More stories

  • in

    Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts

    Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).
    Google Scholar 
    Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).
    Google Scholar 
    Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).
    Google Scholar 
    Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).ADS 
    PubMed 

    Google Scholar 
    Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).
    Google Scholar 
    Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).
    Google Scholar 
    Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).
    Google Scholar 
    Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).
    Google Scholar 
    Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).
    Google Scholar 
    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).ADS 
    CAS 

    Google Scholar 
    Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).
    Google Scholar 
    Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).
    Google Scholar 
    Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).
    Google Scholar 
    St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).
    Google Scholar 
    Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).
    Google Scholar 
    Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).ADS 
    CAS 

    Google Scholar 
    McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).
    Google Scholar 
    Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).
    Google Scholar 
    Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).
    Google Scholar 
    Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).
    Google Scholar 
    Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988). Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).
    Google Scholar 
    Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).CAS 

    Google Scholar 
    Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).CAS 
    PubMed 

    Google Scholar 
    Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).
    Google Scholar 
    Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).Article 

    Google Scholar 
    Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021). Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).
    Google Scholar 
    Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).PubMed 

    Google Scholar 
    Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).
    Google Scholar 
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).CAS 
    PubMed 

    Google Scholar 
    Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).
    Google Scholar 
    Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).CAS 

    Google Scholar 
    Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).CAS 

    Google Scholar 
    Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).ADS 

    Google Scholar 
    Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).
    Google Scholar 
    Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999). Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).
    Google Scholar 
    Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).CAS 
    PubMed 

    Google Scholar 
    Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).CAS 
    PubMed 

    Google Scholar 
    Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).
    Google Scholar 
    Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).
    Google Scholar 
    Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).ADS 

    Google Scholar 
    Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).CAS 

    Google Scholar 
    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).ADS 

    Google Scholar 
    Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).ADS 
    CAS 

    Google Scholar 
    Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).
    Google Scholar 
    Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).CAS 

    Google Scholar 
    Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).
    Google Scholar 
    Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).CAS 

    Google Scholar 
    Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).
    Google Scholar 
    McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).
    Google Scholar 
    Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).
    Google Scholar 
    Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).
    Google Scholar 
    Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).
    Google Scholar 
    Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973). More

  • in

    Wildmeat consumption and child health in Amazonia

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: The bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).
    Google Scholar 
    Van Vliet, N. et al. Bushmeat and human health: Assessing the evidence in tropical and sub-tropical forests. Ethnobio. Conserv. 6, 3. https://doi.org/10.15451/ec2017-04-6.3-1-45 (2017).Article 

    Google Scholar 
    Ingram, D. J. et al. Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254. https://doi.org/10.1146/annurev-environ-041020-063132 (2021).Article 

    Google Scholar 
    Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. P. Natl. Acad. Sci. 108, 19653–19656 (2011).ADS 
    CAS 

    Google Scholar 
    Roe, D. et al. Beyond banning wildlife trade: COVID-19, conservation and development. World Dev. 136, 105121. https://doi.org/10.1016/j.worlddev.2020.105121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Orrick, K., Lim, A. & Dove, M. Reframing conservation and development perspectives on bushmeat. Environ. Res. Lett. 17, 011001. https://doi.org/10.1088/1748-9326/ac3db1 (2021).ADS 
    Article 

    Google Scholar 
    Cawthorn, D.-M. & Hoffman, L. C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).PubMed Central 

    Google Scholar 
    Antunes, A. P. et al. A conspiracy of silence: Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).
    Google Scholar 
    Friant, S. et al. Eating bushmeat improves food security in a biodiversity and infectious disease “Hotspot”. EcoHealth 17, 125–138 (2020).PubMed 

    Google Scholar 
    Fa, J. E., Currie, D. & Meeuwig, J. Bushmeat and food security in the Congo Basin: Linkages between wildlife and people’s future. Environ. Conserv. 30, 71–78 (2003).
    Google Scholar 
    Borgerson, C., Razafindrapaoly, B., Rajaona, D., Rasolofoniaina, B. J. R. & Golden, C. D. Food insecurity and the unsustainable hunting of wildlife in a UNESCO world heritage site. Front. Sustain. Food Syst. 3, 99. https://doi.org/10.3389/fsufs.2019.00099 (2019).Article 

    Google Scholar 
    Booth, H. et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 31, 1788–1797. https://doi.org/10.1016/j.cub.2021.01.079 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet, N., Nebesse, C. & Nasi, R. Bushmeat consumption among rural and urban children from Province Orientale, Democratic Republic of Congo. Oryx 49, 165–174 (2015).
    Google Scholar 
    Sirén, A. & Machoa, J. Fish, wildlife, and human nutrition in tropical forests: A fat gap?. Interciencia 33, 186–193 (2008).
    Google Scholar 
    Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. E&S 20, 22 (2015).
    Google Scholar 
    Hoffman, L. C. What is the role and contribution of meat from wildlife in providing high quality protein for consumption?. Anim. Front. 2, 15 (2012).
    Google Scholar 
    Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, T. G., Baraldi, L. G., Muniz, P. T. & Cardoso, M. A. Dietary practices and nutritional status of 0–24-month-old children from Brazilian Amazonia. Public Health Nutr. 12, 2335–2342 (2009).CAS 
    PubMed 

    Google Scholar 
    Mintz, S. W. & Du Bois, C. M. The anthropology of food and eating. Annu. Rev. Anthropol. 31, 99–119 (2002).
    Google Scholar 
    Lokossou, Y. U. A., Tambe, A. B., Azandjèmè, C. & Mbhenyane, X. Socio-cultural beliefs influence feeding practices of mothers and their children in Grand Popo, Benin. J. Health Popul. Nutr. 40, 33 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, S. P. & Allen, L. H. Nutritional importance of animal source foods. J. Nutr. 133, 3932S-3935S (2003).CAS 
    PubMed 

    Google Scholar 
    Neumann, C. G. et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. J. Nutr. 133, 3941S-3949S (2003).CAS 
    PubMed 

    Google Scholar 
    Desalegn, A., Mossie, A. & Gedefaw, L. Nutritional iron deficiency anemia: Magnitude and its predictors among school age children, Southwest Ethiopia: A community based cross-sectional study. PLoS ONE 9, e114059 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Safiri, S. et al. Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 14, 185 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
    Google Scholar 
    Investing in the future: a united call to action on vitamin and mineral deficiencies: global report, 2009. (Micronutrient Initiative, 2009).Walker, S. P. et al. Child development: Risk factors for adverse outcomes in developing countries. Lancet 369, 145–157 (2007).PubMed 

    Google Scholar 
    Saloojee, H. & Pettifor, J. M. Iron deficiency and impaired child development: The relation may be causal, but it may not be a priority for intervention. BMJ 323, 1377–1378 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, C., Harris, D. M. & Rogers, L. M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 22, 193–220 (2002).CAS 

    Google Scholar 
    Haileselassie, M. et al. Why are animal source foods rarely consumed by 6–23 months old children in rural communities of Northern Ethiopia? A qualitative study. PLoS ONE 15, e0225707 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Victor, R., Baines, S. K., Agho, K. E. & Dibley, M. J. Factors associated with inappropriate complementary feeding practices among children aged 6–23 months in Tanzania: Complementary feeding practices in Tanzania. Matern. Child Nutr. 10, 545–561 (2014).PubMed 

    Google Scholar 
    Morsello, C. et al. Cultural attitudes are stronger predictors of bushmeat consumption and preference than economic factors among urban Amazonians from Brazil and Colombia. E&S 20, 21 (2015).
    Google Scholar 
    Parry, L., Barlow, J. & Pereira, H. Wildlife Harvest and Consumption in Amazonia’s Urbanized Wilderness: Wildlife consumption in urbanized Amazonia. Conserv. Lett. 7, 565–574 (2014).
    Google Scholar 
    Chaves, W. A., Wilkie, D. S., Monroe, M. C. & Sieving, K. E. Market access and wild meat consumption in the central Amazon, Brazil. Biol. Conserv. 212, 240–248 (2017).
    Google Scholar 
    Dufour, D. L., Piperata, B. A., Murrieta, R. S. S., Wilson, W. M. & Williams, D. D. Amazonian foods and implications for human biology. Ann. Hum. Biol. 43, 330–348 (2016).PubMed 

    Google Scholar 
    Piperata, B. A. Nutritional status of Ribeirinhos in Brazil and the nutrition transition. Am. J. Phys. Anthropol. 133, 868–878 (2007).PubMed 

    Google Scholar 
    Garcia, M. T., Granado, F. S. & Cardoso, M. A. Alimentação complementar e estado nutricional de crianças menores de dois anos atendidas no Programa Saúde da Família em Acrelândia, Acre, Amazônia Ocidental Brasileira. Cad. Saúde Pública 27, 305–316 (2011).PubMed 

    Google Scholar 
    Marques, R. C., Bernardi, J. V. E., Dorea, C. C. & Dórea, J. G. Intestinal parasites, anemia and nutritional status in young children from transitioning Western Amazon. IJERPH 17, 577 (2020).PubMed Central 

    Google Scholar 
    Granado, F. S., Augusto, R. A., Muniz, P. T. & Cardoso, M. A. Team, the A. S. Anaemia and iron deficiency between 2003 and 2007 in Amazonian children under 2 years of age: Trends and associated factors. Public Health Nutr. 16, 1751–1759 (2013).PubMed 

    Google Scholar 
    Nogueira-de-Almeida, C. A. et al. Prevalence of childhood anaemia in Brazil: Still a serious health problem: A systematic review and meta-analysis. Public Health Nutr. 24, 6450–6465. https://doi.org/10.1017/S136898002100286X (2021).Article 
    PubMed 

    Google Scholar 
    de Souza, A. A., Mingoti, S. A., Paes-Sousa, R. & Heller, L. Combination of conditional cash transfer program and environmental health interventions reduces child mortality: An ecological study of Brazilian municipalities. BMC Public Health 21, 627 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, H. S. et al. Prevalence of anaemia in Brazilian children in different epidemiological scenarios: An updated meta-analysis. Public Health Nutr. 24, 2171–2184 (2021).PubMed 

    Google Scholar 
    Leite, M. S. et al. Prevalence of anemia and associated factors among indigenous children in Brazil: Results from the First National Survey of Indigenous People’s Health and Nutrition. Nutr. 12, 69 (2013).
    Google Scholar 
    WHO, W. H. O. Prevalence of anaemia in children aged 6–59 months (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-children-under-5-years-(-) (2021).Schreiner, M. A Poverty Probability Index (PPI®) for Brazil (2008). (2010).Walzer, C. COVID-19 and the curse of piecemeal perspectives. Front. Vet. Sci. 7, 582983 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carignano, T. P., Morsello, C. & Parry, L. Rural-urban mobility influences wildmeat access and consumption in the Brazilian Amazon. Oryx (In press).Ferreira, M. U. et al. Anemia and iron deficiency in school children, adolescents, and adults: A community-based study in Rural Amazonia. Am. J. Public Health 97, 237–239 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    de Castro, T. G., Silva-Nunes, M., Conde, W. L., Muniz, P. T. & Cardoso, M. A. Anemia e deficiência de ferro em pré-escolares da Amazônia Ocidental brasileira: Prevalência e fatores associados. Cad. Saúde Pública 27, 131–142 (2011).PubMed 

    Google Scholar 
    Cotta, R. M. M. et al. Social and biological determinants of iron deficiency anemia. Cad. Saúde Pública 27, s309–s320 (2011).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., Morcatty, T. Q. & Wilcove, D. S. Impacts of rural to urban migration, urbanization, and generational change on consumption of wild animals in the Amazon. Conserv. Biol. 35, 1186–1197. https://doi.org/10.1111/cobi.13663 (2020).Article 

    Google Scholar 
    El Bizri, H. R. et al. Urban wild meat consumption and trade in central Amazonia. Conserv. Biol. 34, 438–448 (2020).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., von Mühlen, E. M. & Wilcove, D. S. Investigating illegal activities that affect biodiversity: The case of wildlife consumption in the Brazilian Amazon. Ecol. Appl. 31, e02402. https://doi.org/10.1002/eap.2402 (2021).Article 
    PubMed 

    Google Scholar 
    Chaves, W. A., Monroe, M. C. & Sieving, K. E. Wild meat trade and consumption in the Central Amazon, Brazil. Hum. Ecol. 47, 733–746 (2019).
    Google Scholar 
    Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185 (2007).PubMed 

    Google Scholar 
    Shaffer, C. A., Yukuma, C., Marawanaru, E. & Suse, P. Assessing the sustainability of Waiwai subsistence hunting in Guyana by comparison of static indices and spatially explicit, biodemographic models. Anim. Conserv. 21, 148–158 (2018).
    Google Scholar 
    Pesquisa de orçamentos familiares, 2008–2009. (IBGE, 2010).Aguiar, J. P. L. Tabela de composição de alimentos da Amazônia. Acta Amaz 26, 121–126 (1996).
    Google Scholar 
    de Bruyn, J. et al. Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa. Br. J. Nutr. 116, 1709–1719 (2016).PubMed Central 

    Google Scholar 
    World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune. (World Bank, 2020).Coad, L. M. et al. Toward a Sustainable, Participatory and Inclusive Wild Meat Sector. (Center for International Forestry Research (CIFOR) https://doi.org/10.17528/cifor/007046 (2019).Cowlishaw, G., Mendelson, S. & Rowcliffe, J. M. Evidence for post-depletion sustainability in a mature bushmeat market. J. Appl. Ecol. 42, 460–468 (2005).
    Google Scholar 
    Carignano Torres, P., Morsello, C., Parry, L. & Pardini, R. Forest cover and social relations are more important than economic factors in driving hunting and bushmeat consumption in post-frontier Amazonia. Biol. Conserv. 253, 108823. https://doi.org/10.1016/j.biocon.2020.108823 (2021).Article 

    Google Scholar 
    Nunes, A. V., Oliveira-Santos, L. G. R., Santos, B. A., Peres, C. A. & Fischer, E. Socioeconomic drivers of hunting efficiency and use of space by traditional Amazonians. Hum. Ecol. 48, 307–315 (2020).
    Google Scholar 
    Freitas, C. T. et al. Co-management of culturally important species: A tool to promote biodiversity conservation and human well-being. People Nat. 2, 61–81 (2020).
    Google Scholar 
    Campos-Silva, J. V., Peres, C. A., Antunes, A. P., Valsecchi, J. & Pezzuti, J. Community-based population recovery of overexploited Amazonian wildlife. PECON 15, 266–270 (2017).
    Google Scholar 
    Nunes, A. V., Peres, C. A., de Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179 (2019).
    Google Scholar 
    Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H. & Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 378, 2123–2135 (2011).PubMed 

    Google Scholar 
    Mendes, M. M. et al. Association between iron deficiency anaemia and complementary feeding in children under 2 years assisted by a Conditional Cash Transfer programme. Public Health Nutr. 24, 4080–4090 (2021).PubMed 

    Google Scholar 
    Brondízio, E. S., de Lima, A. C. B., Schramski, S. & Adams, C. Social and health dimensions of climate change in the Amazon. Ann. Hum. Biol. 43, 405–414 (2016).PubMed 

    Google Scholar 
    Ingram, D. J. Wild meat in changing times. J. Ethnobiol. 40, 117 (2020).
    Google Scholar 
    Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the southwestern Amazon. Behav. Ecol. Sociobiol. 73, 26 (2019).
    Google Scholar 
    Parry, L. et al. Social vulnerability to climatic shocks is shaped by urban accessibility. Ann. Am. Assoc. Geogr. 108, 125–143 (2018).
    Google Scholar 
    IBGE, I. B. de G. e E. Censo Demográfico 2010. (2010).IBGE, I. B. de G. e E. Estimativas da população residente para os municípios e para as unidades da federação com data de referência em 1o de julho de 2019. (2019).Cardoso, M. A., Scopel, K. K. G., Muniz, P. T., Villamor, E. & Ferreira, M. U. Underlying factors associated with anemia in amazonian children: A population-based cross-sectional study. PLOS ONE 7, e36341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiello, V. et al. Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur. J. Pediatr. 179, 527–545 (2020).PubMed 

    Google Scholar 
    R Core Team. R: The R project for statistical computing. (2015).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Devereux, S. Social Protection for Rural Poverty Reduction. Rural Transformations Technical Series 1 (2016).Barton, K. Mu-MIn: Multi-model Inference. R Package Version 0.12.2/r18. (2009).Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Berti, P. R. Intrahousehold distribution of food: A review of the literature and discussion of the implications for food fortification programs. Food Nutr. Bull. 33, S163–S169 (2012).PubMed 

    Google Scholar 
    Piperata, B. A., Schmeer, K. K., Hadley, C. & Ritchie-Ewing, G. Dietary inequalities of mother–child pairs in the rural Amazon: Evidence of maternal-child buffering?. Soc. Sci. Med. 96, 183–191 (2013).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The impact of Tamarix invasion on the soil physicochemical properties

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Pimentel, D. Biological invasionseconomic and environmental costs of alien plant, animal, and microbe species. No. 577.18 B5/2011. 2011.Jackson, T. Addressing the economic costs of invasive alien species: Some methodological and empirical issues. Int. J. Sustain. Soc. 7(3), 221–240 (2015).
    Google Scholar 
    Walker, B. H. & Steffen, W. L. Interactive and integrated effects of global change on terrestrial ecosystems. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Synthesis Volume. International Geosphere-Biosphere Program Book Series 4 (eds Walker, B. et al.) 329–375 (Cambridge University Press, 1999).
    Google Scholar 
    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48(8), 607–615 (1998).
    Google Scholar 
    Robinson, T. W. Introduction, Spread and Areal Extent of Saltcedar [Tamarix] in the Western States (No. 491) (US Government Printing Office, 1965).
    Google Scholar 
    Marlin, D., Newete, S. W., Mayonde, S. G., Smit, E. R. & Byrne, M. J. Invasive Tamarix (Tamaricaceae) in South Africa: Current research and the potential for biological control. Biol. Invasions 19(10), 2971–2992 (2017).
    Google Scholar 
    Pearce, C. M. & Smith, D. G. Saltcedar: Distribution, abundance, and dispersal mechanisms, northern Montana, USA. Wetlands 23(2), 215–228 (2003).
    Google Scholar 
    Newete, S. W., Mayonde, S. & Byrne, M. J. Distribution and abundance of invasive Tamarix genotypes in South Africa. Weed Res. 59(3), 191–200 (2019).CAS 

    Google Scholar 
    Chew, M. K. The monstering of tamarisk: How scientists made a plant into a problem. J. Hist. Biol. 42(2), 231–266 (2009).PubMed 

    Google Scholar 
    Richardson, D. M., Macdonald, I. A. W., Hoffmann, J. H. & Henderson, L. Alienplantinvasions. In The Vegetation of Southern Africa (eds Cowling, R. M. et al.) 535–570 (Cambridge University Press, 1997).
    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6), 503–523 (2003).CAS 

    Google Scholar 
    Haubensak, K. A., D’Antonio, C. M. & Alexander, J. Effects of nitrogen-fixing shrubs in Washington and Coastal California1. Weed Technol. 18(sp1), 1475–1479 (2004).
    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8(9), 976–985 (2005).PubMed 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11), 3152–3166 (2002).
    Google Scholar 
    Saggar, S., McIntosh, P. D., Hedley, C. B. & Knicker, H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol. Fertility Soils 30(3), 232–238 (1999).CAS 

    Google Scholar 
    Dudley, T. L., DeLoach, C. J., Levich, J. E. & Carruthers, R. I. Saltcedar invasion of western riparian areas: Impacts and new prospects for control. Trans. N. Am. Wildlife Nat. Resources Conf. 65, 345–381 (2000).
    Google Scholar 
    Algotsson, E. Biological diversity. In Environmental Management in South Africa 2nd edn (eds Strydom, H. A. & King, N. D.) 97–125 (Juta Cape Town, 2009).
    Google Scholar 
    Mayonde, S. G., Cron, G. V., Gaskin, J. F. & Byrne, M. J. Tamarix (Tamaricaceae) hybrids: The dominant invasive genotype in Southern Africa. Biol. Invasions 18(12), 3575–3594 (2016).
    Google Scholar 
    Corbin, J. D. & D’Antonio, C. M. Effects of exotic species on soil nitrogen cycling: Implications for restoration1. Weed Technol. 18(sp1), 1464–1468 (2004).CAS 

    Google Scholar 
    Marchante, E., Kjøller, A., Struwe, S. & Freitas, H. Soil recovery after removal of the N 2-fixing invasive Acacia longifolia: Consequences for ecosystem restoration. Biol. Invasions 11(4), 813–823 (2009).
    Google Scholar 
    Magadlela, D. & Mdzeke, N. Social benefits in the Working for Water programme as a public works initiative: Working for water. S. Afr. J. Sci. 100(1–2), 94–96 (2004).
    Google Scholar 
    Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).
    Google Scholar 
    Malcolm, G. M., Bush, D. S. & Rice, S. K. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a Pine-Oak Ecosystem. Restor. Ecol. 16(1), 70–78 (2008).
    Google Scholar 
    Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80(2), 443–454 (1999).
    Google Scholar 
    AgriLASA (Agri Laboratory Association of Southern Africa). 2004. Soil handbook.Okalebo, J.R., Gathua, K.W. & Woomer, P.L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa, Nairobi, 21.LECO. 2003. Truspec CN Carbon/Nitrogen Determinator Instructions Manual. LECO Corporation, St Joseph, USA.Suarez, D. L., Wood, J. D. & Lesch, S. M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 86(1–2), 150–164 (2006).
    Google Scholar 
    Dane, J.H., and Hopmans, JW. (2002). Water retention and storage. GC Method of soil analysis. SSSA book series. Madison, Wisconsin, USA. 1692, 671–720.Blakemore, L.C., Searle, P.L. and Daly, B.K. (1987). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific, Report 80. New Zealand, Lower Hutt: New Zealand Society of Soil Science, 103.Buckham, L.E. (2011). Contrasting growth traits and insect interactions of two Tamarix species and a hybrid (Tamaricaceae) used for mine rehabilitation in South Africa (Doctoral dissertation).Ladenburger, C. G., Hild, A. L., Kazmer, D. J. & Munn, L. C. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J. Arid Environ. 65(1), 111–128 (2006).ADS 

    Google Scholar 
    Beukes, P. C. & Ellis, F. Soil and vegetation changes across a Succulent Karoo grazing gradient. Afr. J. Range Forage Sci. 20(1), 11–19 (2003).
    Google Scholar 
    Liu, M. et al. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing 9(6), 539 (2017).ADS 

    Google Scholar 
    Newete, S. W., Abd Elbasit, M. A. & Araya, T. Soil salinity and moisture content under non-native Tamarix species. Int. J. Phytorem. 22(9), 931–938. https://doi.org/10.1080/15226514.2020.1774503 (2020).CAS 
    Article 

    Google Scholar 
    Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ’fertile island’effect in creosotebush, Larrea tridentata. J. Arid Environ. 35(3), 451–457 (1997).ADS 

    Google Scholar 
    Li, C., Li, Y. & Ma, J. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol. Res. 26(2), 385–394 (2011).MathSciNet 
    CAS 

    Google Scholar 
    Sookbirsingh, R., Karina, C., Thomas, E.G. & Rusell, RC. (2010). Salt separation processes in the saltcedar Tamarix ramosissima (Lebed.). Commun Soil Sci Plant Anal. 41(10), 1271–1281.Newete, S.W., Allem, S.M., Venter, N. and Byrne, M.J. Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Int. J. Phytoremediat. 1–7 (2019).Di Tomaso, J. M. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 12(2), 326–336 (1998).
    Google Scholar 
    Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R. & Busch, D. E. Water relations of riparian plants from warm desert regions. Wetlands 18(4), 687–696 (1998).
    Google Scholar 
    Lesica, P. & DeLuca, T. H. Is tamarisk allelopathic?. Plant Soil 267(1–2), 357–365 (2004).CAS 

    Google Scholar 
    Bagstad, K. J., Lite, S. J. & Stromberg, J. C. Vegetation, soils, and hydrogeomorphology of riparian patch types of a dryland river. Western N. Am. Naturalist 66(1), 23–45 (2006).
    Google Scholar 
    Lehnhoff, E. A., Rew, L. J., Zabinski, C. A. & Menalled, F. D. Reduced impacts or a longer lag phase? Tamarix in the northwestern USA. Wetlands 32(3), 497–508 (2012).
    Google Scholar 
    Ye, W., Wang, H. X., Gao, J., Liu, H. J. & Yan, L. Simulation of salt ion migration in soil under reclaimed water irrigation. J. Agro-Environ. Sci. 33(5), 1007–1015 (2014).CAS 

    Google Scholar 
    Yang, S. C. et al. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of Northwest China. Scientia Agricultura Sinica 47(1), 100–110 (2014).CAS 

    Google Scholar 
    Zhang, L. H., Chen, P. H., Li, J., Chen, X. B. & Feng, Y. Distribution of soil salt ions around Tamarix chinensis individuals in the Yellow River Delta. Acta Ecol. Sin. 36(18), 5741–5749 (2016).CAS 

    Google Scholar 
    Zhang, T., Zhan, X., He, J., Feng, H. & Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 197, 91–99 (2018).
    Google Scholar 
    Yin, C. H., Feng, G. U., Zhang, F., Tian, C. Y. & Tang, C. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric. Water Manag. 97(12), 1978–1986 (2010).
    Google Scholar 
    Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).CAS 

    Google Scholar 
    Tanveera, A., Kanth, T. A., Tali, P. A. & Naikoo, M. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi Area of Kashmir valley, India. Int. Res. J. Earth Sci. 4(1), 1–6 (2016).
    Google Scholar 
    Sharma, B. & Bhattacharya, S. Soil bulk density as related to soil texture, moisture content, Ph, electrical conductivity, organic carbon, organic matter content and available macro nutrients of Pandoga sub watershed, Una District of HP (India). Int. J. Eng. Res. Dev. 13(12), 72–76 (2017).
    Google Scholar  More

  • in

    DarkCideS 1.0, a global database for bats in karsts and caves

    The DarkCideS database was initially conceptualised and developed by KCT, JAG, and ACH as part of the “Global Bat Cave Vulnerability and Conservation Mapping Initiative” in 2014, and later with the “Mapping Karst Biodiversity in Yunnan” and the “Southeast Asian Atlas of Biodiversity” projects. The initiative includes developing tools and methods (e.g., the Bat Cave Vulnerability Index14) and synthesis (e.g., the global bat cave vulnerability assessment11) to identify conservation priorities and important bat caves in the tropics. Since 2019, the initiative has expanded and potential collaborators and contributors were invited through scientific conferences (Association for Tropical Biology and Conservation 2018, International Bat Research Conference 2019), social media platforms, and personal correspondences. At present, the database has 36 collaborators from twenty countries on six continents with expertise and research interests in bat conservation. Four main datasets for all known cave-dwelling bats were built for the DarkCideS database version 1.0.Datasets and compilation for species checklistThe first dataset contains taxonomic checklists for all extant cave-dwelling bats species extracted from the expert-based International Union for the Conservation Union (IUCN) Red List database version 2020-1 (Table 1). We screened and included all bat species that were reported to use, roost in, or aggregate in “Caves”, “Underground”, and “Karsts” habitats in any part of their life histories. We also scanned major publicly available bat cave databases from expeditions such as “Bats in China” (http://www.bio.bris.ac.uk/research/bats/China/) and UNEP-EUROBATS (https://www.eurobats.org/) for European bats24 for additional information and datasets. In addition, the first dataset contains species ecological traits, distribution range, and threatening processes (Table 1).Table 1 DarkCideS 1.0 includes key traits for all living cave-dwelling bat species (N = 679). General metadata for traits included in the current version of the database: habitat preference, ecological status, feeding groups, geographical range, island endemism, geopolitical endemism, distribution range, biogeographical breadth, generation length, body mass, and threatening process.Full size tableInformation per species was pooled from the IUCN Red List versions 2020-125. Species taxonomy was then curated and updated (e.g., synonyms or merged species) using the nomenclature from Simmons and Cirranello12. The “checklist for global cave-dwelling bats” derived from the IUCN Red List includes 679 species. Meanwhile, the DarkCideS 1.0 dataset contains occurrence data for 402 species from 16 families representing 59% of all cave-dwelling species11 (Fig. 2). We found a marginally significant relationship between the species richness and proportion of threatened species between the IUCN-based global cave-dwelling bat and DarkCideS datasets (Kendall’s τ b = 0.60, P = 0.07). The highest completeness of sampled species is in the Neotropics (67.38%) and Indomalayan region (66.08%), and the greatest gaps are in Austral-Oceania (40.28%). Highest endemism was recorded in Austral-Oceania (58.62%) (χ2 = 227.32, df = 5, P  More

  • in

    Influence of infrastructure, ecology, and underpass-dimensions on multi-year use of Standard Gauge Railway underpasses by mammals in Tsavo, Kenya

    Polyzos, S. & Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. Theor. Empir. Res. Urban Manag. 15, 5–23 (2020).
    Google Scholar 
    Ledec, G. & Posas, P. J. Biodiversity conservation in road projects: Lessons from World Bank experience in Latin America. Transp. Res. Rec. 1819, 198–202 (2003).Article 

    Google Scholar 
    Hughes, A. C. Understanding and minimizing environmental impacts of the Belt and Road Initiative. Conserv. Biol. 33, 883–894 (2019).Article 

    Google Scholar 
    Seiler, A. in COST 341—habitat fragmentation due to transportation infrastructure: the European review (eds Trocmé, M. et al.) Ch. 3, 31–50 (Office for Official Publications of the European Communities, 2002).Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Appl. Geogr. 42, 63–72. https://doi.org/10.1016/j.apgeog.2013.05.001 (2013).Article 

    Google Scholar 
    Plămădeal, V. & Slobodeaniuc, S. Negative impact of railway transport on the ambient environment. J. Eng. Sci. https://doi.org/10.5281/zenodo.2640044 (2019).Lala, F. et al. Wildlife roadkill in the Tsavo Ecosystem, Kenya: Identifying hotspots, potential drivers, and affected species. Heliyon 7, e06364 (2021).Article 

    Google Scholar 
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).Article 
    PubMed 

    Google Scholar 
    Clair, C. C. S., Whittington, J., Forshner, A., Gangadharan, A. & Laskin, D. N. Railway mortality for several mammal species increases with train speed, proximity to water, and track curvature. Sci. Rep. 10, 20476. https://doi.org/10.1038/s41598-020-77321-6 (2020).CAS 
    Article 

    Google Scholar 
    Kušta, T., Ježek, M. & Keken, Z. Mortality of large mammals on railway tracks. Sci. Agric. Bohem. 42, 12–18 (2011).
    Google Scholar 
    Dorsey, B. & Olsson, M. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 26, 219–227 (Wiley, 2015).Barrientos, R. & Borda-de-Água, L. Railway Ecology (eds Borda-de-Água, L. et al.) Ch. 4, 43–64 (Springer Open, 2017).Lucas, P. S., de Carvalho, R. G. & Grilo, C. Railway Ecology Ch. Chapter 6, 81–99 (2017).Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: Similarities and differences. Eur. J. Wildl. Res. 65, 1–9. https://doi.org/10.1007/s10344-018-1248-0 (2019).Article 

    Google Scholar 
    Jasińska, K. D. et al. Linking habitat composition, local population densities and traffic characteristics to spatial patterns of ungulate-train collisions. J. Appl. Ecol. 56, 2630–2640. https://doi.org/10.1111/1365-2664.13495 (2019).Article 

    Google Scholar 
    Smith, D. J., Ree, R. v. d. & Rosell, C. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 21, 172–183 (Wiley, 2015).Gilhooly, P. S., Nielsen, S. E., Whittington, J. & Clair, C. C. S. Wildlife mortality on roads and railways following highway mitigation. Ecosphere 10, e02597 (2019).Article 

    Google Scholar 
    Clevenger, A. P., Chruszcz, B. & Gunson, K. E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 29, 646–653 (2001).
    Google Scholar 
    Simpson, N. O. et al. Overpasses and underpasses: Effectiveness of crossing structures for migratory ungulates. J. Wildl. Manag. 80, 1370–1378. https://doi.org/10.1002/jwmg.21132 (2016).Article 

    Google Scholar 
    Seidler, R. G., Green, D. S. & Beckmann, J. P. Highways, crossing structures and risk: Behaviors of Greater Yellowstone pronghorn elucidate efficacy of road mitigation. Glob. Ecol. Conserv. 15, e00416. https://doi.org/10.1016/j.gecco.2018.e00416 (2018).Article 

    Google Scholar 
    Huijser, M. P. et al. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 197, 61–68. https://doi.org/10.1016/j.biocon.2016.02.002 (2016).Article 

    Google Scholar 
    Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildl. Biol. 14, 111–117 (2008).Article 

    Google Scholar 
    Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia: Factors influencing their effectiveness. Transp. Res. Rec. 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 

    Google Scholar 
    Foster, M. L. & Humphrey, S. R. Use of highway underpasses by Florida panthers and other wildlife. Wildl. Soc. Bull. 23, 95–100 (1995).
    Google Scholar 
    Caldwell, M. R. & Klip, J. M. K. Wildlife interactions within highway underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2019).Article 

    Google Scholar 
    Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).Article 

    Google Scholar 
    Mcdonald, W. & Clair, C. C. S. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93 (2004).Article 

    Google Scholar 
    Mata Estacio, C., Hervás Bengoechea, I., Herranz Barrera, J., Suárez Cardona, F. & Arrazola, J. E. M. International Conference on Ecology and Transportation (ICOET 2003) Federal Highway Administration.Sawyer, H., Lebeau, C. & Hart, T. Mitigating roadway impacts to migratory mule deer—A case study with underpasses and continuous fencing. Wildl. Soc. Bull. 36, 492–498. https://doi.org/10.1002/wsb.166 (2012).Article 

    Google Scholar 
    Rodriguez, A., Crema, G. & Delibes, M. Use of non-wildlife passages across a high speed railway by terrestrial vertebrates. J. Appl. Ecol. 33, 1527–1540 (1996).Article 

    Google Scholar 
    Yanes, M., Velasco, J. M. & Sufirez, F. Permeability of roads and railways to vertebrates: The importance of culverts. Biol. Conserv. 71, 217–222 (1995).Article 

    Google Scholar 
    Rodriguez, A., Crema, G. & Delibes, M. Factors affecting crossing of red foxes and wildcats through non-wildlife passages across a high-speed railway. Ecography 2, 287–294 (1997).Article 

    Google Scholar 
    Weeks, S. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 43, 353–356 (Wiley, 2015).Okita-Ouma, B. et al. Effectiveness of wildlife underpasses and culverts in connecting elephant habitats: A case study of new railway through Kenya’s Tsavo National Parks. Afr. J. Ecol. 59(3), 624–640 (2021).Article 

    Google Scholar 
    Collinson, W., Davies-Mostert, H., Roxburgh, L. & van der Ree, R. Status of road ecology research in Africa: Do we understand the impacts of roads, and how to successfully mitigate them?. Front. Ecol. Evol. 7, 479. https://doi.org/10.3389/fevo.2019.00479 (2019).ADS 
    Article 

    Google Scholar 
    Wang, Y., Guan, L., Chen, J. & Kong, Y. Influences on mammals frequency of use of small bridges and culverts along the Qinghai-Tibet railway, China. Ecol. Res. 33, 879–887. https://doi.org/10.1007/s11284-018-1578-0 (2018).Article 

    Google Scholar 
    Ng, S. J., Dole, J. W., Sauvajot, R. M., Riley, S. P. D. & Valone, T. J. Use of highway undercrossings by wildlife in southern California. Biol. Conserv. 115, 499–507. https://doi.org/10.1016/s0006-3207(03)00166-6 (2004).Article 

    Google Scholar 
    Mata, C., Hervas, I., Herranz, J., Suarez, F. & Malo, J. E. Are motorway wildlife passages worth building? Vertebrate use of road-crossing structures on a Spanish motorway. J. Environ. Manag. 88, 407–415. https://doi.org/10.1016/j.jenvman.2007.03.014 (2008).CAS 
    Article 

    Google Scholar 
    Mata, C., Herranz, J. & Malo, J. E. Attraction and avoidance between predators and prey at wildlife crossings on roads. Diversity 12, 166. https://doi.org/10.3390/d12040166 (2020).Article 

    Google Scholar 
    Stewart, L., Russell, B., Zelig, E., Patel, G. & Whitney, K. S. Wildlife crossing design influences effectiveness for small and large mammals in Banff National Park. Case Stud. Environ. 4, 1231752. https://doi.org/10.1525/cse.2020.1231752 (2020).Article 

    Google Scholar 
    Mysłajek, R. W., Nowak, S., Kurek, K., Tołkacz, K. & Gewartowska, O. Utilisation of a wide underpass by mammals on an expressway in the Western Carpathians, S Poland. Folia Zool. 65, 225–232. https://doi.org/10.25225/fozo.v65.i3.a8.2016 (2016).Article 

    Google Scholar 
    Clevenger, A. P. & Waltho, N. factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56 (2000).Article 

    Google Scholar 
    Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208. https://doi.org/10.1016/j.cub.2015.10.046 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    van der Ree, R., Gagnon, J. W. & Smith, D. J. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 20, 159–171 (Wiley, 2015).Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2006).Article 

    Google Scholar 
    Hepenstrick, D., Thiel, D., Holderegger, R. & Gugerli, F. Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl. Ecol. 13, 631–638. https://doi.org/10.1016/j.baae.2012.08.009 (2012).Article 

    Google Scholar 
    Wilson, R. E., Farley, S. D., McDonough, T. J., Talbot, S. L. & Barboza, P. S. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conserv. Genet. 16, 791–800. https://doi.org/10.1007/s10592-015-0700-x (2015).Article 

    Google Scholar 
    Jaeger, J. A. G. & Fahrig, L. Effects of road fencing on population persistence. Conserv. Biol. 18, 1651–1657 (2004).Article 

    Google Scholar 
    Ngene, S., Lala, F., Nzisa, M., Kimitei, K., Mukeka, J., Kiambi, S., Davidson, Z., Bakari, S., Lyimo, E. & Khayale, C. (eds Arusha Kenya Wildlife Service (KWS) and Tanzania Wildlife Research Institute (TAWIRI)) (2017).World Resources Institute, Department of Resource Surveys and Remote Sensing Ministry of Environment and Natural Resources Kenya, Central Bureau of Statistics Ministry of Planning and National Development Kenya & International Livestock Research Institute. Nature’s Benefits in Kenya, An Atlas of Ecosystems and Human Well-Being (World Resources Institute, 2007).Wijngaarden, W. V. Elephants, trees, grass, grazers: relationships between climate, soils, vegetation, and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya) Doctor of Philosophy thesis, Landbouwhogeschool te Wageningen (1985).Stuart, C. Field Guide to Tracks & Signs of Southern, Central & East African Wildlife (Penguin Random House South Africa, 2013).
    Google Scholar 
    Murie, O. J. & Elbroch, M. A Field Guide to Animal Tracks Vol. 3 (Houghton Mifflin Harcourt, 2005).
    Google Scholar 
    Kerley, G. I. H., Pressey, R. L., Cowling, R. M., Boshoff, A. F. & Sims-Castley, R. Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biol. Conserv. 112, 169–190. https://doi.org/10.1016/S0006-3207(02)00426-3 (2003).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Hayward, M. W., Hayward, G. J., Tambling, C. J. & Kerley, G. I. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?. PLoS ONE 6, e23607 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    De Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).Article 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322. https://doi.org/10.1017/S0952836905007508 (2005).Article 

    Google Scholar 
    Davidson, Z. et al. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid Savanna. PLoS ONE 8, e55182. https://doi.org/10.1371/journal.pone.0055182 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biol. Conserv. 119, 507–516. https://doi.org/10.1016/j.biocon.2004.01.013 (2004).Article 

    Google Scholar 
    Hayward, M. W. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313. https://doi.org/10.1111/j.1469-7998.2006.00139.x (2006).Article 

    Google Scholar 
    Ogara, W. O. et al. Determination of carnivores prey base by scat analysis in Samburu community group ranches in Kenya. Afr. J. Environ. Sci. Technol. 4, 540–546 (2010).
    Google Scholar 
    Hayward, M. W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J. Zool. 270, 606–614. https://doi.org/10.1111/j.1469-7998.2006.00183.x (2006).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Barton, K. & Barton, M. K. Package ‘MuMIn’. Version 1, 18 (2015).
    Google Scholar 
    Williams, E. M. Giraffe stature and neck elongation: Vigilance as an evolutionary mechanism. Biology 5, 35 (2016).Article 

    Google Scholar 
    Shorrocks, B. The Giraffe: Biology, Ecology, Evolution and Behaviour (Wiley, 2016).Book 

    Google Scholar 
    Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Handbook of Road Ecology (eds Smith, D. J. & van der Ree, C. G. R.) Ch. 23, 190–197 (Wiley, 2015).Harris, I. M., Mills, H. R. & Bencini, R. Multiple individual southern brown bandicoots (Isoodonobesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildl. Res. 37, 127–133 (2010).Article 

    Google Scholar 
    Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    McLennan, M. R., Spagnoletti, N. & Hockings, K. J. The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. Int. J. Primatol. 38, 105–121. https://doi.org/10.1007/s10764-017-9962-0 (2017).Article 

    Google Scholar 
    Riley, E. P. Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. Int. J. Primatol. 28, 107–133. https://doi.org/10.1007/s10764-006-9104-6 (2007).Article 

    Google Scholar 
    Johnson-Ulrich, L., Yirga, G., Strong, R. L. & Holekamp, K. E. The effect of urbanization on innovation in spotted hyenas. Anim. Cogn. 24, 1027–1038. https://doi.org/10.1007/s10071-021-01494-4 (2021).Article 
    PubMed 

    Google Scholar 
    Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).Article 

    Google Scholar 
    Devens, C. H. et al. Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa. Oryx 55, 34–45. https://doi.org/10.1017/S0030605318001473 (2021).Article 

    Google Scholar 
    Van Cleave, E. K. et al. Diel patterns of movement activity and habitat use by leopards (Panthera pardus pardus) living in a human-dominated landscape in central Kenya. Biol. Conserv. 226, 224–237. https://doi.org/10.1016/j.biocon.2018.08.003 (2018).Article 

    Google Scholar 
    Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable neighbours: Movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS ONE 9, e112044. https://doi.org/10.1371/journal.pone.0112044 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: Leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162. https://doi.org/10.1017/S0030605314000106 (2016).Article 

    Google Scholar 
    Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, e02644. https://doi.org/10.1002/ecy.2644 (2019).Article 
    PubMed 

    Google Scholar 
    Daniels, S. E., Fanelli, R. E., Gilbert, A. & Benson-Amram, S. Behavioral flexibility of a generalist carnivore. Anim. Cogn. 22, 387–396 (2019).Article 

    Google Scholar 
    Murray, M. H. & St. Clair, C. C. Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behav. Ecol. 26, 1520–1527. https://doi.org/10.1093/beheco/arv102 (2015).Article 

    Google Scholar 
    Galanti, V., Preatoni, D., Martinoli, A., Wauter, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114. https://doi.org/10.1016/j.mambio.2005.10.001 (2006).Article 

    Google Scholar 
    Douglas-Hamilton, I., Krink, T. & Vollrath, F. Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften 92, 158–163. https://doi.org/10.1007/s00114-004-0606-9 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Coe, P. K. et al. Identifying migration corridors of mule deer threatened by highway development. Wildl. Soc. Bull. 39, 256–267. https://doi.org/10.1002/wsb.544 (2015).Article 

    Google Scholar 
    Spinage, C. A. Territoriality and social organization of the Uganda defassa waterbuck Kobus defassa ugandae. J. Zool. Lond. 159, 329–361 (1969).Article 

    Google Scholar 
    Mizutani, F. & Jewell, P. A. Home-range and movements of leopards (Panthera pardus) on a livestock ranch in Kenya. J. Zool. Lond. 244, 269–286 (1998).Article 

    Google Scholar 
    Riley, S. P. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741. https://doi.org/10.1111/j.1365-294X.2006.02907.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Model. 438, 109329. https://doi.org/10.1016/j.ecolmodel.2020.109329 (2020).Article 

    Google Scholar 
    Valls-Fox, H. et al. Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim. Conserv. 21, 365–375. https://doi.org/10.1111/acv.12403 (2018).Article 

    Google Scholar 
    Hibert, F. et al. Spatial avoidance of invading pastoral cattle by wild ungulates: Insights from using point process statistics. Biodivers. Conserv. 19, 2003–2024 (2010).Article 

    Google Scholar 
    Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J. & Johnson, B. K. Temporospatial distributions of elk, mule deer, and cattle: Resource partitioning and competitive displacement. J. Mammal. 83, 229–244. https://doi.org/10.1644/1545-1542(2002)083%3c0229:Tdoemd%3e2.0.Co;2 (2002).Article 

    Google Scholar 
    Leeuw, J. D. et al. Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biol. Conserv. 100, 297–306 (2001).Article 

    Google Scholar 
    Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia. Transp. Res. Rec 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 

    Google Scholar 
    Dodd, N. L., Gagnon, J. W., Manzo, A. L. & Schweinsburg, R. E. Video surveillance to assess highway underpass use by elk in Arizona. J. Wildl. Manag. 71, 637–645. https://doi.org/10.2193/2006-340 (2007).Article 

    Google Scholar 
    Gordon, K. M. & Anderson, S. H. International Conference on Ecology and Transportation https://escholarship.org/uc/item/2wv1v6dz.Bond, A. R. & Jones, D. N. Temporal trends in use of fauna-friendly underpasses and overpasses. Wildl. Res. 35, 103–112. https://doi.org/10.1071/WR07027 (2008).Article 

    Google Scholar 
    Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and fatness of free-living baboons reflect food availability and activity levels. Am. J. Primatol. 30, 149–161. https://doi.org/10.1002/ajp.1350300207 (1993).Article 
    PubMed 

    Google Scholar 
    Kiffner, C. et al. Road-based line distance surveys overestimate densities of olive baboons. PLoS ONE 17, e0263314. https://doi.org/10.1371/journal.pone.0263314 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C. & Couzin, I. D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. Elife 6, e19505. https://doi.org/10.7554/eLife.19505 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).Article 

    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456. https://doi.org/10.1098/rspb.2016.0456 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 127, 1060–1068. https://doi.org/10.1111/oik.05227 (2018).Article 

    Google Scholar 
    Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G. & Harris, S. In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. J. Geophys. Res. Biogeosci. 118, 1427–1437. https://doi.org/10.1002/jgrg.20096 (2013).Article 

    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave?. Am. Nat. 180, 407–424. https://doi.org/10.1086/667590 (2012).Article 
    PubMed 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750. https://doi.org/10.1111/ele.12772 (2017).Article 
    PubMed 

    Google Scholar 
    Mandinyenya, B., Monks, N., Mundy, P. J., Sebata, A. & Chirima, A. Habitat choices of African buffalo (Syncerus caffer) and plains zebra (Equus quagga) in a heterogeneous protected area. Wildl. Res. 47, 106–113. https://doi.org/10.1071/WR18201 (2020).Article 

    Google Scholar  More

  • in

    The genetic architecture underlying body-size traits plasticity over different temperatures and developmental stages in Caenorhabditis elegans

    Andersen EC, Bloom JS, Gerke JP, Kruglyak L (2014) A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10(2):e1004156. https://doi.org/10.1371/journal.pgen.1004156Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS et al. (2015) A powerful new quantitative genetics platform, combining caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3 5(5):911–920. https://doi.org/10.1534/g3.115.017178Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Naturalist 162:3
    Google Scholar 
    Atkinson D (1994) Temperature and organism size–a biological law for ectotherms? Adv Ecol Res 25:1–58Azevedo RBR, French V, Partridge L (2002) Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 48:231–237CAS 
    Article 

    Google Scholar 
    Azevedo RBR, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing: thorax size and wing-aspect ration in Drosophila melanogaster. Evolution 52(5):1353–1362PubMed 

    Google Scholar 
    Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363. https://doi.org/10.1111/j.1365-294X.2011.05016.xArticle 
    PubMed 

    Google Scholar 
    Bochdanovits Z, Van Der Klis H, De Jong G (2003) Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster. Mol Biol Evolution 20(11):1760–1766. https://doi.org/10.1093/molbev/msg179CAS 
    Article 

    Google Scholar 
    Brenner S (1974) Genetics of the Caenorhabditis elegans. ChemBioChem 4(8):683–687. https://doi.org/10.1002/cbic.200300625CAS 
    Article 

    Google Scholar 
    Callahan HS, Dhanoolal N, Ungerer MC (2005) Plasticity genes and plasticity costs: a new approach using an Arabidopsis recombinant inbred population. N Phytologist 166(1):129–140. https://doi.org/10.1111/j.1469-8137.2005.01368.xCAS 
    Article 

    Google Scholar 
    Carta D, Villanova L, Costacurta S, Patelli A, Poli I, Vezzù S et al. (2011) Method for optimizing coating properties based on an evolutionary algorithm approach. Anal Chem 83(16):6373–6380. https://doi.org/10.1021/ac201337eCAS 
    Article 
    PubMed 

    Google Scholar 
    Czarnoleski M, Kramarz P, Malek D, Drobniak SM (2017) Genetic components in a thermal developmental plasticity of the beetle Tribolium castaneum. J Therm Biol 68:55–62. https://doi.org/10.1016/j.jtherbio.2017.01.015Article 
    PubMed 

    Google Scholar 
    Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151(1):373–386CAS 
    Article 

    Google Scholar 
    Ellers J, Driessen G (2011) Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evolut Ecol 25:473–484. https://doi.org/10.1007/s10682-010-9414-1Article 

    Google Scholar 
    Fischer K, Bauerfeind SS, Fiedler K (2006) Temperature-mediated plasticity in egg and body size in egg size-selected lines of a butterfly. J Therm Biol 31:347–354. https://doi.org/10.1016/j.jtherbio.2006.01.006Article 

    Google Scholar 
    Gaertner BE, Phillips PC (2010) Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res 92(5–6):331–348. https://doi.org/10.1017/S0016672310000601CAS 
    Article 

    Google Scholar 
    Gao AW, Sterken MG, uit de Bos J, van Creij J, Kamble R, Snoek BL et al. (2018) Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res 28(9):1296–1308. https://doi.org/10.1101/gr.232322.117CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghosh SM, Testa ND, Shingleton AW (2013) Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc Biol Sci 280(1760):20130174. https://doi.org/10.1098/rspb.2013.0174Gutteling EW, Doroszuk A, Riksen JAG, Prokop Z, Reszka J, Kammenga JE (2007a) Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans. Heredity 98:206–213. https://doi.org/10.1038/sj.hdy.6800929CAS 
    Article 
    PubMed 

    Google Scholar 
    Gutteling EW, Riksen JAG, Bakker J, Kammenga JE (2007b) Mapping phenotypic plasticity and genotype – environment interactions affecting life-history traits in Caenorhabditis elegans. Heredity 98:28–37. https://doi.org/10.1038/sj.hdy.6800894CAS 
    Article 
    PubMed 

    Google Scholar 
    Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, et al. (2017) Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 12:e0189445Kammenga JE, Doroszuk A, Riksen JAG, Hazendonk E, Spiridon L, Petrescu AJ et al. (2007) A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 3(3):0358–0366. https://doi.org/10.1371/journal.pgen.0030034CAS 
    Article 

    Google Scholar 
    Kang MH, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. https://doi.org/10.1534/genetics.107.080101Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klok CJ, Harrison JF (2013) The temperature size rule in Arthropods: independent of macro-environmental variables but size dependent. Integr Comp Biol 53(4):557–570. https://doi.org/10.1093/icb/ict075Article 
    PubMed 

    Google Scholar 
    Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R et al. (2014) Marker-based estimation of heritability in immortal populations. Genetics 199(2):379–398. https://doi.org/10.1534/genetics.114.167916Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:1–18. https://doi.org/10.3389/fgene.2019.00720CAS 
    Article 

    Google Scholar 
    Lafuente E, Duneau D, Beldade P (2018) Genetic basis of thermal plasticity variation in Drosophila melanogaster body size. PLoS Genet 14(9):1–24. https://doi.org/10.1371/journal.pgen.1007686CAS 
    Article 

    Google Scholar 
    Li Y, Álvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JAG et al. (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2(12):2155–2161. https://doi.org/10.1371/journal.pgen.0020222CAS 
    Article 

    Google Scholar 
    Nagashima T, Ishiura S, Suo S (2017) Regulation of body size in Caenorhabditis elegans: effects of environmental factors and the nervous system. Int J Developmental Biol 61(6–7):367–374. https://doi.org/10.1387/ijdb.160352ssCAS 
    Article 

    Google Scholar 
    Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG et al. (2016) Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 17(1):1–20. https://doi.org/10.1186/s12864-016-2603-8CAS 
    Article 

    Google Scholar 
    Norry FM, Loeschcke VR (2002) Longevity and resistance to cold stress in cold-stress selected lines and their controls in Drosophila melanogaster. J Evolut Biol 15:775–783Article 

    Google Scholar 
    Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’ s hidden substrate. Nat Rev Genet 15(4):247–258. https://doi.org/10.1038/nrg3688CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peng IF, Berke BA, Zhu Y, Lee WH, Chen W, Wu CF (2007) Temperature-dependent developmental plasticity of drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling. J Neurosci 27(46):12611–12622. https://doi.org/10.1523/JNEUROSCI.2179-07.2007CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–127. https://doi.org/10.1016/j.tig.2014.12.001CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Reddy KC, Andersen EC, Kruglyak L, Kim DH (2009) A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323(5912):382–384. https://doi.org/10.1126/science.1166527CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372Rockman MV, Skrovanek SM, Kruglyak L (2010) Selection at linked sites shapes. Science 330:372–376. https://doi.org/10.1126/science.1194208Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 47(8):581–587. https://doi.org/10.1016/j.exger.2012.05.005CAS 
    Article 
    PubMed 

    Google Scholar 
    Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J (2018) Why does the magnitude of genotype-by-environment interaction vary? Ecol Evolution 8(12):6342–6353. https://doi.org/10.1002/ece3.4128Article 

    Google Scholar 
    Scheiner S (1993) Plasticity as a selectable trait: reply to via. Am Soc Naturalist 142(2):371–373Article 

    Google Scholar 
    Sgro C, Hoffmann A (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248. https://doi.org/10.1038/sj.hdy.6800532Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, van Hof A, Brenchley R, et al. (2017) Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC Genomics 18:500. https://doi.org/10.1186/s12864-017-3899-8Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, et al. (2019) A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 17:24Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG et al. (2014) Widespread genomic incompatibilities in Caenorhabditis elegans. G3: Genes, Genomes, Genet 4(10):1813–1823. https://doi.org/10.1534/g3.114.013151Article 

    Google Scholar 
    Snoek LB, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D et al. (2020) WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database 2020:baz149. https://doi.org/10.1093/database/baz149Steigenga MJ, Zwaan BJ, Brakefield PM, Fischer K (2005) The evolutionary genetics of egg size plasticity in a butterfly. J Evolut Biol 18:281–289. https://doi.org/10.1111/j.1420-9101.2004.00855.xCAS 
    Article 

    Google Scholar 
    Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL (2020) Dissecting the eQTL micro-architecture in Caenorhabditis elegans. Front Genet 11(Nov):1–15. https://doi.org/10.3389/fgene.2020.501376CAS 
    Article 

    Google Scholar 
    Sterken MG, Plaat LVB, Van Der Riksen JAG, Rodriguez M, Schmid T, Hajnal A, et al. (2017) Ras/MAPK modifier loci revealed by eQTL in Caenorhabditis elegans. G3 (Bethesda) 7:3185–3193. https://doi.org/10.1534/g3.117.1120Sterken MG, Snoek LB, Kammenga JE, Andersen EC (2015) The laboratory domestication of Caenorhabditis elegans. Trends Genet 31(5):224–231. https://doi.org/10.1016/j.tig.2015.02.009CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Têtard-jones C, Kertesz M, Preziosi R (2011) Quantitative trait loci mapping of phenotypic plasticity and genotype-environment interactions in plant and insect performance. Philos Trans R Soc B: Biol Sci 366:1569Article 

    Google Scholar 
    Thompson OA, Snoek LB, Nijveen H, Sterken MG, Volkers RJM, Brenchley R et al. (2015) Remarkably divergent regions punctuate the genome assembly of the Caenorhabditis elegans Hawaiian strain CB4856. Genetics 200(3):975–989. https://doi.org/10.1534/genetics.115.175950CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Voorhies WA (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50(3):1259–1264. https://doi.org/10.1111/j.1558-5646.1996.tb02366.xArticle 
    PubMed 

    Google Scholar 
    Via S, Gomulkiewicz R, de Jong G, Scheiner SM, Schlichting CD, van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evolution 10:5Article 

    Google Scholar 
    Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20(7):929–937. https://doi.org/10.1101/gr.102160.109CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2011) Gene expression modifications by temperature-toxicants interactions in Caenorhabditis elegans. PLoS One 6(9):e24676. https://doi.org/10.1371/journal.pone.0024676Wickham H (2011) Ggplot2. Wiley Interdiscip Rev: Computational Stat 3(2):180–185. https://doi.org/10.1002/wics.147Article 

    Google Scholar 
    Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al. (2019) Welcome to the Tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar  More

  • in

    Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline

    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci USA. 2007;104:11436–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J Eukaryot Microbiol. 2009;56:26–33.PubMed 

    Google Scholar 
    Nakov T, Beaulieu JM, Alverson AJ. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution. 2019;73:2497–511.PubMed 

    Google Scholar 
    Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. J Phycol. 2017;53:731–45.PubMed 

    Google Scholar 
    Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature. 2002;416:832–7.CAS 
    PubMed 

    Google Scholar 
    Aretxabaleta AL, Smith KW, Kalra TS. Regime changes in global sea surface salinity trend. J Mar Sci Eng. 2017;5:57.
    Google Scholar 
    López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008;9:583–93.PubMed 

    Google Scholar 
    Björck S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int. 1995;27:19–40.
    Google Scholar 
    Krauss W. Baltic sea circulation. In: Steele JH, editor. Encyclopedia of ocean sciences. Oxford: Academic Press; 2001. p. 236–44.Telesh I, Schubert H, Skarlato S. Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Shelf Sci. 2013;135:317–27.
    Google Scholar 
    Johannesson K, Le Moan A, Perini S, André C. A Darwinian laboratory of multiple contact zones. Trends Ecol Evol. 2020;35:1021–36.PubMed 

    Google Scholar 
    Olofsson M, Hagan JG, Karlson B, Gamfeldt L. Large seasonal and spatial variation in nano- and microphytoplankton diversity along a Baltic Sea-North Sea salinity gradient. Sci Rep. 2020;10:17666.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.PubMed 
    PubMed Central 

    Google Scholar 
    Jochem F. Distribution and importance of autotrophic ultraplankton in a boreal inshore area (Kiel Bight, Western Baltic). Mar Ecol Prog Ser. 1989;53:153–68.
    Google Scholar 
    Wasmund N, Nausch G, Gerth M, Busch S, Burmeister C, Hansen R, et al. Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Mar Ecol Prog Ser. 2019;622:1–16.CAS 

    Google Scholar 
    van Wirdum F, Andrén E, Wienholz D, Kotthoff U, Moros M, Fanget A-S, et al. Middle to Late Holocene variations in salinity and primary productivity in the Central Baltic Sea: a multiproxy study from the Landsort Deep. Front Mar Sci. 2019;6:51.
    Google Scholar 
    Alverson AJ. Timing marine–freshwater transitions in the diatom order Thalassiosirales. Paleobiology. 2014;40:91–101.
    Google Scholar 
    Nakov T, Beaulieu JM, Alverson AJ. Insights into global planktonic diatom diversity: the importance of comparisons between phylogenetically equivalent units that account for time. ISME J. 2018;12:2807–10.PubMed 
    PubMed Central 

    Google Scholar 
    Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.PubMed 
    PubMed Central 

    Google Scholar 
    Olofsson M, Kourtchenko O, Zetsche E-M, Marchant HK, Whitehouse MJ, Godhe A, et al. High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ Microbiol. 2019;21:142–51.CAS 
    PubMed 

    Google Scholar 
    Olofsson M, Almén A-K, Jaatinen K, Scheinin M. Temporal escape – adaptation to eutrophication by Skeletonema marinoi. FEMS Microbiol Lett. 2022;fnac011. https://pubmed.ncbi.nlm.nih.gov/35137038/.Godhe A, Härnström K. Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi. Mol Ecol. 2010;19:4478–90.PubMed 

    Google Scholar 
    Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinform. 2015;51:11.14.1–11.14.19.
    Google Scholar 
    Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    PubMed 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 

    Google Scholar 
    Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2:e201900429.PubMed 
    PubMed Central 

    Google Scholar 
    Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.PubMed 

    Google Scholar 
    Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinforma. 2008;9:393.
    Google Scholar 
    Claros MG. MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci. 1995;11:441–7.CAS 
    PubMed 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 

    Google Scholar 
    Van den Berge K, Soneson C, Robinson MD, Clement L. stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 2017;18:151.PubMed 
    PubMed Central 

    Google Scholar 
    Heller R, Manduchi E, Grant GR, Ewens WJ. A flexible two-stage procedure for identifying gene sets that are differentially expressed. Bioinformatics. 2009;25:1019–25.CAS 
    PubMed 

    Google Scholar 
    Alexa A, and Rahnenfuhrer J. topGO: Enrichment Analysis for GeneOntology. R package version 2.44.0. 2021. https://bioconductor.org/packages/release/bioc/html/topGO.html.Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40:e133.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bussard A, Corre E, Hubas C, Duvernois-Berthet E, Le Corguillé G, Jourdren L, et al. Physiological adjustments and transcriptome reprogramming are involved in the acclimation to salinity gradients in diatoms. Environ Microbiol. 2017;19:909–25.CAS 
    PubMed 

    Google Scholar 
    Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, et al. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J. 2017;36:1559–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong L, Price NM. Transcriptomes of an oceanic diatom reveal the initial and final stages of acclimation to copper deficiency. Environ Microbiol. 2021;24:951–66.Amato A, Sabatino V, Nylund GM, Bergkvist J, Basu S, Andersson MX, et al. Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. ISME J. 2018;12:1594–604.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics. 2009;10:624.PubMed 
    PubMed Central 

    Google Scholar 
    Pargana A, Musacchia F, Sanges R, Russo MT, Ferrante MI, Bowler C, et al. Intraspecific diversity in the cold stress response of transposable elements in the diatom Leptocylindrus aporus. Genes. 2019;11:9.PubMed Central 

    Google Scholar 
    Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:4552.PubMed 
    PubMed Central 

    Google Scholar 
    Kageyama H, Tanaka Y, Shibata A, Waditee-Sirisattha R, Takabe T. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase. Arch Biochem Biophys. 2018;645:100–6.CAS 
    PubMed 

    Google Scholar 
    Nakov T, Judy KJ, Downey KM, Ruck EC, Alverson AJ. Transcriptional response of osmolyte synthetic pathways and membrane transporters in a euryhaline diatom during long-term acclimation to a salinity gradient. J Phycol. 2020;56:1712–28.CAS 
    PubMed 

    Google Scholar 
    Kageyama H, Tanaka Y, Takabe T. Biosynthetic pathways of glycinebetaine in Thalassiosira pseudonana; functional characterization of enzyme catalyzing three-step methylation of glycine. Plant Physiol Biochem. 2018;127:248–55.CAS 
    PubMed 

    Google Scholar 
    Krell A, Funck D, Plettner I, John U, Dieckmann G. Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol. 2007;43:753–62.CAS 

    Google Scholar 
    Latta LC, Weider LJ, Colbourne JK, Pfrender ME. The evolution of salinity tolerance in Daphnia: a functional genomics approach. Ecol Lett. 2012;15:794–802.PubMed 

    Google Scholar 
    Ferrante MI, Entrambasaguas L, Johansson M, Töpel M, Kremp A, Montresor M, et al. Exploring molecular signs of sex in the marine diatom Skeletonema marinoi. Genes. 2019;10:494.Kroth PG. The biodiversity of carbon assimilation. J Plant Physiol. 2015;172:76–81.CAS 
    PubMed 

    Google Scholar 
    Obata T, Fernie AR, Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. Metabolites. 2013;3:325–46.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith SR, Abbriano RM, Hildebrand M. Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. Algal Res. 2012;1:2–16.CAS 

    Google Scholar 
    Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE. 2008;3:e1426.PubMed 
    PubMed Central 

    Google Scholar 
    Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, et al. A plastidial sodium-dependent pyruvate transporter. Nature. 2011;476:472–5.CAS 
    PubMed 

    Google Scholar 
    Chen G-Q, Jiang Y, Chen F. Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol. 2008;44:1309–14.CAS 
    PubMed 

    Google Scholar 
    Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, et al. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160407.PubMed 
    PubMed Central 

    Google Scholar 
    Vårum KM, Myklestad S. Effects of light, salinity and nutrient limitation on the production of β-1,3-d-glucan and exo-d-glucanase activity in Skeletonema costatum (Grev.) Cleve. J Exp Mar Bio Ecol. 1984;83:13–25.
    Google Scholar 
    Radchenko IG, Il’yash LV. Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. Biol Bull. 2006;33:242–7.CAS 

    Google Scholar 
    Adams C, Bugbee B. Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol. 2014;26:1351–7.CAS 

    Google Scholar 
    Shetty P, Gitau MM, Maróti G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells. 2019;8:1657.Jacob A, Kirst GO, Wiencke C, Lehmann H. Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol. 1991;139:57–62.CAS 

    Google Scholar 
    Bazzani E, Lauritano C, Mangoni O, Bolinesi F, Saggiomo M. Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J Mar Sci Eng. 2021;9:1242.
    Google Scholar 
    Cheng R-L, Feng J, Zhang B-X, Huang Y, Cheng J, Zhang C-X. Transcriptome and gene expression analysis of an oleaginous diatom under different salinity conditions. Bioenergy Res. 2014;7:192–205.CAS 

    Google Scholar 
    Stock W, Blommaert L, Daveloose I, Vyverman W, Sabbe K. Assessing the suitability of imaging-PAM fluorometry for monitoring growth of benthic diatoms. J Exp Mar Bio Ecol. 2019;513:35–41.
    Google Scholar 
    Reichmann D, Voth W, Jakob U. Maintaining a healthy proteome during oxidative stress. Mol Cell. 2018;69:203–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latowski D, Kuczyńska P, Strzałka K. Xanthophyll cycle-a mechanism protecting plants against oxidative stress. Redox Rep. 2011;16:78–90.CAS 
    PubMed 

    Google Scholar 
    Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2018;9:1945.PubMed 

    Google Scholar 
    Liu Q, Nishibori N, Imai I, Hollibaugh JT. Response of polyamine pools in marine phytoplankton to nutrient limitation and variation in temperature and salinity. Mar Ecol Prog Ser. 2016;544:93–105.CAS 

    Google Scholar 
    Scoccianti V, Penna A, Penna N, Magnani M. Effect of heat stress on polyamine content and protein pattern in Skeletonema costatum. Mar Biol. 1995;121:549–54.CAS 

    Google Scholar 
    Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53:1331–41.CAS 
    PubMed 

    Google Scholar 
    Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Bio Ecol. 2010;391:27–34.CAS 

    Google Scholar 
    von Alvensleben N, Magnusson M, Heimann K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol. 2016;28:861–76.
    Google Scholar 
    Rijstenbil JW, Wijnholds JA, Sinke JJ. Implications of salinity fluctuation for growth and nitrogen metabolism of the marine diatom Ditylum brightwellii in comparison with Skeletonema costatum. Mar Biol. 1989;101:131–41.CAS 

    Google Scholar 
    Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant. 2000;43:491–500.CAS 

    Google Scholar 
    Garcia N, Lopez Elias JA, Miranda A, Martinez Porchas M, Huerta N, Garcia A. Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Lat Am J Aquat Res. 2012;40:435–40.
    Google Scholar 
    Van den Berge K, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI, et al. RNA sequencing data: Hitchhiker’s guide to expression analysis. Annu Rev Biomed Data Sci. 2019;2:139–73.
    Google Scholar 
    Kremp A. Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea. Mar Ecol Prog Ser. 2001;216:57–66.
    Google Scholar 
    Juneau P, Barnett A, Méléder V, Dupuy C, Lavaud J. Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos. J Exp Mar Bio Ecol. 2015;463:95–104.CAS 

    Google Scholar 
    Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C, Nieto JJ. Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Syst. 2008;4:14.PubMed 
    PubMed Central 

    Google Scholar 
    Khmelenina VN, Sakharovskii VG, Reshetnikov AS, Trotsenko YA. Synthesis of osmoprotectants by halophilic and alkaliphilic methanotrophs. Microbiology. 2000;69:381–6.CAS 

    Google Scholar 
    Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from bacterial and algal origin is a compatible solute in microalgae. Mar Drugs. 2020;18:42.CAS 
    PubMed Central 

    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    Krell A, Beszteri B, Dieckmann G, Glöckner G, Valentin K, Mock T. A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol. 2008;43:423–33.CAS 

    Google Scholar 
    Helliwell KE, Kleiner FH, Hardstaff H, Chrachri A, Gaikwad T, Salmon D, et al. Spatiotemporal patterns of intracellular Ca2+ signalling govern hypo-osmotic stress resilience in marine diatoms. N Phytol. 2021;230:155–70.CAS 

    Google Scholar 
    Kaczmarska I, Poulíčková A, Sato S, Edlund MB, Idei M, Watanabe T, et al. Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Res. 2013;28:263–94.
    Google Scholar 
    Godhe A, Kremp A, Montresor M. Genetic and microscopic evidence for sexual reproduction in the centric diatom Skeletonema marinoi. Protist. 2014;165:401–16.PubMed 

    Google Scholar 
    Annunziata R, Mele BH, Marotta P, Volpe M, Entrambasaguas L, Mager S, et al. Trade-off between sex and growth in diatoms: Molecular mechanisms and demographic implications. Sci Adv. 2022;8:eabj9466.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol. 2021;23:207–23.CAS 
    PubMed 

    Google Scholar 
    Sjöqvist CO, Kremp A. Genetic diversity affects ecological performance and stress response of marine diatom populations. ISME J. 2016;10:2755–66.PubMed 
    PubMed Central 

    Google Scholar 
    Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160399.PubMed 
    PubMed Central 

    Google Scholar 
    Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, et al. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol. 2021;31:3221–32. e9CAS 
    PubMed 

    Google Scholar 
    Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, et al. Global radiation in a rare biosphere soil diatom. Nat Commun. 2020;11:2382.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Savchuk OP. Large-scale nutrient dynamics in the Baltic sea, 1970–2016. Front Mar Sci. 2018;5:95.
    Google Scholar 
    Gomez-Mestre I, Jovani R. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc Biol Sci. 2013;280:20131869.PubMed 
    PubMed Central 

    Google Scholar 
    Lambert BS, Groussman RD, Schatz MJ, Coesel SN, Durham BP, Alverson AJ, et al. The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. Proc Natl Acad Sci USA. 2022;119:e2100916119.Harrison PF, Pattison AD, Powell DR, Beilharz TH. Topconfects: a package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list. Genome Biol. 2019;20:67.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Vulnerability to climate change of species in protected areas in Thailand

    Study areaThe study area covers the total land area of Thailand. Where it is useful, we divided Thailand into six regions (Fig. 2a), the names and boundaries of which are widely used, although they have no official administrative status. We focused on the elements of Thailand’s protected area system that were concerned principally with the in-situ conservation of biodiversity: existing and proposed National Parks, Wildlife Sanctuaries, Non-hunting Areas, and Forest Parks, covering 111, 201 km2 or 21.7% of the country’s land area37 (Fig. 1).Environmental dataA set of environmental variables that were expected to be directly or indirectly related to species distributions in Thailand was used to model suitable habitat in the present and future (Supplementary Material Table S1). These variables were chosen to encompass ecologically relevant variables and enable consistent comparison between species, regardless of species-specific preferences. GIS layers for the whole of the study area were compiled using a variety of data sources at 1-km2 resolution. For variables originally at higher than 1-km resolutions, we used the plus function in ArcMap to combine them with a mask of the study area to use the mask dimensions for all cells.The physical variables, altitude, slope, aspect, and soil pH are widely used in species distribution modeling. Slope and aspect have biologically significant impacts on both temperature and rainfall at these latitudes8 and are particularly important at the poleward margins of species ranges where species may be confined to one aspect. Slope also affects soil maturity and depth. Soil pH is a consistently measured soil variable that broadly correlates with fertility in tropical soils8. Additional soil variables, particularly soil phosphorus, have been shown to be important filters of plant species distributions in the tropics38, but they are not available for Thailand with a useful accuracy and spatial resolution. Altitudes were downloaded from the CGIAR-Consortium for Spatial Information, CGIAR-CSI version 4.1. Slope and aspect were generated by using surface tools in ArcGIS. Soil pH was extracted from ISRIC-World Soil Information version 2.0.Unlike the temperate zone, where tolerances of winter cold and requirements for summer warmth dominate plant and animal distributions, our understanding of how tropical climates filter species distributions is still weak38,39. In Thailand, as in most of the tropics, there are two major climatic gradients which correlate with changes in species composition: a rainfall gradient in the lowlands, along which total rainfall declines and the length of the dry season increases, and a gradient of steadily declining temperature with elevation7. There is no simple relationship between elevation, and thus temperature, and rainfall. An additional complication is that temperature seasonality may be significant in northern Thailand (north of c.18° N), where cooler winters reduce dry-season water stress and extreme low temperatures at high altitudes may exceed physiological tolerances. We therefore chose 8 bioclimatic variables (Supplementary Material Table S1) related to precipitation and temperature, and their seasonality, all of which have previously been used in species distribution modelling in this region9,40. These are available at a resolution of 30 arc sec (approximately 1 km at the equator) from WorldClim ver. 1.4 based on averages of 1970–1990. These variables are available from the same source (and downscaled using the same methods) for the future climate projections.Vegetation structure is an additional major influence on plant and animal distributions in the tropics, both in intact natural vegetation38,39 and when the original vegetation has been degraded or cleared8. Vegetation structure was represented through the inclusion of two continuous variables, percentage forest cover and tree density, as most of the modelled species are known to be sensitive to both the presence of forest and the degree of intactness of the tree cover9. Mean tree density per km2 was extracted from Crowther et al.41 version 2 and percentage coverage of forest per km2 was extracted from the European Space Agency (ESA) GlobCover Version 2.3.Note that the mechanistic basis of the correlations between all these variables and the current distributions of tropical plants and animals are rarely known. Temperature has a direct physiological impact on all organisms, and water supply may be seasonally limiting for plants and some amphibians, but indirect links through biotic interactions are expected to be more important in the tropics, including pest pressure on plants38 and food supply for animals39. Competition is probably also important in shaping local species assemblies. For future projections, we assumed that temperature and precipitation were changing, and that other variables (topography, soil, and vegetation) were stable, so our analysis represents the impacts of climate alone. For 2070, we used the same variables projected by three CMIP5 Earth System Models, CNRM-CM5, GFDL-CM3 and HadGEM2-ES, which have been previously used in Southeast Asia9,42 and in Thailand7. We used two Representative Concentration Pathways, RCP2.6 and RCP8.5, representing low and high greenhouse-gas concentration scenarios, respectively, and thus the potential range of radiative forcing by the end of the century43. RCP2.6 is consistent with meeting the Paris Agreement’s 2 °C global warming target.Species occurrence dataMany locality records for vertebrates were supplied by the Department of National Parks, Wildlife and Plant Conservation (DNP). Trained DNP staff walked along trails throughout the protected areas in Thailand during 2017–2018. They recorded 271,695 locations for 70 mammal species, 18 locations for 3 amphibian species, 318 locations for 18 reptile species, and 43,057 locations for 65 bird species44. We supplemented this with data downloaded from the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/) for 1960–2019 for amphibians (2063 localities for 86 species)45, reptiles (1722 localities from 196 species)46, mammals (2508 localities from 191 species)47, and birds (1,559,222 localities from 884 species)48. More than 95% of the bird records from GBIF were identified as coming from eBird49, which is popular among birders in Thailand. For plants, we used occurrence data from the DNP’s forest resource inventory project from 221 plots, including 24,605 localities for 363 species, the DNP’s Forest Herbarium, including 227 localities for 141 species, and locations for 12 rare and endangered forest species collected from all over Thailand. We also downloaded data from the Botanical Information and Ecology Network (BIEN, https://bien.nceas.ucsb.edu/bien/), including 7209 localities for 1422 species.We removed suspect records (coordinate issues, name problems, etc.), duplicates from the same locality (i.e., more than one individual of the same species recorded in a cell), and species with  0.5 as adequate, but since only five SDMs out of the 1457 generated in this study had values lower than this (0.3–0.5), we retained all the models.Assessment of climate change impactsThe estimated current distribution for each species from Maxent was used as the baseline for comparison with projected distributions of suitable habitat for these species by 2070, under the two emission scenarios and three ESMs, and with and without unlimited dispersal into newly available habitat. We then assessed the impacts of climate change, both on the spatial distribution of individual species and on the pattern of species richness. To generate a species richness map, the binary habitat suitability maps for all species were stacked to produce a consolidated map, which showed the number of species for each 1 km grid cell, and then classified them into five classes (lowest, low, moderate, high, and highest), using the mean ± standard deviation as a break class40.Current and future maps were then compared for each species to calculate the change in species richness, and contingency tables were generated containing the numbers of cells (each of 1 km2) in each richness class. Suitable habitat areas were calculated for the current climate and projected for the future climate. For each species we estimated gained habitat as the areas that will become suitable for a species in future under that scenario, lost habitat as the areas currently predicted as suitable now but projected to become unsuitable under future climatic change, and stable habitat as the areas predicted as suitable now which will remain suitable into the future.We then assessed the vulnerability of each species by estimating the projected change in its range over the next 50 years and using a criteria-based approach, which combined the mean of the suitable habitat area (interpreted as equivalent to extent of occurrence) in the three models and a simplified version of the IUCN Red List criteria51. For 2070, we modified criterion A3(c) as follows; Extinct (Ex) species are projected to lose 100% of suitable habitat by 2070, Critically Endangered (CR) species are projected to lose over 80%, Endangered (EN) species are projected to lose 50–80%; Vulnerable (VU) species are projected to lose 30–50%, Near Threatened (NT) species are projected to lose  More