More stories

  • in

    Home range size and habitat quality affect breeding success but not parental investment in barn owl males

    Stearns, S. C. The Evolution of Life Histories (Oxford University, 1992).
    Google Scholar 
    Roff, D. A., Mostowy, S. & Fairbairn, D. J. The evolution of trade-offs: Testing predictions on response to selection and environmental variation. Evolution (N. Y.). 56, 84–95 (2002).
    Google Scholar 
    Lack, D. The Significance of Clutch-size. Ibis (Lond. 1859). 89, 302–352 (1947).Article 

    Google Scholar 
    Drent, R. H. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Adrea 68, 225–263 (1980).
    Google Scholar 
    Harshman, L. G. & Zera, A. J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 22, 80–86 (2007).Article 

    Google Scholar 
    Dijkstra, C., Daan, S. & Tinbergen, J. M. Family planning in the Kestrel (Falco Tinnunculus): The ultimate control of covariation of laying date and clutch size. Behaviour 114, 83–116 (1990).Article 

    Google Scholar 
    Cox, R. M. et al. Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct. Ecol. 24, 1262–1269 (2010).Article 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 277, 963–969 (2010).Article 

    Google Scholar 
    Rivalan, P. et al. Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle. Oecologia 145, 564–574 (2005).ADS 
    Article 

    Google Scholar 
    Perrins, C. M. Population Fluctuations and Clutch-Size in the Great Tit, Parus major. J. Anim. Ecol. 34, 601 (1965).Article 

    Google Scholar 
    Walker, R. S., Gurven, M., Burger, O. & Hamilton, M. J. The trade-off between number and size of offspring in humans and other primates. Proc. R. Soc. B Biol. Sci. 275, 827–833 (2008).Article 

    Google Scholar 
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).Article 

    Google Scholar 
    Charnov, E. L. & Krebs, J. R. On clutch-size and fitness. Ibis (Lond. 1859). 116, 217–219 (1974).Article 

    Google Scholar 
    Ricklefs, R. E. On the evolution of reproductive strategies in birds: Reproductive effort. Am. Nat. 111, 453–478 (1977).Article 

    Google Scholar 
    Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Syst. 18, 435–487 (1987).Article 

    Google Scholar 
    Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123 (2012).Article 

    Google Scholar 
    Kouba, M., Bartoš, L., Sindelář, J. & St’astny, K. Alloparental care and adoption in Tengmalm’s Owl (Aegolius funereus). J. Ornithol. 158, 185–191 (2017).Article 

    Google Scholar 
    Redpath, S. M. Habitat fragmentation and the individual: Tawny owls Strix aluco in woodland patches. J. Anim. Ecol. 64, 652 (1995).Article 

    Google Scholar 
    Bruun, M. & Smith, H. G. Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biol. Conserv. 114, 179–187 (2003).Article 

    Google Scholar 
    Frey-Roos, F., Brodmann, P. A. & Reyer, H. U. Relationships between food resources, foraging patterns, and reproductive success in the water pipit, Anthus sp. Spinoletta. Behav. Ecol. 6, 287–295 (1995).Article 

    Google Scholar 
    Saïd, S. et al. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118, 1299–1306 (2009).Article 

    Google Scholar 
    Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Hakkarainen, H., Koivunen, V. & Korpimäki, E. Reproductive success and parental effort of Tengmalm’s owls: Effects of spatial and temporal variation in habitat quality. Ecoscience 4, 35–42 (1997).Article 

    Google Scholar 
    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).Article 

    Google Scholar 
    Trembley, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2004).Article 

    Google Scholar 
    Turcotte, Y. & Desrochers, A. Landscape-dependent response to predation risk by forest birds. Oikos 100, 614–618 (2003).Article 

    Google Scholar 
    Hinsley, S. A., Rothery, P. & Bellamy, P. E. Influence of woodland area on breeding success in great tits parus major and blue tits Parus caeruleus. J. Avian Biol. 30, 271 (1999).Article 

    Google Scholar 
    Hinam, H. L. & Clair, C. C. S. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of Northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).Article 

    Google Scholar 
    Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the Kestrel. J. Anim. Ecol. 65, 539 (1996).Article 

    Google Scholar 
    Slagsvold, T., Sandvik, J., Rofstad, G., Lorentsen, O. & Husby, M. On the adaptive value of intraclutch egg-size variation in birds. Auk 101, 685–697 (1984).Article 

    Google Scholar 
    Tripet, F., Richner, H. & Tripet, F. Host responses to ectoparasites: Food compensation by parent blue tits. Oikos 78, 557 (1997).Article 

    Google Scholar 
    Budden, A. E. & Beissinger, S. R. Resource allocation varies with parental sex and brood size in the asynchronously hatching green-rumped parrotlet (Forpus passerinus). Behav. Ecol. Sociobiol. 63, 637–647 (2009).Article 

    Google Scholar 
    Bókony, V. et al. Stress response and the value of reproduction: Are birds prudent parents?. Am. Nat. 173, 589–598 (2009).Article 

    Google Scholar 
    McGinley, M. A., Temme, D. H. & Geber, M. A. Parental investment in offspring in variable environments: Theoretical and empirical considerations. Am. Nat. 130, 370–398 (1987).Article 

    Google Scholar 
    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science (80-.). 292, 494–497 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Caro, S. M., Griffin, A. S., Hinde, C. A. & West, S. A. Unpredictable environments lead to the evolution of parental neglect in birds. Nat. Commun. 7, 1–10 (2016).Article 

    Google Scholar 
    Roulin, A. Barn Owls: Evolution and Ecology (Cambridge University Press, 2020).
    Google Scholar 
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan avian predator. J. Biogeogr. 47, 1467–1481 (2020).Article 

    Google Scholar 
    Arlettaz, R., Krähenbühl, M., Almasi, B., Roulin, A. & Schaub, M. Wildflower areas within revitalized agricultural matrices boost small mammal populations but not breeding Barn Owls. J. Ornithol. 151, 553–564 (2010).Article 

    Google Scholar 
    Hindmarch, S., Elliott, J. E., Mccann, S. & Levesque, P. Habitat use by barn owls across a rural to urban gradient and an assessment of stressors including, habitat loss, rodenticide exposure and road mortality. Landsc. Urban Plan. 164, 132–143 (2017).Article 

    Google Scholar 
    Castañeda, X. A., Huysman, A. E. & Johnson, M. D. Barn Owls select uncultivated habitats for hunting in a winegrape growing region of California. Ornithol. Appl. 123, 1–15 (2021).
    Google Scholar 
    Séchaud, R. et al. Behaviour-specific habitat selection patterns of breeding barn owls. Mov. Ecol. 9, 18 (2021).Article 

    Google Scholar 
    Roulin, A., Ducrest, A.-L. & Dijkstra, C. Effect of brood size manipulations on parents and offspring in the barn owl Tyto alba. Ardea 87, 91–100 (1999).
    Google Scholar 
    Béziers, P. & Roulin, A. Double brooding and offspring desertion in the barn owl Tyto alba. J. Avian Biol. 47, 235–244 (2016).Article 

    Google Scholar 
    Laaksonen, T., Hakkarainen, H. & Korpimäki, E. Lifetime reproduction of a forest-dwelling owl increases with age and area of forests. Proc. R. Soc. B Biol. Sci. 271, 10058 (2004).Article 

    Google Scholar 
    Bryant, D. M. Energy expenditure and body mass changes as measures of reproductive costs in birds. Funct. Ecol. 2, 23 (1988).Article 

    Google Scholar 
    Merilä, J. & Wiggins, D. A. Mass loss in breeding blue tits: The role of energetic stress. J. Anim. Ecol. 66, 452 (1997).Article 

    Google Scholar 
    Frey, C., Sonnay, C., Dreiss, A. & Roulin, A. Habitat, breeding performance, diet and individual age in Swiss Barn Owls (Tyto alba). J. Ornithol. 152, 279–290 (2010).Article 

    Google Scholar 
    Aschwanden, J., Holzgang, O. & Jenni, L. Importance of ecological compensation areas for small mammals in intensively farmed areas. Wildlife Biol. 13, 150–158 (2007).Article 

    Google Scholar 
    Roulin, A. Tyto alba Barn Owl. BWP Updat. 4, 115–138 (2002).
    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Taylor, I. Barn Owls: Predator-Prey Relationships and Conservation (Cambridge University Press, 1994).
    Google Scholar 
    van den Brink, V., Dreiss, A. N. & Roulin, A. Melanin-based coloration predicts natal dispersal in the barn owl, Tyto alba. Anim. Behav. 84, 805–812 (2012).Article 

    Google Scholar 
    Dreiss, A. N. & Roulin, A. Divorce in the barn owl: Securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate. J. Evol. Biol. 27, 1114–1124 (2014).CAS 
    Article 

    Google Scholar 
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation-maximization binary clustering for behavioural annotation. PLoS One 11, e0151984 (2016).Article 

    Google Scholar 
    San-Jose, L. M. et al. Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat. Ecol. Evol. 3, 1331–1340 (2019).Article 

    Google Scholar 
    Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography (Cop.) 41, 1801–1811 (2018).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. Data Visualization for Statistics in Social Science [R package sjPlot version 2.8.9]. (2021).Rutz, C. & Bijlsma, R. G. Food-limitation in a generalist predator. Proc. R. Soc. B Biol. Sci. 273, 2069–2076 (2006).Article 

    Google Scholar 
    Altmann, S. A. The impact of locomotor energetics on mammalian foraging. J. Zool. 211, 215–225 (1987).Article 

    Google Scholar 
    Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Pfeiffer, T. & Meyburg, B. U. GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J. Ornithol. 156, 963–975 (2015).Article 

    Google Scholar 
    Romano, A. et al. Nestling sex and plumage color predict food allocation by barn swallow parents. Behav. Ecol. 27, 1198–1205 (2016).Article 

    Google Scholar 
    Bryant, D. M. & Tatner, P. Hatching asynchrony, sibling competition and siblicide in nestling birds: Studies of swiftlets and bee-eaters. Anim. Behav. 39, 657–671 (1990).Article 

    Google Scholar 
    Mock, D. W. & Parker, G. A. Advantages and disadvantages of egret and heron brood reduction. Evolution (N. Y.). 40, 459–470 (1986).
    Google Scholar 
    Stenning, M. J. Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol. Evol. 11, 243–246 (1996).CAS 
    Article 

    Google Scholar 
    Roulin, A., Colliard, C., Russier, F., Fleury, M. & Grandjean, V. Sib-sib communication and the risk of prey theft in the barn owl Tyto alba. J. Avian Biol. 39, 593–598 (2008).Article 

    Google Scholar 
    Korpimaki, E. Costs of reproduction and success of manipulated broods under varying food conditions in Tengmalm’s owl. J. Anim. Ecol. 57, 1879 (1988).
    Google Scholar 
    Tolonen, P. & Korpimäki, E. Do kestrels adjust their parental effort to current or future benefit in a temporally varying environment?. Écoscience 3, 165–172 (1996).Article 

    Google Scholar 
    Harrison, F., Barta, Z., Cuthill, I. & Székely, T. How is sexual conflict over parental care resolved? A meta-analysis. J. Evol. Biol. 22, 1800–1812 (2009).CAS 
    Article 

    Google Scholar 
    Osorno, J. L. & Székely, T. Sexual conflict and parental care in magnificent frigatebirds: Full compensation by deserted females. Anim. Behav. 68, 337–342 (2004).Article 

    Google Scholar 
    Paredes, R., Jones, I. L. & Boness, D. J. Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behaviour 143, 451–481 (2006).Article 

    Google Scholar 
    Kleijn, D. et al. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol. Lett. 9, 243–254 (2006).CAS 
    Article 

    Google Scholar 
    Zingg, S., Ritschard, E., Arlettaz, R. & Humbert, J. Y. Increasing the proportion and quality of land under agri-environment schemes promotes birds and butterflies at the landscape scale. Biol. Conserv. 231, 39–48 (2019).Article 

    Google Scholar  More

  • in

    Coupling reconstruction of atmospheric hydrological profile and dry-up risk prediction in a typical lake basin in arid area of China

    Coupling accuracy analysisPrecipitation simulation accuracyThe comparison between annual precipitation simulated by WRF-Hydro and measured precipitation is shown in the following Fig. 3a. From the Fig. 3a, we can get that the correlation between simulated precipitation and measured precipitation is 0.783, which is relatively high and the simulation is good. In addition, the simulated precipitation is less than the measured precipitation value in time. We guess that this error is caused by the precision and quality of precipitation products. WRF-Hydro can easily underestimate the duration of heavy rain when simulating precipitation, so the simulated precipitation is slightly smaller than the measured precipitation in long-term sequence, but the overall accuracy is good.Figure 3(a) Comparison between WRF-HYDRO simulation and measured annual precipitation in Daihai; (b) Comparison of runoff simulation and remote sensing estimation in Daihai Lake; (c) Modified runoff simulation and remote sensing estimation in Daihai Lake.Full size imageThe comparison between the simulated spatial distribution of annual precipitation and the verified products in the study area is shown in the Fig. 4. Generally speaking, the precipitation of interpolation products is slightly higher than the simulation value, which is consistent with the above analysis. In addition, the spatial distribution law of the two is consistent with each other, and the spatial variation law is basically the same. However, the transition of simulation results in areas with severe precipitation changes is relatively gentle, while the transition of interpolation products is more severe. The coverage of the maximum value in the simulation results is smaller than that of interpolation products. The guess is caused by the error of setting the precipitation boundary line. The boundary of interpolation products is China as a whole, and the boundary of simulation results is only Daihai Basin, which fundamentally determines that the precipitation simulation results will be slightly smaller than the interpolation products. Because the climate and hydrology mutual chamber is defined in the model setting from the surrounding grid points, the smaller the area causes some areas with mutual chamber cannot enter the boundary line, resulting in the precipitation simulation results less than the interpolation products. But in terms of the overall spatial differentiation law, the distribution of simulation results in interpolation products is not very different, which has good practical value.Figure 4Spatial comparison of WRF-HYDRO simulation and interpolation of annual precipitation in Daihai.Full size imageSimulation accuracy of runoff into LakeThe comparison between the WRF-Hydro simulation results and remote sensing estimation results of the runoff from Daihai Lake for many years is shown in the Fig. 3b. It can be seen from the figure that the correlation between simulation results and remote sensing estimation results is 0.629, which is better. But it is obvious that the simulation results are higher than those of remote sensing. The reason may be that the model does not set up the parameters of man-made water from the river entering the lake, including agricultural irrigation water and industrial water intake. So the simulation results are overestimated to the runoff into the lake. Therefore, the simulated runoff into the lake is modified in this study to reduce the water consumption ignored by the model.The comparison between the revised simulated runoff and remote sensing estimation is shown in the Fig. 3c. As can be seen from the figure, the correlation is increased to 0.650. Although not much improvement, the simulation results and remote sensing results are distributed evenly around the boundary.Analysis of coupling resultsPrecipitation analysisThe precipitation in Daihai Basin is relatively abundant. Except for some extreme drought years and humid years, the average annual precipitation is 300–600 mm (see Fig. 5a), and the average annual precipitation is about 400 mm. It can be seen from the figure that the minimum annual precipitation is less than 250 mm; The maximum annual diameter is higher than 750 mm. The difference between extreme dry year and extreme wet year is three times.Figure 5(a) Distribution curve of annual precipitation in Daihai Basin; (b) Distribution curve of annual mean monthly precipitation in Daihai Basin.Full size imageThe monthly average of precipitation in the Daihai Basin for many years is shown in the Fig. 5b. It can be seen from the figure that the precipitation in the Daihai Basin is unevenly distributed throughout the year, with the least in January at 1.73 mm and the most in July at 112.10 mm. The precipitation in July–August accounts for more than 50% of the total annual precipitation. In addition, it can be seen from the figure that the precipitation in the Daihai Basin is mainly concentrated in June to September, which is also the flood season in the Daihai Basin, accounting for more than 70% of the total annual precipitation.Combined with Table 3, overall, the average precipitation from 1980 to 1994 is 401.75 mm, with little fluctuation; During the period from 1995 to 2011, except for extreme precipitation in some years (more than 600 mm in both 1995 and 2003), the precipitation decrease, with an average value of 371.39 mm. There are several dry years and wet years, and the fluctuation range was sharp; From 2012 to 2020, the fluctuation range is small, and the average value rises to 451.75 mm.Table 3 Average precipitation (mm) in different periods in Dahai BasinFull size tableThe spatial distribution of annual precipitation in Daihai Basin is shown in the Fig. 6. It is obvious from the figure that the precipitation in 1990, 1995 and 2020 is abundant compared with other years. In addition, it is found that although the annual precipitation in Daihai Basin varies in size, its spatial distribution is basically the same.Figure 6Spatial distribution of annual precipitation in Daihai Basin.Full size imageThe spatial pattern of annual precipitation in Daihai Basin is as follows: the southeast of Liangcheng County and the north of Zuoyun County, the northwest of Liangcheng County and the northwest of Fengzhen county are the three precipitation centers, which gradually decrease outward. And the central effect of Fengzhen county is not obvious in some years. In addition, it is found that the area around Daihai Lake has the least precipitation in the whole Daihai Basin. This may be related to the terrain surrounding the Daihai Basin.In the whole study area, the annual precipitation in the north of Zuoyun County is larger than that in other regions. In some years, the annual precipitation reaches 800 mm, and the extension area is wide. In some years, it extends to the southeast of Liangcheng County. Therefore, it is speculated that mountain torrents, debris flows, rainstorms, snowstorms and other natural disasters are prone to occur here.In addition, combined with the topographic map, it is found that the southeast and northwest of Liangcheng County are the highest elevation in the study area, which coincides with the extreme precipitation. At the same time, it is found that the spatial consistency of precipitation distribution in the whole study area is higher than that of terrain distribution in the study area. Therefore, it is speculated that the precipitation in the study area is seriously affected by the terrain, in other words, the precipitation in the study area is mostly terrain rain or mountain convective rain.Runoff analysisThe Runoff Curve of Daihai Lake is shown in the Fig. 7a. It can be seen from the figure that the flow into the lake shows a downward trend from 1980 to 2020. Although it rebounded in 1996–1999 and 2005–2007, after 2010, the runoff into the lake decreased sharply below 8 × 106m3. From 1980 to 1990, the runoff into the lake decreased linearly with a larger slope and a faster speed; However, from 1990 to 2000, the runoff into the lake appeared the first vibration wave peak, and from 2000 to 2007, the second vibration wave peak. From 2008 to 2012, the decline rate was sharp, and the runoff into the lake had been reduced to 3.95 × 106m3 in 2012; Since 2013, the runoff into the lake tends to be flat, but it has not exceeded 10 × 106m3.Figure 7(a) Change of runoff in Daihai Lake over the years; (b) Changes of lake area in Daihai over the years; (c) Changes of lake water level in Daihai over the years; (d) Changes of volume water in Daihai Lake over the years.Full size imageThe change curve of Daihai Lake area is shown in the Fig. 7b. It can be seen from the figure that the area of Daihai Lake is declining in a straight line. In a short period of 40 years, the lake area has shrunk nearly 100 km2. In addition, we found that the shrinkage rate of Daihai Lake area slowed down from 1980 to 1985, but the lake area shrank sharply from 1995 to 2000. After 2005, the atrophy curve almost coincided with the fitting curve, and the overall fitting R2 was as high as 0.958.The water level variation curve of Daihai Lake is shown in the Fig. 7c. As can be seen from the figure, the variation trend of water level in Daihai Lake is very similar to that of lake area. However, the slope of lake water level change is less than the change rate of lake area. In the 40 years since 1975, the water level in Daihai has dropped by nearly 10 m. In addition, the water level rose slightly in 1995–1996 and 2003–2006. And after 2006, Daihai water level decline rate also accelerated. Since 2006, the water level of Daihai has dropped nearly 6 m, with a rate of 0.45 m/year.The trend of the volume water volume of the Daihai Lake is shown in the Fig. 7d. It can be clearly seen from the figure that the decline curve of the Daihai Lake water volume is close to a straight line, especially from 2005 to the present, the fitting degree is as high as 0.981. There should be some geometrical relationship among the lake area, water level and water volume, and this relationship should be related to the digital elevation model of the lake bottom. In addition, the changes of lake bottom topography are not linear, so there are still subtle differences between the three changes.The annual surface runoff of Daihai Basin is shown in the Fig. 8. It can be seen from the figure that the Gongba River, the Wuhao River, the Buliang River and the Tiancheng River in the south of Daihai Lake supply the Daihai Lake for a long time, and the Bantanzi River in the West also flows into the Dai sea in some years. Combined with the spatial distribution of annual precipitation, it can be concluded that surface runoff is seriously affected by precipitation. The annual distribution is uneven. The surface runoff from the southeast of Liangcheng County generally flows into Daihai Lake to the north, but in some drought years, it will be stopped and cannot flow into Daihai Lake. Bantanzi River in the west of Daihai Lake also supplies Daihai Lake in the year of more precipitation.Figure 8Spatial distribution of surface runoff in Daihai Basin.Full size imageTaking the surface runoff of Daihai Basin in January, April, July and October 2015 as an example, the distribution of surface runoff in different seasons of the year is analyzed, as shown in the Fig. 9. It can be seen from the figure that the rivers in Daihai Basin are seasonal rivers, which are prone to be cut off in autumn and winter. In winter (December–February), there will be different degrees of snowfall events in Daihai Basin, but due to the river freezing period and small snowfall, there will be no runoff. In spring (March to May), the precipitation in Daihai Basin began to increase, and the surface runoff also began to increase, mainly from the southeast and northwest of Liangcheng County. Gongba River, Wuhao River, buliang River, Tiancheng River and Bantanzi River in the south of Daihai Lake will supply Daihai Lake, but these rivers have small flow in spring, which is easy to break. Summer (June–August) is the main period of precipitation in Daihai Basin, and the surface runoff will also surge. In July 2015, the runoff in some areas reached 2000 mm, which was prone to flood disaster. The rivers in the west and south of Daihai Lake will supply it, but the runoff into Daihai Lake is not high, and most of the runoff is concentrated in the upper and middle reaches. In autumn (from September to November), the precipitation in Daihai Basin decreases. Before the freezing period, the precipitation may form runoff, but it is difficult to flow into Daihai Lake due to the small flow.Figure 9Spatial distribution of surface runoff in different seasons in Daihai Basin.Full size imageStatistical analysis of other factorsClimatic factors

    (1)

    Evaporation capacity

    The variation curve of annual evaporation in Daihai is shown in the Fig. 10a. It can be seen from the figure that although the evaporation in Daihai Basin fluctuates, it shows an upward trend, with an upward slope of 8.855 and R2 of 0.560. From 1980 to 1986, the annual evaporation fluctuated around 1000 mm; From 1987 to 1992, the annual evaporation of Daihai Basin decreased sharply, but from 1993 to 2000, the annual evaporation increased sharply with a very high rate of increase; But after 2000, the annual evaporation fluctuated and remained at 1250 mm.

    (2)

    Average temperature

    Figure 10Perennial (a) evaporation (b) annual average temperature (c) annual average wind speed change in Daihai Basin.Full size imageThe variation curve of annual average temperature in Daihai is shown in the Fig. 10b. It can be seen from the figure that the annual average temperature in Daihai Basin presents an obvious fluctuating upward trend, and the fitting upward slope is 0.040, R2 is 0.406. In addition, it can be observed that in a 10-year cycle, there will be two small fluctuations and one large fluctuation, and the fluctuation will rise.

    (3)

    Wind speed

    The curve of annual average wind speed in Daihai is shown in the Fig. 10c. It can be seen from the figure that the annual average wind speed of Daihai Basin presents a fluctuating downward trend, and the fitting downward slope is 0.036, R2 is 0.368. In addition, it can be observed that the annual average wind speed fluctuated with a mean line of 6.2 from 1980 to 1987; In 1988 and 1990, it dropped sharply with a large slope; From 1990 to 2003, the fluctuation decreased. From 2003 to 2011, the fluctuation was stable at 4.5, and rose sharply in 2012. So far, the fluctuation has been stable at 5.2.Human factors

    (1)

    Cultivated land area

    The change curve of cultivated land area in Daihai Basin is shown in the figure. It can be seen from the Fig. 11a that the annual average wind speed in Daihai Basin presents an upward trend, with the fitting rising rate of 0.017 and R2 of 0.970, almost in a straight line. In addition, it can be observed that from 1996 to 2005, the rising rate appeared a trough, that is, the rising rate first increased rapidly and then decreased. From 2000 to 2005, the rising rate was very slow and approached zero; But since 2006, it has returned to a straight-line rise.

    (2)

    Industrial water consumption

    Figure 11Perennial (a) cultivated land area (b) industrial water consumption (c) total population change curve in Daihai Basin.Full size imageThe change curve of industrial water consumption in Daihai Basin is shown in the Fig. 11b. It can be seen from the figure that the industrial water consumption of Daihai Basin presents an upward trend, and the fitting rising rate is 0.433, R2 is 0.794. In addition, it can be observed that from 1975 to 1993, the industrial water consumption of Daihai Basin was below 3 × 106m3; From 1994 to 2005, except for the decrease in 1998–2000, it has been on the rise, and the rising speed is fast, which has increased five times in ten years; Since 2005, the industrial water consumption in Daihai Basin has been stable at about 15 × 106m3.

    (3)

    Total population

    The change curve of total population in Daihai Basin is shown in the Fig. 11c. It can be seen from the figure that the total population of Daihai Basin presents an upward trend, and the fitting rising rate is 0.074, R2 is 0.864. In addition, it can be observed that the total population of Daihai Basin increased slowly from 1975 to 1985; From 1986 to 1990, the total population remained flat; It fluctuated from 1990 to 2000; Since 2000, the total population has risen sharply.Analysis of driving factors of hydrological informationIn this study, the average temperature, annual precipitation, annual evaporation, average wind speed in natural factors and cultivated land area, agricultural water consumption, industrial water consumption and population in human factors are considered as the influencing factors of runoff change in Daihai Lake. Therefore, the flow into the lake and the above elements constitute a variable sequence, and the correlation matrix is calculated. See the Table 4 for details.Table 4 Correlation matrix between lake inflow and influencing factors.Full size tableIt can be seen from the Table 4 that the cultivated land area has the highest correlation with the runoff into the lake, with a correlation of − 0.777, which is highly significant, followed by the wind speed, with a correlation of 0.690, which is highly significant; In addition, the total population, industrial water consumption, evaporation and average temperature were significantly correlated. Therefore, the discharge of Daihai Lake is influenced by both nature and human. It can be seen from the table that industrial water consumption, total population, cultivated land area, evaporation and annual average temperature have a negative impact on the flow into the lake, while wind speed has a positive impact.At the same time, the correlation between different factors can be obtained from the Table. For example, the correlation between industrial water consumption and population, cultivated land area and evaporation is as high as 0.8, which is highly significant; The correlation between population and cultivated land, cultivated land and wind speed and evaporation is also about 0.8, which is highly significant; In addition, the correlations between industrial water consumption and annual average temperature, population and annual average temperature, wind speed, evaporation, cultivated land, cultivated land and annual average temperature, evaporation and wind speed, wind speed and annual average temperature are all over 0.5.It can be clearly observed from the table that except for agricultural water consumption, precipitation and evaporation, the annual average temperature is significantly correlated with other factors, and the correlation is more than 0.5. The correlation between annual precipitation and other factors is small and not significant. Therefore, it can be determined that there is data redundancy between different elements. In order to eliminate the data redundancy and get the determinants of the discharge into the lake, the correlation analysis of the variable sequence is carried out, as shown in the table.It can be seen from the Table 5 that the cumulative variance of the first three principal components has reached 87.016%, and the eigenvalues of the first two principal components are greater than 1, which has met the standard. The variance contribution rate of the first principal component was 59.641%, and the order of load rate was cultivated land (0.967), industrial water (0.950), population (0.859), evaporation (0.856), wind speed (0.841), and the load rate was greater than 0.8; In the first principal component, the influence of human factors is greater than that of natural factors. In the second principal component, the variance contribution rate is 18.821%, in which the annual precipitation (− 0.875) and agricultural water consumption (0.736) have higher load rate, and the influence of natural factors is greater than that of human factors.Table 5 Component matrix of principal component analysis of different influencing factorsFull size tableFuture forecastAccording to the analysis in Sect. 3.4, we find that human factors have a huge impact on the lake inflow. In lake water balance, precipitation and evaporation are determined by climate. Now, the Inner Mongolian government has taken a series of measures to protect the Daihai Lake. Therefore, when we predict the future lake water volume, we consider two situations: (1) the future lake water volume in the natural state without any interference (protection or destruction) measures; (2) keeping the existing water volume unchanged future lake water volume in the case.Situation IFor the Situation I, we use two forecasting methods. Method I is to directly predict the future lake water volume by using the variation law of lake volume water volume with time. Method II is to use the lake water balance equation to estimate the change in lake water volume, and then estimate the future lake water volume. The results obtained by these two calculation methods are shown in the Table 6.Table 6 Future prediction of Daihai Lake in situation I.Full size tableWhen estimating the dry years of the Daihai Lake, the results obtained by using the time-varying laws of lake area, water volume and lake depth are inconsistent. Among them, the dry year of the Daihai Lake obtained by using the water volume is 2031, the lake area is 2047, and the water depth is 2096. The three are vastly different. The reason is the uncertainty of our modeling data. As Daihai Lake is a lake in an arid area, data is extremely scarce, and there is almost no continuous measurement of water level, depth, and water volume. The lake area is interpreted from remote sensing images and is an annual average, which results in neglect of inter-annual hydrological changes. Similarly, the water depth is also obtained by remote sensing. The resolution of the remote sensing image is 30 m. We use the interpolation method to control the accuracy to about 5 m. However, in the later stage of the prediction, when the lake depth is lower than 10 m, the results begin to become inaccurate. The modeling data of lake water volume were obtained from WRF-Hydro simulations, so the uncertainty of the data led to the inconsistency of the results. We choose the most recent year as the final result of method I, that is, the forecast result of water volume.From the Table 6, we can observe that the calculation results of the two methods are quite different. The reason is that in method I, we assume that the volume of water in the lake changes linearly, and there is only one variable; in method II, the number of variables increases and the uncertainty increases. However, the years when the Daihai Lake is predicted to dry up are basically the same. Method I predicts that the Daihai Lake will be depleted in 2031, and method II is 2033, which is not much different.Situation IIFor the situation II, we control the agricultural water consumption and industrial water consumption to remain unchanged, estimate the change of volume water at this time, and then estimate the future lake water volume. Among them, the change in water consumption is only evaporation, and the change in water replenishment is precipitation and runoff. The future lake inflow and lake water volume calculated by using the water balance equation are shown in the Table 7:Table 7 Future prediction of Daihai Lake in situation II.Full size tableFrom the Table 7, we can see that under human control, although the of lake inflow will continue to decline compared with no measures, the rate of decline will be significantly slower. And the lake inflow will drop to 0 in 2060. Similarly, the water volume in the Daihai Lake will decline. But the rate is significantly slower compared with situation I. And the water volume will drop to 0 in 2140, nearly 110 years later than 2032–3033 without any control. This shows that man-made protection of the Daihai Lake is extremely important. More

  • in

    Monitoring of radioactive cesium in wild boars captured inside the difficult-to-return zone in Fukushima Prefecture over a 5-year period

    Ministry of the Environment Government of Japan. Designation of Evacuation Zone (accessed 07 April 2021); https://www.env.go.jp/chemi/rhm/h29kisoshiryo/h29kiso-09-04-01.html. (in Japanese).Fukushima Prefectural Government, Japan. About the Transition of Evacuation Zone (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/site/portal/cat01-more.html. (in Japanese).Chino, M. et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol. 48, 1129–1134 (2011).CAS 
    Article 

    Google Scholar 
    Koarashi, J., Atarashi-Andoh, M., Takeuchi, E. & Nishimura, S. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocaesium on forest floor driven by biologically mediated processes. Sci. Rep. 4, 6853 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saito, R., Nemoto, Y. & Tsukada, H. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukada, H. From soil to agricultural-plants-transfer and distribution of radiocaesium. Kagaku (Chemistry). 67, 20–23 (2012) (in Japanese).CAS 

    Google Scholar 
    Saito, R. & Tsukada, H. Chapter 23: Physicochemical fractions of radiocaesium in the stomach contents of wild boar and its transfer to muscle tissue. In Behavior of Radionuclides in the Environment III (eds Nanba, K. et al.) 495–505 (Springer, 2022).Chapter 

    Google Scholar 
    Ishii, Y., Hayashi, S. & Takamura, T. Radiocaesium transfer in forest insect communities after the Fukushima Dai-ichi Nuclear Power Plant accident. PLoS ONE 12, e0171133 (2017).Article 

    Google Scholar 
    Matsushima, N., Ihara, S., Takase, M. & Horiguchi, T. Assessment of radiocaesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Sci. Rep. 5, 9712 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ishii, Y., Matsuzaki, S. S. & Hayashi, S. Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J. Environ. Radioact. 213, 106102 (2020).CAS 
    Article 

    Google Scholar 
    Wada, T. et al. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J. Environ. Radioact. 204, 132–142 (2019).CAS 
    Article 

    Google Scholar 
    Morishita, D. et al. Spatial and seasonal variations of radiocaesium concentrations in an algae-grazing annual fish, ayu Plecoglossus altivelis collected from Fukushima Prefecture in 2014. Fish. Sci. 85, 561–569 (2019).CAS 
    Article 

    Google Scholar 
    Saito, R., Kabeya, M., Nemoto, Y. & Oomachi, H. Monitoring 137Cs concentrations in bird species occupying different ecological niches; game birds and raptors in Fukushima Prefecture. J. Environ. Radioact. 197, 67–73 (2019).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environ. Sci. Technol. 49, 2875–2885 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Steinhauser, G. & Saey, P. R. J. 137Cs in the meat of wild boars: A comparison of the impacts of Chernobyl and Fukushima. J. Radioanal. Nucl. Chem. 307, 1801–1806 (2016).CAS 
    Article 

    Google Scholar 
    Nemoto, Y., Saito, R. & Oomachi, H. Seasonal variation of caesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture, Japan. PLoS ONE 13, e0200797. https://doi.org/10.1371/journal.pone.0200797 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342 (2020).CAS 
    Article 

    Google Scholar 
    Saito, R., Oomachi, H., Nemoto, Y. & Osako, M. Estimation of the total amount of the radiocaesium in the wild boar in their body – each organs survey and incineration residue survey. J. Soc. Rem. Radioact. Contam. Environ. 7, 165–173 (2019) (in Japanese).
    Google Scholar 
    Cui, L. et al. Radiocaesium concentrations in wild boars captured within 20 km of the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 10, 9272. https://doi.org/10.1038/s41598-020-66362-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tagami, K., Howard, B. J. & Uchida, S. The time-dependent transfer factor of radiocaesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. Environ. Sci. Technol. 50, 9424–9431. https://doi.org/10.1021/acs.est.6b03011 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuma, S. et al. Radiocaesium contamination of wild boars in Fukushima and surrounding regions after the Fukushima nuclear accident. Environ. Radioact. 164, 60–64 (2016).CAS 
    Article 

    Google Scholar 
    Fukushima Prefectural Government, Japan. Monitoring of Wild Animals. Accessed 7 Apr 2021. https://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html. (in Japanese).Strebl, F. & Tataruch, F. Time trends (1986–2003) of radiocaesium transfer to roe deer and wild boar in two Austrian forest regions. J. Environ. Radioactiv. 98, 137–152 (2007).CAS 
    Article 

    Google Scholar 
    Ohtsuka-Ito, E. & Kanzaki, N. Population trends of the Japanese wild boar during the Showa era. Wildl. Cons. Jpn. 3, 95–105 (1998).Article 

    Google Scholar 
    Ueda, H. & Jiang, Z. The use of Orchards and Abandoned Orchard by wild boars in Yamanashi. Mamm. Sci. 44, 23–33 (2004) (in Japanese).
    Google Scholar 
    Fukushima Prefectural Government, Japan. Fukushima Prefecture Wild Boar Management Plan (Phase 3) (accessed 07 April 2021); https://www.pref.fukushima.lg.jp/uploaded/life/497785_1296285_misc.pdf (in Japanese).Anderson, D. et al. A comparison of methods to derive aggregated transfer factors using wild boar data from the Fukushima Prefecture. J. Environ. Radioact. 197, 101–108 (2019).CAS 
    Article 

    Google Scholar 
    Pröhl, G. et al. Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. J. Environ. Radioactiv. 91, 41–72 (2006).Article 

    Google Scholar 
    Palo, R. T., White, N. & Danell, K. Spatial and temporal variations of 137Cs in moose Alces alces and transfer to man in northern Sweden. Wildlife Biol. 9, 207–212 (2003).Article 

    Google Scholar 
    Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan. J. Mammal. Soc. Jpn. 53, 279–287 (2013) (in Japanese).
    Google Scholar 
    Kodera, Y. & Kanzaki, N. Food habits and nutritional condition of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Cons. Jpn. 6, 109–117 (2001) (in Japanese).
    Google Scholar 
    Arita, S. et al. Radioactive cesium accumulation during developmental stages of Largemouth Bass, Micropterus salmoides. Proc. JSCE. G. (Environment) 71, 267–276 (2015).Article 

    Google Scholar 
    Kodera, Y. C. S. F. prevention of epidemics from a point of view of the ecology of wild boar. J. Vet. Epidemiol. 23, 4–8 (2019) (in Japanese).Article 

    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. J. Zool. 242, 411–423 (1997).Article 

    Google Scholar 
    Morelle, K. et al. Towards understanding wild boar Sus scrofa movement: A synthetic movement ecology approach. Mammal Rev. 45, 15–29 (2015).Article 

    Google Scholar 
    Kapata, J., Mnich, K., Mnich, S., Karpińska, M. & Bielawska, A. Time-dependence of 137Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland). J. Environ. Radioactiv. 141, 76–81 (2015).Article 

    Google Scholar 
    Gulakov, A. V. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive. J. Environ. Radioactiv. 127, 171–175 (2014).CAS 
    Article 

    Google Scholar 
    Hohmann, U. & Huckschlag, D. Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: A stomach content analysis. Eur. J. Wildl. Res. 51, 263–270 (2005).Article 

    Google Scholar 
    Škrkal, J., Rulík, P., Fantínová, K., Mihalík, J. & Timková, J. Radiocaesium levels in game in the Czech Republic. J. Environ. Radioactiv. 139, 18–23 (2015).Article 

    Google Scholar 
    Japan Atomic Energy Agency (JAEA). 5th airborne monitoring survey (accessed 07 April 2021); https://emdb.jaea.go.jp/emdb/en/portals/b1020201/Steinhauser, G. Monitoring and radioecological characteristics of radiocaesium in Japanese beef after the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 311, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    Merz, S., Shozugawa, K. & Steinhauser, G. Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J. Radioanal. Nucl. Chem. 307, 1807–1810 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Catestatin selects for colonization of antimicrobial-resistant gut bacterial communities

    Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature 2016;535:47–47.Article 

    Google Scholar 
    El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–79.CAS 
    Article 

    Google Scholar 
    Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338–e338.CAS 
    Article 

    Google Scholar 
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100:1623–33.CAS 
    Article 

    Google Scholar 
    Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, et al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci. 2005;62:377–85.CAS 
    Article 

    Google Scholar 
    Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745–53.CAS 
    Article 

    Google Scholar 
    Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue M-H. Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem. 2012;19:4115–23.CAS 
    Article 

    Google Scholar 
    El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand J Gastroenterol. 2017;52:691–7.CAS 
    Article 

    Google Scholar 
    Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32:755–97.CAS 
    Article 

    Google Scholar 
    Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci. 2019;1455:34–58.CAS 
    Article 

    Google Scholar 
    Corti A, Marcucci F, Bachetti T. Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Archiv Eur J Physiol. 2018;470:199–210.Mahata SK, Mahata M, Fung MM, O’Connor DT. Catestatin: a multifunctional peptide from chromogranin A. Regul Pept. 2010;162:33–43.CAS 
    Article 

    Google Scholar 
    Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes. 2018;67:841–8.CAS 
    Article 

    Google Scholar 
    Mahata SK, Kiranmayi M, Mahapatra NR. Catestatin: a master regulator of cardiovascular functions. Curr Med Chem. 2018;25:1352–74.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, et al. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol. 2021;232:e13655.Rabbi MF, Munyaka PM, Eissa N, Metz-Boutigue MH, Khafipour E, Ghia JE. Human catestatin alters gut microbiota composition in mice. Front Microbiol. 2017;7:1–12.Article 

    Google Scholar 
    Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, et al. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol. 2008;128:1525–34.CAS 
    Article 

    Google Scholar 
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.CAS 
    Article 

    Google Scholar 
    Dupont A, Heinbockel L, Brandenburg K, Hornef MW. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes. 2014;5:761–5.Article 

    Google Scholar 
    Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15:2574–90.CAS 
    Article 

    Google Scholar 
    Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta Biomembr. 2015;1848:3089–100.CAS 
    Article 

    Google Scholar 
    Jakobsson HE, Rodríguez‐Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–77.CAS 
    Article 

    Google Scholar 
    Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: regulation, structure and immune response. J Mol Biol. 2020;432:5184–96.CAS 
    Article 

    Google Scholar 
    Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet. 1996;30:465–506.CAS 
    Article 

    Google Scholar 
    Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32:1–16.Article 

    Google Scholar 
    Nayfach S, Fischbach MA, Pollard KS. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics. 2015;31:3368–70.CAS 
    Article 

    Google Scholar 
    Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, et al. Immunosuppression of macrophages underlies the cardioprotective effects of CST (Catestatin). Hypertension. 2021;77:1670–82.CAS 
    Article 

    Google Scholar 
    Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1–16.Article 

    Google Scholar 
    Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501–9.Article 

    Google Scholar 
    Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7:1–10.
    Google Scholar 
    Herp S, Durai Raj AC, Salvado Silva M, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: causality in health and disease. Med Microbiol Immunol. 2021;210:173–9.Article 

    Google Scholar 
    Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:1–15.Article 

    Google Scholar 
    Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol. 2020;11:1–14.Article 

    Google Scholar 
    McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Moual H LE, Coombes BK. Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn’s disease-associated adherent-invasive Escherichia coli. Infect Immun. 2014;82:3383–93.Article 

    Google Scholar 
    Xu Y, Wei W, Lei S, Lin J, Srinivas S, Feng Y. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. MBio. 2018;9:1–18.Article 

    Google Scholar 
    Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun. 2012;80:483–92.CAS 
    Article 

    Google Scholar 
    Desloges I, Taylor JA, Leclerc JM, Brannon JR, Portt A, Spencer JD, et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen. 2019;8:1–36.Article 

    Google Scholar 
    McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol. 2004;186:5919–25.CAS 
    Article 

    Google Scholar 
    Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res. 2015;181:1–7.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol. 2018;9:2199.Santella RM. Approaches to DNA/RNA extraction and whole genome amplification: table 1. Cancer Epidemiol Biomark Prev. 2006;15:1585–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. https://www.r-project.org/.Lahti L, Shetty S. microbiome R package. http://microbiome.github.io.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.CAS 
    Article 

    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.Article 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    Article 

    Google Scholar 
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    Article 

    Google Scholar 
    Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP, et al. The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe. 2022;30:124–138.e8.CAS 
    Article 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.Article 

    Google Scholar 
    Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM, Rutaihwa LK, et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinforma. 2018;19:1–8.Article 

    Google Scholar 
    Haider SR, Reid HJ, Sharp BL. Tricine-SDS-PAGE. In: Kurien B., Scofield R. editors. Protein electrophoresis. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press; 2012. p. 81–91.Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.Article 

    Google Scholar 
    Zoetendal EG, Booijink CCGM, Klaassens ES, Heilig HGHJ, Kleerebezem M, Smidt H, et al. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc. 2006;1:954–9.CAS 
    Article 

    Google Scholar 
    Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.CAS 
    Article 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS 
    Article 

    Google Scholar  More

  • in

    Publisher Correction: Field experiments underestimate aboveground biomass response to drought

    These authors contributed equally: György Kröel-Dulay, Andrea Mojzes.Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryGyörgy Kröel-Dulay & Andrea Mojzes‘Lendület’ Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryKatalin Szitár & Péter BatáryDepartment of Ecology, University of Innsbruck, Innsbruck, AustriaMichael BahnDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, DenmarkClaus Beier, Inger Kappel Schmidt & Klaus Steenberg LarsenNamibia University of Science and Technology, Windhoek, NamibiaMark BiltonPlants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, BelgiumHans J. De Boeck & Sara ViccaDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJeffrey S. DukesDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USAJeffrey S. DukesCSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, SpainMarc Estiarte & Josep PeñuelasCREAF, Cerdanyola del Vallès, SpainMarc Estiarte & Josep PeñuelasGlobal Change Research Institute of the Czech Academy of Sciences, Brno, Czech RepublicPetr HolubDisturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, GermanyAnke JentschExperimental Plant Ecology, University of Greifswald, Greifswald, GermanyJuergen KreylingUK Centre for Ecology & Hydrology, Bangor, UKSabine ReinschSchool of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelMarcelo SternbergPlant Ecology Group, University of Tübingen, Tübingen, GermanyKatja TielbörgerInstitute for Biodiversity and Ecosystem Dynamics (IBED), Ecosystem and Landscape Dynamics (ELD), University of Amsterdam, Amsterdam, the NetherlandsAlbert Tietema More

  • in

    Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez

    Fatty acid profilePlukenetia volubilisThe fatty acid composition of P. volubilis is the most well studied in the genus, and the results from the two P. volubilis accessions from Ecuador and Peru in the current study are similar to previous results. The most abundant fatty acid in the seed oil of P. volubilis from Ecuador and Peru, respectively, is α-linolenic acid (C18:3 n-3, ω-3, ALA; 51.5 ± 3.3 and 46.6 ± 1.2%), followed by linoleic acid (C18:2 n-6, ω-6, LA; 32.5 ± 3.9 and 36.5 ± 0.8%), oleic acid (C18:1, OA; 8.5 ± 1,2 and 8.3 ± 0,4%) and smaller amounts ( More

  • in

    Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts

    Phylogenetic placement of Saccharibacteria rhodopsins (SacRs) shows that these sequences form a sibling clade to characterized light-driven inward and outward H+ pumps (Fig. 1a). We selected three phylogenetically diverse SacRs from freshwater lakes (Table S1) and two related, previously uncharacterized sequences from the Gammaproteobacteria (Kushneria aurantia and Halomonas sp.) for synthesis and functional characterization (highlighted in Fig. 1a). All sequences have Asp–Thr–Ser (DTS) residues at the positions of D85–T96–D96 of bacteriorhodopsin (BR) in the third transmembrane helix (Fig. S1). These residues are known as the triplet DTD motif and represent key residues for proton pumping function in BR [6].Fig. 1: Characteristics of Saccharibacteria rhodopsins (SacRs).a Rhodopsin protein tree indicating that SacRs from freshwater lakes form a broad clade of proton pumps. b The ion-pumping activity of SacRs. Blue and green lines indicate the pH change with and without 10 μM CCCP, respectively. Yellow bars indicate the period of light illumination. c Time evolution of transient absorption changes of SacRNC335 in 100 mM NaCl, 20 mM HEPES–NaOH, pH 7.0, and POPE/POPG (molar ratio 3:1) vesicles with a lipid to protein molar ratio = 50. Time evolution at 406 nm (blue, representing the M accumulation), 561 nm (green, representing the bleaching of the initial state and the L accumulation), and 638 nm (red, representing the K and O accumulations). Yellow lines indicate fitting curves by a multi-exponential function. Inset: The photocycle of SacRNC335 based on the fitting in (c) and a kinetic model assuming a sequential photocycle. The lifetime (τ) of each intermediate is indicated by numbers as follow (mean ± S.D., fraction of the intermediate decayed with each lifetime in its double exponential decay is indicated in parentheses): I: τ = 1.7 ± 0.3 μs (42%), τ = 13 ± 1.8 μs (58%), II: τ = 118 ± 2 μs, III: τ = 1.6 ± 0.1 ms, IV: τ = 23.5 ± 1.0 ms, V: τ = 98.4 ± 6.4 ms (56%), τ = 384 ± 18 ms (44%). d Genomic context of SacRNC335. Neighboring genes with above-threshold KEGG annotations are indicated in gray with the highest-scoring HMM model. Genes without KEGG annotations are indicated in white.Full size imageProton transport assays for the SacRs and Gammaproteobacteria proteins expressed in Escherichia coli showed marked decrease of external pH upon light illumination (Fig. 1b and Fig. S2), indicating that these proteins are light-driven outward H+ pumps. The pH decrease was almost eliminated after adding the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which dissipates the H+ gradient, confirming that it was indeed formed upon illumination (Fig. 1b and Fig. S2). We also characterized the absorption spectra and the photocycle of the SacRs, showing that the three rhodopsins have an absorption peak around 550 nm (Fig. S3). The photocycle of the SacRs, determined by measuring the transient absorption change after nanosecond laser pulse illumination (Fig. 1c and Fig. S4), displays a blue-shifted M intermediate that represents the deprotonated state of the retinal chromophore. This has been observed for other H+ pumping rhodopsins [7, 8] and indicates that the proton bound to retinal is translocated during pumping.Given that SacRs function as outward proton pumps, we searched Saccharibacteria genomes for the F1Fo ATP synthase that would be required to harness the generated proton motive force for ATP synthesis. HMM searches showed that all genomes encoded the complete ATP synthase gene cluster and, furthermore, had c subunits with motifs consistent with H+ binding, instead of Na+ binding (Table S1 and Fig. S5). Together, our experimental and genomic analyses strongly suggest that some Saccharibacteria utilize rhodopsins for auxiliary energy generation in addition to their core fermentative capacities [6].Retinal is the rhodopsin chromophore that enables function of the complex upon illumination [9]. We found no evidence for the presence of β-carotene 15,15’-dioxygenase (blh), which produces all-trans-retinal (ATR) from β-carotene, in Saccharibacteria genomes encoding rhodopsin. This absence was likely not due to genome incompleteness, as genomic bins were generally of high quality (79–98% completeness, Table S1) and rhodopsin genomic loci were well-sampled. Additionally, no conserved hypothetical proteins were present in these regions, where blh is often found [10] (Fig. 1d, Fig. S6 and Table S2). As SacRs do contain the conserved lysine for retinal binding [4], we instead hypothesized that Saccharibacteria may uptake retinal from the environment, as has been previously observed for other microorganisms encoding rhodopsin but also lacking blh [11, 12].We tested the ability of SacR proteins to bind ATR from an external source by performing a retinal reconstitution assay. In contrast to the proton transport assays, where rhodopsin was expressed in the presence of ATR, here ATR was dissociated from the purified complex and the visible absorbance of rhodopsin was measured upon re-addition of ATR [13]. Both Gloeobacter rhodopsin (GR), a typical Type-1 outward H+ pump, and SacRs showed an increase in absorption in the visible region with time after the addition of ATR (Fig. 2a and Fig. S7). For all SacRs, the binding of ATR by their apoprotein was saturated within 30 sec after retinal addition (Fig. 2b), indicating that SacR is able to be efficiently functionalized using externally derived ATR. The observed reconstitution rate is substantially faster than that of GR (  > 20 min) and comparable to that of heliorhodopsin, which is used by other microorganisms also lacking a retinal synthetic pathway and rapidly binds ATR through a small opening in the apoprotein [12]. In the structure of SacRNC335 modeled by Alphafold2 [14, 15], a similar hole is visible in the protein moiety constructing the retinal binding pocket (Fig. S8). Hence, SacRs may also bind retinal through this hole in a similar manner to TaHeR (heliorhodopsin).Fig. 2: Binding of retinal by Saccharibacteria rhodopsins and context for biosynthesis.a UV-visible absorption spectra showing the regeneration of retinal binding to SacRNC335 and GR in 20 mM HEPES–NaOH, pH 7.0, 100 mM NaCl and 0.05% n-dodecyl-β-D-maltoside (DDM). In SacRNC335, a peak around 470 nm was transiently observed in the spectrum 30 s after the addition of ATR, suggesting that an intermediate species appears during the retinal incorporation process that involves formation of the Schiff base linkage. b Time evolution of visible absorption representing retinal binding to apo-protein. Numbers in parentheses in the legend indicate the absorption maxima of each rhodopsin. c Genetic potential for β-carotene 15,15’-dioxygenase (blh) production in freshwater lake metagenomes where SacRs are found. Fractions indicate the number of blh-encoding scaffolds taxonomically affiliated with the Actinobacteria in each sample. d Conceptual diagram illustrating potential retinal exchange between Saccharibacteria and host cells. ATR all-trans-retinal, GR Gloeobacter rhodopsin, AM Alinen Mustajärvi, Ki Kiruna, rhod. rhodopsin.Full size imageSaccharibacteria with rhodopsin must obtain retinal from other organisms. To evaluate possible sources of ATR, we investigated the genetic potential for retinal biosynthesis in 15 subarctic and boreal lakes [16] where Saccharibacteria with rhodopsin were present (Fig. S9). Blh-encoding scaffolds were found in 14 of the 15 metagenomes profiled (~93%) and, in nearly all cases, these scaffolds derived from Actinobacteria (Fig. 2c and Table S3). This is intriguing because Actinobacteria are known to be hosts of Saccharibacteria in the human microbiome [17, 18] and potentially more generally [4, 19]. BLAST searches against genome bins from the same samples indicated that these Actinobacteria were members of the order Nanopelagicales (Table S3) and often encode a rhodopsin (phylogenetically distinct from SacRs) in close genomic proximity to blh genes (Table S4). HMM searches revealed that these genomes also harbor homologs of the crtI, crtE, crtB, and crtY genes necessary for β-carotene production [20]. More