More stories

  • in

    A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission

    ColoniesColony setup occurred prior to initiation of the study, between March and May 2017, in Mississippi, USA. Using established methods, queenless colony divisions, obtained from a large commercial beekeeping operation, were equalised to an average calculated population size of ~ 7000 workers112, and housed in 10-frame Langstroth hives (Table S1). After acclimatisation for 24–48 h, they each received an imminently emerging queen cell, containing a queen from one of two stocks, added to the same worker baseline. The stocks used consisted of an Italian ‘Commercial’ stock, propagated from collaborator established breeder queens, and thus representative of the industry standard, and the Varroa-resistant ‘Pol-line’ stock54. To ensure consistency, all queens were reared in the same ‘cell builder’ colonies, based at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory, in Baton Rouge, Louisiana, USA. Colonies from each stock were held in independent apiaries, 80 km apart to maintain physical isolation; and to control genetic fidelity, virgin queens were open mated to drones of the same stock via drone saturation. Fourteen days after queen emergence, colonies were inspected, and mated queens were marked with paint on the thorax, to assist with identification, with white corresponding to Commercial, and blue to Pol-line. Colonies were allowed to acclimatise for six weeks before sampling began, and those that failed to achieve mating success, or had unacceptably high [≥ 3.0 ‘mites per hundred bees’ (MPHB)] Varroa levels, were removed, normalising the average between-stock Varroa difference to  More

  • in

    A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird

    All procedures were approved by Deakin University Animal Ethics Committee (G06-2017), the Animal Ethics Committee of the University of Pretoria (protocol EC048-18) and the Research and Scientific Ethics Committee of the South African National Biodiversity Institute (P18/36). All experiments were performed in accordance with Australian guidelines and regulations for the use of animals in research. This study was conducted in compliance with the ARRIVE guidelines (https://arriveguidelines.org).Experimental acoustic treatments and housingExperimental birds were wild-derived zebra finches from an acoustic playback experiment previously presented in Mariette and Buchanan31. At laying (Feb–March 2014), eggs were collected from outdoor aviaries (Deakin University, Geelong, Australia), replaced by dummy eggs and placed in an artificial incubator at 37.5 °C and 60% relative humidity. After nine days, whole clutches were randomly assigned to one of two acoustic playback groups: treatment eggs were exposed to heat-calls (aka “incubation calls”) and controls to adult contact calls (i.e. tet calls), whilst both groups were also exposed to common nest-specific calls (i.e. whine calls) to ensure normal acoustic stimulation. Playbacks had 20 min of heat-calls or tet calls per 1h15, separated by silence and whine calls, and played from 9:30 a.m. to 6:30 p.m.31. To avoid any differences in incubation conditions, eggs and sound cards were swapped daily between incubators. After hatching, nestlings were reared in mixed or single-group broods, in the same outdoor aviaries (see Supplementary Material).At adulthood (March–April 2018), we tested 34 experimental birds (16 females and 18 males; 15 treatment and 19 control birds) at the end of their fourth summer. From February 2018, birds were moved to indoor cages for acclimation, at least 27 days before experimental trials, at a constant room temperature of 25 °C and day-night cycle of 12 h:12 h, and supplied with ad libitum finch seed mix, grit, cucumber and water. After three days, we implanted a temperature-sensitive passive integrated transponder (PIT) tag (Biomark, Boise ID, USA) subcutaneously into the bird’s flank. Subcutaneous PIT tags reduce the risk of injuries and generally yield Tb values similar to those obtained using intraperitoneally-injected tags in small birds such as the zebra finch62,63.Experimental heat exposure protocolAll birds were tested twice. Each individual’s second trial occurred on a different day than the first, with an average of 16 days between the two trials, but each bird was tested in the morning for one trial (~ 10:30 a.m.) and in the afternoon (~ 2:50 p.m.) for the other, in random order. On average, trials lasted 125 min (range: 93–151 min). The predicted mean digesta retention time for a 12 g bird is ~ 50 min64. Hence, to ensure birds were post-absorptive, they were fasted (but with ad-libitum water) for two hours before each trial, within auditory and visual contact of conspecifics. Birds were then weighed to measure the initial mass (massinit ± 0.01 g), before being placed individually in the metabolic chamber within a temperature-controlled cabinet. There were no significant difference in massinit between heat-call (12.04 ± 0.18 g) and control individuals (12.03 ± 0.15 g; t (60) = − 0.059, p = 0.953).During each trial, Ta in the metabolic chamber was gradually increased in a succession of “stages”. Trials started with Ta = 27 °C for 25 min or 45 min (for the first or second trial respectively), then Ta = 35 °C for 30 min (i.e. thermoneutrality54, followed by 20-min stages in succession at Ta = 40, 42 and 44 °C. Temperature transition took 1 (for 2 °C) to 6 min (for 8 °C increments).To “complete the trial”, individuals had to be able to remain in the chamber for 20 min at Ta = 44 °C. Bird behaviour in the chamber was monitored using two infrared video cameras by an experimenter (AP) blind to playback treatments. The trial was terminated early if the bird showed sustained escape behaviour, or reached a thermal endpoint (e.g., loss of balance or severe hyperthermia with Tb  > 45 °C16,52). Immediately after trial termination or completion, birds were taken out of the chamber and exposed to room temperature. They were then weighed (massend), given water on their bill, and transferred to the holding room at 25 °C in an individual cage with ad libitum seeds and water. After one hour, birds were weighed again (mass1h). No bird died during the trials.Thermoregulatory measurements and data processingWe used an open flow-through respirometry system to measure CO2 production and EWL, following Whitfield et al.52 and as commonly used to assess avian thermoregulation in the heat19,53,60. Dry air was pushed into a 1.5-L plastic metabolic chamber, maintained at low humidity levels ( More

  • in

    Quantifying and categorising national extinction-risk footprints

    Previous studies have used number of species threats6,7, countryside species-area relationship1,3,17, and potentially disappeared fraction of species4 to quantify biodiversity loss. We introduce the non-normalised Species Threat Abatement and Restoration (nSTAR) metric as the quantifiable representation of biodiversity loss in our analysis, a unit-less, species-centred metric which relies on detailed information curated in the IUCN Red List of Threatened Species11. On its own, this metric can be used to support production-based accounting of the extinction risk of species and identify the most significant threats at a specific location to inform direct interventions26. However, once manipulated into a structure that allows it to be appended to a multi-region input–output (MRIO) table, an environmentally-extended MRIO can be created. This unlocks the power of consumption-based accounting of this extinction risk, connecting the direct environmental impact with the consumption which ultimately induces it.IUCN Red List of Threatened SpeciesThe IUCN Red List version 2020–211 provided information on extinction risk for over 122,000 species and details of the threats acting on those species, including the threat classification, scope, timing, and severity. The species scope was limited to comprehensively assessed terrestrial species, ensuring that only species which have been assessed across all countries were included, and thus eliminating any geographical bias introduced by incomplete assessments27. Species with an extinction risk category of Near Threatened (NT), Vulnerable (VU), Endangered (EN), or Critically Endangered (CR) were included. Three species were excluded to avoid double counting where two different extinction risk categories were provided for the same species, leaving 5295 amphibian, mammal, and bird species in scope.The information contained in the IUCN Red List regarding the threats facing each species is crucial, since many of these threats are attributable to economic activity28,29. Specialist assessors are required to assign one or more of 118 different threat classes to each species’ record, with additional documentation of the severity, scope and timing of each threat recommended, based on the impact of that threat on the species’ population30. To connect this threat information to economic sectors, a key requirement for input–output analysis, background information on threat classes was sourced from the IUCN Threats Classification Scheme version 3.229. Each threat was assessed for connection to each of the 6357 economic sectors classified in the UN Statistics Division Central Product Classification Standard31, based on the likelihood that activity associated with each sector directly contributes to the threat being assessed. As an example, the economic sectors associated with rice cultivation were allocated to the threats grouped under IUCN Threat Class 2.1—Annual & perennial non-timber crops. A total of 55 out of 118 threats were allocated to at least one economic sector, with higher-level threat classes excluded from this allocation if information was available for the associated lower-level threat classes to avoid double counting. Species threats driven by activity that cannot be attributed to an economic sector, such as invasive species, were not allocated to any sectors and as a result, the extinction-risk footprint does not necessarily represent the full magnitude of extinction risk for each species. While not all threats were allocated to an economic sector, all economic sectors were allocated to at least one threat. Further details on the connection of economic sectors to threats are available in Supplementary Note S5, which includes a link to the detailed 6357 × 118 binary concordance matrix used to execute these sector-threat allocations.The IUCN Red List also requires inclusion of a range map and habitat classification, which were combined with remote sensed land cover and elevation data to generate a high-resolution area of habitat (AOH) map for each in-scope species32,33. These maps, reapplied from Strassburg et al.34, were used to calculate the percentage of each species’ AOH present in each country.Quantifying biodiversity loss: the nSTAR metricThis detailed information from the IUCN Red List was used to calculate the nSTAR metric, which quantifies each threat’s impact, rather than just its presence, on each species. Adapted from the newly developed Species Threat Abatement and Restoration metric (STAR)26 by removing the normalisation step, the nSTAR metric, which has no units, was calculated for each species in two stages.First, a numeric representation of each species’ extinction risk category (Wi) was determined, following the equal steps methodology introduced by Butchart et al.35. Extinction risk categories of Data Deficient (DD) and Least Concern (LC) were assigned Wi = 0, Near Threatened (NT) was assigned Wi = 1, Vulnerable (VU) was assigned Wi = 2, Endangered (EN) was assigned Wi = 3, and Critically Endangered (CR) was assigned Wi = 4.Next, a Threat Impact score (TSij) for each threat (j) acting on a species (i) was determined based on the scope and severity information recorded for that threat, according to the values set out in Table 1, which are adapted from those proposed by Garnett et al.36. Reapplying the methodology of the STAR metric, where no value was recorded for the scope or severity of a threat, the median possible value for these were used, and only threats noted as Ongoing or Future were included. Further details on these methodological choices and sensitivity analyses to support them are available in Mair et al.26.Table 1 Numeric representation of threat information.Full size tableThe numeric nSTAR value for each species-threat combination (ij) was calculated by multiplying the value representing the species’ extinction risk category (Wi) by the Threat Impact score (TSij) for that threat:$${text{nSTAR}}_{ij} = W_{i} *TS_{ij}$$
    (1)
    The total nSTAR for species (i) can be calculated by multiplying the extinction risk category value (Wi) for that species by the sum of all Threat Impact scores for the species:$${text{nSTAR}}_{i} = W_{i} *(TS_{i1} + TS_{i2} + TS_{i3} + cdots + TS_{ij} )$$
    (2)
    Once calculated according to Eq. (1), the nSTARij value for each species-threat combination was allocated to economic sectors using the 6357 × 118 sector-threat concordance (available in Supplementary Note S5), which was normalised based on the economic size of each sector. Finally these nSTAR values, derived for each species-sector combination, were allocated to each country based on the country’s share of the AOH for that species, calculated from the intersection of the species’ AOH map with each country’s borders34.The nSTAR metric introduced here differs from the STAR metric from which it is adapted in that the normalisation step executed at this point in the STAR methodology is omitted. This ensures that the nSTAR metric is both additive and independent across all three dimensions of species, country, and economic sector, a necessary condition for use in input–output analysis. The STAR metric normalises the total value calculated in Eq. (2) to ensure that the total STAR value for any species is equal to Wi * 100, resulting in all species with the same extinction risk category being allocated the same STAR value regardless of the number of threats acting on them26. This normalisation facilitates the aggregation of the STAR metric by species taxonomy however it is problematic when aggregating the STAR metric by threat, since the STAR value attributed to each species-threat combination will be dependent not only on the characteristics of that threat, but also on the number and characteristics of other threats acting on the species. This dependence on more than one variable in the calculation of the STAR value for each species-threat combination means that it is not suitable for aggregation by threat and, by extension, economic sectors once the threat to sector allocation has been carried out.In order to provide a metric which can be aggregated and disaggregated across species, sector, and country hierarchies the nSTAR methodology excludes this normalisation step. Consistent with the STAR methodology, the nSTAR metric is calculated using numeric values only and therefore has no unit of measure26.Input–output analysisOnce calculated, the nSTAR metric was partnered with the global supply-chain data available in the 2013 Eora MRIO, chosen for its extensive coverage of 190 regions (189 countries and one ‘rest of world’ region) and between 26 and 1022 economic sectors in each country, depending on the level of detail in each country’s publicly available National Accounts12.A satellite block, or Q matrix, was created using the nSTAR values for 5295 species across 6357 economic sectors for 190 regions. This satellite block was then aggregated to match the sectoral structure of the Eora MRIO, a total of 14,839 country-sector combinations. A process flow diagram to illustrate the stages of data manipulation required to convert the IUCN Red List data to a satellite block ready for use with the Eora MRIO is included in Supplementary Fig. S5.The Eora MRIO provided the intermediate transaction matrix T, the final demand matrix Y, and the value-added matrix V. Consumption based footprints were calculated by connecting the nSTAR value captured in the satellite block Q to the final demand matrix Y following Leontief’s methodology9,10. Central to this methodology is the Leontief Inverse L, a concise mathematical representation of the interdependencies across all economic sectors, which is expressed as:$${mathbf{L}} = left( {{mathbf{I}}{-}{mathbf{A}}} right)^{{ – {1}}}$$
    (3)
    where I is an identity matrix with dimensions equal to the those of the intermediate transaction matrix T, and A is the direct requirements matrix, derived from the T matrix in a number of stages. First the total output vector x is calculated, then diagonalised, and the inverse calculated to derive ({widehat{mathbf{X}}}^{-1}), which returns the direct requirements matrix A when multiplied by T.Next the satellite block was converted into an intensity matrix q by multiplying Q by ({widehat{mathbf{X}}}^{-1}) to calculate the nSTAR value attributable to each dollar of total output produced by each sector. Once the q, L and Y matrices are available, the consumption extinction-risk footprint for a sector k (fk) can be calculated using Eq. (4):$${mathbf{f}}_{k} = {mathbf{q}}*{mathbf{L}}*{mathbf{Y}}_{k}$$
    (4)
    where Yk represents the final demand for that sector. Consumption extinction-risk footprint values were generated for each species-sector-country combination, a total of more than 78 million datapoints.Further matrix manipulation was used to calculate the country-level imported, exported, and domestic extinction-risk footprints. For each country the final demand matrix, Y, was separated into two matrices, Ydom, representing demand from that country for the economic sectors in that country, and Yoth, representing demand from all other countries for the economic sectors in that country. Next, the intensity matrix, q, was separated into two matrices, qdom, representing the nSTAR intensity for each of the species within that country’s borders, and qoth, representing the nSTAR intensity for all remaining species. The three sub-footprints for each country were calculated using Eqs. (5), (6) & (7). A simplified illustration of this methodology is included in Supplementary Fig. S3.$${mathbf{f}}_{dom} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (5)
    $${mathbf{f}}_{exp} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{oth}$$
    (6)
    $${mathbf{f}}_{imp} = {mathbf{q}}_{oth} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (7)
    Imported, exported, and domestic extinction-risk footprints were calculated for 188 countries.LimitationsWhile very powerful in unravelling the intricacies of the global economy, there are limitations to the effectiveness of input–output analysis. Since it relies on National Accounts data, only activity which can be directly connected into reported economic activity is captured. This means that any activities that are not transacted within the boundaries of the formal economy, such as subsistence hunting and illegal logging, will be excluded unless they have been incorporated into the relevant country’s National Accounts data. The exclusion of threats due to their timing or non-economic classification (such as geological events, disease, and invasive species) resulted in a zero nSTAR value for 519 species, leaving 4776 species with a material nSTAR value. In addition, any limitations in the sector categorisations, their spatial and technological homogeneity, or assumptions included in the allocation of economic activity to sectors within the National Accounts data in each country will be propagated through to the footprint calculations. These limitations are common to consumption-based analyses5,6,7,17,25 and we do not further address them here.Further limitations exist with the use of the scope and severity data for each threat captured in the IUCN Red List, since this does not take into account interaction between threats, or between the severity and scope of an individual threat36. As a result, the impact from a single threat acting on a species may be overstated, and higher nSTAR values attributed to that species than would otherwise be warranted. In addition, any variations in the location, scope, or severity of threats acting across a species’ distribution range are not captured and thus the impact of different economic sectors may be over or under-represented26.There is a temporal displacement between the economic activity and the extinction risk used in this analysis. The extinction risk category assigned to each species is due to the cumulative sum of current and historical impacts acting on it, while the value of economic interactions used to trace this extinction risk through the global economy is based on one year of activity. This is typical of related approaches1,6, and may not introduce much uncertainty given that current economic activity is higher than at any time in history37. Nevertheless, there is no doubt that some current extinction risk is due to past economic activity and development of methods to incorporate this temporal dimension would be a valuable research avenue. More

  • in

    Fusarium species isolated from post-hatchling loggerhead sea turtles (Caretta caretta) in South Africa

    Zhang, N. et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44, 2186–2190 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, K. et al. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 46, 2477–2490 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Schroers, H. J. et al. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108, 806–819 (2016).CAS 
    PubMed 

    Google Scholar 
    O’Donnell, K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938 (2000).
    Google Scholar 
    Gleason, F., Allerstorfer, M. & Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 11, 184–194 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernando, N. et al. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58, 422–431 (2015).PubMed 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Global distribution of two fungal pathogens threatening endangered Sea Turtles. PLoS ONE 9, e85853 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayayo, E., Pujol, I. & Guarro, J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol. 48, 363–366 (1999).CAS 
    PubMed 

    Google Scholar 
    Muhvich, A. G., Reimschuessel, R., Lipsky, M. M. & Bennett, R. O. Fusarium solani isolated from newborn bonnethead sharks, Sphyrna tiburo (L.). J. Fish Dis. 12, 57–62 (1989).
    Google Scholar 
    Crow, G. L., Brock, J. A. & Kaiser, S. Fusarium solani fungal infection of the lateral line canal system in captive scalloped hammerhead sharks (Sphyrna lewini) in Hawaii. J. Wildl. Dis. 31, 562–565 (1995).CAS 
    PubMed 

    Google Scholar 
    Cabañes, F. J. et al. Cutaneous hyalohyphomycosis caused by Fusarium solani in a loggerhead sea turtle (Caretta caretta L.). J. Clin. Microbiol. 35, 3343–3345 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    Cafarchia, C. et al. Fusarium spp. in Loggerhead Sea Turtles (Caretta caretta): From Colonization to Infection. Vet. Pathol. 57, 139–146 (2019).PubMed 

    Google Scholar 
    Garcia-Hartmann, M., Hennequin, C., Catteau, S., Béatini, C. & Blanc, V. Cas groupés d’infection à Fusarium solani chez de jeunes tortues marines Caretta caretta nées en captivité. J. Mycol. Med. 28, 113–118 (2017).
    Google Scholar 
    Orós, J., Delgado, C., Fernández, L. & Jensen, H. E. Pulmonary hyalohyphomycosis caused by Fusarium spp in a Kemp’s ridley sea turtle (Lepidochelys kempi): An immunohistochemical study. N. Z. Vet. J. 52, 150–152 (2004).PubMed 

    Google Scholar 
    Candan, A. Y., Katılmış, Y. & Ergin, Ç. First report of Fusarium species occurrence in loggerhead sea turtle (Caretta caretta) nests and hatchling success in Iztuzu Beach, Turkey. Biologia (Bratisl). https://doi.org/10.2478/s11756-020-00553-4 (2020).Article 

    Google Scholar 
    Sarmiento-Ramirez, J. M., van der Voort, M., Raaijmakers, J. M. & Diéguez-Uribeondo, J. Unravelling the Microbiome of eggs of the endangered Sea Turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE 9, e95206 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 312, 192–200 (2010).PubMed 

    Google Scholar 
    Sarmiento-Ramirez, J. M., Sim, J., Van West, P. & Dieguez-Uribeondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J. Mar. Biol. Assoc. United Kingdom 97, 661–667 (2017).CAS 

    Google Scholar 
    Hoh, D., Lin, Y., Liu, W., Sidique, S. & Tsai, I. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 47, 100964 (2020).
    Google Scholar 
    Güçlü, Ö., Bıyık, H. & Şahiner, A. Mycoflora identified from loggerhead turtle (Caretta caretta) egg shells and nest sand at Fethiye beach, Turkey. Afr. J. Microbiol. Res. 4, 408–413 (2010).
    Google Scholar 
    Gambino, D. et al. First data on microflora of loggerhead sea turtle (Caretta caretta) nests from the coastlines of Sicily. Biol. Open 9, bio045252 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bailey, J. B., Lamb, M., Walker, M., Weed, C. & Craven, K. S. Detection of potential fungal pathogens Fusarium falciforme and F. keratoplasticum in unhatched loggerhead turtle eggs using a molecular approach. Endanger. Species Res. 36, 111–119 (2018).
    Google Scholar 
    Summerbell, R. C. & Schroers, H.-J. Analysis of Phylogenetic Relationship of Cylindrocarpon lichenicola and Acremonium falciforme to the Fusarium solani Species Complex and a Review of similarities in the spectrum of opportunistic infections caused by these fungi. J. Clin. Microbiol. 40, 2866–2875 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nel, R., Punt, A. E. & Hughes, G. R. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?. PLoS ONE 8, e63525 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Branch, G. & Branch, M. Living Shores. (Pippa Parker, 2018).Fuller, M. S., Fowles, B. E. & Mclaughlin, D. J. Isolation and pure culture study of marine phycomycetes. Mycologia 56, 745–756 (1964).
    Google Scholar 
    Greeff, M. R., Christison, K. W. & Macey, B. M. Development and preliminary evaluation of a real-time PCR assay for Halioticida noduliformans in abalone tissues. Dis. Aquat. Organ. 99, 103–117 (2012).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Denis, M., Lombard, L. & Crous, P. W. Back to the roots: a reappraisal of Neocosmospora. Persoonia Mol. Phylogeny Evol. Fungi 43, 90–185 (2019).CAS 

    Google Scholar 
    O’Donnell, K., Cigelnik, E. & Nirenberg, H. I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493 (1998).
    Google Scholar 
    Geiser, D. M. et al. FUSARIUM-ID v. 1. 0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004).ADS 
    CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and FUSARIUM MLST. Mycologia 104, 427–445 (2012).PubMed 

    Google Scholar 
    Chehri, K., Salleh, B. & Zakaria, L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb. Ecol. 69, 457–471 (2015).PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P., Wright, A., Senfeld, T. & Calcott, B. PartionFinder 2: new methods for selecting partioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Ronquist, F. et al. Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory manual (Blackwell Publishing, Hoboken, 2006).
    Google Scholar 
    Fisher, N. L., Burgess, L. W., Toussoun, T. A. & Nelson, P. E. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72, 151 (1982).
    Google Scholar 
    Smyth, C. W. et al. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLOS Pathog. 15, e1007682 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rachowicz, L. J. et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conserv. Biol. 19, 1441–1448 (2005).
    Google Scholar 
    Lombard, L., Sandoval-Denis, M., Cai, L. & Crous, P. W. Changing the game: resolving systematic issues in key Fusarium species complexes. Persoonia Mol. Phylogeny Evol. Fungi 43, i–ii (2019).CAS 

    Google Scholar 
    Short, D. P. G., Donnell, K. O., Zhang, N., Juba, J. H. & Geiser, D. M. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J. Clin. Microbiol. 49, 4264–4272 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    White, T. J., Burns, T., Lee, S. & Taylor, J. Amplification and direct identification of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications (eds Innis, M. A. et al.) 315–322 (Academic Press, San Diego, 1990).
    Google Scholar 
    Sekimoto, S., Hatai, K. & Honda, D. Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48, 212–221 (2007).CAS 

    Google Scholar 
    Petersen, A. B. & Rosendahl, S. Ø. Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol. Res. 104, 1295–1303 (2000).CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 45, 2235–2248 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Migheli, Q. et al. Molecular Phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in Northern and Central Italy. J. Clin. Microbiol. 48, 1076–1084 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The critical benefits of snowpack insulation and snowmelt for winter wheat productivity

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Sindelar, A. J. et al. Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy 9, 508–524 (2017).CAS 

    Google Scholar 
    Stöckle, C. O. et al. Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Clim. Change 146, 247–261 (2018).
    Google Scholar 
    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    Google Scholar 
    Marcillo, G. S. & Miguez, F. E. Corn yield response to winter cover crops: an updated meta-analysis. J. Soil Water Conserv. 72, 226–239 (2017).
    Google Scholar 
    Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).
    Google Scholar 
    Mankin, J. S. & Diffenbaugh, N. S. Influence of temperature and precipitation variability on near-term snow trends. Clim. Dynam. 45, 1099–1116 (2015).
    Google Scholar 
    Zhu, L., Radeloff, V. C. & Ives, A. R. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sens. Environ. 191, 168–178 (2017).
    Google Scholar 
    Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).CAS 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
    Google Scholar 
    Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).
    Google Scholar 
    Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).
    Google Scholar 
    Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
    Google Scholar 
    Acevedo, E., Silva, P. & Silva, H. in Bread Wheat: Improvement and Production (eds Curtis, B. C. et al.) 39–70 (FAO Plant Production and Protection, 2002).Baker, J. T., Pinter, P. J., Reginato, R. J. & Kanemasu, E. T. Effects of temperature on leaf appearance in spring and winter wheat cultivars. Agron. J. 78, 605–613 (1986).
    Google Scholar 
    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).CAS 

    Google Scholar 
    Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
    Google Scholar 
    Talukder, A. S. M. H. M., McDonald, G. K. & Gill, G. S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res. 160, 54–63 (2014).
    Google Scholar 
    Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507 (2011).Cuadra, S. V., Kimball, B. A., Boote, K. J., Suyker, A. E. & Pickering, N. Energy balance in the DSSAT-CSM-CROPGRO model. Agric. For. Meteorol. 297, 108241 (2021).
    Google Scholar 
    Harder, P., Helgason, W. D. & Pomeroy, J. W. Modeling the snowpack energy balance during melt under exposed crop stubble. J. Hydrometeorol. 19, 1191–1214 (2018).
    Google Scholar 
    Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).
    Google Scholar 
    Wang, W. et al. Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere 10, 1721–1737 (2016).
    Google Scholar 
    Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).
    Google Scholar 
    Pullens, J. W. M. et al. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 272–273, 30–39 (2019).
    Google Scholar 
    Chopra, R. et al. Identification and stacking of crucial traits required for the domestication of pennycress. Nat. Food 1, 84–91 (2020).
    Google Scholar 
    Crews, T. E., Carton, W. & Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 1, e11 (2018).Harkness, C. et al. Adverse weather conditions for UK wheat production under climate change. Agric. Meteorol. 282–283, 107862 (2020).
    Google Scholar 
    Schierhorn, F., Hofmann, M., Gagalyuk, T., Ostapchuk, I. & Müller, D. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Clim. Change 169, 39 (2021).Michel, S. et al. Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front. Plant Sci. 10, 1195 (2019).
    Google Scholar 
    Mahfoozi, S., Limin, A. E. & Fowler, D. B. Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci. 41, 1006–1011 (2001).
    Google Scholar 
    Dutra, E. et al. An improved snow scheme for the ECMWF land surface model: description and offline validation. J. Hydrometeorol. 11, 899–916 (2010).
    Google Scholar 
    Ge, Y. & Gong, G. Land surface insulation response to snow depth variability. J. Geophys. Res. Atmos. 115, 8107 (2010).
    Google Scholar 
    Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).
    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020) .Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).
    Google Scholar 
    Shimoda, S. et al. Effects of snow compaction ‘yuki-fumi’ on soil frost depth and volunteer potato control in potato–wheat rotation system in Hokkaido. Plant Prod. Sci. 24, 186–197 (2021).CAS 

    Google Scholar 
    Luojus, K. et al. GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset. Sci. Data 8, 163 (2021)..IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions Version 1 (NSIDC, 2008).Jing, Q. et al. Assessing the options to improve regional wheat yield in Eastern Canada using the CSM–CERES–wheat model. Agron. J. 109, 510–523 (2017).
    Google Scholar 
    Vogel, F. A. & Bange, G. A. Understanding USDA Crop Forecasts (USDA, 1999).Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
    Google Scholar 
    Brown, R. D. & Brasnett, B. Daily Snow Depth Analysis Data Version 1 (Canadian Meteorological Centre, 2010).Brasnett, B. A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol. Climatol. 38, 726–740 (1999).
    Google Scholar 
    Toure, A. M., Reichle, R. H., Forman, B. A., Getirana, A. & De Lannoy, G. J. M. Assimilation of MODIS snow cover fraction observations into the NASA catchment land surface model. Remote Sens. 10, 316 (2018).
    Google Scholar 
    Snauffer, A. M., Hsieh, W. W. & Cannon, A. J. Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol. 541, 714–726 (2016).
    Google Scholar 
    Census of Agriculture (USDA National Agricultural Statistics Service, 2017).Skinner, D. Z. & Mackey, B. Freezing tolerance of winter wheat plants frozen in saturated soil. Field Crops Res. 113, 335–341 (2009).
    Google Scholar 
    Lollato, R. P. et al. Climate-risk assessment for winter wheat using long-term weather data. Agron. J. 112, 2132–2151 (2020).
    Google Scholar 
    Siebers, M. H. et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Change Biol. 21, 3114–3125 (2015).
    Google Scholar 
    Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).
    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).
    Google Scholar 
    Chen, M., Griffis, T. J., Baker, J., Wood, J. D. & Xiao, K. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 310–325 (2015).CAS 

    Google Scholar 
    Larson, K. M. & Small, E. E. Daily Snow Depth and SWE from GPS Signal-to-Noise Ratios Version 1 (NSIDC, 2017).Sturm, M. et al. Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol. 11, 1380–1394 (2010).
    Google Scholar 
    McCabe, G. J. & Wolock, D. M. Recent declines in western U.S. snowpack in the context of twentieth-century climate variability. Earth Interact. 13, 1–15 (2009).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).
    Google Scholar 
    Qiao, S. et al. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).
    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 

    Google Scholar 
    Xie, Y., Gibbs, H. K. & Lark, T. J. Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017. Earth Syst. Sci. Data 13, 5689–5710 (2021).
    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Elliott, J. et al. The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).
    Google Scholar 
    Li, X., Shen, Z., Harri, A. & Coble, K. H. Comparing survey-based and programme-based yield data: implications for the U.S. Agricultural Risk Coverage-County programme. Geneva Pap. Risk Insur. Issues Pract. 45, 184–202 (2020).
    Google Scholar 
    Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. Meteorol. 170, 19–31 (2013).
    Google Scholar 
    Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T. & Brown, S. J. Calibration strategies: a source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc. 93, 21–26 (2012).
    Google Scholar  More

  • in

    Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).CAS 
    PubMed 

    Google Scholar 
    Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).PubMed 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 

    Google Scholar 
    Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
    Google Scholar 
    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).CAS 
    PubMed 

    Google Scholar 
    Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).PubMed 

    Google Scholar 
    Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).
    Google Scholar 
    McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).PubMed 

    Google Scholar 
    Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).CAS 

    Google Scholar 
    Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).CAS 

    Google Scholar 
    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
    Google Scholar 
    Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).
    Google Scholar 
    Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).CAS 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).CAS 

    Google Scholar 
    Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).
    Google Scholar 
    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).
    Google Scholar 
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).CAS 
    PubMed 

    Google Scholar 
    Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 

    Google Scholar 
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar 
    Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 

    Google Scholar 
    Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).
    Google Scholar 
    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).
    Google Scholar 
    Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 

    Google Scholar 
    Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).CAS 
    PubMed 

    Google Scholar 
    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).CAS 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Herding then farming in the Nile Delta

    Butzer, K. W. Early Hydraulic Civilization in Egypt: a Study in Cultural Ecology (University of Chicago Press, Chicago, 1976).Said, R. The River Nile: Geology, Hydrology and Utilization (Pergamon Press, Oxford, 1993).Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).CAS 
    Article 

    Google Scholar 
    Shirai, N. The Archaeology of the First Farmer-Herders in Egypt: New Insights into the Fayum Epipalaeolithic and Neolithic (Uni. Leiden Press, the Netherlands, 2010).Garcea, E. A. A. Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).Article 

    Google Scholar 
    Wilson, P. Prehistoric settlement in the western Delta: a regional and local view from Sais (Sa el-Hagar). J. Egypt. Archaeol. 92, 75–126 (2006).Article 

    Google Scholar 
    Van Geel, B. Non-Pollen Palynomorphs. Smol J. P., Birks H. J. B., Last W. M., Bradley R. S., Alverson K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 3 (Springer, Dordrecht, 2002).Van Geel, B., Hallewas, J. P. & Pals, J. P. A Late Holocene deposit under the Westfriese Zeedijk near Nkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palyno 38, 269–335 (1983).Article 

    Google Scholar 
    Van Geel, B. A paleoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev. Palaeobot. Palyno 25, 1–120 (1978).Article 

    Google Scholar 
    Marinova, E. & Atanassova, J. Anthropogenic impact on vegetation and environment during the bronze age in the area of Lake Durankulak, NE Bulgaria: pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Rev. Palaeobot. Palyno. 141, 165–178 (2006).Article 

    Google Scholar 
    Van Geel, B. et al. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190 (2011).Article 

    Google Scholar 
    Gelorini, V., Verbeken, A., van Geel, B. B., Cocquyt, C. & Verschuren, D. Modern non-pollen palynomorphs from East African lake sediments. Rev. Palaeobot. Palyno 164, 143–173 (2011).Article 

    Google Scholar 
    Hillbrand, M., Geel, B. V., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Stanley, J. D. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quarter. Sci. Rev 170, 212–231 (2017).Article 

    Google Scholar 
    Negm, A. M., Saavedra O., & El-Adawy A. In The Handbook of Environmental Chemistry, 55 (Springer, 2017).Viste, E. & Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 33, 3106–3123 (2013).Article 

    Google Scholar 
    Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N. & Mascle, J. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change 14, 1685–1696 (2014).Article 

    Google Scholar 
    Wijmstra, T. A., Smit, A., Van der Hammen, T. & Van Geel, B. Vegetational succession, fungal spores and short-term cycles in pollen diagrams from the Wietmarscher Moor. Acta Botanica Neerlandica 20, 401–410 (1971).Article 

    Google Scholar 
    Wilson, P. In The Nile Delta as a centre of cultural interactions between Upper Egypt and the Southern Levant in the 4th millennium BC, 299–318 (Poznań Archaeological Museum, Poznan, 2014).Zong, Y. Q. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).CAS 
    Article 

    Google Scholar 
    Yang, S. et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River delta, China. The Holocene 22, 1393–1404 (2012).Article 

    Google Scholar 
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu Culture in the lower Yangtze River. China. Quarter. Sci. Rev. 188, 90–103 (2018).Article 

    Google Scholar 
    Edwards, K. J., Whittington, G., Robinson, M. & Richter, D. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. J. Archaeo. Sci. 32, 1741–1756 (2005).Article 

    Google Scholar 
    Andersen, S. T. Identification of Wild Grass and Cereal Pollen [fossil Pollen, Annulus Diameter, Surface Sculpturing], Aarbog, 69–92 (Danmarks Geologiske Undersoegelse, 1979).Tweddle, J. C., Edwards, K. J. & Fieller, N. R. Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Veg. Hist. Archaeobot. 14, 15–30 (2005).Article 

    Google Scholar 
    Joly, C., Barille, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233 (2007).Article 

    Google Scholar 
    Salgado-Labouriau, M. L. & Rinaldi, M. Palynology of Gramineae of the Venezuelan mountains. Grana Palynologica 29, 119–128 (1990).Article 

    Google Scholar 
    Josefsson, T., Ramqvist, P. H. & Rnberg, G. The history of early cereal cultivation in northernmost Fennoscandia as indicated by palynological research. Veg. Hist. Archaeobot. 23, 821–840 (2014).Article 

    Google Scholar 
    Zhao, X. S. et al. Climate-driven early agricultural origins and development in the Nile Delta. Egypt. J. Archaeo. Sci. 136, 105498 (2021).Article 

    Google Scholar 
    Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the near east: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).Article 

    Google Scholar 
    Riemer, H. Barbara e. barich. People, water and grain: the beginnings of domestication in the Sahara and the Nile Valley, Roma 1998. Archol. Inf. 24, 117–119 (2014).
    Google Scholar 
    Arranz-Otaegui, A., Colledge, S., Zapata, L., Teira-Mayolini, L. C. & Juan, J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in Southwest Asia. Proc. Natl Acad. Sci. USA 113, 201612797 (2016).Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of plants in the Old World (Oxford University Press, Oxford, 2012).Kvavadze, E. & Bitadze, N. L. Special issue: fresh insights into the palaeoecological and palaeoclimatological value of quaternary non-pollen palynomorphs || Fibres of Linum (flax), Gossypium (cotton) and animal wool as non-pollen palynomorphs in the Late Bronze Age burials of Saphar-Kharaba, southern Georgia. Veg. Hist. Archaeobot. 19, 479–494 (2010).Article 

    Google Scholar 
    Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 20, 507–508 (2011).Article 

    Google Scholar 
    Zhao, X. S. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702 (2020).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 6, 457–474 (2011).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis (Blackwell Scientific Publications, Oxford, UK, 1991).Kholeif, S. E. A. & Mudie, P. J. Palynological records of climate and oceanic conditions in the Late Pleistocene and Holocene of the Nile Cone, Southeastern Mediterranean, Egypt. Palynology 33, 1–24 (2009).Article 

    Google Scholar 
    Leroy, S. A. G. Palynological evidence of Azolla nilotica Dec. in recent Holocene of the eastern Nile Delta and palaeoenvironment. Veg. Hist. Archaeobot. 1, 43–52 (1992).Article 

    Google Scholar 
    Kholeif, S. E. A. Holocene paleoenvironmental change in inner continental shelf sediments, Southeastern Mediterranean, Egypt. J. Afr. Earth. Sci. 57, 143–153 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Rare species disproportionally contribute to functional diversity in managed forests

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B Biol. Sci. 269, 1721–1727 (2002).Article 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science (80-. ). 277, 1300–1302 (1997).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Tilman, D. Functional diversity. in Encyclopedia of Biodiversity, Volume 3 (ed. Levin, S. A.) 109–120 (Academic Press, 2001).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform?. Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Halpern, B. S. & Floeter, S. R. Functional diversity responses to changing species richness in reef fish communities. Mar. Ecol. Prog. Ser. 364, 147–156 (2008).Article 
    ADS 

    Google Scholar 
    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).Article 

    Google Scholar 
    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17, 154–162 (2014).Article 

    Google Scholar 
    Ulrich, W. et al. Species assortment or habitat filtering: A case study of spider communities on lake islands. Ecol. Res. 25, 375–381 (2010).Article 

    Google Scholar 
    Mouillot, D., Dumay, O. & Tomasini, J. A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf Sci. 71, 443–456 (2007).Article 
    ADS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manage. 356, 216–223 (2015).Article 

    Google Scholar 
    Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615 (2019).Article 

    Google Scholar 
    Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest – Biogeosciences For. 8, 377–385 (2015).Article 

    Google Scholar 
    Wesołowski, T. Primeval conditions—What can we learn from them? Ibis (Lond. 1859). 149, 64–77 (2007).Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in europe. Conserv. Biol. 24, 101–112 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Götzenberger, L. et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).Article 

    Google Scholar 
    Fox, J. W. Using the Price Equations to partition the effects of biodiversity loss on ecosystem function. Ecology 87, 2687–2696 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winfree, R. W., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi‐scale approach. Ecol. Evol. ece3.6003 (2020) https://doi.org/10.1002/ece3.6003.Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44 (2004).Article 

    Google Scholar 
    Bauhus, J., Puettmannn, K. J. & Kühne, C. Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change 187–213 (Routledge/The Earthscan Forest Library, 2013). https://doi.org/10.4324/9780203122808.Bauhus, J., Puettmannn, K. J. & Kühne, C. Is Close-to-Nature Forest Management in Europe Compatible with Managing Forests as Complex Adaptive Forest Ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (eds. Messier, C., Puettmannn, K. J. & Coates, K. D.) 187–213 (Routledge/The Earthscan Forest Library, 2013).Balestrieri, R., Basile, M., Posillico, M., Altea, T. & Matteucci, G. Survey effort requirements for bird community assessment in forest habitats. Acta Ornithol. 52, 1–9 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).Article 

    Google Scholar 
    Kahl, T. & Bauhus, J. An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nat. Conserv. 7, 15–27 (2014).Article 

    Google Scholar 
    Paillet, Y. et al. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. For. Ecol. Manage. 346, 51–64 (2015).Article 

    Google Scholar 
    Burrascano, S., Lombardi, F. & Marchetti, M. Old-growth forest structure and deadwood: Are they indicators of plant species composition? A case study from central Italy. Plant Biosyst. 142, 313–323 (2008).Article 

    Google Scholar 
    Van Wagner, C. E. Practical aspects of the line intersect method. (Minister of Supply and Services Canada, 1982).Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).Article 

    Google Scholar 
    Asbeck, T., Pyttel, P., Frey, J. & Bauhus, J. Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. For. Ecol. Manage. 432, 400–408 (2019).Article 

    Google Scholar 
    Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13181 (2018).Article 

    Google Scholar 
    Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manage. 264, 110401 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).Article 
    ADS 

    Google Scholar 
    Rafique, R., Zhao, F., De Jong, R., Zeng, N. & Asrar, G. R. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison. Remote Sens. 8, 1–16 (2016).Article 

    Google Scholar 
    Bates, D. et al. Package ‘lme4’. R Found. Stat. Comput. Vienna 12, (2014).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. (2019).R Core Team. R: A language and environment for statistical computing. (2021).Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of natie and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Holdaway, R. J. & Sparrow, A. D. Assembly rules operating along a primary riverbed-grassland successional sequence. J. Ecol. 94, 1092–1102 (2006).Article 

    Google Scholar 
    Matuoka, M. A., Benchimol, M., de Almeida-Rocha, J. M. & Morante-Filho, J. C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 116, 106471 (2020).Article 

    Google Scholar 
    Leaver, J., Mulvaney, J., Ehlers-Smith, D. A., Ehlers-Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manage. 445, 82–95 (2019).Article 

    Google Scholar 
    Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of native and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers. Conserv. 25, 117–132 (2016).Article 

    Google Scholar 
    Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687 (2019).Article 

    Google Scholar 
    Peña, R. et al. Biodiversity components mediate the response to forest loss and the effect on ecological processes of plant–frugivore assemblages. Funct. Ecol. 34, 1257–1267 (2020).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. For. Ecol. Manage. 433, 343–348 (2019).Article 

    Google Scholar 
    Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manage. 407, 95–105 (2017).Article 

    Google Scholar 
    Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
    Google Scholar 
    Uezu, A. & Metzger, J. P. Vanishing bird species in the Atlantic Forest: Relative importance of landscape configuration, forest structure and species characteristics. Biodivers. Conserv. 20, 3627–3643 (2011).Article 

    Google Scholar 
    Endenburg, S. et al. The homogenizing influence of agriculture on forest bird communities at landscape scales. Landsc. Ecol. 34, 1–15 (2019).Article 

    Google Scholar 
    Reif, J. et al. Changes in bird community composition in the Czech Republic from 1982 to 2004: Increasing biotic homogenization, impacts of warming climate, but no trend in species richness. J. Ornithol. 154, 359–370 (2013).Article 

    Google Scholar 
    Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    Doxa, A., Paracchini, M. L., Pointereau, P., Devictor, V. & Jiguet, F. Preventing biotic homogenization of farmland bird communities: The role of High Nature Value farmland. Agric. Ecosyst. Environ. 148, 83–88 (2012).Article 

    Google Scholar 
    Van Turnhout, C. A. M., Foppen, R. P. B., Leuven, R. S. E. W., Siepel, H. & Esselink, H. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol. Conserv. 134, 505–516 (2007).Article 

    Google Scholar 
    Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: Accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).
    Google Scholar 
    Gustafsson, L. et al. Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio 49, 85–97 (2020).PubMed 
    Article 

    Google Scholar 
    Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717 (2019).Article 

    Google Scholar 
    Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V. & Mina, M. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For. Ecol. Manage. 481, (2021).Manes, F., Ricotta, C., Salvatori, E., Bajocco, S. & Blasi, C. A multiscale analysis of canopy structure in Fagus sylvatica L. and Quercus cerris L. old-growth forests in the Cilento and Vallo di Diano National Park. Plant Biosyst. 144, 202–210 (2010).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kirsch, J.-J. et al. The use of water-filled tree holes by vertebrates in temperate forests. Wildlife Biol. 2021, wlb.00786
    (2021). More