doi.org/10.1016/j.jenvman.2017.09.023 (2017).Article 

    Google Scholar 
    Yousefi-Sahzabi, A. et al. Turkish challenges for low-carbon society: current status, government policies and social acceptance. Renew. Sustain. Energy Rev. 68, 596–608. https://doi.org/10.1016/j.rser.2016.09.090 (2017).Article 

    Google Scholar 
    Jiang, H., Lin, P. & Qiang, M. Public-opinion sentiment analysis for large hydro projects. J. Construct. Eng. Manage. 142(2), 05015013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039 (2016).Article 

    Google Scholar 
    Schulz, C., Martin-Ortega, J. & Glenk, K. Understanding public views on a dam construction boom: the role of values. Water Resour. Manage. 33, 4687–4700. https://doi.org/10.1007/s11269-019-02383-9 (2019).Article 

    Google Scholar 
    Kirchherr, J., Pohlner, H. & Charles, K. J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 60, 115–125. https://doi.org/10.1016/j.eiar.2016.02.007 (2016).Article 

    Google Scholar 
    Piróg, D., Fidelus-Orzechowska, J., Wiejaczka, L. & Łajczak, A. Hierarchy of factors affecting the social perception of dam reservoirs. Environ. Impact Assess. Rev. 79, 106301. https://doi.org/10.1016/j.eiar.2019.106301 (2019).Article 

    Google Scholar 
    Arboleya, E., Fernandez, S., Clusa, L., Dopico, E. & Garcia-Vazquez, E. River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University students. Front. Environ. Sci. 9, 643820. https://doi.org/10.3389/fenvs.2021.643820 (2021).Article 

    Google Scholar 
    Gilg, A., & Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 57(3), 400–414. doi:https://doi.org/10.1016/j.ecolecon.2005.04.010 (2006)Schapper, A., Unrau, C., & Killoh, S. Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustain. Develop. 28, 413–423. doi:https://doi.org/10.1002/sd.1995 (2020)Flaminio, S., Piégay, H., & Le Lay, Y-F. To dam or not to dam in an age of anthropocene: insights from a genealogy of media discourses. Anthropocene. 36, 100312, doi:https://doi.org/10.1016/j.ancene.2021.100312 (2021)Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: If you remove it, what’s to come?. Bioscience 69(1), 26–39. https://doi.org/10.1093/biosci/biy152 (2019).Article 

    Google Scholar 
    Heberlein, T. A. Navigating environmental attitudes. Conserv. Biol. 26(4), 583–585. https://doi.org/10.1111/j.1523-1739.2012.01892.x (2012).Article 

    Google Scholar 
    Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change. 3, 399–404. https://doi.org/10.1038/NCLIMATE1720 (2013).ADS 
    Article 

    Google Scholar 
    Schuldt, J. P., Roh, S. & Schwarz, N. Questionnaire design effects in climate change surveys: Implications for the partisan divide. Ann. Am. Acad. Pol. Soc. Sci. 658(1), 67–85. https://doi.org/10.1177/0002716214555066 (2015).Article 

    Google Scholar 
    Bowden, V., Nyberg, D. & Wright, C. Planning for the past: local temporality and the construction of denial in climate change adaptation. Glob. Environ. Change 57, 101939. https://doi.org/10.1016/j.gloenvcha.2019.101939 (2019).Article 

    Google Scholar 
    Venus, T. E., Hinzmann, M., Bakken, T. H., Gerdes, H., Nunes Godinho, F., Hansen, B., Pinheiro, A., & Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy. 140, 111422. doi:https://doi.org/10.1016/j.enpol.2020.111422 (2020)Schober, M. F. The future of face-to-face interviewing. Qual. Assur. Educ. 26(2), 290–302. https://doi.org/10.1108/QAE-06-2017-0033 (2018).MathSciNet 
    Article 

    Google Scholar 
    Couper, M. P. The future of modes of data collection. Public Opin. Q. 75, 889–908. https://doi.org/10.1093/poq/nfr046 (2011).Article 

    Google Scholar 
    Zhang, X., Kuchinke, L., Woud, M. L., Velten, J. & Margraf, J. Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Comput. Hum. Behav. 71, 172–180. https://doi.org/10.1016/j.chb.2017.02.006 (2017).Article 

    Google Scholar 
    Garcia de Leaniz, C., Berkhuysen, A., & Belletti, B. Beware small dams, they can do damage, too. Nature 570, 164–164; doi:https://doi.org/10.1038/d41586-019-01826-y (2019).Belletti, B., et al. Small isn’t beautiful: the impact of small barriers on longitudinal connectivity of European rivers. Geophys. Res. Abst. 20: EGU2018-PREVIEW (2018).Hophmayer-Tokich, S. & Krozer, Y. Public participation in rural area water management: experiences from the North Sea countries in Europe. Water Int. 33(2), 243–257. https://doi.org/10.1080/02508060802027604 (2008).Article 

    Google Scholar 
    San-Martín, E., Larraz, B. & Gallego, M. S. When the river does not naturally flow: a case study of unsustainable management in the Tagus River (Spain). Water Int. 45(3), 189–221. https://doi.org/10.1080/02508060.2020.1753395 (2020).Article 

    Google Scholar 
    Dunlap, R. E. Environmental concern. The Wiley‐Blackwell Encyclopedia of Globalization. (Wiley, Amsterdam, 2012).European Commission Ethics for researchers. Facilitating Research Excellence in FP7. https://doi.org/10.2777/7491 (Publications Office of the European Union, 2013).Jenner, B. M. & Myers, K. C. Intimacy, rapport, and exceptional disclosure: a comparison of in-person and mediated interview contexts. Int. J. Soc. Res. Methodol. 22(2), 165–177. https://doi.org/10.1080/13645579.2018.1512694 (2019).Article 

    Google Scholar 
    Given, L. M. 100 questions (and answers) about qualitative research (Sage, 2015).
    Google Scholar 
    Saris, W. E. & Gallhofer, I. N. Design, evaluation, and analysis of questionnaires for survey research (Wiley, 2014).Book 

    Google Scholar 
    Avella, J. R. Delphi panels: research design, procedures, advantages, and challenges. IJDS 11(1), 305–321. https://doi.org/10.28945/3561 (2016).Article 

    Google Scholar 
    Vandenplas, C. & Loosveldt, G. Modeling the weekly data collection efficiency of face-to-face surveys: six rounds of the European social survey. J. Surv. Stat. Methodol. 5(2), 212–232. https://doi.org/10.1093/jssam/smw034 (2017).Article 

    Google Scholar 
    Barbero-García, M. I., Vila-Abad, E. & Holgado-Tello, F. P. Tests adaptation in cross-cultural comparative studies. Acción Psicol. 5, 7–16. https://doi.org/10.5944/ap.5.2.454 (2008).Article 

    Google Scholar 
    Flick, U. Triangulation in data collection. The SAGE Handbook of Qualitative Data Collection. (Sage, London, 2018).Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological triangulation. Synthese 196(8), 3067–3081. https://doi.org/10.1007/s11229-016-1294-7 (2019).MathSciNet 
    Article 

    Google Scholar 
    DeVellis, R. F. Scale development: Theory and applications (Sage, 2012).
    Google Scholar 
    Hammer, Ø., Harper, D.A.T., & Ryan, P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001). More

  • in

    Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data

    From the popular algorithms, we chose the Random forest model as the most suitable for our case. The data required for predictions can be divided into plant occurrence records and environmental features. Bioclimatic variables and soil properties were selected as the main environmental features. All of the data were obtained from open sources.Heracleum Sosnowskiy plant descriptionHeracleum sosnowskyi is a monocarpic perennial plant of the Apiaceae family. The height is up to 3–5 m with a straight stem up to 12 cm in diameter. HS compound steam leaves can reach 150 cm, both long and wide38. The blooming period starts in July and continues until the end of September. Plant reproduction is performed by seeds only. The seeds’ depth of germination is reported as mainly in the upper 5 cm down to 15 cm of soil. One plant can produce 10–20,000 seeds39,40. Seeds germinate in the early spring, while some have reported that a period of cold stratification for the dormancy break is obligatory for germination development. Suitable conditions for HS include a temperate climate with warm humid summers and cold winters, while it is probably not drought resistant. Plants of HS tend to neutral soils with a pH range from 6 to 7, rich in nutrients, and being reported as nitrophilous, so the eutrophication of the environment favours HS development. HS plants do not tolerate shade conditions in the first growing period.HS is mostly spread in artificial and semi-natural habitats, including grasslands, pastures, parks, roadsides, agricultural fields, riverbanks or canal sides, and other distributed habitats. Currently, the main pathways of spread include an involuntary entry with soil on vehicles, machinery, footwear or the use of soil as a commodity (as the growing medium rich in organic matter)39.Study areaThe area for modelling extends from approximately 41(^{circ }) to 70(^{circ }) N and from 27(^{circ }) to 60(^{circ }) E, and Kaliningrad region, it equals to approximately 4 mln km2 (Fig. 4).Figure 4Map of the study area: white colour represents the territory used for prediction, red points correspond to the dataset of HS occurrence, collected from the available sources.Full size imageThe European part of Russia is the most inhabited part of the country, and it is the home of approximately 80% of the total population of Russia. It includes the East European Plain, Caucasus mountains and Ural mountains, with the predominance of the East European Plain. Environmental characteristics across the territory of study vary significantly. The climate is changing from semi-arid in the south to subarctic in the north, including humid continental climate conditions. Natural vegetation is represented by almost all types of biomes with the prevalence of different types of forests: broadleaf and mixed forests, coniferous forests, and boreal forests (taiga), while the area of arable lands is reported to be approximately 650,000 km241,42. The territory is subjected to the constant land-use types and cover changes due to the urbanization and switch of the status of arable lands—i.e. reduction of croplands and development of fallows and forests, and, vice versa, returning of some of them into the cultivation process43. The soil cover is represented by the contrast by their physicochemical properties groups, in the northern part of Luvisols, Podzols, Histosols, while of the southern part—by Chernozems, Kastanozems, Solonetz44.Collection of the input dataPlant occurrence dataPlant occurrence coordinates were collected from several publicly available sources related to citizen science projects: the Global Biodiversity Information Facility database45, iNaturalist database46, and the database of the “Antiborschevik” community47. Records were documented by human observation and collected from 2000 to 2021. The overall number of initial occurrence points from combined sources is 7637.Environmental predictorsClimate data Modelling was performed for current and future climate conditions at its two scenarios, selected year ranges were 2000–2018 and 2040–2060 respectively.Climatic variables were collected from the Worldclim database48, containing the average seasonal information relevant to the physiological characteristics of species and available at different resolutions. We chose 10 arc-minutes spatial resolution taking into account the size of the studied area. Table 1 provides a short description of the used bioclimatic features, and we refer the reader to the Worldclim project for detailed information on the variables’ calculation.For the future climate scenarios, we used two Shared Socioeconomic Pathways (SSPs)49—1-2.6 and 5-8.5, corresponding to the lowest (keeping global mean temperature increase below 2 (^{circ })C) and the highest (at the increase of population without technological change) predicted future greenhouse gases emission scenarios. For these data, we took the same resolution (10 arc-minutes) as discussed above.We used the Equilibrium Climate Sensitivity to select the climate model to model future HS distribution. Equilibrium climate sensitivity (ECS) is defined as the global mean surface air temperature change due to a rapid doubling of carbon dioxide concentrations as soon as the associated ocean-atmosphere-sea ice system reaches equilibrium. As the ECS value increases, the model’s sensitivity to the CO(_2) concentration in the atmosphere increases. We have chosen CanESM5 model (ECS—5.6), CNRM-CM6-1 model (ECS—4.3) and BCC-CSM2-MR model (ECS—3.0)50.Table 1 Description of used bioclimatic variables.Full size tableFor the future climate scenarios we selected three climate models:

    BCC-CSM2-MR Beijing Climate Center climate system model developed in Beijing Climate Center, China Meteorological Administration51. Model has horizontal resolution 1.125(^{circ }) by 1.125(^{circ }).

    CanESM5 Canadian Earth System Model version 5 developed in Canadian Center for Climate Modelling and Analysis, Canada52. Horizontal resolution 2.81(^{circ }) by 2.81(^{circ }).

    CNRM-CM6-1 Climate model developed in National Center of Meteorological Research, France53. Horizontal resolution 1.4(^{circ }) by 1.4(^{circ }).

    Authors of the WorldClim project prepared historical and future climate data to a uniform spatial (10 arc-minutes) and temporal resolution.Soil data Soil data were downloaded from the SoilGrids database54—a system for global digital soil mapping. SoilGrids provides continuous data at several depths of the spatial distribution of soil properties across the globe with selected resolution. It uses a machine learning approach to reconstruct continuous data from 230,000 soil profile observations from the WoSIS (The World Soil Information Service) database and a series of environmental covariates.From the whole set of the data provided by SoilGrids several properties were chosen for the forecasting: relative percentage of silt (Silt, %), sand (Sand, %), a volumetric fraction of coarse fragments (CF, %), cation exchange capacity (CEC, ({text{cmol}}_{c}/{text{kg}})) and soil organic carbon (SOC, g/kg) at the depth 5–15 cm, where the HS seeds are assumed to be located. These variables are expected to be more stable over time than bioclimatic predictors; thus, chosen soil properties could be implemented for the future time the same as in the present.Data pre-processingAll the data were transformed to the ASCII format by R script and using software DIVA-GIS following the tutorial for the preparation of WorldClim files for use in SDM (http://www.lep-net.org/wp-content/uploads/2016/08/WorldClim_to_MaxEnt_Tutorial.pdf) with unified selected resolution 340 sq.km.Optimization of the occurrence points amountThe general problem in using the available data collected from the databases of the citizen science projects is that the points of observation are distributed non-uniformly. For instance, the frequency of the records depends on the density of the population directly. The spatial filtering of the data (reducing the number of points) can be performed to reduce the sampling bias55. We prepared three datasets with a distance between points of 4, 7 and 10 km with 2402, 1846 and 1504 occurrence points correspondingly filtering the initial dataset. For the thinning step thin() function was used within the R package spThin with 100 iterations for each of chosen thinning distances. To understand how much data we could lose, we used the analysis of feature distribution and evaluated the general fairness of the model performance.Pseudo-absence generationDue to the availability only of the presence points, it is important to generate the absence points for further implementation of the selected algorithm. Although the generation of pseudo-absence points in SDM research is a widespread solution, a closer look at the literature reveals several gaps and shortcomings. Since the raw dataset of the HS distribution demonstrates strong sampling bias, the generation of pseudo-absence points using the usual ‘random’ strategy can aggravate the sampling bias problem. Thus, the combination of the ‘disk’ and ‘random’ strategies was applied for the generation of the pseudo-absence points using the biomod R package17.

    The ‘disk’ strategy is established on the geographic distance works as separation from truth presence and possible absence points. The optimal geographic distance for HS was chosen as 25 km. This distance was chosen empirically by trial-and-error. We started with 18 km (because the size of the cell is   9–18 km depending on location) and finished with 50 km. Using distances such as 30–50 km lead to a positive spatial autocorrelation. Thus, we decided to set 25 km which finally provided both optimal model performance and reduced spatial autocorrelation.

    The second part of the generation was based on the ‘random’ strategy with filtration: according to the different range of climate conditions on the territory of Russia, there are several places where HS is not detected, thus not growing. The selection of unsuitable places for HS related to the north of Russia, where it is might be too cold for plant species. From all amount of randomly generated generated points we selected points with condition latitude ( > 64^{circ }), according to tundra board line.

    Features selection procedureTo avoid over-fitting and to choose the most conscientious set of parameters for final modelling, two approaches were combined. We searched features that are not correlated with others by a selected threshold is equal to 0.8 in absolute values56 and estimated variable importance using the Mean Decrease Gini (MDG) and the Mean Decrease Accuracy (MDA) as the result of modelling on enumerated parameters’ combinations. MDG score is related to the homogeneity of the nodes and leaves coefficient. With the rise of the MDG score the importance of the corresponding feature is also increasing. MDA describes how much accuracy decrease by removing the feature. We selected the most important features according to the MDG and MDA scores by the highest values of both metrics using a sequential search from an initial set of variables.Modelling approachRandom forestChoosing the appropriate method for creating the tool for accurate SDM is crucial because the overall performance could vary dramatically, depending on the selected model and particular use case. There is a limited amount of acceptable machine learning methods that can be used in SDM. Several popular methods demonstrated high performance in modelling on large areas: GBM, RF, and GLM. In particular, for modelling and prediction of the potential distribution of invasive species, GLM and RF were used57. We decided to use RF because this model was successfully implemented for solving a variety of tasks such as predictions of animal and plant distributions, and also was used for making predictions on a large territory58. The other important advantage that should be noticed is the straightforward interpretability of RF, which means that it is possible to evaluate the impact of each environmental parameter on the occurrence of the invasive species.Approach to the cross-validation of the modelA unique approach for the model calibration is needed to reduce spatial autocorrelation caused by the absence of a strict sampling design. In our case, the data was split into training and testing folds using the spatial blocks technique in a scheme of 13-fold cross-validation. Random spatial splitting was performed 20 times to calibrate the model, with a distance between blocks set as 100 km. To calibrate the model we used a spatial blocks approach with random type from R package blockCV.Evaluation of the model performanceTo evaluate the performance of the model a classic approach for ecology was used—Area Under Curve (AUC) or Receiver operating characteristic (ROC), related to the independent threshold techniques16. The principle of methods lies in the standard confusion matrix, where rows and columns represent actual and predicted classes. The construction of ROC curves uses all possible thresholds to obtain different confusion matrices which leads to the reproduction of the curve with two-dimensional space: (1) on y-axis is True Positive Rate (sensitivity, recall); (2) on x-axis is False Positive Rate (equal to 1 − specificity). In our case true positive (TP, sensitivity) rate means that predicted places where HS grows correspond to actual. Similarly, true negative rate (TN, specificity) indicates correctly classified locations as absence points. In contrast, the missteps when the model predicted places as presence points for plants that are incorrect are False Positive, FP, and places where HS is absent, according to the model, while this is not true are recognised as False Negative, FN. More