More stories

  • in

    Fusarium species isolated from post-hatchling loggerhead sea turtles (Caretta caretta) in South Africa

    Zhang, N. et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44, 2186–2190 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, K. et al. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 46, 2477–2490 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Schroers, H. J. et al. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108, 806–819 (2016).CAS 
    PubMed 

    Google Scholar 
    O’Donnell, K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938 (2000).
    Google Scholar 
    Gleason, F., Allerstorfer, M. & Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 11, 184–194 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernando, N. et al. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58, 422–431 (2015).PubMed 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Global distribution of two fungal pathogens threatening endangered Sea Turtles. PLoS ONE 9, e85853 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayayo, E., Pujol, I. & Guarro, J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol. 48, 363–366 (1999).CAS 
    PubMed 

    Google Scholar 
    Muhvich, A. G., Reimschuessel, R., Lipsky, M. M. & Bennett, R. O. Fusarium solani isolated from newborn bonnethead sharks, Sphyrna tiburo (L.). J. Fish Dis. 12, 57–62 (1989).
    Google Scholar 
    Crow, G. L., Brock, J. A. & Kaiser, S. Fusarium solani fungal infection of the lateral line canal system in captive scalloped hammerhead sharks (Sphyrna lewini) in Hawaii. J. Wildl. Dis. 31, 562–565 (1995).CAS 
    PubMed 

    Google Scholar 
    Cabañes, F. J. et al. Cutaneous hyalohyphomycosis caused by Fusarium solani in a loggerhead sea turtle (Caretta caretta L.). J. Clin. Microbiol. 35, 3343–3345 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    Cafarchia, C. et al. Fusarium spp. in Loggerhead Sea Turtles (Caretta caretta): From Colonization to Infection. Vet. Pathol. 57, 139–146 (2019).PubMed 

    Google Scholar 
    Garcia-Hartmann, M., Hennequin, C., Catteau, S., Béatini, C. & Blanc, V. Cas groupés d’infection à Fusarium solani chez de jeunes tortues marines Caretta caretta nées en captivité. J. Mycol. Med. 28, 113–118 (2017).
    Google Scholar 
    Orós, J., Delgado, C., Fernández, L. & Jensen, H. E. Pulmonary hyalohyphomycosis caused by Fusarium spp in a Kemp’s ridley sea turtle (Lepidochelys kempi): An immunohistochemical study. N. Z. Vet. J. 52, 150–152 (2004).PubMed 

    Google Scholar 
    Candan, A. Y., Katılmış, Y. & Ergin, Ç. First report of Fusarium species occurrence in loggerhead sea turtle (Caretta caretta) nests and hatchling success in Iztuzu Beach, Turkey. Biologia (Bratisl). https://doi.org/10.2478/s11756-020-00553-4 (2020).Article 

    Google Scholar 
    Sarmiento-Ramirez, J. M., van der Voort, M., Raaijmakers, J. M. & Diéguez-Uribeondo, J. Unravelling the Microbiome of eggs of the endangered Sea Turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE 9, e95206 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 312, 192–200 (2010).PubMed 

    Google Scholar 
    Sarmiento-Ramirez, J. M., Sim, J., Van West, P. & Dieguez-Uribeondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J. Mar. Biol. Assoc. United Kingdom 97, 661–667 (2017).CAS 

    Google Scholar 
    Hoh, D., Lin, Y., Liu, W., Sidique, S. & Tsai, I. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 47, 100964 (2020).
    Google Scholar 
    Güçlü, Ö., Bıyık, H. & Şahiner, A. Mycoflora identified from loggerhead turtle (Caretta caretta) egg shells and nest sand at Fethiye beach, Turkey. Afr. J. Microbiol. Res. 4, 408–413 (2010).
    Google Scholar 
    Gambino, D. et al. First data on microflora of loggerhead sea turtle (Caretta caretta) nests from the coastlines of Sicily. Biol. Open 9, bio045252 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bailey, J. B., Lamb, M., Walker, M., Weed, C. & Craven, K. S. Detection of potential fungal pathogens Fusarium falciforme and F. keratoplasticum in unhatched loggerhead turtle eggs using a molecular approach. Endanger. Species Res. 36, 111–119 (2018).
    Google Scholar 
    Summerbell, R. C. & Schroers, H.-J. Analysis of Phylogenetic Relationship of Cylindrocarpon lichenicola and Acremonium falciforme to the Fusarium solani Species Complex and a Review of similarities in the spectrum of opportunistic infections caused by these fungi. J. Clin. Microbiol. 40, 2866–2875 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nel, R., Punt, A. E. & Hughes, G. R. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?. PLoS ONE 8, e63525 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Branch, G. & Branch, M. Living Shores. (Pippa Parker, 2018).Fuller, M. S., Fowles, B. E. & Mclaughlin, D. J. Isolation and pure culture study of marine phycomycetes. Mycologia 56, 745–756 (1964).
    Google Scholar 
    Greeff, M. R., Christison, K. W. & Macey, B. M. Development and preliminary evaluation of a real-time PCR assay for Halioticida noduliformans in abalone tissues. Dis. Aquat. Organ. 99, 103–117 (2012).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Denis, M., Lombard, L. & Crous, P. W. Back to the roots: a reappraisal of Neocosmospora. Persoonia Mol. Phylogeny Evol. Fungi 43, 90–185 (2019).CAS 

    Google Scholar 
    O’Donnell, K., Cigelnik, E. & Nirenberg, H. I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493 (1998).
    Google Scholar 
    Geiser, D. M. et al. FUSARIUM-ID v. 1. 0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004).ADS 
    CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and FUSARIUM MLST. Mycologia 104, 427–445 (2012).PubMed 

    Google Scholar 
    Chehri, K., Salleh, B. & Zakaria, L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb. Ecol. 69, 457–471 (2015).PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P., Wright, A., Senfeld, T. & Calcott, B. PartionFinder 2: new methods for selecting partioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Ronquist, F. et al. Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory manual (Blackwell Publishing, Hoboken, 2006).
    Google Scholar 
    Fisher, N. L., Burgess, L. W., Toussoun, T. A. & Nelson, P. E. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72, 151 (1982).
    Google Scholar 
    Smyth, C. W. et al. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLOS Pathog. 15, e1007682 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rachowicz, L. J. et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conserv. Biol. 19, 1441–1448 (2005).
    Google Scholar 
    Lombard, L., Sandoval-Denis, M., Cai, L. & Crous, P. W. Changing the game: resolving systematic issues in key Fusarium species complexes. Persoonia Mol. Phylogeny Evol. Fungi 43, i–ii (2019).CAS 

    Google Scholar 
    Short, D. P. G., Donnell, K. O., Zhang, N., Juba, J. H. & Geiser, D. M. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J. Clin. Microbiol. 49, 4264–4272 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    White, T. J., Burns, T., Lee, S. & Taylor, J. Amplification and direct identification of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications (eds Innis, M. A. et al.) 315–322 (Academic Press, San Diego, 1990).
    Google Scholar 
    Sekimoto, S., Hatai, K. & Honda, D. Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48, 212–221 (2007).CAS 

    Google Scholar 
    Petersen, A. B. & Rosendahl, S. Ø. Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol. Res. 104, 1295–1303 (2000).CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 45, 2235–2248 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Migheli, Q. et al. Molecular Phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in Northern and Central Italy. J. Clin. Microbiol. 48, 1076–1084 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).CAS 
    PubMed 

    Google Scholar 
    Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).PubMed 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 

    Google Scholar 
    Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
    Google Scholar 
    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).CAS 
    PubMed 

    Google Scholar 
    Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).PubMed 

    Google Scholar 
    Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).
    Google Scholar 
    McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).PubMed 

    Google Scholar 
    Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).CAS 

    Google Scholar 
    Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).CAS 

    Google Scholar 
    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
    Google Scholar 
    Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).
    Google Scholar 
    Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).CAS 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).CAS 

    Google Scholar 
    Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).
    Google Scholar 
    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).
    Google Scholar 
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).CAS 
    PubMed 

    Google Scholar 
    Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 

    Google Scholar 
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar 
    Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 

    Google Scholar 
    Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).
    Google Scholar 
    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).
    Google Scholar 
    Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 

    Google Scholar 
    Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).CAS 
    PubMed 

    Google Scholar 
    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).CAS 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird

    All procedures were approved by Deakin University Animal Ethics Committee (G06-2017), the Animal Ethics Committee of the University of Pretoria (protocol EC048-18) and the Research and Scientific Ethics Committee of the South African National Biodiversity Institute (P18/36). All experiments were performed in accordance with Australian guidelines and regulations for the use of animals in research. This study was conducted in compliance with the ARRIVE guidelines (https://arriveguidelines.org).Experimental acoustic treatments and housingExperimental birds were wild-derived zebra finches from an acoustic playback experiment previously presented in Mariette and Buchanan31. At laying (Feb–March 2014), eggs were collected from outdoor aviaries (Deakin University, Geelong, Australia), replaced by dummy eggs and placed in an artificial incubator at 37.5 °C and 60% relative humidity. After nine days, whole clutches were randomly assigned to one of two acoustic playback groups: treatment eggs were exposed to heat-calls (aka “incubation calls”) and controls to adult contact calls (i.e. tet calls), whilst both groups were also exposed to common nest-specific calls (i.e. whine calls) to ensure normal acoustic stimulation. Playbacks had 20 min of heat-calls or tet calls per 1h15, separated by silence and whine calls, and played from 9:30 a.m. to 6:30 p.m.31. To avoid any differences in incubation conditions, eggs and sound cards were swapped daily between incubators. After hatching, nestlings were reared in mixed or single-group broods, in the same outdoor aviaries (see Supplementary Material).At adulthood (March–April 2018), we tested 34 experimental birds (16 females and 18 males; 15 treatment and 19 control birds) at the end of their fourth summer. From February 2018, birds were moved to indoor cages for acclimation, at least 27 days before experimental trials, at a constant room temperature of 25 °C and day-night cycle of 12 h:12 h, and supplied with ad libitum finch seed mix, grit, cucumber and water. After three days, we implanted a temperature-sensitive passive integrated transponder (PIT) tag (Biomark, Boise ID, USA) subcutaneously into the bird’s flank. Subcutaneous PIT tags reduce the risk of injuries and generally yield Tb values similar to those obtained using intraperitoneally-injected tags in small birds such as the zebra finch62,63.Experimental heat exposure protocolAll birds were tested twice. Each individual’s second trial occurred on a different day than the first, with an average of 16 days between the two trials, but each bird was tested in the morning for one trial (~ 10:30 a.m.) and in the afternoon (~ 2:50 p.m.) for the other, in random order. On average, trials lasted 125 min (range: 93–151 min). The predicted mean digesta retention time for a 12 g bird is ~ 50 min64. Hence, to ensure birds were post-absorptive, they were fasted (but with ad-libitum water) for two hours before each trial, within auditory and visual contact of conspecifics. Birds were then weighed to measure the initial mass (massinit ± 0.01 g), before being placed individually in the metabolic chamber within a temperature-controlled cabinet. There were no significant difference in massinit between heat-call (12.04 ± 0.18 g) and control individuals (12.03 ± 0.15 g; t (60) = − 0.059, p = 0.953).During each trial, Ta in the metabolic chamber was gradually increased in a succession of “stages”. Trials started with Ta = 27 °C for 25 min or 45 min (for the first or second trial respectively), then Ta = 35 °C for 30 min (i.e. thermoneutrality54, followed by 20-min stages in succession at Ta = 40, 42 and 44 °C. Temperature transition took 1 (for 2 °C) to 6 min (for 8 °C increments).To “complete the trial”, individuals had to be able to remain in the chamber for 20 min at Ta = 44 °C. Bird behaviour in the chamber was monitored using two infrared video cameras by an experimenter (AP) blind to playback treatments. The trial was terminated early if the bird showed sustained escape behaviour, or reached a thermal endpoint (e.g., loss of balance or severe hyperthermia with Tb  > 45 °C16,52). Immediately after trial termination or completion, birds were taken out of the chamber and exposed to room temperature. They were then weighed (massend), given water on their bill, and transferred to the holding room at 25 °C in an individual cage with ad libitum seeds and water. After one hour, birds were weighed again (mass1h). No bird died during the trials.Thermoregulatory measurements and data processingWe used an open flow-through respirometry system to measure CO2 production and EWL, following Whitfield et al.52 and as commonly used to assess avian thermoregulation in the heat19,53,60. Dry air was pushed into a 1.5-L plastic metabolic chamber, maintained at low humidity levels ( More

  • in

    Rare species disproportionally contribute to functional diversity in managed forests

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B Biol. Sci. 269, 1721–1727 (2002).Article 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science (80-. ). 277, 1300–1302 (1997).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Tilman, D. Functional diversity. in Encyclopedia of Biodiversity, Volume 3 (ed. Levin, S. A.) 109–120 (Academic Press, 2001).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform?. Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Halpern, B. S. & Floeter, S. R. Functional diversity responses to changing species richness in reef fish communities. Mar. Ecol. Prog. Ser. 364, 147–156 (2008).Article 
    ADS 

    Google Scholar 
    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).Article 

    Google Scholar 
    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17, 154–162 (2014).Article 

    Google Scholar 
    Ulrich, W. et al. Species assortment or habitat filtering: A case study of spider communities on lake islands. Ecol. Res. 25, 375–381 (2010).Article 

    Google Scholar 
    Mouillot, D., Dumay, O. & Tomasini, J. A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf Sci. 71, 443–456 (2007).Article 
    ADS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manage. 356, 216–223 (2015).Article 

    Google Scholar 
    Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615 (2019).Article 

    Google Scholar 
    Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest – Biogeosciences For. 8, 377–385 (2015).Article 

    Google Scholar 
    Wesołowski, T. Primeval conditions—What can we learn from them? Ibis (Lond. 1859). 149, 64–77 (2007).Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in europe. Conserv. Biol. 24, 101–112 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Götzenberger, L. et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).Article 

    Google Scholar 
    Fox, J. W. Using the Price Equations to partition the effects of biodiversity loss on ecosystem function. Ecology 87, 2687–2696 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winfree, R. W., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi‐scale approach. Ecol. Evol. ece3.6003 (2020) https://doi.org/10.1002/ece3.6003.Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44 (2004).Article 

    Google Scholar 
    Bauhus, J., Puettmannn, K. J. & Kühne, C. Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change 187–213 (Routledge/The Earthscan Forest Library, 2013). https://doi.org/10.4324/9780203122808.Bauhus, J., Puettmannn, K. J. & Kühne, C. Is Close-to-Nature Forest Management in Europe Compatible with Managing Forests as Complex Adaptive Forest Ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (eds. Messier, C., Puettmannn, K. J. & Coates, K. D.) 187–213 (Routledge/The Earthscan Forest Library, 2013).Balestrieri, R., Basile, M., Posillico, M., Altea, T. & Matteucci, G. Survey effort requirements for bird community assessment in forest habitats. Acta Ornithol. 52, 1–9 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).Article 

    Google Scholar 
    Kahl, T. & Bauhus, J. An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nat. Conserv. 7, 15–27 (2014).Article 

    Google Scholar 
    Paillet, Y. et al. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. For. Ecol. Manage. 346, 51–64 (2015).Article 

    Google Scholar 
    Burrascano, S., Lombardi, F. & Marchetti, M. Old-growth forest structure and deadwood: Are they indicators of plant species composition? A case study from central Italy. Plant Biosyst. 142, 313–323 (2008).Article 

    Google Scholar 
    Van Wagner, C. E. Practical aspects of the line intersect method. (Minister of Supply and Services Canada, 1982).Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).Article 

    Google Scholar 
    Asbeck, T., Pyttel, P., Frey, J. & Bauhus, J. Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. For. Ecol. Manage. 432, 400–408 (2019).Article 

    Google Scholar 
    Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13181 (2018).Article 

    Google Scholar 
    Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manage. 264, 110401 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).Article 
    ADS 

    Google Scholar 
    Rafique, R., Zhao, F., De Jong, R., Zeng, N. & Asrar, G. R. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison. Remote Sens. 8, 1–16 (2016).Article 

    Google Scholar 
    Bates, D. et al. Package ‘lme4’. R Found. Stat. Comput. Vienna 12, (2014).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. (2019).R Core Team. R: A language and environment for statistical computing. (2021).Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of natie and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Holdaway, R. J. & Sparrow, A. D. Assembly rules operating along a primary riverbed-grassland successional sequence. J. Ecol. 94, 1092–1102 (2006).Article 

    Google Scholar 
    Matuoka, M. A., Benchimol, M., de Almeida-Rocha, J. M. & Morante-Filho, J. C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 116, 106471 (2020).Article 

    Google Scholar 
    Leaver, J., Mulvaney, J., Ehlers-Smith, D. A., Ehlers-Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manage. 445, 82–95 (2019).Article 

    Google Scholar 
    Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of native and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers. Conserv. 25, 117–132 (2016).Article 

    Google Scholar 
    Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687 (2019).Article 

    Google Scholar 
    Peña, R. et al. Biodiversity components mediate the response to forest loss and the effect on ecological processes of plant–frugivore assemblages. Funct. Ecol. 34, 1257–1267 (2020).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. For. Ecol. Manage. 433, 343–348 (2019).Article 

    Google Scholar 
    Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manage. 407, 95–105 (2017).Article 

    Google Scholar 
    Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
    Google Scholar 
    Uezu, A. & Metzger, J. P. Vanishing bird species in the Atlantic Forest: Relative importance of landscape configuration, forest structure and species characteristics. Biodivers. Conserv. 20, 3627–3643 (2011).Article 

    Google Scholar 
    Endenburg, S. et al. The homogenizing influence of agriculture on forest bird communities at landscape scales. Landsc. Ecol. 34, 1–15 (2019).Article 

    Google Scholar 
    Reif, J. et al. Changes in bird community composition in the Czech Republic from 1982 to 2004: Increasing biotic homogenization, impacts of warming climate, but no trend in species richness. J. Ornithol. 154, 359–370 (2013).Article 

    Google Scholar 
    Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    Doxa, A., Paracchini, M. L., Pointereau, P., Devictor, V. & Jiguet, F. Preventing biotic homogenization of farmland bird communities: The role of High Nature Value farmland. Agric. Ecosyst. Environ. 148, 83–88 (2012).Article 

    Google Scholar 
    Van Turnhout, C. A. M., Foppen, R. P. B., Leuven, R. S. E. W., Siepel, H. & Esselink, H. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol. Conserv. 134, 505–516 (2007).Article 

    Google Scholar 
    Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: Accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).
    Google Scholar 
    Gustafsson, L. et al. Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio 49, 85–97 (2020).PubMed 
    Article 

    Google Scholar 
    Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717 (2019).Article 

    Google Scholar 
    Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V. & Mina, M. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For. Ecol. Manage. 481, (2021).Manes, F., Ricotta, C., Salvatori, E., Bajocco, S. & Blasi, C. A multiscale analysis of canopy structure in Fagus sylvatica L. and Quercus cerris L. old-growth forests in the Cilento and Vallo di Diano National Park. Plant Biosyst. 144, 202–210 (2010).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kirsch, J.-J. et al. The use of water-filled tree holes by vertebrates in temperate forests. Wildlife Biol. 2021, wlb.00786
    (2021). More

  • in

    Herding then farming in the Nile Delta

    Butzer, K. W. Early Hydraulic Civilization in Egypt: a Study in Cultural Ecology (University of Chicago Press, Chicago, 1976).Said, R. The River Nile: Geology, Hydrology and Utilization (Pergamon Press, Oxford, 1993).Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).CAS 
    Article 

    Google Scholar 
    Shirai, N. The Archaeology of the First Farmer-Herders in Egypt: New Insights into the Fayum Epipalaeolithic and Neolithic (Uni. Leiden Press, the Netherlands, 2010).Garcea, E. A. A. Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).Article 

    Google Scholar 
    Wilson, P. Prehistoric settlement in the western Delta: a regional and local view from Sais (Sa el-Hagar). J. Egypt. Archaeol. 92, 75–126 (2006).Article 

    Google Scholar 
    Van Geel, B. Non-Pollen Palynomorphs. Smol J. P., Birks H. J. B., Last W. M., Bradley R. S., Alverson K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 3 (Springer, Dordrecht, 2002).Van Geel, B., Hallewas, J. P. & Pals, J. P. A Late Holocene deposit under the Westfriese Zeedijk near Nkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palyno 38, 269–335 (1983).Article 

    Google Scholar 
    Van Geel, B. A paleoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev. Palaeobot. Palyno 25, 1–120 (1978).Article 

    Google Scholar 
    Marinova, E. & Atanassova, J. Anthropogenic impact on vegetation and environment during the bronze age in the area of Lake Durankulak, NE Bulgaria: pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Rev. Palaeobot. Palyno. 141, 165–178 (2006).Article 

    Google Scholar 
    Van Geel, B. et al. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190 (2011).Article 

    Google Scholar 
    Gelorini, V., Verbeken, A., van Geel, B. B., Cocquyt, C. & Verschuren, D. Modern non-pollen palynomorphs from East African lake sediments. Rev. Palaeobot. Palyno 164, 143–173 (2011).Article 

    Google Scholar 
    Hillbrand, M., Geel, B. V., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Stanley, J. D. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quarter. Sci. Rev 170, 212–231 (2017).Article 

    Google Scholar 
    Negm, A. M., Saavedra O., & El-Adawy A. In The Handbook of Environmental Chemistry, 55 (Springer, 2017).Viste, E. & Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 33, 3106–3123 (2013).Article 

    Google Scholar 
    Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N. & Mascle, J. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change 14, 1685–1696 (2014).Article 

    Google Scholar 
    Wijmstra, T. A., Smit, A., Van der Hammen, T. & Van Geel, B. Vegetational succession, fungal spores and short-term cycles in pollen diagrams from the Wietmarscher Moor. Acta Botanica Neerlandica 20, 401–410 (1971).Article 

    Google Scholar 
    Wilson, P. In The Nile Delta as a centre of cultural interactions between Upper Egypt and the Southern Levant in the 4th millennium BC, 299–318 (Poznań Archaeological Museum, Poznan, 2014).Zong, Y. Q. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).CAS 
    Article 

    Google Scholar 
    Yang, S. et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River delta, China. The Holocene 22, 1393–1404 (2012).Article 

    Google Scholar 
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu Culture in the lower Yangtze River. China. Quarter. Sci. Rev. 188, 90–103 (2018).Article 

    Google Scholar 
    Edwards, K. J., Whittington, G., Robinson, M. & Richter, D. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. J. Archaeo. Sci. 32, 1741–1756 (2005).Article 

    Google Scholar 
    Andersen, S. T. Identification of Wild Grass and Cereal Pollen [fossil Pollen, Annulus Diameter, Surface Sculpturing], Aarbog, 69–92 (Danmarks Geologiske Undersoegelse, 1979).Tweddle, J. C., Edwards, K. J. & Fieller, N. R. Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Veg. Hist. Archaeobot. 14, 15–30 (2005).Article 

    Google Scholar 
    Joly, C., Barille, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233 (2007).Article 

    Google Scholar 
    Salgado-Labouriau, M. L. & Rinaldi, M. Palynology of Gramineae of the Venezuelan mountains. Grana Palynologica 29, 119–128 (1990).Article 

    Google Scholar 
    Josefsson, T., Ramqvist, P. H. & Rnberg, G. The history of early cereal cultivation in northernmost Fennoscandia as indicated by palynological research. Veg. Hist. Archaeobot. 23, 821–840 (2014).Article 

    Google Scholar 
    Zhao, X. S. et al. Climate-driven early agricultural origins and development in the Nile Delta. Egypt. J. Archaeo. Sci. 136, 105498 (2021).Article 

    Google Scholar 
    Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the near east: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).Article 

    Google Scholar 
    Riemer, H. Barbara e. barich. People, water and grain: the beginnings of domestication in the Sahara and the Nile Valley, Roma 1998. Archol. Inf. 24, 117–119 (2014).
    Google Scholar 
    Arranz-Otaegui, A., Colledge, S., Zapata, L., Teira-Mayolini, L. C. & Juan, J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in Southwest Asia. Proc. Natl Acad. Sci. USA 113, 201612797 (2016).Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of plants in the Old World (Oxford University Press, Oxford, 2012).Kvavadze, E. & Bitadze, N. L. Special issue: fresh insights into the palaeoecological and palaeoclimatological value of quaternary non-pollen palynomorphs || Fibres of Linum (flax), Gossypium (cotton) and animal wool as non-pollen palynomorphs in the Late Bronze Age burials of Saphar-Kharaba, southern Georgia. Veg. Hist. Archaeobot. 19, 479–494 (2010).Article 

    Google Scholar 
    Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 20, 507–508 (2011).Article 

    Google Scholar 
    Zhao, X. S. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702 (2020).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 6, 457–474 (2011).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis (Blackwell Scientific Publications, Oxford, UK, 1991).Kholeif, S. E. A. & Mudie, P. J. Palynological records of climate and oceanic conditions in the Late Pleistocene and Holocene of the Nile Cone, Southeastern Mediterranean, Egypt. Palynology 33, 1–24 (2009).Article 

    Google Scholar 
    Leroy, S. A. G. Palynological evidence of Azolla nilotica Dec. in recent Holocene of the eastern Nile Delta and palaeoenvironment. Veg. Hist. Archaeobot. 1, 43–52 (1992).Article 

    Google Scholar 
    Kholeif, S. E. A. Holocene paleoenvironmental change in inner continental shelf sediments, Southeastern Mediterranean, Egypt. J. Afr. Earth. Sci. 57, 143–153 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    The citizens who chart changing climate

    Jean Combes’s love of nature as a child led her to note the signs of starting spring. Her long-term records are now part of a vital growing citizen science dataset that starkly shows how climate change is shifting the timing of the natural world.For people living in colder parts of the world, watching for the first signs of spring — from the opening of snowdrops and daffodils, to birds building their nests, to the return of bees and butterflies — is a common winter pastime. Jean Combes has not just been watching out for these signs, but also recording them, ever since she was a child. Taking note of the earliest emergence of leaves in springtime — first as a child of 11 years, and then continuously from the age of 20 years — Jean has now collected one of the longest continuous datasets of spring leaf-out time in the UK (see also Correspondence by Vitasse et al.). These almost 75 years of data show a clear shift that corroborates shifts now acknowledged for diverse species around the world: springtime is coming earlier, and the patterns of advance match the global trends in the changing climate. Jean’s naturalist endeavours have already earned her high honours in the form of an OBE (Order of the British Empire), and recognition of her own work is mirrored in a growing recognition of the vital role of citizen scientists in tracking the signs of our rapidly changing world.
    This is a preview of subscription content More

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More

  • in

    Wildmeat consumption and child health in Amazonia

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: The bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).
    Google Scholar 
    Van Vliet, N. et al. Bushmeat and human health: Assessing the evidence in tropical and sub-tropical forests. Ethnobio. Conserv. 6, 3. https://doi.org/10.15451/ec2017-04-6.3-1-45 (2017).Article 

    Google Scholar 
    Ingram, D. J. et al. Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254. https://doi.org/10.1146/annurev-environ-041020-063132 (2021).Article 

    Google Scholar 
    Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. P. Natl. Acad. Sci. 108, 19653–19656 (2011).ADS 
    CAS 

    Google Scholar 
    Roe, D. et al. Beyond banning wildlife trade: COVID-19, conservation and development. World Dev. 136, 105121. https://doi.org/10.1016/j.worlddev.2020.105121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Orrick, K., Lim, A. & Dove, M. Reframing conservation and development perspectives on bushmeat. Environ. Res. Lett. 17, 011001. https://doi.org/10.1088/1748-9326/ac3db1 (2021).ADS 
    Article 

    Google Scholar 
    Cawthorn, D.-M. & Hoffman, L. C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).PubMed Central 

    Google Scholar 
    Antunes, A. P. et al. A conspiracy of silence: Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).
    Google Scholar 
    Friant, S. et al. Eating bushmeat improves food security in a biodiversity and infectious disease “Hotspot”. EcoHealth 17, 125–138 (2020).PubMed 

    Google Scholar 
    Fa, J. E., Currie, D. & Meeuwig, J. Bushmeat and food security in the Congo Basin: Linkages between wildlife and people’s future. Environ. Conserv. 30, 71–78 (2003).
    Google Scholar 
    Borgerson, C., Razafindrapaoly, B., Rajaona, D., Rasolofoniaina, B. J. R. & Golden, C. D. Food insecurity and the unsustainable hunting of wildlife in a UNESCO world heritage site. Front. Sustain. Food Syst. 3, 99. https://doi.org/10.3389/fsufs.2019.00099 (2019).Article 

    Google Scholar 
    Booth, H. et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 31, 1788–1797. https://doi.org/10.1016/j.cub.2021.01.079 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet, N., Nebesse, C. & Nasi, R. Bushmeat consumption among rural and urban children from Province Orientale, Democratic Republic of Congo. Oryx 49, 165–174 (2015).
    Google Scholar 
    Sirén, A. & Machoa, J. Fish, wildlife, and human nutrition in tropical forests: A fat gap?. Interciencia 33, 186–193 (2008).
    Google Scholar 
    Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. E&S 20, 22 (2015).
    Google Scholar 
    Hoffman, L. C. What is the role and contribution of meat from wildlife in providing high quality protein for consumption?. Anim. Front. 2, 15 (2012).
    Google Scholar 
    Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, T. G., Baraldi, L. G., Muniz, P. T. & Cardoso, M. A. Dietary practices and nutritional status of 0–24-month-old children from Brazilian Amazonia. Public Health Nutr. 12, 2335–2342 (2009).CAS 
    PubMed 

    Google Scholar 
    Mintz, S. W. & Du Bois, C. M. The anthropology of food and eating. Annu. Rev. Anthropol. 31, 99–119 (2002).
    Google Scholar 
    Lokossou, Y. U. A., Tambe, A. B., Azandjèmè, C. & Mbhenyane, X. Socio-cultural beliefs influence feeding practices of mothers and their children in Grand Popo, Benin. J. Health Popul. Nutr. 40, 33 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, S. P. & Allen, L. H. Nutritional importance of animal source foods. J. Nutr. 133, 3932S-3935S (2003).CAS 
    PubMed 

    Google Scholar 
    Neumann, C. G. et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. J. Nutr. 133, 3941S-3949S (2003).CAS 
    PubMed 

    Google Scholar 
    Desalegn, A., Mossie, A. & Gedefaw, L. Nutritional iron deficiency anemia: Magnitude and its predictors among school age children, Southwest Ethiopia: A community based cross-sectional study. PLoS ONE 9, e114059 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Safiri, S. et al. Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 14, 185 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
    Google Scholar 
    Investing in the future: a united call to action on vitamin and mineral deficiencies: global report, 2009. (Micronutrient Initiative, 2009).Walker, S. P. et al. Child development: Risk factors for adverse outcomes in developing countries. Lancet 369, 145–157 (2007).PubMed 

    Google Scholar 
    Saloojee, H. & Pettifor, J. M. Iron deficiency and impaired child development: The relation may be causal, but it may not be a priority for intervention. BMJ 323, 1377–1378 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, C., Harris, D. M. & Rogers, L. M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 22, 193–220 (2002).CAS 

    Google Scholar 
    Haileselassie, M. et al. Why are animal source foods rarely consumed by 6–23 months old children in rural communities of Northern Ethiopia? A qualitative study. PLoS ONE 15, e0225707 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Victor, R., Baines, S. K., Agho, K. E. & Dibley, M. J. Factors associated with inappropriate complementary feeding practices among children aged 6–23 months in Tanzania: Complementary feeding practices in Tanzania. Matern. Child Nutr. 10, 545–561 (2014).PubMed 

    Google Scholar 
    Morsello, C. et al. Cultural attitudes are stronger predictors of bushmeat consumption and preference than economic factors among urban Amazonians from Brazil and Colombia. E&S 20, 21 (2015).
    Google Scholar 
    Parry, L., Barlow, J. & Pereira, H. Wildlife Harvest and Consumption in Amazonia’s Urbanized Wilderness: Wildlife consumption in urbanized Amazonia. Conserv. Lett. 7, 565–574 (2014).
    Google Scholar 
    Chaves, W. A., Wilkie, D. S., Monroe, M. C. & Sieving, K. E. Market access and wild meat consumption in the central Amazon, Brazil. Biol. Conserv. 212, 240–248 (2017).
    Google Scholar 
    Dufour, D. L., Piperata, B. A., Murrieta, R. S. S., Wilson, W. M. & Williams, D. D. Amazonian foods and implications for human biology. Ann. Hum. Biol. 43, 330–348 (2016).PubMed 

    Google Scholar 
    Piperata, B. A. Nutritional status of Ribeirinhos in Brazil and the nutrition transition. Am. J. Phys. Anthropol. 133, 868–878 (2007).PubMed 

    Google Scholar 
    Garcia, M. T., Granado, F. S. & Cardoso, M. A. Alimentação complementar e estado nutricional de crianças menores de dois anos atendidas no Programa Saúde da Família em Acrelândia, Acre, Amazônia Ocidental Brasileira. Cad. Saúde Pública 27, 305–316 (2011).PubMed 

    Google Scholar 
    Marques, R. C., Bernardi, J. V. E., Dorea, C. C. & Dórea, J. G. Intestinal parasites, anemia and nutritional status in young children from transitioning Western Amazon. IJERPH 17, 577 (2020).PubMed Central 

    Google Scholar 
    Granado, F. S., Augusto, R. A., Muniz, P. T. & Cardoso, M. A. Team, the A. S. Anaemia and iron deficiency between 2003 and 2007 in Amazonian children under 2 years of age: Trends and associated factors. Public Health Nutr. 16, 1751–1759 (2013).PubMed 

    Google Scholar 
    Nogueira-de-Almeida, C. A. et al. Prevalence of childhood anaemia in Brazil: Still a serious health problem: A systematic review and meta-analysis. Public Health Nutr. 24, 6450–6465. https://doi.org/10.1017/S136898002100286X (2021).Article 
    PubMed 

    Google Scholar 
    de Souza, A. A., Mingoti, S. A., Paes-Sousa, R. & Heller, L. Combination of conditional cash transfer program and environmental health interventions reduces child mortality: An ecological study of Brazilian municipalities. BMC Public Health 21, 627 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, H. S. et al. Prevalence of anaemia in Brazilian children in different epidemiological scenarios: An updated meta-analysis. Public Health Nutr. 24, 2171–2184 (2021).PubMed 

    Google Scholar 
    Leite, M. S. et al. Prevalence of anemia and associated factors among indigenous children in Brazil: Results from the First National Survey of Indigenous People’s Health and Nutrition. Nutr. 12, 69 (2013).
    Google Scholar 
    WHO, W. H. O. Prevalence of anaemia in children aged 6–59 months (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-children-under-5-years-(-) (2021).Schreiner, M. A Poverty Probability Index (PPI®) for Brazil (2008). (2010).Walzer, C. COVID-19 and the curse of piecemeal perspectives. Front. Vet. Sci. 7, 582983 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carignano, T. P., Morsello, C. & Parry, L. Rural-urban mobility influences wildmeat access and consumption in the Brazilian Amazon. Oryx (In press).Ferreira, M. U. et al. Anemia and iron deficiency in school children, adolescents, and adults: A community-based study in Rural Amazonia. Am. J. Public Health 97, 237–239 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    de Castro, T. G., Silva-Nunes, M., Conde, W. L., Muniz, P. T. & Cardoso, M. A. Anemia e deficiência de ferro em pré-escolares da Amazônia Ocidental brasileira: Prevalência e fatores associados. Cad. Saúde Pública 27, 131–142 (2011).PubMed 

    Google Scholar 
    Cotta, R. M. M. et al. Social and biological determinants of iron deficiency anemia. Cad. Saúde Pública 27, s309–s320 (2011).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., Morcatty, T. Q. & Wilcove, D. S. Impacts of rural to urban migration, urbanization, and generational change on consumption of wild animals in the Amazon. Conserv. Biol. 35, 1186–1197. https://doi.org/10.1111/cobi.13663 (2020).Article 

    Google Scholar 
    El Bizri, H. R. et al. Urban wild meat consumption and trade in central Amazonia. Conserv. Biol. 34, 438–448 (2020).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., von Mühlen, E. M. & Wilcove, D. S. Investigating illegal activities that affect biodiversity: The case of wildlife consumption in the Brazilian Amazon. Ecol. Appl. 31, e02402. https://doi.org/10.1002/eap.2402 (2021).Article 
    PubMed 

    Google Scholar 
    Chaves, W. A., Monroe, M. C. & Sieving, K. E. Wild meat trade and consumption in the Central Amazon, Brazil. Hum. Ecol. 47, 733–746 (2019).
    Google Scholar 
    Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185 (2007).PubMed 

    Google Scholar 
    Shaffer, C. A., Yukuma, C., Marawanaru, E. & Suse, P. Assessing the sustainability of Waiwai subsistence hunting in Guyana by comparison of static indices and spatially explicit, biodemographic models. Anim. Conserv. 21, 148–158 (2018).
    Google Scholar 
    Pesquisa de orçamentos familiares, 2008–2009. (IBGE, 2010).Aguiar, J. P. L. Tabela de composição de alimentos da Amazônia. Acta Amaz 26, 121–126 (1996).
    Google Scholar 
    de Bruyn, J. et al. Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa. Br. J. Nutr. 116, 1709–1719 (2016).PubMed Central 

    Google Scholar 
    World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune. (World Bank, 2020).Coad, L. M. et al. Toward a Sustainable, Participatory and Inclusive Wild Meat Sector. (Center for International Forestry Research (CIFOR) https://doi.org/10.17528/cifor/007046 (2019).Cowlishaw, G., Mendelson, S. & Rowcliffe, J. M. Evidence for post-depletion sustainability in a mature bushmeat market. J. Appl. Ecol. 42, 460–468 (2005).
    Google Scholar 
    Carignano Torres, P., Morsello, C., Parry, L. & Pardini, R. Forest cover and social relations are more important than economic factors in driving hunting and bushmeat consumption in post-frontier Amazonia. Biol. Conserv. 253, 108823. https://doi.org/10.1016/j.biocon.2020.108823 (2021).Article 

    Google Scholar 
    Nunes, A. V., Oliveira-Santos, L. G. R., Santos, B. A., Peres, C. A. & Fischer, E. Socioeconomic drivers of hunting efficiency and use of space by traditional Amazonians. Hum. Ecol. 48, 307–315 (2020).
    Google Scholar 
    Freitas, C. T. et al. Co-management of culturally important species: A tool to promote biodiversity conservation and human well-being. People Nat. 2, 61–81 (2020).
    Google Scholar 
    Campos-Silva, J. V., Peres, C. A., Antunes, A. P., Valsecchi, J. & Pezzuti, J. Community-based population recovery of overexploited Amazonian wildlife. PECON 15, 266–270 (2017).
    Google Scholar 
    Nunes, A. V., Peres, C. A., de Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179 (2019).
    Google Scholar 
    Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H. & Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 378, 2123–2135 (2011).PubMed 

    Google Scholar 
    Mendes, M. M. et al. Association between iron deficiency anaemia and complementary feeding in children under 2 years assisted by a Conditional Cash Transfer programme. Public Health Nutr. 24, 4080–4090 (2021).PubMed 

    Google Scholar 
    Brondízio, E. S., de Lima, A. C. B., Schramski, S. & Adams, C. Social and health dimensions of climate change in the Amazon. Ann. Hum. Biol. 43, 405–414 (2016).PubMed 

    Google Scholar 
    Ingram, D. J. Wild meat in changing times. J. Ethnobiol. 40, 117 (2020).
    Google Scholar 
    Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the southwestern Amazon. Behav. Ecol. Sociobiol. 73, 26 (2019).
    Google Scholar 
    Parry, L. et al. Social vulnerability to climatic shocks is shaped by urban accessibility. Ann. Am. Assoc. Geogr. 108, 125–143 (2018).
    Google Scholar 
    IBGE, I. B. de G. e E. Censo Demográfico 2010. (2010).IBGE, I. B. de G. e E. Estimativas da população residente para os municípios e para as unidades da federação com data de referência em 1o de julho de 2019. (2019).Cardoso, M. A., Scopel, K. K. G., Muniz, P. T., Villamor, E. & Ferreira, M. U. Underlying factors associated with anemia in amazonian children: A population-based cross-sectional study. PLOS ONE 7, e36341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiello, V. et al. Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur. J. Pediatr. 179, 527–545 (2020).PubMed 

    Google Scholar 
    R Core Team. R: The R project for statistical computing. (2015).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Devereux, S. Social Protection for Rural Poverty Reduction. Rural Transformations Technical Series 1 (2016).Barton, K. Mu-MIn: Multi-model Inference. R Package Version 0.12.2/r18. (2009).Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Berti, P. R. Intrahousehold distribution of food: A review of the literature and discussion of the implications for food fortification programs. Food Nutr. Bull. 33, S163–S169 (2012).PubMed 

    Google Scholar 
    Piperata, B. A., Schmeer, K. K., Hadley, C. & Ritchie-Ewing, G. Dietary inequalities of mother–child pairs in the rural Amazon: Evidence of maternal-child buffering?. Soc. Sci. Med. 96, 183–191 (2013).PubMed 
    PubMed Central 

    Google Scholar  More