Fusarium species isolated from post-hatchling loggerhead sea turtles (Caretta caretta) in South Africa
Zhang, N. et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44, 2186–2190 (2006).CAS
PubMed
PubMed Central
Google Scholar
O’Donnell, K. et al. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 46, 2477–2490 (2008).PubMed
PubMed Central
Google Scholar
Schroers, H. J. et al. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108, 806–819 (2016).CAS
PubMed
Google Scholar
O’Donnell, K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938 (2000).
Google Scholar
Gleason, F., Allerstorfer, M. & Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 11, 184–194 (2020).CAS
PubMed
PubMed Central
Google Scholar
Fernando, N. et al. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58, 422–431 (2015).PubMed
Google Scholar
Sarmiento-Ramírez, J. M. et al. Global distribution of two fungal pathogens threatening endangered Sea Turtles. PLoS ONE 9, e85853 (2014).ADS
PubMed
PubMed Central
Google Scholar
Mayayo, E., Pujol, I. & Guarro, J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol. 48, 363–366 (1999).CAS
PubMed
Google Scholar
Muhvich, A. G., Reimschuessel, R., Lipsky, M. M. & Bennett, R. O. Fusarium solani isolated from newborn bonnethead sharks, Sphyrna tiburo (L.). J. Fish Dis. 12, 57–62 (1989).
Google Scholar
Crow, G. L., Brock, J. A. & Kaiser, S. Fusarium solani fungal infection of the lateral line canal system in captive scalloped hammerhead sharks (Sphyrna lewini) in Hawaii. J. Wildl. Dis. 31, 562–565 (1995).CAS
PubMed
Google Scholar
Cabañes, F. J. et al. Cutaneous hyalohyphomycosis caused by Fusarium solani in a loggerhead sea turtle (Caretta caretta L.). J. Clin. Microbiol. 35, 3343–3345 (1997).PubMed
PubMed Central
Google Scholar
Cafarchia, C. et al. Fusarium spp. in Loggerhead Sea Turtles (Caretta caretta): From Colonization to Infection. Vet. Pathol. 57, 139–146 (2019).PubMed
Google Scholar
Garcia-Hartmann, M., Hennequin, C., Catteau, S., Béatini, C. & Blanc, V. Cas groupés d’infection à Fusarium solani chez de jeunes tortues marines Caretta caretta nées en captivité. J. Mycol. Med. 28, 113–118 (2017).
Google Scholar
Orós, J., Delgado, C., Fernández, L. & Jensen, H. E. Pulmonary hyalohyphomycosis caused by Fusarium spp in a Kemp’s ridley sea turtle (Lepidochelys kempi): An immunohistochemical study. N. Z. Vet. J. 52, 150–152 (2004).PubMed
Google Scholar
Candan, A. Y., Katılmış, Y. & Ergin, Ç. First report of Fusarium species occurrence in loggerhead sea turtle (Caretta caretta) nests and hatchling success in Iztuzu Beach, Turkey. Biologia (Bratisl). https://doi.org/10.2478/s11756-020-00553-4 (2020).Article
Google Scholar
Sarmiento-Ramirez, J. M., van der Voort, M., Raaijmakers, J. M. & Diéguez-Uribeondo, J. Unravelling the Microbiome of eggs of the endangered Sea Turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE 9, e95206 (2014).ADS
PubMed
PubMed Central
Google Scholar
Sarmiento-Ramírez, J. M. et al. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 312, 192–200 (2010).PubMed
Google Scholar
Sarmiento-Ramirez, J. M., Sim, J., Van West, P. & Dieguez-Uribeondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J. Mar. Biol. Assoc. United Kingdom 97, 661–667 (2017).CAS
Google Scholar
Hoh, D., Lin, Y., Liu, W., Sidique, S. & Tsai, I. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 47, 100964 (2020).
Google Scholar
Güçlü, Ö., Bıyık, H. & Şahiner, A. Mycoflora identified from loggerhead turtle (Caretta caretta) egg shells and nest sand at Fethiye beach, Turkey. Afr. J. Microbiol. Res. 4, 408–413 (2010).
Google Scholar
Gambino, D. et al. First data on microflora of loggerhead sea turtle (Caretta caretta) nests from the coastlines of Sicily. Biol. Open 9, bio045252 (2020).PubMed
PubMed Central
Google Scholar
Bailey, J. B., Lamb, M., Walker, M., Weed, C. & Craven, K. S. Detection of potential fungal pathogens Fusarium falciforme and F. keratoplasticum in unhatched loggerhead turtle eggs using a molecular approach. Endanger. Species Res. 36, 111–119 (2018).
Google Scholar
Summerbell, R. C. & Schroers, H.-J. Analysis of Phylogenetic Relationship of Cylindrocarpon lichenicola and Acremonium falciforme to the Fusarium solani Species Complex and a Review of similarities in the spectrum of opportunistic infections caused by these fungi. J. Clin. Microbiol. 40, 2866–2875 (2002).CAS
PubMed
PubMed Central
Google Scholar
Nel, R., Punt, A. E. & Hughes, G. R. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?. PLoS ONE 8, e63525 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
Branch, G. & Branch, M. Living Shores. (Pippa Parker, 2018).Fuller, M. S., Fowles, B. E. & Mclaughlin, D. J. Isolation and pure culture study of marine phycomycetes. Mycologia 56, 745–756 (1964).
Google Scholar
Greeff, M. R., Christison, K. W. & Macey, B. M. Development and preliminary evaluation of a real-time PCR assay for Halioticida noduliformans in abalone tissues. Dis. Aquat. Organ. 99, 103–117 (2012).CAS
PubMed
Google Scholar
Sandoval-Denis, M., Lombard, L. & Crous, P. W. Back to the roots: a reappraisal of Neocosmospora. Persoonia Mol. Phylogeny Evol. Fungi 43, 90–185 (2019).CAS
Google Scholar
O’Donnell, K., Cigelnik, E. & Nirenberg, H. I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493 (1998).
Google Scholar
Geiser, D. M. et al. FUSARIUM-ID v. 1. 0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004).ADS
CAS
Google Scholar
O’Donnell, K. et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and FUSARIUM MLST. Mycologia 104, 427–445 (2012).PubMed
Google Scholar
Chehri, K., Salleh, B. & Zakaria, L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb. Ecol. 69, 457–471 (2015).PubMed
Google Scholar
Lanfear, R., Frandsen, P., Wright, A., Senfeld, T. & Calcott, B. PartionFinder 2: new methods for selecting partioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. https://doi.org/10.1093/molbev/msw260 (2016).Article
Google Scholar
Ronquist, F. et al. Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed
PubMed Central
Google Scholar
Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory manual (Blackwell Publishing, Hoboken, 2006).
Google Scholar
Fisher, N. L., Burgess, L. W., Toussoun, T. A. & Nelson, P. E. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72, 151 (1982).
Google Scholar
Smyth, C. W. et al. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLOS Pathog. 15, e1007682 (2019).CAS
PubMed
PubMed Central
Google Scholar
Rachowicz, L. J. et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conserv. Biol. 19, 1441–1448 (2005).
Google Scholar
Lombard, L., Sandoval-Denis, M., Cai, L. & Crous, P. W. Changing the game: resolving systematic issues in key Fusarium species complexes. Persoonia Mol. Phylogeny Evol. Fungi 43, i–ii (2019).CAS
Google Scholar
Short, D. P. G., Donnell, K. O., Zhang, N., Juba, J. H. & Geiser, D. M. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J. Clin. Microbiol. 49, 4264–4272 (2011).PubMed
PubMed Central
Google Scholar
White, T. J., Burns, T., Lee, S. & Taylor, J. Amplification and direct identification of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications (eds Innis, M. A. et al.) 315–322 (Academic Press, San Diego, 1990).
Google Scholar
Sekimoto, S., Hatai, K. & Honda, D. Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48, 212–221 (2007).CAS
Google Scholar
Petersen, A. B. & Rosendahl, S. Ø. Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol. Res. 104, 1295–1303 (2000).CAS
Google Scholar
O’Donnell, K. et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 45, 2235–2248 (2007).PubMed
PubMed Central
Google Scholar
Migheli, Q. et al. Molecular Phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in Northern and Central Italy. J. Clin. Microbiol. 48, 1076–1084 (2010).CAS
PubMed
PubMed Central
Google Scholar More