More stories

  • in

    Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

    Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.CAS 
    Article 

    Google Scholar 
    Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.CAS 
    Article 

    Google Scholar 
    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    Article 

    Google Scholar 
    Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.Article 

    Google Scholar 
    Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.Article 

    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.Article 

    Google Scholar 
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.Article 

    Google Scholar 
    Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.Article 

    Google Scholar 
    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    Article 

    Google Scholar 
    Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.Article 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.CAS 
    Article 

    Google Scholar 
    Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.CAS 
    Article 

    Google Scholar 
    Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.CAS 
    Article 

    Google Scholar 
    Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.CAS 
    Article 

    Google Scholar 
    Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.Article 

    Google Scholar 
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.CAS 
    Article 

    Google Scholar 
    Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.Article 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.Article 

    Google Scholar 
    Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.Article 

    Google Scholar 
    DFO Canada. AZMP Bulletin PMZA. 2006. DFO.Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.Article 

    Google Scholar 
    El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.Article 

    Google Scholar 
    Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.CAS 
    Article 

    Google Scholar 
    Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.CAS 
    Article 

    Google Scholar 
    Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.CAS 
    Article 

    Google Scholar 
    Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.Article 

    Google Scholar 
    Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.CAS 
    Article 

    Google Scholar 
    Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.Article 

    Google Scholar 
    Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    Article 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.CAS 
    Article 

    Google Scholar 
    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.
    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS 
    Article 

    Google Scholar 
    Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    Article 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.Article 

    Google Scholar 
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.CAS 
    Article 

    Google Scholar 
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 
    Article 

    Google Scholar 
    Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.Article 

    Google Scholar 
    Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.Article 

    Google Scholar 
    Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.CAS 
    Article 

    Google Scholar 
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.CAS 
    Article 

    Google Scholar 
    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.Article 

    Google Scholar 
    Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.CAS 
    Article 

    Google Scholar 
    Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.Article 

    Google Scholar 
    Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.CAS 
    Article 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.Article 

    Google Scholar 
    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.CAS 
    Article 

    Google Scholar 
    Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.CAS 
    Article 

    Google Scholar 
    Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.
    Google Scholar 
    Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.Article 

    Google Scholar 
    Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.Article 

    Google Scholar 
    Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.Article 

    Google Scholar 
    Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.
    Google Scholar 
    Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.CAS 
    Article 

    Google Scholar 
    Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.CAS 
    Article 

    Google Scholar 
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.CAS 
    Article 

    Google Scholar 
    Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.Article 

    Google Scholar 
    Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.Article 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.Article 

    Google Scholar 
    Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.Article 

    Google Scholar 
    Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.Article 

    Google Scholar 
    Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.Article 

    Google Scholar 
    Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.Article 

    Google Scholar 
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.Article 

    Google Scholar 
    Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.Article 

    Google Scholar 
    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.CAS 
    Article 

    Google Scholar 
    Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.CAS 
    Article 

    Google Scholar 
    Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.Article 

    Google Scholar  More

  • in

    Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers

    Rook, G. A. W. Review series on helminths, immune modulation and the hygiene hypothesis: The broader implications of the hygiene hypothesis. Immunology 126, 3–11 (2009).CAS 
    Article 

    Google Scholar 
    Von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).Article 

    Google Scholar 
    Von Hertzen, L. & Haahtela, T. Disconnection of man and the soil: Reason for the asthma and atopy epidemic?. J. Allergy Clin. Immunol. 117, 334–344 (2006).Article 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. U. S. A. 109, 8334–8339 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Haahtela, T. et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy Eur. J. Allergy Clin. Immunol. https://doi.org/10.1111/all.14895 (2021).Article 

    Google Scholar 
    Rook, G. A. W. et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin. Immunopathol. 25, 237–255 (2004).CAS 
    Article 

    Google Scholar 
    Fyhrquist, N. et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J. Allergy Clin. Immunol. 134, 1301-1309.e11 (2014).CAS 
    Article 

    Google Scholar 
    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198-1206.e12 (2019).CAS 
    Article 

    Google Scholar 
    Nurminen, N. et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Fut. Microbiol. 13, 737–744 (2018). CAS 
    Article 

    Google Scholar 
    Shaffer, M. & Lozupone, C. Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems 3, 1–12 (2018).Article 

    Google Scholar 
    Grönroos, M. et al. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen https://doi.org/10.1002/mbo3.645 (2019).Article 

    Google Scholar 
    Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 7–105 (2020).Article 

    Google Scholar 
    Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 7008 (2021).Article 

    Google Scholar 
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science (80-.). 345, 1048–1052 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes-but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma.. Science 364, 701–709 (2011).CAS 

    Google Scholar 
    Li, H. et al. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci. Total Environ. 665, 61–68 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chase, J. et al. Geography and location are the primary drivers of office microbiome composition. mSystems 1, 1–18 (2016).
    Google Scholar 
    Danko, D. et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184, 3376-3393.e17 (2021).CAS 
    Article 

    Google Scholar 
    Hui, N. et al. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environ. Microbiol. 19, 1281–1295 (2017).Article 

    Google Scholar 
    Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Franzetti, A., Gandolfi, I., Gaspari, E., Ambrosini, R. & Bestetti, G. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl. Microbiol. Biotechnol. 90, 745–753 (2011).CAS 
    Article 

    Google Scholar 
    Mhuireach, G., Wilson, H. & Johnson, B. R. Urban aerobiomes are influenced by season, vegetation, and individual site characteristics. EcoHealth 18, 331–344 (2021).Article 

    Google Scholar 
    Mahnert, A., Moissl-Eichinger, C. & Berg, G. Microbiome interplay: Plants alter microbial abundance and diversity within the built environment. Front. Microbiol. 6, 1–11 (2015).Article 

    Google Scholar 
    Ruokolainen, L. et al. Green areas around homes reduce atopic sensitization in children. Allergy Eur. J. Allergy Clin. Immunol. 70, 195–202 (2015).CAS 
    Article 

    Google Scholar 
    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).CAS 
    Article 

    Google Scholar 
    Nurminen, N. et al. Land cover of early-life environment modulates the risk of type 1 diabetes. Diabetes Care 44, 1506–1514 (2021).Article 

    Google Scholar 
    Parajuli, A. et al. Yard vegetation is associated with gut microbiota composition. Sci. Total Environ. 713, 136707 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Köberl, M., Dita, M., Martinuz, A., Staver, C. & Berg, G. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    Delanghe, L. et al. The role of lactobacilli in inhibiting skin pathogens. Biochem. Soc. Trans. 5, 617–627. https://doi.org/10.1042/bst20200329 (2021).CAS 
    Article 

    Google Scholar 
    George, F. et al. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Front. Microbiol. 9, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    Yu, A. O., Leveau, J. H. J. & Marco, M. L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 12, 16–29 (2020).CAS 
    Article 

    Google Scholar 
    Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1405 (2018).Article 

    Google Scholar 
    Parajuli, A. et al. The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?. PLoS One 7, 1–18. https://doi.org/10.1371/journal.pone.0187852 (2017).CAS 
    Article 

    Google Scholar 
    Vari, H. K. et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere 265, 1559 (2021).Article 

    Google Scholar 
    Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 33, 695–720 (2013).Article 

    Google Scholar 
    Hui, N. et al. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front. Microbiol. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Puhakka, R. et al. Greening of daycare yards with biodiverse materials affords well-being, play and environmental relationships. Int. J. Environ. Res. Public Health 16, 2948 (2019).Article 

    Google Scholar 
    Burmeister, A. R. & Marriott, I. The interleukin-10 family of cytokines and their role in the CNS. Front. Cell. Neurosci. 12, 1–13 (2018).Article 

    Google Scholar 
    Opal, S. M. & DePalo, V. A. Anti-inflammatory cytokines. Chest 117, 1162–1172 (2000).CAS 
    Article 

    Google Scholar 
    Kuwabara, T., Ishikawa, F., Kondo, M. & Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017, 4598 (2017).Article 

    Google Scholar 
    Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. L. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).CAS 
    Article 

    Google Scholar 
    Prudhomme, G. J. & Piccirillo, C. A. The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases. J. Autoimmun. 14, 23–42 (2000).CAS 
    Article 

    Google Scholar 
    Esebanmen, G. E. & Langridge, W. H. R. The role of TGF-beta signaling in dendritic cell tolerance. Immunol. Res. 65, 987–994 (2017).CAS 
    Article 

    Google Scholar 
    Honkanen, J. et al. IL-17 immunity in human type 1 diabetes. J. Immunol. 185, 1959–1967 (2010).CAS 
    Article 

    Google Scholar 
    Torpy, F. et al. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Heal. 11, 163–170 (2018).CAS 
    Article 

    Google Scholar 
    Roslund, M. I. et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ. Int. 130, 104894 (2019).CAS 
    Article 

    Google Scholar 
    Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing Artifacts on 16s rRNA-based studies. PLoS One 6, 1789 (2011).
    Google Scholar 
    Kozich, J., Westcott, S., Baxter, N., Highlander, S. & Schloss, P. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Soininen, L., Grönroos, M., Roslund, M. I. & Sinkkonen, A. Long-term storage affects resource availability and occurrence of bacterial taxa linked to pollutant degradation and human health in landscaping materials. Urban For. Urban Green. 60, 1789 (2021).Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

    Google Scholar 
    Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. & Al, W. E. T. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Oksanen, J. et al. vegan: Community Ecology Package. (2019).Huang, F. L. Alternatives to multilevel modeling for the analysis of clustered data. J. Exp. Educ. 84, 175–196 (2016).Article 

    Google Scholar 
    Moen, E. L., Fricano-Kugler, C. J., Luikart, B. W. & O’Malley, A. J. Analyzing clustered data: Why and how to account for multiple observations nested within a study participant?. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    Twisk, J. et al. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 10, 80–85 (2018).Chapat, L., Chemin, K., Dubois, B., Bourdet-Sicard, R. & Kaiserlian, D. Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. Eur. J. Immunol. 34, 2520–2528 (2004).CAS 
    Article 

    Google Scholar 
    Kaur, K. & Rath, G. Formulation and evaluation of UV protective synbiotic skin care topical formulation. J. Cosmet. Laser Ther. 21, 332–342 (2019).Article 

    Google Scholar 
    Rong, J. et al. Skin resistance to UVB-induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS8-fermented milk supernatant. J. Appl. Microbiol. 123, 511–523 (2017).CAS 
    Article 

    Google Scholar 
    Yuan, J. et al. Microbial volatile compounds alter the soil microbial community. Environ. Sci. Pollut. Res. 24, 22485–22493 (2017).CAS 
    Article 

    Google Scholar 
    Abis, L. et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils. Sci. Rep. 10, 1–15 (2020).Article 

    Google Scholar 
    Duffy, E. & Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. TrAC Trends Anal. Chem. 111, 163–172 (2019).CAS 
    Article 

    Google Scholar 
    Lemfack, M. C. et al. Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Syst. Appl. Microbiol. 39, 503–515 (2016).CAS 
    Article 

    Google Scholar 
    Ahmed, M. & Gaffen, S. L. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev. 21, 449–453 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Protected areas have a mixed impact on waterbirds, but management helps

    High Ambition Coalition for Nature and People. 50 Countries Announce Bold Commitment to Protect at Least 30% of the World’s Land and Ocean by 2030 (Campaign for Nature, 2021).Waldron A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23223 (2019).CAS 
    Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Protected Area Effectiveness in Reducing Tropical Deforestation (The World Bank, 2009).Scharlemann, J. P. W. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).Article 

    Google Scholar 
    Feng, Y. et al. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 130, 108078 (2021).Article 

    Google Scholar 
    Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).CAS 
    Article 

    Google Scholar 
    Terraube, J., Van doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).CAS 
    Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).CAS 
    Article 

    Google Scholar 
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).CAS 
    Article 

    Google Scholar 
    Kleijn, D., Cherkaoui, I., Goedhart, P. W., van der Hout, J. & Lammertsma, D. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).Article 

    Google Scholar 
    Reyes-Arriagada, R. et al. Population trends of a mixed-species colony of Humboldt and Magellanic Penguins in Southern Chile after establishing a protected area. Avian Conserv. Ecol. 8, 13 (2013).
    Google Scholar 
    Bukart, K. Motion 101 passes at IUCN, calls for protecting 50% of Earth’s lands and seas. One Earth https://www.oneearth.org/motion-101-passes-at-iucn-calls-for-protecting-50-of-earths-lands-and-seas/ (2021).Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat, Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).CAS 
    Article 

    Google Scholar 
    Redford, K. H. The empty forest. BioScience 42, 412–422 (1992).Article 

    Google Scholar 
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. N. Direct. Eval. 2009, 75–84 (2009).Article 

    Google Scholar 
    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 

    Google Scholar 
    Kingsford, R. T., Roshier, D. A. & Porter, J. L. Australian waterbirds time and space travellers in dynamic desert landscapes. Mar. Freshw. Res. 61, 875–884 (2010).CAS 
    Article 

    Google Scholar 
    The Ramsar Convention Secretariat. Managing Ramsar Sites. ramsar.org https://www.ramsar.org/sites-countries/managing-ramsar-sites (2014).European Commission. The Birds Directive. https://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm (accessed 3 April 2022).Zhang, W., Sheldon, B. C., Grenyer, R. & Gaston, K. J. Habitat change and biased sampling influence estimation of diversity trends. Curr. Biol. 31, 3656–3662.e3 (2021).CAS 
    Article 

    Google Scholar 
    Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).CAS 
    Article 

    Google Scholar 
    Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).Article 

    Google Scholar 
    Rabinowitz, D. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (John Wiley & Sons, 1981).Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 

    Google Scholar 
    Hettiarachchi, M., Morrison, T. H. & McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Change 32, 57–66 (2015).Article 

    Google Scholar 
    Munishi, P., Chuwa, J., Kilungu, H., Moe, S. & Temu, R. Management effectiveness and conservation initiatives in the Kilombero Valley Flood Plains Ramsar Site, Tanzania. Tanzania J. For. Nat. Conserv. 81, 1–10 (2012).
    Google Scholar 
    Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in western North American National Parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).Article 

    Google Scholar 
    Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).Article 

    Google Scholar 
    Wetlands International. Asian Waterbird Census. https://south-asia.wetlands.org/our-approach/healthy-wetland-nature/asian-waterbird-census/ (accessed 3 April 2022).Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).Article 

    Google Scholar 
    Jia, Q., Wang, X., Zhang, Y., Cao, L. & Fox, A. D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 218, 240–246 (2018).Article 

    Google Scholar 
    Lehikoinen, A., Rintala, J., Lammi, E. & Pöysä, H. Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conserv. 19, 88–95 (2016).Article 

    Google Scholar 
    Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).Article 

    Google Scholar 
    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    Wauchope, H. et al. Quantifying the impact of protected areas on near-global waterbird population trends, a pre-analysis plan. Preprint at https://doi.org/10.7287/peerj.preprints.27741v2 (2019).Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).QGIS Geographic Information System (QGIS, 2021).Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME) www.protectedplanet.net (UNEP-WCMC and IUCN, 2019).Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) (NOAA, 2017).Coetzer, K. L., Witkowski, E. T. F. & Erasmus, B. F. N. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104 (2014).Article 

    Google Scholar 
    Ament, J. M. & Cumming, G. S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 30, 846–855 (2016).Article 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Salmerón Gómez, R., García, Pérez, J., López Martín, M. D. M. & García, C. G. Collinearity diagnostic applied in ridge estimation through the variance inflation factor. J. Appl. Stat. 43, 1831–1849 (2016).MathSciNet 
    Article 

    Google Scholar 
    Gu, X. S. & Rosenbaum, P. R. Comparison of multivariate matching methods: structures, distances, and algorithms. J. Comput. Graph. Stat. 2, 405–420 (1993).
    Google Scholar 
    Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).MathSciNet 
    Article 

    Google Scholar 
    King, G. & Nielsen, R. Why propensity scores should not be used for matching. Pol. Anal. 27, 435–454 (2019).Article 

    Google Scholar 
    Rosenbaum, P. R. DOS: design of observational studies. https://cran.r-project.org/web/packages/DOS/index.html (2018).Linden, A. A matching framework to improve causal inference in interrupted time-series analysis. J. Eval. Clin. Pract. 24, 408–415 (2018).Article 

    Google Scholar 
    Simmons, B. I., Hoeppke, C. & Sutherland, W. J. Beware greedy algorithms. J. Anim. Ecol. 88, 804–807 (2019).Article 

    Google Scholar 
    Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).MathSciNet 
    Article 

    Google Scholar 
    Rubin, D. B. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv. Outcomes Res. Methodol. 2, 169–188 (2001).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/index.html (2021).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).Article 

    Google Scholar 
    Christensen, R. Ordinal–regression models for ordinal data. https://cran.r-project.org/web/packages/ordinal/index.html (2019).Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Op. Source Softw. 3, 772 (2018).Article 

    Google Scholar 
    McKay, M. D., Beckman, R. J. & Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979).MathSciNet 

    Google Scholar 
    Carnell, R. lhs: latin hypercube samples. https://cran.r-project.org/web/packages/lhs/index.html (2020).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 17001 (2017).Article 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).CAS 
    Article 

    Google Scholar 
    Sandvik, B. World Borders Dataset. Thematic Mapping http://thematicmapping.org/downloads/world_borders.php (2009).BirdLife International. Species Distribution Data Download http://www.birdlife.org/datazone/info/spcdownload (accessed 25 February 2020).Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    WWF International. Management Effectiveness Tracking Tool https://wwfeu.awsassets.panda.org/downloads/mett2_final_version_july_2007.pdf (2007). More

  • in

    Farm-scale differentiation of active microbial colonizers

    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.CAS 
    Article 

    Google Scholar 
    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881.CAS 
    Article 

    Google Scholar 
    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    Article 

    Google Scholar 
    Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:2770.Article 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.Article 

    Google Scholar 
    Sorensen JW, Shade A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos Trans R Soc B Biolog Sci. 2020;375:20190255.CAS 
    Article 

    Google Scholar 
    Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.CAS 
    Article 

    Google Scholar 
    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS 
    Article 

    Google Scholar 
    Lauber Christian L, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.CAS 
    Article 

    Google Scholar 
    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.Article 

    Google Scholar 
    Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.Article 

    Google Scholar 
    Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015;112:5756–61.CAS 
    Article 

    Google Scholar 
    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.Article 

    Google Scholar 
    Eisenlord SD, Zak DR, Upchurch RA. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence. Ecol Evol. 2012;2:538–49.Article 

    Google Scholar 
    Glassman SI, Lubetkin KC, Chung JA, Bruns TD. The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere. 2017;8:e01677.Article 

    Google Scholar 
    Whitaker Rachel J, Grogan Dennis W, Taylor John W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.CAS 
    Article 

    Google Scholar 
    Amor DR, Ratzke C, Gore J. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci Adv. 2020;6:eaay8676.CAS 
    Article 

    Google Scholar 
    Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–45.Article 

    Google Scholar 
    Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci USA. 2007;104:10282.CAS 
    Article 

    Google Scholar 
    Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol. 2012;18:1918–27.Article 

    Google Scholar 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.CAS 
    Article 

    Google Scholar 
    Chambers CA, Smith SE, Smith FA. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 1980;85:47–62.CAS 
    Article 

    Google Scholar 
    van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems. 2010;13:683–95.Article 

    Google Scholar 
    Young IM, Ritz K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000;53:201–13.Article 

    Google Scholar 
    Kabir Z. Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci. 2005;85:23–29.Article 

    Google Scholar 
    Bell T, Tylianakis JM. Microbes in the anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc R Soc B Biol Sci. 2016;283;20160896.Article 

    Google Scholar 
    Dang K, Gong X, Zhao G, Wang H, Ivanistau A, Feng B, Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield. Front Microbiol. 2020;11;601054.Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.Article 

    Google Scholar 
    Mummey DL, Rillig MC. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol. 2008;64:260–70.CAS 
    Article 

    Google Scholar 
    Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–60.Article 

    Google Scholar 
    Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.Article 

    Google Scholar 
    Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.CAS 
    Article 

    Google Scholar 
    Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.CAS 
    Article 

    Google Scholar 
    Castaño C, Bonet JA, Oliva J, Farré G, Martínez de Aragón J, Parladé J, et al. Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. Fungal Ecol. 2019;41:279–88.Article 

    Google Scholar 
    Garbelotto M, Smith T, Schweigkofler W. Variation in rates of spore deposition of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month-period at two locations in Northern California. Phytopathology®. 2007;98:137–43.Article 

    Google Scholar 
    Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol. 2013;47:12097–106.CAS 
    Article 

    Google Scholar 
    Trexler RV, Bell TH. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol Lett. 2019;366:fnz228.CAS 
    Article 

    Google Scholar 
    King, WL, Kaminsky LM, Gannett M, Thompson GL, Kao-Kniffin J, Bell TH. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance. New Phytol. 2021. https://doi.org/10.1111/nph.17774. Advance online publication.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Apprill A, McNally S, Parsons RJ, Weber LK. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    Article 

    Google Scholar 
    Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5:28.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    Article 

    Google Scholar 
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.Article 

    Google Scholar 
    R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2012;Vienna;AustriaMcMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. Vegan: community ecology package. R Package Version 2.2-1. 2015;2:1–2. https://cran.r-project.org/web/packages/vegan/index.html.Ogle, DH, Wheeler P, Dinno A. FSA: fisheries stock analysis; 2020. https://cran.r-project.org/web/packages/FSA/index.htmlLahti L, Shetty S. Tools for microbiome analysis in R. Microbiome package. Bioconductor; 2017. https://microbiome.github.io/tutorials/Bell T. Experimental tests of the bacterial distance–decay relationship. ISME J. 2010;4:1357–65.Article 

    Google Scholar 
    Boynton PJ, Peterson CN, Pringle A. Superior dispersal ability can lead to persistent ecological dominance throughout succession. Appl Environ Microbiol. 2019;85:e02421–18.CAS 
    Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Dickie A, N IA, Reich PB. Ectomycorrhizal fungal communities at forest edges. J Ecol. 2005;93:244–55.Article 

    Google Scholar 
    Vannette, RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. Fungi are more dispersal limited than bacteria among flowers. https://www.biorxiv.org/content/10.1101/2020.05.19.104968v2. 2021.Zhang G, Wei G, Wei F, Chen Z, He M, Jiao S, et al., Dispersal limitation plays stronger role in the community assembly of fungi relative to bacteria in rhizosphere across the arable area of medicinal plant. Front Microbiol. 2021;12;713523.Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett. 2010;13:675–84.Article 

    Google Scholar 
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.Article 

    Google Scholar 
    Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.Article 

    Google Scholar 
    Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE. 2017;12:e0180442.Article 

    Google Scholar 
    Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants. 2020;6:483–91.CAS 
    Article 

    Google Scholar 
    Riedo, J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ Sci Technol. 2021;55;2919–2928.Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, et al., Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol. 2019;10;648.Article 

    Google Scholar  More

  • in

    Author Correction: Climate and land-use changes reduce the benefits of terrestrial protected areas

    AffiliationsDepartment of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, AustraliaErnest F. Asamoah & Joseph M. MainaDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaLinda J. BeaumontAuthorsErnest F. AsamoahLinda J. BeaumontJoseph M. MainaCorresponding authorCorrespondence to
    Ernest F. Asamoah. More

  • in

    Publisher Correction: Field experiments underestimate aboveground biomass response to drought

    These authors contributed equally: György Kröel-Dulay, Andrea Mojzes.Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryGyörgy Kröel-Dulay & Andrea Mojzes‘Lendület’ Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryKatalin Szitár & Péter BatáryDepartment of Ecology, University of Innsbruck, Innsbruck, AustriaMichael BahnDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, DenmarkClaus Beier, Inger Kappel Schmidt & Klaus Steenberg LarsenNamibia University of Science and Technology, Windhoek, NamibiaMark BiltonPlants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, BelgiumHans J. De Boeck & Sara ViccaDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJeffrey S. DukesDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USAJeffrey S. DukesCSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, SpainMarc Estiarte & Josep PeñuelasCREAF, Cerdanyola del Vallès, SpainMarc Estiarte & Josep PeñuelasGlobal Change Research Institute of the Czech Academy of Sciences, Brno, Czech RepublicPetr HolubDisturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, GermanyAnke JentschExperimental Plant Ecology, University of Greifswald, Greifswald, GermanyJuergen KreylingUK Centre for Ecology & Hydrology, Bangor, UKSabine ReinschSchool of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelMarcelo SternbergPlant Ecology Group, University of Tübingen, Tübingen, GermanyKatja TielbörgerInstitute for Biodiversity and Ecosystem Dynamics (IBED), Ecosystem and Landscape Dynamics (ELD), University of Amsterdam, Amsterdam, the NetherlandsAlbert Tietema More

  • in

    A global record of annual terrestrial Human Footprint dataset from 2000 to 2018

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6, 439–447 (2008).Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, (2017).Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nature communications 9, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology 24, 3199–3213 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510 (2020).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing 13, 1849 (2021).ADS 
    Article 

    Google Scholar 
    Wang, L. et al. Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment 210, 269–281 (2018).ADS 
    Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends in ecology & evolution 29, 635–644 (2014).Article 

    Google Scholar 
    Nikhil, S. et al. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis 5, 1–14 (2021).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Steffen W, et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, (2015).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific data 3, 1–10 (2016).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mu, H. et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning 218, 104305 (2022).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nature communications 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).ADS 
    Article 

    Google Scholar 
    Allan, J. R., Venter, O. & Watson, J. E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Scientific data 4, 1–8 (2017).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances 6, eabc3436 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data 12, 1953–1972 (2020).ADS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, 811–826 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2, 599–610 (2018).Article 

    Google Scholar 
    Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecology letters 17, 1365–1379 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific data 7, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Luck, G. W., Ricketts, T. H., Daily, G. C. & Imhoff, M. Alleviating spatial conflict between people and biodiversity. Proceedings of the National Academy of Sciences 101, 182–186 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Gong, P., Li, X. & Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin 64, 756–763 (2019).ADS 
    Article 

    Google Scholar 
    Hu, T., Yang, J., Li, X. & Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sensing 8, 151 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters 15, 094044 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhu, Z. & Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data 12, 357–371 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, X. et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data 12, 1625–1648 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment 166, 78–90 (2015).ADS 
    Article 

    Google Scholar 
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G. & Gaston, K. J. Urban form, biodiversity potential and ecosystem services. Landscape and urban planning 83, 308–317 (2007).Article 

    Google Scholar 
    Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous United States. PE&RS. Photogrammetric Engineering & Remote Sensing 77, 858–864 (2011).
    Google Scholar 
    Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).ADS 
    Article 

    Google Scholar 
    Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment 219, 206–220 (2018).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637 (2017).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing 38, 6030–6046 (2017).ADS 
    Article 

    Google Scholar 
    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115, 161–164 (2004).Article 

    Google Scholar 
    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Scientific data 4, 1–17 (2017).Article 

    Google Scholar 
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological reviews 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, M. et al. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971 (2019).ADS 
    Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability 3, 281–289 (2020).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature communications 10, 1–10 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Plummer, S., Lecomte, P. & Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203, 2–8 (2017).ADS 
    Article 

    Google Scholar 
    Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles 22, (2008).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation biology 14, 18–30 (2000).Article 

    Google Scholar 
    Paton, D. G., Ciuti, S., Quinn, M. & Boyce, M. S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 8, e01841 (2017).Article 

    Google Scholar 
    Center For International Earth Science Information Network –Columbia University, Georgia ITOSUO. Global roads open access data set, version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), (2013).Wolter, C. & Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89 (2003).Article 

    Google Scholar 
    Wolter, C. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53, 135–144 (2001).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89, 93–94 (2008).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. An annual global terrestrial Human Footprint dataset from 2000 to 2018. figshare https://doi.org/10.6084/m9.figshare.16571064.v5 (2021).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA https://doi.org/10.1594/PANGAEA.787668 (2012).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Scientific data 6, 1–17 (2019).Article 

    Google Scholar 
    Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Global change biology 26, 3040–3051 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More